
THESIS FOR THE DEGREE OF LICENTIATE OF ENGINEERING

Sources of Variations in
Error Sensitivity of Computer Systems

FATEMEH AYATOLAHI

Division of Computer Engineering

Department of Computer Science and Engineering

CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2014

Sources of Variations in Error Sensitivity of Computer Systems

Fatemeh Ayatolahi

Copyright c© Fatemeh Ayatolahi, 2014.

Technical report 116L
ISSN 1652-876X
Department of Computer Science and Engineering
Dependable Real-time Systems Group

Division of Computer Engineering
Department of Computer Science and Engineering
Chalmers University of Technology
SE-412 96 GÖTEBORG, Sweden
Phone: +46 (0)31-772 10 00

Author e-mail: fataya@chalmers.se

Printed by Chalmers Reproservice
Göteborg, Sweden 2014

Sources of Variations in
Error Sensitivity of Computer Systems
Fatemeh Ayatolahi
Division of Computer Engineering, Chalmers University of Technology

ABSTRACT

Technology scaling is reducing the reliability of integrated circuits. This makes
it important to provide computers with mechanisms that can detect and correct
hardware errors. This thesis deals with the problem of assessing the hardware
error sensitivity of computer systems. Error sensitivity, which is the likelihood
that a hardware error will escape detection and produce an erroneous output,
measures a system’s inability to detect hardware errors. This thesis present
the results of a series of fault injection experiments that investigated how er-
ror sensitivity varies for different system characteristics, including (i) the inputs
processed by a program, (ii) a program’s source code implementation, and (iii)
the use of compiler optimizations. The study focused on the impact of tran-
sient hardware faults that result in bit errors in CPU registers and main memory
locations. We investigated how the error sensitivity varies for single-bit errors
vs. double-bit errors, and how error sensitivity varies with respect to machine
instructions that were targeted for fault injection. The results show that the in-
put profile and source code implementation of the investigated programs had a
major impact on error sensitivity, while using different compiler optimizations
caused only minor variations. There was no significant difference in error sen-
sitivity between single-bit and double-bit errors. Finally, the error sensitivity
seems to depend more on the type of data processed by an instruction than on
the instruction type.

Keywords: fault injection, error sensitivity, bit flipping, fault tolerance, compiler opti-

mization, transient fault

Acknowledgments

It is a great pleasure to express gratitude to all people supported and helped me
during my good and hard days in my studies and in my life.

I would like to express my deepest gratitude to my supervisor, Johan Karlsson,
for inspiring me to continue my studies in dependable computer systems field.
Thank you for giving me this opportunity to work with you. Thank you for all
your supports and invaluable guidance.

I would like to thank my examiner, Georgi Gaydadjiev and also Gerardo Schnei-
der for the regular follow-up meetings to discuss direction of my studies. I
would like to also thank Jan Jonsson and Sally McKee for their support.

Special thanks are due to Behrooz Sangchoolie, with whom I have the pleasure
to collaborate and exchange valuable insights. Also special thanks to Domenico
Di Leo for his great support and collaboration in my master thesis which in-
spired me to continue my studies in fault injection field. Indeed, special thanks
to the countless support from Daniel Skarin and Roger Johansson to know more
about Goofi-2 and troubleshoot hardware and compiler problems. I would also
like to thank Raul Barbosa and Jonny Vinetr for their valuable discussions about
fault injection.

I would like take this opportunity to thank BeSafe project team Mafijul Md. Is-
lam1, Daniel Skarin, Jonny Vinter, Fredrik Törner, Andreas Käck, Mattias Ny-
berg, Johan Haraldsson, Patrik Isaksson, Mats Olsson, for interesting discus-
sions, valuable feedback, and joyful meetings on benchmarking of functional
safety in the automotive industry and ISO26262.

Many thanks to my friends and colleagues in department, I would like to men-

iii

iv ACKNOWLEDGMENTS

tion all names but I’m afraid to miss some, my colleagues at 4th floor (computer
engineering division), PhD Council, PhD fika, persian fika!, TA teams,... you
all made this department a great place to work and have fun!
Special thanks to management and administrative supports in the department:
Tiina, Peter, Marianne, Eva, Peder, Rolf, ... thanks to make this place full of
energy, fun, work and fika!
Life is too short to be anything but happy, to be anything but you!

Special thanks definitely goes to friends and family. My dear Shabneshini
friends, fika\lunch Group, my friends from childhood, school, university, mas-
ter studies, summer schools, conferences, who are now all around the world!
thanks for being so kind, caring, encouraging and understanding.
My dear wonderful mom, I am blessed to have been able to look up to you, as a
strong, independent, diligent woman. Thanks for constant inspiring and being
such an amazing hero in my life. My dear wonderful dad, thanks for all your
efforts, caring and being a constant support in every occasion in my life. My
lovely sister and brother, my cute nieces and nephews, thanks for all joy, fun
and support.
Dearest Sadegh, thanks for your love, your unbelievable patience, your kindness
and your amazing support, not only in studies, not only these 2 years,....

Fatemeh Ayatolahi
Göteborg, May 2014

List of Appended Papers

I Domenico Di Leo, Fatemeh Ayatolahi, Behrooz Sangchoolie, Johan
Karlsson, Roger Johansson, “On the Impact of Hardware Faults — An
Investigation of the Relationship between Workload Inputs and Failure
Mode Distributions,” in Proceedings of the 31st International Confer-

ence on Computer Safety, Reliability, and Security (SAFECOMP 2012),
Magdeburg, Germany, 25-28 September, 2012.

II Behrooz Sangchoolie, Fatemeh Ayatolahi, Raul Barbosa, Roger Johans-
son, Johan Karlsson, “Benchmarking the Hardware Error Sensitivity of
Machine Instructions,” in 9th IEEE Workshop on Silicon Errors in Logic

- System Effects (SELSE-9), Stanford, USA, 26-27 March, 2013.

III Fatemeh Ayatolahi, Behrooz Sangchoolie, Roger Johansson, Johan Karls-
son, “A Study of the Impact of Single Bit-Flip and Double Bit-Flip Errors
on Program Execution,” in Proceedings of the 32nd International Confer-

ence on Computer Safety, Reliability, and Security (SAFECOMP 2013),
Toulouse, France, 24-27 September, 2013.

IV Behrooz Sangchoolie, Fatemeh Ayatolahi, Raul Barbosa, Roger Johans-
son, Johan Karlsson, “A Study of the Impact of Bit-flip Errors on Pro-
grams Compiled with Different Optimization Levels,” in Proceedings of

the 10th European Dependable Computing Conference (EDCC 2014),
Newcastle upon Tyne, UK, May 13-16, 2014.

Contents

Abstract i

Acknowledgments iii

List of Appended Papers v

I INTRODUCTION 1

1 Introduction 3
1.1 Related Work . 6
1.2 Research Questions . 8
1.3 Research Contributions . 11
1.4 Concluding Remarks and Future Work 14
Bibliography . 16

II PAPERS 21

vii

Part I

INTRODUCTION

1
Introduction

Technology scaling is making microprocessors and other integrated circuits
more and more susceptible to radiation induced soft errors and aging faults
[6]. This has made it increasingly important to provide computer systems with
mechanisms that can detect and correct hardware errors. Since classical ap-
proaches to hardware fault tolerance are too expensive in terms of overhead
for many applications, development of low-cost technique for hardware fault
tolerance is currently an important field of research.

Techniques that aim to reduce the cost of redundancy often rely on cross-
layer approaches [7, 9, 14, 21], which distribute the responsibility for tolerating
errors over different layers of the system stack. Figure 1.1 shows a model of
cross-layer fault tolerance adopted from [4] with three layers. Other authors
have presented more detailed models where the hardware, software and system

3

4 CHAPTER 1. INTRODUCTION

System	 Techniques	

So0ware	 Techniques	

Hardware	 	 Techniques	

Ba
la
nc
in
g	
Co

st
	

Detected errors Undetected errors

Hardware errors

Value Failure Timing Failure Fail Signal/Silent

Catastrophic Failure Benign Failure Safe Shutdown

Masked Errors

Masked Errors

Masked Errors

Figure 1.1: Cross-layer fault tolerance approach

layers are subdivided into several sub-layers.

A major benefit of cross-layer approaches is that they allow error coverage
to be tuned to the needs of different applications. Such tuning typically involves
evaluating the error coverage of different candidate solutions by means of fault
injection experiments. However, drawing accurate conclusions based on the
results of fault injection experiments concerning the relative merits of different
design solutions can be difficult. The reason for this is that results of fault
injection experiments can vary substantially depending on the configuration of
the target system and the design of the experiments. A good understanding
of sources of variation in the results of fault injection experiments is therefore
essential for researchers and engineers who assess and compare different low-
cost approaches to hardware fault tolerance.

This thesis presents a study of sources of variation in error sensitivity. We
define error sensitivity as the probability that a computer will produce an er-
roneous result without any error indication 1 as a result of a hardware error.

1A.K.A silent data corruption (SDC)

5

The study specifically addresses transient faults that result in bit errors in CPU-
registers and main memory locations. We investigate the following sources of
variation:

• Inputs processed by a program.The inputs processed by a program deter-
mines the sequence of dynamic instructions and thereby error propaga-
tion process. Error sensitivity therefore depends on the inputs processed
by program.

• Types of machine instructions of a workload. We define different cate-
gories of assembly instructions such as load, store, arithmetic, branch,
logical, and move. We investigate how the mix of the instruction types
influences the error sensitivity for different programs.

• Fault model. We investigate variations in the impact of single and double
bit errors. We also study the impact of the location of bit errors within a
register or memory word.

• Source code implementation. The programming style, i.e., the way in
which a programmer implements a program specification, determines the
structure of the executable program. This means that two programs im-
plementing the same functionality may have different error sensitivities.

• Level of compiler optimization. Different compiler optimizations gener-
ate different executable programs. Compiler optimizations can therefore
affect error sensitivity.

The study is based on a series fault injection experiments with several bench-
mark programs from the MiBench suite [1]. All fault injection campaigns are
performed by the Goofi-2 fault injection tool [29], which was designed and im-
plemented in our department. We use nexus-based fault injection to control
and inject bit-flip errors in CPU-registers and main memory words. The target
programs were compiled using the GCC compiler and executed on an MPC565
microcontroller from Freescale.

6 CHAPTER 1. INTRODUCTION

The remainder of this chapter is organized as follows. Section 1.1 gives an
overview of related work. Section 1.2 presents our research questions, while
Section 1.3 provides a summary of the appended papers. Our conclusions and
a discussion of future work are presented in Section 1.4.

1.1 Related Work

Various fault injection tools have been developed in the past decades to as-
sess dependability properties of computer systems. Popular fault injection tech-
niques include pin level injection [19], software implemented [16], fault injec-
tion via debug interfaces such as Nexus [29, 34], hardware implemented [11],
and simulation-based [33]. Recent studies try to make fault injection tools
smarter. These studies propose techniques that make it easier to find weak-
nesses in a program by performing less fault injection experiments [5, 18].

Numerous studies [3, 16, 19] have assessed the effectiveness of hardware
detection mechanisms using different fault models (such as pin level injection,
stuck at byte, and bit flipping). In addition, an emerging research trend fo-
cuses on the implementation of software techniques to tolerate hardware errors.
Different implementation of software techniques at source level [2, 24] as well
as at the assembly levels [20, 25] has been assessed. These studies targeted a
large variety of workloads and fault tolerance mechanisms. More recently, re-
searchers have started to investigate cross-layer approaches that combines hard-
ware and software techniques [7, 9, 14, 21]. An assessment of the effectiveness
of these techniques are discussed in [21] and a solution for High-performance
computing (HPC) is presented in [14].

A method for calculating the confidence interval for estimates obtained by
fault injection experiments is presented in [17]. Powell et al. discuss cover-
age estimation issues related to stratified sampling [8, 23]. A general analysis
of sources of uncertainty in measurements is provided in [13]. These sources
of uncertainty include non-representative sampling, determinism of the target
system, instrumental uncertainty, assumptions in the measurement procedure,
initialization uncertainty, spatial and temporal intrusiveness, etc. These sources

1.1. RELATED WORK 7

of uncertainty are also highlighted in [28] where their relation to fault injection
experiments and to what extent they are considered in Goofi-2 fault injection
tool are discussed. These studies provide good insights about uncertainties in
measurement of error sensitivity which are basically related to fault injection
tool and experimental setup. However, there are few studies focusing on the
sources of variations in error sensitivity with respect to the configuration of the
target system and the design of the experiments. As stated in previous section,
these sources of variations include input processed by a program, fault model,
source code implementation, compiler optimization, etc.

With respect to input variations, in [27], matrix multiplication and selection
sort are fed with three and two inputs, respectively. The fault model includes
zero-a-byte, set-a-byte and two-bit compensation that differs from ours. Au-
thors in [12] also estimated the error coverage for quicksort and shellsort, both
executed with 24 different inputs. It would be beneficial to extend this work
with more programs to draw conclusions about the results.

With respect to the fault model, the impact of device-level faults which man-
ifest as single bit-flips in the CPU-registers and main memory has been studied
in literature [22, 30]. However, researchers in the field of reliability physics pre-
dict that single event upsets (i.e., bit errors caused by strikes of single ionizing
particles, such as cosmic neutrons) will be likely to generate multiple-bit upsets
(MBUs) in circuits that will become available within a few years from now [32].
Some recent studies have targeted SRAMs and DRAMs to MBUs [26] in order
to investigate geometric effect of MBU faults. In addition, the authors of [33]
investigated the impact of single/multiple bit-flips in the LEON2 processor us-
ing fault injection in a VHDL simulation model. We study another level of
abstraction where we mimic bit-flips in CPU-registers and memory of a real
hardware platform.

Considering the impact of compiler optimization, Alexandersson et al. [2]
performed a fault injection-based study on the impact of -O3 optimization on
two programs equipped with different software implemented hardware fault tol-
erance techniques. The main focus of the paper is, however, on different fault
tolerant mechanisms. Compared to their paper, not only we evaluated more

8 CHAPTER 1. INTRODUCTION

programs, but also we addressed all four optimization levels defined by GCC.
There are some studies on the impact of compiler optimizations on architectural
vulnerability factor (AVF). Authors in [15] made a detailed study on the impact
of each compiler optimization flag on performance and AVF. They also com-
pared the results generated by -O2 and -O3 optimizations. Authors concluded
that these optimization levels decrease the performance and increase the AVF.
This is a surprising conclusion that further research is required in order to clar-
ify the origin of these results. In [10] the impact of different compiler optimiza-
tion levels on reliability is evaluated with the help of a metric called expected
number of failures during the application’s execution (EF). This metric is cal-
culated using execution time of the program, AVF, and IntrinsicFIT rate. This
study aims at evaluating the impact of compiler optimization on the microar-
chitectural level. Authors of the paper concluded that compiler optimization
increases the number of instructions in-flight and significantly decreases the ex-
ecution time, which leads to fewer expected failures during program’s execution
(EF).

Compiler optimizations and variation in program implementations are also
studies in [31]. Authors of the paper introduced a metric called program vul-
nerability factor (PVF). They claim that PVF is independent of the underlying
microarchitecture and therefore it is more generic than AVF. Using PVF results
of different implementations or compiler optimizations, a software developer
can choose the implementation/optimization that is more reliable. They also
mentioned that PVF could be estimated using techniques such as fault injection,
even though they used a dynamic instructions analysis called ACE analysis that
would be beneficial to be compared with fault injection estimations.

1.2 Research Questions

As already explained, the error sensitivity of an executing program depends on
several sources of variations. The overall objective of this thesis is to evalu-
ate how significant are the effects of the stated sources of variations on error
sensitivity. This thesis focuses on the following research questions:

1.2. RESEARCH QUESTIONS 9

RQ1. How significant is the effect of input processed by a program on error

sensitivity?

It is clear that input has effects on the execution of a program, e.g. de-
pending on the program’s input some conditional statements become true
and some function calls take place. Therefore, the inputs processed by
a program determines the sequence of dynamic instructions and thereby
error propagation process. However, we have no estimation on how sig-
nificant is this effect on error sensitivity, and how can we benchmark a
program with respect to all possible input sets. Our experimental study
gives insights in how significant this effect is. We also investigate if there
is a correlation between the input features and error sensitivity. To bench-
mark a program with several input sets, it would be more efficient to limit
the number of fault injection campaigns by identifying input sets that are
likely to cause significantly different error sensitivities.

RQ2. Is there a correlation between the type of machine instruction targeted

by fault injection experiment and the outcome of the experiment?

Here we define six categories of target instructions (Load, Store, Arith-
metic, Branch, Logical, and Move). We investigate if there is a corre-
lation between the category of the targeted instruction and the fault in-
jection outcome. For instance, is it more probable that fault injection
experiments result in SDCs if we have arithmetic-intensive program or
there is no such a correlation.

RQ3. Does the single bit-flip model provide optimistic or pessimistic estimates

of error sensitivity compared to the double bit-flip model?

We define two fault models; single bit-flips and double bit-flips. In dou-
ble bit-flip model, double bits are selected from same target location. This
study is partly motivated by the fact that researchers in the field of reli-
ability physics predict that single event upsets will be likely to gener-
ate MBUs in circuits that will become available within a few year from
now [32]. While it is still an open question how these MBUs will mani-
fest at the instruction set architecture level in detail, it is clear that we can

10 CHAPTER 1. INTRODUCTION

expect an increasing rate of hardware errors that will manifest as multiple
bit errors in main memory words and CPU-registers. Although our study
only addresses on double bits errors, it provides insights into the problem
of defining multiple-bit fault models for dependability benchmarking ex-
periments.

RQ4. How error sensitivity varies for different bit positions, within a register

or memory word?

By answering this question we identify which bit positions within a reg-
ister or memory word are more sensitive, i.e. having an error in those bits
would result in silent data corruptions. This study helps in configuring
fault injection experiments to find weaknesses more effectively. For in-
stance, there is no need to inject in bits that 100% result in the hardware
exceptions or they make no impact on the outcome of a program.

RQ5. Does optimized program code have higher error sensitivity than non-

optimized code?

This question is fundamental for understanding the overall impact of
compiler optimizations on system reliability. If the error sensitivity is
significantly higher for optimized code than for non-optimized code, then
designers of safety- and mission-critical systems must carefully analyze
whether the use of optimized code is of advantage or disadvantage in
meeting safety and reliability requirements. On the other hand, if the dif-
ference in error sensitivity is small between optimized and non-optimized
code, then such an analysis is not necessary. (Still, of course, design-
ers must consider other possible negative side effects of using optimized
code, such as an increased risk of systematic faults.) However, a reduc-
tion in the number of executed instructions reduces the risk that an exe-
cuting program is affected by transient hardware errors. Hence, it is clear
that compiler optimization has a positive effect on system reliability in
terms of a lower error occurrence probability (or error rate). However, it
is not clear how compiler optimizations affect a program’s error sensitiv-
ity.

1.3. RESEARCH CONTRIBUTIONS 11

RQ6. To what extent do variations in the source code implementation of a pro-

gram affect error sensitivity?

To answer this question, we investigate how differences in source codes
of functionally equivalent versions of a program affect the error sensitiv-
ity. These differences come from different programming styles such as
using lookup tables, number of function calls, which types of data struc-
tures used, e. g., pointers, unions, structs, etc., and how to implement a
calculation (e.g. make use of shift or multiplication operators).

1.3 Research Contributions

This thesis presents the results of extensive fault injection experiments con-
ducted to address the research questions presented in previous section. The
contributions are presented in four papers referred to as Paper I — Paper IV.
The main goal of the thesis is to study the impact of different sources of vari-
ations on error sensitivity. In each contribution, we identify the impact of one
or two particular sources of variations. We also get insights on how to evalu-
ate programs in presence of hardware faults. Indeed, it is helpful to consider
these sources of variations in design of cross-layer fault tolerance techniques.
Therefore, these contributions will be beneficial for whom are interested in ex-
perimental benchmarking of error sensitivities.

• The first contribution (Paper I) discusses the impact of input processed by a
program on its error sensitivity; how significant the impact is, and how error
sensitivity is correlated to input features. The error sensitivity and its vari-
ation is application dependent. We could find a linear correlation between
input length and SDCs for some applications while there were no correla-
tions in some other applications. In this study we perform fault injection
experiments on four programs from MiBench suite [1]. We selected nine
different inputs for each program. This study shows significant variation in
error sensitivity of a program executed with different inputs. For instance, in
an extreme case SDCs of CRC application varies 30 percentage points from

12 CHAPTER 1. INTRODUCTION

one input with 0 characters to another input with 99 characters.

• Paper I, in addition, propose an approach to correlate the dynamic fault-free
behavior of a program with fault injection outcomes particularly SDCs. We
observed significant variations in the error sensitivities among different work-
loads2. Hence, a program should be evaluated by all possible inputs. We
propose a way to identify inputs that result in significantly different fault in-
jection outcomes. To this end, we use assembly metrics defined based on
machine instructions of fault-free execution of a program. We cluster the
workloads based on these assembly metrics and compare these clusters with
the ones generated based on SDC outcomes. We discovered that workloads
with similar SDC outcomes have also similar assembly metric clusters. Thus,
the workloads that end up in a same cluster have also similar SDC outcomes.
In this way we identify input sets that are likely to cause significantly differ-
ent error sensitivities. Consequently, we can limit the number of needed fault
injection campaigns to the number of clusters and perform only campaigns
that generate significantly different error sensitivities.

• In Paper I, we also evaluate the error sensitivity of the programs equipped
by a software technique to tolerate hardware faults. This technique performs
triple-time redundant execution and majority voting. It is interesting that
this simple technique (simple in design even though it is not time or energy
efficient) can successfully decrease SDCs, on the average, from 25% to less
than 3%.

• Paper II considers the types of machine instructions (Load, Store, Arithmetic,
Branch, Logical, and Move) targeted in fault injection experiments. We in-
vestigate if certain types of machine instructions are more likely to cause
SDCs. Although we could not identify a particular group of instructions that
is more likely to result in SDCs for all benchmark programs, our results do
provide some interesting observations regarding the error sensitivity of differ-
ent instruction categories. In general, we conclude that the error sensitivity

2A workload is an executing program with a given input.

1.3. RESEARCH CONTRIBUTIONS 13

of a machine instruction seems to depend more on the type of data it pro-
cesses rather than the instruction itself. This suggests that the effectiveness
of fault tolerance techniques targeting specific instructions may vary rather
significantly for different programs, and such techniques therefore need to be
tailored to the programs they are intended to protect.

• The third study (Paper III) discusses the necessity of considering double bit-
flip errors in dependability benchmarking experiments. This paper presents
the results of an extensive experimental study of bit-flip errors in CPU-registers
and main memory words. Comprising more than two million fault injec-
tion experiments conducted with thirteen benchmark programs, the study
provides insights on whether the double bit-flip model provides optimistic
or pessimistic estimates of error sensitivity compared to the single bit-flip
model. The results show that the proportion of SDCs, is almost the same for
single and double bit errors. Furthermore, single-bit flips resulted in slightly
more SDCs for some campaigns which means it is a better model due to its
ability to finds more weaknesses (SDCs) in a program.

• In addition, we study how error sensitivity varies for different bit positions
within a register or memory word. We present detailed statistics about the
variations in error sensitivity with respect to bit positions. These results show
that the error sensitivity varies significantly for different bit positions. An
important observation is that injections in certain bit positions always have
the same outcome regardless of when the error is injected. For instance, all
injections in more significant bit positions of program counter register (PCR)
(e.g. bit position 17 to 32) are detected by hardware exceptions. It is notable
that these results depend on the programs, underlying microprocessor and
memory allocations to some extent.

• In Paper IV we investigate the impact of compiler optimizations on the error
sensitivity of twelve benchmark programs. We conducted extensive fault in-
jection experiments where bit-flip errors were injected in CPU-registers and
main memory locations. The results show that the percentage of SDCs in
the output of the optimized programs is only marginally higher compare to

14 CHAPTER 1. INTRODUCTION

that observed for the non-optimized programs. This suggests that compiler
optimizations can be used in safety- and mission-critical systems without in-
creasing the risk that the system produces undetected erroneous outputs. It is
notable that program execution time reduces significantly by aid of compiler
optimization. Therefore, the programs are also less exposed to faults.

• Paper IV also discusses the impact of different source code implementations
of a functionally equivalent program on error sensitivity. To this end, we
perform experiments on five bit count programs included in the MiBench
suite [1]. These programs basically differ in data types used to store results,
using a lookup table for some pre-calculated values, and different ways of
implementing a calculation. The results of the fault injection experiments
show that the source code implementation has a significant impact on error
sensitivity. To provide insights into the reasons for the variation in error sen-
sitivity, we conducted a detailed analysis of the error sensitivity of different
types of data stored in registers and memory words (that were targeted for
fault injection). This analysis is helpful in identifying registers and memory
sections with high error sensitivity, which thus are candidates for being pro-
tected by fault tolerance techniques. In this investigation, we consider the
impact of the implementation as well as compiler optimization. The results
of these experiments give valuable insights into how compiler optimization
can be beneficial to reduce number of registers and memory sections that are
sensitive to errors (result in high percentage of SDCs).

1.4 Concluding Remarks and Future Work

In this thesis we investigated the effect of some sources of variation on error
sensitivity. A general limitation of this work is that we have not studied all pos-
sible sources of variations. Each paper gives some insights about the one or two
sources of variation studied in that paper, however, to investigate all sources of
variations we would need unlimited time and facilities. For instance, there is
no agreement on multiple bit-flip fault models and there would be several dif-

1.4. CONCLUDING REMARKS AND FUTURE WORK 15

ferent ways to define each model and then perform thousands of fault injection
experiments to evaluate the effect of that model on the error sensitivity.

Another main source of variation would be the underlying hardware includ-
ing the processor design. Even though it is feasible to assess error sensitivity
of different processors using simulation tools, it is not trivial to use real pro-
cessors. For instance, we do not have access to pipeline stage structures and
flip-flops through Nexus port. Therefore, we only inject faults in instruction set
architecture registers and main memory words. As Goofi-2 implemented in a
generic way, it is possible to add plug-ins for other processors. Indeed, using
simulation-based fault injections to investigate the effect of processor design is
also interesting. It would be more convenient to use different processor simula-
tions and compare injecting faults in underlying CPU structures such as pipeline
registers. A comparison between the results of simulation and real hardware
will be helpful to evaluate accuracy of processor simulation and corresponding
simulation-based fault injection tool.

The comparison of fault injection results can be performed on different lev-
els of abstraction, e.g. on Simulink model, C code and binary code. This eval-
uation technique is called back-to-back testing which would be interesting to
perform in future work.

We studied one type of several possible multiple bit-flip fault models, which
is double bit-flips in same target location (paper II). The outcome of this study
encouraged us to use single bit-flips due to the fact that increasing the number
of bit flips increases the chance that the injected error would raise hardware
exceptions. In this way, the use of double and multiple bit injections would
lead to fewer observations of silent data corruptions. This suggests that it is
unlikely that experiments with double-bit errors would expose weaknesses that
are not revealed by single bit-flips. To further assess whether single bit flips
can be trusted to generate the most pessimistic results (the highest number of
SDCs), a possible future work include experiments where bit-flips are injected
in different target locations.

We also investigated how source code implementation would affect error
sensitivity (paper III). However, as we stated we used five different implemen-

16 BIBLIOGRAPHY

tations of functionally same program and we chose a simple program to make
a thorough analysis on the results. We could draw some interesting conclu-
sions, though further studies with more complicated programs and variety of
functionality would help to generalize the results. Especially considering dif-
ferent programming styles such as object-oriented vs structured programming
and compare those with respect to dependability of the software would be in-
teresting for safety-critical domain.

All these studies are expendable with implementing software techniques
to tolerate hardware faults and investigate the error sensitivity of the program
equipped with fault tolerance techniques. We have not done it at the first place
to find out if we can affect error sensitivity without using any additional cost in
terms of fault tolerance mechanisms. For instance, we see that compiler opti-
mizations could reduce the execution time significantly while the error sensitiv-
ity is not increased or increased marginally for some applications. Also, we can
reduce silent data corruptions by changing the programming style. However, it
is obvious that we cannot reach to desirable error coverage without fault toler-
ance techniques in safety-critical applications. Thus, it is relevant to examine
different fault tolerant techniques and come up with cost-efficient solutions.

Another line of future work is to consider a system which includes different
software components and investigate how error sensitivity of the components
would affect the error sensitivity of the whole system.

Bibliography

[1] Mibench version 1.0. http://www.eecs.umich.edu/mibench/. Ac-

cessed April 22, 2014.
[2] R. Alexandersson and J. Karlsson. Fault injection-based assessment of aspect-

oriented implementation of fault tolerance. In Dependable Systems Networks

(DSN), 2011 IEEE/IFIP 41st International Conference on, pages 303–314, June

2011.
[3] J. Arlat, Y. Crouzet, J. Karlsson, P. Folkesson, E. Fuchs, and G. Leber. Comparison

of physical and software-implemented fault injection techniques. Computers, IEEE

Transactions on, 52(9):1115–1133, Sept 2003.

BIBLIOGRAPHY 17

[4] R. Barbosa. Layered Fault Tolerance for Distributed Embedded Systems. PhD

thesis, Chalmers University of Technology, Chalmers University of technology, 12

2008.
[5] R. Barbosa, J. Vinter, P. Folkesson, and J. Karlsson. Assembly-level pre-injection

analysis for improving fault injection efficiency. In Proceedings of the 5th Euro-

pean Conference on Dependable Computing, EDCC’05, pages 246–262, Berlin,

Heidelberg, 2005. Springer-Verlag.
[6] S. Borkar. Designing reliable systems from unreliable components: the challenges

of transistor variability and degradation. Micro, IEEE, 25(6):10–16, Nov 2005.
[7] N. Carter, H. Naeimi, and D. Gardner. Design techniques for cross-layer resilience.

In Design, Automation Test in Europe Conference Exhibition (DATE), 2010, pages

1023–1028, March 2010.
[8] M. Cukier, D. Powell, and J. Ariat. Coverage estimation methods for stratified

fault-injection. Computers, IEEE Transactions on, 48(7):707–723, Jul 1999.
[9] A. DeHon, H. Quinn, and N. Carter. Vision for cross-layer optimization to address

the dual challenges of energy and reliability. In Design, Automation Test in Europe

Conference Exhibition (DATE), 2010, pages 1017–1022, March 2010.
[10] M. Demertzi, M. Annavaram, and M. Hall. Analyzing the effects of compiler

optimizations on application reliability. In Workload Characterization (IISWC),

2011 IEEE International Symposium on, pages 184–193, Nov 2011.
[11] A. Fidalgo, G. Alves, and J. Ferreira. Real time fault injection using enhanced ocd

– a performance analysis. In Defect and Fault Tolerance in VLSI Systems, 2006.

DFT ’06. 21st IEEE International Symposium on, pages 254–264, Oct 2006.
[12] P. Folkesson and J. Karlsson. Considering workload input variations in error cov-

erage estimation. In Proceedings of the Third European Dependable Computing

Conference on Dependable Computing, EDCC-3, pages 171–190, London, UK,

UK, 1999. Springer-Verlag.
[13] J. C. for Guides in Metrology (JCGM). Evaluation of measurement data âĂŤ guide

to the expression of uncertainty in measurement.
[14] C.-H. Ho, M. de Kruijf, K. Sankaralingam, B. Rountree, M. Schulz, and

B. De Supinski. Mechanisms and evaluation of cross-layer fault-tolerance for su-

percomputing. In Parallel Processing (ICPP), 2012 41st International Conference

on, pages 510–519, Sept 2012.
[15] T. M. Jones and M. F. P. OâĂŹboyle. Evaluating the effects of compiler optimisa-

tions on avf, 2008.
[16] G. Kanawati, N. Kanawati, and J. Abraham. Ferrari: a tool for the validation of

system dependability properties. In Fault-Tolerant Computing, 1992. FTCS-22.

18 BIBLIOGRAPHY

Digest of Papers., Twenty-Second International Symposium on, pages 336–344,

July 1992.
[17] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert. Statistical fault injection:

Quantified error and confidence. In Design, Automation Test in Europe Conference

Exhibition, 2009. DATE ’09., pages 502–506, April 2009.
[18] J. Li and Q. Tan. Smartinjector: Exploiting intelligent fault injection for sdc rate

analysis. In Defect and Fault Tolerance in VLSI and Nanotechnology Systems

(DFT), 2013 IEEE International Symposium on, pages 236–242, Oct 2013.
[19] H. Madeira, M. Rela, F. Moreira, and J. Silva. Rifle: A general purpose pin-level

fault injector. In K. Echtle, D. Hammer, and D. Powell, editors, Dependable Com-

puting âĂŤ EDCC-1, volume 852 of Lecture Notes in Computer Science, pages

197–216. Springer Berlin Heidelberg, 1994.
[20] A. Martinez-Alvarez, S. Cuenca-Asensi, F. Restrepo-Calle, F. Pinto, H. Guzman-

Miranda, and M. Aguirre. Compiler-directed soft error mitigation for embedded

systems. Dependable and Secure Computing, IEEE Transactions on, 9(2):159–

172, March 2012.
[21] S. Mitra, K. Brelsford, and P. Sanda. Cross-layer resilience challenges: Metrics

and optimization. In Design, Automation Test in Europe Conference Exhibition

(DATE), 2010, pages 1029–1034, March 2010.
[22] B. Nicolescu, Y. Savaria, and R. Velazco. Software detection mechanisms provid-

ing full coverage against single bit-flip faults. Nuclear Science, IEEE Transactions

on, 51(6):3510–3518, Dec 2004.
[23] D. Powell, E. Martins, J. Arlat, and Y. Crouzet. Estimators for fault tolerance cov-

erage evaluation. In Fault-Tolerant Computing, 1993. FTCS-23. Digest of Papers.,

The Twenty-Third International Symposium on, pages 228–237, June 1993.
[24] M. Rebaudengo, M. Reorda, and M. Violante. A new approach to software-

implemented fault tolerance. Journal of Electronic Testing, 20(4):433–437, 2004.
[25] G. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. August. Swift: software

implemented fault tolerance. In Code Generation and Optimization, 2005. CGO

2005. International Symposium on, pages 243–254, March 2005.
[26] S. Satoh, Y. Tosaka, and S. Wender. Geometric effect of multiple-bit soft er-

rors induced by cosmic ray neutrons on dram’s. Electron Device Letters, IEEE,

21(6):310–312, June 2000.
[27] Z. Segall, D. Vrsalovic, D. Siewiorek, D. Yaskin, J. Kownacki, J. Barton,

R. Dancey, A. Robinson, and T. Lin. Fiat-fault injection based automated test-

ing environment. In Fault-Tolerant Computing, 1988. FTCS-18, Digest of Papers.,

Eighteenth International Symposium on, pages 102–107, June 1988.

BIBLIOGRAPHY 19

[28] D. Skarin. On Fault Injection-Based Assessment of Safety-Critical Systems. PhD

thesis, Chalmers University of Technology, Chalmers University of technology, 12

2010.
[29] D. Skarin, R. Barbosa, and J. Karlsson. Goofi-2: A tool for experimental depend-

ability assessment. In Dependable Systems and Networks (DSN), 2010 IEEE/IFIP

International Conference on, pages 557–562, June 2010.
[30] D. Skarin and J. Karlsson. Software implemented detection and recovery of soft

errors in a brake-by-wire system. In Dependable Computing Conference, 2008.

EDCC 2008. Seventh European, pages 145–154, May 2008.
[31] V. Sridharan and D. Kaeli. Eliminating microarchitectural dependency from archi-

tectural vulnerability. In High Performance Computer Architecture, 2009. HPCA

2009. IEEE 15th International Symposium on, pages 117–128, Feb 2009.
[32] J. Suh. Models for soft errors in low-level caches. PhD thesis, University of

Southern California, University of Southern California, 1 2012.
[33] E. Touloupis, J. Flint, V. Chouliaras, and D. Ward. Study of the effects of seu-

induced faults on a pipeline protected microprocessor. Computers, IEEE Transac-

tions on, 56(12):1585–1596, Dec 2007.
[34] P. Yuste, J. Ruiz, L. Lemus, and P. Gil. Non-intrusive software-implemented fault

injection in embedded systems. In Lemos, editor, Dependable Computing, vol-

ume 2847 of Lecture Notes in Computer Science, pages 23–38. Springer Berlin

Heidelberg, 2003.

