
BrainFrame: a node-level heterogeneous accelerator platform for neuron
simulations

Downloaded from: https://research.chalmers.se, 2023-04-21 15:43 UTC

Citation for the original published paper (version of record):
Smaragdos, G., Chatzikonstantis, G., Kukreja, R. et al (2017). BrainFrame: a node-level
heterogeneous accelerator platform for neuron simulations. Journal of Neural Engineering, 14(6).
http://dx.doi.org/10.1088/1741-2552/aa7fc5

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

1 © 2017 IOP Publishing Ltd  Printed in the UK

Journal of Neural Engineering

BrainFrame: a node-level heterogeneous
accelerator platform for neuron simulations

Georgios Smaragdos1 , Georgios Chatzikonstantis3, Rahul Kukreja4,
Harry Sidiropoulos3, Dimitrios Rodopoulos5, Ioannis Sourdis2,
Zaid Al-Ars4, Christoforos Kachris3, Dimitrios Soudris3, Chris I De Zeeuw1
and Christos Strydis1

1  Neuroscience department, Erasmus MC, Wytemaweg 80, 3015GE, Rotterdam, Netherlands
2  Computer Science and Eng. department, Chalmers University of Technology, SE-412 96, Gothenburg,
Sweden
3  MicroLab, National Technical University of Athens (NTUA), 9 Heroon Polytechneiou, 15780, Athens,
Greece
4  Computer Eng. Lab, Delft University of Technology, Mekelweg 4, 2628CD, Delft, Netherlands
5  imec, Kapeldreef 75, Leuven 3000, Belgium

E-mail: g.smaragdos@erasmusmc.nl and c.strydis@erasmusmc.nl

Received 7 February 2017, revised 15 June 2017
Accepted for publication 14 July 2017
Published 10 November 2017

Abstract
Objective: The advent of high-performance computing (HPC) in recent years has led to its
increasing use in brain studies through computational models. The scale and complexity of
such models are constantly increasing, leading to challenging computational requirements.
Even though modern HPC platforms can often deal with such challenges, the vast diversity
of the modeling field does not permit for a homogeneous acceleration platform to effectively
address the complete array of modeling requirements. Approach: In this paper we propose
and build BrainFrame, a heterogeneous acceleration platform that incorporates three distinct
acceleration technologies, an Intel Xeon-Phi CPU, a NVidia GP-GPU and a Maxeler Dataflow
Engine. The PyNN software framework is also integrated into the platform. As a challenging
proof of concept, we analyze the performance of BrainFrame on different experiment
instances of a state-of-the-art neuron model, representing the inferior-olivary nucleus using
a biophysically-meaningful, extended Hodgkin–Huxley representation. The model instances
take into account not only the neuronal-network dimensions but also different network-
connectivity densities, which can drastically affect the workload’s performance characteristics.
Main results: The combined use of different HPC technologies demonstrates that BrainFrame
is better able to cope with the modeling diversity encountered in realistic experiments while at
the same time running on significantly lower energy budgets. Our performance analysis clearly
shows that the model directly affects performance and all three technologies are required to
cope with all the model use cases. Significance: The BrainFrame framework is designed to
transparently configure and select the appropriate back-end accelerator technology for use per
simulation run. The PyNN integration provides a familiar bridge to the vast number of models
already available. Additionally, it gives a clear roadmap for extending the platform support
beyond the proof of concept, with improved usability and directly useful features to the
computational-neuroscience community, paving the way for wider adoption.

G Smaragdos et al

BrainFrame: a node-level heterogeneous accelerator platform for neuron simulations

Printed in the UK

066008

JNEIEZ

© 2017 IOP Publishing Ltd

14

J. Neural Eng.

JNE

1741-2552

10.1088/1741-2552/aa7fc5

Paper

6

Journal of Neural Engineering

IOP

Original content from this work may be used under the terms
of the Creative Commons Attribution 3.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

2017

1741-2552/17/066008+15$33.00

https://doi.org/10.1088/1741-2552/aa7fc5J. Neural Eng. 14 (2017) 066008 (15pp)

G Smaragdos et al

2

Keywords: HPC, GPU, FPGA, PHI, acceleration, PyNN, computational neuroscience

(Some figures may appear in colour only in the online journal)

1.  Introduction

In vivo and in vitro experiments are a traditional tool of neu-
roscientific research. They are powerful experimentation
methods, but are also time-consuming and not always reliable.
A number of factors can contaminate results like, for example,
the influence of anesthesia in in vivo experiments. What is
more, most systemic neuroscientific phenomena require the
monitoring of biological systems of very large scale and
many such techniques do not allow for this kind of study.
Computational neuroscientists use spiking neural networks
(SNNs) to cope with such issues. By incorporating SNN
models of varied complexity (which themselves are derived
by biological experiments) they create predictive simulators
that can test their scientific hypotheses and drive more tar-
geted, thus more reliable and refined, biological experimenta-
tion [1].

A major challenge in executing such simulations is the
sheer computational complexity that many SNN models entail,
compared to simpler modeling classes. Traditional methods of
computing, in which the common simulation tool-flows (such
as MATLAB or specific neuromodeling tools like NEURON
or Brian) are executed, are not up to the task of simulating
neural networks of realistic sizes and high detail within a
reasonable timeframe for brain research. High-performance
computing (HPC) has been recently recognized as being able
to provide a variety of solutions to cope with this limitation
[2–7]. Unfortunately, the challenge of executing such simula-
tions does not stop just at providing the necessary computa-
tional power.

In scientific applications such as neuronal simulations,
modeling accuracy has a direct impact on simulation speed.
The variety of options of viable SNN models used in studies is
significant. Every type of model has scientific merit, depending
on the subject under study, and models exhibit different char-
acteristics when treated as computational workloads [6, 8].
Modeling features like the inter-neuron connectivity density
(the modeling of which also varies according to the biological
system under study) can break the embarrassingly parallel
(data-flow compatible) nature that most neuron models have,
significantly changing the behavior of the application.

Depending on the desired model characteristics, we
identify two general types of simulations that are relevant
in neuroscientific experiments. The first one has to do with
highly accurate (biophysically accurate and even accurate to
the molecular level) models of smaller-sized networks that
requires real-time or close to real-time performance. These
kinds of experiments can be used with artificial real-time
setups or brain–machine interfaces (BMI) and are closely
related to brain-rescue studies (TYPE-I experiments). The
second type involves the simulation of large- or very large-
scale networks in which accuracy can often be relaxed. These

experiments attempt to simulate network sizes and connec-
tion densities closely resembling their biological counterparts
(TYPE-II experiments) [5, 9]. This, in combination with the
variety of models commonly used, makes for a class of appli-
cations that vary greatly in terms of workload, while also
requiring high throughput, low latency or both. A single type
of HPC fabric, either software- or hardware-based cannot
cover all possible use cases with optimal efficiency.

A better approach is to provide scientists with an accelera-
tion platform that has the ability to adjust to the aforemen-
tioned variety of workload characteristics. A heterogeneous
system that integrates multiple HPC technologies, instead of
just one, would be able to provide this. In addition, a frame-
work for a heterogeneous system using a popular user inter-
face for all integrated technologies can also provide the ability
to select a different accelerator, depending on availability, cost
and performance desired.

Such a hardware back-end must overcome additional chal-
lenges to be used in the field. It requires a front-end which
should provide two crucial features:

	 •	An easy and commonly used interface through which
neuroscientists can employ the platform, without the
constant mediation of an engineer.

	 •	A front-end that can reuse the vast amount of models
already available to the community.

In this paper, we propose a framework for an heterogeneous
acceleration platform for computationally challenging neu-
roscientific simulations called BrainFrame. By using this
system, we demonstrate the effect of model characteristics
on performance and thus make a concrete case for the sig-
nificance of employing heterogeneity in HPC systems used
the field of computational neuroscience. To this end, we use
a state-of-the-art, extended Hodgkin–Huxley (biophysically-
meaningful) model [10] of the inferior-olivary nucleus as a
benchmark to evaluate the framework. We chose this model
as a respective workload of such neuron representations,
as their efficient simulation poses a significant engineering
challenge. Even though this model is not the most biophysi-
cally accurate representation in the field, it is one of the most
accepted and widely used models for brain simulations. We
evaluate BrainFrame using three distinct instances of the
workload, each differentiated by the presence and complexity
of the neuron interconnectivity modeling, leading to vastly
different computational requirements, while still reflecting
realistic neuroscientific experiments. We propose a front-end
for the framework based on the PyNN language [11]. PyNN
has been widely adopted by the computational-neuroscience
community and has direct integration with many other well-
known neuron modeling frameworks, covering both afore-
mentioned features that such a front-end would require.

J. Neural Eng. 14 (2017) 066008

G Smaragdos et al

3

2.  Methods

2.1. The inferior olive

The inferior-olivary nucleus forms an intricate part of the
olivocerebellar system, which is one of the most dense brain
regions and plays an important role in sensorimotor control.
Activity in the inferior olive probably only directly triggers
movements when it is synchronized among multiple neurons
[12, 13]. In addition, the olivary neurons can provide rhythm
and coordination signals for motor functions [14]. It is consid-
ered to be imperative for the instinctive learning and smooth
completion of motor actions [15]. The olive provides one of
the two main inputs to the cerebellum through the climbing
fibers.

What makes the inferior-olive neurons special is their
dense interconnection through electrical connections called
gap junctions (GJs), which differ from typical synapses in
that they are purely electrical. The gap junctions facilitate
the synchronization behavior between the olivary neurons
and, subsequently, influence the synchronization and learning
properties of the entire olivocerebellar system [14].

2.2. The InfOli workload

In this work, a detailed inferior-olive (InfOli) model is con-
sidered, which was originally developed by De Gruijl et al
[1]. It implements a neuron with three distinct compartments,
the dendrite, the soma and the axon. Within the dendrite, the
model also includes gap junctions (thus the characterization as
‘extended’, eHH), while the cell output represents the input to
the climbing fibers (figure 1(b)). The GJs are associated with
important aspects of cell behavior as they are not just simple
connections; rather, they involve significant and intricate elec-
trical processes, which is reflected in their modeling details.

Every compartment includes a number of state parameters
denoting its electrochemical state and the neuron state as a
whole. The neuron states are updated at each simulation step;
every new state update is based upon: The neuron state of the
previous simulation step of the executed neuron, the previous
dendritic states coming from the GJ connectivity and the
externally evoked input to the network, representing the input
coming from the rest of the cerebellar circuit.

The three compartments and GJs are evaluated/updated
concurrently at each simulation step. The model is calibrated
with a simulation time step of δ = 50 µs. Simulations steps
are identical to each other in terms of operations performed.
This simulation step also defines the real-time behavior of the
whole network. Figure 1(a) depicts a representation of the
InfOli network model. This network model effectively defines
a transient simulator through computing discrete axon output
values in time steps which, when integrated over time, rec-
reate the output response of the axon (figure 1(c)).

The InfOli network must be synchronized in order to guar-
antee the correct exchange of previous dendritic data within a
step. Thus, execution can only be parallelized in space (simul-
taneous evaluation of neurons within a simulation step), but
not in time (parallelization of multiple simulation steps). The
cells—even when not actively spiking—present an oscillatory
behavior, thus affecting network synchronization. As a result,
event-driven execution of the network model is not an option.

By profiling the application using an operation and
memory-access profiler [16], it is revealed that the GJs have
great impact on the total model complexity. As seen in table 1,
the total number of floating-point (FP) operations needed for
simulating a single step of a single cell including a single GJ are
8716. For many complex experiments, it is not the number of
connections but, rather, the connectivity density (C) that is indic-
ative of neuron interconnectivity. That is, the average percentage
of the total neuron inventory to which neuron cells are connected
(measured in %), whereby the complexity becomes quadratic.
This makes GJ computations the prevalent contributor, as they
break the dataflow nature of the application and dominate com-
putational demands. This is true even for small-scale networks.
As an example, for a 96-cell, all-to-all connected network (table
1) the GJs comprise almost 60% of the overall computations.

2.3.  Application use cases

For our analysis, we employ three use cases drawn from [8],
which are representative of the memory and computational
requirements of the InfOli workload. All of the use cases
are realistic instances of the InfOli application and have

6 Table numbers have been updated to amend a profiling mistake reported in
previous work [8].

Figure 1.  Graphical representation of the inferior-olivary network model. (a) 8-neuron network (b) single-neuron model in detail
(c) sample axon response.

J. Neural Eng. 14 (2017) 066008

G Smaragdos et al

4

neuroscientific merit. They can also be considered as plausible
instances of multi-compartmental modeling using HH models
with various cases of modeled inter-neuron connectivity.

The application allows for the connectivity of the InfOli
network to be programmable by the user before the simulation
is deployed. Network connectivity (when present) is defined
by an N × N connectivity matrix (where N: Network size) of
FP weights signifying the weight of each connection. Weights
are used in the GJ computations to calculate the connection
impact on each neuron. The three use cases which focus
around the biological complexity of the GJs:

	 (i)	InfOli with realistic gap junctions (RGJ)—InfOli
HH cells modeled with (biophysically) realistic GJ kin-
ematics as presented in [1]. The highest amount of detail
is included in the GJ modeling.

	(ii)	InfOli with simplified gap junctions (SGJ)—InfOli
HH cells modeled with simplified GJ kinematics. This
constitutes a simpler connectivity compared to the RGJ
use case.

	(iii)	InfOli with no gap junctions (NGJ)—InfOli HH cells
modeled without GJ kinematics modeling. This is the
simplest use case, whereby the neurons are modeled as
independent computational islands.

In figure 2, we see the amount of FP operations, based on
the aforementioned profiling of the InfOli application. The FP
operations are calculated for each of the aforementioned use
cases for different connectivity densities. From the same pro-
filing run we can derive the compute (in FLOPS) to memory
(in single-FP memory accesses) ratio for the application, that
reveals whether each use case is computation- or memory-
bound (figure 3).

2.3.1.  InfOli with realistic gap junctions (RGJ).  This use
case represents a fully featured version of the InfOli applica-
tion. The complex gap junction dominates the computation
in this use case. GJs here are implemented as a very specific

representation of the biological nucleus (algorithm 1). Each
cell C in a population of N cells accumulates the influence
of an interconnected cell to it (through a GJ) by subtracting
its own dendritic voltage (prevVdend) from the dendritic
voltage of that cell (neighVdend[i]). It, then, accumulates
the resulting voltage influence in an aggregate current Ic, by
factoring in the respective GJ-connection weight (C[i]).

The compute-to-memory-access ratio (from figure 3) sug-

gests also that this use case is strongly computation-bound
for all connectivity cases: With increasing problem sizes, the
computations increase at a much faster pace than the memory-
access requirements.

2.3.2.  InfOli with simplified gap junctions (SGJ).  The level of
detail as in the RGJ case is useful for many modeling experi-
ments but is also an overkill in many other cases that more
simple rudimentary connection are involved (like simple

Figure 2.  Floating-point operations required per simulation step
of the InfOli model for each use case and for different connectivity
density percentages (%).

Figure 3.  Compute-to-memory-access ratio per simulation step
of the InfOli model for each use case and for connectivity density
percentages (%).

Table 1.  Neuron compute requirements per simulation step.

Computation FP operations/neuron

Gap junction 12 per connection
Cell compartment 859

I/O and storage FP operations/neuron

Neuron states 19
Evoked input 1
Connectivity vector 1 per connection
Neuron conductances 20
Axon output 1 (Axon voltage)

Neuron computation task % of FP ops for 96 cells

Compartmental computations 43
Gap junctions 57
Computations per step: 859 ∗ N + 12 ∗ N2 ∗ C

C: connectivity density
N: network size

Algorithm 1.  Example of RGJ implementation in C.

1: for i  =  0; i<InfOli_N_INPUT; i+ + do
2:       V  =  prevVdend—neighVdend[i];
3:       f  =  0.8*V*exp(-1 * V * V/100)  +  0.2;
4:       Ic  =  Ic  +  (C[i] * f * V);
5: end for
6: return Ic;

J. Neural Eng. 14 (2017) 066008

G Smaragdos et al

5

synapses that accumulate inputs). Lighter workloads are rep-
resented by the SGJ case. We assume a use case of the InfOli
application that simplifies the connection between neurons to
a few simple input accumulators. The computations per simu-
lation step are now 859 ∗ N + 4 ∗ N2 ∗ C. The accumulation
is parameterized using the weight that is assigned to each con-
nection between two neurons, thus the connectivity informa-
tion needs to be accessed the same way as is in the RGJ case.
The actual FP operations are reduced by about one order of
magnitude compared to the previous use case (see figure 2).
Yet, the connectivity aspect still disrupts the pure dataflow
nature of the model. A high compute-to-memory ratio is seen
here as well, since the computations still increase at a faster
pace than the memory requirements.

2.3.3.  InfOli with no gap junctions (NGJ).  This is the case
where the application becomes purely dataflow and can achieve
the greatest parallelism possible. The processing requirements
scale almost linearly with the network size and, compared to
the other use cases, fewer computations are needed, as shown
in figure 2 (computations per simulation step : 859 ∗ N). As
we can see in figure 3, although the NGJ use case shows that
computation is still the most important aspect of the applica-
tion, both computation and memory access scale linearly and
at a similar pace.

2.4.  HPC fabrics and implementation

Our heterogeneous platform incorporates three accelerator
fabrics; a Maxeler Maia data-flow engine (DFE) board [17],
an Intel Xeon Phi 5110P CPU [18] and a Maxwell-based
Titan X GPU by NVidia [19] (table 2). All there boards are
PCIe-based which is how they communicate with the host
system. The use of PCIe interfaces ensures that composition
of BrainFrame-enabled machines can been easily tailored on
a per-case basis depending on the availability of funds and
hardware resources of a research laboratory. Different types
and mixes of PCIe-based accelerators can be selected.

The Maia DFE is a Maxeler HPC technology based
on reconfigurable hardware. Its tool flow is designed and
optimized to accommodate the acceleration of dataflow
applications; that is, applications with the bulk of their imple-
mentation using purely raw computations with the absence
(partially or totally) of branching execution or feedback paths.
The Maxeler tools can exploit the nature of dataflow applica-
tions to implement uniquely massive pipelines, maximizing
the throughput and overall performance. The DFE boards
also incorporate a high-bandwidth, multichannel, highly par-
allel, customizable interface to the onboard DRAM memory
resources (up to 96 GBs) making it ideal for scientific appli-
cations. The DFE board used in our experimental setup is a
4th-generation Maia-DFE board implemented using an Altera
Stratix V 5SGSD8 chip.

The Xeon Phi is a many-integrated-core (MIC) architecture
co-processor which features 61 cores, each capable of sup-
porting up to 4 instruction streams. The generation of Phi cards
used in this work, named Knights Corner, are programmed
using well-known programming tools such as OpenMP and

OpenCL. However, and in contrast to GPU mentality, the Phi
can also be thought of as an accelerator that can act as a stand-
alone processor and even features its own operating system.
This is expected to increase memory-consistency and cache-
coherency delays.

GP-GPUs have also been prominent in the HPC domain
and in scientific computing in particular. The Titan X includes
3072 CUDA micro-cores, which are used to parallelize com-
putation execution, and 12 GB of on-board RAM. GPU imple-
mentations also benefit from the generally good adoption of
the NVidia CUDA-library open environment that allows
porting of applications with similar ease to the Phi OpenMP
and OpenCL frameworks. GPUs also come at a relatively
lower cost than the other two accelerator types. However, as
opposed to the the Xeon Phi, a GPU cannot act as its own host
increasing communication delays between host and acceler-
ator during execution.

Lastly, it must be noted that BrainFrame is to be used in
scientific research that is very dynamic and fast-paced. The
goal is not to over-optimize the different accelerator imple-
mentations, but to propose and maintain a balance between
the programming effort and optimization needed, resulting in
shorter development times for cutting-edge research tools. In
real research, such development times should be kept short so
as not to delay the scientific process.

2.4.1.  Infoli on the maia DFE.  The DFE implementation of
the InfOli application can be seen in figure 4 and is a more
advanced version of the work done in [20]. New features
include the addition of programmable connectivity and pro-
grammable neuron state by the user between experiment
runs without the need to re-synthesize the design. The design
implements three pipelines on the DFE hardware to accelerate
the application, one for each part of a neuron (Dendrite, Soma,
Axon), executing the respective computations. The state
parameters for each neuron are stored on separate BRAM
blocks for fast reading/updating of the network state, as
they are the data that are most used throughout the experi-
ment execution. Since every new neuron state is dependent
only on the network state of the previous simulation step, a
single copy of each neuron state is required at any point dur-
ing execution. The input stream to the DFE kernel originates
in the on-board DRAM and represents the evoked (external)
inputs, used in the dendritic computations comprising the net-
work input. The initialization data are also streamed in from
the on-board memory only once at the start of execution. The
size of the connectivity matrix makes it impossible to store
on the on-chip memory. It is, thus, placed on the on-board
RAM and streamed in batches dictated by the computations.
The kernel output is streamed back to the on-board memory
and—at the same time—is updated in the (on-chip) BRAM
blocks of the DFE.

The program flow is tracked using hardware counters
monitoring GJ loop iterations (except for the NGJ case), the
neurons executed and the number of simulation steps con-
cluded. The data flows through the DFE pipelines with each
kernel execution step (or tick) consuming the corresponding
input or producing the respective output and new state at the

J. Neural Eng. 14 (2017) 066008

G Smaragdos et al

6

correct execution points according to the hardware counters.
DFE execution naturally pipelines the execution of different
neurons within one simulation step. Simulation steps are not
themselves directly parallelizable, as every neuron must have
the previous state of all other neurons available for its GJ
computations (only in the RGJ or SGJ cases) before a new
step begins. The DFE pipeline is, thus, flushed before a new
simulation step begins execution. This dependency is lifted
when in the NGJ case. The GJ calculations form a loop that
must finish before the rest of the dendrite-compartment state
is calculated. The rest of the dendrite pipeline does not pro-
duce valid data for the operation ticks that the GJ influence is
being calculated. This delay is partially amortized by using
hardware loop unrolling on the GJ calculations, but only to
the point that the available chip area allows it. Additionally,
in use cases where programmable connectivity is included,
the ticks for the evaluation and execution of a GJ connection
are always spent regardless of whether a connection actually
exists or not. Thus, this implementation cannot benefit from a
smaller connectivity density in terms of performance. On the
other hand, since one synthesized design can account for all
possible connectivity scenarios, the DFE implementation can
guarantee predictable performance under all use cases.

2.4.2.  Infoli on the Xeon Phi.  The InfOli application on the
intel Xeon Phi co-processor, depicted in figure 5, is based on
a typical shared-memory implementation. The application
uses the OpenMP library to spawn threads, which can work in
parallel. As the Xeon Phi 5110P uses one core to handle OS-
related tasks and each core features multithreading technology
that can service up to 4 instruction streams simultaneously, the
InfOli application on the Xeon Phi uses up to 60 × 4 = 240
OpenMP threads. Each thread is programmed to handle a part
of the neuronal network (sub-network), which is partitioned
as uniformly as possible to prevent workload imbalances.

In each simulation step, every OpenMP thread computes
its sub-network’s state. This process is further broken down
into two tasks. Initially, the sub-network needs updated infor-
mation from the rest of the network, specifically the dendritic-
membrane voltage of the other neurons connected with this
sub-network (recall algorithm 1). Thus, each OpenMP thread
accesses memory space shared by all threads so as to collect
data from other neurons, with the purpose of re-evaluating the
state of its sub-network’s GJs. In this task, shared-memory
accessing can cause stalls in thread operations due to issues
such as memory contention.

Figure 4.  DFE implementation of the InfOli application.

Table 2.  Specifications of the accelerator fabrics used.

Specification Maxeler DFE (Maia) Intel Xeon Phi CPU (5110P) NVidia GPU (Titan X)

On-board DRAM 48 GB 8 GB 12 GB
RAM bandwidth 76.8 GB/s 320 GB/s 336.5 GB/s
Memory streams/channels 15 16 —
On-chip memory 6 MB (FPGA BRAMs) 30 MB (L2 cache) 3 MB (L2 cache)
Number of chip cores — 61 3072 CUDA Cores
Chip frequency Depends on design kernel 1.053 GHz 1 GHz
Instructions set n/a 64 bit 32 bit
Power consumption (TDP) 140 W 225 W 250 W
IC process 65 nm 22 nm 28 nm

J. Neural Eng. 14 (2017) 066008

G Smaragdos et al

7

Upon completion of its first task, each OpenMP thread
updates the compartmental states of each neuron in the
sub-network. Each of the neuron’s three compartments is
re-calculated (dendrite, soma and axon). The dendritic com-
partment specifically uses the updated GJ states evaluated
in the previous task in order to assess the incoming current
from connected neurons. As already explained, this particular
process demands an amount of operations that increases
significantly with neuron population in the case of densely
connected networks, as we would expect with the increasing
computational demands of GJs.

After performing its two tasks for the entirety of its
sub-network, each OpenMP thread begins the process anew for
the next simulation step, until there are none left. Under this
paradigm, the threads operate constantly within the ‘timeframe’

of the same simulation step. They sync before the execution of a
new simulation step, so that stale data from previous simulation
steps cannot be exchanged during GJ computation. This behav-
iour is enforced due to the stiffness of the eHH-model equa-
tions, which can be thrown off-balance even by small changes
in the numerical data within a single time step. Under a more
relaxed model (e.g. a typical HH model), some staleness in data
exchange would be more tolerable and the user would be able
perform thread synchronization less frequently in order to trade
precision for execution speed. Furthermore, it should be noted
that the implementation described assumes that the entire net-
work is large enough to be partitioned in 240 parts. When dealing
with smaller networks, the implementation utilizes less than the
maximum amount of the platform’s assets, since it is designed to
require at assign one neuron on each OpenMP thread.

Figure 5.  Xeon-Phi implementation of the InfOli application.

Figure 6.  GPU implementation of the InfOli application. Pre-compute and compute operations are issued by the host.

J. Neural Eng. 14 (2017) 066008

G Smaragdos et al

8

2.4.3.  Infoli on the titan X GPU.  In figure 6, we can see the
InfOli implementation on the GPU. The execution flow
includes two stages, a pre-compute and a compute stage.

In the pre-compute stage, the host initializes the neuron
states and the external input currents for the entire simulation
duration. It allocates global memory on the device to store
the current-step neuron states, next-step neuron states and the
external input currents. At the end of this stage, the host copies
the required data for simulation onto the GPU. Similarly to
the other two accelerator implementations, the current-step
dendritic voltages of all cells are accessed frequently as they
are used to determine the GJ influence. To reduce memory
latency, they are bound to the GPU texture memory. The tex-
ture memory is a cached memory on the GPU used to reduce
memory latencies when the application has specific memory-
access patterns. Writes to texture memory, during the compute
stage, are conducted only after all computations of a simula-
tion step have finished. It must be also noted that after the pre-
compute stage, no data is transferred from the host to the GPU;
the GPU contains all necessary information for the simulation.

During the compute stage, the neuron calculations are
performed and the new states are persistently stored throughout
the simulation duration. To compute the new states for a
single simulation step, the host launches a CUDA kernel on
the GPU device. Before simulation, the kernel is configured
for a particular use case (RGJ, SGJ or NGJ) and inter-neuron
connectivity scheme (if applicable). The kernel is executed
by a two-dimensional grid of CUDA threads on the device.
Threads are executed in parallel by the CUDA micro-cores of
the GPU. Every InfOli cell of the model is mapped to a corre
sponding thread that calculates the states of the neuron. On
kernel completion, the host receives the calculated result of
the simulation step from the device. The host uses two opera-
tion streams to issue the kernel execution and data-transfer
operations to the GPU. A kernel in one stream is launched
only when the kernel in the other stream has completed.
Thus, when one stream is computing the currently executing
simulation step, the other stream is performing the necessary
data transfers to the host from the GPU. Since the texture

memory is updated only after the kernel completes execu-
tion, data coherency is maintained. Thus, computation of the
current-step neuron states and data transfer of the previously
computed states overlap, effectively hiding Host-to-GPU
transfer delays.

2.5.  BrainFrame and the PyNN front-end

PyNN is a Python package that facilitates the interchangeability
and the study of different simulation environments within
the computational neuroscience community [11]. It allows
for simulator-independent specification of neuronal-network
models and already supports many popular simulators like
NEURON, NEST, PCSIM , Brian, and so on.

The PyNN API supports modeling at multiple levels of
abstraction, both at the neuron level and the network level. It
provides a library of standard neuron, synapse and synaptic-
plasticity models and a set of commonly-used connectivity
algorithms while also supporting custom user-defined con-
nectivity in a simulator-independent fashion.

We integrated the three accelerator fabrics as back-ends
on the BrainFrame system using PyNN as a front-end. The
PyNN integration provides the neuroscientific community
with easy access on the accelerators without constant media-
tion from the acceleration engineer while also providing an
interface for the already established models to be used with
the new heterogeneous acceleration back-end. These charac-
teristics of PyNN can have decisive impact on the adoption of
BrainFrame by the community.

As a proof of concept for the front-end of the BrainFrame
platform, we have added the InfOli model the library of
standard PyNN models. Following the PyNN paradigm, the
user initially selects the simulator—in our case our BrainFrame
simulator—and then proceeds to select the neuron model, in
our case the Inferior-Olive model. A population of neurons
using the chosen model is then generated, determining the
inter-neuron connectivity type and, finally, a projection of the
specified neuronal network is created.

Figure 7.  PyNN architecture and the proposed BrainFrame framework.

J. Neural Eng. 14 (2017) 066008

G Smaragdos et al

9

The main difference between the proposed PyNN-backend
substrate and the typical simulator back-ends within the
PyNN environment is an additional selection step. In this step,
a decision about which of the three alternative acceleration
fabrics will be used for a specific experiment is made, based
on the available hardware and the characteristics of the simu-
lated neural network.

A conceptional view of the architecture of the PyNN
BrainFrame module is shown in figure 7. For the simulator
kernels to communicate with the PyNN frontend, a interme-
diate BrainFrame-specific PyNN module (pynn.brainframe)
is required that implements and extends common methods
and objects like the neuron models, synapse models and
projection methods and objects. In the case of the proposed
BrainFrame module, we implemented objects and methods:
(i) for the initialization of the simulator, (ii) for the description
of the neuronal network in PyNN, and (iii) for controlling the
simulation execution. In some cases, an additional interpreter
module is needed to translate these Python objects and param
eters to each simulator’s native parameters and language. For
our system, we developed PyHet—the BrainFrame-specific
Python interpreter—which serves the aforementioned role
and also implements the accelerator selection.

The final BrainFrame system will be implementing more
generic kernel libraries that will be used by the PyNN front-
end to simulate user defined models. That way, the accelerator
implementation will be completely transparent to the user and
predictions can then be made based on the analysis of the indi-
vidual kernels that can guide the selection algorithm.

3.  Results

In this section, we present a thorough performance analysis
of our heterogeneous BrainFrame platform. The goal is to
evaluate the platform and give a clear view on how each accel-
erator performs when running various instances of the InfOli
use cases, validating the usefulness of an heterogeneous HPC
simulation framework for computational neuroscience. The
performance analysis also acts as a guide for proposing an
accelerator-selection algorithm.

To validate the correct functionality of the separate accel-
erator implementations, we use a simple experiment that rec-
reates a typical response that is found in the inferior-olive
network (axon response). In this experiment, each cell pro-
duces a so-called complex spike, seen in figure 1(c), from
all simulated cells. 6 s of brain time are simulated, which
translates to 120 000 simulation steps. The complex spike
is produced by applying a small current pulse as input to
all InfOli cells at the same instance after program onset, for
about 500 simulation steps (or 25 ms, in brain time). Despite
being rudimentary, this experiment is easy to validate, pro-
vided all neurons are initialized with the same state, and also
gives a good indication whether synchronization between
neurons is correct, thus validating cell interconnectivity
(when present).

As mentioned in the introduction, we identify two dis-
tinct tracks that can be followed in conducting neuroscientific
experiments, both covered in this evaluation. We perform one

batch of measurements ranging from 96 to 960 neurons rep-
resenting small-scale, real-time TYPE-I experiments, and a
second batch ranging from 960 to 7680 neurons representing
larger-scale TYPE-II experiments). From our in-house neu-
roscientific experiments, we know the minimum network
size for meaningful experiments to be around 100 neurons,
thus our measurements for TYPE-I experiments begin at 96
neurons. The evaluation is focused on the performance of
single-node accelerators, thus a network-size cap is set by the
smallest maximum network supported by each of the three
accelerator paradigms: in this case, the DFE fabric limits net-
work sizes to 7680 cells.

3.1.  Performance evaluation

All performance measurements concerning the Xeon Phi
have been carried out through the VTune amplifier XE 2015
profiling and analysis tool by Intel. Timing measurements on
the Maia DFE were taken by measuring the DFE-kernel time
inlined within the host code using timestamps before and after
the kernel call. Since, the host code (in the CPU) is blocking,
only the DFE kernel is active during measurements. The time
includes the kernel execution (processing and DRAM data-
exchange delay) and the activation delay of the FPGA device.
This activation takes about 1 ms, which is negligible com-
pared to the overall execution time that takes several seconds
to several minutes in our test experiment. GPU kernel-time
measurements were taken using the CUDA Event API.

3.1.1. TYPE-I experiments.  Starting with the analysis for
TYPE-I experimentation, in figure 8 we plot the execution
time of a single simulation time-step (50 µsec) for the most
demanding use case, that of the RGJ with 100% connectivity
density. Even though it is not the most common case, a brain-
simulation platform must support such high interconnectivity
densities for certain TYPE-I experiments. The DFE exhibits
the best performance for all tested network sizes. The Xeon
Phi is a close second due to the local-memory delays and the
less efficient use of its parallel threads: These network sizes
are not large enough to provide sufficient parallelism for the
Phi threads to be fully utilized. The GPU, on the other hand,
has difficulties to cope with the computational intensity of the
GJs, which involve mostly division and exponent FP calcul
ations. Since each CUDA thread executes a single neuron, it
cannot exploit any potential parallelism in the GJ calculation.
This, alongside the fact that the CUDA threads are underuti-
lized at such network sizes, impacts performance drastically.

The inefficiency of the Titan X GPU in performing the real-
istic GJ computations is clearly revealed in the SGJ case, next
(see figure 9). In this use case, that the most demanding GJ
calculations are dropped, the GPU presents excellent scalability
as the problem size increases, compared to the RGJ case. The
Xeon Phi, on the other hand, still suffers from core-to-local-
memory synchronization delays even though the actual calcul
ations are much simpler now. The DFE needs to spend the same
amount of operation ticks as in the RGJ case to evaluate the
connection influence, even though it does enjoy gains in perfor-
mance because of the simpler calculations involved (achieving

J. Neural Eng. 14 (2017) 066008

G Smaragdos et al

10

higher operation frequencies, larger GJ computation parallelism
and shorter pipelines). As a result, both latter accelerators show
similar scaling properties to the RGJ case. In contrast, the GPU
scores performance benefits in the SGJ case compared to the
robust DFE for network sizes above 480 neurons.

Next, it is interesting to evaluate the three accelerators
for connectivities of lower than 100% density. Although not
relevant for the DFE which maintains the same implementa-
tion for any connectivity density, smaller densities can influ-
ence the Xeon Phi and the GPU performance considerably.
In figure 10, we plot the execution time of a single simula-
tion time-step for 25%, 50% and 75% connectivity densities,
under the RGJ case. The GPU delivers significant gains but the
inefficient GJ execution still causes it to perform worse than
DFE, even though the latter operates as in a 100%-density

simulation. The Xeon Phi, on the other hand, manages to
achieve enough performance gains to become faster than the
DFE for sufficiently large problem sizes; that is, sizes �960
neurons for 75% density, �864 neurons for 50% density and
�672 neurons for 25% density.

Under the SGJ use case (figure 11), we see similar trends
as for the 100% SGJ use case: The GPU exhibits great scal-
ability and is the best option for network sizes higher than 480
neurons. Besides, the DFE remains the most beneficial option
for networks smaller than 480.

Under the NGJ case (no connectivity), for TYPE-I experi-
ments, the results point to the DFE as the uniformly best
option. In the complete absence of inter-neuron connectivity,
the application becomes a purely dataflow workload, fully
compatible for acceleration on a DFE, which is tailor-made
for such cases, providing significant benefits over both the
Xeon Phi and the GPU (see figure 12).

Figure 9.  SGJ execution time (TYPE I, 100% connectivity).

Figure 10.  RGJ execution time (TYPE I, <100% connectivity).

Figure 11.  SGJ execution time (TYPE I, <100% connectivity).

Figure 12.  NGJ execution time (TYPE I, no connectivity).

Table 3.  RT-achievable network size (#cells) for each use case

Use case DFE Xeon Phi GPU

RGJ (100%) 310 — —
RGJ (75%) 310 — —
RGJ (50%) 310 — —
RGJ (25%) 310 — —
SGJ (100%) 400 — —
SGJ (75%) 400 — —
SGJ (50%) 400 — 96
SGJ (25%) 400 — 96

NGJ 7680 96 500

Figure 8.  RGJ execution time (TYPE I, 100% connectivity).

J. Neural Eng. 14 (2017) 066008

G Smaragdos et al

11

Lastly, recall that for TYPE-I experiments, real-time speeds
are often desired. Table 3 presents the real-time achievable
networks for each use case. The results show that, for real-
time experimentation, the DFE accelerator is the best option
across the board. In contrast, and as mentioned in our previous
analysis, the GPU and Xeon-Phi parallel threads tend to be
underutilized at such small network sizes, even though most
of the delays of using them are present. Thus the DFE—using
fine-grain super-pipelined kernels—can achieve meaningful
network sizes at real-time speeds under all use-case instances,
according to the objective set in the introduction (� 100 cells).
For low (�50%) or zero densities, the GPU and Xeon Phi
come close to the real-time objective, yet it is interesting to
note that the DFE can even support real-time experimentation
for TYPE-II experiments under the NGJ case.

3.1.2. TYPE-II experiments.  For TYPE-II experiments, the
trends under the RGJ case with 100% connectivity change sig-
nificantly (see figure 13). Here, the massive explosion of the GJ
computations begins to stress the parallelization capabilities of
both the Xeon Phi and the DFE. The DFE’s efficient paral-
lelization of the GJs relies mostly on its ability to unroll the
GJ loop on the FPGA hardware, allowing for more iterations
to finish per operation tick. However, the achievable unroll-
ing factor is limited by the available chip area. For network
sizes above 1000 neurons, the DFE compiler is forced to reuse
a lot of resources in time (as the unrolling factor is reduced
with increasing network sizes). In effect, the dataflow para-
digm gradually degenerates to a sequential execution, making

the application less scalable on the DFE. The Xeon Phi fol-
lows a similar trend, as the communication overhead between
cores (which are interconnected through a moderately efficient
ring topology [2]) increases, leading to similarly diminished
scalability. Opposite to these accelerators, GPU scalability is
largely improved. The GPU is underutilized until all CUDA
cores are used (3072) simultaneously, so for experiments over
3000 neurons scalability is gradually improving. As a result,
the GPU becomes the better-performing solution (surpassing
the DFE) for network sizes of 4800 neurons or more.

For lower connectivity densities under the RGJ case, we
observe similar trends, although the Xeon-Phi scalability is
slightly better because of the lower interconnectivity (see
figure 15). Thus, the Xeon Phi retains the advantages it has

Figure 13.  RGJ execution time (TYPE II, 100% connectivity).

Figure 14.  SGJ execution time (TYPE II, 100% connectivity).

Figure 15.  RGJ execution time (TYPE II, <100% connectivity).

Figure 16.  SGJ execution time (TYPE II, <100% connectivity).

Figure 17.  NGJ execution time (TYPE II, no connectivity).

J. Neural Eng. 14 (2017) 066008

G Smaragdos et al

12

for lower than 100% densities, compared to the DFE. Still, the
effect of the inter-core communications is present allowing
for the GPU to overtake the Xeon Phi for network sizes above
4800 neurons (for densities of 50% and 75%) and above 3840
neurons (for 25% density).

Under the SGJ case, the DFE and Xeon Phi follow similar
trends, although they are less pronounced (see figures 14 and 16).
As in the RGJ case, the GPU maintains its lead over the other
two accelerator types for all tested network sizes and connec-
tivity densities. Finally, in the NGJ case, the situation is the
same as with TYPE-I experiments: The purely dataflow nature
of the application allows the DFE to once more score the best
performance across the board (figure 17).

3.2.  Accelerator-selection algorithm

The performance analysis discussed above can now be used
to formulate a simple accelerator-selection algorithm for
BrainFrame to automatically choose the best-suited acceler-
ator type based on the problem parameters: mainly, connec-
tivity detail (biophysically realistic: RGJ, simple: SGJ and not
present: NGJ), density and network size. Figure 18 shows the
selection for our use-case instances. The RGJ case selection,
which represents the most complex case in terms of accelerator
choice, shifts between all three options depending on the con-
nectivity density being simulated. For the SGJ case, the GPU
is always the accelerator of choice, while for the NGJ case the
DFE yields optimal results under all experiment parameters.
Lastly, if the experiment is flagged as a real-time experiment,
the algorithm exclusively chooses the DFE to accelerate the
application, as it is the only viable accelerator for real-time
experiments.

As a simple example of how this selection can speed up
experiments, we can assume a scenario where several batches
of RGJ experiments need to be executed for various net-
work sizes. Let us assume that each batch includes 5 experi-
ments each with gradually decreasing connectivity density
(100%–75%–50%–25%–0%) and that each experiment in a
batch simulates 40 s of brain time. The time savings in this
example by using the BrainFrame system compared to homo-
geneous systems that integrate only a single accelerator type
can be seen in table 4.

The BrainFrame system can achieve significant benefits
compared to the single-accelerator systems that can lead up to
86% execution-time reduction. On average, assuming the total
runtime of all batches, the BrainFrame system can achieve
40% savings compared to a DFE-only system, a 10.7% sav-
ings to a GPU-only system and a 20.2% savings compared to
a Phi-only system.

If we consider the nominal scenario of TDP-level power
consumption we can also present an estimation of the energy
benefits of using BrainFrame compared to the single node
accelerators for our example (table 5). The energy savings
for specific batches of the example range between 20.4% and
91.4%. When running all experimental batches the energy
savings ranges between 27% and 45.9%. Reduction in energy
consumption can greatly reduce operation and maintenance
costs especially within a datacenter environment.

Although these figures will vary based on the particular
accelerator models used for the experiments, they give a rough
estimate of the time savings that can be obtained by carefully
selecting the accelerators for the various experiments. This
selection can be easily extended/updated as new features and
more generalized model libraries are added for acceleration
(making the selection predictive for general cases) or as each
acceleration technology is updated in the future.

4.  Discussion

There are numerous related works that propose employing
HPC solutions for the acceleration of SNNs. Such solutions
include hardware-based approaches, like reconfigurable hard-
ware, as well as software approaches using GPUs and less
often many-core processors platforms, such as the Xeon Phi.
Simpler modeling has found a good match on GPU-based sys-
tems, such as Izhikevich and I&F modeling [7, 21]. Higher

Table 5.  Energy savings with BrainFrame for the assumed
experimental scenario compared to three homogeneous-accelerator
systems. We assume nominal (TDP) power figures (see table 2).

BrainFrame versus

Network size DFE-only (%) Titan X-only (%) Phi-only (%)

384 0.0 91.4 82.5
960 38 86.4 64.9
5760 51.3 60.9 55.1
7680 23 20.4 43.8
All batches 27.3 32.6 45.9

Table 4.  Time savings (in minutes) with BrainFrame for the
assumed experimental scenario compared to three homogeneous-
accelerator systems. The % savings are shown in parenthesis.

BrainFrame versus

Network Size DFE-only Titan X-only Phi-only
384 0.0 (0.0%) 24.2 (86.2%) 8.6 (68.7%)
960 3.2 (13.8%) 45.8 (69.5%) 3.0 (12.8%)
5760 1.9 (43.4%) 54.5 (27.0%) 10.7 (6.8%)
7680 591.7 (40.0%) 1.9 (0.2%) 246.6 (21.7%)
All batches 707.7 (40.0%) 126.4 (10.7%) 268.9 (20.2%)

Figure 18.  BrainFrame accelerator-selection map for TYPE-II
experiments. Selection is heavily dependent on the experiment,
involving all three accelerator fabrics. For TYPE-I experiments,
the DFE is always the optimal choice (not shown).

J. Neural Eng. 14 (2017) 066008

G Smaragdos et al

13

biophysically meaningful modeling, like the extended-HH
model, seems to be a much more difficult problem to solve
with GPUs, especially for real-time experimentation [3].

The Xeon Phi has also been used very successfully for
bio-inspired neural networks, such as convolutional neural
networks for deep learning systems [22]. On the other hand,
similar difficulties to the GPUs in the acceleration of the com-
plex HH models, are identified with Xeon Phi platforms even
for less densely interconnected networks [2].

FPGA-based solutions have been especially prominent in
accelerating neuron applications, with impressive results spe-
cifically for biophysically meaningful modeling and real-time
performance for such networks [4, 5, 23]. It is also revealed
in related works conducting performance analysis, that an
FPGA’s potential benefit varies greatly between SNN types,
even without taking into account connectivity modeling that
can decisively change the workload characteristics [6].

Recently, we have also seen use of DFEs for accelerating
computational-neuroscience applications. On purely dataflow
neuromodeling applications, the DFE can have great benefits
for both large-scale networks and real-time networks perfor-
mance [24]. Even in the cases of HH neurons that include
highly accurate interconnectivity modeling (disrupting the
purely dataflow nature), the DFEs can accomplish greater
benefits than traditional control-flow-based FPGA accelera-
tion [20].

These works, however, present just one-off imple-
mentations of specific application instances, on a specific
acceleration platform and most also ignore the variety of syn-
apse-modeling alternatives and its influence on the applica-
tions. Biophysically accurate models of biological systems,
such as the ones using the HH formalism, are comprised
mostly of a set of computationally challenging deferential
equations often implementing an oscillatory behavior. If
neurons are simulated as independent computational islands
(NGJ case), then dependencies between the equations do
not arise, allowing divide-and-conquer, data-flow and event-
driven acceleration strategies to be used very efficiently. The
moment interconnectivity between oscillating neurons is also
modeled (like GJs, input integrators, STDP synapses etc), the
cells become coupled oscillators. The embarrassingly par-
allel and dataflow nature of the application is then broken.
All neuron states need to be completely updated at each simu-
lation step to retain correct functionality. This requirement,
in turn, enforces the use of cycle-accurate, transient simula-
tors and forbids event-driven implementations. As a result, a
single HPC accelerator type cannot be a universal answer to
the problem since it is unable to cover all the aforementioned
requirements efficiently, as our analysis also reveals.

The above difficulties strongly hint on why most of the com-
putational-neuroscience community has so far meticulously
avoided employing HH models and multi-compartmental
models with complex connections on large problem sizes
using conventional computing machines. The eventual use of
biophysically plausible neurons and connections on a larger
scale is anticipated to contribute substantially in explaining
biological behavior. Even though the details of the most impor-
tant system behaviors of the modeled systems must revolve

around very specific characteristics of the networks, thus can
possibly to be revealed by generally simpler representations,
the computational neuroscientist cannot know beforehand
which of the numerous dynamics revealed from the biological
measurements (from which the models arise) can be safely
abstracted. Studies seeking to reveal system behavior need to
start with complex representations before they know enough
to drop back to more simplified models.

Additionally, most related works seem to suffer from a
limited reusability value due to their (often inexistent) user
interface. They ignore the challenge of the neuroscientific
community adopting the proposed platform and very few
propose solutions to that end. Beuler et al [25] developed a
graphical interface alongside their FPGA-based simulator.
Although it does provide ease of use in experiments, it is still
confined to only one platform and only one application with
limited flexibility to be the basis of a more widely adopted
system. Weinstein et al [26, 27] took the approach of devel-
oping their own modeling language to interface to their accel-
eration library, the DYNAMO compiler. Despite the limitation
of using only FPGAs as the back-end platform, the DYNAMO
compiler is a technically complete solution. Unfortunately, it
failed to achieve wide adoption by the scientific community
as it requires learning a new language and, additionally, the
non-trivial process of porting all existing neuron models to the
new coding paradigm.

PyNN has also been used in the past to tackle the issue of
user interface. One such a system is SpiNNaker [28], which
uses PyNN to interface to a neuromorphic network comprised
by a many-core system based on ARM processors. SpiNNaker
though is focused on simpler modeling paradigms that do not
model specific biophysical neuron properties and have more
tractable computational requirements. The most promising
solution, both in terms of usability and computational ability,
was proposed by Cheung et al [29] with NeuroFlow. In this
work, the researchers integrated PyNN to their DFE-based
hardware library. Neuroflow also provides a very complete
library of IPs in the back-end, covering a great portion of pos-
sible applications. Yet, the system is still integrating a single
acceleration platform. What is more, the performance and
efficiency analysis is only presented for a single use case of
a generally simpler model (Izhikevich) and with connectivity
modeling of medium complexity (STDP) and relatively lower
density (about 10%). The behavior and performance of the
system for the rest of the supported features is not self-evident
and is expected to be significantly different, especially for
accurate modeling such as the HH and with high connectivity
densities, as shown by our performance analysis on the DFE
platform. Furthermore, many of the performance benefits are
accomplished using event-driven simulations (neurons are
evaluated only when their inputs are triggered), that cannot
always be employed, as discussed earlier.

To the best of our knowledge, no prior work has considered
an heterogeneous acceleration system for coping with the var-
iability of the applications in the field. Additionally, the PyNN
integration provides a familiar interface to the neuroscientific
community, thus making BrainFrame a complete solution for
a node-level heterogeneous system. Even though the current

J. Neural Eng. 14 (2017) 066008

G Smaragdos et al

14

work introduces BrainFrame in a single-node setup that inte-
grates all three accelerator fabrics using the PCI-e interface,
the BrainFrame paradigm is primary designed to support
multi-node setups. Such setups can be facilitated in the now
up-and-coming heterogeneous datacenters, provided crucial
aspects such as low-latency interconnects are tackled. Such a
development would lead to a dramatic increase in the size of
network populations supported at tractable simulation times,
while also providing a way for small-medium-sized labs to
use BrainFrame as a service. Thus, enabling them to exploit
the benefits of such an HPC platform without suffering the
cost of creating and maintaining a local setup.

5.  Conclusions

In this paper, we have proposed BrainFrame, an heterogeneous
acceleration platform to serve computational-neuroscience
studies in conducting the variety of real experimentation often
required for the study of brain functionality. We have focused
our analysis on biophysically-accurate neuron models, as such
models are considered essential for the deeper understanding of
the system properties of biological brain networks. In order for
the BrainFrame system to cope with the demand for high ease
of programming use as well as the computational requirements
of the field, we have presented a proof-of-concept HPC plat-
form that integrates three accelerator paradigms already proven
in brain simulations. The performance analysis of the system
employing use cases that take into account connectivity density
and modeling complexity, has revealed that all three fabrics are
essential within such a powerful simulation platform so as to
optimally serve all possible experimentation cases. The platform,
thus, achieves efficient large-network experiments as well as real-
time performance for meaningful network sizes (�100 cells).

BrainFrame has been complemented, finally, with a PyNN
front-end so as to tackle the much sought usability objec-
tive. The PyNN front-end makes the heterogeneous platform
immediately accessible to a multitude of prior modeling
works, which is an essential strategy for the wide adoption
of complex HPC platforms in the neuroscientific community.
Furthermore, building on the elegant PyNN infrastructure, a
simple accelerator-selection algorithm has also been devel-
oped for automatically identifying the most suitable HPC
fabric (Xeon Phi, GPU, DFE) per neuroscientific experiment
and has been integrated in BrainFrame. Last but not least,
all accelerators use PCIe slots to connect to the host system,
which greatly amplifies the platform flexibility and permits
adjusting the platform hardware depending on the funds and
hardware resources available to a research lab wishing to use
BrainFrame.

Acknowledgments

This work is partially supported by the European-Commission
Horizon 2020 Framework Programme Project VINEYARD
(Gr. Agr. No. 687628) and ERC-PoC-2014 project BrainFrame
(Gr. Agr. No. 641000). We also like to thank the STFC Hartree

Centre (UK) for providing the Maxeler and Xeon-Phi com-
putational resources used in our experiments. We grate-
fully acknowledge the support of NVidia Corporation with
the donation of the Titan X GPU used in this research and
the continuous support provided by Maxeler Technologies
throughout our research effort.

ORCID iDs

Georgios Smaragdos https://orcid.org/0000-0001-7969-9827

References

	 [1]	 De Gruijl J R, Paolo B, de Jeu Marcel G and De Zeeuw C I
2012 Climbing fiber burst size and olivary sub-
threshold oscillations in a network setting PLoS Comput
Biol 8 12

	 [2]	 Chatzikonstantis G, Rodopoulos D, Nomikou S, Strydis C,
De Zeeuw C I and Soudris D 2016 First impressions from
detailed brain model simulations on a Xeon/Xeon-Phi node
Proc. of the ACM Int. Conf. on Computing Frontiers
(New York, NY, USA) (ACM) pp 361–4

	 [3]	 Nguyen H D, Al-Ars Z, Smaragdos G and Strydis C 2015
Accelerating complex brain-model simulations on GPU
platforms Design, Automation, and Test in Europe

	 [4]	 Smaragdos G, Isaza S, Eijk M V, Sourdis I and Strydis C
2014 FPGA-based biophysically-meaningful modeling of
olivocerebellar neurons 22nd ACM/SIGDA Int. Symp. on
Field-Programmable Gate Arrays

	 [5]	 Glackin B, Wall J A, McGinnity T M, Maguire L P and
McDaid L 2010 A spiking neural network model of
the medial superior olive using spike timing dependent
plasticity for sound localization Frontiers Comput.
Neurosci. 4 18

	 [6]	 Bhuiyan M, Nallamuthu A, Smith M and Pallipuram V
2010 Optimization and performance study of large-scale
biological networks for reconfigurable computing Fourth
Int. Workshop on High-Performance Reconfigurable
Computing Technology and Applications pp 1–9

	 [7]	 Yamazaki T and Igarashi J 2013 Realtime cerebellum: a large-
scale spiking network model of the cerebellum that runs
in realtime using a graphics processing unit Neural Netw.
47 103–11 (Computation in the Cerebellum)

	 [8]	 Smaragdos G, Chatzikostantis G, Nomikou S, Rodopoulos D,
Sourdis I, Soudris D, de Zeeuw C I and Strydis C 2016
Performance analysis of accelerated biophysically-
meaningful neuron simulations IEEE Int. Symp. on
Performance Analysis of Systems and Software Ispass
pp 1–11

	 [9]	 Markram H et al 2015 Reconstruction and simulation of
neocortical microcircuitry Cell 163 456–92

	[10]	 Hodgkin A L and Huxley A F 1954 Quantitative description
of membrane current and application to conduction and
excitation in nerve J. Physiol. 117 pp 500–44

	[11]	 Davison A, Brüderle D, Eppler J, Kremkow J, Muller E,
Pecevski D, Perrinet L and Yger P 2008 PyNN: a
common interface for neuronal network simulators
Front. Neuroinform 2

	[12]	 De Gruijl J R, Hoogland T M and De Zeeuw C I 2014
Behavioral correlates of complex spike synchrony in
cerebellar microzones J. Neurosci. 34 8937–47

	[13]	 Hoogland T M, Gruijl J R D, Witter L, Canto C B and
Zeeuw C I D 2015 Role of synchronous activation of
cerebellar purkinje cell ensembles in multi-joint movement
control Curr. Biol. 25 1157–65

J. Neural Eng. 14 (2017) 066008

G Smaragdos et al

15

	[14]	 De Zeeuw C I, Hoebeek F E, Bosman L W J, Schonewille M,
Witter L and Koekkoek S K 2011 Spatiotemporal firing
patterns in the cerebellum Nat. Rev. Neurosci. 12 327–44

	[15]	 Gao Z, van Beugen B J and Zeeuw C I D 2012 Distributed
synergistic plasticity and cerebellar learning Nat. Rev.
Neurosci. 13 619–35

	[16]	 Feenstra C 2011 A memory access and operator usage profiler
framework for HLS optimization: using the lucas optical
flow algorithm as case study Master’s Thesis EEMCS,
Circuits and Systems, TuDelft

	[17]	 Pell O, Mencer O, Tsoi K H and Luk W 2013 Maximum
Performance Computing with Dataflow Engines (New York:
Springer) pp 747–74

	[18]	 James J and Reinders J 2013 Intel Xeon Phi Coprocessor
High-Performance Programming (Burlington, MA: Morgan
Kaufmann)

	[19]	 NVidia Corporation www.geforce.com
	[20]	 Smaragdos G, Davies C, Strydis C, Sourdis I, Ciobanu C,

Mencer O and De Zeeuw C 2014 Real-time olivary
neuron simulations on dataflow computing machines
Supercomputing (Lecture Notes in Computer Science
vol 8488) ed J Kunkel et al (Berlin: Springer) pp 487–97

	[21]	 Nageswaran J, Dutt N, Krichmar J, Nicolau A and
Veidenbaum A 2009 Efficient simulation of large-scale
spiking neural networks using CUDA graphics processors
Int. Joint Conf. on Neural Networks (IEEE) pp 2145–52

	[22]	 Viebke A and Pllana S 2015 The potential of the intel
Xeon Phi for supervised deep learning 17th IEEE Int.

Conf. on High Performance Computing and
Communications

	[23]	 Shayani H, Bentley P and Tyrrell A M 2008 Hardware
implementation of a bio-plausible neuron model for
evolution and growth of spiking neural networks on FPGA
NASA/ESA Conf. on Adaptive Hardware and Systems
pp 236–43

	[24]	 Cheung K, Schultz S R and Luk W 2012 A large-scale spiking
neural network accelerator for FPGA systems Int. conf. on
artificial neural networks and machine learning pp 113–20

	[25]	 Beuler M, Tchaptchet A, Bonath W, Postnova S and
Braun H A 2012 Real-time simulations of synchronization
in a conductance-based neuronal network with a digital
FPGA hardware-core Artificial Neural Networks and
Machine Learning—ICANN

	[26]	 Weinstein R K and Lee R H 2006 Architectures for high-
performance FPGA implementations of neural models
J. Neural Eng. 3 21

	[27]	 Weinstein R K 2006 Techniques for FPGA neural modeling
PhD Thesis Georgia Institute of Technology

	[28]	 Painkras E, Plana L A, Garside J, Temple S, Davidson S,
Pepper J, Clark D, Patterson C and Furber S 2012
SpiNNaker: a multi-core system-on-chip for massively-
parallel neural net simulation Proc. of the IEEE Custom
Integrated Circuits Conf. pp 1–4

	[29]	 Cheung K, Schultz S R and Luk W 2016 NeuroFlow: a
general purpose spiking neural network simulation platform
using customizable processors Frontiers Neurosci. 9 516

J. Neural Eng. 14 (2017) 066008

