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Abstract

This thesis explores the topics of graph kernels and classification of graphs. Graph kernels
have received considerable attention in the last decade, in part because of their value in
many practical applications, such as chemoinformatics and molecular biology, in which
classification using graph kernels have become the standard model for several problems.
Perhaps even more important is the inclusion of graph kernels in the rich field of kernel
methods, making a large family of machine learning algorithms, including support vector
machines, applicable to data naturally represented as graphs.

Graph kernels are similarity functions defined on pairs of graphs. Traditionally, graph
kernels compare graphs in terms of features of subgraphs such as walks, paths or tree
patterns. For the kernels to remain computationally efficient, these subgraphs are often
chosen to be small. Because of this fact, most graph kernels adopt an inherently local
perspective on the graph and may fail to discern global properties, such as the girth or the
chromatic number, that are not captured in local structure. Furthermore, existing work
on graph kernels lack results justifying a particular choice of kernel for a given application.

In this thesis we propose two new graph kernels, designed to capture global properties
of graphs, as described above. At the core of these kernels is Lovász number, an important
concept in graph theory with strong connections to graph properties like the chromatic
number and the size of the largest clique. We give efficient sampling approximations to
both kernels, allowing them to scale to large graphs. We also show that we can characterize
the separation margin induced by these kernels in certain classification tasks. This serves
as initial progress towards making theory aid kernel choice. We make an extensive
empirical evaluation of both kernels on synthetic data with known global properties, and
on real graphs frequently used to benchmark graph kernels.

Finally, we present a new application of graph kernels in the field of data mining by
redefining an important subproblem of entity disambiguation as a graph classification
problem. We show empirically that our proposed method improves on the state-of-the-art.
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Part I

Extended summary





Chapter 1

Introduction

In recent years, we have seen a dramatic increase in the application of machine learning
methods to graphs. Many labor-intensive tasks such as labelling or categorizing graph
data can now be alleviated, if not solved, using machine learning methods. Problems
of this kind arise in diverse fields, ranging from chemoinformatics and bioinformatics to
social sciences, where graphs are well suited to represent the data. For example, in drug
development, some candidate compounds will be harmful to humans while some will not,
even if the compounds belong to the same group (Debnath et al. 1991). Predicting which of
the compounds are harmless based on molecular structure, rather than through empirical
studies, can represent large savings (Debnath et al. 1991). Another area rich in graph data
is social network analysis (Wasserman and Faust 1994). In social networks, every node
represents a person and every edge a relationship or an interaction. Recently, problems
related to analysis of such networks have received considerable attention. For example,
determining key influencers in a social network, can be highly profitable for marketing
firms who can target influential individuals to maximize the spread of a campaign.

In order to harness the power of machine learning methods in the settings above,
graphs must be represented in an efficient way. Most algorithms for important learning
problems such as classification, clustering and dimensionality reduction, are designed for
data represented by vectors of real values. An important exception is kernel methods
that allow learning algorithms to interact with data via particular similarity functions,
known as kernels. Defining expressive similarity functions for graphs is not trivial however.
For example, there is no polynomial time algorithm for determining whether two graphs
are isomorphic. To this end, graph kernels were introduced, representing an attractive
middle-ground between precision and efficiency (Gärtner, Flach, and Wrobel 2003).

Graph kernels have been sucessfully used, chiefly in classification tasks, on diverse
types of data (Shervashidze, Schweitzer, et al. 2011). Many existing graph kernels compare
graphs based on a specific type of subgraphs, be it walks, paths, subtrees or graphlets.
To remain efficient, most of these kernels consider only small subgraphs. While fast to
compute, this fact may cause them to fail in capturing important global properties of
graphs, such as the clique number, girth1 or chromatic number. This is one of the core

1The girth of a graph is the length of the smallest cycle present in the graph.
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issues addressed in this thesis.

Main contributions. This thesis is an extended summary of two papers. We make
the following contributions in Paper I. We define two novel graph kernels motivated from
graph theory, based on Lovász number, and designed to capture global properties of
graphs. We show that on certain classification tasks, we can characterize the separation
margin between classes of graphs. Further, we show empirically that our kernels are
competitive with state-of-the-art graph kernels in terms of accuracy in classification of
unlabeled benchmark graphs.

In Paper II we define an important subproblem within entity disambiguation as a graph
classification problem. We make several extensions to existing graph kernels, designed for
the entity disambiguation problem. We show empirically that these contributions leads
to improved results in detecting ambiguous entities.

Thesis outline. In the remainder of Chapter 1, we give a background to and present
theory relevant for the following chapters, as well as the appended papers. In Chapter 2,
we summarize our work on global graph kernels, and in Chapter 3, our work on entity
disambiguation.

1.1 Graphs, classification & kernels

The concept most central to this thesis is the graph. Graphs are denoted G = (V,E) and
comprise a set V of nodes or vertices and a set E of ordered pairs of nodes, or edges. If it
holds that (i, j) ∈ E ⇒ (j, i) ∈ E, for any edge e = (i, j), we call the graph undirected.
If this does not hold, the graph is directed. Unless otherwise stated, we let n = |V | and
m = |E|. For our purposes, a graph may also be associated with a labelling function
L : V → L, assigning a label to each node from a set of labels L. Furthermore, the graph
may have a weighting function W : E → R assigning a real valued weight to every edge.
If all nodes share the same label, i.e. L is a constant function, we call the graph unlabeled.
If all edge weights are equal, we call the graph unweighted.

The canonical problem, on which we apply the methods developed in this thesis, is
graph classification. Given a training set comprising pairs {(G(i), yi)}Ni=1 of graphs G(i)

and class labels yi ∈ Y, our task is to automatically assign labels to a new, previously
unseen test set of graphs {G(N+j)}Ntest

j=1 . In most cases, classification is binary, that is
Y = {−1,+1}. Classification is a general problem associated with rich theory. The
concepts most relevant to this thesis are support vector machines (SVM) (Vapnik 1995)
and kernel methods (Schölkopf and Smola 2001).

Support vector machines (Vapnik 1995) are supervised machine learning models
commonly used for classification of many different types of data. While originally developed
as linear, binary classifiers of real valued vector data, the kernel trick (Schölkopf and
Smola 2001) enables implicit learning of nonlinear functions. The kernel trick exploits
the observation that several learning algorithms, such as dual solvers for SVMs, interact
with data only through inner products of pairs of data points. Inner products in the
input space X , may then be replaced by a kernel function expressed as an inner product
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in another vector space V. A function k : X × X → R is a valid kernel only if its Gram
matrix K = (k(xi,xj)))ij∈[n] is positive semi-definite for any choice of {x1, . . . ,xn}. Valid
kernels are often also called positive definite kernels.

The kernel trick removes the need for specifying an explicit mapping of the input data
to another space, and lets us instead consider only similarities between data points. Not
only does this allow for learning nonlinear functions, it also opens up kernel methods
to data that is not naturally represented by real-valued vectors, but have some natural
notion of similarity. The example of such data most relevant to this thesis is, of course,
the graph.

1.2 Graph kernels

Graph kernels (Gärtner, Flach, and Wrobel 2003; S. Vishwanathan et al. 2010) are similar-
ity measures on graphs defined on graphs. As such they enjoy all the theoretical benefits
associated with kernel methods. They have also gained popularity in practical applications,
and have been used in diverse fields including computational biology (Schölkopf, Tsuda,
and Vert 2004), chemistry (Mahé and Vert 2009) and information retrival (See Paper II).

Graph kernels have primarily been motivated from the desire to capture similar
structural properties in graphs (K. M. Borgwardt and Kriegel 2005). Searching for
structural similarities in a pair of graphs is often computationally expensive, most notably
perhaps in the case of subgraph isomorphism, widely known to be NP-hard. While
not as precise, graph kernels represent an attractive trade-off between expressivity and
computational efficiency(Ramon and Gärtner 2003).

Existing kernels predominantly compare graphs through counts or distributions of
subgraph features. For example, random walk kernels (Gärtner, Flach, and Wrobel 2003;
Kashima, Tsuda, and Inokuchi 2003) compare weighted counts of random walks of every
length. The shortest-path kernel (K. M. Borgwardt and Kriegel 2005) compare features of
the shortest paths between every pair of nodes in each graph, and subtree kernels (Ramon
and Gärtner 2003; Mahé and Vert 2009) compare tree patterns. Recently, there has been
a lot of research on how to handle node and edge attributes efficiently. An important
family of kernels in that line of work are the Weisfeiler-Lehman kernels (Shervashidze,
Schweitzer, et al. 2011), based on the Weisfeiler-Lehman isomorphism test.

Many graph kernels are R-convolution kernels (Shervashidze, Schweitzer, et al. 2011;
S. Vishwanathan et al. 2010). We define the R-convolution kernel below.

Definition 1.2.1 (Haussler 1999). Let χ and χ′ be spaces and k : χ′ × χ′ → R a positive
semi-definite kernel. The R-convolution kernel for points x, y ∈ χ, associated with finite
subsets χ′x ⊆ χ′ and χ′y ⊆ χ′ is defined by

K(x, y) =
∑

(x′,y′)∈χ′
x×χ′

y

k(x′, y′) . (1.2.1)

R-convolution kernels are positive definite (Haussler 1999). Conceptually, graph kernels
based on the R-convolution kernel compare features of small subgraphs or walks extracted
from the original graphs. This leads to an inherently local perspective, which may fail
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to capture global properties of graphs. Further, as Shervashidze, S. Vishwanathan, et al.
2009 identified, “There is no theoretical justification on why certain types of subgraphs are
better than others”.

For example, the graphlet kernel (Shervashidze, S. Vishwanathan, et al. 2009) counts
instances of subgraph patterns of at most 5 nodes. The random walk kernel (Gärtner,
Flach, and Wrobel 2003) counts walks of any length, but the counts are often weighted
with a factor decreasing exponentially with the length of the walk (S. V. N. Vishwanathan,
K. M. Borgwardt, and Schraudolph 2007). Subtree kernels (Ramon and Gärtner 2003;
Shervashidze and K. Borgwardt 2009), consider tree patterns of a limited size.

It is known, however, that there are graph properties which cannot be captured by
studying only local structures, such as small subgraphs. Perhaps the most celebrated
result on this topic is Erdős’ seminal proof of existence of graphs with high girth and high
chromatic number (Alon and Spencer 1992, p. 41-42), graphs for which all small-sized
subgraphs will be trees. Because of this problem, we seek representations of graphs
that capture precisely such properties. We give an introduction to one type of such
representation in the following section.

1.3 Geometric representations of graphs

This section introduce geometric representations of graphs as well as the celebrated Lovász
number, on which we build our new graph kernels.

A geometric representation of a graph G = (V,E) is an embedding UG of each node
v ∈ V into a geometric space Rp,

UG := {ui ∈ Rp}i∈V . (1.3.1)

We say that a representation UG is orthogonal if

(i, j) 6∈ E ⇒ u>i uj = 0 , (1.3.2)

and orthonormal if also ‖ui‖ = 1 for all i ∈ V . We note that this definition on its own
does not provide fruitful ways of representing graphs. For example, letting each ui be
a different basis vector, results in a valid representation, but does preserve the graph
structure at all. In the sequel, we focus on a particular representation, associated with
the celebrated Lovász number.

1.3.1 Lovász number and global properties of graphs

Lovász number (Lovász 1979), usually denoted ϑ(G), was introduced as a polynomial-
time computable upper bound on the Shannon capacity of G, an important concept in
information theory for which a polynomial time algorithm is not known. It was also
shown to have the following attractive relationship with the clique number ω(G) and the
chromatic number χ(G), both of which are NP-hard to compute.

ω(G) ≤ ϑ(Ḡ) ≤ χ(G) (1.3.3)
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ϑ(G)

Figure 1.3.1: Lovász number ϑ(G) and the orthogonal representation for the pentagon.

Here Ḡ is the graph complement to G. The result above is sometimes refered to as Lovász
sandwhich theorem. Because of the polynomial complexity of computing ϑ(G) and its
relation to several important quantities, known to be NP-hard to compute, Lovász number
has received considerable attention since its introduction.

Formally, ϑ(G) is defined as the smallest angle2 of a cone, enclosing any orthonormal
representation UG,

ϑ(G) = min
c,UG

max
i∈V

1

(c>ui)2
, (1.3.4)

where the minimization is taken over all orthonormal representations UG and all unit
vectors c. An illustration of ϑ(G) can be seen in Figure 1.3.1.

Since its introduction, it has had large impact on combinatorial optimization, graph
theory and approximation algorithms (Goemans 1997). ϑ(G) and the associated mini-
mizing orthogonal representation, has been used to derive state-of-the-art approximation
algorithms for max k-cut (Frieze and Jerrum 1997), graph coloring (Karger, Motwani,
and Sudan 1998; Dukanovic and Rendl 2008) and planted clique problems (Feige and
Krauthgamer 2000). These results provide ample motivation for us to design a graph
kernel around ϑ(G) and aimed towards capturing global properties of graphs.

It is well-known that ϑ(G) can be computed to arbitrary precision in polynomial
time, by means of solving a semi-definite program (Lovász 1979). While polynomial,
state-of-the-art algorithms for computing Lovász number are often prohibitively slow for
real-worl applications with time complexities O(n5 log n · ε−2) (Chan, Chang, and Raman
2009) and O(n2m log n · ε−1 log3(ε−1)) (Iyengar, Phillips, and Stein 2011), where n and
m are the number of nodes and edges respectively and ε the error. In the next section,
we introduce a recent approximation to ϑ(G) (Jethava et al. 2014).

1.3.2 The svm-ϑ approximation

In this section, we introduce svm-ϑ, a recent approximation to ϑ(G), with considerably
lower computational complexity. Jethava et al. 2014 defined svm-ϑ as an alternate
characterization of ϑ(G), that involves solving a kernel one-class support vector ma-
chine (Schölkopf, Platt, et al. 2001). They observed that a one-class SVM, like ϑ(G),

2We note that ϑ(G) is really the inverse squared cosine of the half-angle of the cone, but as they grow
and decrease together, we refer to ϑ(G) as angle henceforth.
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ω(K) ϑ(G)

Graph, G One-class SVM using KLS(G) SVM-ϑ cone

Figure 1.3.2: The components of svm-ϑ and an illustration of its relationship to ϑ(G).

searches for the minimum cone enclosing a set of vectors, and that for a particular choice
of kernel, the SVM and ϑ cones become equivalent.

Formally, for any graph G = (V,E), such that n = |V |, it holds that

ϑ(G) = min
κ∈L

ω(κ) (1.3.5)

where ω(κ) is the solution to a kernel one-class SVM,

ω(κ) = max
αi>0

i=1,...,n

2

n∑

i=1

αi −
n∑

i,j=1

αiαjκij . (1.3.6)

L is the set of kernel matrices that respect the same orthogonality constraints as the
orthonormal representations defined in Section 1.3,

L := {κ ∈ S+
n |κii = 1,∀i, κij = 0, (i, j) 6∈ E} , (1.3.7)

and S+
n is the set of n× n positive semi-definite matrices. With slight abuse of notation,

from now on, we let αi denote the maximizers of (1.3.6).
So far, we have not gained anything in terms of complexity. The optimization over L

involves solving a semi-definite program, and the SVM simultaneously, which in general
is no faster than computing ϑ(G). Instead, our hope is that a particular choice of kernel
κ gives a good approximation to the minimum of (1.3.5), without doing the optimization.
As it happens, there is a choice of κ, that while not optimal, gives good theoretical
guarantees of this nature. We define this choice of κ below.

Definition 1.3.1 (Luz and Schrijver 2005). Let A be the adjacency matrix of G, ρ ≥
−λn(A), with λn(A) the minimum eigenvalue of A, and set

κLS(G) =
A

ρ
+ I � 0 (1.3.8)

κLS(G) can be thought of as a projection from the adjacency matrix A to the set of
positive semi-definite matries. Jethava et al. 2014 showed that,

ω(κLS(G)) =

n∑

i=1

αi (1.3.9)
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where αi are the maximizers of (1.3.6). Henceforth, when referring to svm-ϑ, we refer
to the optimizers of (1.3.6) with κ = κLS . svm-ϑ is illustrated in Figure 1.3.2, for this
particular choice of κ. Jethava et al. 2014 proved that on families of graphs, referred to
by them as svm-ϑ graphs, ω(κLS) is w.h.p. a constant factor approximation to ϑ(G),

ϑ(G) ≤ ω(κLS) ≤ γϑ(G) . (1.3.10)

Important graph families such as Erdős-Rényi random graphs and planted clique graphs
have this property. svm-ϑ is for a given kernel computable in O(n2) due to the one-class
SVM (Hush et al. 2007), but κLS requires O(n3) time due to the computation of the
minimum eigenvalue of A.

9
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Chapter 2

Global graph kernels

This chapter introduces two novel graph kernels designed to capture important global
properties of graphs, such as the girth or the clique number. In contrast to earlier graph
kernels, focusing on local structure to maintain efficiency, our kernels are designed to
capture global properties of graphs. To remain efficient, the kernels still decompose into
features of substructures, but in a manner that retains desired properties.

We begin by defining the Lovász ϑ kernel based on Lovász number and the associated
orthogonal representation. We then define a kernel on the svm-ϑ approximation, enabling
faster computation while retaining good accuracy. We show that for certain classification
tasks, we can bound the separation margin induced by our kernels, providing theoretical
justification for the choice of graph kernels in some applications .

Further, in Paper I, we show empirically that our kernel is competitive with state-of-
the-art graph kernels on established benchmark datasets.

2.1 The Lovász ϑ kernel

Motivated by the strong connection between ϑ(G) and global graph properties such as
max-cut and graph coloring, as described in Section 1.3.1, we proceed to define the
Lovász ϑ kernel using ϑ(G). Henceforth, when referring to an orthonormal representation
UG = {u1, . . .un}, we always refer to the maximizer of (1.3.4).

We begin by defining the useful notion of the Lovász value of a subset of nodes B ⊆ V ,
which represents the angle of the smallest cone enclosing a subset of vectors UG|B ⊆ UG,
as defined below.

Definition 2.1.1. Let G[B] be the subgraph of G = (V,E) induced by B ⊆ V . Then, the
Lovász value of G[B] is defined by,

ϑB(G) = min
c

max
ui∈UG|B

1

(c>ui)2
, (2.1.1)

where UG|B := {ui ∈ UG | i ∈ B} and UG is the maximizer of (1.3.4).
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ϑ(G)

(a)

ϑB(G)G[B]

(b)

Figure 2.1.1: An illustration of the difference between ϑ(G) (a) and ϑB(G) (b).

Note that in general ϑB(G) 6= ϑ(G[B]). The difference between these quantities is what
we’ll exploit in building our kernel, and is illustrated in Figure 2.1.1. More specifically,
ϑB(G) adheres to the global set of orthogonality constraints, defined by all of G. In
contrast ϑ(G[B]) uses only the information present in G[B] and is therefore a completely
local feature.

We now present the formal definition of Lovász ϑ kernel in terms of the Lovász values
of subgraphs.

Definition 2.1.2 (Lovász ϑ kernel). The Lovász ϑ kernel on two graphs, G, G′, with a
positive semi-definite kernel k : R× R→ R, is defined by

K(G,G′) =
∑

B⊆V

∑

C⊆V ′

|C|=|B|

1

ZB,C
· k(ϑB , ϑ

′
C) , (2.1.2)

with ϑB = ϑB(G), ϑ′C = ϑC(G′), and ZB,C =
(
n
|B|
)(

n′

|B|
)
.

The Lovász ϑ kernel compares Lovász values for all pairs of subsets in two graphs.
In effect, this corresponds to comparing the independence structure of subgraphs, as ϑB
depends on how many vectors in UG|B are orthogonal, which in turn depends on how
many nodes in B are independent. We can also prove the following result, important for
any graph kernel.

Lemma 2.1.1 (Paper I, §3.1). The Lovász ϑ kernel, as defined in (2.1.2), is a positive
semi-definite kernel.

Proof sketch. The proof involves showing that the kernel is an R-convolution kernel (Haus-
sler 1999). For a complete proof, see Paper I.

As Lovász number is prohibitively expensive to compute for most graphs (see Sec-
tion 1.3.1), we define a faster, approximate version of the Lovász ϑ kernel in the next
section.

2.2 The svm-ϑ kernel

We proceed to define a new graph kernel called the svm-ϑ kernel. To create a faster kernel
than the Lovász ϑ kernel, but with similar properties, we seek an svm-ϑ analogue of the
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Lovász value, ϑB to use as a feature of subgraphs. We note that αi adhere to the global
optimality conditions of (1.3.6) defined by the edge set, and thus capture some global
properties of graphs. Based on this observation, and the connection between ω(κ) and
ϑ(G) as described in Section 2.2, we let

∑
i∈B αi serve as an analogue for ϑB in (2.1.2),

when defining our new kernel.

Definition 2.2.1. The svm-ϑ kernel is defined, on two graphs G,G′, with corresponding
α, α′ maximizers of (1.3.6) for κ = κLS(G), with a positive semi-definite kernel k :
R× R→ R, as

K(G,G′) =
∑

B⊆V

∑

C⊆V ′

|C|=|B|

1

ZB,C
k(1>αB ,1

>α′C) (2.2.1)

where αB = [αB(1), . . . , αB(d)]
> with d = |B|, ZB,C =

(
n
|B|
)(

n′

|C|
)

and 1 the all one vector

of appropriate size.

We make a note that while
∑n
i=1 αi is an upper bound on ϑ(G), and an constant-factor

approximation for classes of graphs, the same cannot be said for the entire svm-ϑ kernel
in relation to the Lovász ϑ kernel. This is due to the fact that

∑
i∈B is not a tight bound

on ϑB(G) for all B ⊂ V , even for svm-ϑ graphs. Nevertheless, the svm-ϑ kernel is still a
valid kernel capable of capturing global properties of graphs, such as the clique number,
as we will see in the next section. We can also show the following result.

Lemma 2.2.1 (Paper I, §4). The svm-ϑ kernel, as defined in (2.2.1), is a positive
semi-definite kernel.

Proof sketch. The proof is involves showing that the kernel is an R-convolution ker-
nel (Haussler 1999). For a complete proof, see Paper I.

2.3 Classifying signal subgraphs

In this section we address classification of a particular class of graph, containing what is
known as signal subgraphs. Signal subgraphs are subgraphs that have common properties
within a class of graphs, but differ between classes. Imagine for example several mea-
surements of brain activity. In some of them, certain areas express more activity than
in others, possibly indicating an neruological disease. These areas can be modeled as
signal subgraphs. Motivated by problems such as these, Vogelstein et al. 2013 introduced
a framework for graph classification based on signal subgraphs. Devroye et al. 2011 had
earlier considered a hypothesis testing problem arising in applications such as remote
sensing and argued that it could be modelled as a planted clique problem in a random
geometric graph.

Identifying a planted clique is a classical problem in the theory of random graphs
and algorithms (Feige and Krauthgamer 2000; Alon, Krivelevich, and Sudakov 1998)
with many applications such as cryptography (Juels and Peinado 2004). It also has
connections to data mining problems such as epilepsy prediction (Iasemidis et al. 2001).
In the classical planted clique problem, a hidden clique of Θ(

√
n) vertices is planted
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into a random graph and the goal is for an algorithm to identify it. In a more general
version, the planted subgraph could have significantly higher or lower density compared
with the underlying random graph. Such planted models are natural special cases of the
general framework of Vogelstein et al. 2013 . In their brain networks setting, a denser
subgraph could correspond to a subset of neurons that have significantly higher (or lower)
connectivity compared to the rest of the network.

As an application of the kernels developed in this thesis, we consider binary classification
of graphs, where one class comprises graphs containing a signal subgraph, and the other
class does not. Specifically, we adress the case of Erdős-Rényi random graphs. We let
G(n, p) denote the random graph of n nodes, where every edge is present, randomly and
independently, with probability p. Further, we let G(n, p, k) denote the graph formed by
sampling a random G(n, p) graph and planting a clique of size k within.

We consider now on using the Lovász ϑ kernel for classification of G(n, p) and G(n, p, k)
as two different classes. We give a result showing that the two classes of graphs are
linearly separable with reasonably large margin in the feature space of the linear Lovász
ϑ kernel.

Lemma 2.3.1. There exist, with high probability, Pr ≥ 1−O(1/n), a linear separator in

linear Lovász ϑ kernel space, separating G(n, p) and G(n, 1− p, k) graphs, k = 2t
√

n(1−p)
p ,

where p(1− p) = Ω(n−1 log4 n), with margin

γ ≥ (t− c)
√
n(1− p)

p
− o(√n) ,

for some constant c, and large enough t ≥ 1.

Proof. The proof is left to the supplementary material of Paper I.

The result above can be extended to hold for the svm-ϑ kernel as well, as can be
seen in Paper I. Results such as these represent intial steps towards theory aiding the
choice of kernel for a particular classification task. When considering large graphs, this
becomes increasingly important, as trial-and-error approaches to kernel choice become
more expensive as the graphs grow. On this note, in the next section, we consider the
problem of computing our proposed kernels efficiently.

2.4 Efficient computation

Direct evaluation of the Lovász ϑ and svm-ϑ kernels is computationally very expensive.
This is easily realized by considering the sums over subsets in the definition of either
kernel, for which the number of terms grows exponentially with the size of the graph. To
use these kernels with large graphs, we need to rely on approximate computation. In this
section we derive such an approximation scheme, based on sampling.
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We begin by noting that both the Lovász ϑ kernel and svm-ϑ kernel can be written
on the following form.

K(G,G′) =
∑

B⊆V

∑

C⊆V ′

|C|=|B|

1

ZB,C
k(fB(G), fC(G′)) (2.4.1)

with fB(G) = ϑB(G) for the Lovász ϑ kernel and fB(G) =
∑
j∈B αj(G) for the svm-

ϑ kernel, and ZB,C =
(
n
|B|
)(

n′

|C|
)

for both. In this section, we derive an approximate

computation scheme for the general form in (2.4.1) applicable to both kernels.

We note that (2.4.1) is easily decomposed into pairs of subsets of nodes. Now, instead
of considering all pairs, we sample a small (polynomial) number of subsets for each graph,
resulting in overall polynomial complexity. Formally, let Sd and S′d be multisets of t
uniformly sampled subsets of V and V ′ respectively, such that |Sd| = |S′d| = t. If d > n,
let Sd = ∅ and analoguously for S′d and n′. Then, define,

K̂(G,G′) =

nmax∑

d=1

∑

B∈Sd

∑

C∈S′
d

1

|Sd||S′d|
k(fB(G), fC(G′)) . (2.4.2)

It is easy to see that (2.4.2) converges to (2.4.1), when the number of samples, k
goes to infinity. In practice, it is of course not feasible to use an infinite number of
samples. Instead, we are interested to know how many samples are sufficient to get a
good approximation. Without specifying the base kernel k, it is difficult to produce a
bound of this kind. However, letting k be the linear kernel k(x, y) = xy, we can derive
precisely such a result.

For the linear base kernel, the general form in (2.4.1) is separable in the following
fashion.

K(G,G′) =

nmax∑

d=1

∑

B⊆V
|B|=d

∑

C⊆V ′

|C|=d

1

ZB,C
fB(G)fC(G′) (2.4.3)

=

nmax∑

d=1



∑

B⊆V
|B|=d

1

ZB
fB(G)






∑

C⊆V ′

|C|=d

1

ZC
fC(G′)


 (2.4.4)

with ZB,C =
(
n
|B|
)(

n′

|C|
)
, ZB =

(
n
|B|
)
. By defining

ϕ(d) =
∑

B⊆V
|B|=d

1

ZB
fB(G) , (2.4.5)

we see that K(G,G′) = ϕ>ϕ′. A similar result can be obtained for the approximate
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kernel in (2.4.2), with ϕ̂(d) =
∑
B∈Sd

1
|Sd|fB(G),

K̂(G,G′) =

nmax∑

d=1

∑

B∈Sd

∑

C∈S′
d

1

ZB,C
fB(G)fC(G′) (2.4.6)

= ϕ̂>ϕ̂′ . (2.4.7)

Now, for the case of the linear kernel, we may derive sample bounds for the feature
vector representation in (2.4.7), instead of the kernel itself. By bounding the range of
fB(G) and using standard Chernoff bounds, we can prove the following result for the
Lovász ϑ kernel.

Theorem 2.4.1. For graphs of n nodes, each coordinate ϕ(d) of the feature vector of the
linear Lovász ϑ kernel can be estimated by ϕ̂(d) such that

Pr [ϕ̂(d) ≥ (1 + ε)ϕ(d)] ≤ O(1/n) (2.4.8)

Pr [ϕ̂(d) ≤ (1− ε)ϕ(d)] ≤ O(1/n) (2.4.9)

using sd = O(n log n/ε2) samples.

Proof sketch. We apply a multiplicative Chernoff bound on ϑVr
of sampled subsets Vr.

For a full proof, see the supplementary material to Paper I.

The result can be extended to other functions fB(G) by bounding the range of the
corresponding function. In Paper I, we do precisely this for the svm-ϑ kernel.

2.5 Empirical evaluation

For a comprehensive empirical evaluation of both the Lovász ϑ kernel and the svm-ϑ
kernel, on synthetic graphs with known global properties as well as real-world graphs
used as benchmarks for graph kernels, see Paper I, Section 5.
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Chapter 3

Applications of graph kernels –
Entity disambiguation

Modern data mining applications increasingly deal with vast amounts of text data, often
with references to entities such as people and companies. To enable efficient use of such
data, it needs to be structured in a way that that is accessible to both humans and
algorithms. Annotating documents with names of people mentioned in the text is an
example of information extraction of that kind. For instance, a user might be interested to
know which cities TED talks curator Chris Anderson is visiting this year. An automated
reply to such a query requires extraction of names and places from news texts etc. This
task is made difficult by the existence of Chris’s namesake, former Wired Magazine
editor-in-chief Chris Anderson. A näıve system, considering only the names in isolation,
would answer that both Chris’s are the same person.

Resolving ambiguities such as the one above is called entity disambiguation or entity
resolution and is a problem which appears in many contexts. In its most general form, this
problem is one of finding a mapping between a set of identifiers and a set of entities. In the
example above, names are the identifiers and people are then entities. Related problems
include record linkage (Fellegi and Sunter 1969), deduplication (Culotta and McCallum
2005), object distinction (Yin, Han, and Yu 2007) and co-reference resolution (Haghighi
and Klein 2007). An subclass of entitity disambiguation problems is relational entity
disambiguation which makes use of graph structure between entities (Bhattacharya and
Getoor 2006b; Bhattacharya and Getoor 2004; Bekkerman and McCallum 2005; Malin
2005). Such information is available in many different contexts. In the example of text
documents, entities are related through documents in which they are mentioned together.

In this thesis, we explore an important subproblem of relational entity disambiguation,
namely that of determining which identifiers that are ambiguous, i.e. that are used to refer
to several different entities. In this chapter, we proceed to define this problem formally
and give our approach to solving it using graph kernels. We also propose extensions
to existing graph kernels, tailored for the entity disambiguation task. In Paper II we
present an empirical evaluation of the proposed method showing that the proposed kernel
extensions result in improved classificuation accuracy.
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3.1 Entity disambiguation

Resolution of ambiguities in data is a well-studied problem and methods for entity
resolution (Bhattacharya and Getoor 2006a; Bhattacharya and Getoor 2006b; Elsayed,
Oard, and Namata 2008; Sen 2012), entity matching (Böhm et al. 2012; Rastogi, Dalvi,
and Garofalakis 2011) and entity disambiguation (Bunescu and Pasca 2006; Cucerzan
2007; Diehl, Getoor, and Namata 2006; Malin 2005) are all aimed towards associating
references in text sources with the correct underlying entity. These methods typically
make use of similarities in names (Bhattacharya and Getoor 2006a; Bhattacharya and
Getoor 2006b), meta-data (Böhm et al. 2012) or source information (Malin 2005), to
decide which entities underly which references.

In this thesis, we let the term entity refer to a person or a company etc. while an
identifier is a name or a label. If several entities have the same identifier, we say that
the identifier is ambiguous. While a single entity may have several identifiers, we do not
address this here; we focus only on ambiguities. In the relational entity disambiguation
setting, entities are assumed to be related according to some unknown graph structure,
or entity graph. We assume that this graph can be partially observed through a graph of
identifier relations, or identifier graph. Make sure to note the difference between these
two graphs, as the identifier graph contains ambiguities we wish to resolve, while the
entity graph does not. The difference is illustrated in Figure 3.1.1.

Our running example is the setting in which identifiers are used in a corpus of
documents. We let the identifier graph be the graph with one node for each identifier and
an edge between every pair of identifiers co-occuring in at least one document. Edges
are weighted by the significance of the relationships, such as number of co-occurrences.
To provide mild anonymization of the data, we assume that the identifiers have been
assigned in a pseudo-random way. In effect, the only information available to our method
about the entities and their identifiers is the identifier graph.

We proceed to define anonymized relational entity disambiguation as the following
classification problem.

Definition 3.1.1 (Anonymized relational entity disambiguation). Given an undirected
identifier graph G = (V,E) with edge weights wij ∈ R+ and training data S = {(vi, yi) :
1 ≤ i ≤ m, vi ∈ V, yi ∈ {±1}} that labels certain nodes as ambiguous (+) or unambiguous
(−), anonymized relational entity disambiguation is the task of classifying new nodes as
+1 or −1. Each node of G may refer to a single entity or several underlying entities. The
weight of an edge signifies the importance of the connection between two nodes.

Note that this definition does not include the actual separation of the entities that
share identifiers. However, this problem is of great importance, as pointing out which
identifiers are ambiguous can represent very large computational savings for the more
expensive task of resolving the ambiguities.

3.1.1 Our approach

Consider Figure 3.1.1 again as it aims to illustrate some of the intuition behind our
assumptions. To the left is an identifier graph and to the right the corresponding entity
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“Chris Anderson” “Chris Anderson”

TED WIRED

Figure 3.1.1: A toy example of an identifier graph (left) and the corresponding entity
graph (right). In this example, “Chris Anderson” is an ambiguous identifier.

graph (assuming “Chris Anderson” is the only ambiguous identifier). In the figure, two
individuals called Chris Anderson have been assigned only one, common identifier and
thus one common node in the graph. This example shows how two otherwise only loosely
connected communities (TED and Wired) can become strongly connected in the identifier
graph through a single ambiguous node. In other words, it highlights our intuition that
the graph structure surrounding “Chris Anderson” is indicative of whether the identifier
is ambiguous or not. Although this example involves only people, we stress that nodes
can represent any type of entity; an equally troublesome example would be that of the
two cities Paris, France and Paris, Texas.

We proceed to describe our approach to the entity disambigatuon problem as defined in
Definition 3.1.1. Motivated by our intuition that graph structure is indicative of ambiguity,
we will formulate our solution to be the result of graph classification. More precisely, we

let each node vi ∈ V be represented by its κ-neighborhood, N (i)
κ as defined below.

Definition 3.1.2 (κ-neighborhood). Let G = (V,E) be a graph. Then for any vi ∈ V ,

the κ-neighborhood, N (i)
κ is defined by

V (i)
κ = {vi} ∪ {vj ∈ V : s(vi, vj) ≤ κ}
E(i)
κ = {(vp, vq) : (vp, vq) ∈ E ∧ vp, vq ∈ V (i)

κ }
N (i)
κ = (V (i)

κ , E(i)
κ ) . (3.1.1)

In the example of Figure 3.1.1, the 1-neighborhood of the “Chris Anderson” node in
the identifier graph is the entire graph.

As each identifier is now represented by a graph of its own, we are ready to define
our approach in terms of binary graph classification. We let ambiguous identifiers be
represented by a label (+1) and unambiguous by (-1). The setup above allows us to define
our approach as shown in Algorithm 1 which we apply to the identifier graph G.

3.1.2 Extensions of graph kernels

In Paper II, in addition to the definition of relational entity disambiguation as a graph
classification problem, we make several extensions to existing graph kernels. For a complete
description of these extensions, see Paper II, Section 4.

The choice of which kernel to use in Algorithm 1 can have a large impact on the
outcome, as can be seen in Paper II, Section 5. To increase the accuracy of the classification,
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Algorithm 1 DetectAmbiguousNodes(G = (V,E), κ, Y, S, T )

Input: G = (V,E)
Input: Y = {yi : i ∈ S ⊂ V, yi ∈ {±1}} - Training labels
Input: T ⊂ V - Test set
Input: κ - Neighborhood size.
for vi ∈ V do

Set G(i) = N (i)
κ according to (3.1.1)

end for
Compute graph kernel matrix Kij = k(N (i)

κ ,N (j)
κ ), ∀i, j ∈ S

Train an SVM with K and labels Y
Output: SVM classification of test nodes T .

we devise several extensions to existing graph kernels. The first is an extension of the
random walk kernel (Gärtner, Flach, and Wrobel 2003) based on the observation that
the graphs we are classifying are pointed, they have a distinguished node representing the
identifier of interest. To that end, we consider a kernel variant counting only random
walks originating from the distinguished node, not all possible walks.

The second extension we make is to the delta shortest-path kernel (K. M. Borgwardt
and Kriegel 2005). The delta variant simply counts the number of paths of equal length
in pairs of graphs, and can thus be computed in O(n2) time, modulo shortest-path
computation, as compared to O(n4) of the general kernel. In our extension, we consider
distances of shortest paths, as defined by edge weights, not just the number of steps.
Because distances are often real valued, it is not fruitful to test them for equality. Instead,
we consider a variant where distances are discretized into a finite number of bins, allowing
us to use maintain the efficiency of the delta kernel. We consider different kinds of
binnings to compensate for the often power-law like distribution of edge weights. Last,
we consider normalizing the resulting feature vectors for all kernels, effectively forming
the cosine similarity between feature vectors.

3.2 Empirical evaluation

For an empirical evaluation of our proposed method in the task of disambiguating
identifiers in real-world datasets, see Paper II, Section 5. We show that we are better than
or competitive to state-of-the-art methods and that all of our kernel extensions increase
classification accuracy.
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Chapter 4

Concluding remarks

In this thesis we have defined two novel graph kernels based on the concepts of geometric
representations of graphs, the Lovász ϑ and svm-ϑ kernels, designed to capture global
properties of graphs. We have shown that we can characterize the separation margin of
our kernel for classes of graphs. Further, we have shown efficient ways of computing the
kernels approximately using sampling.

The area of graph kernels has been active for over a decade, exploring different features
of graphs and new applications. An important trend in recent years is a focus on handling
attributed graphs of varying kind. In many applications, leveraging labels on nodes gives
a significant increase in classification accuracy. As of yet, neither of our kernels have a
natural way of handling such data. Therefore, one of the most promising directions for
future work is to explore kernels based on geometric representations of labeled graphs.

Another avenue of research remains to be the lowering of the cost of computing the
kernels defined in this paper. While svm-ϑ offers a tremendous speed-up compared to
Lovász ϑ, computing even the sampled versions of our kernels still require considerable
time. We note that the Lovász ϑ kernel involves comparing point sets, a problem that
we’ve chosen to solve by comparing angles of subsets of points. However, comparing sets
of points is a general problem, and future research should evaluate other approaches to it,
in defining new graph kernels. Another way of speeding up computation of svm-ϑ is to
consider other kernels, κ, for the one-class SVM than that described in Section 2.2, which
requires O(n3) time for computing the minimum eigenvalue.

Another line of work open for exploration is that of other global properties potentially
captured by our kernel. This notion can be expanded to the entire field of graph kernels,
in which very little research has been done on which kernels capture which properties.

Finally, inspired by our application of graph kernels to pseudo-anonymized graphs
in entity disambiguation, we have work in progress to consider the use of graph kernels
under the much stronger notion of differential privacy.
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