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Abstract

The questions studied in this thesis are centered around the moment oper-
ators of a quantum observable, the latter being represented by a normal-
ized positive operator measure. The moment operators of an observable are
physically relevant, in the sense that these operators give, as averages, the
moments of the outcome statistics for the measurement of the observable.
The main questions under consideration in this work arise from the fact
that, unlike a projection valued observable of the von Neumann formula-
tion, a general positive operator measure cannot be characterized by its first
moment operator.

The possibility of characterizing certain observables by also involving
higher moment operators is investigated and utilized in three different cases:
a characterization of projection valued measures among all the observables is
given, a quantization scheme for unbounded classical variables using trans-
lation covariant phase space operator measures is presented, and, finally, a
mathematically rigorous description is obtained for the measurements of ro-
tated quadratures and phase space observables via the high amplitude limit
in the balanced homodyne and eight-port homodyne detectors, respectively.

In addition, the structure of the covariant phase space operator measures,
which is essential for the above quantization, is analyzed in detail in the
context of a (not necessarily unimodular) locally compact group as the phase
space.
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Chapter 1

Introduction

It has long been known that the conventional von Neumann formulation of a
quantum observable as a selfadjoint operator or, equivalently, a spectral mea-
sure, is insufficient in describing many natural properties of measurements,
such as measurement inaccuracy. Therefore, the more general concept of a
normalized positive operator measure, or semispectral measure, is currently
widely used, for instance, in quantum optics, to represent the statistics of
measurements.

An essential difference between a spectral measure and a general positive
operator measure is the fact that the latter is not, in general, characterized by
its first moment operator. In fact, even the entire moment operator sequence
is in some cases insufficient to determine a positive operator measure. In
particular, a general moment operator cannot be obtained as a power of the
first one, as is the case for spectral measures. These complications make it
interesting to investigate the relation between a positive operator measure
and its moment operator sequence.

As is evident from the above comments, the basic mathematical object
in this thesis is a normalized positive operator measure, which is understood
as a representation of an observable of some quantum mechanical system.
The moment operators of an observable are defined by means of operator
integrals, and we pay careful attention to the domains of these (typically
unbounded) operators. The basic problem is whether an observable is deter-
mined by (some of) its moment operators. However, we do not investigate
this difficult mathematical question systematically in a general context, but
instead concentrate on some relevant physically motivated special cases.

The introductory review of the thesis is organized around the above men-
tioned basic problem as follows. In Chapter 2, we give the definitions of
the basic concepts, and consider the characterization of spectral measures
among all observables in terms of the first and second moment operators
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of the observable. Chapter 3 presents a quantization scheme, which maps
certain unbounded classical variables to normalized positive operator mea-
sures by means of the correspondence of the classical moments of the variable
and the moment operators of the resulting quantum observable. Various im-
plementations of this scheme are studied, some of which can be realized by
means of positive covariant phase space operator measures. Chapter 4 is de-
voted to the study of the structure of positive covariant phase space operator
measures in the context where the phase space is a (not necessarily unimod-
ular) locally compact group. In Chapter 5, we study the possibility of the
convergence of a sequence of quantum observables, given that the moment
operators of the observables converge. Then we apply the results to two
concrete physically relevant applications, balanced homodyne and eight-port
homodyne detectors, thereby giving a mathematically rigorous description of
the ”high amplitude limit” which leads to a measurement of a quadrature in
the former case and a covariant phase space observable in the latter.
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Chapter 2

Observables, moment operators
and sharpness

2.1 An observable as a semispectral measure

In standard quantum mechanics, a physical system is described by a complex
separable Hilbert space H, the states of the system being associated with
positive operators T : H → H of unit trace. We letH be fixed throughout the
review. Let L(H) denote the set of bounded operators on H, let T (H) be the
set of trace class operators, and let S(H) := {T ∈ T (H) | T ≥ O, Tr[T ] = 1}
be the set of states. The pure states correspond to projections onto one-
dimensional subspaces of H. If ϕ, ψ ∈ H, we use the symbol |ϕ〉〈ψ| to
denote the operator η 7→ 〈ψ|η〉ϕ. In particular, any pure state is of the form
|ϕ〉〈ϕ| for some unit vector ϕ ∈ H.

As mentioned in the Introduction, we adopt the view in which an observ-
able of the system is represented by a normalized positive operator measure
E : A → L(H) (see the definition below) with A a σ-algebra of subsets
of a set Ω containing the measurement outcomes for the observable. In
this formulation, the outcome probability distribution ET for a measure-
ment of an observable E : A → L(H) in a state T ∈ S(H) is recovered via
ET (X) = Tr[TE(X)], X ∈ A. In the case where T = |ϕ〉〈ϕ| for some unit
vector ϕ ∈ H, we write simply Eϕ := E|ϕ〉〈ϕ|.

We are mainly interested in observables defined on the real line and on the
phase space R2, in which cases (Ω,A) = (R,B(R)) and (Ω,A) = (R2,B(R2)),
respectively, where B(Rn) is the Borel σ-algebra of Rn, n = 1, 2. However,
we will also use the concept of normalized positive operator measure as a
mathematical tool in a more general setting.
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Definition 1. Let Ω be a set, A a σ-algebra of subsets of Ω, and let E :
A → L(H) be a map.

(a) The map E is a positive operator measure if

(i) E(X) ≥ O for all X ∈ A;

(ii) E(∅) = 0, and E(∪∞n=0Xn) =
∑∞

n=0E(Xn) for any sequence
(Xn) ⊂ A of mutually disjoint sets, with the series converging
in the weak (or, equivalently, strong) operator topology.

(b) The map E is normalized, if E(Ω) = I. A normalized positive operator
measure is also called semispectral measure.

(c) If E is a semispectral measure, such that E(X) is a projection for all
X ∈ A, then E is a spectral measure.

If Ω and A are as in the preceding definition, ψ, ϕ ∈ H, and E : A →
L(H) is a positive operator measure, we let Eψ,ϕ denote the complex measure
X 7→ 〈ψ|E(X)ϕ〉.

Spectral measures correspond to conventional von Neumann type observ-
ables; they are in one-to-one correspondence with the selfadjoint operators in
H according to the spectral theorem. For any selfadjoint operator A in H, we
let PA denote the spectral measure of A. Spectral measures, or, equivalently,
selfadjoint operators, are also called sharp observables. For any linear (not
necessarily selfadjoint) operator A in H, we let D(A) denote the domain of
A, and for a densely defined symmetric operator A, the symbol A denotes
the least closed extension of A.

2.2 The operator integral and moment oper-

ators

We will consider the moment operators of observables only in the case Ω = R,
with A = B(R). For an observable E : B(R) → L(H), the moment operators
are defined as operator integrals of the functions x 7→ xk with respect to
the positive operator measure E. To give a precise definition, we need the
following general concept of an operator integral, introduced in [36].

Let Ω and A be as in Definition 1, let E : A → L(H) be a positive
operator measure, and let f : A → C be an A-measurable function. It was
proved in [36] that the set

D(f, E) := {ϕ ∈ H | f is Eψ,ϕ-integrable for all ψ ∈ H}
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is a subspace of H, and that there exists a unique linear operator L(f, E) :
D(f, E) → H, such that

〈ψ|L(f, E)ϕ〉 =

∫
f dEψ,ϕ, ψ ∈ H, ϕ ∈ D(f, E).

It was also shown in that paper that the square integrability domain

D̃(f, E) :=

{
ϕ ∈ H |

∫
|f |2 dEϕ,ϕ <∞

}

is a subspace of D(f, E), and that L(f, E) is a symmetric operator, provided
that f is real valued. In general, the inclusion D̃(f, E) ⊂ D(f, E) may be
proper; see [36] for a trivial example. We let L̃(f, E) denote the restriction
of L(f, E) to the square integrability domain D̃(f, E).

It should be noted that the above definition for the operator integral
differs slightly from the usual convention. Namely, in the literature the square
integrability domain is frequently used as the actual domain (see e.g. [58]).
In the case where f is bounded, however, L(f, E) = L̃(f, E) is bounded and
defined in all of H, and is simply the usual weak operator integral (see e.g.
[5, Theorem 9]).

Since the operator integral is an essential mathematical tool in our con-
siderations, we have made some attempts to understand its structure. It
is instructive to compare a general operator integral L(f, E) to the special
case where E is a spectral measure. It was already proved in [36] that for
a spectral measure E, the operator L(f, E) is exactly the operator given by
the usual spectral integral; in particular, D(f, E) = D̃(f, E) in that case. In
article IV, we investigated, among other things, the possibility of approximat-
ing f with the truncated functions f̃n, n ∈ N, with f̃n(x) = f(x) whenever
|f(x)| ≤ n and f̃n(x) = 0 otherwise. It is well known that in the case where
E is a spectral measure, we have

D(f, E) =
{
ϕ ∈ H | lim

n→∞
L(f̃n, E)ϕ exists

}
,

with L(f, E)ϕ = limn→∞ L(f̃n, E)ϕ for any ϕ ∈ D(f, E). For a general
semispectral measure, this does not hold. (It is easy to give trivial examples,
see article IV.) However, the following result holds; for proof1, see article IV,
Proposition 1. (In the original formulation, we used the truncated versions
(f̃n) of f , instead of a more general sequence (fn), but the proof shows

1The proof is based on the fact that D(f, E) is the set of those vectors ϕ ∈ H, for
which f is integrable with respect to the vector valued measure X 7→ E(X)ϕ. The vector
L(f, E)ϕ is then the associated integral. (See [62].)
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immediately that the result holds also in the following form.) Here χZ denotes
the indicator function of a set Z ⊂ Ω.

Proposition 1. Let Ω and A be as above, let E : A → L(H) be a positive
operator measure, and let f : Ω → C be a measurable function. Let (fn) be
any sequence of bounded measurable functions Ω → C converging pointwise
to f , with |fn(ω)| ≤ |f(ω)| for all ω ∈ Ω. Then

D(f, E) =
{
ϕ ∈ H | lim

n→∞
L(χZfn, E)ϕ exists for each Z ∈ A

}
, (2.1)

and

L(f, E)ϕ = lim
n→∞

L(fn, E)ϕ whenever ϕ ∈ D(f, E). (2.2)

Having defined the operator integral, we can define the moment operators
of a real observable.

Definition 2. Let E : B(R) → L(H) be a semispectral measure, and let
k ∈ N(= {0, 1, 2, . . .}). The kth moment operator E[k] of the observable E
is defined as E[k] := L(xk, E), where xk is a shorthand for the real function
x 7→ xk. In addition, we put Ẽ[k] := L̃(xk, E).

It follows from the above considerations that each moment operator is
symmetric, that is, E[k] ⊂ E[k]∗. However, it need not be selfadjoint or even
densely defined.

Now we have defined the set {E[k] | k ∈ N} of moment operators for
each semispectral measure E. As mentioned in the Introduction, the basic
problem is whether this set uniquely determines E. It is known that for a
compactly supported semispectral measure, the answer is always yes. (In our
formulation, for instance, this can be seen immediately from Proposition 2
below.) However, for semispectral measures E with unbounded support, the
moment operator collection {E[k] | k ∈ N} need not determine E (see e.g.
[27]).

Before proceeding further, we will carefully define some concepts related
to the determination of a semispectral measure in terms of its moment op-
erators.

Definition 3. Let E : B(R) → L(H) be a semispectral measure, and let
I ⊂ N. We say that E is determined by the moment operators E[k], k ∈ I,
if E ′ = E for any semispectral measure E ′ : B(R) → L(H) satisfying E[k] =
E ′[k] for all k ∈ I. If E is determined by the moment operators E[k], k ∈ N,
we say that E is determinate.
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The above definition is needed, since a phrase such as ”determined by the
moment operators” can be somewhat ambiguous. For instance, consider a
semispectral measure E : B(R) → L(H), which is supported in the two-point
set {0, 1}. Then E is completely specified by the first moment operator
E[1] = E({1}), since for any X ∈ B(R), the operator E(X) is either O,
E({1}), I−E({1}) or I according as X contains neither 0 nor 1, 1 but not 0,
0 but not 1, or both 0 and 1, respectively. Nevertheless, if E is not projection
valued, then E is not determined by the moment operator E[1] in the sense
of Definition 3, since the spectral measure of the selfadjoint operator E({1})
has the same first moment as E.

In concrete applications, the problem of whether a given semispectral
measure is determinate can be approached via probability measures and the
classical moment problem. Hence, the following concept is needed.

Definition 4. Let E : B(R) → L(H) be a semispectral measure, and let
D ⊂ H be a subspace. The semispectral measure E is D-determinate, if the
positive measure Eϕ is determinate2 for each ϕ ∈ D.

It is easy to see that a D-determinate semispectral measure is determi-
nate, provided that D is dense. (For a proof, see article VI, Remark 2.)

The concept of exponential boundedness has proved to be useful in estab-
lishing the determinate character of certain concrete observables, e.g. mar-
gins of phase space observables [27, 28]. Recall that a positive measure
µ : B(R) → [0,∞) is exponentially bounded if

∫
ea|x| dµ(x) <∞

for some constant a > 0. An exponentially bounded measure is always
determinate (see e.g. [7, Theorem 30.1, p. 406]).

Definition 5. For a semispectral measure E : B(R) → L(H), we let E(E)
denote the set of those vectors ϕ ∈ H for which the positive measure Eϕ is
exponentially bounded.

We proved in article VI (Lemma 1) that E(E) is a subspace of H for any
semispectral measure E : B(R) → L(H). Hence, the following holds.

Proposition 2. For any semispectral measure E : B(R) → L(H), the set
E(E) is a subspace of H, and E is E(E)-determinate. If E(E) is dense, then
E is determinate.

2Recall that a positive measure µ : B(R) → [0,∞) is determinate, if it has finite
moments of all orders, and µ = ν for any positive measure ν : B(R) → [0,∞) satisfying∫

xkdµ(x) =
∫

xkdν(x) for all k ∈ N.

14



2.3 A characterization of sharp observables

in terms of their moment operators

If E : B(R) → L(H) is a spectral measure, then a well-known consequence of
the spectral theorem implies that E[1] is selfadjoint and E[2] = E[1]2. If E
is a general semispectral measure, this need not be the case, i.e. the operator
N(E) := E[2]− E[1]2 may be nonzero.

Consider the case where E is an observable with E[1] selfadjoint. Then
we may compare E with the sharp observable PE[1], the spectral measure of
E[1]. Now if E is different from PE[1], or, equivalently, if E is not a spectral
measure, then E is obviously not determined by the moment operator E[1].

The difference between E and PE[1] is reflected in the measurement statis-
tics: For a pure state T = |ϕ〉〈ϕ|, ϕ ∈ D(E[1]) ∩ D(E[2]), ‖ϕ‖ = 1, the
variance Var(ET ) of the measurement outcome probability distribution ET
can be written as

Var(ET ) =

∫
x2 dEϕ − (

∫
x dEϕ)

2 = 〈ϕ|N(E)ϕ〉+ Var(P
E[1]
T ),

showing that the variance of E is larger than that of the sharp observable
PE[1] in any (suitable pure) state T . (This well-known fact was mentioned
already in an old preprint by Ingarden [34, p. 87].) Accordingly, the operator
N(E) is sometimes called intrinsic noise [12].

It is also thought that the property that E[1] is selfadjoint with E[2] =
E[1]2, characterizes the spectral measures among all semispectral measures.
In the case where E is boundedly supported (so that all the operators E[k]
are bounded), this is proved in [51, p. 466], but a proof for the unbounded
case seemed difficult to find. Some parts of the proof can be extracted from
[1, p. 130], but the result is not very detailed, and, moreover, our definition
for the moment operators is slightly different from the usual one as far as
the domains are concerned. In article IV (see Proposition 7 and Theorem
5), we generalized the method of [51, p. 466] to prove that the condition
E[2] = E[1]2 is indeed equivalent to E being a spectral measure, provided
that Ẽ[1] is selfadjoint. In view of our definition of the moment operator, this
is still somewhat unsatisfactory, because Ẽ[1] is not the entire first moment
operator. It appears, however, that this detail is easily corrected, and this is
done in the following lemma.

Lemma 1. Let (Ω,A) be a measurable space, f : Ω → R a measurable
function, H a Hilbert space and E : A → L(H) a positive operator measure,
such that

L(f 2, E) = L(f, E)2. (2.3)
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Then the following are equivalent.

(i) L(f, E) is selfadjoint (on its entire domain D(f, E));

(ii) The restriction L̃(f, E) is selfadjoint.

In that case, D(f, E) = D̃(f, E).

Proof. Assume first that (ii) holds. Since L(f, E) is a symmetric extension
of L̃(f, E), it follows that L(f, E) = L̃(f, E) is selfadjoint, i.e. (i) holds.

Suppose then that (i) holds, and denote L(f, E) = A. Since A is selfad-
joint, it follows from e.g. [26, p. 1245] that the dense subspaceD(A2) ⊂ D(A)
is a core for A, i.e. the closure of the restriction A|D(A2) is A itself. Now, let
ϕ ∈ D(f, E) = D(A), and choose a sequence (ϕn) of vectors in D(A2) con-
verging to ϕ such that the sequence (Aϕn) converges to Aϕ. This is possible,
because D(A2) is a core for A. Since D(A2) = D(L(f, E)2) = D(L(f 2, E))
by (2.3), we have

∫
f 2dEϕn,ϕn = 〈ϕn|L(f 2, E)ϕn〉 = 〈ϕn|L(f, E)2ϕn〉 = ‖Aϕn‖2, n ∈ N

where (2.3), and the fact that L(f, E) is symmetric, have been used. Since
limnAϕn = Aϕ, we get

lim
n

∫
f 2dEϕn,ϕn = ‖Aϕ‖2. (2.4)

Now |Eϕn,ϕn(B) − Eϕ,ϕ(B)| ≤ ‖ϕn − ϕ‖(‖ϕn‖ + ‖ϕ‖)‖E(R)‖, so that the
sequence of positive measures (Eϕn,ϕn)n∈N converges to Eϕ,ϕ uniformly, and
hence in the total variation norm ([25, p. 97]). Since the limit (2.4) exists,
it thus follows e.g. by [36, Lemma A.5] that f 2 is Eϕ,ϕ-integrable, i.e. ϕ ∈
D̃(f, E). We have proved that D(f, E) ⊂ D̃(f, E). Hence, L̃(f, E) = L(f, E)
so L̃(f, E) is selfadjoint, i.e. (ii) holds. The proof is complete.

Proposition 3. Let E : B(R) → L(H) be an observable. Then E is sharp if
and only if E[1] is selfadjoint and E[2] = E[1]2.

Proof. The ”only if” part follows from the spectral theorem. Assuming that
E[1] is selfadjoint, with E[2] = E[1]2, if follows from Lemma 1 that the
operator Ẽ[1] is also selfadjoint. It remains to apply Theorem 5 of article IV
to complete the proof. (See the discussion above.)

Proposition 3 implies, in particular, that sharp observables are deter-
mined by their first two moment operators:
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Proposition 4. If E : B(R) → L(H) is a sharp observable, then E is
determined by the moment operators E[k], k ∈ {1, 2}. In particular, E is
determinate.

Proof. Let E ′ : B(R) → L(H) be a semispectral measure, such that E[k] =
E ′[k], k = 1, 2. Since E is a spectral measure, the operator E ′[1] = E[1]
is selfadjoint, and E ′[2] = E[2] = E[1]2 = E ′[1]2. It now follows from the
preceding proposition that E ′ is a spectral measure, and hence the uniqueness
part of the spectral theorem gives E = E ′.

Note that a sharp observable is never determined by its first moment
operator alone3. To demonstrate this with a trivial example, let P : B(R) →
L(H) be a spectral measure, and define an observable E : B(R) → L(H)
by E(X) := 1

2
(P (X − 1) + P (X + 1)). Now ϕ ∈ D(Ẽ[1]) if and only if∫

1
2
((x+1)2 +(x−1)2) dPϕ,ϕ <∞, which happens exactly when

∫
x2 dPϕ,ϕ <

∞, that is, when ϕ ∈ D(P̃ [1]). In that case, clearly Ẽ[1]ϕ = P̃ [1]ϕ, so that
P [1] = P̃ [1] = Ẽ[1] ⊂ E[1]. But P [1] is selfadjoint and E[1] symmetric,
so that P [1] = E[1]. Hence, the observable E has the same first moment
operator as the sharp observable P , and so the latter is not determined by
the moment operator P [1].

3Recall that the spectral theorem says only that a sharp observable is determined,
among all other sharp observables, by its selfadjoint first moment operator.
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Chapter 3

Quantization as a moment
problem

The original idea of quantization by Heisenberg and Schrödinger was to pro-
vide a method for constructing a quantum mechanical description of a phys-
ical system, assuming that its classical description is known. For a particle
in one spatial dimension, the dynamical variables are real functions on the
phase space R2, and these were quantized by replacing position and momen-
tum coordinates by the multiplication ψ 7→ (x 7→ xψ(x)) and differentiation
ψ 7→ −idψ

dx
operators, respectively. These operators provide a solution to

the canonical commutation relation QP − PQ = iI, in resemblance to the
classical Poisson bracket relation. Weyl transferred the canonical commu-
tation relation into the Weyl relation eitP eisQ = eitseisQeitP [60], involving
the one-parameter unitary groups generated by the selfadjoint operators Q
and P , and von Neumann proved [44] that the solutions of the Weyl relation
essentially determine the generators Q and P as the above multiplication
and differentiation. Mackey replaced the Weyl relations by the condition
U(t)QU(t)∗ = Q + tI [41], which characterizes the position operator Q in
terms of its covariance in translations (U(t)ψ)(x) = ψ(x+t). He also used the
same idea more generally [42], giving rise to a modern understanding where
essential quantum observables, such as position, momentum, and angular
momentum are defined in terms of their symmetry properties, independently
of classical mechanics. In the modern operational approach to quantum
mechanics, where quantum observables are represented by semispectral mea-
sures, this kind of definition has permitted various so called unsharp position
and momentum observables, accounting for, e.g. measurement inaccuracies
[14].
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3.1 Quantization as a correspondence

Although no quantization is needed to define position and momentum ob-
servables, it is still interesting to obtain correspondencies between classical
and quantum observables. In that sense, quantization is any procedure that
associates a quantum observable to a (suitable) classical variable. Tradi-
tionally, the procedure is understood as a map f 7→ Γ(f), where Γ(f) is a
(preferably) selfadjoint operator. In addition, the map is usually required
to quantize correctly the position and momentum variables, and provide a
consistent operator ordering for more complex variables. For instance, the
classic Weyl quantization is like this.

The usual quantization maps, like Weyl quantization, can be implemented
as an integration with respect to suitable operator valued densities. To over-
come the mathematical difficulties arising from the integration of unbounded
functions, the resulting operators are usually defined on some fixed dense
subspace of L2(R) consisting of ”sufficiently smooth” vectors (see e.g. [23]).
Another way to proceed is to ignore unbounded functions, and concentrate
on a suitable C∗-algebra of classical variables, e.g. compactly supported C∞-
functions. The reader may wish to consult [37] for an extensive treatment of
the C∗-algebraic approach to quantization. The problem of that approach,
however, is that the important canonical variables, being unbounded, seem
to be excluded from the treatment.

3.2 Quantization in terms of moments

Having discussed the traditional quantizations, we immediately notice that
those methods produce only operators as quantized observables. In the von
Neumann formulation of quantum observables as spectral measures, this is
reasonable, as the quantized observable Γ(f) corresponding to a classical
variable f is obtained as the unique spectral measure having Γ(f) as its first
moment operator. However, as we adhere to the view in which quantum
observables are represented by semispectral measures, it does not seem to be
sufficient to have quantizations that have nothing to say about the majority
of observables.

Therefore, instead of having a correspondence f 7→ Γ(f), where Γ(f) is
an operator, we want a correspondence f 7→ Ef , with Ef a semispectral
measure. In particular, such a correspondence could quantize position and
momentum variables so that the corresponding observables would be unsharp
position and momentum, rather than the operators Q and P , which are sharp
observables. Following the basic problem of this thesis, we have formulated
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our quantization in terms of moments: instead of quantizing only the first
moment, as in traditional quantization, we quantize all the moments, using a
fixed map Γ. In the following, Ω is the set representing the phase space, with
A a σ-algebra of its subsets, M(Ω) is the set of classical variables, i.e. real
valued A-measurable functions on Ω, and O(H) is the set of all linear (not
necessarily bounded) operators in the Hilbert space H. We presented this
quantization scheme in article IV, and gave some additional considerations
and discussions in article V.

Definition 6. Let F ⊂M(Ω), and let Γ : F → O(H) be a map. A classical
variable f ∈ M(Ω) is quantizable by Γ, if fk ∈ F for all k ∈ N, and there
exists a unique semispectral measure Ef : B(R) → L(H) such that

Γ(fk) = Ef [k], k ∈ N.

The observable Ef , and the family {Γ(fk) | k ∈ N} of operators are both
referred to as a quantization of f .

By definition, any quantization Ef of a classical variable f is determined
by the moment operators Ef [k], k ∈ N.

We want to emphasize that Definition 6 should be seen as a natural
generalization of the traditional scheme, where we have only the requirement
Γ(f) = Ef [1], which is solved by the unique spectral measure Ef : B(R) →
L(H) of Γ(f), provided the latter operator is selfadjoint. Instead of one
operator, we consider a sequence of operators, which, when taken together,
determine a unique observable. It is important to note that the operator
Γ(f) is, in general, not the quantization of f in the sense of Definition 6,
even if it is selfadjoint.

As for the physical relevance of Definition 6, note that fk(ω) is the kth
moment of the (point) probability distribution of the classical observable f in
the pure state ω ∈ Ω, while 〈ϕ|Ef [k]ϕ〉 is the kth moment of the probability
distribution of the quantum observable Ef in a pure state |ϕ〉〈ϕ|. These
correspond to each other via fk 7→ Γ(fk).

The moment approach to quantum observables was also used by
Wódkiewicz et al. [29], who have the term ”operational observables” for the
moments of an observable associated with a quantum measurement. How-
ever, it seems that they have not at all addressed the essential question of
whether the moment operators contain all information on the observable, i.e.
whether the observable is determinate.
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3.3 Examples of the quantization

It is obvious that a complete analysis of the quantizations permitted by
Definition 6 is a difficult mathematical problem, and we have not attempted
to do it. Instead, we have concentrated on interesting particular cases.

3.3.1 Quantization of questions

For any classical variable f ∈M(Ω), and a set X ∈ B(R), we get the variable
χX ◦ f , which assumes only two values, corresponding to whether f(ω) ∈ X
or not. Such variables are traditionally called questions [41]. Obviously,
the questions are exactly the indicator functions χZ , where Z ∈ A, so their
quantization seems to be somewhat trivial. Nevertheless, it is interesting
to compare it with the traditional quantization of questions as projections
(going back to Mackey [41]).

Consider a general map Γ : F → O(H), where F ⊂ M(Ω), and let
χZ , Z ∈ A be the question to be quantized. Assuming that χZ ∈ F , put
A = Γ(χZ) (= Γ(χkZ)), so that the moment problem arising from Definition
6 is simply

A = EχZ [k], k ∈ N,
where the semispectral measure EχZ : B(R) → L(H) is the solution to be
found. The following simple result was proved in article V (Proposition 1).

Proposition 5. Let A ∈ O(H) be densely defined. Then the moment problem
E[k] = A for all k ∈ N, has a solution as a semispectral measure E : B(R) →
L(H) if and only if A is bounded and O ≤ A ≤ I. In that case, the only
solution is the two-valued semispectral measure defined by {0} 7→ I − A and
{1} 7→ A.

Note that the condition that D(A) is dense is needed; it is easy to give
an example of an operator A with a nondense domain and having multiple
solutions to the above moment problem (see the remark following Proposition
1 of article V).

According to Proposition 5, a question χZ with Z ∈ A is quantizable by
Γ provided that Γ : F → O(H) is such that χZ ∈ F , and the operator Γ(χZ)
is bounded, with O ≤ Γ(χZ) ≤ I. In that case, the quantized observable
is the two-valued observable given by {0} 7→ I − Γ(χZ), {1} 7→ Γ(χZ). It
should be emphasized that the bounded selfadjoint operator Γ(χZ) is not the
quantization of χZ , except in the special case where its spectral measure sat-
isfies the defining moment problem. According to Proposition 5, this occurs
exactly when Γ(χZ) is a projection. Clearly, this special case corresponds to
the traditional quantization of questions as projections.
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3.3.2 Quantization via operator integral

As mentioned before, a map Γ : F → O(H), with F ⊂M(Ω), is traditionally
realized as a suitable operator valued integral over the phase space Ω. One
way to do this is to use the operator integral defined in Chapter 2. Then
we have to fix a positive operator measure W : A → L(H), and define
ΓW : M(Ω) → O(H) by

ΓW (f) := L(f,W ), f ∈M(Ω).

Now the defining moment problem for the quantization is trivially solved by
putting

Ef (X) := W (f−1(X)), X ∈ B(R).

(This follows from the definition of the operator integral by a change of
variables.) Hence, we are left with the nontrivial question of whether this
Ef is determinate. We have not investigated this question in general, and it
will be postponed to the more concrete examples.

In view of the idea of our quantization, it is obvious that the generating
operator measure1 W should not be a spectral measure, since otherwise the
quantized observables Ef would all be mutually commuting spectral mea-
sures. In fact, even a single projection in the range of W would cause the
corresponding system of quantized observables to possess a nontrivial classi-
cal property (superselection rule), since each operator W (Z), Z ∈ A, would
then commute with the projection in question. (See e.g. [4, 35] for discussion
on superselection rules of quantum systems.)

Next we will consider the characterizing properties of those maps Γ :
M(Ω) → O(H) which are of the form ΓW for some phase space operator
measure W : A → L(H). The first thing to note is that according to the
discussion of the preceding section, any question variable χZ , Z ∈ A is
quantizable by ΓW , provided that W (Ω) ≤ I. This is conveniently realized
by requiring that W is normalized, and we will now do so.

There are different ways to characterize the restrictions of the operator
integral maps ΓW to the set of bounded functions (see e.g. [5, p. 23, p. 39]).
Since we are also considering unbounded functions, we need something more.

The following proposition is a combination (and modification) of Proposi-
tion 2 of article II, Theorem 2 of article IV, and the above discussed results of
article V concerning question variables. The simple proof, relying on Propo-
sition 1, is given for the reader’s convenience. The following definition is
needed.

1Note that in this context, W does not represent any observable, although it is a (possi-
bly normalized) positive operator measure. The quantized observables Ef are semispectral
measures on the real line.
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Definition 7. Let Γ : M(Ω) → O(H) be a map.

(a) The map Γ is (real) linear, if Γ(αf + βg) ⊃ αΓ(f) + βΓ(g) for all
α, β ∈ R.

(b) The map Γ is quasicontinuous, if for each positive function f ∈ M(Ω)
and every increasing sequence (fn) ⊂M(Ω) of positive bounded func-
tions converging pointwise to f , we have

D(Γ(f)) =

{
ϕ ∈

⋂

n∈N
D(Γ(fn)) | lim

n→∞
Γ(χZfn)ϕ exists for each Z ∈ A

}
,

and

lim
n→∞

Γ(fn)ϕ = Γ(f)ϕ, ϕ ∈ D(Γ(f)).

(We defined quasicontinuity in article II in a slightly different way. That
definition was given by Berberian [5, Definition 7] in a similar context, but
involving only bounded functions.) It is easy to see that any map ΓW is lin-
ear and quasicontinuous. In fact, the linearity follows immediately from the
definition of the operator integral (since |f + g| ≤ |f | + |g|), and quasicon-
tinuity is a consequence of Proposition 1 and the fact that L(f, E) ∈ L(H)
for any bounded function f ∈M(Ω).

Proposition 6. A map Γ : M(Ω) → L(H) coincides with ΓW for a (clearly
unique) normalized positive operator measure W if and only if the following
conditions hold:

(i) Γ(χZ) ∈ L(H), with O ≤ Γ(χZ) ≤ I for all questions χZ, Z ∈ A, with
Γ(χΩ) = I;

(ii) Γ is linear;

(iii) Γ is quasicontinuous;

(iv) D(Γ(f)) = D(Γ(|f |)) for all f ∈M(Ω).

Proof. We have already noted that the conditions (i)-(iii) hold for a map
ΓW with W a normalized positive operator measure. Condition (iv) follows
directly from the definition of the operator integral.

Suppose then that the conditions hold for a map Γ : M(Ω) → L(H).
Using (i), we can define W (Z) := Γ(χZ) ∈ L(H), Z ∈ A. Then W (Ω) = I
by (i). Now (ii) implies that W : A → L(H) so defined is additive, with
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W (∅) = Γ(0) = 0. If (Zn) ⊂ A is a decreasing sequence of sets with empty
intersection, then

lim
n→∞

W (Zn)ϕ = lim
n→∞

(Γ(χΩ)ϕ− Γ(χΩ\Zn)ϕ) = ϕ− ϕ = 0

by (ii) and (iii). Hence, W is a normalized positive operator measure. It is
clear from (i) and (ii) that Γ(f) = L(f,W ) ∈ L(H) for any A-simple function
f . Let f ∈ M(Ω) be positive, and let (fn) ⊂ M(Ω) be an increasing
sequence of positive A-simple functions converging pointwise to f . Since
Γ(fn) = L(fn, E) ∈ L(H) for all n, it follows from (iii) and Proposition 1
that

D(Γ(f)) =
{
ϕ ∈ H | lim

n→∞
L(χZfn, E)ϕ exists for each Z ∈ A

}
= D(f, E),

and
Γ(f)ϕ = lim

n→∞
Γ(fn)ϕ = lim

n→∞
L(fn, E)ϕ = L(f, E)ϕ

for all ϕ ∈ D(Γ(f)). Hence, Γ(f) = L(f, E). For a general f ∈ M(Ω), we
can write f = f+ − f−, where f± are positive, and so Γ(f) ⊃ L(f+, E) −
L(f−, E) ⊃ L(f, E) by (ii) and the definition of the operator integral (note
that |f±| ≤ |f |). But D(Γ(f)) = D(Γ(|f |)) = D(|f |, E) = D(f, E), so
Γ(f) = L(f, E) also in this case.

3.3.3 Covariant quantization

Now we proceed to a more concrete case, assuming that Ω = G, and A =
B(G), where G is a connected locally compact second countable topological
group. We let λ denote a left Haar measure on G. In addition, we postulate
more structure on the phase space G, assuming that the group structure
of G can be transferred to the group Aut(S(H)) of state automorphisms
(i.e. bijective mappings S(H) → S(H) preserving convex combinations)
via a group homomorphism β : G → Aut(S(H)) which is continuous (with
respect to the projective topology induced by the functions s 7→ Tr[s(T )A],
T ∈ S(H), O ≤ A ≤ I). According to the classic Wigner theorem2, β
can be written as β(g)(T ) = U(g)TU(g)∗, where U is a projective unitary
representation (see the following definition (a)).

Definition 8. (a) A map U : G → L(H) is a projective unitary represen-
tation, if

2The original proof by Wigner can be found in [61, p. 251-254]; for a modern treatment,
the reader may wish to consult [17]
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(i) U(g) is unitary for all g ∈ G and U(e) = I, where e is the identity
element of G;

(ii) the map g 7→ 〈ψ|U(g)ϕ〉 is a Borel function for all ψ, ϕ ∈ H;

(iii) there is a Borel map m : G × G → C, such that U(gh) =
m(g, h)U(g)U(h) for all g, h ∈ G.

The (clearly unique) map m associated with U is called the multiplier
of U .

(b) A projective unitary representation U : G→ L(H) is square integrable,
if there exist nonzero vectors ψ, ϕ ∈ H, such that

∫
|〈ψ|U(g)ϕ〉|2 dλ(g) <∞.

The irreducibility of a projective unitary representation is defined in the
same way as in the case of ordinary unitary representations. For informa-
tion on projective unitary representations, the Wigner theorem and related
concepts, see e.g. [54, 2, 17].

The group G acts on the phase space G by means of translations3, i.e.
for each h ∈ G, we have the left translation g 7→ hg. Via the homomorphism
β, translations act in the state space as transformations β(h). Considering a
map Γ : G → O(H) in this setting, we can require that it behave covariant
under translations:

Definition 9. Let F ⊂M(G). A map Γ : F → O(H) is U-covariant, if

U(g)∗Γ(f)U(g) = Γ(f(g·)), g ∈ G, f ∈ F .
Notice that the above operator equality requires, in particular, that

U(g)D(Γ(f(g·))) = D(Γ(f)).

Consider the operator integral map ΓW : M(G) → O(H), where W :
B(G) → L(H) is a normalized positive operator measure. If ΓW is covariant
in the sense of the above definition, then the operator measure W obviously
satisfies the following covariance condition.

Definition 10. A positive operator measure W : B(G) → L(H) is U-
covariant, if

U(g)∗W (Z)U(g) = W (g−1Z), g ∈ G, Z ∈ B(G).

3Thus we consider only the special case where the group acts on itself; the more general
setting consists of a (symmetry) group G acting on a transitive G-space Ω (the phase space)
(see e.g. Holevo [33, p. 62]).
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Although the following result is rather simple, we did not state it in article
IV. We give the proof here for the reader’s convenience, since the associated
equality of the domains should be carefully verified.

Proposition 7. A semispectral measure W : B(G) → L(H) is U-covariant,
if and only if the associated map ΓW is U-covariant.

Proof. We have already noted that the covariance of ΓW implies the covari-
ance of W . Assume now that W is U -covariant, let g ∈ G, and f ∈ M(Ω).
First, consider ψ, ϕ ∈ H. By covariance, the complex measure WU(g)ψ,U(g)ϕ

coincides with Z 7→ 〈ψ|W (g−1Z)ϕ〉. Hence, upon changing the integration
variable, one sees that f is WU(g)ψ,U(g)ϕ-integrable, if and only if f(g·) is
Wψ,ϕ-integrable.

Now U(g)ϕ ∈ D(f,W ) if and only if f isWψ,U(g)ϕ-integrable for all ψ ∈ H.
Since U(g) is unitary, this happens exactly when f is WU(g)ψ,U(g)ϕ-integrable
for all ψ, i.e. f(g·) is Wψ,ϕ-integrable for all ψ. The latter is equivalent to
ϕ ∈ D(f(g·),W ). We have proved that U(g)D(f(g·),W ) = D(f,W ).

The equality

〈ψ|U(g)∗L(f,W )U(g)ϕ〉 = 〈ψ|L(f(g·),W )ϕ〉, ψ ∈ H, ϕ ∈ U(g)∗D(f,W )

now follows by a change of variables.

The above result implies, in particular, that D(f,W ) is an invariant sub-
space for U if D(f(g·),W ) = D(f,W ) for all g. Therefore, the following
result is immediate4. A similar result concerning the square integrability
domain also holds; see e.g. Proposition 4 (a) of article IV or [58].

Proposition 8. If U is irreducible, and f ∈ M(G) is such that D(f,W ) =
D(f(·g),W ) for all g ∈ G, then D(f,W ) is either trivial or dense.

Each function f ∈ M(G) satisfying |f(gh)| ≤ Mh|f(g)| + Kh, for all
g, h ∈ G, where Mh > 0 and Kh > 0 depend only on h, clearly meets the
domain condition of the preceding proposition. For example, in the case
where G = R2n, all the polynomials and exponentials depending only on one
coordinate are like this.

For the rest of this subsection, we will assume that the group G is unimod-
ular, and the projective unitary representation U is irreducible and square
integrable. In this case, the structure of covariant normalized positive op-
erator measures is well known, and there are at least two different ways to
obtain it; see [18] for the one and [31, 56] and articles II, III for the other.

4We proved it somewhat awkwardly in article IV (Proposition 4 (b)), using the explicit
form for the covariant positive operator measure.
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We will discuss the characterization in some detail in Chapter 4, but at this
point we will only need the result: Each U -covariant semispectral measure
W : B(G) → L(H) is of the form W = W T for a unique positive operator T
of trace one, where W T is defined by

W T (Z) :=
1

d

∫

Z

U(g)TU(g)∗ dλ(g), Z ∈ B(G),

where the integral is understood in the weak sense, and d is a constant
depending only on U .

Consider now briefly the quantization of question variables via an opera-
tor integral map ΓW where W : B(G) → L(H) is a U -covariant semispectral
measure. The covariance brings in the following important property, proved
in article IV. (Since the phase space semispectral measures are studied ex-
tensively, this result may well be known; however, we have been unable to
find it anywhere.)

Proposition 9. Assume that the projective representation U is continuous
with respect to the strong operator topology. Let W : B(G) → L(H) be
a U-covariant semispectral measure. Then ΓW (χZ) is never a nontrivial
projection.

Since the quantized observable Ef corresponding to a classical variable f ,
obtained via the map ΓW , is of the form Ef (X) = W (f−1(X)), the preceding
proposition implies that Ef is never a spectral measure, if W is U -covariant.

To consider some concrete applications of the covariant quantization, we
take the simple special case G = R2. Fixing an orthonormal basis {|n〉 | n ∈
N} of H, we can define the canonical position and momentum operators Q =
1√
2
(a∗ + a) and P = 1√

2
i(a∗ − a), where a and a∗ are the lowering and rising

operators5 associated with the basis. In addition, we let N = a∗a. The Weyl
operators are defined as W (q, p) = e

1
2
iqpe−iqP eipQ. We use the coordinate

representation, i.e. H ' L2(R), via |n〉 7→ hn, where hn is the nth Hermite
function. In the coordinate representation, Q and P act as multiplication
ψ 7→ (x 7→ xψ(x)) and differentiation ψ 7→ −idψ

dx
, while the rule for the

Weyl operator is (W (q, p)ϕ)(x) = e−i
1
2
qpeipxϕ(x − q). The operators Q and

P are connected by the unitary equivalence P = F ∗QF , where F is the
Fourier-Plancherel operator on L2(R).

The map R2 3 (q, p) 7→ W (q, p) ∈ L(H) is a strongly continuous irre-
ducible square integrable projective unitary representation, so W -covariant

5See [48, Chapter IV] or [8, Chapter 12] for details concerning these very thoroughly
studied operators.
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semispectral measures are given by

W T (Z) =
1

2π

∫

Z

W (q, p)TW (q, p)∗ dqdp, Z ∈ B(R2), (3.1)

where T is a positive operator of trace one6. This form allows some essential
operator integrals to be calculated explicitly, as we will see in Subsection
3.3.5.

3.3.4 Weyl quantization on R2

The mathematical formulation of the Weyl quantization has been studied
extensively (see e.g. [46, 20, 23] and the references therein). In view of our
quantization, we consider the traditional Weyl quantization map as a means
to implement a map Γ : F → O(H), where F ⊂M(R2) is a suitable set. As
is well known, the Weyl map is formally given by

f 7→ 1

π

∫
f(q, p)W (q, p)PW (q, p)∗ dqdp,

where P is the parity operator. This can be made precise by letting F be the
set of those f ∈M(R2) for which there is a symmetric operator Rf : S → H,
defined on the Schwartz space S ⊂ H, with

〈ϕ|Rfϕ〉 =
1

π

∫
f(q, p)〈ϕ|W (q, p)PW (q, p)∗ϕ〉 dqdp, ϕ ∈ S.

Now the Weyl map ΓWeyl can be defined as the association F 3 f 7→
ΓWeyl(f) := Rf ∈ O(H). In article V, we compared the quantization via
ΓWeyl to the covariant quantization via operator integral. In particular, even
the quantization of questions is problematic for the Weyl map, as there seems
to be no guarantee that χZ ∈ F for all Z. Only some particular cases are
known. For example, if the Lebesgue measure of Z is finite, then χZ ∈ F
and ΓWeyl(χZ) is bounded by the classic result of Pool [46]. However, due to
the nonpositivity of the Wigner functions (q, p) 7→ 1

π
〈ϕ|W (q, p)PW (q, p)∗ϕ〉,

the condition O ≤ ΓWeyl(χZ) ≤ I need not hold, even in this simple case.
Another example of sets Z ∈ F are sectors in R2; see [57].

6In articles I, II, and IV, we defined the Weyl operators so that (W (q, p)ϕ)(x) =
ei 1

2 qpeipxϕ(x + q), and then used W (−q, p) in the definition of the phase space observable
WT , so the result is the same.
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3.3.5 Quantization of position and momentum in R2

In article IV, we applied covariant quantization to the position and mo-
mentum variables (q, p) 7→ q and (q, p) 7→ p, which will be denoted by x
and y, respectively. If T is a positive operator of trace one, the map ΓWT

defines a covariant quantization, according to the moment problem in Defi-
nition 6. The observables corresponding to position and momentum are now
X 7→ W T (x−1(X)) = W T (X × R) =: ET,x(X) and Y 7→ W T (y−1(Y )) =
W T (R × Y ) =: ET,y(Y ). Of course, this does not guarantee that these
observables are quantizations of x and y; by definition, the variable x, for
instance, is quantizable by ΓWT provided that the semispectral measure ET,x

is determined by the moment operators ET,x[k] = L(xk,W T ), k ∈ N, in the
sense of Definition 3. We will discuss this problem shortly, but before that
we give the explicit form for the moment operators in question, as obtained
in articles I and IV. Related calculations can also be found in [58].

Proposition 10. (a) Let k ∈ N. Then D̃(xk,W T ) 6= {0} if and only
if Qk

√
T is a Hilbert-Schmidt operator. In that case, D(xk,W T ) =

D̃(xk,W T ) = D(Qk), and

L(xk,W T ) =
k∑

l=0

((
k

l

)
(−1)k−lTr[Qk−lT ]

)
Ql.

(b) Part (a) holds true also if ”x” and ”Q” are replaced with ”y” and ”P”,
respectively.

One should note that the above proposition determines the moment op-
erators only for the case where the square integrability domain is nontrivial.
We do not know whether it is possible that e.g. D̃(xk,W T ) = {0} with
D(xk,W T ) 6= {0}.

Now we proceed to consider the problem of whether the above moment
operator sequences constitute quantizations of position and momentum, i.e.
whether the observables ET,x and ET,y are determinate. Unfortunately, we
have only been able to deal with the stronger condition of exponential bound-
edness.

In the case where T = |n〉〈n|, the measures ET,x
ϕ and ET,y

ϕ , with ϕ ∈
C∞0 (R), were proved in [28] to be exponentially bounded, so that ET,x and
ET,y are determinate in that case. The following lemma characterizes the
exponentially bounded cases completely.

Lemma 2. Let T be a positive operator of trace one.
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(a) E(ET,x) 6= {0} if and only if e
1
2
a0|Q|

√
T is a Hilbert-Schmidt operator

for some constant a0 > 0. In that case,

E(ET,x) =

{
ϕ ∈ H |

∫
ea|t||ϕ(t)|2 dt <∞ for some a ∈ (0, a0]

}
.

(b) E(ET,y) 6= {0} if and only if e
1
2
a0|P |

√
T is a Hilbert-Schmidt operator

for some constant a0 > 0. In that case,

E(ET,y) =

{
ϕ ∈ H |

∫
ea|t||Fϕ(t)|2 dt <∞ for some a ∈ (0, a0]

}
.

Proof. To prove (a), we show first that for any a > 0,

∫
ea|t| dET,x

ϕ (t) <∞ if and only if

e
1
2
a|Q|√T is Hilbert-Schmidt and

∫
ea|t||ϕ(t)|2 dt <∞.

(3.2)

Write T in the form T =
∑∞

n=1wn|ηn〉〈ηn|, where
∑

nwn = 1, wn ≥ 0 and
(ηn) is an orthonormal sequence in H. A calculation similar to one in the
proof of Proposition 6 of article IV shows that

∫
ea|t| dET,x

ϕ (t) =

∫ ∫ ∑
n

ea|t−q|wn|ηn(q)|2|ϕ(t)|2 dtdq (≤ ∞)

for any ϕ ∈ H. If this expression is finite, then Fubini’s theorem implies that∫ ∑
n e

a|t−q|wn|ηn(q)|2 dq < ∞ for almost all t ∈ R, and
∫
ea|t−q||ϕ(t)|2 dt <

∞ for almost all q ∈ R. Since e.g. |t| ≤ |q| + |t − q| for any q, t ∈ R, this
implies

∞∑
n=0

wn‖e 1
2
a|Q|ηn‖2 =

∫ ∑
n

ea|q|wn|ηn(q)|2 dq <∞, (3.3)

and

∫
ea|t||ϕ(t)|2 dt <∞. (3.4)

(The monotone convergence theorem is used to obtain the equality in (3.3),

which is always true, under the convention that ‖e 1
2
a|Q|ηn‖ := ∞ whenever

ηn is not in the domain of e
1
2
a|Q|.) On the other hand, if (3.3) and (3.4) hold,
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then
∫
ea|t| dET,x

ϕ (t) <∞. But by Lemma 1 of article IV, the condition (3.3)

holds exactly when e
1
2
a|Q|√T is Hilbert-Schmidt. Hence, we have proved

(3.2).
Since the subspace {ϕ ∈ H | ∫

ea|t||ϕ(t)|2 dt < ∞} is clearly non-empty
for any a > 0 (it contains, e.g. all compactly supported continuous functions),
the result (3.2) immediately gives the first claim of part (a). Now assume that

there is a0 > 0 such that e
1
2
a0|Q|

√
T is Hilbert-Schmidt. First, let ϕ ∈ H be

such that ET,x
ϕ is exponentially bounded. This means that

∫
ea|t| dET,x

ϕ (t) <

∞ for some a > 0, and so (3.2) gives that
∫
ea|t||ϕ(t)|2 dt <∞. If a ≥ a0, then

ea0|t| ≤ ea|t| for all t, so
∫
ea0|t||ϕ(t)|2 <∞. Hence, in any case,

∫
ea|t||ϕ(t)|2 <

∞ for some a ≤ a0. Conversely, let ϕ ∈ H be such that
∫
ea|t||ϕ(t)|2 < ∞

for some a ≤ a0. Since e
1
2
a0|Q|

√
T was assumed to be Hilbert-Schmidt, and

now a ≤ a0, we have
∫ ∑

n e
a|q|wn|ηn(q)|2 dq < ∞, so that also e

1
2
a|Q|√T is

Hilbert-Schmidt. But now (3.2) implies that
∫
ea|t| dET,x

ϕ (t) < ∞, so that
ET,x
ϕ is exponentially bounded. Now (a) is proved.

Part (b) follows in a similar way, since P = F ∗QF , and
∫
ea|t| dET,y

ϕ (t) =

∫ ∫ ∑
n

ea|t−q|wn|Fηn(q)|2|Fϕ(t)|2 dtdq (≤ ∞)

for any ϕ ∈ H. (See the proof of Proposition 6 of article IV.)

One should note that in the case where T = |η〉〈η| for some unit vector
η ∈ H, the above Hilbert-Schmidt condition reduces to the requirement that∫
ea0|t||η(t)|2 dt <∞ for some constant a0 > 0.
The following proposition presents a class of covariant quantizations

which permit the quantization of position and momentum variables.

Proposition 11. Let T be a positive operator of trace one.

(a) If ea0|Q|
√
T is a Hilbert-Schmidt operator for some constant a0 > 0,

then the position variable x is quantizable by ΓWT .

(b) If ea0|P |
√
T is a Hilbert-Schmidt operator for some constant a0 > 0,

then the momentum variable y is quantizable by ΓWT .

Proof. By the preceding lemma,

E(ET,x) =

{
ϕ ∈ H |

∫
ea|t||ϕ(t)|2 dt <∞ for some a ∈ (0, 2a0]

}

with the assumptions of (a) and

E(ET,y) =

{
ϕ ∈ H |

∫
ea|t||Fϕ(t)|2 dt <∞ for some a ∈ (0, 2a0]

}
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with the assumptions of (b). The subspaces in the right hand sides are both
dense, as the first contains all the compactly supported functions, and the
second is the image of the first in the inverse Fourier-Plancherel transform
F−1. Hence, an application of Proposition 2 completes the proof.

Note that the requirement in part (a) that ea0|Q|
√
T be Hilbert-Schmidt

implies, in particular, that each operatorQk
√
T is a Hilbert-Schmidt operator

for all k ∈ N (use the integral formula in the above proof, and the inequality

x2k ≤ (2k)!
(2a0)k e

2a0|x|). Similarly, the requirement in part (b) implies that P k
√
T

is Hilbert-Schmidt for all k ∈ N.
Hence, under the assumptions of Proposition 11, which thus ensure the

quantizability of x and y, the moment operators that constitute the quan-
tizations are all selfadjoint, and can be written as in Proposition 10. The
corresponding observables ET,x and ET,y are known to possess the symmetry
properties which make them unsharp position and momentum observables.

As a final remark concerning the quantization of position and momen-
tum, consider the Weyl map ΓWeyl. It is known that ΓWeyl(xk) = Qk and
ΓWeyl(yk) = P k for all k ∈ N. [23, Proposition 8.31]. The moment prob-
lems corresponding to the quantizations of position and momentum are now
solved by the spectral measures EQ and EP , respectively. Since any spectral
measure is determinate by Proposition 4, position and momentum variables
are quantizable by the map ΓWeyl, and the resulting observables are just
the standard position and momentum observables. Hence, our quantization
scheme contains the traditional Weyl quantizations for position and momen-
tum variables as a special case.
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Chapter 4

On the structure of covariant
phase space observables

We have already utilized the general form of covariant phase space semispec-
tral measures as a mathematical tool in our quantization scheme. However,
these semispectral measures have an essential role as phase space observables
in quantum mechanics; in particular, they constitute important examples
of approximate joint measurements of position and momentum observables
[21, 32, 11, 53]. The importance of these examples has been emphasized by
the recent result of Werner [59], which says that for any approximate joint
observable of position and momentum of a quantum object there is a covari-
ant phase space observable which approximates them to a degree at least as
good as that of the original observable. (For a precise formulation, see the
original paper [59], as well as subsequent developments [15, 12, 13].)

In this chapter, we concentrate on the structure of covariant phase space
observables in the more general context where the phase space is a locally
compact second countable topological group G, and the covariance is with
respect to a square integrable projective unitary representation. There are
at least two different ways to obtain the result (Theorem 1 below). A di-
rect method was outlined by Holevo [31] for a unimodular group G, and
further elaborated by Werner [56] in the case where G = R2n. Werner’s
proof relies on the fact that the Banach space of trace class operators has
the Radon-Nikodým property. The other approach [18] (Cassinelli et al.), is
group theoretical in flavour, being based on Mackey’s imprimitivity theorem.
Cassinelli’s proof also covers nonunimodular cases.

In article II, we generalized Werner’s proof to unimodular groups G,
thereby filling in the details missing from Holevo’s original sketch. In article
III, we further generalized the result to not necessarily unimodular groups,
achieving Cassinelli’s result by using an entirely different method.
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We use same notations as in Chapter 3, where the characterization was
already used in the unimodular case. Let G be a locally compact second
countable topological group, and fix λ to be a left Haar measure on G.
Let λ̃ denote the corresponding right Haar measure Z 7→ λ(Z−1), and let
∆ : G → R be the modular function. As in Chapter 3, we assume that
there is an irreducible square integrable projective unitary representation U :
G→ L(H), which will remain fixed throughout the chapter. The projective
representation U determines a densely defined, injective, positive selfadjoint
operator K, called the formal degree of U , such that U(g)K = ∆(g)−1KU(g)
for all g ∈ G, and

∫
|〈ψ|U(g)ϕ〉|2 d λ(g) = ‖ψ‖2‖K− 1

2ϕ‖2, ϕ, ψ ∈ H,

with the understanding that ‖K− 1
2ϕ‖ = ∞ whenever ϕ /∈ D(K− 1

2 ). We let

CU denote the square root of the formal degree, i.e. CU := K
1
2 . Now also CU

is densely defined, selfadjoint and injective. The operator CU is bounded if
and only if G is unimodular, and in that case, it is a multiple of the identity.
(See [24, Theorem 3] and e.g. the discussion preceding Lemma 3 of article
III.) The characterization in question is the following:

Theorem 1. (a) For each positive operator T of trace one, there is a
(clearly unique) U-covariant semispectral measure W T : B(G) → L(H),
such that

〈ϕ|W T (Z)ψ〉 =

∫

Z

〈CUϕ|U(g)TU(g)∗CUψ〉 dλ̃(g), Z ∈ B(G).

for all ϕ, ψ ∈ D(CU).

(b) Each U-covariant semispectral measure W : B(G) → L(H) is of the
form W = W T for a unique positive operator T of trace one.

In the case where G is unimodular, the left Haar measure is the same as
the right one, and the operator CU is a multiple of the identity. The above
theorem then gives the canonical form

W T (Z) = d−1

∫

Z

U(g)TU(g)∗ dλ(g), Z ∈ B(G),

of covariant semispectral measures we already presented in Chapter 3. The
integral actually exists in the ultraweak sense in this case.

In article II, we generalized Werner’s approach [56], and treated the
unimodular case by characterizing the weak-*-continuous covariant maps
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Γ : L∞(G, λ) → L(H), with Γ(1) = I.1 Werner’s idea was to use the fact that
the Banach space T (H) of trace class operators on a separable Hilbert space
has the Radon-Nikodým property [22, p. 61, 79]. This property is the follow-
ing: for any finite measure space (Ω,A, ν) and a ν-continuous vector measure
µ : A → T (H) of bounded variation, there is a ν-(Bochner-)integrable func-
tion fµ : Ω → T (H), such that µ(X) =

∫
X
fµ dν for all X ∈ A. The function

fµ is ν-essentially unique. The above concepts and results concerning the
theory of vector measures can be found in the book of Diestel and Uhl [22,
pp. 1-2, 11, 45-47].

In the proof of Theorem 2 of article III, we used semispectral measures
directly to obtain the characterization also in the case of nonunimodular
groups. The proof is still based on the Radon-Nikodým property of T (H).
We will outline this proof in the following section. In section 4.2, we present
a slightly different proof, which shows that the problem can be understood
as a special case of a more general setting, already considered in article II
but applied there only for the unimodular case.

As the proof of part (a) of the theorem is straightforward (see Theorem
1 of article III), we will concentrate on part (b).

Since the treatment involves integration of Banach space valued functions,
one must pay careful attention to the correct notion of measurability in this
context: If B is a Banach space, a function f : G→ B is λ-measurable, if for
each Z ∈ B(G) of finite λ-measure there is a sequence of λ-simple functions
converging to χZf in λ-measure (or, equivalently, λ-almost everywhere) [25,
p. 106,150]. The measurability with respect to the right Haar measure λ̃
is, of course, defined similarly. Since G is σ-compact, and both λ and λ̃ are
finite on compact sets, it follows that λ-measurability and λ̃-measurability
are equivalent.

If B is separable (in particular, if B is a scalar field), then λ-measurability
is equivalent to the measurability with respect to the Lebesgue extension of
the σ-algebra B(G) associated with λ [25, p. 148]. In the following section,
we will use the Banach space T (H), which is indeed separable2. (This is
probably well known, but we gave a simple proof in article II, Lemma 5.)

1Since each such map defines a covariant semispectral measure via B(G) 3 Z 7→
Γ(χZ) ∈ L(H), and each covariant semispectral measure W : B(G) → L(H) defines a
weak-*-continuous covariant map L∞(G,λ) 3 f 7→ L(f, W ) ∈ L(H), this approach also
gives the characterization of covariant observables.

2This requires that H be separable, which we assumed in the first chapter.
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4.1 A proof of the characterization

First we need the following lemma; for its proof, see Lemma 4 of article III.
In the unimodular case, this result was given in the proof of Lemma 6(b) of
II, which is based on [31].

Lemma 3. Let W : B(G) → L(H) be a U-covariant semispectral measure.
Then

λ̃(Z) = ‖C−1
U W (Z)

1
2‖2

HS, Z ∈ B(G),

where ‖ · ‖HS denotes the Hilbert-Schmidt norm, with the notation ‖S‖HS :=
∞ whenever the (not necessarily bounded) operator S is not Hilbert-Schmidt.
In particular, if G is unimodular, then

λ(Z) = Tr[W (Z)] d, Z ∈ B(G),

where the constant d is given by CU = d−
1
2 I.

To begin a proof of Theorem 1 (b), assume that W : B(G) → L(H) is a
U -covariant semispectral measure. Take Z ∈ B(G) with λ̃(Z) < ∞. Define

A(Z) = (C−1
U W (Z)

1
2 )(C−1

U W (Z)
1
2 )∗. By the above lemma, this operator is

everywhere defined, and in the trace class, with Tr[A(Z)] = λ̃(Z). In addi-
tion, one easily sees that A(Z) coincides with the densely defined operator
C−1
U W (Z)C−1

U on the subspace D(C−1
U ). Using this fact, a straightforward

calculation confirms that the covariance of W is reflected by

A(hZ) = ∆(h)−1U(h)A(Z)U(h)∗, h ∈ G, Z ∈ B(G), λ̃(Z) <∞. (4.1)

Since λ̃ is σ-finite, we can write G =
⋃∞
n=0Kn, with Kn ∈ B(G) and

λ̃(Kn) <∞.
Then we use an adaptation of an idea of Werner [56] to get a representa-

tion

A(Z) =

∫

Z

vdλ̃, Z ∈ B(G), λ̃(Z) <∞, (4.2)

where v : G → T (H) is a λ̃-measurable function and the integral is a
T (H)-valued Bochner integral. Namely, the relation Tr[A(Z)] = λ̃(Z) im-
plies that for any n ∈ N, the map B(Kn) 3 Z 7→ A(Z) ∈ T (H) is a
λ̃-continuous vector measure of bounded variation, so by the the Radon-
Nikodým property of T (H), there exist (λ̃-essentially unique) λ̃-measurable
functions vn : G → T (H), with A(Z) =

∫
Z
vndλ̃ for any Z ∈ B(Kn). Then

v :=
∑

n vn (pointwise) is λ̃-measurable and satisfies (4.2).
It follows from the construction that v(g) ≥ 0 and ‖v(g)‖tr = 1 for λ-

almost all g ∈ G. In particular, v is λ-essentially bounded. Now define
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v0 : G→ T (H) by v0(g) = U(g−1)v(g)U(g−1)∗. Lemma 2 of article III, the
results (4.1) and (4.2), together with the fact that g 7→ U(g) is a projective
representation, imply that v0 is λ-measurable, λ-essentially bounded, and
satisfies

for each h ∈ G, v0(g) = v0(hg) for λ-almost all g ∈ G.
The next step is to show that v0 is constant, i.e. there exists a T ∈ T (H),
such that v0(g) = T for λ-almost all g ∈ G. This is not immediately obvious
from the above result; although v0(g) = v0(hg) for g in a set Sh ∈ B(G)
whose complement is a null set, the set Sh could be different for each h. We
proved the following result in article II as Lemma 4.

Lemma 4. Let B be a Banach space, and f : G → B a λ-measurable λ-
essentially bounded function such that for each h ∈ G, the function f(h·)
coincides with f λ-almost everywhere. Then there is an s ∈ B, such that
f(g) = s for λ-almost all g ∈ G.

This lemma establishes that v0(g) = T for λ-almost all g ∈ G, for a fixed
T ∈ T (H). Now it follows that v(g) = U(g)TU(g)∗ for λ-almost all g ∈ G,
so that

A(Z) =

∫

Z

U(g)TU(g)∗ dλ̃(g), Z ∈ B(G), λ̃(Z) <∞. (4.3)

Notice that the integral is a Bochner integral with respect to the trace norm.
It is also worth mentioning that the cumbersome unbounded operator CU
is not explicitly present in this formula. It enters only when we return to
the original observable W by using the above mentioned fact that A(Z)ϕ =
C−1
U W (Z)C−1

U ϕ for any ϕ ∈ D(C−1
U ). To derive the desired formula for

W (Z), we also have to use the fact that
∫
〈ϕ|U(g)TU(g)∗ϕ〉dλ̃(g) = Tr[T ]‖C−1

U ϕ‖2 <∞

for ϕ ∈ D(C−1
U ) (see Lemma 3 (a) of article III), which implies that the

positive function g 7→ 〈ϕ|U(g)SU(g)∗ϕ〉 is integrable over the group G, even
though the trace class valued Bochner integral in (4.3) exists only when Z is
of finite λ̃-measure.

4.2 More general covariant maps

In article II, we investigated the problem of covariant maps also in a slightly
more general setting which need not involve a Hilbert space, and proved the
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following result (Proposition 1 in that paper). The essential part of the proof
is again Lemma 4 above. For a Banach space B, let Aut(B) denote the group
of linear homeomorphisms from B onto itself.

Proposition 12. Let B be a Banach space having the Radon-Nikodým prop-
erty, and assume that there is a homomorphism α : G→ Aut(B), such that

(i) supg∈G ‖α(g)‖ <∞;

(ii) for all w ∈ B, the map g 7→ α(g−1)(w) is λ-measurable.

If Γ : L1(G, λ) → B is a continuous linear map satisfying

α(g)(Γ(f)) = Γ(f(g−1·)), f ∈ L1(G, λ), g ∈ G,

then there is a unique vector s ∈ B, such that

Γ(f) =

∫
f(g)α(g)(s) dλ(g), f ∈ L1(G, λ).

If each α(g) is an isometry, then ‖s‖ = ‖Γ‖.
We used this result in article II to derive Theorem 1 (b) in the unimod-

ular case. It is interesting to notice, however, that Proposition 12 can also
be employed in the case where G need not be unimodular. Since this was
not done in the articles, and because the procedure further illustrates the
structure of covariant semispectral measures, we will do it here.

To begin this alternative proof of Theorem 1 (b), we first proceed as
before, by constructing the positive trace class operator A(Z) for any Z ∈
B(G) of finite λ̃-measure according to Lemma 3. Hence, (4.1) holds, and for
any D ∈ B(G) with finite λ̃-measure, the map B(D) 3 X 7→ A(X) ∈ T (H)
is additive and satisfies Tr[A(X)] = λ̃(X). Let F denote the linear space of
complex valued B(G)-simple λ̃-integrable functions on G.

Now additivity and the above trace relation imply that the rule

F 3
k∑

n=0

cnχZn 7→
k∑

n=0

cnA(Zn) ∈ T (H)

unambiguously defines a linear map from F to T (H). If f =
∑k

n=0 cnχZn ∈
F , then ∥∥∥∥∥

k∑
n=0

cnA(Zn)

∥∥∥∥∥
tr

≤
k∑

n=0

|cn|Tr[A(Zn)] =

∫
|f | dλ̃,

38



implying that the linear map in question is well-defined and continuous, when
F is considered as a (dense) subspace of the Banach space L1(G, λ̃). Hence, it
can be uniquely extended to a continuous linear map Γ̃ : L1(G, λ̃) → T (H).
Define Γ : L1(G, λ) → T (H) by Γ(f) = Γ̃(f∆), where ∆ is the modular
function. This is possible, since f ∈ L1(G, λ) implies

∫ |f |∆ dλ̃ =
∫ |f | dλ <

∞, i.e f∆ ∈ L1(G, λ̃). Moreover, the (clearly linear) map Γ is continuous,
having the same norm as Γ̃.

Now define α(g)(T ) = U(g)TU(g)∗ for g ∈ G and T ∈ T (H). Each
α(g) is a linear homeomorphism from T (H) onto T (H). Since U is a pro-
jective unitary representation, the map α : G → Aut(T (H)) thus defined is
a homomorphism. Condition (i) of Proposition 12 is clearly satisfied, since
‖α(g)‖ = 1 for any g. Condition (ii) follows from Lemma 2 of article III.

It follows from (4.1) that for all g ∈ G and Z ∈ B(G) with λ̃(Z) < ∞,
we have α(g)(A(Z)) = ∆(g)A(gZ), i.e. α(g)(Γ̃(χZ)) = ∆(g)Γ̃(χZ(g−1·)). By
the linearity and continuity of Γ̃ and each α(g), we get

α(g)(Γ̃(f)) = ∆(g)Γ̃(f(g−1·)), f ∈ L1(G, λ̃).

As a consequence, Γ is covariant:

α(g)(Γ(f)) = Γ(f(g−1·)), f ∈ L1(G, λ).

Thus, Proposition 12 can be invoked to get a unique trace class operator T
of trace one, such that

Γ(f) =

∫
f(g)α(g)(T ) dλ(g), f ∈ L1(G, λ).

Now for any X ∈ B(G) with λ̃(Z) <∞, we get

A(Z) = Γ̃(χZ) = Γ(∆−1χZ) =

∫

Z

α(g)(T )∆(g)−1 dλ(g) =

∫

Z

α(g)(T ) dλ̃(g),

thereby arriving at (4.3).
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Chapter 5

Homodyne detection as an
application of the moment limit
of observables

In this chapter, we demonstrate that the rotated quadrature observable
1√
2
(e−iθa+ eiθa∗) of a single mode electromagnetic field can be determined

in the so called ”high amplitude limit” of the balanced homodyne detection,
by using the moment operators of observables actually measured by the de-
tector. This is done by considering a sequence (En)n∈N of such observables,
the limit n → ∞ corresponding to the high amplitude limit. It turns out
that the moment operators En[k] converge (in a natural sense) to the corre-
sponding moment operators of the quadrature. Moreover, it also turns out
that the operators En(X), X ∈ B(R), themselves converge for certain sets
X. Both limits have an operational meaning, the first corresponding to the
convergence of the scalar moments of the measurement statistics, and the
latter implying the convergence of the actual statistics.

We will first formulate and investigate the above mentioned two limit
concepts in general, and then apply the results to the balanced homodyne
detection scheme. As another related application, we use the results to rig-
orously prove that the high amplitude limit in the eight-port homodyne de-
tector permits the measurement of all the covariant phase space observables
on R2.

The results presented in this chapter are from articles VI and VII.
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5.1 Moment limit of semispectral measures

Recall that H is a fixed complex separable Hilbert space. The following
definition specifies what we mean by the ”moment limit of observables”. It
appeared as Definition 1 in article VI.

Definition 11. Let En, n ∈ N, and E be semispectral measures B(R) →
L(H). If D ⊂ ∩n,k∈ND(En[k]) is a dense subspace, such that

lim
n→∞

〈ψ|En[k]ϕ〉 = 〈ψ|E[k]ϕ〉, k ∈ N, ψ ∈ H, ϕ ∈ D

(in particular, each limit in the left hand side exists), then we say that E is
a moment limit for (En)n∈N on D.

A sequence (En) can have various different moment limits on a subspace
D (consider e.g. a constant sequence En = µI, with µ a probability measure
which is not determinate). However, the following result holds (Proposition
2 of article VI).

Proposition 13. Let En, n ∈ N, and E be semispectral measures B(R) →
L(H), and D ⊂ H be a dense subspace, such that E is a moment limit for
(En)n∈N on D. If E is D-determinate, then E is the only moment limit for
(En)n∈N on D.

5.2 Convergence of semispectral measures in

the sense of probabilities

Throughout this section, we let Ω be a metric space, with B(Ω) the associated
Borel σ-algebra. In this context, we formulate a convergence concept of
semispectral measures, which corresponds to the weak convergence of the
associated probability measures. Recall that a sequence (µn) of probability
measures on B(Ω) converges weakly to a probability measure µ : B(Ω) →
[0, 1], if limn→∞

∫
f dµn =

∫
f dµ for all bounded continuous functions f :

Ω → R [6, p. 11]. This can be characterized in terms of probabilities:
A sequence (µn) of probability measures converges weakly to a probability
measure µ, if and only if limn→∞ µn(X) = µ(X) whenever X ∈ B(Ω) is such
that the boundary1 ∂X of X has zero µ-measure [6, Theorem 2.1].

1The boundary ∂X of a set X ⊂ Ω is the intersection of the closures of X and its
complement.
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Definition 12. Let En : B(Ω) → L(H) be a semispectral measure for each
n ∈ N. We say that the sequence (En)n∈N converges to a semispectral mea-
sure E : B(Ω) → L(H) weakly in the sense of probabilities, if

lim
n→∞

En(X) = E(X)

in the weak operator topology, for all X ∈ B(Ω) with E(∂X) = 0.

The following proposition (Proposition 10 of article VI) characterizes this
convergence in terms of weak convergence of the associated probability mea-
sures. Since the weak limit of a sequence of probability measures is unique,
this shows, in particular, that a sequence of semispectral measures can con-
verge to at most one semispectral measure weakly in the sense of probabilities.

Proposition 14. Let En : B(Ω) → L(H) be a semispectral measure for each
n ∈ N, and let also E : B(Ω) → L(H) be a semispectral measure. Then the
following conditions are equivalent.

(i) (En) converges to E weakly in the sense of probabilities;

(ii) for each positive operator T of trace one, the sequence En
T of probability

measures converges weakly to ET ;

(iii) there exists a dense subspace D ⊂ H, such that the sequence (En
ϕ) of

probability measures converges weakly to Eϕ for any unit vector ϕ ∈ D;

(iv) limn→∞ L(f, En) = L(f, E) in the weak operator topology for each
bounded continuous function f : Ω → R.

Our goal is to connect the concept introduced above of the moment limit
of a sequence (En)n∈N of semispectral measures B(R) → L(H) to the conver-
gence of (En)n∈N in the sense of probabilities (Proposition 16 below). The
corresponding result in the case of probability measures is a part of classical
probability theory (see the original paper [30] by Fréchet and Shohat, and
also [49], or [7, p. 405-408] for a more modern formulation). The relevant
concept in this context is relative compactness. In probability theory, a fam-
ily P of probability measures on B(Ω) is said to be relatively compact, if every
sequence of elements of P contains a weakly convergent subsequence [6, p.
35].

The following proposition (Proposition 11 of article VI) brings the concept
of relative compactness of probability measures to the level of semispectral
measures. It is needed in the proof of Proposition 16.
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Proposition 15. Let D ⊂ H be a dense subspace, and let M be a collection
of semispectral measures E : B(Ω) → L(H). Suppose that the set {Eϕ |
E ∈ M} of probability measures is relatively compact for each unit vector
ϕ ∈ D. Then every sequence of elements of M contains a subsequence which
converges weakly in the sense of probabilities.

5.3 An ”asymptotic measurement” scheme

We proceed to formulate a measurement scheme which consists of a sequence
of measurements, having the property that the moments of the measurement
outcome statistics converge. In the next section we show that balanced ho-
modyne detection can be understood as an example of such a measurement.

The formulation is based on the following proposition, which was the goal
of the developments of the preceding sections.

Proposition 16. Let En : B(R) → L(H) be a semispectral measure for each
n ∈ N. Assume that there is a dense subspace D ⊂ ∩n,m∈ND(En[m]), such
that the limit

lim
n→∞

∫
xm dEn

ϕ(x)

exists in R for each m ∈ N and ϕ ∈ D.

(a) There exists a semispectral measure E : B(R) → L(H), which is a
moment limit for (En)n∈N on D.

(b) Suppose that E is D-determinate. Then E is the only moment limit
for (En)n∈N on D, and the sequence (En)n∈N converges to E weakly in
the sense of probabilities.

The proof of this proposition is based on Proposition 15 above, which is
used to establish the existence of E in part (a). (The proposition can be
applied, since each set {En

ϕ | n ∈ N}, ϕ ∈ D, is relatively compact by the
limit assumption in the proposition and certain basic results in probability
theory.) See Proposition 5 of article VI for the complete proof.

Suppose now that we have a measurement setup which can be configured
to measure various observables En : B(R) → L(H), n ∈ N, the idea being
that each observable represents, in some sense, an approximate version of
a single observable we actually want to measure. As n increases, the ap-
proximation is supposed to get better. Such is the situation in homodyne
detection (see the next section), where the desired measurement of a rotated
quadrature is supposed to be realized only in the ”high amplitude limit”.

We make the following, physically reasonable assumptions on the se-
quence (En), and the measurement setup.
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(1) Suppose that we can prepare a set of calibration states, which can be
identified with the unit sphere D1 of some dense subspace D ⊂ H.

(2) Let Mk
n,ϕ be the kth moment of the measurement statistics of the ob-

servable En in the state ϕ, for each n, k ∈ N, ϕ ∈ D1. Here we have
assumed that D1 can be chosen so that each Mk

n,ϕ exists. Notice that
the moments can be calculated directly from the measurement statis-
tics.

(3) Assume that limn→∞Mk
n,ϕ exists for each k ∈ N and ϕ ∈ D1. Then

Proposition 16 implies the existence of a moment limit E.

(4) In order to assure that the limits determine a unique observable, we
have to assume that E is D-determinate.

Under these assumptions, Proposition 16 tells us that the observable E
is uniquely determined as a moment limit of (En)n∈N, and, moreover, the
sequence (En)n∈N converges to E in the sense of probabilities. By proposition
14, the latter fact implies that the measurement statistics (En

T ) converge to
ET for any state T , not just for the calibration states in D1.

5.4 Balanced homodyne detection

The balanced homodyne detection, introduced in [64, 63] is an important
technique in quantum optics, because it is assumed to provide a means
to measure the rotated quadrature amplitudes 1√

2
(e−iθa+ eiθa∗) of a sin-

gle mode electromagnetic field. Perhaps the most notable application of this
method is quantum state estimation, i.e. quantum tomography. (See [45]
for a collection of articles concerning this topic.) The significance of the ho-
modyne measurement in that context is due to the fact that the combined
measurement statistics of all the rotated quadratures determine the state of
the system.

The measurement scheme is the following: A signal field is mixed with
an auxiliary field by means of a 50-50 beam splitter (possibly followed by
a phase shifter), and the difference of photon numbers on the output ports
of the splitter is detected. The auxiliary field is taken to be an oscillator
in a coherent state, operating with the same frequency as the signal field.
Assuming that the beam splitter is lossless and causes no phase shift between
the modes, the process is described by a unitary operator U (see [47, 39]),
transforming the field annihilation operators a (signal) and b (auxiliary) into
ã = U∗aU = 1√

2
(a − b), and b̃ = U∗bU = 1√

2
(a + b). With respect to the

44



initial state of the two-mode field (Heisenberg picture), the photon number
difference observable is then b̃∗b̃− ã∗ã = ab∗ + a∗b, provided that the photon
detectors are ideal. (Of course, these formal operator relations are made
precise by restricting the operators to a dense subspace, see (5.4) below.)

When the amplitude of the auxiliary field is high, the above mentioned
photon difference statistics are considered to resemble those of a rotated field
quadrature, the rotation angle being identified as the fixed phase difference
between the input signal and auxiliary fields. This is usually justified by
the following heuristic explanation: the strong auxiliary field can be treated
”classically”, by replacing b with the complex field amplitude β = reiθ in the
operator ab∗ + a∗b, with θ identified as the phase relative to the input signal
field. Consequently, by suitably scaling the resulting operator with a factor
proportional to the intensity of the auxiliary field, one recovers the rotated
quadrature 1√

2
(e−iθa+ eiθa∗).

A more theoretical explanation takes into account the quantum nature
of the auxiliary field. In addition to the original paper [63], this has been
done in [10, 19, 3, 55]. These papers calculate the characteristic functions
of the probability measures associated with the photon difference statistics,
and then take the high amplitude limit at this level. Vogel [55] applies
the Levy-Cramer theorem to prove that the associated probability measures
converge weakly. However, in the calculations leading to the above mentioned
characteristic functions, some of the problematic matematical questions (such
as formal operator series expansions and term-by-term integration of a series)
were not addressed, making it difficult to verify whether the treatment could
be made rigorous.

In the following, we demonstrate that the balanced homodyne detection
can be understood rigorously in terms of the moment operators of the signal
field observables arising from the photon difference statistics. The moment
operators were also used in the context of homodyne detection in [3, 43],
where the authors consider the effects of imperfectness of the photon de-
tectors by using the concepts of [29]. Unfortunately, they dismiss the limit
problem by applying the heuristic classical approximation of the auxiliary
field to the characteristic functions, so that their results do not contribute to
our problem.

We let H and Haux be separable complex Hilbert spaces corresponding
to the signal and auxiliary field modes, respectively. We use the following
usual notations. Fix orthonormal bases of the form {|n〉 | n ∈ N} for both H
and Haux, representing the photon number states. Let a, a∗ and b, b∗ be the
creation and annihilation operators for the aforementioned bases of H and
Haux, respectively, and let N = a∗a and Naux = b∗b be the photon number
operators for the two modes. The operators a, a∗, b, b∗, N,Naux are considered
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as being defined on their natural domains, e.g.

D(a) = D(a∗) = {ϕ ∈ H |
∑

n∈N
n|〈n|ϕ〉|2 <∞};

D(N) = D(a∗a) = {ϕ ∈ H |
∑

n∈N
n2|〈n|ϕ〉|2 <∞}.

For any z ∈ C the coherent state |z〉 ∈ H is defined by

|z〉 = e−
1
2
|z|2

∞∑
n=0

zn√
n!
|n〉,

and we use the same symbols for the coherent states in Haux. The subspace
Dcoh := lin {|z〉 | z ∈ C} is dense in H, and so is the corresponding subspace
Daux
coh in Haux. (Here the symbol ”lin” denotes the (algebraic) linear span of

the set in question.) The (algebraic) tensor product D2
coh := Dcoh⊗Daux

coh can
be identified with lin{|β〉 ⊗ |z〉 | β, z ∈ C}, which is dense in H⊗Haux.

Denote by Q and P the signal field quadrature operators 1√
2
(a∗ + a) and

i√
2
(a∗ − a), respectively.

Define the rotated quadrature operators Qθ, with θ ∈ [0, 2π), via

Qθ = eiθNQe−iθN =
1√
2
(e−iθa+ eiθa∗). (5.1)

In particular, each Qθ is selfadjoint on its domain D(Qθ) = eiθND(Q) ⊃
D(a) = D(a∗), and the restriction Qθ|D(a) = 1√

2
(e−iθa + eiθa∗) is essentially

selfadjoint. The ordinary quadratures are given by Q0 = Q and Qπ
2

= P .
We will need the following lemma (Lemma 2 in article VI.)

Lemma 5. Let θ ∈ [0, 2π). Then Dcoh ⊂ E(PQθ). In particular, the spectral
measure PQθ is Dcoh-determinate (and thereby determinate).

The 50-50-beam splitter is described by the unitary operator U ∈ L(H⊗
Haux), defined by its acting in the coordinate representation (see e.g. [39]):

L2(R2) 3 Ψ 7→ (
(x1, x2) 7→ Ψ( 1√

2
(x1 + x2),

1√
2
(−x1 + x2))

) ∈ L2(R2). (5.2)

We have assumed that the beam splitter does not generate any phase shift2.
Under this transformation, the coherent states change according to

|α〉 ⊗ |β〉 7→ | 1√
2
(α− β)〉 ⊗ | 1√

2
(α + β)〉. (5.3)

2This is not a restriction, since any shift can be easily accomplished by changing the
phase of the auxiliary coherent state.
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This implies the equally well-known transformation rules for annihilation
operators:

U∗(a⊗ I)|D2
coh
U =

1√
2
(a− b)|D2

coh
;

U∗(I ⊗ b)|D2
coh
U =

1√
2
(a+ b)|D2

coh
.

(5.4)

Let T be the input state of the signal field, and let |z〉 be the input
coherent state of the auxiliary field. The photon difference operator is
N− := I ⊗Naux −N ⊗ I (where I is the identity operator), so our detec-
tion observable is the spectral measure

B(R) 3 P (
√

2|z|)−1N−(X) ∈ L(H⊗Haux)

of the scaled operator (
√

2|z|)−1N−, the scale |z| being the amplitude of the
auxiliary oscillator. (Factor

√
2 appears for convenience.)

Since the state emerging from the beam splitter is U(T ⊗ |z〉〈z|)U∗, the
detection statistics are given by the probability measures

X 7→ Tr[U(T ⊗ |z〉〈z|)U∗P (
√

2|z|)−1N−(X)].

For a fixed coherent state |z〉, these probability measures define an observable
Ez : B(R) → L(H) on the signal field according to

Tr[TEz(X)] := Tr[T ⊗ |z〉〈z|P |z|−1A(X)], X ∈ B(R), (5.5)

where
A := 1√

2
(a⊗ b∗ + a∗ ⊗ b) = 1√

2
U∗N−U.

Let Vz : H → H ⊗ Haux be the linear isometry ϕ 7→ ϕ ⊗ |z〉. Then we
have simply

Ez(X) = V ∗
z P

|z|−1A(X)Vz, X ∈ B(R). (5.6)

Now the idea in balanced homodyne detection is that one takes the ”high
amplitude limit” |z| → ∞ on the observable Ez, with a fixed phase θ, i.e.
z = |z|eiθ. We do this at the level of the moment operators Ez[k] of Ez, and
then apply the general ”asymptotic measurement” scheme presented in the
preceding section.

The following result (Proposition 9 of article VI) justifies the considera-
tion of the moment operators Ez[k] in place of the observable Ez. It should
be compared to Lemma 5.

Proposition 17. Let z ∈ C. Then Dcoh ⊂ E(Ez). In particular, the semis-
pectral measure Ez is Dcoh-determinate (and thereby determinate).
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We were only able to determine the restrictions Ẽz[k] of the moment
operators Ez[k]. In view of the general scheme, this is, however, sufficient.
The result is presented in the following proposition, which is a combination
of Propositions 6 and 8 of article VI.

Proposition 18. Let z = reiθ ∈ C, r ≥ 1, and k ∈ N. Then

Ẽz[k] = |z|−kV ∗
z A

kVz ⊃ Qk
θ |D(ak) +

1

r2
Ck(r, θ),

with D(ak) ⊂ D(Ẽz[k]), where

Ck(r, θ) =
∑

n,m∈N,
n+m≤k

cknm(r, θ) (a∗)nam,

and each function cknm : [1,∞)× [0, 2π) → C is bounded.

The first two moment operators assume the explicit forms Ẽz[1] ⊃
Qθ|D(a), Ẽz[2] ⊃ Q2

θ|D(a2) + 1
2
|z|−2N . (See proposition 7 of article VI.) This

shows, in particular, that the associated intrinsic noise operator (see sec-
tion 2.3 for the definition) coincides with the selfadjoint operator 1

2
|z|−2N

(Corollary 1 of article VI).
Proposition 18 immediately implies that limr→∞Ereiθ

[k]ϕ = Qk
θϕ, if ϕ ∈

D(ak). Combined with Lemma 5, and the general results of section 5.3,
we get the following conclusion on the high amplitude limit in the balanced
homodyne detection. It was given in section 8 of article VI.

Proposition 19. Let (rn) be any sequence of positive numbers tending to
infinity, let θ ∈ [0, 2π), and set zn = rne

iθ, n ∈ N.

(a) The spectral measure PQθ is the unique moment limit for (Ezn)n∈N on
Dcoh.

(b) The sequence (Ezn)n∈N converges to PQθ weakly in the sense of proba-
bilities.

(c) The sequence (Ezn)n∈N constitutes an example of the ”asymptotic mea-
surement” scheme presented in the preceding section.

Since the spectral measure PQθ has the same null sets as the Lebesgue
measure, result (b) implies that

lim
n→∞

Ezn(X) = PQθ(X)

in the weak operator topology, whenever X ∈ B(R) is such that ∂X has zero
Lebesgue measure. It is worth noting that this limit relation does indeed not
hold for all Borel sets X. (See Remark 8 of article VI.)
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Figure 5.1: The eight port homodyne detector

5.5 Measurement of covariant phase space

observables with the eight-port homo-

dyne detector

In this section, we give another example of a concrete experimental setup,
the eight-port homodyne detector, which can be understood rigorously by
using some of the above concepts. The results of this section are from article
VII.

The eight-port homodyne detector consists of the setup shown in Figure
5.1 (see [39], and [38, p. 147-155]). The detector involves four modes as
indicated in the picture, and we will denote the associated (complex separa-
ble) Hilbert spaces accordingly by H1, H2, H3, H4. Mode 1 corresponds to
the signal field (i.e. the object system with respect to which the measured
observable will be interpreted), the input state for mode 2 serves as a param-
eter which determines (as will be seen below) the observable to be measured,
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and mode 4 is the reference beam in a coherent state. (The input for mode
3 is left empty, corresponding to the vacuum state.)

It is well known that using the heuristic classical ”high amplitude” ap-
proximation for mode 4, and feeding the vacuum state to mode 2, the Husimi
Q-function, i.e. the covariant phase space observable W |0〉〈0|, is obtained as
the measured observable with respect to the signal field. Recall from (3.1)
that the covariant phase space observables are of the form

W S(Z) :=
1

2π

∫

Z

W (q, p)SW (q, p)∗ dqdp, Z ∈ B(R2),

where S is a positive operator of trace one. In the following, we describe the
”high amplitude” limit rigorously, by using the results already obtained for a
single homodyne detector. In fact, we show that any phase space observable
can be obtained as a limit of eight-port detector observables.

We fix the photon number bases {|n〉 | n ∈ N} for each Hi, so that
the annihilation operators aj, as well as the quadratures Qj = 1√

2
(a∗j + aj),

Pj = 1√
2
i(a∗j − aj) and photon number operators Nj = a∗jaj are defined for

each mode j = 1, 2, 3, 4.
The photon detectors Dj shown in the picture are considered to be ideal,

so that each detector Dj measures the sharp photon number Nj. The phase
shifter in mode 4 is represented by the unitary operator eiφN4 , where φ is the
shift.

There are four 50-50-beam splitters B12, B43, U13, U24, each of which is
defined by its acting in the coordinate representation according to (5.2). In
the picture, the dashed line in each beam splitter indicates the input port of
the ”primary mode”, i.e. the mode associated with the first component of
the tensor product L2(R) ⊗ L2(R) ' L2(R2) in the description of equation
(5.2). The beam splitters B12, B43, U13 and U24 are indexed so that the first
index indicates the primary mode.

Let |√2z〉 be the coherent input state for mode 4. We detect the scaled
number differences 1

|z|N
−
13 and 1

|z|N
−
24, where N−

13 := I1 ⊗N3 −N1 ⊗ I3 and

N−
24 := I2 ⊗N4 −N2 ⊗ I4, so that the joint detection statistics are described

by unique spectral measure extending the set function

X × Y 7→ P |z|
−1N−13(X)⊗ P |z|

−1N−24(Y ),

where the operator acts on the entire four-mode field.
Let T and S be the input states for modes 1 and 2, respectively. Then

the state of the four-mode field after the combination of the beam splitters
and the phase shifter is U13 ⊗ U24WT,S,z,φU

∗
13 ⊗ U∗24, where

WT,S,z,φ := B12(T ⊗ S)B∗
12 ⊗ |z〉〈z| ⊗ |zeiφ〉〈zeiφ|.
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We regard S, |√2z〉 and φ as fixed parameters, while T is the state of
the object system, i.e. signal field. The detection statistics then define an
observable Gz,S,φ : B(R2) → L(H1) on the signal field via

Tr[TGz,S,φ(Z)] = Tr[WT,S,z,φP
z( 1√

2
Z)], (5.7)

where P z : B(R2) → L(H1⊗H2⊗H3⊗H4) is defined as the unique spectral
measure extending the set function X × Y 7→ P |z|

−1A13(X) ⊗ P |z|
−1A24(Y ),

where Aij := 1√
2
(ai ⊗ a∗j + a∗j ⊗ ai). (See article VII for details.) The observ-

able Gz,S,φ is the one actually measured by the detector.
Let C : H2 → H1 denote the conjugation map, i.e. (Cϕ)(x) = ϕ(x) in

the coordinate representation. Now we are ready to present the conclusion
concerning the measurement of phase space observables with the eight-port
detector. The proof of the following proposition is in article VII.

Proposition 20. Let S ∈ L(H2) be any positive operator of trace one, and
let (rn) be any sequence of positive numbers tending to infinity. Then the

sequence (Grn,S,
π
2 )n∈N of observables converges to the covariant phase space

observable WCSC−1
weakly in the sense of probabilities.

Since any phase space observable W S is absolutely continuous with re-
spect to the Lebesgue measure, it follows from the preceding proposition
that

lim
n→∞

Grn,S,
π
2 (Z) = ECSC−1

(Z)

in the weak operator topology, for any Z ∈ B(R2) such that ∂Z has zero
Lebesgue measure.
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[29] B.-G. Englert, K. Wódkiewicz, Intrinsic and operational observables in
quantum mechanics, Phys. Rev. A 51, R2661 (1995).
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