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ABSTRACT 

In this thesis, different genetic tools are used to investigate both natural variation and 

speciation in the Ficedula flycatcher system: pied (Ficedula hypoleuca) and collared (F. 

albicollis) flycatchers. The molecular evolution of a gene involved in postnatal body 

growth, GH, has shown high degree of conservation at the mature protein between birds 

and mammals, whereas the variation observed in its signal peptide seems to be adaptive 

in pied flycatcher (I & II). Speciation is the process by which reproductive barriers to 

gene flow evolve between populations, and understanding the mechanisms involved in 

pre- and post-zygotic isolation have been investigated in Ficedula flycatchers. The Z 

chromosome has been suggested to be the hotspot for genes involved in speciation, thus 

sequencing of 13 Z-linked coding genes from the two species in allopatry and sympatry 

was conducted (III). Surprisingly, the majority of Z-linked genes seemed to be highly 

conserved, suggesting instead a potential involvement of regulatory regions. Previous 

studies have shown that genes involved in hybrid fitness, female preferences and male 

plumage colouration are sex-linked. Hence, three pigmentation genes have been 

investigated: MC1R, AGRP, and TYRP1. Of these three genes, TYRP1 was identified as a 

strong candidate to be associated with black-brown plumage variation in sympatric 

populations, and hence is a strong candidate for a gene contributing to pre-zygotic 

isolation (IV). In sympatric areas, where pied and collared flycatchers have overlapping 

breeding areas, hybridization sometimes occurs leading to the production of unfit hybrids. 

By using a proteomic approach a novel expression pattern in hybrids was revealed 

compared to the parental species (V) and differentially expressed proteins subsequently 

identified by sequence similarity (VI). In conclusion, the Z chromosome appears to play 

an important role in flycatcher speciation, but probably not at the coding level. In addition 

the novel expression patterns might give new insights into the maladaptive hybrids. 
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INTRODUCTION 

Evolutionary genomics 

Evolutionary genomics represents a 
growing field that has undergone 
tremendous progress during the last 
decade. The key word in evolutionary 
genomics is “integration”, in fact only the 
integration of the fields of molecular 
functional genetics, ecology and evolution 
will provide a comprehensive understanding 
of organismal biology. In particular, 
molecular functional genetics has the 
potential to reveal the genes and genetic 
variation responsible for phenotypic 
output. Ecology gives insights concerning 
interactions among individuals and species 
and their environments, as well as how 
species survive and reproduce. And 
evolution provides details of how forces 
such as selection, genetic drift, and 
evolutionary history have shaped the 
pattern of variation at either or both the 
molecular and phenotypic levels. Although 
gaps still exist between these fields the 
growing understanding of genes, their 
diversity and regulation, and how they 
work together in networks of interacting 
elements, has allowed the emergence of a 
new era for biology. In fact, the genome is 
coming to be seen as a complex net of 
information enabling the formation of a 
distinct phenotype, and the challenge is 
then to be able to use this net of 
information as a link between genomic and 
phenotypic diversity within species.  

During the last decade, whole-genome 
sequences of various organisms (a total of 665 
genomes published to date, where only 72 
are Eukaryotes; www.genomesonline.org), 
written in the nucleotide code, have 
enabled organism comparisons and opened 

the door to a wider understanding of some 
of the genetic differences underlying the 
molecular evolution patterns of the 
organisms observed today. We are now 
living in the post-genomic era where all 
the information available for a variety of 
organisms is waiting to be explored. The 
hidden key for this exploration is the 
integration of the already established 
wealth of knowledge in the above 
mentioned fields. In fact, the nucleotide 
code itself, retaining all the genetic 
building block information, might not be 
easy to interpret, hence a cooperative effort 
will provide a greater understanding of the 
biological history of a given organism.  

Evolutionary genomics studies in model 
vs non model organisms 

Our biological knowledge is mainly 
based on model organisms such as the fruit 
fly (Drosophila melanogaster), yeast 
(Saccharomyces cerevisiae), roundworm 
(Caenorhabditis elegans), mustard plant 
(Arabidopsis thaliana), zebrafish (Danio 
rerio), chicken (Gallus gallus), mouse 
(Mus musculus), and human (Homo 
sapiens). Although these have helped 
unravel some of the intricate mysteries of 
cell communication, genetics, and 
embryonic development, a wealth of 
evolutionary and ecological questions 
remain unaddressed, as does understanding 
the forces that create and maintain 
phenotypic variation. In fact, understanding 
how organisms respond to different 
environments and interact among 
themselves at the genomic level is still a 
big challenge for biology today (Crawford 
2001, Rockman and Kruglyak 2006).  
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In the post-genomic era, transfer of the 
knowledge gained from model organisms 
to non-model organisms is providing 
insight into the ecology and evolution of 
different lineages, with the potential of 
revealing biological mechanisms as yet 
unknown. Although living creatures look 
and behave in many different ways, all of 
their genomes consist of DNA and/or 
RNA, and genomic data have revealed that 
genes are remarkably conserved 
throughout different species. However, it is 
not all about genes, as their regulation 
seems to be the main factor that gives rise 
to the astonishing diversity of creatures. 
Thus, genomic sequence information and 
new technological and bioinformatics 
platforms now enable comprehensive 
surveys of neutral and adaptive variation in 
model vs non-model organisms. Many 
interesting behavioural, physiological or 
ecological traits and responses are poorly 
expressed or absent in the genetic model 
organisms, but the genomic information 
now available can be used as exploratory 
tools in non-model organisms (Ungerer et 
al. 2007). In addition, functional genomics, 
in terms of expression profiles 
(gene/protein expression) represents an 
example of a synergistic way to infer 
adaptive variation in non-model organisms 
in their natural settings. Only by increasing 
the application of the newly developed 
techniques to non-model organisms will it 
be possible to shed light on environmental 
modifications of gene expression (Feder 
and Mitchell-Olds 2003, Thomas and 
Klaper 2004).  

The question of whether there is a 
need for non-model organisms to become 
model organisms is controversial and in 
my opinion unnecessary. In fact, we expect 
a multidisciplinary approach to provide the 
answer instead. In particular, the 
combination of organismal analysis with 

molecular genetics and genomics, 
laboratory experiments (model organisms) 
along with studies in natural settings (non-
model organisms) will enable the 
understanding of organismal biology.  

Molecular evolution in birds: an 
overview  

In molecular evolutionary genetics 
understanding how various evolutionary 
forces interact to determine the amount and 
type of genetic variation in natural 
populations is of great interest. Thus, the 
sequencing of the chicken (Gallus gallus) 
genome opened the door for a new bird-era 
allowing comparative studies between 
avian and non-avian genomes and among 
natural bird populations. In fact, the 
chicken genome represents the first and 
most important source of bird genomic 
data available so far (ICGSC 2004) and 
constitutes a very useful tool for exploring 
molecular evolution in a wide range of 
avian species.  

Although the chicken genome 
represents the most important source of 
data for the inference of molecular 
evolution at DNA, RNA, or protein levels 
within avian species, sequence data from 
other birds are also important. Genomic 
sequences and expressed sequence tags 
(ESTs) are now available from various 
species, leading to an exponential increase 
in molecular evolution studies in birds 
(Cogburn et al. 2003, Agate et al. 2004, 
Edwards and Dillon 2004, Hillier et al. 
2004, Mello 2004, Sundstrom et al. 2004, 
Berlin and Ellegren 2006). In addition, a 
survey to study the genetic basis of 
phenotypic traits (ICPMC 2004) revealed 
2.8 million single nucleotide 
polymorphisms (SNPs), highlighting the 
high level of genetic diversity in chicken. 
This finding is certainly of great interest as 
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the SNPs can be used as genetic markers in 
population genetic studies, providing 
insights for genetic variability across 
genomes in natural bird populations. 
Another feature of the chicken genomic 
information is that it enhances the 
possibility of expression analysis studies 
(Abzhanov et al. 2006, Kaiser 2006), 
which integrated with avian molecular 
evolution studies has the potential to 
provide answers to fundamental questions 
such as the identification of molecular 
changes and forces responsible for various 
phenotypes in birds. In addition, with the 
up-coming zebra finch (Taeniopygia 
guttata) whole genome sequence the 
possibility to understand the intimacy of 
molecular evolution in birds will become a 
reality. 

Positive selection 

The molecular evolution field 
emerged during the 1960s with the aim 
being to understand the structure and 
function of nucleic acids and proteins. The 
recent advances in genomics have led to an 
increase in the number of studies in this 
field with the focus being to understand the 
extent of adaptive molecular evolution 
versus neutral drift, and the forces 
responsible for genotype-phenotype 
relationships. The neutral theory of 
molecular evolution (Kimura 1983) 
suggests that the majority of molecular 
differences that are fixed over evolutionary 
time are selectively neutral, leading to the 
generalization that coding regions are 
under purifying selection due to their 
functional constraints.  

The evolutionary forces determining 
the amount and type of genetic variation 
can be divided into two main classes: 
purifying selection (eliminates deleterious 
mutations) and positive selection (favours 

advantageous mutations). The role of 
positive selection has been debated for 
many years without a clear resolution. In 
fact, different methods have been used to 
identify the rate of adaptive evolution in 
coding sequence at the molecular level 
(Suzuki and Gojobori 1999, Kreitman 
2000, Bamshad and Wooding 2003, 
Suzuki 2004, Massingham and Goldman 
2005, Pond and Frost 2005, Zhang et al. 
2005), with the non-synonymous to 
synonymous substitution ratio (dN/dS or 
Ka/Ks) being the most frequently used. 
Accordingly, when the ratio is > 1 non-
synonymous substitutions occur more 
often than synonymous substitutions and 
they are driven to fixation by positive 
selection, whereas when the ratio is < 1 
purifying selection is acting to remove 
deleterious mutations. This test can be 
considered to be conservative as the 
majority of non-synonymous substitutions 
are expected to be deleterious, hence the 
general trend is that dN tends to be lower 
than dS unless there is adaptive evolution. 
However, this comparison might 
underestimate the extent of purifying 
selection on coding sequences. By using 
this approach many genes have been 
suggested to have evolved under the forces 
of positive selection (Wittbrodt et al. 1989, 
Ting et al. 1998, Fossella et al. 2000, 
Barbash et al. 2003, Presgraves et al. 2003, 
Swanson et al. 2003). In birds, where the 
chromosomes are classified into 
macrochromosomes (1-5) and 
microchromosome (6-38) according to 
their different lengths, it has been observed 
that the dN/dS ratio is higher for genes on 
macrochromosomes than on 
microchromosomes (Axelsson et al. 2005), 
suggesting that fast evolving genes are not 
randomly distributed in the genome. 

However, natural selection favouring 
phenotypic adaptations might follow 



Introduction 
 

9 

different routes other than only repeated 
amino acid (aa) replacement. In fact, it 
might well be that many changes at the 
phenotypic level are caused by different 
expression patterns (Carroll 2005), hence 
regulatory sequences might be of central 
importance for the different selection 
modes. Recently, Hughes (2007) 
discussed the misguided quest for positive 
selection, suggesting that one possible 
explanation for persisting in using the 
dN/dS model for detecting positive 
selection, even when it is unlikely to be 
applicable, is a case of “l’effect réverbére: 
for the proverbial drunk who searches for 
his lost keys under the streetlamp, not 
because that is where he lost them but 
because the light is better there”. Thus, 
only with advances in statistical methods, 
combined with the generation of new 
genomics resources, might we be able to 
shed light along the entire street, and 
hence find the right key. 

Comparative approach: Aves vs 
Mammalia 

Whole genome sequencing provides 
detailed sequence information for 
comparative studies of genome evolution 
beyond the level of individual genes. The 
chicken has a relatively small genome of 
about 1200 million base pairs (Mbp), about 
40% of the size of the human genome. One 
distinct feature of avian genomes is that 
they contain chromosomes of different 
lengths, classified as macrochromosomes 
and microchromosomes, whereas 
mammalian chromosomes are more equal 
in size. A comparison of about 7000 
orthologous genes shared between human 
and chicken revealed a mean dN/dS of 0.06 
(ICPMC 2004), whereas in comparisons of 
mouse-rat and human-chimpanzee genes 
mean dN/dS values were 0.13 and 0.2, 

respectively (CSAC 2005). In addition, the 
mean was higher for genes on 
macrochromosomes than on micro-
chromosomes suggesting that the fast 
evolving genes are not randomly 
distributed across the genome.  

Another peculiar future of the avian 
genome is represented by the different 
sex-chromosome system, ZW, compared 
to mammals, XY. Birds differ from 
mammals in that the female is the 
heterogametic sex (ZW) while males are 
homogametic (ZZ). It has been shown that 
the avian sex chromosomes evolved from 
different pairs of autosomes than the 
mammalian sex chromosomes 
(Fridolfsson et al. 1998), and comparison 
of the chicken Z chromosome to the 
mammalian genome found it to be 
orthologous to human chromosome 9 
(Nanda et al. 1999, Nanda et al. 2000). 
According to the faster-male theory, 
where mutations are usually occurring 
faster in males due to physical factors 
such as spermatogenesis, and considering 
that males are the homogametic sex in 
birds, selection of favourable semi-
recessive mutations on the Z chromosome 
would likely to be increased in females 
(Charlesworth et al. 1987). Interestingly, 
it seems that the level of genetic diversity 
is reduced on the Z chromosome 
(Sundstrom et al. 2004, Borge et al. 
2005), likely explained by the lower 
recombination rate compared to the 
autosomes. An alternative explanation 
may be that as the sex chromosomes are 
enriched with genes crucial for 
reproductive isolation (Price and Bouvier 
2002) among closely related species (see 
below), a selective sweep might reduce 
the level of polymorphism, hence the Z 
chromosome is of special interest for 
dissecting the molecular evolution of 
potential “speciation genes”.  
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Speciation and evolution of the 
isolation barriers 

In the course of evolution the event of 
the formation of a new species, and thus 
increasing biodiversity, is called 
speciation. After almost 150 years from 
publication of On the origin of the species 
(Darwin 1859), the understanding of 
speciation still remains one of the major 
challenges faced by evolutionary biology. 
The exciting research by Dobzhansky 
(1937) brought to the modern age the 
reproductive isolation species concept that 
was later incorporated into Mayr’s 
biological species concept, stating that 
"species are groups of interbreeding 
natural populations that are reproductively 
isolated from other such groups" (Mayr 
1963).  

Despite the huge variety of examples 
of speciation in nature and the advances 
in genetic and molecular techniques, 
surprisingly little is known about the 
mechanisms involved in speciation. By 
dissecting the genetics of speciation, 
studies on Drosophila have given insight 
into “speciation genes” potentially 
involved in reproductive isolation 
(Barbash et al. 2003, Gavrilets 2003, 
Presgraves et al. 2003, Sun et al. 2004, 
Ortiz-Barrientos and Noor 2005). 
However, one of the lessons we’ve 
learned from those studies is that only by 
understanding the mode of speciation can 
we get a clearer picture of the 
mechanisms and causes behind this 
phenomenon, and that this model system 
is limited for investigating the basis of 
speciation in natural settings.  

Not surprisingly, a large number of 
factors, such as geographical isolation, 
sexual selection, and natural selection, 
contribute to the speciation process. From 
a genetic perspective reproductive barriers 

to gene exchange may be considered as the 
main players in the field, however, due to 
both selection on genes and gene flow, it’s 
very difficult to evaluate and disentangle 
their effects on maintaining different 
genotypes. In fact, according to the 
allopatric speciation model (Coyne 1992, 
Gavrilets 2003, Coyne and Orr 2004) the 
process of speciation occurs when 
subpopulations of a single ancestral 
population become geographically isolated 
and embark on different evolutionary 
trajectories. During separate long-term 
evolution in geographic isolation, 
reproductive isolation evolves as a by-
product of divergence in phenotypic and 
genotypic aspects of an organism. When 
secondary contact occurs between the 
diverging species, and thus their ranges 
overlap (sympatry), the production of unfit 
hybrids may reinforce reproductive 
isolation. 

This reproductive isolation can take 
broadly two forms: pre-zygotic barriers, 
which prevent the formation of hybrid 
zygotes, and post-zygotic barriers, which 
act on hybrid fitness as well as hybrid 
sterility or inviability. In both cases the 
barriers ensure that the species remain 
genetically different, as they prevent gene 
flow in sympatry (where the species co-
exist), allowing independent evolutionary 
fates. In addition, pre- and post-zygotic 
isolating mechanisms arise as by-product 
of genetic divergence in allopatry, and 
their evolution can be accelerated by 
divergent selection. However, hybridization 
and introgression occur sometimes, and 
thus natural hybrid zones are the ideal 
arenas to investigate the mechanisms 
behind reproductive isolation, providing 
valuable genetic information on the natural 
history of speciation and its causes 
(Edwards et al. 2005, Arnold and Meyer 
2006, Noor and Feder 2006).  
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Pre-zygotic isolation 

Pre-zygotic isolation can arise when 
populations are separated in space or time. 
Under natural selection allopatric species 
might evolve differences leading to 
reduced hybrid fitness after secondary 
contact that subsequently favour 
reinforcement (Dobzhansky 1937, Butlin 
1987), which is the process by which 
mating discrimination is increased by 
natural selection acting against the 
production of unfit hybrids. Species can be 
recognized by their morphological 
characteristics and if two geographically 
isolated lineages diverge in male traits and 
female preferences, they are likely to be 
sexually isolated when their ranges 
subsequently overlap (Turelli et al. 2001). 
The hypothesis that pre-zygotic isolating 
mechanisms can be selectively 
strengthened, or reinforced, along the 
edges of a hybrid zone can be traced to 
Dobzhansky’s (1940) writings on 
speciation. This process typically results in 
reproductive character displacement, a 
pattern of "greater divergence of an 
isolating trait in areas of sympatry between 
closely related taxa than in areas of 
allopatry" (Howard 1993). However, it 
should be highlighted that other processes, 
such as selection for specialization to 
different ecological conditions, might 
affect the pattern of character displacement 
(Rundle and Schluter 1998). 

Reinforcement is an important 
component of speciation theory as it’s the 
only speciation mechanism which involves 
natural selection directly for reproductive 
isolation (Kirkpatrick and Ravigne 2002, 
Servedio and Noor 2003, Butlin 2006, 
Lemmon and Kirkpatrick 2006). Although 
over the past decades theoretical and 
empirical studies (Howard 1993, Liou and 
Price 1994, Coyne and Orr 1997, Rundle 

and Schluter 1998, Noor 1999, Turelli et 
al. 2001, Butlin 2002, Pfennig 2003, 
Ritchie and Noor 2004, Servedio 2007) 
have provided strong evidence supporting 
the reinforcement hypothesis, it still 
remains one of the most intensely debated 
topics in speciation theory (Dobzhansky 
1937, Servedio and Noor 2003, Ortiz-
Barrientos et al. 2004, Servedio 2004). 

Surprisingly little information exists 
concerning post-copulatory pre-zygotic 
barriers (between insemination and 
fertilization stages), with the major focus 
being invertebrates such as Drosophila 
(Coyne and Orr 1997, Noor 1999, Coyne 
and Orr 2004). It has been suggested that 
only a few genes are involved in post-
copulatory pre-zygotic barriers, and 
potential candidates are the reproductive 
proteins involved in gametic interactions 
as it’s been shown that they evolve rapidly 
(Vacquier 1998, Swanson et al. 2001). 
However, the source of this selection is not 
well known, but potentially due to sexual 
selection and inbreeding avoidance (Grant 
and Grant 1997, Servedio 2001, Woodruff 
and Thompson 2002, Lorch and Servedio 
2005, Rundle and Nosil 2005, Price 2006, 
Birkhead and Brillard 2007). 

Post-zygotic isolation 

Pot-zygotic isolation is an important 
aspect of the process of speciation, where 
barriers such as hybrid sterility and 
inviability inhibit gene-flow between 
species through hybrids as a result of 
genetic incompatibilities between genomes 
that are expressed when they are brought 
together. The evolution of hybrid fitness 
problems likely reflects the gradual 
accumulation of deleterious epistatic 
interactions between species (Dobzhansky 
1937, Muller 1940, 1942, Noor 1999). 
Such hybrid incompatibilities accumulate 
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as a side effect of normal adaptive or 
neutral divergence (Dobzhansky 1937, 
Muller 1940, 1942, Orr and Turelli 1996, 
Orr 1997). Although this classical 
Dobzhansky-Muller model highlights the 
role of epistasis in speciation, and that the 
evolution of reproductive isolation needs 
to be opposed by natural selection, it’s still 
unclear what forces drive isolation. One 
possibility is that alleles causing hybrid 
problems have little or no effect on fitness 
in their parental species and randomly drift 
to fixation (Coyne 1992, Orr and Turelli 
2001). An alternative possibility is that the 
causative genes for speciation are driven to 
fixation by various forms of selection, and 
there is evidence that sexual selection may 
be one of those (Wu and Johnson 1996, 
Presgraves and Orr 1998). This topic has 
inspired biologists for centuries and in 
1922 Haldane formulated an observation 
known as Haldane’s rule: the fact that 
when one hybrid sex is sterile or inviable, 
it is usually the heterogametic (XY or ZW) 
sex (Haldane 1922). 

Haldane’s rule is now known to hold 
across a wide range of organisms (Coyne 
1992, Orr and Turelli 1996, True et al. 
1996, Coyne and Orr 1997, Laurie 1997) 
and it’s been shown to be almost an 
obligate phase of speciation in Drosophila 
(Coyne and Orr 1997). The ubiquity of 
Haldane’s rule suggests that the types of 
genetic changes underlying it, and thus 
underlying post-zygotic isolation, may be 
similar in most or all organisms (Coyne 
1992, Laurie 1997, Orr 1997, Turelli 1998, 
Orr and Presgraves 2000, Price and 
Bouvier 2002, Turelli and Moyle 2007). 
It’s now agreed by many that Haldane’s 
rule is a composite phenomenon reflecting 
the confluence of several evolutionary and 
genetic factors. In fact it combines 
dominance theory, which hypothesizes that 
most hybrid incompatibilities act as partial 

recessives in hybrids (Muller 1940, 1942, 
Turelli and Orr 1995, 2000), and faster-
male evolution, hypothesizing that genes 
expressed only in males evolve faster than 
genes also expressed in females (due to 
more intense sexual selection in males) and 
that spermatogenesis may be more 
sensitive to the genetic perturbation 
experienced by hybrids (Hollocher and Wu 
1996, True et al. 1996). However, the latter 
theory cannot explain the rule in taxa with 
heterogametic females as the female 
hybrids should be the sterile sex (Orr and 
Turelli 1996). 

Importance of sex-linked genes in 
speciation 

Sex chromosomes seem to be enriched 
with genes controlling traits associated 
with post-zygotic isolation, like hybrid 
sterility, as well as with pre-zygotic 
isolation, like preferences and secondary 
sexual traits important for mate recognition 
(Civetta and Singh 1998, Reinhold 1998, 
Hurst and Randerson 1999, Saifi and 
Chandra 1999, Ritchie 2000, Noor et al. 
2001, Wang et al. 2001, Saetre et al. 2003, 
Tao and Hartl 2003, Borge et al. 2005), 
suggesting them to be the hotspot for genes 
associated with speciation. Hence 
understanding the evolution of sex-linked 
genes may be crucial for understanding the 
development of reproductive barriers. 
Coevolution patterns between pre- and 
post-zygotic barriers to gene flow have 
been hypothesized, suggesting that this 
might be enhanced by sex-linkage of genes 
affecting mate recognition and hybrid 
viability (Servedio and Saetre 2003). 
According to this model the genes 
involved in pre-zygotic isolation are linked 
to those controlling post-zygotic isolation 
by a positive feedback loop leading to 
increased accumulation of these genes on 
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the sex chromosomes. However, sex 
chromosomes have arisen independently in 
many taxonomic groups, thus the number 
of genes involved in reproductive isolation 
are likely to be different between the two 
main systems – XY and ZW.  

Theoretical models have predicted that 
if the majority of mutations are recessive, 
selection will be more efficient on the sex 
chromosomes than on the autosomes: the 
fast-X effect (Charlesworth et al. 1987). 
On the other hand, Orr and Betancourt 
(2001) found that evolution from standing 
genetic variation always proceeds more 
slowly at sex-linked than at autosomal 
genes. Accordingly, there are several 
studies that have reached different 
conclusions using the same approach as in 
Drosophila (Betancourt et al. 2002, 
Counterman et al. 2004, Thornton et al. 
2006) and humans (Bustamante et al. 2005, 
Lu and Wu 2005), which leaves the 
question of whether there really is a faster 
or slower sex-effect still open. 

Research aims 

The young emerging field of avian 
evolutionary genomics has mainly inspired 
and been the challenge of this thesis. The 
sequencing of the chicken genome, soon 
after I started this work, provided new 
tools to play with at the genomic level. 
Using comparative approaches, the 
challenges of investigating the natural 
variation observed in nature at the genetic 

level have become a reality for Ficedula 
flycatchers. In this thesis I also addressed 
one of the major issues in evolutionary 
biology, the causes of speciation. This has 
proven to be difficult to answer since 
speciation is usually slow and therefore 
unobservable in real time, and it’s not 
possible to draw broad conclusions about 
the causes and the importance of any form 
of reproductive isolation without using a 
comparative approach. The research aims 
of this thesis can be summarized as 
follows: 

1. To investigate the molecular 
evolution of a widely studied gene 
involved in postnatal body growth: the 
growth hormone (GH) gene, and its 
comparison between Aves and Mammalia.  

2. To understand what causes 
incomplete reproductive isolation barriers 
in Ficedula flycatchers and which genes 
are involved. Thus investigations of the 
evolution and genetic architecture of the 
traits involved in pre-zygotic isolation as 
well as candidate genes potentially 
involved in post-zygotic isolation have 
been conducted in the natural laboratory of 
the Ficedula flycatchers system. 

3. To disentangle the causes and 
forces leading to the production of unfit 
hybrids, comparisons of protein expression 
patterns between hybrids and parental 
species were conducted in the Ficedula 
flycatcher natural hybrid zone in the Czech 
Republic. 
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MATERIAL & METHODS

“Non-model” system: Ficedula 
flycatchers 

The bird species complex 
characterized by pied (Ficedula hypoleuca) 
and collared flycatchers (F. albicollis) 
represents the non-model system of this 
thesis. Flycatchers are small migratory 
passerine birds, belonging to the family 
Muscicapidae, breeding in Europe during 
spring and summer, and spending the rest 
of the year in tropical habitats in Africa. 
The plumage trait in pied flycatcher males 
is variable, ranging from black to brown, 
while collared flycatcher male plumage 
spans from black to gray with a large white 
forehead patch and white neck collar (Fig. 
1). Despite the distinct plumage variation 
in males, the females of the two species are 
highly similar. 

Pied and collared flycatchers have 
overlapping breeding areas in Central and 
Eastern Europe and on two islands in the 
Baltic Sea (Gotland & Öland; Fig. 1). For 
this work, sympatric pied and collared 

flycatcher populations have been sampled 
in the Czech Republic, whereas the 
allopatric pied flycatchers were collected 
in both Norway and Finland, and allopatric 
collared flycatchers were sampled in Italy 
(Fig. 1). 

In the overlapping breeding areas 
hybridization sometimes occurs (2-7%) 
resulting in the production of unfit 
offspring, where females are sterile and 
males have reduced fitness (Alatalo et al. 
1990, Saetre et al. 1997, Veen et al. 2001). 
This follows Haldane’s rule (Haldane 
1922) which states that the hybrids of the 
heterogametic sex (ZW, female) are often 
sterile or inviable (Alatalo et al. 1990, 
Saetre 1999, Veen et al. 2001). The two 
species are thought to have come into 
secondary contact after the last glaciation 
period (Saetre et al. 2001). The hybrids 
produced are intermediate in morphology 
between the two parental species, 
characterized by intermediate plumage 
traits and mixed songs (Saetre et al. 2003, 
Haavie et al. 2004).  

          
 
 
 
 
 
 
 
Fig. 1.  
The European geographical 
distributions of the pied 
and collared flycatcher. 
Abbreviations are as 
follows: PFA, allopatric 
pied flycatcher; PFS, 
sympatric pied flycatcher; 
CFA, allopatric collared 
flycatcher; CFS, sympatric 
collared flycatcher. 
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The European Ficedula flycatchers 
represent one of the most convincing 
examples of reinforcement described to 
date (Ungerer and Rieseberg 2005, Butlin 
2006). Also in accordance with 
reinforcement theory is the observation of 
strong character displacement of plumage 
and song traits (Haavie et al. 2004) in 
sympatric populations (Saetre et al. 1997). 
Recent studies have shown that genes 
involved in hybrid fitness, male plumage 
colour and female preferences are linked to 
the Z chromosome (Saetre et al. 2003, 
Saether et al. 2007). Additional studies 
highlight that in regions where these two 
sister species have overlapping breeding 
areas there is extensive gene flow at 
autosomal genes, whereas introgression at 
the Z-chromosome is almost absent (Saetre 
et al. 2003, Borge et al. 2005). Taken 
together these findings suggest the sex 
chromosomes to be the hotspots for genes 
involved in maintaining the species 
reproductive barriers. Although the 
evolutionary fate of genetic 
incompatibilities is unpredictable when 

species exchange genes in the wild, the 
physical linkage of traits involved in pre- 
and post-zygotic isolation restricts the 
recombination between these traits, which 
has been one of the major theoretical 
obstacles against the theory of 
reinforcement (Felsenstein 1981). Thus, 
reinforcement, character displacement of 
male plumage colouration, and sex-linked 
genes in Ficedula flycatchers, had set the 
scene for this thesis. 

DNA-RNA-Protein: bridging the 
gaps  

The genetic information is carried in 
DNA language that must be decoded, with 
the creation of RNA templates, to the 
executive level, in the form of protein. In 
this thesis I tried to integrate different 
molecular approaches spanning from DNA 
through RNA to protein levels, to obtain a 
wider understanding of the molecular 
evolution, genetic variation, and 
expression pattern in Ficedula flycatchers 
(Fig. 2).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. DNA-RNA-Protein: bridging the gaps. 
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The avian molecular evolution of a well 
characterized gene in mammalian species, 
the GH gene, was first characterized in pied 
flycatcher and investigated at the DNA level, 
providing detailed information about the 
genetic variation within avian and between 
avian and mammalian species. The 
characterization of Z-linked candidate 
coding genes potentially involved in the 
speciation process was carried out using 
mRNA, with the main aim being to 

investigate the variation at the coding level. 
However, when I started this PhD 
surprisingly little genetic information was 
available for avian species and only after the 
release of the chicken genome was the 
identification of sex-linked genes in Ficedula 
flycatchers possible. In addition, as proteins 
retain the “executive power”, an exploration 
of the different expression patterns between 
hybrids and parental species in flycatchers 
was conducted.  
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RESULTS & DISCUSSION 

General summary of the overall 
studies 

When I first started this work there 
was very little avian genomic data 
available, mostly limited to domesticated 
bird species (such as chicken and turkey) 
due to their economical importance. This 
thesis begins with the characterization (I) 
and subsequent molecular evolution 
analysis (II) of the growth hormone (GH) 
gene in passerine birds, where the forces 
under which this gene has evolved have 
been investigated and also compared with 
mammalian species. Previous studies on 
Ficedula flycatchers (Saetre et al. 2003, 
Borge et al. 2005), and the availability of 
the chicken genome, inspired the following 
chapter of this thesis which focussed on 
the molecular evolution of candidate 
coding sex-linked genes (III) in order to 
gain new insights into post-zygotic 
isolation mechanisms. As regards to the 
genetics of speciation in Ficedula 
flycatchers new insights into pre-zygotic 
isolation are given by the exploration of 
three genes involved in the pigmentation 
pathway (IV). In the final chapters of the 
thesis the comparisons of protein 
expression patterns between the hybrids 
and parental species revealed a unique 
hybrid expression pattern (V) as well as 

allowed the identification of differentially 
expressed proteins (VI). 

Characterization and molecular evolution 
of the avian growth hormone gene  

The ecological and evolutionary 
wealth of information available on 
passerine birds (Lundberg and Alatalo 
1992) is uneven if compared with genomic 
information. Thus, I begun with the 
characterization in pied flycatcher 
(Ficedula hypoleuca) of the GH gene, 
suggested to be involved mainly in 
postnatal body growth (Etherton and 
Bauman 1998) and in a variety of 
secondary functions such as reproduction, 
aging and egg production (Aramburo et al. 
2000, Ip et al. 2001, Zhao et al. 2004). Not 
surprisingly, due to its importance, the 
molecular evolution of the mammalian GH 
gene has been extensively studied in a 
wide range of vertebrate species (Wallis 
1996, Lioupis et al. 1997, Forsyth and 
Wallis 2002) with the evolutionary rate 
being generally slow, but characterized by 
several bursts of rapid change in mammals 
(Wallis 1996, Wallis and Wallis 2001, 
Wallis et al. 2001). However, the pattern of 
evolution of the avian GH gene may differ 
from that observed in mammals as may its 
function. 

 
 
 
 
 
Fig. 1. 
Schematic comparison of the 
GH gene exon-intron structures 
among pied flycatcher, 
chicken, duck and human 
(Chapter I). 
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In fact, while GH has been 
demonstrated to have an important role in 
postnatal body development in mammals, 
its role in growth rate regulation in birds is 
possibly reduced, as it has been shown that 
exogenous GH exhibits no effect on 
growth during the early post-hatch 
growing period (Zhao et al. 2004). The 
characterization of the GH gene sequence 
in pied flycatcher revealed that the overall 
organization of the gene was very similar 
to that of other available avian genomic 
sequences (Fig. 1), characterized by five 
exons and four introns, with the intron 
lengths being very different than those of 
the other two bird species, chicken and 
duck (I). This gene led to the formation of 
a protein characterized by a signal peptide 
in its N-terminal end which has been 
shown to be crucial for the correct 
cleavage of the protein. It has been 
suggested that this signal peptide may be 
involved in post-translational modification 
leading to the observed structural diversity 
of avian GH (Williams et al. 2000, 
Martinez-Coria et al. 2002). This led us to 
hypothesize that the increased variation in 
signal peptide sequences may instead be 
adaptive.  

 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Rate of molecular evolution of avian and 
mammalian GH genes. Grey bars represent the rate 
of molecular evolution of the GH signal peptide; 
white bars represent the rate of molecular evolution 
of the mature GH protein (Chapter II). 

The investigation of the molecular 
evolution of the avian and mammalian GH 
genes was performed (II) using a 
maximum-likelihood codon based method, 
to infer potential positively selected sites 
(Yang 1997, Suzuki and Gojobori 1999). A 
total of six avian GH coding sequences 
were included, representing the minimum 
number allowed for the analysis (Wong et 
al. 2004). Overall, the molecular 
evolutionary rate of the GH gene in birds 
included in the study has been 
considerably more constant than in 
mammals. Wallis (1996) estimated that the 
evolutionary rate of mammalian GH varied 
up to 25-50 fold, while in the avian GH 
genes studied here the maximum rate of 
variation between lineages was only 1.4 
fold (Fig. 2). Results of the codon-site 
method indicated that the majority of the 
amino acid (aa) sites in the mature avian 
GH protein have been subjected to 
purifying selection, with the ω value of 
almost 99% of aa sites being estimated to 
be ≤ 0.15 (Fig. 3A). Therefore, it’s clear 
that the rapid bursts of GH evolution 
observed in several mammalian lineages 
(Wallis 1994, Lioupis et al. 1997, Wallis 
2001, Wallis and Wallis 2001, Wallis et al. 
2001) and some fish lineages (Wallis 
1996) are not evident in the current data-
set of mature avian GH proteins. 
Interestingly, the site-specific maximum 
likelihood analyses conducted with the 
mammalian GH data-set failed to detect 
any positively selected aa sites in the 
mature protein despite the bursts of rapid 
evolution observed in ruminants and 
primates, suggested to be due to positive 
selection (Wallis 1994). One likely 
explanation might be that in some regions 
of the mammalian data-set there is 
saturation of sequence substitutions.  
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Fig. 3. Identification of aa sites under positive 
selection in the GH gene. A) Posterior probabilities 
of site classes along the avian GH gene under the 
discrete model (M3). Sliding window analysis of the 
average number of synonymous substitutions per 
synonymous site (dS) and non-synonymous 
substitutions per non-synonymous site (dN) for B) 
avian and C) mammalian GH gene sequence data-
sets (Chapter II).  

A major finding in this study was that 
four of the 27 avian signal peptide codons 
were estimated to have been affected by 
positive selection (Fig. 3A), with two of 
these sites being in positions important for 
the cleavage of the protein to occur 
correctly (von Heijne 1988, Jain et al. 
1994). Taking together the high level of 
non-synonymous variation observed at 
these sites in birds, and the fact that these 
sites were identified as being positively 
selected by the codon-site model, one 
potential implication is that signal peptide 

sequence variation in birds is, in fact, 
adaptive. The great interest surrounding 
the field of positive selection and its 
detection from coding sequences is of great 
interest in evolutionary biology. However, 
the analytical method that’s best suited to 
this task is still disputed (Suzuki and Nei 
2002, Yang and Swanson 2002, Suzuki 
and Nei 2004), with the main argument 
being over the use of likelihood and 
parsimony methods (Wong et al. 2004, 
Zhang 2004). Therefore, the answer to the 
question “positive selection or relaxed 
negative selection?” still awaits further 
development of statistical methods. 

Molecular evolution of Z-linked genes in 
Ficedula flycatchers 

The speciation process, viewed as the 
formation of reproductive barriers between 
populations to prevent gene flow, 
represents one important area of research 
in evolutionary biology ever since Darwin 
introduced the concept (Darwin 1859). Its 
understanding still lacks full 
comprehension, mostly due to the lack of 
detection of the forces involved with the 
tools currently available. However, the 
increased availability of genomic 
information has increased the potential for 
comparative studies across a wide range of 
different taxa, leading to a better 
understanding of the mode of evolution. In 
particular, the availability of the chicken 
genome together with recent findings 
related to speciation in Ficedula 
flycatchers (Saetre et al. 2003, Borge et al. 
2005) inspired this study. The latter studies 
have shown that in regions where pied and 
collared flycatchers have overlapping 
breeding areas there is extensive gene flow 
at autosomal genes, whereas introgression 
at the Z-chromosome is almost absent 
(Saetre et al. 2003, Borge et al. 2005), with 
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a likely explanation being that the Z-
chromosome is the hotspot for genes 
involved in maintaining species barriers, 
further suggesting that inter-species 
incompatibilities in sex-linked genes are 
involved in completing the final stages of 
speciation in these two species. This has 
led to the hypothesis that Z-linked genes 
might retain the potential to be involved in 
maintaining the reproductive barriers in 
Ficedula flycatchers, and are therefore 
evolving faster in sympatric areas 
compared to allopatric settings (III). Thus, 
several sex-linked candidate genes were 
investigated among Ficedula flycatcher 
populations (III). 

Overall, 13 Z-linked coding genes 
(14289bp, which represents ~70% of the 
homologous chicken genes on the Z-
chromosome) have been identified in pied 
and collared flycatchers in the different 
settings (allopatry and sympatry). A 
pairwise maximum likelihood method (II) 

was used to infer sites potentially under 
positive selection among pied and collared 
flycatchers, both in allopatry and 
sympatry, and the genes resulted to be 
highly conserved, with six of the 13 Z-
linked coding genes without non-
synonymous substitutions (Fig. 4).  

Human (Homo sapiens) and 
chimpanzee (Pan troglodytes) were then 
chosen to be the mammalian counterparts 
for further comparisons of the level of 
molecular evolution of the sex 
chromosomes between Mammalia and 
Aves. However, since the synteny of the Z 
and X chromosomes is not conserved 
(Nanda et al. 1999, Nanda et al. 2002), 
with the majority of Z-linked genes found 
on human chromosomes 5 and 9, the X-
linked data set from (Lu and Wu 2005) 
was used for the comparison. The average 
dN/dS for the X-linked genes were almost 
five times higher than for Z-linked genes 
(Fig. 5). 

 
 
 
 
 

 
 
 
 
Fig. 4.  
Schematic 
representation of the 
13 Z-linked genes 
and their locations 
on the Z 
chromosome, based 
on the Gallus gallus 
genome. Symbols 
indicate the position 
of the observed 
non-synonymous 
substitutions.  
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Although the majority of the coding 
genes examined here seem to be highly 
conserved among the different Ficedula 
flycatcher comparisons, neurotrophic-
tyrosine-kinase, receptor-2 (NTRK2) and 
very low density lipoprotein receptor 
(VLDLR) revealed a dN/dS of 1.07 
(between allopatric and sympatric collared 
flycatchers) and 0.99 (between allopatric 
pied and collared flycatchers), 
respectively, suggesting their potential of 
being under positive selection. It has to be 
mentioned that the method used to 
investigate the molecular evolution in 
these Z-linked genes is mainly concerned 
with the mode of evolution at the protein 
level. Accordingly, it assumes that ratios 
between non-synonymous and 
synonymous substitutions bigger than 1 
can be interpreted as positive selection, 
and thus doesn’t consider potential 
interactions between genes as well as the 
importance of the regulatory elements. 
Only recently has there been some 
attention given to the potential selective 
forces driving synonymous substitutions 
(Hoffman and Birney 2007, Resch et al. 
2007), assuming that the substitution rate 
at intronic sequences is the neutral rate. 
Hence, synonymous substitutions might 
indeed be involved in the stability of the 
mRNA, influencing folding and splicing, 
and consequently at the expression level 
(IV).  

Nevertheless the non-synonymous and 
synonymous substitutions found in this 
study warrant further investigation of 
additional individuals to determine 
whether they may be potentially important 
for maintaining post-zygotic reproductive 
barriers in this interesting system. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
Fig. 5. A) dN/dS averages for Z-linked genes in birds 
and mammals. B) dN/dS averages for sex-linked 
genes (Chapter III). 
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The genetic basis of colouration and 
reinforcement in Ficedula flycatchers 

In chapter III the aim was to 
investigate sex-linked genes potentially 
involved in post-zygotic isolation, while in 
this chapter (IV) the main aim was to 
investigate the genetic basis of 
reinforcement – the increase in pre-zygotic 
reproductive isolation between two 
populations due to natural selection that 
results from a reduction in the fitness of 
hybrids (Dobzhansky 1937, Servedio and 
Noor 2003, Ortiz-Barrientos et al. 2004, 
Servedio 2004), which is one of the big 
challenges in evolutionary biology 
(Servedio 2007). Hence genes potentially 
involved in plumage colour variation 
observed in sympatric Ficedula 
flycatchers, one of the most convincing 
examples of reinforcement described to 
date (Ungerer and Rieseberg 2005, Butlin 
2006), have been investigated. One of the 
remarkable cases of character displacement 
in this system is in plumage colouration. In 
addition, it has been demonstrated that 
pied flycatcher females in sympatry prefer 
dull brown males as mates and that the 
resulting character displacement helps 
species recognition (Saetre et al. 1997). 
Accordingly, three genes considered as 
candidates for controlling black-brown 
plumage colouration, and hence character 
displacement, in Ficedula flycatchers was 
investigated: melanocortin receptor 1 
(MC1R), agouti related protein (AGRP), 
and tyrosinase related protein 1 (TYRP1). 
Although research into the genetics of 
colouration have a long history in 
mammalian species (Sturm et al. 2001, 
Bennett and Lamoreux 2003, Rosenblum 
et al. 2004, Hoekstra 2006), associations 
between variations in gene sequences and 
plumage colouration have been reported in 
avian species only recently (Theron et al. 

2001, Mundy et al. 2003, Mundy et al. 
2004, Mundy 2005, Nadeau et al. 2007a & 
b), with the MC1R gene being one of the 
most intensely studied in birds.  

Unlike a number of other avian 
species (Mundy 2005), no clear 1 to 1 
association between MC1R sequence and 
male plumage colour variation in pied and 
collared flycatchers was found. Analysis of 
22 avian species using a maximum 
likelihood codon-based method (II & III) 
to infer potentially positively selected sites 
was conducted. However, it revealed no 
indications of positive selection, and the 
overall dN/dS ratio was well below 1, 
ranging between 0.04 and 0.11, suggesting 
that MC1R has generally evolved under 
strong purifying selection. This result was 
in agreement with a recent study on the 
evolution of avian pigmentation, with a 
major focus on galliform species (Nadeau 
et al. 2007b), where the authors found no 
category of sites under positive selection in 
the MC1R gene when using site-specific 
analysis. However, in the same study, a 
lineage specific approach revealed a 
significant relationship between 
dichromotism and changes at the MC1R 
gene in galliform species, although the 
dN/dS values ranged between 0 to 0.1. 
Moreover, no assocation between plumage 
colour and AGRP1 variation was observed. 

The sex-linked TYRP1 was instead 
identified as a strong candidate associated 
with black-brown plumage variation in 
sympatric pied flycatchers, and hence is a 
strong candidate for a gene contributing to 
pre-zygotic isolation. In fact, two splice 
variants of the sex-linked TYRP1 gene 
segregating in the sympatric pied 
flycatcher population and a strong 
association between individual TYRP1 
transcript lengths and plumage colouration 
in pied flycatchers were found (Fig 6 and 
7).  
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Fig. 6. Association between male plumage 
colouration and TYRP1 transcript lengths in pied 
flycatchers (Chapter III).  

One transcript is 536 aa in length and 
is similar in structure to the polypeptide 
characterized in other birds, while the 
second transcript, most likely the result of 
a splicing error, results in much shorter 
(420 aa) transcript lacking the C-terminal 
end found to be essential for trafficking to 
the melanosome (Vijayasaradhi et al. 1995, 
Sarangarajan and Boissy 2001).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This provides a likely functional 
mechanism which is consistent with the 
evolution of character displacement i.e. 
selection for brown male plumage in pied 
flycatchers in the Czech Republic 
sympatric population. Hence, TYRP1 can 
be considered as a strong candidate to be 
one of the first speciation genes identified 
in any vertebrate species. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7. Schematic representation of the TYRP1 gene 
in Ficedula flycatchers. A) TYRP1 genomic region; 
intron-exon boundaries are shown with bars and 
lines, respectively, as well as the nucleotide 
positions important for the splicing (position -1, -3, -
5). B) TYRP1 coding region; the four Ficedula 
flycatcher forms and the transcript length, 
respectively, are illustrated. C) Potential translated 
TYRP1 protein; the domains are shown with 
different grey colours and in the cytoplasmatic 
domain the sequence essential for melanosomal 
recognition is illustrated (Chapter IV). 
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Proteomic analyses in natural Ficedula 
flycatcher hybrids 

In the final chapters of this thesis the 
potential of proteomics has been used to 
investigate the evolution of gene function, 
providing a unique perspective into 
ecological functional genomics in natural 
populations of Ficedula flycatchers that 
allowed firstly investigation of the 
variation of protein expression between 
and within Ficedula flycatchers and their 
hybrids (V), and secondly, by combining 
two-dimensional electrophoresis (2-DE) 
(Klose 1975, O'Farrell 1975) with mass 
spectrometry techniques, identification of 
the differentially expressed protein (VI). 
This combination might allow qualitative 
and quantitative measurements of protein 
expression that can be subsequently linked 
to the corresponding gene and used to 
understand its function (Ideker et al. 2001). 
As mentioned above (III & IV), speciation 
can be viewed as the build-up of pre- and 
post-zygotic reproductive barriers between 
populations where natural selection should 
favour traits that reinforce reproductive 
species barriers (Dobzhansky 1937). 
Hence, examining the implications of 
heterospecific pairing in natural 
populations might provide valuable 
insights into the mechanisms behind the 
evolution of reproductive isolation.  

An ANOVA analysis of 116 protein 
spots was conducted and 61 protein spots 
were detected to be significantly 
differentially expressed among the 
following comparisons: hybrids and the 
sympatric pied flycatchers, hybrids and 
the sympatric collared flycatchers, pied 
and collared flycatchers in allopatry, pied 
and collared flycatchers in sympatry, 

within pied flycatchers, and within 
collared flycatchers. Comparison of the 
protein expression profiles of liver tissue 
between the hybrids and the parental 
species revealed that the differences are 
probably not due to environmental factors 
as both allopatric and sympatric 
individuals showed the similar patterns of 
expression for the majority of the protein 
spots estimated to be significantly 
different by the ANOVA analysis (Fig. 8). 
The novel hybrid expression pattern can 
be explained as the heterologous 
chromosome complement resulting in 
interactions between transcription factors 
of one species and the regulatory regions 
of the other. Thus, changes at the 
regulatory regions of genes might play a 
crucial role in the phenotypic diversity 
between species (Belting et al. 1998, 
Carroll 2005, Gompel et al. 2005, Wratten 
et al. 2006).  

A step toward a greater understanding 
of protein variation in Ficedula flycatchers 
and the production of unfit hybrids is given 
by the significantly different protein spots 
identified for the trio comparisons of the 
sympatric area, PFS-HYB-CFS. The last 
chapter of this thesis (VI), identifying by 
sequence similarity of differentially 
expressed proteins, shows that the vast 
majority of the identified peptides (VI) fall 
into one of two main functional classes: 
binding and catalysis (Fig. 9). One likely 
explanation might be that the annotated 
proteins for these two categories in the 
public databases may certainly be more 
accurate in several organisms, chicken in 
particular, than for smaller functional 
classes; hence the Ficedula flycatcher 
peptides falling into these categories have 
had higher chances to be identified.  
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Notably, conserved and non-conserved 
protein spots were included in the 
identification analysis, although the 
conserved were only 23% of the total 
proteins submitted for identification. 
Consequently, it’s hard to draw conclusions 
about the conserved vs non-conserved 
protein spots comparison as the different 
functional classes identified as well as the 
sub-categories are represented in both of the 
cases (Fig. 9). Unfortunately, but not 
unexpectedly, more than 55% of the 
flycatcher protein spots failed to be identified 
by one of the databases although they 
showed good mass spectra characteristics.  

The most likely explanation for this 
result is that these proteins are sufficiently 
diverged from chicken and zebra finch 
that they aren’t recognized through 
homology similarity searches based on 
mass spectra. Only manual sequencing or 
the completion of a whole-genome 
sequence from a more closely related 
species, e.g. zebra finch, will allow these 
proteins to be identified and would enable 
a better understanding of the Ficedula 
flycatchers liver proteome and its 
potential involvement in the production of 
unfit hybrids. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9. Differentially expressed and conserved proteins in the Ficedula flycatcher liver proteome (Chapter 
VI). 
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FUTURE PROSPECTS 

The results I obtained during this 
thesis will contribute to enrich the 
knowledge of avian evolutionary 
genomics. As I mentioned earlier, the key 
word in this thesis is integration, and I 
strongly believe that only by combining 
different areas of biology and approaches 
will it be possible to reach a complete 
understanding of the forces, genes, and 
molecules involved in speciation. As 
evolutionary biologists we are interested in 
patterns or rules that might characterize the 
genes underlying speciation, and the 
Ficedula flycatcher system provided the 
ideal system to investigate those. 

When I started this work I was 
expecting to answer many questions which 
I tried to address using different molecular 
and genomics tools, travelling from the 
molecular evolution of single genes, to 
comparative genomics of several coding 
sequences, to the discovery of novel 
expression patterns in natural populations. 
However, many more questions have been 

raised. I hope that this work has added a 
little stone to the big castle and can be 
considered as both a continuation and 
starting point for future studies. In 
particular, in Ficedula flycatchers, the first 
proteomic approach has given new insights 
about differentially expressed proteins 
between hybrids and parental species 
which might then be deeply investigated at 
the genomic level. In addition, functional 
studies using the TYRP1 gene will enable a 
better understanding of its role in the 
pigmentation pathways in flycatchers as 
well as its importance in pre-zygotic 
isolation. And the Z-linked genes 
identified can be investigated in a broader 
scale to be able to link genotypes with 
phenotypes, also in other passerine species.  

Finally, I think that the chapter on the 
genetics of speciation of the Ficedula 
flycatchers system has just begun and many 
more exciting chapters will follow as soon as 
the first passerine genome (zebra finch – 
Taenopigia guttata) becomes available. 

Future Prospects
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