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Abstract
We theoretically study a doped graphene ribbon suspended over a trench and subject to an ac-
electricalfield polarized perpendicularly to the graphene plane. In such a system, the external ac-field
is coupled to the relatively slowmechanical vibrations via plasmonic oscillations in the isolated
graphene sheet.We show that the electrical field generates an effective pumping of themechanical
modes. It is demonstrated that in the case of underdamped plasma oscillation, a peculiar kind of
geometrical resonance of themechanical and plasma oscillations appear. The efficiency of pumping
significantly increases when thewavenumber of themechanicalmode is in close agreementwith the
wavenumber of the plasmawaves. The intensity of the pumping increases with thewavenumber of the
mode. This phenomenon allows selective actuation of differentmechanicalmodes, although the
drivingfield is homogeneous.

Since the first graphene sample was isolated and
studied experimentally, the experimental and theore-
tical work on the 2D material has grown tremen-
dously, due to its many extraordinary properties [1, 2].
The high mobility, low mass and mechanical strength
of graphene makes it well suited as the basis of
nanoelectromechanical resonators. The frequency
tunability and high quality factor of graphene based
resonators make them promising for e.g. mass sensing
[3] and filtering applications [4]. To actuate the
nanomechanical resonators, different principal sche-
mas are utilized. First of all, mechanical oscillations
can be initiated by applying an electrical field at
resonance frequency with the mechanical vibrations
[5–7]. Another method which is utilized to control
mechanical motion exploits the radiation pressure
induced by an electromagnetic field in an optomecha-
nical cavity [8–10]. In this case the external frequency,
at which the system is driven, is nonresonant with the
relatively low mechanical frequency. Nonresonant
excitation of the mechanical vibrations can also be
achieved by integration of themechanical resonator in
an electrical LC-circuit [11]. In both cases, the force
acting on the mechanical subsystem is determined by
the detuning of the external frequency and the
resonance frequency of the cavity or external

LC-circuit. The resonance frequency depends on the
mechanical displacement which induces an electro-
mechanical time-delayed back-action. The back-
action generates an effective pumping (or damping) of
the mechanical vibrations. Therefore, it is possible
both to excite and cool the resonator. These phenom-
ena have been demonstrated formany systems [12, 13]
and for graphene based resonators in particular [9].
Recently it was shown that similar effects can be
achieved by integrating the resonator into an RC-
circuit [14]. In this description, the actuationmechan-
ism was due to the time-delayed overdamped charge
response rather than coupling via a resonant high-
frequencymode.

In this article, we show that nonresonant excita-
tion of mechanical vibrational modes can also be
achieved for an isolated graphene membrane via its
internal charge dynamics. We will demonstrate that
the nonresonant actuation mechanism presented here
enables selective actuation of different mechanical
modes, even antisymmetric ones. The intensity of
actuation increases with mode number in contrast to
the optomemechanical and electrical pumping
mechanisms mentioned above where predominantly
actuation of the fundamentalmode takes place.
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1.Model

The sketch of the system under consideration is
presented in figure 1, and comprises the isolated
graphene ribbon suspended over a trenchwith width l.
The system is placed in a wave guide. Electromagnetic
waves, with wave length much larger than l, travel
inside the wave guide along the x axis. The field is
assumed to be homogeneous in the trench and screen-
ing effects from the wave guide are neglected. The
wave is polarized perpendicularly to the flat mem-
brane and induces an electrical field along the mem-
brane only when it is deflected from its flat position.
The induced field generates electronic charge waves in
the graphene sheet. Simultaneously, the electrical field
exerts a force on the suspended part when it is charged
and provides a feedback coupling between the electro-
nic and themechanical subsystems.

To analyse this feedback we model the free vibrat-
ing part of the ribbon as an elasticmembrane. For sim-
plicity we consider the membrane to be infinite in
the y-direction. In this limit, we assume that the
membrane deflection U(x, y, t)=U(x, t), charge
density x y t x t, , ,( ) ( ) = and current density
j x y t j x t, , ,x ( ) ( )= are uniform along the trench.We
disregard the geometric nonlinearity of the graphene
membrane since it does not affect the nonresonant
phenomenon discussed in this article and can be
neglected at small amplitude of oscillationU l.

Under these assumptions the dynamical equations
for the flexural out-of-planemodes become
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with intrinsic mechanical damping γ, built-in tensile
stress T0, bending rigidity of graphene 1 eV,k »
electrical driving field in the wave guide
E t E tcos ,d 0( ) ( )= W with driving frequency Ω and
2D-mass density of graphene 0.7 mgmr » m−2. The
corresponding boundary conditions of the clamping

are U(x, t)=0 and U x t, 0( )¢ = at x l 2.=  The
membrane deflection U(x, t) can be presented as a
superposition of the vibrational eigenmodes
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with dimensionless spatial coordinate ξ=x/l,
stretching-bending ratio b l T2 2 2

0k p= and fn ( )x is
the normalized spatial profile of the flexural
eiqenmodes.

To describe the charge dynamics of the electronic
subsystem we use a simple hydrodynamic approach
[15, 16]. We consider monopolar electronic plasma
where the Fermi energy EF is much greater than tem-
perature and . W Within this approach the charge
evolution is described by
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where E1 e2
F

2 p= and ν is the scattering fre-
quency. The electrical field along the ribbon consists of
one external and one internal contribution
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where  denotes the principal value of the integral.
The first term in equation (5) describes the external
electrical field induced along the membrane when it
deflects from its flat position. The second term
describes the internal non-local electrostatic field due
to charge redistribution.

The time-scales of the system are obtained by con-
sidering a typical experimental situationwhere we take
l≈ 5 μm, E 0.5F » meV, and T 0.10 » Nm−1 which
gives b 10 .4» - Under such conditions the character-
istic mechanical frequency 200 MHzMw » and the
characteristic plasma frequency 1pn w~ » THz are
well separated. Further, we consider high-frequency
external driving .p Mw wW ~  The strength of the
electromechanical coupling generated by the external
field is characterized by the coupling frequency

E l2 .E 0 0 mw p r= We will consider low amplitude
external field so that ωE is the smallest fre-
quency .E Mw w W 

2. Effectivemechanical dynamics

To get the coupled dynamics for the amplitudes un(t)
and charge density t,( ) x we combine equations (3)
and (4) and obtain

Figure 1.An isolated graphenemembrane is suspended over a
cavity inside awave-guide. The suspended part of the
membrane is free to perform vertical vibrations. An electro-
static ac-field is applied polarized perpendicularly to the
graphene sheet.
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where f t, ,n ( ) ( )x xá ñ denotes projection of the
charge distribution on the spatial mode function fn.
The characteristic mechanical and plasma frequencies
ωM andωp are defined in table 1.

The electrostatic forces acting on the vibrational
modes can be expressed by substituting an integral
expression for the charge density described by
equation (7) in the right-hand side of equation (6). The
forces t E t f t, ,n nd m( ) ( ) ( ) ( ) x x r= á ñ can then be
formulated as
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and q is the wavenumber of the charge oscillation, see
table 1.

The electrostatic forces on the form equation (8)
introduce linear feedback on the mechanical motion.
The feedback on mode n is direct back to itself via
Gnn(t) but the feedback also couples different modes
viaGnm(t) n m.¹ Wewould like to note that the sub-
sets of odd and even modes do not couple. However,
since the coupling strength E M w w= is assumed to
be small we disregard the coupling between modes

since it will affect the mechanics only to fourth order
in ò. The system in equation (6) then decouples to
independent singlemode oscillators.

The dynamics is further simplified since we con-
sider the high-frequency regime of the driving fre-
quency , .Ep Mw w wW ~  As we will see later, under
such conditions only modes with Kn p

2( )wW play
an important role in the membrane dynamics. We
seek the time evolution of the amplitudes un(t) in the
formof perturbation series
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here 1Me w= W  and u tn m, ( ) are slow on the time
scale Ω−1. The second term in the right-hand side of
equation (8) gives corrections of the order .2 2 e We
will neglect corrections of this order of smallness and
take u t u t .n n,0( ) ( )» In these approximations, the
dynamics ofmode n is governed by
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The dispersion relation which characterizes the
time evolution of the nth mode can be obtained by the
ansatz u t texp i .n n( ) ( )w= Substituting this form in
equation (11)we obtain
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Solving equation (12) we arrive at the following
approximation (with an accuracy of ò2) for the
complex frequenciesωn
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here Q Mw g= is the characteristic Q-factor and we
have introduced the dimensionless frequencies
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wn(q) we neglect the bending rigidity of the graphene
in comparisonwith the clamping tension since b 1.

Table 1.Dispersion relation for
plasma andmechanical vibrations.
The continuous wavenumber q corre-
sponds to a plasmawave
length l q2 .∣ ∣l =

Electronic Mechanical
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Under this condition we can take
f n nsin 2 1 2 2n ( ) ( ) ( ∣ ∣)x p x p q x= + - with
Kn=n. These forms for themode shapes give
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3. Selectivemode actuation

The shift of the complex frequencies occur when the
coupling between the mechanical modes and the
charge waves is significant. The charge waves are
mainly generated from the regions close to the
clamping, since the gradient of the electricalfield along
themembrane is biggest in these areas. The coupling is
therefore strongest when the wave length of the
generated charge waves is in close agreement with the
mechanical wave length. This can be seen in figure 2
which shows that the functions wnn(q) has a sharp
maximum in the vicinity of q n.∣ ∣ ~ Therefore we
have a peculiar kind of spatial geometrical resonance
but a nonresonant phenomenon in the time domain
since there is no explicit relation between the driving
frequency and the mechanical frequencies. Simulta-
neously, at small plasma damping 1,ñ  the func-
tions q,( ˜ )h W and q,( ˜ )L W dramatically increase

when q .2∣ ∣ ˜= W
The shift of themechanical damping is qualitatively

described by the normalized damping coefficient
n ,n

2( ˜ )h W figure 3. The damping coefficient of the nth
mechanical mode n p( )h wW becomes negative at

n
c

p( ˜ )n wW = W ~ and reaches its minima n
min ( ˜ )h n at

the minima frequency .n
min ( ˜ )nW If the plasma oscilla-

tion is overdamped figure 3(a), the characteristic width
of the minima is much greater than the distance
between the minima frequencies ,n

minW while
n3 .n

min 2( )h » - In the underdamped situation
figure 3(c), the distances between the minima fre-
quencies become greater than the width of the minima
and pumping strength n1 3 10 .n

min 2( )h » - It should
be particularly emphasized that the distance between
minima frequencies as well as minima widths are three

order of magnitude greater than, and independent of,
the characteristicmechanical frequency. Because of this,
the phenomenon isnonresonant in the timedomain.

A vibrational mode will become mechanically
actuated if the effective pumping generated by the
high-frequency external field overcomes the intrinsic
mechanical damping of the mode. To actuate a mode,
the driving frequency has to be in the region where the
electromechanical coupling gives negative damping
and the amplitude of the external field has to exceed a
critical value E .n

c ( )W Above the critical value the
mechanical vibration is unstable and will be saturated
by nonlinear effects. The field strength needed to
achieve this can be estimated by assuming the quality
factor to be Q=105 and damping ratio 1 3.pn w =
This gives an estimate of the critical field strength for
the fundamental mode E 30 V1

c » μm, at the opti-
mal driving frequency .1

cW The estimated critical field
strength is demanding in comparison with field
strengths ∼10 mV/μm used for direct resonance
actuation [5]. However, the actuating force decreases
with mode number as 1/n at direct resonance and
does not couple to antisymmetric modes, whereas the

Figure 2. Spatial geometrical resonance between the charge
oscillations and themechanicalmode functions occur in the
vicinity of q=Kn=n.WavenumberKn=n corresponds to
amechanicalmodewithwave length l n2 .l =

Figure 3.The damping coefficient for damping ratio ñ equal
3, 1 and 1/3 in (a)–(c), respectively. A region of negative
damping coefficient is present at driving frequencies .pwW >
Themechanicalmodes can selectively be driven if 1ñ < due
to the geometric resonance of plasma andmechanical
oscillations.
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actuating force increases as n2 and couple to all modes
in the nonresonant phenomenon presented here.

Selective actuation of vibrational modes is possible
when the overlap of the minima peaks is small,
figure 3(c). This possibility is remarkable since the
applied electrical field is homogeneous. It is interesting
to note that in typical optomechanical setups, only sym-
metricmodes are actuated and the strength of pumping
decreases withmode number. In contrast to this, in our
system also antisymmetric modes can be actuated and
the strength of pumping increaseswithmodenumber.

From the above analysis it follows that pro-
nounced selective nonresonant excitation of the
mechanical modes is achievable for 1.ñ < However,
there is a natural restriction on the mode number n
which comes from the applicability of the hydro-
dynamic description of the charge dynamics used in
this article. The hydrodynamic equations are based on
the assumption that the charge carriers are in local
equilibrium. To establish local equilibrium fast
enough, the electron–electron scattering time el el–t
may not exceed n1 1 ,p( )wW ~ which puts a
restriction on how high mode numbers that can be
considered for this model. The scattering time el el–t is
typically some hundreds of femtoseconds [17–19].

4. Conclusions

To conclude, we have shown that the internal charge
dynamics in a suspended isolated graphene sheet can
be utilized to selectively actuate vibrational modes by a
nonresonant homogeneous external field. The phe-
nomenon occurs when the external field induces
plasma oscillations with a wave length comparable to
the wave length of the spatial profile of the vibrational
mode. Different modes can then be selectively driven
via this geometrical resonance, if the plasma oscilla-
tions are underdamped.
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