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I wonder whether knowledge can ever refine
humanity so profoundly for a society in which
each individual lives with dignity, in harmony
with the society and the nature, and realizes that
life is too precious to be wasted with hatred.
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Preface

I did it! Yes, I just did it! I realized one of my greatest dreams. A dream, which
occasionally turned to a nightmare for not being realized, and hope for its realization
made me often very emotional. Like any other special event it feels like this should
have happened much earlier too. Nevertheless, circumstances drove me to take possibly
the most difficult path to get this dream realized. However, after all it now feels good. It
actually feels even better. In fact, it feels far beyond better! It feels so freeing and

relaxing and lets my thoughts fly high!

I still remember those days in the past and myself sitting all alone in my simple room
reading books to escape the bitter reality. Those days I was just dreaming of getting my
high school diploma. Since those days, I have gone through numerous exhaustive
problems, which would tear a weaker person mentally apart. However, no problem has
been able to diminish my love toward science. Nothing has been able to suffocate my
natural desire for knowing more. Perhaps since childhood I have also been inspired by

the Persian scientist, who in the deathbed asked his friend the solution of a problem.

Doing this research has also put extra challenges to me. I searched and searched for a
community with which I could collaborate and possibly would get some support.
Unfortunately, I found none! However, I did not give up; with self-confident and

determinism I started developing my thoughts all alone and came up with new ideas.

Finnish society has offered me various precious possibilities, and 1 am deeply grateful
for that. Many exciting elements in Finnish culture have impressed me genuinely.
However, life in the new society has been far from a fairy tale; everything must have
been built from scratch and the trust of each person in the social milieu should have
been won. Moreover, occasionally you wish the society would take you more openly
without cynicism. Anyhow, my observations suggest that open mind with a touch of
happy nature help gravely with the survival process, and hope, determinism and hard

work with overcoming problems!
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Abstract

Moghadampour, Ghodrat (2006). Genetic Algorithms, Parameter Control and Function
Optimization: A New Approach. Acta Wasaensis No 160, 196 p.

Solving hard optimization problems requires even more efficient implementations of
evolutionary algorithms. In addition, difficult questions related to parameter control
dilemma in genetic algorithms challenge researchers. New methods to implement
genetic algorithms, their operators and parameter control have been developed in the
present work. A new parameterless genetic algorithm for numerical optimization
problems is presented. The algorithm uses binary representation of the problem, but
utilizes real value operations efficiently to implement binary operations, and also to
avoid problems and artifacts associated with binary representation. The algorithm
implements and heavily utilizes the idea of elitism. The genetic algorithm offers: 1) an
efficient and robust method for solving numerical optimization problems, 2) new
approaches to implement initialization, breeding and survivor selection, 3) new
approaches to implement parameter control in an implicit self-adaptive manner. Male
and female chromosomes are presented for the population initialization and crossover
operators. The algorithm utilizes the information from the distribution of the fitness
value population to select individuals for breeding. During the selection phase, no
individual is replaced by a worse offspring. On the other hand, offspring do not need to
be better than their parents to be accepted as population members. Any offspring better
than the worst individual in the population is accepted as a new population member.
Except for the population size, no fixed operator rate is used. Instead, the operator rates
are dynamically determined during the run as a function of the population size.
Moreover, different operations are iterated as long as they produce better offspring.
Several new operators are developed and classical operators are implemented in new
ways. Operators used here are: higher quartile crossover, higher quartile variable
crossover, higher quartile variable replacement, random building block, integer
mutation, decimal mutation, elitist crossover, elitist variable crossover, elitist integer
mutation and elitist decimal mutation. The performance of the algorithm was tested and
reported in detail on 44 different widely used test functions. The performance of the
algorithm was compared to several well-known algorithms including classic genetic
algorithm, evolutionary algorithm, differential evolution (DE) and particle swarm (PS)
on 36 different test cases. The algorithm presented here proved to be superior to all
other algorithms mentioned above.

Ghodrat Moghadampour. Department of Technology and Communication. Vaasa
Polytechnic. Wolffintie 30, 65200, Vaasa, Finland.

Keywords: genetic algorithms, parameter control, self-adaptive parameter control,
optimization problems, algorithm design, distributional decimal binary genetic
algorithm
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1. Introduction

In the real world, there are numerous hard problems, which cannot be solved with
conventional techniques within reasonable time. Some of these problems are
optimization problems. Conventional techniques require rigid assumptions, like
convexity, linearity, differentiability, explicitly defined objectives and so on. Moreover,
in most cases the only available information regarding the object function is its value.
Often, but not always we get away with simplifications such as linearization,
convexication and so on. In addition conventional techniques lack generality and new

problem solutions require new implementations. (Krink 2005.)

There is an apparent need for developing more efficient algorithms for solving
optimization problems. Therefore, the main motivation of this research is to develop an
optimization algorithm and experiment with new techniques, which would increase the
efficiency of the algorithm. In the following, the general definition of optimization

problems and their solution principles are provided.

An optimization problem is a computational problem in which the objective is to find
the best possible solution. This objective can be expressed in a more formal way as: find
a solution x in the n dimensional search space S, which has the optimum (minimum

or maximum) value of the objective function f . In other words:
optimize(x), (D

where x=(x,....,x,) € ScR" and lower(i) < x, <upper(i), | <i<n. Here lower(i)
stands for the lower bound and upper(i) stands for the upper bound of the valid values

for variable x;.

By definition, a point x~ is a local minimum of a function f if there exists some & > 0

such that f(x") < f(x) for all x with ‘x - x*‘ < ¢. Here ‘x - x*‘ stands for the distance

between x and x . On the other hand, a global minimum is a point x  for which
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f(x) < f(x) for all xeR". Similarly, a point x* is a local maximum of a function
[ if there exists some &> 0 such that f(x")> f(x) for all x with ‘x—x#‘ <e. A

global maximum is a point x* for which f(x*)> f(x) for all x e R". (Krink 2005.)

An algorithm is any well-defined computational procedure that takes a set of values as
input and produces a set of values as output (Cormen, Leiserson, Rivest & Stein 2003).
An algorithm is a method for solving a class of problems on a computer. The
complexity of an algorithm is the cost, e.g. running time and storage, of using the
algorithm to solve one of these problems. Computing is a time taking process.
Computational complexity is the study of the amount of computation effort necessary in
order to perform certain kinds of computations. The time complexity of a calculation is
measured by expressing the running time of the calculation as a function of some
measure of the amount of data needed to describe the problem to the computer. If the
running time is at most a polynomial function of the amount of input data, then the

calculation is considered easy and otherwise hard. (Wilf 1994, Cormen et al. 2003.)

Complexity is the intrinsic minimum amount of resources, for instance, memory, time,
messages, etc., needed to solve a problem or execute an algorithm (Black 2005). The
complexity of an optimization problem is determined by its size and the computational
effort needed to solve it. Problems, which have a known polynomial algorithm are said
to be in class P. Problems for which there exists a non-deterministic algorithm running
in polynomial time form the class of NP problems. The core of the NP class consists of
so-called NP-hard problems which are really decision or recognition problems, e.g.
instead of asking for the optimal-length tour of a traveling sales person (TSP), we look
for a tour of length less than L. An algorithm for the recognition version of a problem
can be employed to solve the optimization version. According to this theory, if a
problem X is such that every problem belonging to the class NP is polynomially
transformable to X', we say that X is NP-hard. If in addition problem X itself belongs
to NP, X is said to be NP-complete. (Reeves 1993, Cormen et al. 2003.)
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There is no known algorithm that can solve all instances of an NP-hard problem in
polynomial time, but for some NP-hard problems it is possible to write an algorithm that

approximates a solution to the problem in polynomial time (Krink 2005).

NP-hard optimization problems cannot be efficiently solved in an exact way, unless
P=NP. Thus, if we want to solve an NP-hard optimization problem by means of an
efficient algorithm within polynomial time, we have to accept that the algorithm does
not always return an optimal solution but rather an approximate one. (Ausiello,

Crescenzi, Gambosi, Kann, Marchetti-Spaccamela & Protasi 2003.)

Solution approaches for optimization problems are classified into three categories: exact
algorithms, approximation algorithms and heuristic algorithms. By definition, exact
algorithms solve the given optimization problem to optimality; they guarantee to find
the globally optimal solution for every instance of the problem. Exact algorithms can be

implemented in different ways, of which the most trivial one is exhaustive search.

By definition, an approximation algorithm is an algorithm to solve an optimization
problem that runs in polynomial time in the length of the input and outputs a solution
that is guaranteed to be close to the optimal solution, i.e. a solution in the feasible
region with the minimum (or maximum) value of the objective function. The execution

time of a computation, m(n) is polynomial when it is no more than a polynomial

function of the problem size, n. A function is polynomial if it is the sum of some

k
constants times powers of the argument: f(x) = Zci.xl.” . (Black 2005.)
i=0

The quality of an approximate solution can be expressed by relative error. Given an

optimization problem X, for any instance x of X and for any feasible solution y of

x , the relative error of y with respect to x is defined as (Ausiello et al. 2003.):

[m* (x) = m(x, y)|
max {m * (x),m(x,y)} ’

E(x,y)= )
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where m*(x) denotes the measure of an optimal solution of instance x and m(x,y)
denotes the measure of solution y. The relative error is equal to 0 when the solution

obtained is optimal, and becomes close to 1 when the approximate solution is very poor.
Given an optimization problem X and an approximation algorithm A for X', A4 is an
€ -approximate algorithm for X if, given any input instance x of X, the relative error

of the approximate solution A(x) provided by algorithm A is bounded by &, that is
(Ausiello et al. 2003.):

E(x,A(x))<¢. 3)

“A heuristic is a technique which seeks good (i.e. near-optimal) solutions at a
reasonable computational cost without being able to guarantee either feasibility or
optimality, or even in many cases to state how close to optimality a particular feasible
solution is” (Reeves 1993). An algorithm is called heuristic if it “normally” provides
near optimal results for hard optimization problems in a reasonable time, without any
guarantee on the feasibility of the problem and the quality of the obtained solution.
Heuristics are either metaheuristics, modifiable to a broad variety of problems, or

problem-specific heuristics developed for a specific problem area.

A heuristic algorithm can be constructive or improvement method. A constructive
heuristic method starts usually from an “empty solution” and fixes its components
successively in either a deterministic or a probabilistic way. While the solution found
by a deterministic heuristic algorithm remains the same from run to run, repeated runs
of a probabilistic deterministic algorithm can yield different final solutions.
Improvement heuristics start from a feasible solution and iteratively improve that by
local reorganizations in its structure. Some classes of heuristic algorithms are further
classified to point-based, which usually maintain and improve a single feasible solution
during their operation, and population-based, which maintain a set of feasible solutions

and manipulate it.

Basic local search methods (Papadimitriou & Steiglitz 1982; Reinelt 1994; Reeves
1995; Arts & Lenstra 1997; Magyar 2000), simulated annealing (Aarts & Laarhoven
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1987; Aarts & Korst 1989; Reeves 1995; Magyar 2000) and tabu search (Glover 1989;
Glover 1990; Magyar 2000) are examples of metaheuristic approaches.

The origins of evolutionary computation can be tracked to the late 1950s, but the field
remained unknown to the broader scientific community for almost three decades due to
the lack of available powerful computer platforms and also some methodological
shortcomings of the early approaches (Biack, Hammel & Schwefel 1997). There has
been an increasing interest in imitating living beings to develop powerful algorithms for
difficult optimization problems since the 1960s (Gen & Cheng 2000). Problem solving
systems based on principles of evolution and hereditary, evolution programs (EPs),
generally maintain a population of potential solutions, they have some selection process
based on fitness of individuals, and some “genetic” operators. The evolution can be
considered as a general optimization process, which deals with highly complex
problems. They emulate Darwinian evolution and Mendelian inheritance and optimize
the solution by competition and alteration of candidate solutions (Krink 2005). In early
evolution programs a floating-point representation was used and mutation was the only
recombination operator (Michalewicz 1996). These evolution programs have been
applied to optimization problems with continuously changeable parameters, but quite
later they were extended for discrete problems (Béck, Hoffmeister & Schwefel 1991;
Herdy 1991; Michalewicz 1996).

Evolutionary algorithms include genetic algorithms (GA), genetic programming (GP),
evolutionary programming (EP), evolution strategies (ES) and differential evolution
(DE). Related heuristics include simulated annealing (SA), hill-climbing, guided local
search (GLS), tabu search (TS), ant system (AS) and particle swarms (PS). (Krink
2005.)

The best known evolution programs include genetic algorithms, evolutionary
programming, evolution strategies, and genetic programming. Moreover, there are
many other evolutionary hybrid systems which incorporate various features of the
above paradigms. Differences between various evolutionary techniques are hidden on a
lower level; various evolutionary techniques use just different chromosomal

representations and appropriate sets of more or less genetic operators (Michalewicz



16 ACTA WASAENSIA

1996). The common denominator in evolutionary algorithms is that these algorithms
deal with a population of individuals, which are selected and altered in an iterative

process (Krink 2005).

Evolutionary algorithms can be distinguished from local search techniques in two
aspects: 1) they are based on the idea of competition and recombination of candidate
solutions in a population, 2) n repeated executions of a local search is different than

execution of a population-based heuristic with » individuals. (Krink 2005.)

In an evolutionary algorithm 1) problems are described by a set of parameters, 2)
parameters are interpreted as a set of artificial genes, 3) genes are considered as
blueprints of individuals and 4) evolution is applied to individuals (Fogel, Owens &
Walsh 1966; Rechenberg 1973; Holland 1975; Krink 2005). It is generally accepted that
any evolutionary algorithm must have five basic components: 1) a genetic
representation of a number of solutions to the problem, 2) a way to create an initial
population of solutions, 3) an evaluation function for rating solutions in terms of their
“fitness”, 4) “genetic” operators that alter the genetic composition of offspring during
reproduction, 5) values for the parameters, e.g. population size, probabilities of applying

genetic operators (Michalewicz 1996).

G. Rudolph describes the archetype of evolution strategies in (Rudolph 2000). He
explains how the problem of minimizing the total drag of three-dimensional slender
bodies in a turbulent flow was the motivation to solve the analytically intractable form
design problem with the help of some kind of robot. The robot should perform the
necessary experiments by iteratively manipulating a flexible model positioned at the
outlet of a wind tunnel. The iterative search strategy, switching to small random
changes that were only accepted in the case of improvements, the interpretation of
binomially distributed changes as mutations and of the decision to step back or not as

selection was the seed for all further developments leading to evolution strategies.

The earliest evolution strategies were based on a population consisting of a single

individual only and a mutation operator. The individual was represented as a pair of
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float-valued vectors, i.e. v =(x,0), where x represents a point in the search space and

o is a vector of standard deviations. Mutation is then realized by replacing x by

t+1

x'"" =x"+N(0,0), where N(0,0) is a vector of independent random Gaussian

numbers with a mean of zero and standard deviation o . The offspring x'*' is accepted
as a new member of the population if and only if it has better fitness and satisfies all

possible constraints of the problem. (Michalewicz 1996.)

Some types of evolution based systems are: 1) a class of evolution strategies which
imitate the principles of natural evolution for parameter optimization problems
(Rechenberg 1973; Schwefel 1981), 2) Fogel’s evolutionary programming which is a
technique for searching through a space of small finite-state machines (Fogel, Owens &
Walsh 1966), 3) Golver’s scatter search techniques which maintain a population of
reference points and generate offspring by weighted linear combinations (Glover 1977),
4) Holland’s genetic algorithms (GAs) (Holland 1975), and 5) Koza’s proposed genetic
programming to search for the most fit computer program to solve a particular problem
(Koza 1992; Michalewicz 1996; Béck et al. 1997; Banzhaf, Nordin, Keller & Francone
1998).

The evolution program maintains a population P of n individuals P(z) = {x|,...,x.},

where each individual, implemented as some data structure S, represents a potential
solution to the problem at hand. At each iteration the “fitness” of all individuals are
measured, some individuals are altered by means of “genetic” operators, e.g. mutation:

(m,:§ —§") and crossover: (c;:S, x-S, — §"), and fitter individuals are selected

to form a new population at the next iteration. It is hoped that after a number of
generations the best individual represents a near-optimum solution to the problem at

hand. (Michalewicz 1996.)

Evolution strategies (ESs) are algorithms used to solve parameter optimization
problems. They imitate the principles of natural evolution (Schwefel 1981; Bick,
Hoffmeister & Schwefel 1991; Michalewicz 1996). They adopt a special hill-climbing

procedure with self-adapting step sizes o and inclination angles 6. The major
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similarity between ESs and GAs are: 1) both maintain populations of potential solutions

and 2) both select fitter individuals based on the selection principles.

The differences between ESs and GAs are hidden on the lower level. The first
difference is that ESs operate on floating-point vectors and the alteration process may
include other “genetic” operators, whereas classical GAs operate on binary vectors.
However, the structure of GAs has also been modified for specified applications. These
modifications include e.g. variable length strings, richer structures than binary strings,
and modified genetic operators. The second difference lies in the selection process

itself: in a single generation of the ES, x parents, by means of recombination and
mutation, generate A offspring constituting an intermediate population of g+ A4
individuals, from which A less fit individuals are removed to create a population of u

individuals. (Michalewicz 1996.)

According to the no-free-lunch (NFL) theorem (Wolpert & Macready 1995; Schwefel
1995) there is no single algorithm for solving all, e.g. optimization problems that is on
average superior to any competitor. However, the practical implication is not so
dramatic. Those problems, for which no search algorithm is superior, are mostly
irrelevant random problems with no correlation between neighbored points. The
implication of NFL for EAs is that no set of parameters for an EA is superior on all
problems (Krink 2005).

EAs behave better than other methods with respect to solving a specific class of
problems while they behave worse for other problem classes. Classical optimization
problems are more efficient in solving linear, quadratic, strongly convex, unimodal,
separable and many other special problems. On the other hand, EAs do not give up so
early when discontinuous, nondifferentiable, multimodal, noisy and otherwise
unconventional response surfaces are involved. EAs show inefficiency on the classes of
simple problems, but the effectiveness or robustness of them extends to a broader field

of applications. (Schwefel 2000.)
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As it can be concluded from the introduction, there is an apparent challenge for
developing new more efficient evolutionary algorithms which solve hard optimization
problems with required precision and take reasonable time and resources. Genetic
algorithms and evolutionary strategies both offer interesting techniques. The interesting
question is whether it is possible to combine techniques from GAs and ESs to form an
efficient genetic algorithm for optimization problems. However, efficiency of a genetic
algorithm depends on many factors in its implementation. Some of these factors are
problem representation, types of operators and the number of times each operator is
implemented, i.e. operator rates. Thus, the main hypothesis of this research can be

formulated as:

Hypothesis (Efficiency Boosting Hypothesis): The efficiency of binary genetic
algorithms for numerical optimization problems can be improved by 1) introducing
chromosomes of the opposite sex in the initialization and crossover operation, 2)
injecting better random building blocks to chromosomes, 3) replacing all worse
building blocks in a chromosome with the better one from the same chromosome, and
4) fine tuning candidate solutions by limiting the magnitude of changes imposed by
genetic operators within the bounds determined by the magnitude of candidate
solutions. Also selection for breeding can be successfully implemented straightly based
on the population fitness distribution, and operator rates can be defined as a function of

the population size.

This thesis can be divided into three main parts: literature survey, new genetic algorithm
description and experimentation. The literature survey is divided into four parts.
Chapter 1 offers an introduction to the optimization problems and evolutionary
algorithms. Chapters 2 and 3 provide a detailed description of genetic algorithms, their
theory and implementation. Chapter 4 covers parameter control techniques in genetic
algorithms. Chapter 5 describes the developed algorithm and operators in detail.
Chapter 6 covers the experimentation and test results on several widely used benchmark
functions. Chapter 7 provides a summary of the results of test runs, and comparison data

with some other well-known algorithms. In Chapter 8 main conclusions are drawn.
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2. Genetic Algorithms

There is no generally accepted rigorous definition of "genetic algorithm" in the
evolutionary-computation community that differentiates GAs from other evolutionary
computation methods. GAs have two essential components: survival of the fittest and
variation (Goldberg 2000). The idea of a genetic algorithm can be understood as the
intelligent exploitation of a random search (Reeves 1993). Most often GAs have at least
the following elements in common: populations of chromosomes, selection according to
fitness, crossover to produce new offspring, and random mutation of new offspring.
Holland's fourth element of GAs—inversion—is rarely used in today's implementations,

and its advantages are not well established (Mitchell 1998).

Genetic algorithms borrow a vocabulary from natural genetics. There are a few
synonyms for members of a population; individuals, genotypes, structures, strings or
chromosomes. It is assumed that organisms in GAs are haploid, i.e. one-chromosome
individuals. Units which chromosomes are made of are called genes, features,
characters, or decoders. These are arranged in linear succession; every gene controls
the inheritance of one or several characters. Each place, i.e. loci, of the chromosome is
reserved for gene of certain character. Each gene may be in several states, i.e. alleles,
also called feature values. An evolution process run on a population of genotypes aims

at finding the optimal solution, i.e. phenotype of a chromosome, for the problem at
hand.

During this evolution process, exploring the search space may seem conflicting with
exploiting the best solutions. GAs strike a remarkable balance between exploration and
exploitation of the search space. However, for instance, hill climbing exploits the best
solution at the cost of exploring the search space, and random search explores the
search space at the cost of exploitations of the promising regions of the space
(Michalewicz 1996).

The simplest form of GA involves three types of operators: selection, single point

crossover, and mutation. A simple GA works as follows (Mitchell 1998):
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1. Start with a randomly generated population of 7 /-bit strings (chromosomes)
2. Calculate the fitness f{x) of each bit string x in the population
3. Repeat the following steps until » offspring have been created:

a. Select a pair of parent bit strings from the current population, the probability
of selection being an increasing function of fitness. Selection is done “with
replacement”, meaning that the same chromosome can be selected more
than once to become a parent.

b. With probability P. (crossover probability or crossover rate) cross over the
pair at a randomly chosen point (chosen with uniform probability) to form
two offspring. If no crossover takes place, form two offspring that are exact
copies of their respective parents. In multi-point crossover the crossover rate
for a pair of parents is the number of points at which a crossover takes
place.

c. Mutate the two offspring at each locus with probability p, (the mutation
probability or mutation rate), and place the resulting bit strings in the new
population

4. Replace the current population with the new population

5. Go to step 2.

In each run, the GA is typically iterated for 50 to 500 generations (iterations). Each run
often produces one or more highly fit chromosomes in the population. Due to the large
role of randomness in each run, two runs with different random-number seeds will
generally produce different detailed behaviors. Researchers often report these behaviors
statistically; e.g., the best fitness found in a run and the generation at which the
individual with the best fitness was discovered, averaged over many different runs of
the GA on the same problem. The success of the GA algorithm depends greatly on the
population size and probabilities of crossover and mutation (Mitchell 1998). It seems
that the major factor behind the failure and success of genetic algorithm is domain

independence (Michalewicz 1996).

Because of domain independence of GAs, they are unable to deal with nontrivial

constraints. A considerable question in designing a chromosome representation is the
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implementation of constraints on solutions—problem-specific knowledge. In evolution
programming different representation structures have different characteristics of
suitability for constraint representation. This complicates the problem even more; any
problem would require careful analysis for defining appropriate representation and
meaningful genetic operators. The issue is selecting “the best” chromosomal
representation of solutions together with meaningful genetic operators to satisfy all

constraints imposed by the problem (Michalewicz 1996).

A GA will have a good chance of being competitive with or even surpassing methods
that do not use domain-specific knowledge in their search procedure, in the following
situations (Mitchell 1998): 1) the search space is large, 2) the search space is known not
to be perfectly smooth and unimodal, 3) the search space is not well understood, 4) the

fitness function is noisy, 5) the task does not require a global optimum to be found.

Otherwise, a GA may converge on a local optimum in a rather small search space. A
GA will be surpassed by a gradient-ascent algorithm such as steepest-ascent hill
climbing in a smooth or unimodal search space. In addition, domain-specific heuristics
can often be designated to outperform GAs in exploiting well-known search spaces
(Mitchell 1998).

Genetic algorithms are not generally the best way to solve every problem, but they
produce stunning results compared to the traditional minimization approaches since
they 1) optimize with continuous or discrete variables, 2) do not require derivative
information, 3) simultaneously search from a wide sampling of the cost surface, 4) deal
with a large number of variables, 5) are well suited for parallel computers, 6) optimize
variables with extremely complex cost surfaces, i.e. they can jump out of a local
minimum, 7) provide a list of optimum solutions, not just a single solution, 8) may
encode the variables so that the optimization is done with the encoded variables, 9)
work with numerically generated data, experimental data or analytical functions (Haupt

et al. 2004).

Although the GA theory provides some explanation for why the algorithm converges to

the sought optimal point, practical applications do not always follow the theory due to:
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1) the coding of the problem often makes GA operate in a space different from the
actual problem space, 2) the number of iterations is limited, and 3) the population size is
limited (Michalewicz 1996).

Hybridization of genetic algorithms with local search methods and other tailored
optimization heuristic is essential when aiming at high-quality solutions. GAs can be
hybridized by: 1) departing from classical, bit-string genetic algorithms towards more
complex systems, involving the appropriate data structures (Mitchell 1998), 2)
incorporating the positive features of the other search algorithm in the hybrid algorithm,
and 3) creating crossover and mutation operators for the new type of encoding by
analogy with bit string crossover and mutation operators (Davis 1991; Michalewicz

1996).

Hybridization of a GA by incorporating local optimization can be divided in two basic
ways (Magyar 2000): 1) Lamarckian evolution (parallel genetic hill-climbing, genetic
local search); local optimization on the members of the population is performed every
now and then, and individuals are replaced by the locally optimal solutions, 2)
Baldwinian strategy; the fitness values of the chromosomes are evaluated by a local
optimizing algorithm of their locally optimized variants, but the chromosome itself

remains unchanged.

Lamarckian theory is based on two observations: 1) use and disuse — individuals lose
characteristics they do not require (or use) and develop characteristics that are useful, 2)
inheritance of acquired traits — individuals inherit the traits of their ancestors.
Baldwinian theory states that organisms can pass on learned abilities to their offspring.

(Wikipedia 2005.)
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3. Implementing Genetic Algorithms

There is no rigorous theory on when a GA outperforms other search methods. The
performance of a GA depends very much on the details of the implementation such as
the method for encoding candidate solutions, the operators, the parameter strings, and
the particular criterion for success. Local search in numerical applications seems to be
difficult for GAs. GAs are suggested to be used to perform the initial search, before
turning local search using domain specific knowledge to guide the local search (Holland
1975; Michalewicz 1996).

GAs are probably the most generally applicable search heuristics for mixed numerical
and discrete problems. The knowledge about the problem should be incorported in the
problem representation, i.e. in the encoding and fitness function and also in the
operators, like mutation and crossover operators. For continuous numerical problems,
the real number encoding should be adopted. Both uniform and non-uniform variance
Gaussian mutation and arithmetic crossover should be used. The general scheme with
real number mutation is to add a random vector m = (m,,m,,...,m, ) to solution
candidate x such that m, is scaled according to the domain of x; and x" = x +m . In the
Gaussian mutation the entries of m are normal distributed by N(0,c). In the uniform
mutation the entries of m are uniformly distributed by U(-o,+0). In the uniform
variance mutation ¢ is kept constant while in the non-uniform variance mutation o is
changing over time. In the arithmetic crossover an offspring x' is created from a
number of parents usually with w~U(0,1), like x"=wx, +(1-w)x, for two parents.
Tournament selection of size two or ranking selection, or in some cases preferably the
steady-state selection should be used. Also elitism of 1-10% with minimum of one

individual should be applied in order to get an efficient GA implementation. (Krink
2005.)

For integer and mixed numerical problems the binary encoding with Gray encoding
with fast bit flip mutation and uniform or 1-point crossover are recommended. Here also

the tournament selection of size two or ranking selection or in some cases preferably
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steady-state selection and elitism of 1-10% with minimum of one individual are

recommended. (Krink 2005.)

Like natural genetic systems, individual structures are not the focus of attention for
GAs. After identifying high performance regions of the search by a GA, it may be
useful to invoke a local search routine to optimize the members of the final population
(Grefenstette 1987; Michalewicz 1996).

The local search requires the utilization of schemata of higher order and longer defining
length than those suggested by the Schema Theorem (Holland 1975; Altenberg 1995;
Michalewicz 1996). A schema is built by introducing a don’t care symbol (*) into the
alphabet of genes, like 1**0100* and represents all strings, which match it on all
positions other than *. The order of a schema defines its speciality and is calculated by
subtracting the number of don 't care symbols from the length of the string. The defining
length of a schema defines the compactness of information contained in it and is the
distance between the first and the last fixed string positions. For problems whose
domains of parameters are unlimited, the number of parameters is quite large, and high
precision is required, the binary solution vectors should be long. For such problems the

performance of GAs has been reported to be quite poor. (Michalewicz 1996.)

3.1 Problem Encoding

Correct problem encoding is essential for genetic algorithms and it affects the
efficiency. Any encoding technique should fulfill the following criteria: 1)
nonredundancy, 2) legality, 3) completeness, Lamarckian property, 5) causality.
Nonredundancy means that the mapping between the encoding and solutions must be
one-to-one. Legality means that any permutation of an encoding corresponds to a
solution. The completeness means that any solution has a corresponding encoding. The
Lamarckian property means that the meaning of alleles for a gene is not context
dependent. Generally, any encoding technique is expected to have Lamarckian property
so that offspring can inherit goodness from parents. Causality means that small
variations on the genotype space due to mutation imply small variations in the

phenotype space. Search processes that do not destroy the neighborhood structure are
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said to exhibit strong causality. Weak causality describes the case where small changes
in the genotype space correspond to later changes in the phenotype space, and vice
versa. Genetic algorithms work on the genotype space (coding space) and the phenotype
space (solution space) alternatively. The genetic operators work on the genotype space
and the evaluation and selection operators work on the phenotype space. The mapping
from the genotype space to the phenotype space influence the performance of genetic
algorithms significantly. Natural selection is the link between chromosomes and the

performance of decoded solutions. (Gen & Cheng 2000.)

The encoding methods can be classified according to what kind of symbols is used as
the alleles of a gene. The encoding methods can be divided to the following classes: 1)
binary encoding for binary, integer and real numbers, 2) real number encoding for real
numbers only, 3) integer or literal permutation encoding, 4) general data structure
encoding. Binary encoding forces the user to define precision for each variable and it
can be directly used for both integer and binary problems. On the other hand, the binary
encoding requires a decoding function and it might cause decoding anomalies (Krink
2005). The real number encoding has been widely confirmed to work better than binary
encoding for optimizations and constrained optimizations problems and actually

considered the best one for solving such kind of problems (Gen et al. 2000).

3.1.1 Binary Encodings

Typically, GA applications use fixed-length, fixed-order bit strings to encode candidate
solutions. Due to the earlier work of Holland and his students bit strings are the most
common encodings. Moreover, the binary alphabet offers the maximum number of
schemata per bit of information of any coding (Goldberg 1989; Michalewicz 1996;
Béck et al. 1997). It also facilitates theoretical analysis and allows elegant genetic
operators. Much of the existing GA theory is based on the assumption of fixed-length,
fixed-order binary encodings. Heuristics about appropriate parameter settings, e.g. for
crossover and mutation rates, have also generally been developed in the context of
binary encodings. However, binary encodings are unnatural and unwieldy for problems
such as evolving weights for neural networks, and they are prone to rather arbitrary

orderings.
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3.1.2 Multiple-Character and Real-Valued Encodings

It is most natural for many applications to use an alphabet of multiple characters or real
numbers to form chromosomes. Even though Holland’s schema-counting argument
seems to imply that GAs should exhibit worse performance on multiple-character
encodings than on binary encodings, several empirical comparisons have shown better
performance for multiple-character or real-valued encodings (Janikow & Michalewicz
1991; Wright 1991; Mitchell 1998). The performance depends very much on the kind of
problem and on the details of the GA being used. Moreover, there are no rigorous
guidelines for predicting which encoding will work best (Michalewicz 1996).
Experimentation indicated that floating-point representation was faster, more consistent
from run to run, and provided a higher precision especially with large domains where
binary coding would require prohibitively long representation. Furthermore,
incorporating floating-point operators, which enhance the accuracy, can be more easily
designed. Some more reasons for superiority of floating-point representation are given
in (Goldberg 1990; Michalewicz 1996): 1) one gene corresponds to one variable, 2)
Hamming cliffs, i.e. the significant differences between binary representations of close
numbers, like 15 (01111) and 16 (10000), and other artifacts of mutation operating on
bit strings treated as unsigned binary strings are avoided and 3) fewer generations are

needed for population conformity.

3.1.3 Tree Encodings

Tree encodings allow the search space to be open-ended, i.e. a tree of any size could be
formed via crossover and mutation. On the other hand, this open-endedness may lead to
some pitfalls. The formation of more structured, hierarchical candidate solutions can be
prevented when trees grow large in an uncontrolled way. Moreover, the resulting large
trees can be very difficult to understand and to simplify. So far, there are only very
nascent attempts to extend the GA theory to tree encodings (Tackett 1994; O’Reilly &
Oppacher 1995; Mitchell 1998).
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3.2 Selection Methods

Selection is one of the main operators used in evolutionary algorithms. It does not
create any new solution; instead, it selects relatively good solutions from a population
and deletes the worse solutions. Thus, the primary objective of the selection is said to
emphasize better solutions in a population. The selection operator is a mix of two
different concepts; reproduction and selection. Reproduction is referred to when one or
more copies of a good solution is reproduced. Selection is referred to when multiple
copies of a solution are placed in a population by deleting some inferior solution
(Kalyanmoy 2000). Darwinian natural selection is the principle behind genetic
algorithms and provides the driving force for them. Genetic search may terminate with
too much pressure due to favoring better solutions too much, and may be too slow with

too little pressure due to not favoring better solutions enough (Gen et al. 2000).

After encoding, the second step is to determine the way the GA performs
selection—that is, how to emphasize the fitter individuals in the population, and how
many offspring each individual will create. The purpose of selection is to drive the
population towards increasingly better solutions by weeding out bad solutions. (Krink
2005.)

During the selection process the following actions take place: 1) the objective function
is mapped to fitness 2) a probability distribution based on the fitness values of the

population is created 3) samples from this distribution are drawn (Grefenstette 2000).

Selection methods include 1) tournament selection, 2) proportional (roulette-wheel)
selection, 3) ranking selection, 4) steady-state selection and manual (interactive)
selection (Krink 2005). Most common selection types are: 1) roulette wheel selection,

2) (u—A)-selection, 3) tournament selection, 4) steady-state reproduction, 5) ranking

and scaling, 6) sharing (Gen et al. 2000).

The selection procedures can be divided into dynamics and static methods (Biack &

Hoffmeister 1991; Michalewicz 1996). Static selection requires that the selection
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probabilities remain constant between generations (cf. rank selection), whereas in a

dynamic selection (cf. proportional selection) these probabilities change.

The selection procedures may also be divided into extinctive; selection probability of an
individual may be zero, and preservative, which requires a mnon-zero selection
probability for each individual. Extinctive selection methods are further divided into /ef?
and right selections. In the left extinctive selection, premature population convergence
due to super individuals is avoided by preventing the reproduction of the best
individuals. In the right extinctive selection, the best individuals are not prevented form
reproduction. Moreover, in a pure selection method individuals are allowed to

reproduce in only one generation regardless of their fitness (Michalewicz 1996).

Implementations of genetic algorithms are prone to converge prematurely. Researches
aimed at eliminating this danger are mostly related to: a) the magnitude and kind of
errors introduced by the selection mechanism, and b) the characteristics of the function
itself (Michalewicz 1996). Some strategies for combating premature convergence are
(Eshelman & Schaffer 1991; Michalewicz 1996): 1) incest prevention, 2) using
segmented crossover and shuffle crossover, and 3) detecting duplicate strings in the
population. Incest prevention might prohibit an individual from mating with itself, with
its parents, with its children, with its siblings, and so on. Segmented crossover is a
variant of the multi-point crossover, which allows the number of crossover points to
vary. The number of crossover points is replaced by a segment switch rate, which
specifies the probability that a segment will end at any point in the string. Shuffle
crossover is independent of the number of crossover points. It randomly shuffles the bit

positions of the two strings in tandem, 2) crosses the strings and unshuffles the strings.

Two primary factors in genetic search are population diversity and selective pressure.
These are in some sense just other variations of exploration of the search space versus
exploitation of optimal solutions. Parameters used for tuning a GA actually affect the
balance between the selective pressure and population diversity. A high selective
pressure means intensive exploitation of better solutions and the loss of population

diversity. On the other hand, a low selective pressure means intensive exploration of the
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search space and high population diversity at the cost of exploiting optimal solutions

(Whitely 1989; Michalewicz 1996).

Striking a balance between the population diversity and the selective pressure seems
important in the evolution process of the genetic search. Strong selective pressure
would reduce diversity needed for further variation and progress; sub-optimal highly fit
individuals would take over the population and cause the premature convergence of the
search. On the other hand, a weak selective pressure would result in too slow evolution

and make the search ineffective (Michalewicz 1996).

Several variations of the simple selection are presented in (De Jong 1975; Michalewicz
1996). The elitist model enforces preserving the best chromosome. It lets a certain
proportion of best individuals, the elite in the population be untouched by the operators.
It is very useful for all selection schemes and is included in steady-state selection. The
elitist model prevents the best found candidate solution from accidentally getting lost
and preserves the best found solution(s) as fix points to create offspring in their vicinity
(Krink 2005).

The expected value model reduces the stochastic errors of the selection routine by

introducing a count for each chromosome v. This count is initially set to the ratio of the
fitness of the chromosome over the average fitness of the population, i.e. f (v)/ f and

then decreased by 0.5 or 1 when the chromosome is selected for crossover or mutation
respectively. A chromosome count below zero would imply that the chromosome is not
available for selection any more. Another significant selection method is stochastic
universal sampling, which uses a single wheel spin, which is spun with a number of
equally spaced markers equal to the population size as opposed to a single marker

(Baker 1987; Michalewicz 1996).

In selection-seduction, approach individuals are allowed to choose their mates:
individuals are selected based on their fitness, however, at the time of breeding an

individual is allowed to select its mate based on its own preferences, which are
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formulated in terms of phenotypic characteristics and can constitute a part of the

phenotype. (Ronald 1995; Michalewicz 1996).

It is believed that the common cause of premature convergence is the presence of
individuals, which are much better than the average individuals of the population, i.e.
super individuals. Such individuals have a large number of offspring, prevent other
individuals from contributing any offspring in next generations, and can cause a rapid
convergence to local optimum. This, in turn, is the basis for other sampling methods
introducing artificial weights: chromosomes are selected proportionally to their rank

rather than actual evaluation values (Baker 1985; Whitely 1989; Michalewicz 1996).

A modified genetic algorithm (modGA) with a different selection method with respect
to the classical genetic algorithm is presented in (Michalewicz 1996). In modGA r (not
necessarily distinct) chromosomes with fitness values over the average are selected for
reproduction, » distinct ones with fitness value below the average are selected to die,
and the remaining ones, neutral strings, are copied to the next generation. Depending on
the number of selected distinct strings to reproduce and die, the number of neutral
strings in a generation is at least n —27 and at most n—r, where nis the population

size.

In order to protect stronger chromosomes, the new population P(f+1) of modGA is
formed from P(¢), according to the stochastic universal sampling method, in the

following way (Michalewicz 1996):

Step 1: Select » parents from P(¢f) and mark each copy of selected
chromosome as applicable to exactly one fixed genetic operation.

Step 2: Copy n —r distinct chromosomes from P(¢) to P(¢+1).

Step 3: Let » parents breed to produce exactly » offspring.

Step 4: Insert these » new offspring into population P(¢ +1).

There are some advantages of this selection method over others mentioned earlier: 1) an

individual with a fitness value above average has a good chance to be a member of both
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r and n—r elements, 2) to provide a uniform treatment of used genetic operators, they

are applied on whole individuals as opposed to individual bits.

The population size is utilized better in modGA; exact multiple copies of the same
chromosome are not kept in the new populations. Therefore, it is unlikely that the
population represents a decreasing number of unique chromosomes. The similarity
between modGAs, steady state GAs (SSGA) and classifier systems is that they may
allow only a few individuals to change within each generation. In breeder GA (BGA),
(Miihlenbein & Schlierkamp-Vosen 1993; Michalewicz 1996) r best individuals are
selected and mated randomly until the number of offspring is equal to the size of the
population, so that offspring generation replaces the parent population and the best

individual found so far remains in the population.

3.2.1 Fitness-Proportionate Selection

As in Holland’s original GA, in fitness-proportionate selection, the number of times an
individual is selected to reproduce (“expected value”) is its fitness value divided by the
average fitness of the population (Mitchell 1998). The most common method for
implementing fitness-proportionate selection is “roulette wheel”. Each individual is
assigned a slice of a circular “roulette wheel”, the size of the slice being proportional to
the fitness of the individual. The wheel is spun as many times as the number of
individuals, N. On each spin, the individual under the wheel’s marker is selected to be
as a member of parents for the next generation. This method can be implemented as

follows (Mitchell 1998):

e Sum the total expected value of individuals in the population. Let this sum be 7.

e Repeat N times:

e Choose a random integer » between 0 and 7.

e Loop through the individuals in the population, summing the expected values,
until the sum is greater than or equal to . The individual whose expected value

puts the sum over this limit is one selected.
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In other words, a slot of the interval [0,1] is assigned to each individual according to the

ratio of its fitness value over the sum of fitness values of the population individuals and

individuals are iteratively selected by the slot that holds a random number in U(0,1).

(Krink 2005)

The problem with this stochastic method is that with the relatively small populations
typically used in GAs, the actual number of allocated offspring to each individual is
often far form its expected value. Moreover, an extremely unlikely series of spins of the
roulette wheel could even allocate all offspring to the worst individual in the population
(Mitchell 1998).

To minimize the range of possible actual selection frequencies the SUS (stochastic
universal sampling) method was proposed (Baker 1987; Mitchell 1998). In SUS, rather
than spin the roulette wheel N times to select N parents, the wheel is spun once—but
with N equally spaced pointers, which are used to select the N parents at one time.
However, SUS does not solve the major problems with fitness-proportionate selection,
i.e. early in the search, the fitness variance in the population is high and a small number

of individuals are much fitter than the others. (Mitchell 1998)

3.2.2 Sigma Scaling

In “sigma scaling” (Forrest 1985; Mitchell 1998) selection is kept relatively
independent of the fitness variance in the population over the course of the run. When
the standard deviation of the fitness is high, the fitter individuals will not be allocated
too many offspring. Likewise, when the population is more converged, the standard
deviation is typically low; the fitter individuals will stand out more. An individual’s
expected value is a function of its fitness, the population mean, and the population

standard deviation. For example, the following is a sigma scaling function:
s LD=TD e niy 20

ExpVal(i,t) = 20(1)
1.0 if o(t)=0

“4)
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where ExpVal(i,¢) is the expected value of individual i at time ¢z, f(i) is the fitness of

i, f(t) is the average fitness of the population at time ¢, and o(¢) is the standard

deviation of the population fitness at time 7. For instance, for an individual, which has

the fitness of two standard deviations above the population mean fitness value,

i.e. (i) = f (1) + 20, the expected offspring will be 2.

3.2.3 Elitism

Elitism (De Jong 1975; Mitchell 1998) is an addition to many selection methods, which
can significantly improve GA’s performance. It forces GA to retain some number of the
best individuals intact at each generation. These individuals are not mutated nor crossed

over, but used for reproduction (Mitchell 1998).

Normally individuals in a population are expected to have a lifetime of one generation.
However, when elitist strategies are employed, individuals with higher fitness values
are expected to have a longer lifetime than on generation. Elitist strategies link the
lifetimes of individuals to their fitness values and keep good solutions in the population
longer than one generation. The elitist strategies are deemed necessary when genetic
algorithms are used as function optimizers and the goal is to find a global optimal
solution. However, elitist strategies tend to make the search more exploitative rather
than explorative and may not work for problems with multiple optimal solutions (Sarma

& De Jong 2000)

3.2.4 Boltzmann Selection

The Boltzmann selection mechanisms use principles from simulated annealing to
control the selection pressure in evolutionary algorithm thermodynamically. The
mechanics of the recombination and neighborhood operators are critical to the
generation of the proper temporal population distributions. It is often impossible to
separate the selection from the rest of the EA when Boltzmann selection is employed.
(Mahfoud 2000).
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The idea of Boltzmann selection is to have different amounts of selection pressure at
different times in a run, e.g. letting selection occur early on run slowly while
maintaining a lot of variation in the population, and stronger later to heavily emphasize
highly fit individuals. More accurately, in Boltzmann selection, a continuously varying
“temperature” controls the selection pressure according to a preset schedule. The
temperature starts out high, which means every individual has some probability of
reproducing. The temperature is gradually lowered, thereby allowing the GA to focus
on to the best part of the search space while maintaining the “appropriate” degree of
diversity (Mitchell 1998). A typical implementation of the Boltzmann selection is to

assign each individual i an expected value:

ef(i)/T

ExpVal(i,¢) = &)

where T is temperature and < >t denotes the average over the population at time ¢.

Experiments have shown that as T decreases, the difference in ExpVal(i,¢) between

high and low fitness value increases, however, the hope is that this happens gradually

over the course of the search (Mitchell 1998).

The idea behind Boltzmann selection is competition between current solution 7and

alternative solution j in which i wins with the following logistic probability:

1

14 T (©)

where T is temperature and f;is the energy, cost or objective function value of solution

iin case of minimization. The Boltzmann selection can be implemented in slightly
different ways, but all variations essentially accomplish the same thing when iterated; at
fixed 7', given a sufficient number of Boltzmann trials, a Boltzmann distribution arises

among the winning solutions over time. (Mahfoud 2000)

3.2.5 Rank Selection

Rank-based selection or ranking means that the probability of selection is determined

only by rank ordering of the fitness of the individuals within the current population
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(Grefenstette 2000). The purpose of rank selection is to prevent too quick convergence.
In rank selection, the individuals in the population are ranked according to the fitness,
and the expected value of each individual depends on its rank rather than on its absolute

fitness (Baker 1985; Mitchell 1998).

The idea with rank selection is to sort the individuals by their fitness values, assign a
linearly decreasing probability according to the rank and select the parents as in

proportional selection. (Krink 2005.)

The fitness values are not scaled in this method, since absolute differences in fitness are
obscured. Discarding absolute fitness information can, on one hand, prevent leading to
convergence problems, and, on the other hand, prevent knowing how far fitter an
individual is from its nearest competitor. Rank selection reduces the selection pressure
when the fitness variance is high, and keeps up selection pressure when the fitness
variance is low: the ratio of expected values of individuals ranked i and i+/7 will be the

same independent of their absolute fitness difference (Mitchell 1998).

There are many methods to assign a number of offspring based on ranking. For
instance, as the upper bound for the expected number of offspring, a user defined value
MAX is taken and a linear curve through MAX is taken such that the area under the
curve equals the population size. In this way, the difference between the expected
numbers of offspring for “adjacent” individuals can be easily determined, e.g. if
MAX =2 and population size is 50, the difference between expected numbers of
offspring between adjacent individuals would be 0.04. (Baker 1985; Michalewicz
1996).

Another possibility is to rank each individual in the population in increasing order of
fitness, from 1 to N . The user chooses the expected value Max of the individual with

rank N, with Max > 0. The expected value of each individual i at time ¢ is given by:

rank(i,t) —1

ExpVal(i,t) = Min + (Max — Min) TR

; (7
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where Min is the expected value of the individual with rank 1. Given the constraints

Max > 0, and since population size stays constant, we have:
. N .
> ExpVal(i,1) = 5 (Min + Max) + Max — Min = N . 8)

This implies that 1 < Max <2 and Min =2 — Max .

The increased preservation of diversity resulting from ranking leads to more successful
search than the quick convergence resulting from fitness proportionate selection in
many cases. However, in rank selection lowering the selection pressure means that the
GA will in some cases be slower in finding highly fit individuals. There are various
ranking schemes, such as exponential rather than linear. In ranking schemes, SUS
methods can be used for choosing parents after expected values have been assigned
(Mitchell 1998).

The rank selection can also be implemented so that for a population of size n a user

defined parameter ¢ is taken and a linear function, like:
prob(rank) = g — (rank —1)r 9
or a nonlinear function, like:

prob(rank) = g(1-q)" " (10)

is defined. In both functions rank =1 means the best individual and rank = n the worst
one. Both functions return the probability of an individual ranked in position rank to be
selected in a single selection, and both schemas allow the users to influence the

selective pressure of the algorithm.

Rank selection methods can improve GA behavior in some cases, i.e. they prevent
scaling problems, they control better the selective pressure and coupled with one-at-a-
time reproduction, they give the search a greater focus (Baker 1987; Whitely 1989;
Michalewicz 1996). On the other hand, they have some apparent drawbacks: 1) they put
responsibility on the user to decide when to use these mechanisms 2) they ignore the

information about the relative evaluations of different chromosomes 3) regardless of the
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magnitude of the problem they treat all cases uniformly 4) they violate Schema

Theorem (Michalewicz 1996).

3.2.6 Tournament Selection

In tournament selection, a group of ¢ individuals is randomly drawn from the
population with or without replacement. This group takes part in a tournament, where a
winning individual is determined by its fitness value. The best individual is usually

chosen deterministically though occasionally a stochastic selection may be made.

(Blickle 2000.)

In tournament selection, two individuals are chosen at random from the population. A
parameter P, e.g. 0.75, and a random number r between 0 and 1, are then chosen. If
r < P, the fitter of the two individuals is selected to be a parent; otherwise the less fit
individual is selected. The two are then returned to the original population and can be

selected again. (Mitchell 1998.)

The tournament selection combines the idea of ranking in a very interesting and
efficient way: in a single iteration some number k£, typically 2, of individuals are
selected and the best ones are passed to the next generation. This process is repeated as
many times as the size of population. For minimization problems the selection process
may be flavored with simulated annealing by considering the Boltzmann selection

method, where two elements, i and j compete with each other and the winner is

determined according to:

1
P= 7O-1G) (1
I+e T
where 7 is temperature and f(i) and f(j) are values of the objective function for

elements i and j respectively. The fitter individual is selected if a uniform random

number is smaller than P . (Michalewicz 1996).
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Selection pressure changes in tournament selection in the similar way as in rank
selection, but it is computationally more efficient and more amenable to parallel

implementation (Mitchell 1998).

3.2.7 Steady-State Selection

A typical GA is “generational”, i.e. at each generation the population consists of almost
all new offspring formed by parents in the previous generation. In contrast, in steady-
state selection, only a small number of the least fit individuals are replaced by offspring
resulting from crossover and mutation of the fittest individuals. Steady-state GAs are
often used in evolving systems in which incremental learning is important and not only
one individual, but all members of the population collectively solve the problem at

hand, e.g. classifier systems (Holland 1986; Mitchell 1998).

In steady-state selection, a small number A4 (often less than 5) of offspring are created
in each iteration and inserted into the population. All individuals are then sorted
according to their fitness values and the worst A individuals are discarded. (Krink

2005)

3.2.8 Interactive Selection

The idea with manual or interactive selection is that the user selects individuals. This
approach does not require any fitness function and lets human intuition and judgment be
incorporated in the selection phase. However, this selection approach might be slow,

subjective and require expert knowledge. (Krink 2005.)

3.2.9 Sharing Selection

Sharing selection techniques were first introduced for multimodal function optimization

in (Goldberg & Richardson 1987) and are used to maintain the diversity of population.

The idea with sharing is to reduce the fitness of individuals that have highly similar
members within the population. This rewards individuals that uniquely exploit areas of

the domain, while discouraging highly similar individuals in a domain. This causes
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population diversity pressure, which helps maintain population members at local

optima.

The shared fitness of an individual 7 is given by f,,. = L , where f; is the raw fitness
S

1

of the individual, and m, is the niche count, which defines the amount of overlap

(sharing) of the individual iwith the rest of the population. The niche count is

calculated by summing a sharing function over all members of the population:

m; = ZL sh(d, ;). The distance d, ; represents the distance between individual / and

individual j in the population determined by the similarity metric:

TR
LA 1 i,j<Ush’ (12)

1—
Sh(disf) = ( O-sh

0 otherwise.

Each member of the population is considered to be the center of a niche, and its shared
fitness value is reduced for every other member of a population whose distance is less

than a niche radius o, from that individual (Miller & Shaw 1996).

A sharing function is used to determine the degradation of an individual’s fitness due to
a neighbor at some distance. Degradation determines the reproduction probability of
individuals so that reproduction is restrained in a crowd peak while other individuals are

encouraged to give offspring (Gen et al. 2000).

3.3 Genetic Operators

For any evolutionary computation technique, the representation of an individual in the
population and the set of operators used to alter its genetic code constitute probably the
two most important components of the system. Therefore, a representation of object
variables must be chosen along with the appropriate evolutionary computation
operators. The reverse is also true; operators must match the representation. Data might
be represented in different formats: binary strings, real-valued vectors, permutations,

finite-state machines, parse trees and so on. Decision on what genetic operators to use
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greatly depends on the encoding strategy of the GA. For each representation, several
operators might be employed. (Michalewicz 2000.)

The most commonly used genetic operators are crossover and mutation. These operators
are implemented in different ways for binary and real-valued representations. In the

following, these operators are described in more details.

3.3.1 Crossover

Crossover is the main distinguishing feature of a GA. The simplest form of crossover is
single-point: a single crossover position is chosen randomly and the parts of the two
parents after the crossover position are exchanged to form two new individuals
(offspring). The idea is to recombine building blocks (schemas) on different strings.
However, single-point crossover has some shortcomings. For instance, segments
exchanged in the single-point crossover always contain the endpoints of the strings, it
treats endpoints preferentially, and cannot combine all possible schemas. For example,
it cannot combine instances of 11*****] and ****][** to form an instance of
11**11*1  (Mitchell 1998). Moreover, the single-point crossover suffers from
“positional bias” (Eshelman, Caruana & Schaffer 1989; Mitchell 1998): the location of
the bits in the chromosome determines the schemas that can be created or destroyed by

Crossover.

Consequently, schemas with long defining lengths are likely to be destroyed under
single-point crossover. The assumption in single-point crossover is that short, low-order
schemas are the functional building blocks of strings, but the problem is that the optimal
ordering of bits is not known in advance (Mitchell 1998). Moreover, there may not be
any way to put all functionally related bits close together on a string, since some
particular bits might be crucial in more than one schema. Furthermore, the tendency of
single-point crossover to keep short schemas intact can lead to the preservation of so-
called hitchhiker bits. These are bits that are not part of a desired schema, but by being
close on the string, hitchhike along with the reproduced beneficial schema. (Eshelman,

Caruana & Schaffer 1989; Mitchell 1998).
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In two-point crossover, two positions are chosen at random and the segments between
them are exchanged. Two-point crossover reduces positional bias and endpoint effect, it
is less likely to disrupt schemas with large defining lengths, and it can combine more
schemas than single-point crossover (Mitchell 1998). Two-point crossover has also its

own shortcomings; it cannot combine all schemas.

Multipoint-crossover has also been implemented, e.g. in one method, the number of
crossover points for each parent is chosen from a Poisson distribution whose mean is a
function of the length of the chromosome. Another method of implementing multipoint-
crossover is the “parameterized uniform crossover” in which each bit is exchanged with

probability p, typically 0.5< p <0.8 (Spears & De Jong 1991; Mitchell 1998). In

parameterized uniform crossover, any schemas contained at different positions in the
parents can potentially be recombined in the offspring; there is no positional bias. This
implies that uniform crossover can be highly disruptive of any schema and may prevent

coadapted alleles from ever forming in the population. (Mitchell 1998)

There has been some successful experimentation with a crossover method, which adapts
the distribution of its crossover points by the same process of survival of the fittest and
recombination (Schaffer et al. 1987; Michalewicz 1996). This was done by inserting
into the string representation special marks, which keep track of the sites in the string
where crossover occurred. The hope was that if a particular site produces poor

offspring, the site dies off and vice versa.

Spears (1991) considered a combination of two crossovers methods, the one-point and
uniform crossover method by extending a chromosomal representation by additional bit.
There has also been some experimentation with other crossovers: segmented crossover
and shuffle crossover (Eshelman, Caruana & Schaffer 1989; Michalewicz 1996).
Segmented crossover, a variant of the multi-point, allows the number of crossover
points to vary. The fixed number of crossover points and segments (obtained after
dividing a chromosome into pieces on crossover points) are replaced by a segment
switch rate, which specifies the probability that a segment will end at any point in the

string. The shuffle crossover is an auxiliary mechanism, which is independent of the
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number of the crossover points. It 1) randomly shuffles the bit positions of the two
strings in tandem, 2) exchanges segments between crossover points, and 3) unshuffles
the string (Michalewicz 1996). In gene pool recombination, genes are randomly picked

from the gene pool defined by the selected parents.

There is no definite guidance on when to use which variant of crossover. The success or
failure of a particular crossover operator depends on the particular fitness function,
encoding, and other details of GA. Actually, it is a very important open problem to fully
understand interactions between particular fitness function, encoding, crossover and
other details of a GA. Commonly, either two-point crossover or parameterized uniform

crossover has been used with the probability of occurrence p~0.7-0.8 (Mitchell

1998).

Generally, it is assumed that crossover is able to recombine highly fit schemas.
However, there is even some doubt on the usefulness of crossover, e.g. in schema
analysis of GA, crossover might be considered as a “macro-mutation” operator that

simply allows for large jumps in the search space (Mitchell 1998).

3.3.2 Mutation

The common mutation operator used in canonical genetic algorithms to manipulate

binary strings a = (a,,...a,) € I ={0,1} of fixed length ¢ was originally introduced by
Holland (1975) for general finite individual spaces [=4, x...A,, where

4, ={a, ,...,a, }. By this definition, the mutation operator proceeds by:

1

i. determining the position i,,...,i,(i; € {l,...,/}) to undergo mutation by a uniform

random choice, where each position has the same small probability p, of

undergoing mutation, independently of what happens at other position

!

ii. forming the new vector a;=(a,,..,a, ,,a,,a a, ,,a, ,a

IR AR R R R RO LI Rt A ER LA

j10-d), Where

a; € A, is drawn uniformly at random from the set of admissible values at position

i.
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The original value a; at a position undergoing mutation is not excluded from the
random choice of a; € 4. This implies that although the position is chosen for

mutation, the corresponding value might not change at all. (Back, Fogel, Whitley &
Angeline 2000.)

Crossover is commonly viewed as the major instrument of variation and innovation in
GAs, with mutation, playing a background role, insuring the population against
permanent fixation at any particular locus (Mitchell 1998; Bédck, Fogel, Whitley &
Angeline 2000). Mutation and crossover have the same ability for “disruption” of
existing schemas, but crossover is a more robust constructor of new schemas (Spears
1993; Mitchell 1998). The power of mutation is claimed to be underestimated in
traditional GA, since experimentation has shown that in many cases a hill-climbing

strategy works better than a GA with crossover (Miihlenbein 1992; Mitchell 1998).

While recombination involves more than one parent, mutation generally refers to the

creation of a new solution form one and only one parent. Given a real-valued

representation where each element in a population is an » —dimensional vector x € R",
there are many methods for creating new offspring using mutation. The general form of

mutation can be written as:
x'=m(x), (13)
where x is the parent vector, m is the mutation function and x' is the resulting
offspring vector. The more common form of mutation generated an offspring vector:
X'=x+M, (14)

where the mutation M 1is a random variable. M has often zero mean such that

E(x") = x; the expected difference between a parent and its offspring is zero. (Béck,

Fogel, Whitley & Angeline 2000.)

Some forms of evolutionary algorithms apply mutation operators to a population of

strings without using recombination, while other algorithms may combine the use of
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mutation with recombination. Any form of mutation applied to a permutation must yield
a string, which also presents a permutation. Most mutation operators for permutations
are related to operators, which have also been used in neighborhood local search
strategies. (Whitley 2000). Some other variations of the mutation operator for more

specific problems have been introduced in Chapter 32 in (Béck et al. 2000).

It is not a choice between crossover and mutation but rather the balance among
crossover, mutation, selection, details of fitness function and the encoding. Moreover,
the relative usefulness of crossover and mutation change over the course of a run.

However, all these remain to be elucidated precisely (Mitchell 1998).

3.3.3 Other Operators and Mating Strategies

In addition to common crossover and mutation there are some other operators used in
GAs including inversion, gene doubling and several operators for preserving diversity
in the population. For instance, a “crowding” operator has been used in (De Jong 1975;
Mitchell 1998) to prevent too many similar individuals (“crowds™) from being in the
population at the same time. This operator replaces an existing individual by a newly

formed and most similar offspring.

The same result can be accomplished by using an explicit “fitness sharing” function
(Goldberg & Smith 1987; Mitchell 1998) whose idea is to decrease each individual’s
fitness by an explicit increasing function of the presence of other similar population
members. In some cases, this operator induces appropriate “speciation”, allowing the
population members to converge on several peaks in the fitness landscape (Goldberg et
al. 1987; Mitchell 1998). However, the same effect could be obtained without the
presence of an explicit sharing function (Smith, Forrest & Perelson 1993; Mitchell

1998).

Diversity in the population can also be promoted by putting restrictions on mating. For
instance, distinct “species” tend to be formed if only sufficiently similar individuals are
allowed to mate (Deb & Goldberg 1989; Mitchell 1998). Another attempt to keep the

entire population as diverse as possible is disallowing mating between too similar
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individuals, “incest” (Eshelman 1991; Eshelman & Schaffer 1991; Mitchell 1998).

Another solution is to use a “sexual selection” procedure; allowing mating only between

9

individuals having the same “mating tags™—parts of the chromosome that identify
prospective mates to one another. These tags, in principle, would also evolve to
implement appropriate restrictions on new prospective mates (Holland 1975; Booker

1985; Mitchell 1998).

Another solution is to restrict mating spatially. The population evolves on a spatial
lattice, and individuals are likely to mate only with individuals in their spatial
neighborhoods. Such a scheme would help preserve diversity by maintaining spatially
isolated species, with innovations largely occurring at the boundaries between species

(Hillis 1992; Mitchell 1998).

3.4 Genetic Local Search

The basic idea with local search is to iteratively refine a candidate solution by local
search of promising neighbors. Local search heuristics can be divided to: 1)
deterministic local search, 2) stochastic local search, 3) simulated annealing, 4) tabu
search and guided local search. In deterministic local search, a starting point x is first
selected and evaluated and then the search in the neighborhood of x is repeated until
either a better point x" has been found or all neighboring points have been checked. In
stochastic local search, first, a starting point x is selected and then the search for a
better neighbor value is iterated for a number n of times. In each iteration, a value x’ in
the neighborhood of x is selected and evaluated. However, the new point will replace

the starting point only if a uniformly generated random number U(0,1) fulfills the

following criteria:

1
eval (x")—eval(x) * (15)

l+e r

U(0,1) <

Here T is a user define constant. Simulated annealing is a stochastic local search with
decreasing value of 7 . The tabu search is a stochastic local search that accepts inferior

neighbor points, but it prevents the revisiting of previously examined solutions. It keeps
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a memory of recently changed attributes of the candidate solutions, which may not be
changed for a certain amount of time. Inferior solutions are selected if better solutions

are “tabu”. (Krink 2005.)

Genetic algorithms and local search heuristics can be combined for solving optimization
problems. Typically, a hybrid genetic algorithm involves incorporating local
optimization as an add-on extra to a canonical genetic algorithm. Here local
optimization is applied to each newly generated offspring to move it to a local optimum
before injecting it into population. With this hybrid approach, the genetic search
performs global exploration among the population, whereas local search performs local
exploitation around chromosomes. These complementary methods often outperform

either method operating alone (Gen et al. 2000).

Two common forms of genetic local search feature 1) Lamarckian and 2) Baldwin
effects (Whitely, Gordan & Mathias 1994; Gen et al. 2000). Both approaches use the
metaphor that an individual learns (hill climbs) during its lifetime (generation). In the
Lamarckian approach, the resulting individual is put back into the population after hill
climbing. In the Baldwinian approach, the genotype remains unchanged but the fitness
is changed. Experimentations on some test problems have shown that the Baldwinian
search strategy can sometimes converge to global optimum when the Lamarckian
strategy converges to a local optimum using the same form of local search. However,
experiments showed that the Baldwinian strategy is much slower than the Lamarckian

strategy (Gen et al. 2000).
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4. Control Parameters in Genetic Search

Evolutionary algorithms are affected by more parameters than optimization methods
typically. This is at the same time a source of their robustness as well as a source of
frustration in designing them (Michalewicz & Fogel 2004). Adaptation can be used not
only for finding solutions to a given problem, but also for tuning genetic algorithms to

the particular problem (Gen et al. 2000).

Adaptation can be applied to problems as well as to evolutionary processes. In the first
case adaptation modifies some components of genetic algorithms to provide an
appropriate form of the algorithm, which meets the nature of the given problem. These
components could be any of representation, crossover, mutation and selection. In the
second case, adaptation suggests a way to tune the parameters of the changing

configuration of genetic algorithms while solving the problem (Gen et al. 2000).

Some of such parameters are: 1) population size and structure, like subpopulations, 2)
genome representation (floating point, binary, parse tree, matrix), precision and length,
3) crossover type (arithmetic, n-point, etc.), the number of crossover points and
probability, 4) mutation type (uniform, Gaussian, etc.), mutation variance and
probability, 5) selection type (tournament, proportional, etc.), tournament size. (Krink
2005.)

The challenge is that optimal parameters of an EA are problem dependent and there is a
large set of possible EA settings. The No-Free-Lunch theorem implies that no set of
parameters for an EA is superior on all problems (Krink 2005). Finding the right
parameter values is a time-consuming task and it has been the subject of many

researches.

The main criteria for classifying parameter setting methods are: 1) what is changed, 2)
how the change is made. The first criterion refers to the components of the evolutionary
algorithm and consists of six categories: 1) representation, 2) evaluation function, 3)

variation operators (mutation and recombination), 4) selection, 5) replacement and 6)
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population. The second criterion refers to the parameter setting methods, which can be
divided to three main types: 1) deterministic (or fixed) parameter control (also called
parameter tuning) in which the parameter-altering transformations takes no input
variables related to the progress of search method, 2) adaptive (also called explicitly
adaptive) parameter control in which there is some form of feedback from the search, 3)
self-adaptive (also called implicitly adaptive) parameter control in which the parameters
to be adapted are encoded into the chromosomes and undergo mutation and

recombination (Eiben, Hinterding & Michalewicz 1999).

Parameter setting can be classified to 1) absolute and 2) empirical. It can also be
classified to 1) uncoupled and 2) tightly-coupled. However, the uncoupled/absolute
category encompasses deterministic and adaptive control, whereas the tightly-
coupled/empirical category corresponds to self-adaptive control (Angeline 1995; Spears

1995; Eiben et al. 1999).

Figure 1 shows the division of parameter control techniques. The main criterion is
whether parameter setting happens before the run or during the run. Methods used for
setting parameters before the run, i.e. parameter tuning methods can use constant
parameter values or functions to set these parameters beforehand. Methods used for
setting parameters during the run, i.e. parameter control methods can be divided to
deterministic, adaptive, self-adaptive and population-structure-based techniques. In the

following, each of these techniques is described in detail.

Parameter Setting

Before The Run During The Run
Parameter Tuning Parameter Control
Constants Functions /\
Deterministic Population-Structure-Based
Adaptive Self-Adaptive

Figure 1. Taxonomy for parameter setting methods.
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4.1 Parameter Tuning

Parameter tuning refers to the approach that amounts to finding good fixed values for
the parameters before the run of the algorithm. In this approach, an attempt is made to
find the optimal and general set of parameters applicable to a wide range of
optimization problems. The parameter values may be either constant or calculated by a
simple parameterized function of the generation counter (Ursem 2003). Two main

approaches explained below were tried to do this.

411 Pre-Defined Parameter Values

The simplest possible method for parameter tuning is to use constant values. The
interesting observation is that fixing a large part of parameters will not decrease the
performance of EA significantly (Ursem 2003). A considerable effort has been put into
finding parameter values for a traditional GA (bit-representation, one-point crossover,
bit-flip mutation and roulette wheel selection), which were good for a number of
numeric test problems (De Jong 1975; Eiben et al. 1999). As a result, the following
parameters are considered the best values for the test functions: population size: 50,
probability of crossover: 0.6, probability of mutation: 0.001, generation gap: 100%,

scaling window: W = oo and selection strategy: elitist.

Generation gap defines the percentage of the population to be replaced during each
generation. The remainder of the population is chosen at random to survive intact.
Generation gap refers to the amount of overlap between parents and offspring. In an
overlapping model parents and offspring compete for survival; the selection pool for
deletion consists of both parents and their offspring. In a nonoverlapping model, parents

are always replaced by offspring (Sarma et al. 2000).

Scaling is used to avoid problems with fitness-proportionate selection by scaling the
fitness function to the worst individual in the population. This means that the measure
of fitness used in calculating the probability for selecting an individual is not the
individual’s absolute fitness, but its fitness relative to the worst individual in the
population (Eshelman 2000; Grefenstette 2000). Scaling window is a parameter used to

control the search with respect to the characteristic of the function being optimized. For
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a minimization function the evaluation function eval wusually returns

eval(x)=F — f(x), where F'is a constant such that /> f(x) for all x. The scaling

window W allows the user to control how often the constant F is updated. If W >0,

F is set to the greatest value of f(x) which has occurred in the last 7 generations. A
value W =0 indicates an infinite window, i.e. F =max{f(x)} over all evaluations

(Michalewicz 1996).

A good starting point for the bit-flip mutation operation in binary encoding is p, = % ,

where L is the length of the chromosome. This mutation rate has also been proven

optimal for the sphere problem (Bick 1993; Bremermann, Rogson & Salaff 1996;

Ursem 2003). Since % corresponds to flipping one bit per genome on average, it is

used as a lower bound for mutation rate.

Schaffer et al. recommend a range of p, € [0.005,0.01] for the (Schaffer, Caruana,

Eshelman & Das 1989; Ursem 2003). For real-value encoding the mutation rate is

usually p, €[0.6,0.9] and the crossover rate is p, €[0.7,1.0]. In tournament selection,

tournament size of two has often given the best results. A much higher tournament size
imposes too strong selection pressure, which results to overall premature convergence.
Unless the fitness evaluation is very time-consuming the population size should

typically be set to more than 50. (Ursem 2003)

However, the main disadvantages of non-adaptive control techniques are that they
require a significant amount of manual tuning due to the stochastic nature of the
algorithms and the parameter values are problem dependent. In addition, parameters
may be correlated and not independent of each other, which leads to a combinatorial
explosion regarding the number of settings to try. Manual tuning of parameters implies

searching the whole universe of evolutionary algorithms. (Ursem 2003)
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4.1.2 Parameter Definition by Meta-algorithm

The search process in an EA typically shifts from highly explorative in the beginning of
the run to fine-tuning towards the end. This leads to the need for keeping the variance in
Gaussian mutation high in the beginning and decreasing it to perform the fine-tuning at
the end of the run (Ursem 2003). Grefenstette used a GA as a meta-algorithm to
optimize values for the same parameters for both on-line and off-line performance of
the algorithm (Grefenstette 1986). On-line performance refers to monitoring the best
solution in each generation, while off-line performance takes all solutions in the
population into account (Eiben et al. 1999). The best set of parameters to optimize the
on-line performance of the GA was found to be: population size: 30, probability of
crossover: 0.95, probability of mutation: 0.01, generation gap: 100%, scaling window:
W =1 and selection strategy: elitist. Respectively the best set of parameters to optimize
the off-line performance of the GA was found to be: population size: 80, probability of
crossover: 0.45, probability of mutation: 0.01, generation gap: 90%, scaling window:

W =1 and selection strategy: non-elitist.

Any static set of parameters seems to be generally inappropriate and against the
contemporary view of an EA, which acknowledges that specific problem or problem
types require specific EA setup for satisfactory performance (Bick, Fogel &
Michalewicz 1997; Eiben et al. 1999).

A general drawback for such efforts is that runs of an EA are intrinsically dynamic and
adaptive; hence, different values of parameters might be optimal at different stages of
the evolutionary process (Davis 1989; Hesser & Ménner 1991; Syswerda 1991; Béck
1992 a; Bick 1992 b; Bick 93; Soule & Foster 1997; Eiben et al. 1999). The optimal
parameters are not constant during the run of EAs (Ursem 2003). From a theoretical
point of view the problem with general optimal parameters is that, no search algorithm
is superior on all problems (Wolpert et al. 1995; Ursem 2003). Therefore, the use of
rigid parameters that do not change their values during the run is in contrast to this

spirit.
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4.2 Parameter Control

Parameter control refers to the approach, which amounts to starting a run with initial
parameter values, which are changed during the run. An evolutionary algorithm is
normally used not only to solve a problem but also to adapt the same algorithm to the
particular problem. Tuning parameters during the run can be implemented mainly in
three different ways: 1) using a heuristic feedback mechanism allowing one to base
changes on triggers different from elapsing time, such as population diversity measures,
relative improvement, absolute solution quality, etc. 2) incorporating parameters into
the chromosomes, which lets the evolution mechanism entirely take care of changes
(Eiben et al. 1999), 3) using the population structure and spatial position of individuals

to determine their parameters (Ursem 2003).

Since all components of the algorithms have parameters, which need to be set to
reasonable values, manual tuning is impossible to avoid completely even in adaptive
control techniques. Furthermore, most advanced parameter control techniques also have
parameters. However, adaptive parameter control seems to be still worthy due to the
following facts: 1) the performance of parameter-varying algorithms is better, 2) since
the control technique is usually more robust with respect to parameter sensitivity
tuning; the control method is often easier than tuning the actual parameters (Ursem

2003).

Parameter control methods can be further categorized based on how the mechanism of
change works and what component of the EA is affected by the mechanism. Typically,
the following components of an EA are changed: 1) individual representation, 2)
evaluation function, 3) variation operators and their probabilities, 4) selection operator
like parent selection or mating selection, 5) replacement operator like survival selection
or environmental selection and 6) characteristics of the population like size, topology,

and so on (Michalewicz et al. 2004).

Still each component can be parameterized and the number of parameters is arbitrary.

Two major classification criteria are (Eiben et al. 1999):
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1. Evolutionary algorithms can be considered as a whole without dividing attention
to its different components, e.g. mutation, recombination, selection etc., levels of
adaptation and type of update rules. Three levels of adaptation: population,
individual and component, together with two types of update mechanisms:
absolute and empirical rules can be considered (Angeline 1995; Eiben et al.
1999). Absolute rules determine how modifications should be made beforehand.
However, empirical update rules modify parameter values by self-adaptation,
namely competition among them.

2. The above classification can be extended by considering the environment level
of adaptation categories and ignoring what parts of the EA are adapted. This lets
divide types of update mechanisms into deterministic, adaptive and self-adaptive

(Hinterding, Michalewicz & Eiben 1997).

Deterministic, also called fixed, parameter control implies that the value of a strategy
parameter is altered by some deterministic rule, such as a time-varying schedule,

without using any feedback from the search.

Adaptive, also called explicitly adaptive, parameter control makes use of some form of
feedback from the search in order to determine the direction and/or magnitude of the

change to the strategy parameter.

Self-adaptive, also called implicitly adaptive, parameter control stands for situation in
which parameters to be adapted are encoded into the chromosomes and undergo
mutation and recombination. The better values of encoded parameters lead to better
individuals, which, in turn, are more likely to survive and produce offspring and hence
propagate these better parameter values. In other terminology, parameter control is
divided to 1) uncoupled/absolute, which encompasses deterministic and adaptive
control, and 2) tightly coupled/empirical, which coincides with self-adaptation
(Angeline 1995; Eiben et al. 1999).

Population structure based parameter control uses the population structure and spatial

position of individuals to determine their parameters (Ursem 2003).
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4.3 Parameter Control Techniques

The following part gives a summary of the experimental works to control the
parameters of evolutionary algorithms. These are divided according to what has been
controlled: 1) individual representation, 2) evaluation function, 3) mutation operators
and their probabilities, 4) crossover operators and their probabilities, 5) parent selection

and 6) population.

4.3.1 Representation

Premature convergence and Hamming cliff problem, which occurred when GAs were
first applied to numeric optimization problems, were reasons why most works have

been done to adapt GA representation.

The ARGOT strategy uses one function variable per gene for a flexible mapping of the
function variables to the genes (Shaefer 1987). This allows adaptation of resolution, i.e.
the number of bits used to represent the gene, and the range and center point of the
range of the values the genes are mapped into. The degree of convergence of the genes,
the variance of the gene values, and the distance between the gene values and current
range boundaries form the basis of adaptation of representation and mapping (Eiben et

al. 1999).

Delta coding uses a GA with multiple restarts, where the first run is used to find an
interim solution. Subsequent runs decode the genes as distances or delta values from the
last solution. As a result, each restart forms a new hypercube with the interim solution
as its origin. Restarts are triggered when the Hamming distance (the number of bits
which differ between two bit strings of equal size) between the best and the worst
strings of the continuing population are not greater than one. To expand or contract the
search space the resolution of the delta values at the restarts can be altered (Whitley,

Mathias & Fitzhorn 1991; Eiben et al. 1999).

The dynamic parameter encoding (DPE) is based on altering the mapping of the gene to
its phenotypic value. “The phenotype of an individual organism is either its total

physical appearance and constitution or a specific manifestation of a trait, such as size
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or eye color, that varies between individuals” (Wikipedia 2005). The DPE does not
modify the actual number of bits used to represent a function parameter. Each
generation the algorithm constructs a histogram of the population over the quarters of
the current search interval formed by the two most significant bits of the gene. By
summing over neighboring quarters, the population counts for three overlapping target
intervals are obtained. If the largest count exceeds a given trigger threshold, the
population is considered to have converged on the corresponding target interval. Then
the binary gene of every individual in the population is manipulated such that those
lying inside the target interval are left in place. Those lying outside are folded onto the
target interval in the process. Subsequently, this technique can only increase the
resolution of genes. Resolution denotes the number of alleles in a gene. (Schraudolph &

Belew 1992.)

Messy GA (Goldberg, Deb & Korb 1990; Goldberg, Deb & Korb 1991) is targeted to
fixed-length representations for solving deceptive binary string problems. A problem is
deceptive if for two incompatible schemata A and B the average fitness of schema A is
greater than B even though B includes a string that has a greater fitness than any
member of A (Eshelman 2000). Low-order partitions in deceptive binary strings contain
misleading information about higher-order partitions. Therefore, it will be hard for a

GA to find the optimum of deceptive problem since building blocks cannot be formed.

Messy GA adapts its representation to a particular instance of the problem and allows
over and under specification of representation of one. Chromosomes are of variable
lengths and their genes contain their bit values and positions. Chromosomes may
contain too few or too many bits for the representation. If more than one gene specifies
a bit position (over specification), the first one encountered is used. If some bit positions
are not specified by the chromosome (under specification), they are filled in from the so
called competitive templates. Messy GAs do not use mutation and use cut and splice
operators in place of crossover. A messy GA run happens in two phases: 1) a primordial
phase which enriches the proportion of good building blocks and reduces the population
size using only selection, 2) a juxtapositional phase which uses all the reproduction

operators.
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Self-adaptive control is also used for the dominance mechanism of diploid
chromosomes, where there are two copies of each chromosome in each individual. The
extra chromosome encodes an alternate solution and dominance decides which of the
solutions will be expressed. An evolvable dominance value can be added to each gene
and the gene with the highest dominance value is dominant (Bagley 1967; Eiben et al.
1999). The dominance effect can also be determined with particular enzymes being
expressed (Rosenberg 1967; Eiben et al. 1999).

4.3.2 Evaluation Function

Penalty functions have also been put under adaptation. Various mechanisms have been
used for varying penalties according to predefined deterministic schedule. One
mechanism is to define the evaluation function eval with an additional parameter 7 in

the following way:
1
eval(x,7) = f(x)+ 2_72 flx). (16)
J

Here eval is decreased every time the evolutionary algorithm converges, typically by
replacing 7 with 71 0" The best solutions found are taken as the initial population of
the next iteration with the new decreased value of 7. Therefore, there are several cycles
within a single run of the system. The evaluation function is fixed for each cycle:
Jc {1,...,m} is a set of active constraints at the end of a cycle and the penalty pressure

increases only when switching from one cycle to another (Michalewicz & Attia 1994;

Eiben et al. 1999; Michalewicz et al. 2004).

The evaluation function can be changed based on the performance of an EA run so that
the weights (penalties) of those constraints which are violated by the best individual
after termination are raised and the new weights are used in the next run (Eiben &

Ruttkay 1996; Eiben et al. 1999).

The penalties of constraints in a constrained optimization problem can also be adapted

during a run so that the penalty measure depends on the number of violated constraints,
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the best feasible objective function found, and the best objective function value found

(Smith & Tate 1993; Eiben et al. 1999).

The weights of constraints can be adaptively changed during the evolution by re-
evaluating them when the algorithm gets stuck in a local optimum (Morris 1993; Eiben
et al. 1999). The evaluation function can also be adaptively changed by periodically
checking the best individual in the population and raising the weights (penalties) of
those constraints this individual violates. In this so-called stepwise adaptation of
weights (SAW) the run continues with the new evaluation function (Eiben & van der

Hauw 1997 a, Eiben & van der Hauw 1997 b; Eiben et al. 1999).

A decoder-based approach for solving constrained numerical optimization problems is
described in (Koziel & Michalewicz 1999; Eiben et al. 1999). The method defines a
homomorphous mapping between 7 -dimensional cube and a feasible search space. The
performance of the system was enhanced by introducing adaptive location of the
reference point of the mapping, where the best individual in the current population
served as the next reference point. Consequently, a change in a reference point resulted
in changes in evaluation function for all individuals (Koziel & Michalewicz 1998;
Eiben et al. 1999).

Co-evolution has been applied among others to constraint satisfaction and data mining
problems as an evaluation function adaptive method. The adaptive mechanism is
implemented as the interaction of the two subpopulations, where each subpopulation
mutually influences the fitness of the members of the other subpopulation (Paredis
1994; Paredis 1995 a; Paredis 1995 b; Pagie & Hogeweg 1997; Eiben et al. 1999).

4.3.3 Mutation Operators

Mutation is a bit reversal event that occurs with small probabilities p, per bit. Efforts

to tune the mutation probability have resulted to different values and hence leaving
practitioners in ambiguity. As results of tuning “optimal” mutation rate, the best rate
found to be p, ~0.001 (De Jong 1975), p, ~0.01 (Grefenstette 1986),
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P, €[0.005,0.01] (Schaffer et al. 1989) and p, :/L (Miihlenbein 1992), where L is

the length of the bit string (Michalewicz et al. 2004).

Different techniques for updating the mutation rate over time have also been presented
by different researchers. A time dependent schedule for controlling the mutation is
presented in (Laumanns, Rudolph & Schwefel 1998; Laumanns, Rudolph & Schwefel
2001). Here the mutation step sizes are discounted by a constant factor each time an
offspring is produced. Fogarty presented three ideas for controlling the mutation rate in
bit-flip mutation (Fogarty 1989; Ursem 2003). The first idea was to control the mutation

rate p, (¢) by an exponential decreasing function of the generation number ¢ according

to the following formula:

1 0.11375
p,(t)=—-+ .

17
240 2! (17

The second idea was to have different mutation rates for different bits in the
chromosome. More precisely to have high mutation rates on the least significant bits

and low mutation rates for the most significant bits according to the following formula:

. 03528
p,(0)= e

; (18)

where i is the bit number and i =1,2,...10, with i = 1 being the least significant bit.

The third idea was to combine two previous formulas and control the mutation rates

according to the following formula:

28 0.4026
— + -
1905.27 27!

p,(t,0) = (19)

Fogarty compared these three schemes with a scheme using constant mutation rate of

p,, =0.01 and noticed that the combination of varying across both generations and bit

number was the best of all four techniques (Ursem 2003).
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A theoretically optimal schedule for deterministically changing p, for the counting-

ones function is presented in (Hesser & Méanner 1991; Eiben et al. 1999; Michalewicz et

al. 2004). Here, the value for p, is defined in the following way over time ¢:

e, 2
Pm(f)—\/%XTa (20)

where o, £ and y are constants, A is the population size, L is the string length and ¢

is the generation number.

The function to control the decrease of p, is defined as a linear decreasing function

from 0.5 to % in generation 7 in (Béick & Schiitz 1996; Eiben et al. 1999 and Ursem

2003). The value of p, () is constrained so that p, (0)=0.5, p, (T) :% and otherwise:

-1
pm(l‘):(2+%) , if 0<¢<T. (21)

An optimal schedule for decreasing the mutation rate as a function of the distance to the
optimum is defined in (Béck 1992 a; Eiben et al. 1999; Michalewicz et al. 2004) in the

following way:

1

ST

(22)

The idea of varying the mutation rate over both bit index number and generation was
revisited and implemented in slightly different form from the traditional bit-flip
mutation operation in (Janikow et al. 1991; Ursem 2003). The new mutation operator
was called non-uniform mutation for binary encoding and was derived from the version

used for real encoding. The operator mutates the k'th (k=1,2,3,...q ) binary encoded

parameter x, of a candidate solution x = (xl,...,xk,...,xq) according to:

. {x,’( +A(t,righ(k)—x,), if a random binary digit is 0 (23)

‘ x;, — A(t,x, —left(k)), if a random binary digit is 1 '
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The functions lefi(k) and right(k) determine the valid range [left(k), right(k)] for each
point x, in the search space, where other variables x;, (i =1,....k—1Lk+1,...,q ) remain
fixed. The function A(z, y) returns a value in the range [0, y] so that the probability of

A(t,y) being close to 0 increases as the generation number, ¢ increases. This property

causes this operator to search the space uniformly initially, when ¢ is small, and very

locally at later stages. Function A(¢, y) is defined as:

V)
ALY) = yrl=2)", (24)

where 7 is a random number from [0, 1], 7 is the maximal generation number, and b is

a system parameter determining the degree of non-uniformity.

Controlling the variance in Gaussian mutation is very critical in successful application
of real-encoded EAs. The standard approach for doing this is to set the variance of the
mutation according to a monotonic decreasing function depending on the generation
number. These heuristic functions are usually developed by scrutinizing the
experimental data and forming a hypothesis from the relationship between the

performance of the algorithm and how the parameters were changed (Ursem 2003).

A classical adaptive method for changing the mutation step size is Rechenberg’s 1/5
rule for Gaussian mutation in (1+1)-EAs presented in (Rechenberg 1973; Eiben et al.
1999). This rule states that the ratio of successful mutations to all mutations should be
1/5 measured over a number of generations. The standard deviation o should increase
if the ratio is above 1/5, decrease if it is below, and remain unchanged if it is 1/5 (Ursem
2003). It is assumed that maximum progress can be achieved through mutation step

sizes leading to a success probability of approximately 20%.

The ratio between crossovers and mutations is regulated based on their performance in
(Julstrom 1995; Eiben et al. 1999). Both operators are used separately to create an
offspring, and the algorithm keeps a tree of their recent contributions to the new

offspring and rewards them accordingly.
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Mutation rates in a parallel GA are adapted with a farming model in (Lis 1996; Eiben et
al. 1999). Probability of mutation, crossover and the population size in an algorithm of
parallel farming model has been adapted in (Lis & Lis 1996; Eiben et al. 1999). They
use parallel populations and each of them has one value, out of a possible three different

values for p, , p. and the population size. The populations are compared after a certain
period of time, and then the values for p , p, and the population size are shifted one

level towards the values of the most successful population (Eiben et al. 1999).

Gaussian mutation of a real-encoded variable x, is usually performed according to

(Ursem 2003):
x =x,+N(0,0,(1)). (25)

The traditional approach to set the mutation variance is using either a linear or an

exponentially decreasing function such as:
o ()=1/1+1. (26)

Self-adaptive control of mutation step sizes has been reported in (Schwefel 1995; Béck

1996; Bick et al. 1997; Eiben et al. 1999). Mutating a floating-point object variable x,

happens in the following way:

x =x,+0,N(0,1), (27)
where the mean step sizes are modified lognormally:

o =o,exp(r'N(0,1)+7N,(0,1)), (28)
where 7and 7’ are the so-called learning rates. The value of o can also be modified
normally:

o/ =0,+¢o,N(0,1), (29)

where ¢ is a scaling constant (Fogel 1995; Eiben et al. 1999). Empirical evidence

suggests that lognormal perturbation of mutation rates is preferable to Gaussian
perturbations on fixed-length real-valued representations (Saravanan & Fogel 1994;

Saravanan, Fogel & Nelson 1995; Eiben et al. 1999). However, a slight advantage of
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Gaussian perturbations over lognormal updates for self-adaptively evolving finite state

machines is reported in (Angeline, Fogel & Fogel 1996; Eiben et al. 1999).

Significant improvement can be achieved by controlling the mutation variance by other
techniques than a strictly decreasing function (Ursem 2003). The so-called sand pile
model was used to generate power-law distributed numbers for controlling the variance
in Gaussian mutation (Krink, Thomsen & Rickers 2000; Ursem 2003). The sandpile
model is a simple approach to study many complex phenomena found in nature and is
an example of how self-organized criticality (SOC) can be generated by very simple

means (Bak 1996; Ursem 2003).

Self-adaptation of the mutation step size for optimizing numeric functions in a real
valued GA is applied in (Hinterding 1995; Eiben et al. 1999). In another
experimentation individuals are replaced by their offspring. Probabilities of crossover
and mutation for each chromosome are added to its bit string and adapted in proportion
to the population maximum and mean fitness (Srinivas & Patnaik 1994; Eiben et al.
1999). In (Kursawe 1991; Laumanns et al. 2001) the selection criterion changes
randomly over time. To make individuals cope with the changing environment they are
supplied with a set of step sizes for each objective function through polyploidy.
Polyploidy is a situation when the number of chromosomes in a cell becomes doubled.
This can happen by a mutation that simply makes two copies. It can also happen when

the chromosomes from two different species are mixed.

The mutation rate of GAs can also be self-adapted by adding the rate of mutating p, ,
coded in bits, to every individual. Then the new p, is used to mutate the individual’s
object variables. This is based on the idea that better p  rates will produce better

offspring and then hitchhike on their improved children to new generations, while bad
rates will die out (Back 1992 a, Béack 1992 b; Eiben et al. 1999). The same idea with an
implementation of 1/5 success rule for mutation has been applied on a steady-state GA

in (Smith & Fogarty 1996; Eiben et al. 1999).
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Laumanns et al. (2001) discuss the problem of controlling mutation strength in multi-
objective evolutionary algorithms and its implications for the convergence to the Pareto
set. A Pareto set is defined to be the set of all Pareto optimal decision vectors and a
Pareto optimal vector is defined to be a vector, which makes the optimization function
converge the most. Convergence here refers to the iterative approach of populations to

the Pareto set of the underlying optimization problem.

An algorithm should ensure convergence to Pareto set and provide a “good” distribution
of solutions in order to find or to approximate the set of efficient or Pareto-optimal
solutions. Fitness assignment methods based on the notion of dominance seem to
produce better solution distributions than plain aggregating methods. Density based
selection methods maintain diversity and the use of elitism speeds up the search in the
direction of the Pareto set and ensure convergence properties. (Laumanns, Zitzler &
Thiele 2001; Rudolph & Agapie 2000; Laumanns et al. 2001). However, virtually all
implementations focusing on the role the variation operators in evolutionary multi-
objective optimization use standard non-adaptive operators from the single objective

case (Laumanns et al. 2001).

Approximating the Pareto set of a multi-objective optimization problem by evolutionary

algorithms faces two main problems:

1. The velocity and reliability of convergence to the Pareto set, same as in single
objective optimization.
2. Distribution of solutions, caused by the existence of multiple Preto-optimal

solutions in the multi-objective case.

Laumanns et al. (2001) present the so-called Predator-Prey model. In this model
predator individuals move across the spatial structure so that they delete the worst prey
individual of their neighborhood according to their associated objective function. The
authors present two adaptation rules capable of increasing the step sizes on need for the
model: 1) the standard mutative self-adaptation and 2) self-adaptation through
recombination frequency. These rules have worked well. The model converges to the

Pareto set due to the superior success probability of single criteria selection in the
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vicinity of the Pareto set, where it gets increasingly difficult to make cooperative steps

from one mutation alone.

The second method, self-adaptation through recombination frequency, combines the
implicit evaluation of good “inner models” through fitness evaluation and selection with
a fixed but flexible schedule depending on the recombination frequency. In this way all
individuals use bigger step sizes for the early offspring and smaller for later ones. The

mutation of the step sizes is done deterministically according to the rule:
o =y"he, yelo,. (30)

Here d denotes the number of descendants an individual has produced so far. The delay
parameter, d, determines the number of descendants that must be created before
smaller step sizes are passed on to the offspring. The adaptation rate can be controlled
by y. In this schedule for step sizes just one order of magnitude greater than the

optimal ones the success rate rapidly goes to zero. Therefore it is a matter of time until

appropriate step sizes will be found.

4.3.4 Crossover Operators

In contrast to the mutation operator that acts on bits, the crossover rate p, acts on a pair
of chromosomes and states the probability that the selected pair undergoes crossover.
Crossover rate is a number between zero and one that indicates how frequently
crossover is applied to a given population (Haupt et al. 2004). Some pre-set crossover

rates tuned for a binary GA are reported in Eiben et al. 1999 to be p, =~ 0.6 (De Jong
1975), p.=0.95 (Grefenstette 1986) and p .€[0.75,0.95] (Schaffer et al. 1989; Bick

1996; Michalewicz et al. 2004). It is generally believed that the crossover rate should
not be too low and not below 0.6 (Eiben et al. 1999).

The rate of operators can be adapted by rewarding those individuals, which have been
successful in creating better offspring. This idea is implemented in Davis’s adaptive

operator fitness. This reward is diminishingly propagated back to operators of a few
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generations back, which helped setting it all up; the reward is a shift up in probability at
the cost of other operators (Davis 1991; Eiben et al. 1999).

The same idea seems to have been used in classifier systems as credit assignment
principle (Goldberg 1989; Eiben et al. 1999). Cost based operator rate adaptation
(COBRA) on adaptive crossover rates has been studied in (Tuson & Ross 1996; Eiben

et al. 1999). As it was mentioned earlier values of p,, p. and the population size in an

algorithm of a parallel farming model have been adapted in (Lis et al. 1996).

Probability adaptation for allele exchange of uniform crossover is investigated in

(White & Oppacher 1994; Eiben et al. 1999). A discrete p, € [0,%,%,...,1] is assigned

to each bit in each chromosome and bits are exchanged at position i by crossover if

\/ p(parent,)..p(parent,). >rnd(0,1). The offspring created inherits bit x, and p.
from its parents. The finite state automata used here amounts to updating these

probabilities p! in the offspring in the following way:

if f(child)> f(parent) then

raise p! in child for i's from parent
if f(child)< f(parent) then

lower p! in child for i's from parent

else
modify randomly parent € {parent,, parent,}

The choice between the two different crossovers, 2-point crossover and uniform
crossover has been self-adapted in (Spears 1995; Eiben et al. 1999) by adding one extra
bit to each individual. This extra bit determines which type of crossover, e.g. uniform
crossover, 2-point crossover, is used for that individual and this choice of crossover is
inherited from the parents to their offspring. If the parents’ crossover bits are different,
then one operator is chosen randomly. The crossover operator can also be controlled by
using the so-called gene linkage bits. Here, two binary linkage genes are added to each
gene and the values of these bits determine whether the crossover is allowed or not; if

both link bits are 1, crossover is not allowed (Krink 2005).
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Individuals are replaced by their offspring in (Srinivas & Patnaik 1994; Eiben et al.

1999). Each chromosome has its own probabilities p, and p, added to their bitstrings.

These probabilities are adapted in proportion to the population maximum and mean

fitness.

The number and locations of crossover points are adapted in (Schaffer et al. 1987,
Eiben et al. 1999) by introducing special marks into offspring representation, which

keep track of the sites in the string where crossover occurred.

In multiparent operators the number of parents taking part in recombination is also a
parameter. To adjust the arity of recombination an adaptive mechanism based on
competing subpopulations (Schlierkamp-Voosen & Miihlenbein 1996) is used in (Eiben
Sprinkhuizen-Kuyper & Thijssen 1998). The idea is that the population is divided into
disjoint subpopulations each using a different crossover, i.e. arity. Subpopulations
develop independently for a certain period of time and exchange information by
allowing migration after each period. The process is controlled so that more successful
populations grow in size and less successful populations become smaller. However,
subpopulations and their crossover operators are saved from complete extinction. By
using a high quality six-parent crossover variant, this method performed comparably
with a traditional GA using one population, one crossover. But, it failed to clearly
identify the better operators by making the corresponding subpopulation larger (Eiben

et al. 1999).

4.3.5 Parent Selection

The selection pressure can be varied along the course of the evaluation according to a
pre-defined cooling scheduling using Boltzmann selection mechanism, where a minimal
energy level is sought by state transitions (Mahfoud 1997; Eiben et al. 1999). The

chance of moving from state i to state ;j is determined by the Metropolis criterion:

E, _E./
K,.T

D

Placcept j]| = exp( ), (31
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where E;, E are the energy levels, K,is a parameter called the Boltzmann constant,

and 7 is the temperature. The Metropolis criterion is applied for defining the
evaluation of a chromosome in (De la Maza & Tidor 1993; Eiben et al. 2000;
Michalewicz et al. 2004). The selection pressure is changed by changing the acceptation
threshold over time in a multi-population GA framework presented in (Rudolph &
Sprave 1995; Eiben et al. 1999).

The parent selection component of an EA has not been commonly used in an adaptive
manner, but there are selection methods whose parameters can be easily adapted (Eiben
et al. 1999). For instance, in linear ranking a selection probability proportional to the

rank of individual i is assigned to each individual in the following way:

_2-b+2i(b-1)/(pop _size—1)
pop _size '

p() (32)

Here the parameter b represents the expected number of offspring to be allocated to the
best individual. The selective pressure of the algorithm can be adapted by changing the

value of b within the range of [l, 2] . Here the rank of the worst individual is 0 and the

rank of the best individual is pop size—1 (Eiben et al. 2000; Michalewicz et al. 2004).

4.3.6 Replacement Operator

Like parent selection mechanisms, replacement operator (survivor selection) is not
commonly used in an adaptive manner. In simulated annealing (SA), solutions are
searched and tested and it can be envisioned as an evolutionary process with population
size of 1, problem dependent representation and mutation mechanism, and a specific
survivor selection mechanism. During the run the selective pressure increases in the

Boltzmann-style. The main cycle of SA for minimization problems is:
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procedure SA
begin
generate j €S,

if f(j)<f(i) then i:=j
else

if exp(M) > random|0,1] then i:= j
Ck
end

Figure 2. The simulated annealing algorithm for minimization problems.

Here the probability of accepting inferior solutions decreases as temperature c, is

decreasing.

4.3.7 Population

A theoretical analysis of the optimal population size have been provided in (Goldberg,
Deb & Clark 1992 a; Goldberg, Deb & Clark 1992 b; Smith 1997); Eiben et al. 1999).
In addition, there have been efforts to find the optimal population size empirically. The
optimal population size has recommended being [50, 100] (De Jong 1975; Eiben et al.
1999), [30, 80] (Grefenstette 1986; Eiben et al. 1999) and [20, 30] (Schaffer et al. 1989;
Eiben et al. 1999).

An algorithm, which adjusts the population size with respect to the probability of
selection error, is presented in (Smith 1993; Eiben et al. 1999). An adaptive GA, which
works on varying population size, is presented in (Hinterding, Michalewicz & Peachey
1996; Eiben et al. 1999). This algorithm consists of three subpopulations and the sizes
of these populations are adjusted at regular intervals based on the current state of the
search. Another competition scheme is presented in (Schlierkamp-Voosen &
Miihlenbein 1994; Eiben et al. 1999). This scheme changes the sizes of subpopulations,
while keeping the total number of individuals fixed. In the genetic algorithm with
varying population, size (GAVaPS) the age of the chromosome replaces the concept of
selection. The age of a chromosome is the number of generations the chromosome stays

alive. Since the age of chromosome depends on the fitness of the individual, it
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influences the size of population at every stage of the process (Arabas, Michalewicz &

Mulawka 1994; Eiben et al. 1999).

A recent idea in parameter control is to use the population structure to set the

parameters of the algorithm (Ursem 2003). There are two main approaches:

1. To divide the entire population into a number of disjoint subpopulations and use
the success of each subpopulation to control the parameters of other
subpopulations.

2. To use a spatial population structure and map the position of each individual to a

corresponding set of parameter values.

A subpopulation-based approach to control the probability of mutation p, in a binary

encoded GA is suggested in (Lis 1996; Ursem 2003). In this approach designed for
parallel computers, each subpopulation has its own level of mutation probability. The
subpopulations are assigned to 12 consecutive levels form a predefined scheme of
mutation probabilities: {0.0001, 0.0002, 0.0005, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05,
0.1, 0.2, 0.5}. A main processor coordinates and distributes subpopulations to other
processors. The main processor first creates a random initial population, which is then
copied and distributed to each processor along with the number of generations and
sends the best individual to the main processor. The algorithm constantly adapts the

window of mutation probability towards the most successful probability. (Ursem 2003)

In spatial control, a large part of the parameter space is represented by a spatial
population structure and location of the individual is interpreted as a set of parameters.
The Terrain-Based Genetic Algorithm (TBGA) uses a spatial population structure,
where each cell holds an individual with a binary encoded genome (Gordon, Pirie,
Wachter & Sharp 1999; Ursem 2003). The two-dimensional grid position of an
individual is interpreted as its offspring’s mutation rate and number of crossover points.
Hence, the individuals of a TBGA population apply the entire variety of different
parameter combinations at each step. The advantage of this approach is that optimal

parameters for the type of optimization task and the current state of the optimization
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process can be exploited. However, since the individuals in the cellular EA are fixed at
their grid position, only a few of them are able to take advantage of this set-up

simultaneously.

4.3.8 Combining Forms of Control

Most studies on control of parameters in EAs consider control of one parameter only or
a few parameters related to a single component of EA. The reason for this might be 1)
because the exploration of capabilities of adaptation was done experimentally, or 2) it is
easier to report positive results in such similar cases. The combination forms of control
are much more difficult. This is because the interactions of even static parameter
settings for different components of EAs depend on the objective functions and

representations used, and hard to understand (Eiben et al. 1999).

A fuzzy system was used to control the change in population size, crossover rate and
mutation rate in (Lee & Takagi 1993). The system wused the two ratios
(average fitness)/(best fitness) and (average fitness)/(worst fitness) together with the
fitness velocity to control changes. The system was first tested with simple artificial
benchmark problems and then used to set the parameters of an EA evolving a controller
for a pole-balancing problem. The fuzzy parameter control system showed better online
performance but similar offline performance compared to a simple EA. Experiments
indicated that the learned fuzzy rules may be generally applicable, but they require a
significant investment in programming since a fuzzy interface engine needs to be

implemented before being used in practice (Ursem 2003).

A combination of one generational measure and two instantaneous measures (called
state vector) were used to set three parameters (called control vector) of the algorithm in
(Kee, Airey & Cyre 2001). The state vector consists of the generational fitness velocity
and the instantaneous fitness variance and population diversity measured by Hamming

distance. The control vector sets the probability of mutation p, , the probability of
crossover p. and the so-called power fitness scaling factor « . A simple rule system is

used to map the current state vector to a control vector. The state values are divided into
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low, medium and high ranges, which give a system with 3’ =27 rules. The control
values are set to a low, a medium or a high value. Hence, each rule maps a state three-
tuple to a corresponding control three-tuple, like (low, high, high) to (medium, low,
low). The rule learning is carried out while the EA is optimizing the problem (Ursem

2003).

The most common form of combined parameter control is related to mutation. A
number of parameters can control the operation of Gaussian mutation. The mutation can
be controlled by 1) controlling its direction or 2) by setting the standard deviation of the
mutations (mutation step size) at a global level for each individual or for genes within

an individual (Michalewicz et al. 2004).

Controlling parameters taken from different components of the EA are much rare
(Eiben et al. 1999). Self-adaptation of the mutation step size was combined with the
feedback-based adaptation of the population size in (Hinterding et al. 1996; Eiben et al.
1999). Here feedback from a cluster of three EAs, which use self-adaptive Gaussian
mutation and different population sizes were used to adjust the population size of one or
more of the EAs at 1000 evaluation epochs. The EA adapted different strategies for
different type of test functions: for unimodal functions, it adapted to small population
sizes for all the EAs, and for multimodal functions, it adapted one of the EAs to a large

but oscillating population size to help it escape from local optima.

The mutation step size and preferred crossover points in an EA have been self-adapted
in (Smith & Fogarty 1996 a; Smith & Fogarty 1996 b; Eiben et al. 1999). Here each
gene in the chromosome includes: a) the problem encoding component, b) a mutation
rate for gene, c) two linkage flags; one at each end of the gene, which are used to link
genes into larger blocks, so that two adjacent genes have their adjacent linkage flags set.
Crossover is a multiparent crossover and occurs at block boundaries, whereas the
mutation can affect all the components of a block and the rate is the average of the

mutation rates in a block.
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The adaptation of mutation probability, crossover rate and population size have been
combined in (Lis et al. 1996; Eiben et al. 1999). Here a parallel GA was used over a
number of epochs so that in each epoch the parameter settings for the individual GAs
was determined by using the Latin Square (a matrix consisting of 7 sets of the numbers
1 to marranged in such a way that no orthogonal row or column contains the same
number twice) experiment design. This was done so that the best combination of three
values for each of the three parameters could be determined using the fewest number of
experiments. At the end of each of epoch, the middle level parameters for the next

epoch were set to be the best values from the last epoch.

Minimizing the number of separate populations is the reason why feedback-based rather
than self-adaptation was used to control the population size in (Hinterding et al. 1996;
Eiben et al. 1999). The complexity of interactions between adaptive parameters seems
to be the reason, why combined parameter control is commonly self-adaptive. Using
self-adaptation in combined parameter control is the most promising way since we leave
the process to evolution itself to determine the beneficial interactions among parameters

while finding a near-optimal solution to the problem (Eiben et al. 1999).

Combined parameter control may trigger additional problems related to transitory
behavior of EAs and reduce the chances of utilizing good operators at later stages of the
process. For instance, a population may be arranged in a number of disjoint
subpopulations, which use different crossover rates. If the size of subpopulation
depends on the merit of its crossover, the operator which performs poorly at some stage
of the process would have difficulties to recover as its subpopulation shrinked in the

meantime and smaller populations usually perform worse than larger ones.
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5. The Distributional Decimal Binary Genetic Algorithm

In the following, the new genetic algorithm developed in this research is described in
detail. The algorithm is called distributional decimal binary genetic algorithm
(DDBGA). The algorithm uses the information from the population distribution for
breeding. It uses the binary encoding of candidate solutions, but utilizes operators
originated form real value encoding in novel ways. All components of the algorithm are
designed and developed here for experimentation with function optimization. Some of
these components are well known, but they are implemented in a new way and
combined with some other new operators. For instance, the classic one point crossover
is a well-known operator also used in this algorithm, but selection for breeding prior to
the crossover is a new method developed here. Components of the algorithm described
here are: the problem encoding (representation), initialization, breeding, operators and

replacement. For each component, the pseudo code is also provided.

5.1 Representation

The binary representation was selected for encoding individuals for both binary and real
value problems. The binary representation of variables is the target of all operators.
However, in order to make the binary operators more efficient, conversion between the
real value and the binary representation is frequently used. Since the random multiple
point mutation of a long binary string, particularly in a non-uniform manner requires
lots of trials, making use of decimal mutation techniques can speed up the process
significantly. The effect can be particularly observed during the fine-tuning of candidate

solutions.

The mapping between binary strings into floating-point numbers and vice versa is

implemented according to the following well-known steps:
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1. The distance between the upper and the lower bounds of variables is divided

according to the required precisions, precision (e.g. the precision for 6 digits

after the decimal point is 1000000, ) in the following way:

(upper — lower) x precision . (33)
2. Then an integer number / is found so that:

(upper — lower) x precision <2'. (34)

Thus, / determines the length of binary representation, which implies that each

chromosome in the population is / bits long.

Therefore, if we have a binary string x" of length /, in order to convert it to a real value

!

x, we first convert the binary string to its corresponding integer value in base 10, x(,,
and then calculate the corresponding floating-point value x according to the following
formula:

upper — lower

_ '
x = lower + x ;) % 1

(35)

This formula can also be used in order to represent binary chromosomes in integer form.
Since the corresponding decimal value of the binary string in base 10 is always a
positive number smaller than or equal to 2', instead of binary strings the population can
consist of randomly generated integer numbers between 0 and 2'. This can be an
interesting technique to avoid the main drawback of binary representation for resulting
in too long binary strings and search spaces. This means that, e.g. for 100 variables with
domains in the range [—500, 500] and precision of six digits, instead of maintaining

3000 bits long binary strings, we can have an array of integer numbers of just 100

locations.

Whenever a binary operation should be carried out, the integer number can easily be
converted to its binary representation and after the operation is complete, the new

binary string can be converted to its corresponding integer number in base 10.
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5.2 Population Size

The population size is the only fixed parameter. It is set to the smallest feasible value,
i.e. 12. Size 12 seems to be just big enough for maintaining some variation in the
population; there will be a group of three individuals in the lower quartile of the
population (0.25*%12), six individuals in the interquartile range of the population
(0.5*%12) and three individuals in the higher quartile of the population (12-0.75%12).
Populations of smaller size would not have enough individuals to form a group of
reasonable size in the higher quartile. On the other hand, populations of bigger size

would cause unnecessary function evaluations and waste resources.

The search space is explored more only when it was necessary. This can be described
as: “‘just-in-time search space exploration” or “search space exploration on demand”;
the search is started with a population of relatively small size and is refreshed when it is
necessary. If the fitness values of the best individual and the worst individual are the
same, then the population is considered to be overtaken by a single individual. In that
case, the algorithm explores the search space more by keeping one individual and
replacing the rest of the individuals with new randomly generated ones. This approach

gives a dynamic characteristic to the search space exploration.

5.3 Initialization of the Population

Binary initialization of individuals is performed to assure the real random initialization
of the population. This is simply done by randomly initializing each locus of gene in
each chromosome with zero and one. This approach proved to be a more efficient way
for uniformly initializing the population randomly. Real value initializations could lead

to certain distributions, where the whole search space would not be necessarily covered.

During initialization, for each individual a mate of the opposite sex is created. This is

done simply by inverting each gene in the individual to the opposite value, like:
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var2

varl var n-1 varn

male [0010001ft1 01001 ... ... 1001000[1011011

varl var2 var n-1 varn

female | 1 1011100010220 ... ... 0110111({0100100

Figure 3. The male and female chromosome mapping example.

The motivation for this operation is the observation that flipping all bits in a string
could lead to rapid fitness improvement. Moreover, crossover with two bit strings of
opposite values increases the chance of producing better offspring. For each individual,
both male and female chromosomes are evaluated. Of these chromosomes, the fitter one
is set to be the male chromosome and the other one is se to be the female chromosome.
This process is repeated until all members of the population have been created.
Therefore, each individual is actually presented by two chromosomes: a male
chromosome and a female chromosome. However, operations are aimed at the male
chromosomes by default. Figure 4 provides the pseudo code for the initialization

process of the population:

procedure PI
begin
for each individual in the population do
for each gene in the individual do

select the binary gene value gv e {0,1} for the male chromosome

calculate the gene value for the female chromosome fgv =1XOR gv

done
evaluate male and female chromosomes
set the better chromosome as male chromosome
set the worse chromosome as female chromosome
done
end

Figure 4. The pseudo code for the population initialization (PI) algorithm.
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After each evaluation of the population, individuals are sorted in ascending order
according to their fitness values. This helps dividing the population to three separate
parts: 25th percentile (lower quartile), 75th percentile (higher quartile) and interquartile
range (above the lower quartile and below the higher quartile). This division is
necessary in order to recognize the most critical areas in the distribution of the
population and focus genetic operators on most promising individuals. This will also
help implementing genetic operators more precisely and avoiding precious processing
time. Figure 5 shows how the population is divided to different areas according to the

individuals’ fitness distribution.

Fitness values of Population
the population

Best 1.25 110011...101 indn
2.4 001000...100 Higher quartile
3.2 010100...001
Interquartile range
5.4 011101...101 ind3
6.0 000001...111 ind2 s |ower quartile
ind1
Worst 8.3 111001...001 nd

Figure 5. Division of the population distribution according to the fitness values of

individuals for a minimization problem.

As a result, genetic operators will be more efficient and improve the population more
rapidly. This division will also help maintaining diversity in the population while for
instance individuals in the higher quartile will go through continuous evolution process
and improve more. Furthermore, the division of the population helps focusing evolution
operators intentionally on certain individuals instead of hoping that a random process

would take care of the process and select fitter individuals for different operators.
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5.4 Survivor Selection

After the initialization, the population goes through various evolutionary operators to
get developed. After each operator application, new offspring are evaluated and
compared to the population individuals starting from the best individual. Once a worse
individual is found, it is checked whether the worse individual is the worst one in the
population or not. If the individual is not the worst one, it first replaces the worst
individual before itself being replaced by the new offspring. This means that offspring
do not automatically replace their parents. On the other hand, offspring do not need to
be better than their own parents to be moved to the population. Practically this is equal
to replacing the worst individual with a fitter one. In this manner no chance for
improving the population average fitness value is lost. Also no effort is lost and the
advantageous results of the crossover operations are used efficiently. Figure 6 provides

the pseudo code for the survivor selection procedure.

procedure SSP(offspring)
begin
evaluate offspring
ifdind € population so that offspring is fitter than ind then

if ind is fitter than population worst _individual then

replace population _worst_individual with ind
endif
replace ind with offspring
endif
end

Figure 6. The pseudo code for the survivor selection procedure (SSP).

This survivor selection mechanism is implemented after each operator later in the text

this mechanism will be referred to as the survivor selection procedure (SSP).

5.5 Genetic Operators

Several genetic operators are designed and implemented. Some of these operators are
new and some others are previously known classical operators, which are implemented

here in a new way. The common factor in the design and implementation of the
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operators is the fact that they are intentionally restricted to a certain area of the fitness
value distribution of the population and therefore they manipulate individuals according

to their position in the distribution.

The mutation operator is not used explicitly at all. It may have occurred according to a
random process in the random building block operator explained later, but it has not

been planned to happen in the evolution process.

Several variations of the crossover operator have been used. These have been designed
to deterministically manipulate individuals in each quartile of the fitness population. For
each quartile of the population, the crossover operator is repeated at least for the
expected number of individuals in that quartile. This means that during the crossover
operation for e.g. the higher quartile, the operation is repeated at least 3 times
(0.25*%12=3), and so on. After repeating the crossover operator for the number of
individuals in each population area, the application of the operator is repeated until it

fails to produce any better offspring.

5.5.1.1 The Higher Quartile Crossover Operator

The higher quartile crossover (HQC) operator implements the idea of the well-known
one-point crossover. However, parents are selected for breeding in a new way.
Individuals in the higher quartile of the population are randomly selected to go through

this operation. For this operator, two different parents, p, and p, and a crossover point
cp are randomly selected. Then, the male chromosome of parent p, is crossed over

with the male and female chromosomes of parent p,. As a result, four new offspring

are created. These new offspring then go through the survivor selection procedure
explained earlier for possible replacement. Figure 7 describes how the crossover

between two individuals is implemented.
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crossover point
varl var2 var n-1 varn

parent] 0010001101001} .i. ... .L001000[1011011

o

varl var2 var n-1 varn
parent2 110100100111 00f. .. ... 01010010011 000
varl var2 var n-1 varn
offspringl |1 1010010011100 .. .... Lo001000[1011011
1
varl var2 var n-1 varn
offspring2 00100012 101001f .. ..... 0101001(0011000

The crossover operator. Two individuals are randomly crossed over at a

single point to produce new offspring.

The new idea here is that the crossover operator is repeated with the same parent

indexes and on the same crossover point as long as a better offspring is created. It is

important to notice that the same parent indexes do not necessarily mean the same

parents since a better offspring might have replaced the parent during the previous

survivor selection. Crossover points are selected so that they are at least two loci far

from the end points of the binary representations of the chromosomes. This is to make

sure that the operator is really crossover and not mutation. Figure 8 describes the

pseudo code for the higher quartile crossover operator.
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procedure HQC
begin
for the number of individuals in the population higher quartile do
select randomly parent! from the population higher quartile

select randomly parent2 from the population higher quartile
select randomly crossover point ¢p € [2,length( parentl) — 2]

do
crossover parentl with the male chromosome of parent2 on cp
crossover parentl with the female chromosome of parent2 on cp
failed=true
for each resulting offspring do
call the survivor selection procedure (SSP) for offspring
if offspring is better than a population member then
failed=false
endif
done
while (failed==false)
done
end

Figure 8. The pseudo code for higher quartile crossover operator (HQC).

5.5.2 The Random Building Block Operator

The random building block (RBB) operator is also a new operator proposed here.
During the classical crossover operation, building blocks of two or more individuals of
the population are exchanged in the hope that a better building block from one
individual will replace a worse building block in the other individual and improve the
individual’s fitness value. However, the random building block operator involves only
one individual. The idea with the random building block operator is that it randomly
produces new building blocks of random length and replaces a randomly selected

building block in an individual.

This operator can help breaking the possible deadlock when the classic crossover
operator fails to improve individuals. It can also refresh the population by injecting
better building blocks into individuals, which are not currently found from the

population. Figure 9 describes the random building block operator.
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random building block

11011110

varl var2 1 var n-1 varn

individual 01000110 ...i00100010 {. ..1010(|112001100

varl var2 var n-1 varn

offspring 01000110. .. 11011110 . ..1010|1 1001100

Figure 9. The random building block operator. A random building block is generated

and copied to an individual to produce a new offspring.

All population members go through this operation. This operation is implemented in the

following order: 1) for each individual ind two crossover points c¢pl and cp2 are
randomly selected, 2) a random bit string bstr of length /= |cp2 - cp1| is generated, and

3) bits between the crossover points on the individual ind are replaced by the bit string

bstr . Figure 10 provides the pseudo code for the random building block operator.
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procedure RBB
begin
for each individual in the population do
make a clone of individual

select crossover point cpl €[0,length(individual))

select crossover point cp2 €[0,length(individual)) so that cp2 # cpl

if cp2<cpl then
exchange values of ¢p/ and cp?2
endif
generate random bit string rbs of length / = |cp2 -cpl |

replace bits between ¢pl and c¢p2 on clone with rbs

call the survivor selection procedure (SSP) for clone
done
end

Figure 10. The pseudo code for the random building block (RBB) operator. Bit indexes
start from 0.

5.5.3 The Variable Crossover Operator

The variable crossover (VC) operator is a modification of the standard uniform
crossover operator designed and implemented here. This operator is meaningful only for
multiple variable problems. The main idea is the same as with the standard crossover.
However, the crossover points are always the borders between variables in the
individuals. This means that during this operation the whole binary representations of
different variables in one individual are replaced by the binary representations of some

variables from some other individuals.

The motivation for this operator is simply the fact that even in an individual with low
fitness value, the value of one or more variables might be very close to their optimal
values, while the values of other variables are far from their optimal values. Since the
value of each variable plays an important role in determining the individual’s fitness
value, removing ‘“unhealthy” parts from the individual and replacing them with
“healthier” parts would definitely increase the individual’s fitness value. Therefore, the

variable crossover operator can be compared to a surgical operation in which healthier
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organs from better individuals are transferred to “sick” individuals in the hope of

rehabilitating them.
The variable crossover operator is implemented separately on the higher quartile and the

elitist. Both implementations are described below. Figure 11 describes the main idea

with the variable crossover operator.

varl var2 var n-1 varn

crossindg [0 01000 1|1 10100 1f .. .... 10010001 011011

varl AZ var n-1 varn

offspring 110100100111 00( .. .... 0101001[0011000

varl var2 \ var n-1 varn

crossindl 10110000101 001f. ... ... 00111001011101

varl var2 var n-1 varn

crossindp [0 0110001000110 ... ... 1001000|0011000

Figure 11. The variable crossover (VC) operator. The binary representation of one or
more (but not all) variables in an individual is replaced by the binary

representation of other variables from different individuals.

The higher quartile variable crossover (HQVC) operator crosses over each individual
in the population higher quartile with one or more randomly selected individuals from

the population spectrum. The number of crossover points ¢ps is randomly determined
so that it is at least 1 and at most the number of variables minus one:

cps € [1, number_of_variables). This is necessary to avoid 1) useless attempts with no

crossing point, 2) replacing an individual completely with other ones.
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This operator is a multiple parent crossover operator. After determining the number of
crossover points, the crossover points and also parents involved in the operation are
randomly selected. For each crossover point a parent is also randomly selected. Finally,
the selected individual from the higher quartile is crossed over with randomly selected
individuals on randomly selected crossover points. This means that each individual
contributes one variable to the offspring. Figure 12 provides the pseudo code for the

higher quartile variable crossover operator.

procedure HQVC
begin
for each individual in the higher quartile of the population do
make a clone of individual

select the number of crossover points cps € [l,number_of B varz'ables)

for the number of crossover points cps do
select a crossover variable cv €[1,number_of variables|

select a respective individual cvind from the population
replace bit string of ¢v in clone with bit string of ¢v in cvind
done
call survivor selection procedure (SSP) for clone
done
end

Figure 12. The pseudo code for higher quartile variable crossover (HQVC) operator.

The variable crossover operator is also implemented on the elitist individual. See the

description of the elitist variable crossover operator.

5.5.4 The Variable Replacement Operator

The variable replacement (VR) operator is a new operator introduced here. The
motivation for this operator is that the value of a variable (a substring of the binary
representation of the chromosome) in the individual may be in such an optimal position
in the search space that will help also other variables to improve the fitness value of the
individual. This can normally happen for a multiple variable problem, whose optimal
value is achieved when all variables of the problem have the same certain value. The

main idea with the variable replacement operator is that the value of each variable in
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turn replaces the values of all other variables in the same individual and then the
individual is evaluated again. This process is repeated for all variables in the same
individual. If any of these variable replacement trials generates a better offspring than
the original one, the offspring is saved as a candidate to replace the original individual.
At the end of the variable replacement process, the original individual is either replaced
by the fitter individual produced by the variable replacement operator, or remains

unchanged.

Two versions of this operator are implemented. One of them receives an individual as
an argument and modifies it. The other version implements the variable replacement
operator on all individuals in the higher quartile of the population. Figure 13 describes

the idea of the variable replacement operator.

trial n

offspringn *

. varl var2 var n-1 varn
trial 2
offspringZ 010100101 01001f . . . ... 0101001(0101001
7Y
varl var n-1 varn
ind1 10011100101001. ... ... 00111001010001
. varl var2 var n= varn
trial /
offspringl {1 0011101001110/ . .. ... 1001110(|1001110

Figure 13. The variable replacement (VR) operator. The binary representation of each
variable in the individual replaces the binary representations of all other

variables in turn to produce a new offspring.
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5.5.4.1 The Single Variable Replacement Operator

The single variable replacement (SVR) operator carries out the variable replacement
process only for a selected individual. This operator receives an individual as the input
and implements the variable replacement process for each variable in the individual as
described earlier. If this produces a better offspring, this offspring will replace the
individual received as the input. In the DDBGA this operator is called in conjunction
with some other operators, like the integer mutation operator described later. Figure 14

provides the pseudo code for this operator.

procedure SVR(individual)
begin
for each variable var in individual do
make a clone of individual
replace the values of other variables in clone with the value of var
done
find the best clone bclone
if bclone is better than individual then
replace individual with bclone
endif
end

Figure 14. The pseudo code for the single variable replacement (SVR) operator.

5.5.4.2 The Higher Quartile Variable Replacement Operator

The higher quartile variable replacement (HQVR) operator carries out extensive
replacement operator on all individuals in the higher quartile of the population. The
reason for this is simply the fact that individuals in the higher quartile are the best ones
and there is a high probability that one or more variables in these individuals are close
to the optimal values of variables. Figure 15 provides the pseudo code for the higher

quartile variable replacement operator.
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procedure HQVR
begin
for each individual in the higher quartile of the population do
for each variable var in individual do
make a clone of individual
replace the values of other variables in c/one with the value of var
done
find the best clone bclone
if bclone is better than individual then
replace individual with bclone
endif
call the survivor selection procedure (SSP) for individual
done
end

Figure 15. The pseudo code for the higher quartile variable replacement (HQVR)

operator.

5.5.5 Decimal Operators

One major problem with the classical implementation of binary mutation, the multiple
point mutation or the crossover operator is that it is difficult to control their effect or to
restrict changes caused by them within certain limits. Using the traditional techniques of
doing random bit changes it is hard to modify the binary representation of a variable so
that the value increases or decreases by a certain value. For example, using previously
introduced technique for mapping binary strings to real values between —100 and 100

with 6 digits precision, the following bit string x :

1000010100011110101110000000

2001 =4 and the following bit string y :

represents 4, since —100 + x,,,) x PE

10000011110101110000101000060
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represents 3, since —100+ y,,, x%:i&. Comparing these bit strings shows how

improbable it would be to modify the first bit string properly with traditional binary
operators in order to get the second bit string. Of 28 bits, 10 bits on scattered positions
need to be mutated in order to get the latter bit string from the earlier one. This would
require 10 consecutive successful mutation operations provided that the same individual
was selected each time. Thus, if the mutation probability for each bit is 0.01, then the

theoretical probability for such a mutation would be
0.01"" X Vg x Yoy X Voo X Yo =107"x2.1x107* =2.1x107*.  The  probability  for

modifying the first bit string to the later one through a uniform crossover of size 10

=5x10""%x4.8x10"” =2.4x107*

28)" 0.5°%10118!
would be o.swx( j _08°x10118!

10 28!

Therefore, several techniques are developed to implement the genetic operators
intelligently so that the resulting modifications on the binary string will cause changes
in the real values within the desired limits. This idea is implemented so that the real
value of the variable is randomly changed within the desired limits and the modified
value then is converted to the binary representation and stored as the value of the
variable. In this way we can cause more intelligent mutations in the bit strings and make

sure that changes in real values are within the desired bounds.

Apparently, changes of different magnitudes are required at different stages of the
evolutionary process. Thus, two types of decimal mutation operators have been

implemented:

1. For modifying variables with integer values. The bounds for the absolute values
of such changes are at least 1 and at most the integer part of the real value
representation of the variable. This means that the upper bound of the range may
vary even for each variable of the same individual. The randomly selected

mutation value may be either positive or negative. Thus, if the integer part of the

variable is |int(variable) , the integer mutation range is J_r[l,

int(variable)u .
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2. For modifying variables with values from the range (O, 1) . The lower bound for

the absolute value of such changes is determined by the required precision of the
real value presentation of the variable, like 10°. The upper bound for the
absolute value of such changes is determined by decimal part of the variable.
Here also the mutation value can be either positive or negative. Thus, if the

number of digits after the decimal point for a variable is precision(variable) ,

and the decimal part of the variable is decimal(variable), the range for the real

mutation values is i[IO’preCiSi"“(va””bl"), decimal(variable)” :

Two variations of these operators are implemented; one for the elitist individual and the
other for the rest of the individuals of the population. These implementations differ: 1)
in the range of mutation values and 2) the individuals, which are subject of these

mutations.

5.5.5.1 The Integer Mutation Operator

The integer mutation (IM) operator mutates the individuals of the population in
relatively great magnitudes. During this operation an integer mutation value I' is

selected randomly from the following range:

I'e i[l,

int(variable)u (36)

and added to the variable under mutation. Here,

int(variable)| stands for the absolute

value of the integer part of the variable. Clearly, this integer part does not necessarily
cover the whole range of the variable. To avoid wasting resources special care is taken
to make sure that the generated random number is not 0. Thus, the upper bound for the
integer mutation value is different for each variable and is defined by the absolute value
of the integer part of the variable. This will make the process more flexible and

intelligent.

If the upper bound of the mutation value is set to a fixed value, the operator becomes
inefficient or the probability for its failure will rise. For instance, if the optimal value of

a variable is 0.05 and its present value 80.64, we will need 80 successful integer
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mutations of magnitude 1 in order to get close to the optimal value of the variable.
However, if the magnitude of the integer mutation value can be dynamically determined
by the magnitude of the variable, the operator will have a much greater chance to

improve the value of the variable dramatically in a short time.

During this operation for each variable in the individual, first a Boolean value is
randomly generated that determines whether the mutation operation for the variable at
hand should take place or not. If the Boolean value is true, then a randomly generated
integer number within the specified bounds is added to the decimal value of the
variable. This process is repeated for each variable of the individual separately and the
binary representation of the resulting offspring is updated. The offspring is then
evaluated and put through the survivor selection procedure. Once this process is ready,
the new offspring goes through the variable replacement operator for possible
improvement. Next, the offspring, which has possibly been modified by the variable
replacement operator, goes through the survivor selection procedure for possible
substitution. There is no fixed rate for this operator. All population members go through
this operator at least once. This operation is combined with the variable replacement
operator described previously. After going through the variable replacement operator,
the offspring goes again through the survivor selection procedure (SSP) for evaluation

and possible selection. Figure 16 provides the pseudo code for the operator.
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procedure IM
begin
for each individual in the population do
make a clone of individual
for each variable var in the clone do
if a random Boolean value is true then

select randomly the integer mutation value imve =+ [1, int(var)u

add imv to var in clone
endif

done

call the survivor selection procedure (SSP) for clone

call the single variable replacement (SVR) operator for clone
call the survivor selection procedure (SSP) for clone

done
end

Figure 16. The pseudo code for the integer mutation (IM) operator.

5.5.5.2 The Decimal Mutation Operator

The decimal mutation (DM) operator is used in order to implement changes of smaller
magnitudes on individuals. During this operation non-zero decimal numbers in the
specific range are randomly generated and added to the randomly selected variables in
the individual. The upper bound for the decimal mutation values is determined by the
absolute value of the decimal part of variables. If the decimal part of a variable is

denoted by decimal(variable), the maximum distance of the mutation values from 0 is
|decimal(variable)|. The lower bound of the mutation range is determined by the

number of digits after the decimal point. Thus, if precision(variable) shows the number

of required decimal places of a variable, the decimal mutation value is determined in

the following way:

§0 c + I:l 0— precision(variable) ,

decimal(variable) | (37)

The difference between this operator and the integer mutation operator is the way the
mutation value is determined. Otherwise, these operators are similar. Figure 17 provides

the pseudo code for the operator.
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procedure DM
begin
for each individual in the population do
make a clone of individual
for each variable in the clone do
if a random Boolean value is true then
select randomly the decimal mutation value:

dmv E ililo—precmmn’

add dmv to variable in clone
endif

done

call the survivor selection procedure (SSP) for clone

call the single variable replacement (SVR) operator for clone
call the survivor selection procedure (SSP) for clone

done
end

decimal(variable)u

Figure 17. The pseudo code for the decimal mutation (DM) operator.

5.6 Elitism

A lot of attention is paid to the best individual, i.e. elitist in the population and several
operators have been designed in order to improve the quality of the elitist individual.
However, measures are also taken in order to avoid dominance of the elitist in the
population. In operations aimed at improving the elitist, the new offspring is copied to
the population only if the offspring is better than the best individual of the previous
generation or there is at least one individual, whose fitness value is worse than the new

offspring.

Operators aimed at improving the elitist individual are the elitist crossover, the so-
called elitist variable crossover, elitist integer mutation and elitist decimal mutation. Of
these operators, the elitist crossover is the only standard one, which can be found from
the literature. Other operators are developed in this research. At least they have not been

seen in any other sources. Each operator will be explained separately in the following.
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5.6.1 The Elitist Crossover Operator

The elitist crossover (EC) operator carries out an extensive crossover operator of the
best individual with the rest of individuals in the population. Each individual is selected
in turn for crossing over with the best one. The crossover point cp is a random index

selected in the following way:
cp €[2,length(individual) - 2], (38)

where length(individual) is the length of the binary representation of individual. The

length of the crossover section is set to be at least 2 to assure that the operator is really

crossover and not mutation.

crossover point
varl var2 var n-1 varn

parentl 00100011101001..;.....1001000 1011011
(Elitist)

/varl var2 ) var n-1 varn
Parent2 110100100111 00[. .. ... 0o101001[0011000
varl var2 var n-1 varn
offspringl |1 1010010011100 ... ... Loo1000f1011011
I
varl var2 var n-1 varn
offspring2 00100011 101001 « . o . .. 0101001/001100°0

Figure 18. The elitist crossover operator. The best individual is crossed over with

another individual at a single point to produce new offspring.

Thus, two offspring are generated by combining one part form the elitist individual and
the other part from another individual in the population. The crossover actually happens

with both the male and female chromosomes of the individual; the male chromosome of
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the elitist individual 1s crossed over once with the male chromosome and then with the

female chromosome of the other parent.

Another modification to the traditional implementation of the crossover operator is that
the elitist crossover process on the same individual indexes and the same crossing point
is repeated as long as it produced better offspring. Clearly, repeating the process will be
possible if it produces in its first round better offspring and replaces at least one of its
parents. If the crossover process fails to produce any better offspring or fails to replace
any of its parents, it will not be repeated after the first time. Figure 19 provides the

pseudo code for the elitist crossover operator.

procedure EC
begin
for each individual other than the elitist one in the population do
select the elitist individual as parent]
select individual as parent?2
select randomly crossover point ¢p € [Z,Iength( parentl) — 2]

do
crossover parentl with the male chromosome of parent2 on cp
crossover parentl with the female chromosome of parent2 on cp
failed=true
for each resulting offspring do
call the survivor selection procedure (SSP) for offspring
if offspring is better than a population member then
failed=false
endif
done
while (failed==false)
done
end

Figure 19. The pseudo code for the elitist crossover (EC) operator.

5.6.2 The Elitist Variable Crossover Operator

The difference between the implementations on the elitist and the higher quartile is the
fact that in the elitist variable crossover (EVC) the elitist individual is involved in each

trial. Figure 20 describes the elitist variable crossover operator.
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Figure 20. The elitist variable crossover (EVC) operator.
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varl var2 var n-1 varn
0010001120100 1( . . .... 1001000[1011011
varl AZ var n-1 varn
110100100111 00( . . ... 0101001[0011000
varl var2 \ var n-1 varn
1011000/01201001. .. .... 0011100101110°1
varl var2 var n-1 varn
0011000000110 . . .. .. 1 001000|0011000
Different individuals

contribute a variable to the operator by replacing the binary representation

of a variable in the best individual to produce a new offspring.

In each crossover cycle, first the number of crossover points is randomly generated.

Then the crossover points and respective parents are randomly generated. At the end,

the elitist and other parents take part into the variable crossover operator. The target

individual for changes is only the elitist individual; other individuals are not modified.

This means that all other selected individuals contribute one variable to the crossover

operation by replacing the value of one variable in the elitist individual. Then the

resulting offspring is put through the survivor selection procedure. This process is

repeated for the number of individuals in the population. Figure 21 provides the pseudo

code for the elitist variable crossover operator.
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procedure EVC
begin
for the number of individuals in the population do
make a clone of the best individual
select randomly the number of crossover points:

cps € [1, number_of_variables)

for the number of crossover points cps do
select a crossover point ¢p € [1, number_of_variables]

select randomly respective parent p [1 , population_size]

done
crossover the clone on each crossover point with its respective parent
call the survivor selection procedure (SSP) for clone
done
end

Figure 21. The pseudo code for elitist variable crossover (EVC) operator.

5.6.3 The Elitist Integer Mutation Operator

The elitist integer mutation (EIM) operator is used in order to fine-tune the best
candidate solution in the population. Changes of the smallest possible integer magnitude
are imposed in order to mutate the best candidate solution in a cautious way with more
chances of success. Thus, the integer mutation value is determined in the following

way:
I e{-1,1} (39)

This operation is performed for each variable in the best individual of the population.

For each variable, first a Boolean value with P{zrue} =0.5 is randomly generated that

determines whether the mutation for the variable at hand should take place or not. If the
Boolean value is true, then a randomly generated integer number is added to the
decimal value of the variable. Otherwise, the variable remains intact. Once this process
is completed for all variables in the elitist individual, the binary representation of the
resulting offspring is updated and put through the survivor selection procedure. Then
the new offspring is forced to go through the variable replacement operator and the

survivor selection procedure again.
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There is no fixed rate for this operation. The operation on the elitist individual is

repeated as long as it generates individuals better than at least one individual in the

population.

Figure 22 describes the pseudo code for the operator.

procedure EIM

begin

do

make a clone of the elitist individual
for each variable in clone do
if a random Boolean value is true then

select randomly the integer mutation value imv € {-1,1}

add imv to the variable in clone
endif
done
failed=true
call the survivor selection procedure for clone
if clone is better than a population member then
failed=false
endif
call the single variable replacement (SVR) operator on clone
call the survivor selection procedure (SSP) for clone

while (failed==false)

end

Figure 22.

The pseudo code for the elitist integer mutation (EIM) operator.

5.6.4 The Elitist Decimal Mutation Operator

The elitist decimal mutation (EDM) operator is used after the elitist integer mutation

operator in order to implement changes of smaller magnitudes on the elitist individual.

The minimum decimal mutation value is determined by the required number of digits

after the decimal point, giving the minimum mutation value +10 PesC @) The

maximum decimal mutation value is restricted to 0.1 in order to increase the chance for

successfulness of the operation. Thus, the decimal mutation value is randomly

determined in the following way:

pe + [1 0 precision(variable) ’ 0. 1:| ( 40)
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This operation is repeated for each variable in the elitist individual. Except for the
mutation value, the rest of the process is similar to the elitist integer mutation operator.

Figure 23 describes the pseudo code for the elitist decimal mutation operator.

procedure EDM
begin
do
make a clone of the elitist individual
for each variable in clone do
if a random Boolean value is true then

select randomly the decimal mutation value dmv e + [10””"””"" ,0. 1}

add dmv to variable in clone
endif
done
failed=true
call the survivor selection procedure for clone
if clone was better than a population member then
failed=false
endif
call the single variable replacement operator (SVR) on clone
call the survivor selection procedure (SSP) for clone
while (failed==false)
end

Figure 23. The pseudo code for the elitist decimal mutation (EDM) operator.

There is no fixed rate for this operation. The operation on the best individual is repeated

as long as it generated individuals better than at least one individual in the population.

5.6.5 The Population Refreshing Procedure

The variation of the fitness values may occasionally decrease due to the dominance of
an overwhelmingly fitter individual. This is known to slow down the search space
exploration procedure. In order to overcome this problem, the population refreshing
procedure (PRP) is implemented. This procedure is called if the population is totally
overtaken by a single individual and the difference between the fitness value of the best
and the worst individuals is 0. The population refreshing procedure keeps the best

individual and replaces the rest of individuals with new randomly generated individuals.
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Filling the population makes it possible to leave out some operators especially when the
number of variables is small. Therefore, for some problems with a small number of
variables this procedure was called during the run. Figure 24 describes the pseudo code

for the procedure.

procedure PRP
begin
for each individual except for the elitist in the population do
for each gene in the individual do

select randomly the binary gene value gv € {0,1} for the male chromosome

calculate the gene value for the female chromosome fgv =1XOR gv

done
evaluate male and female chromosomes
set the fitter chromosome as male and the worse chromosome as female
replace the individual s male chromosome
replace the individual’s female chromosome
done
end

Figure 24. The pseudo code for the population refreshing procedure (PRP).

5.7 The DDBGA Algorithm

The distributional decimal binary genetic algorithm (DDBGA) starts with the
initialization of the population and calls the previously described operators in the pre-
specified order. Survivor selection happens during each operation. Once the operator
has been implemented for one or more individuals, the fitness value of the best
individual is compared to the desired optimal value and if they are equal, the algorithm
is terminated. This action is naturally done in order to save processing time when
testing the ability of the algorithm to find optimal solutions of hard problems. When the
optimum is not known a priori, the number of generations or the best achieved fitness

value within certain pre-set bounds value can work as the termination condition.

The population is sorted again in ascending order after application of each operator, and
the population diversity is checked. This is done by comparing the fitness values of the

best and the worst individual. If they are equal, the population refreshing procedure
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(PRP) is called for solving some problems. After each operator call the termination
condition is checked for possible process termination. The idea behind the order of
operator calls is to carry out operations of greater effect first, and then focus on

operations of smaller effect and fine-tuning. Figure 25 describes the DDBGA algorithm.

procedure DDBGA
begin
initialize the population
sort individuals in ascending order based on their fitness values
do
call the higher quartile crossover operator
sort the population in ascending order
if ( termination_condition is true) then
break
endif

if the problem is of the multiple variable type then
call the higher quartile variable crossover operator
sort the population in ascending order
if ( termination_condition is true) then
break
endif
endif

if the problem is of the multiple variable type then
call the higher quartile variable replacement operator
sort the population in ascending order
if ( termination_condition is true) then
break
endif
endif

call the random building block operator

sort the population in ascending order

if ( termination _condition is true) then
break

endif

call the integer mutation operator

sort the population in ascending order

if ( termination condition is true) then
break

endif

call the decimal mutation operator
sort the population in ascending order
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if ( termination _condition is true) then
break
endif

call the elitist crossover operator

sort the population in ascending order

if ( termination_condition is true) then
break

endif

if the problem is of the multiple variable type then
call the elitist variable crossover operator
sort the population in ascending order
if ( termination_condition is true) then
break
endif
endif

call the elitist integer mutation operator

sort the population in ascending order

if ( termination _condition is true) then
break

endif

call the elitist decimal mutation operator

sort the population in ascending order

if ( termination_condition is true) then
break

endif

if (fitness(best _individual) — fitness(worst _individual) == 0) then
call the population refreshing procedure

endif

while (termination condition is false)
end

Figure 25. The pseudo code for the DDBGA algorithm.
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6. Experimentation

The DDBGA was implemented in Java2. It was tested on various widely used
optimization test functions. Test runs were performed on Mobile Intel Pentium, 4-M
CPU 1.80 GHz, 1.18 GHz, 512 MB of RAM running Microsoft Windows XP

professional version 2002 with service pack 2.

Each test run consisted of 10 trials of the run sequence. One run sequence, in turn
consisted of five distinct runs. This means that for five consecutive times the algorithm
was initiated from scratch and let run until the termination condition came true. This
proved to be a fruitful method for solving problems. The main justification for such a
trick is the fact that sometimes the random initialization of the population is not as
desirable as it should be. Consequently, operators might not be able to produce better
offspring as quickly and efficiently as one would wish. Therefore, new chances were

given to the population to be born anew.

The reborn of population was mainly used in order to test the ability of the algorithm to
find all global optimum values for problems which have several global optimum values.
The number of repetition of runs was selected to be five here, but it could be easily
changed if there is any suspicion, that the optimization problem might have more global

optimum values.

6.1 Test Functions

The DDBGA was tested on the following widely used minimization test functions.

1. The Ackley function:

20+e—-20 exp(— 0.2 /l lez ] - exp(l Zcos(27r.xl. )) ,
n i nis

where —32.768 < x, <32.768 .
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The Colville function:

100(x, = x7) +(1=2x,)" +90(x, — x7) +(1—x;)* +10.1((x, = 1)* +
(x, —1)?)+19.8(x, —1)(x,-1), where —10<x, <10 fori=1,..4.
The De Jong function F1:

3
> x7, where —5.12<x, <5.12.

i=1
The De Jong function F2:
100(x; —x,)* +(1-x,)*, where —2.048 < x, <2.048.
The De Jong function F3:
5
Zinteger(xi) ,where —5.12<x, <5.12.
i=1
The De Jong function F4:
30
D ix! +N(0,1), where —1.28 <x, <1.28.
i=1
The De Jong function F5:
1

%Jrzil%”j(xl,xz) ,

where -65.536 < x;, <65.536, K =500, f;(x,,x,)=j+ zl_: (x, — al.j)(‘ and

_|=32 -16 0 16 32 -32 -16 .. 0 16 32
Y1232 32 232 432 232 -16 -16 ... 32 32 32|

The Griewank function F1:

> (x, ~100)° - H;cos(xf — 100) +1, where -600 < x, <600.

= Vi

The Rastrigin function:

Z:(xl.2 —10cos(27x;) +10), where -5.12 <x, <5.12.

i=1

The Rosenbrock function:

n-l1

> (100(x,,, —x,°)* + (x, = 1)*) , where —100 < x, <100.

i=1

105
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11. The Schaffer function F6:

) 2 2
sin”y/x; +x; —0.5

0.5+ 5
[1.0+0.001(x] +x7) |

, where —100 < x, <100.

12. The Schaffer function F7:
(x? + x2)°%[sin* (50(x + x2)*') +1.0] , where —100 < x, <100.

For multidimensional problems with optional number of dimensions (7 ), the algorithm

was tested for n =1, 2, 3, 4, 5, 10, 20, 50 and 100.

Of the test functions, the De Jong functions reflect different degrees of complexity. Test
functions F1-F4 are unimodal with only one optimum, whereas F5 is a multimodal
function with many local optima, but only one global optimum. The Rosenbrock
function is considered difficult, because it has a very narrow ridge. The tip of the ridge
is very sharp and it runs around a parabola. Algorithms that are not able to discover
good directions to find the solutions underperform this problem (Digalakis &

Konstantinos 2002).

The Rastrigin and Griewank functions are typical examples of non-linear multimodal
optimization problems. The Rastrigin function is fairly difficult for GAs due to the large
search space and the large number of local minima. This function has a complexity of

O(nln(n)), where n is the number of the function parameters. This means that the
Rastrigin function does not grow at a faster rate than O(nlIn(n)). It contains millions of

local optima in the interval of consideration (Digalakis et al. 2002).

The Griewank function has a complexity of O(nln(n)), where n is the number of the

function’s parameters. The terms of the summation produce a parabola, while the local
optima are above the parabola level. The dimensions of the search range increase on the
basis of the product, which results in the decrease of the local minimums. The more the
search range increases, the flatter the function becomes. Generally speaking this is a
good function for testing GA performance since the product creates sub-populations

strongly codependent to parallel GAs models. Most algorithms have difficulties to
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converge close to the minimum of such functions, because the probability of making

progress decreases rapidly as the minimum is approached (Digalakis et al. 2002).

6.2 Performance Issues

Krink (2005) lists some performance criteria for optimization algorithms: 1) the
accuracy of results (precision), 2) whether good results can be obtained repeatedly
(robustness), 3) computation time (efficiency), 4) the number of different problems the
algorithm can solve (generality), 5) how much effort the implementation requires
(simplicity). Thus, in reporting the test results the above criteria have been taken into

account.

The main performance criterion used here is the number of function evaluations
performed by the algorithm to solve the test problem. The number of function
evaluations was calculated by incrementing a counter variable by one each time the
fitness value of a candidate solution was calculated. The required precision was set to 6
decimal digits. This means that if the global optimal value was 0, it was considered to
be found when the difference between the best achieved fitness value and the optimal
value was less than 0.000001. For problems with a global optimum different from zero,
the optimum value was considered to be found, if the difference between the best fitness

value and the global optimum was zero.

The ability of the algorithm to achieve an approximate optimal value was also tracked.
The approximate optimal precision value was set to 0.001. This means that when the
difference between the achieved best fitness value and the pre-set optimal value was
less than 0.001, then the global approximate optimal value was considered to be found.
The descriptive statistics of the fitness population were calculated after each operator
call in order to track the progress of the population minimum and maximum fitness
values. The descriptive statistics of the initial and the final population in the best and
the worst run of each test case (50 test runs) are reported to give an insight of how the
population developed. These statistics were the minimum, maximum, mean, median,

mode, standard deviation, skewness and kurtosis.
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Median is used to point out the middle of a distribution: half the scores are above the
median and half are below the median. The median is less sensitive to extreme scores
than the mean and this makes it a better measure than the mean for highly skewed
distributions. The mode is the most common (frequent) value. A population can have
more than one mode. A mode is a relative maximum. Mode is especially useful to point

out the most typical occurrence of a value. (Neter, Wasserman & Whitmore 1993)

The standard deviation and indicators of the fitness population distribution, i.e.
skewness and kurtosis are used to describe how fitness values were distributed in the

beginning and at the end of each run. The standard deviation is the positive square root

of the variance. The variance s’ is the average of the squared deviations about the
mean, (x,— )T)z. The variance sometimes is called the second moment about the mean

and denoted by m, . The standard deviation o of a set of observations x,,x,,...x, with

mean X is defined as (Neter et al. 1993):

(41)

Skewness is a measure of the lack of symmetry. A distribution, or data set, is symmetric
if it looks the same to the left and right of the center point. Negative values for the
skewness indicate data that are skewed left and positive values for the skewness
indicate data that are skewed right. Skewed left means that the left tail is heavier than

the right tail. Similarly, skewed right means that the right tail is heavier than the left tail.

Some measurements have a lower bound and are skewed right. Skewness m;, is the third
moment about the mean of a set of observations x,,x,,...x, with mean X and is defined

as (Neter et al. 1993):

n

Z(Xi - )_C)3
my; = ZZIT . (42)

The standardized skewness measure m; for a data set is defined as: (Neter et al. 1993)
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my = m_z (43)
o

A data set is skewed positively or negatively according to whether m; is positive or

negative. If the values in the data set are symmetric about the mean, m;=0.

Kurtosis is a measure of whether the data are peaked or flat relative to a normal
distribution. That is, data sets with high (positive) kurtosis tend to have a distinct peak
near the mean, decline rather rapidly, and have heavy tails. Data sets with low
(negative) kurtosis tend to have a flat top near the mean rather than a sharp peak. A

uniform distribution would be the extreme case. Kurtosis m, is the fourth moment

about the mean of a set of observations x;,x,,..x, with mean X and is defined as

(Neter et al. 1993):

> (-3

m, (44)
n—1
The standardized kurtosis measure m, of a data set is defined as (Neter et al. 1993):
m, =" (45)
o

The kurtosis for a standard normal distribution is 3. If in calculations m, is replaced by
my —3, the kurtosis of the normal distribution becomes zero and kurtosis of other

distributions can be compared with zero.

6.3 The Ackley Function F1

The Ackley function F1 is a multimodal minimization problem and its mathematical

representation is the following:

20+e—-20exp (—0.2 /l Z x; } —exp (l Z cos(27r.xi)j , (46)
noig noig

where —32.768 < x, <32.768 for i=1,....n.
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This function has a global minimum value of 0 at x, =0 for i=0,1,2,..n. The

approximate optimal value was set to 0.001 for this function. All operators were used
for solving this problem. A summary of test results for » =2 and n =100 is reported in

Table 1. A summary of test results for other 7 cases is presented in Appendix A.

In Table 1 and other similar ones, n is the number of variables in the function. Run
Summary gives a summary of statistics of the worst run, the best run and all 50 runs.
Generations indicates the number of elapsed generations. Evaluations to Approx.
Optimal indicates the number of performed function evaluations to achieve the
approximate global optimum. Time to Approx. Optimal(s) indicates the elapsed time to
achieve the approximate optimal value. Total Evaluations indicates the number of
performed function evaluations to achieve the global optimal value and Total Elapsed

Time(s) indicates the elapsed time to achieve the global optimal value.

Table 1.  Test results for the Ackley function F1 with different number of variables

(n).
n Run Generations  Evaluations Time to Total Total
Summary to Approx. Approx. Evaluations Elapsed
Optimal Optimal(s) Time(s)
Best Run 1 207 0.00 207 0.00
Worst Run 13 1543 1.00 2384 1.00
2 Mean 5.34 730.12 0.16 941.76 0.32
Median 5.00 709.50 0.00 802.00 0.00
Mode 4.00 #N/A 0.00 1004.00 0.00
Std. Dev. 2.20 291.61 0.37 405.45 0.51
Best Run 1 2344 5.00 2344 5.00
Worst Run 2 2787 6.00 5344 13.00
100 Mean 1.18 2835.28 6.88 3202.22 7.92
Median 1.00 2771.00 7.00 2771.00 7.00
Mode 1.00 2787.00 6.00 2964.00 6.00
Std. Dev. 0.39 487.82 1.56 940.98 2.66

Statistics drawn from 450 runs (50 runs for each value of ») reveal that the algorithm
found the global optimal value of the Ackley function on average within 4 generations,
1453 evaluations and 1.42 seconds. When the effect of extreme cases is eliminated, the

median value suggests that the algorithm solved the problem within 4 generations, 1011
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evaluations in less than 1 second. In the most typical case, the algorithm solved the

problem in 2 generations in less than 1 second.

The most important descriptive statistics of populations were tracked in order to point
out the changes through which the fitness population has gone before achieving its
optimal value. The following table summarizes these statistics for the worst and the best
populations of the best and the worst runs for the number of variables being 2 and 100.

The descriptive statistics for other cases of the function are presented in Appendix A.

In Table 2 and other similar ones »n is the number of variables in the function. Runs
indicates the type of the run; the best run is the run in which the algorithm solved the
problem with the smallest number of function evaluations, and the worst run is the run
in which the algorithm solved the problem with the greatest number of function
evaluations. For the best and the worst runs, descriptive statistics of the worst and the
best populations are reported. The worst population is the initial population with poor
fitness values, and the best population is the latest population with the best achieved
fitness values. Min is the minimum fitness value, Max is the maximum fitness value and
Mean is the mean of fitness values in the population. Std. Dev. is the standard deviation,

Skew. is the skewness and Kurt. is the kurtosis of the fitness population.

Table 2.  Descriptive statistics of the population fitness values for the test runs on the

Ackley function F1 with different numbers of variables (n).

n Runs Pops Min Max Mean  Std. Dev. Skew. Kurt.
Best Run Worst Pop. -17.27 -10.31 -14.09 2.00 0.00 0.00

2 Best Pop. 0.00 0.00 0.00 0.00 0.00  -3.00
Worst Worst Pop. -19.09 -10.18  -13.74 3.00 0.00  -1.00
Run Best Pop. 0.00 0.00 0.00 0.00 0.00  -3.00
Best Run Worst Pop. -21.15 -21.04  -21.08 0.00 0.00  -3.00

100 Best Pop. 0.00 0.00 0.00 0.00 0.00  -3.00
Worst Worst Pop. -21.17 -20.96  -21.05 0.00 0.00  -3.00
Run Best Pop. 0.00 0.00 0.00 0.00 0.00  -3.00

Since the DDBGA was originally designed for maximization problems, the function has
been multiplied by -1 to adapt it to the algorithm. Statistics drawn from 450 runs

suggest that the lowest fitness value in the initial population was —21.18. The population
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average fitness value was in the worst case -21.08 and in the best case —3E-6. The
lowest standard deviation was 0 and the highest one was 3. The population skewness

was at least 0 and at most 16. The population kurtosis was at least —3 and at most 96.

The following diagrams depict the role of each operator in improving the population
minimum and maximum fitness value in the worst run and the best run in cases where
the number of variables was 2 and 100. The horizontal axis shows operators with their
generation index. Generation indexes start with 0; e.g. RBB( stands for the random
building block operator called in generation 1. The vertical axis shows the relative
improvement made by each operator. The relative improvement made by each operator
was calculated in the following way: if the fitness value of the worst (or the best)

individual in the population before and after calling an operator is f,, and f

respectively, the relative improvement A of the population minimum (or maximum)

fitness value is calculated as: A = M x100.
old
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Figure 26. The relative fitness improvement made by each operator in the best run for

the Ackley function with 2 variables.

The smallest improvement to the population minimum fitness value was made by the
higher quartile crossover operator and the greatest improvement (98%) was made by the

elitist crossover operator. The smallest improvement to the population maximum fitness
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value was made by the random building block operator, and the greatest improvement
(100%) was made by the elitist decimal mutation operator in the only generation 1.
Figure 27 illustrates the development of population fitness values in the worst run when

the number of variables was 2.
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Figure 27. The relative fitness improvement made by each operator for the worst run

for the Ackley function with 2 variables.

The smallest improvement to the population minimum fitness value was made by the
higher quartile variable replacement operator and the greatest improvement (93%) was
made by the elitist crossover operator in generation 1. The last improvement was made
by the decimal mutation operator in generation 13. The smallest improvement to the
population maximum fitness value was made by the elitist crossover operator and the
greatest improvement (87%) was made by the decimal mutation operator in generation
1. The last improvement was made by the elitist decimal mutation operator in
generation 13. Figure 28 illustrates the role of each operator in improving the

population fitness value in the best run in case the number of variables is 100.
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Figure 28. The relative fitness improvement made by each operator in the best run for

the Ackley function with 100 variables.

The greatest improvement (99%) to the population minimum fitness value was made by
the decimal mutation operator in the only generation 1. The population maximum
fitness value was almost equally improved by the higher quartile variable replacement
operator and the decimal mutation operator. Figure 29 depicts development of the

population fitness values in the worst run when the number of variables was 100.
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Figure 29. The relative fitness improvement made by each operator for the worst run

for the Ackley function with 100 variables.
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The smallest improvement to the population minimum fitness value was made by the
random building block operator and the greatest improvement (99%) was made by the
elitist crossover operator in generation 1. The smallest improvement to the population
maximum fitness value was made by the elitist decimal mutation operator and the

greatest improvement (99%) was made by the decimal mutation operator in generation
l.

In addition, the survival of male and female chromosomes in the selection and crossover

operations was tracked. Table 3 summarizes the survival statistics.

Table 3. Comparison of survival of male and female chromosomes.

Variables Chromosome Sex Survival Rate in Selection Survival Rate in Crossover
(%) (%)
Worst Run Best Run
2 Male 50 60 72
Female 50 39 27
100 Male 50 52 100
Female 50 47 0

The statistics point out that male and female chromosome survived equally in the
selection. However, in the crossover operation male chromosomes produced better
offspring. When the number of variables was 2 in the worst run male chromosomes
produced better offspring in 60% of cases while female offspring produced better
offspring in 39% of cases. In the best run, the survival rate of male and female

chromosomes in the crossover operator was 72% and 27% respectively.

When the number of variables was 100, in the worst run male and female chromosomes
produced good offspring almost equally. However, in the best run male chromosomes

produced better offspring than female chromosomes in all cases.
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6.4 The Colville Function
The Colville function is a minimization function and its mathematical presentation is
the following:

100(x, —x7)” +(1=x,)* +90(x, —x7 )" +(1—2x;)> +10.1((x, = 1)* +

(47)
(x, —1)?)+19.8(x, —1)(x,~1), where —10<x, <10 fori=1,..4.

This function has a global minimum value of 0 at (x,, x,,x;,x,) = (1,1,LLI). All operators

were used for solving this problem. The population refreshing procedure was not used.

Table 4 summarizes the statistics retrieved from these test runs.

Table 4. Summary of test runs for the Colville function.

Summary Generations  Evaluations Time to Total Total
to approx. approx. Evaluations Elapsed
optimal optimal (s) Time (s)
Best Run 1 54 0 54 0
Worst Run 1 181 0 181 0
Mean 1 107.84 0 107.84 0
Median 1 129 0 129 0
Mode 1 129 0 129 0
Std. Dev. 0 37.98945 0 37.98945 0

The algorithm solved the Colville function in the best case in 1 generation, 54
evaluations and less than 1 second. In the worst case, solving the function required 1
generation and 181 evaluations. On average, the algorithm solved the problem in 1
generation, 108 evaluations and less than 1 second. Most typically, the algorithm solved
the problem in 1 generation, 129 evaluations and less than 1 second. Table 5
summarizes the most descriptive statistics of the population in the beginning and at the

end of the best and the worst runs.
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Table 5. Summary of the most descriptive statistics of the fitness population for the

best and the worst runs for the Colville function.

Runs Pops Min Max Mean Std. Dev. Skew. Kurt.
Best Worst Pop. -850914.40 -5577.100  -340357.025  337778.000 0.0 -2.0
Run Best Pop. -720976.00 0.000 -205315.550  275863.000 0.0 -2.0

Worst | Worst Pop.  -1177926.10  -2215.900  -335294.608  363236.000 -1.0 0.0
Run

Best Pop. -42.00 0.000 -24.500 21.000 0.0 -2.0

The function has been multiplied by -1 to adapt it to DDBGA. The population
maximum and mean fitness values in the initial population of the best run were worse
than the respective values in the initial population of the worst run. Also the algorithm
seems to have improved the final population in the worst run much more than in the
best run. Figure 30 illustrates the role of each operator in improving the population

fitness value during the best run.
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Figure 30. The relative fitness improvement made by each operator in the best run for

the Colville function.

The population minimum fitness value was improved 15% by the higher quartile
crossover operator. The greatest improvement (100%) to the population maximum

fitness value was made by the higher quartile variable replacement operator in the only
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generation 1. Figure 31 illustrates the role of each operator in improving the population

fitness value during the worst run.
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Figure 31. The relative fitness improvement made by each operator in the worst run for

the Colville function.

The smallest improvement to the population minimum fitness value was made by the
higher quartile variable crossover operator and the greatest improvement (97%) was
made by the random building block operator. The smallest improvement to the
population maximum fitness value was made by the higher quartile crossover operator
and the greatest improvement (100%) was made by the decimal mutation operator in
generation 1. Table 6 summarizes the survival statistics of male and female

chromosomes in the initialization phase and the crossover operations.

Table 6. Comparison of survival of male and female chromosomes.

Chromosome Sex Survival Rate in Selection Survival Rate in Crossover
(%) (%)
Worst Run Best Run
Male 50 75 33
Female 49 25 66

The male and female chromosomes seem to have survived equally in the selection

phase. However, their successfulness in producing offspring seems to have varied.
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During the worst run, male chromosomes produced three times better offspring than the
female ones. On the other hand, female chromosomes produced two times better

offspring than the male ones during the worst run.

6.5 The De Jong Function F1

The De Jong function F1 is a minimization problem and its mathematical representation

is the following:

3
D x!,where —5.12<x, <5.12. (48)

i=1
This function has a global minimum value of 0 at (x,, x,,x;) =(0,0,0). This function is

considered very simple for every serious minimization method (Storn & Price 1995).
The following operators were used to solve this problem: the decimal mutation
operator, the elitist integer mutation operator and the elitist decimal mutation operator.
Experimentation showed that using other operators would increase the number of
function evaluations unnecessarily. The population refreshing procedure was not used.

Table 7 summarizes the statistics for these runs.

Table 7. Summary of test runs for the De Jong function F1.

Summary Generations Evaluations Time to Total Total
to approx. approx. Evaluations Elapsed
optimal optimal (s) Time (s)
Best Run 2.00 140 0 147 0
Worst Run 14.00 92 0 818 1
Mean 5.78 185.16 0 352.68 0.04
Median 5.00 196 0 315 0
Mode 6.00 196 0 361 0
Std. Dev. 2.44 65.79 0 136.71 0.20

The algorithm solved the problem in the best run in 2 generations, 147 evaluations and
in less than 1 second. In the worst run, it took the algorithm 14 generations, 818
evaluations and 1 second to solve the problem. However, this seems to be a single
extreme case. On average, the algorithm solved the problem in 6 generations and 353

evaluations in less than 1 second. The median value indicates that when the effect of
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extreme cases is eliminated, the algorithm solved the problem in 5 generations, 315
evaluations in less than 1 second. Most typically, the algorithm solved the problem in 6
generations and 361 evaluations in less than 1 second. Table 8§ summarizes the most

descriptive statistics of the initial and the final population in the best and the worst run.

Table 8. Descriptive statistics of the population fitness values for the test runs on De

Jong function F1.

Runs Pops Min Max Mean Std. Dev. Skew. Kaurt.
Best Run Worst Pop. -46.40 -5.01 -22.50 11.00 0.00 0.00
Best Pop. -0.09 0.00 -0.04 0.00 0.00 -3.00
Worst Run Worst Pop. -39.18 -1.30 -21.32 14.00 0.00 -2.00
Best Pop. 0.00 0.00 0.00 0.00 0.00 -3.00

The function has been multiplied by -1 to adapt it to DDBGA. The most important
descriptive statistics of the initial population in the best run were worse than the
respective values in the worst run. Nevertheless, deviation in the fitness population was
greater in the initial population of the worst run. The situation of the final fitness
populations in both runs seem to have been virtually equal. Figure 32 shows the role of
each operator in improving the population minimum and maximum fitness value in the

best run.
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Figure 32. The relative fitness improvement made by each operator in the best run for

the De Jong function F1.
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The smallest improvement to the population minimum fitness value was made by the
elitist integer mutation operator and the greatest improvement (53%) was made by the
decimal mutation operator in generation 1. The smallest improvement to the population
maximum fitness value was made by the elitist decimal mutation operator and the
greatest improvement (98%) was made by the decimal mutation operator in generation

1. Figure 33 shows the population fitness improvement process in the worst run.
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Figure 33. The relative fitness improvement made by each operator for the worst run

for the De Jong function F1.

The smallest improvement to the population minimum fitness value was made by the
elitist integer mutation operator and the greatest improvement (51%) was made by the
decimal mutation operator in generation 1. The smallest improvement to the population
maximum fitness value was made by the decimal mutation operator and the greatest
improvement (99%) was made by the elitist decimal mutation operator in generation 1.
Table 9 summarizes the survival rate of male and female chromosomes in the

initialization and the crossover operations.
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Table 9. Comparison of survival of male and female chromosomes.

Chromosome Sex Survival Rate in Selection Survival Rate in Crossover
(%) (%)
Worst Run Best Run
Male 50 - -
Female 50 - -

Male and female chromosomes seem to have survived equally during the initialization
phase. Since the classical crossover operator was not used, there was no information on

the superiority of male and female chromosomes during the crossover operation.

6.6 The De Jong Function F2

The De Jong function F2 is a minimization problem and its mathematical representation

is the following:
100(x; —x,)* +(1-x,)*, where —2.048 < x, <2.048, for i =1,2. (49)

This function has a global minimum value of 0 at (x,,x,) = (L,1). This function has the
reputation of being a difficult minimization problem (Storn et al. 1995). Operators used
for solving this problem were: the decimal mutation operator and the elitist decimal
mutation operator. In addition, the population refreshing procedure at the end of each

generation was called. Table 10 gives a summary of these test runs.

Table 10. Summary of test runs for the De Jong function F2.

Summary Generations Evaluations Time to Total Total
to approx. approx. Evaluations Elapsed
optimal optimal (s) Time (s)
Best Run 3 111 0.00 148 0.00
Worst Run 33 150 0.00 1417 0.00
Mean 9.28 249.70 0.00 410.56 0.04
Median 8.50 190.50 0.00 382.00 0.00
Mode 3.00 189.00 0.00 149.00 0.00
Std. Dev. 5.80 148.30 0.00 242.01 0.20

The algorithm solved the problem on average in 9 generations and 411 evaluations in

less than 1 second. If the effect of extreme cases is eliminated, the algorithm solved the
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problem on average in 9 generations and 382 evaluations in less than 1 second. In the
best run, the algorithm solved the problem in 3 generations and 148 evaluations in less
than 1 second. In the worst run, solving the problem took 33 generations, 1417
evaluations and less than 1 second. Most typically, the algorithm solved the problem in
3 generations and 149 evaluations in less than 1 second. Table 11 summarizes the most
important descriptive statistics of the fitness populations of the best run and the worst

rumn.

Table 11. Descriptive statistics of the population fitness values for the test runs on the

De Jong function F2.
Runs Pops Min Max Mean Std. Dev.  Skew. Kurt.
Best Run Worst Pop.  -2679.18 -3.33 -500.06 742.00 -2.00 3.00
Best Pop. -0.01 0.00 0.00 0.00 0.00 -3.00
Worst Run Worst Pop.  -1276.00 -23.42  -407.49 419.00 0.00 -1.00
Best Pop. -2.34 0.00 -0.43 0.00 -1.00 -1.00

The function has been multiplied by -1 to adapt it to DDBGA. The minimum and the
mean fitness values in the initial population of the worst run were better than the
respective values in the best run, but the maximum fitness value in the initial population
of the worst run was almost eight times worse than the respective value in the best run.
The fitness value deviation in the initial population of the best run was also twice
greater than the respective value in the worst run. The statistics of the final populations
indicate that the algorithm has improved the population members more in the best run.
Figure 34 illustrates the role of each operator in improving the population fitness value

in the best run.
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Figure 34. The relative fitness improvement made by each operator in the best run for

the De Jong function F2.

The smallest improvement to the population minimum fitness value was made by the
elitist decimal mutation operator and the greatest improvement (96%) was made by the
decimal mutation operator in generation 1. The smallest improvement to the population
maximum fitness value was made by the elitist decimal mutation operator and the
greatest improvement (99%) was made by the decimal mutation operator in generation
1. Figure 35 depicts the improvement of the population fitness value during the worst

run.
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Figure 35. The relative fitness improvement made by each operator for the worst run

for the De Jong function F2.
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The smallest improvement to the population minimum fitness value was made by the
elitist decimal mutation operator and the greatest improvement (94%) was made by the
decimal mutation operator in generation 1. The smallest improvement in the population
maximum fitness value was made by the elitist decimal mutation operator and the
greatest improvement (99%) was made by the decimal mutation operator in generation

1. Table 12 summarizes the survival rates of male and female chromosomes.

Table 12. Comparison of survival of male and female chromosomes.

Chromosome Sex Survival Rate in Selection Survival Rate in Crossover
(%) (%)
Worst Run Best Run
Male 52 - -
Female 47 - -

The female chromosomes were practically as good as male chromosomes in the
initialization phase. Since no classic crossover operator was used to solve this problem,
there is no information about the productivity of male and female chromosomes during

the crossover operations.

6.7 The De Jong Function F3

The De Jong function F3 is a minimization problem and its mathematical representation

is the following:

5
> integer(x;) , where —5.12 <x, <5.12, for i =1,...,5. (50)

i=1
Here integer(x,) is the integer part of x,, like integer(—5.12) = —6. This function has a

global minimum value of -30 for all —5.12<x, <-5.0. This function exhibits many

plateaus, which pose a considerable problem for many minimization algorithms (Storn
et al. 1995). The following operators were used to solve this problem: the higher
quartile variable crossover operator, the higher quartile variable replacement operator,
the random building block operator, the integer mutation operator, the decimal mutation

operator and the elitist decimal mutation operator. Also the population refreshing
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procedure at the end of each generation was called. Table 13 presents a summary of test

runs.

Table 13. Summary of test runs for the De Jong function F3.

Summary Generations Evaluations Time to Total Total
to approx. approx. Evaluations Elapsed
optimal optimal (s) Time (s)
Best Run 1.00 42.00 0.00 42.00 0.00
Worst Run 3.00 559.00 0.00 559.00 0.00
Mean 1.28 202.00 0.00 202.00 0.00
Median 1.00 196.00 0.00 196.00 0.00
Mode 1.00 43.00 0.00 43.00 0.00
Std. Dev. 0.54 134.24 0.00 134.24 0.00

The algorithm solved the problem on average in 1 generation, 202 evaluations and less
than 1 second. In the best case, the algorithm needed 1 generation, 42 evaluations and
less than 1 second to solve the problem. In the worst case, the algorithm needed 3
generations, 559 evaluations and less than 1 second to solve the problem. When the
effect of outliers is ignored, the algorithm solved the problem on average in 1
generation, 196 evaluations and less than 1 second. Most typically, the algorithm solved
the problem in 1 generation and 43 evaluations in less than 1 second. Table 14
summarizes the most important descriptive statistics of the initial and final populations

in the best run and the worst run.

Table 14. Descriptive statistics of the population fitness values for the test runs on the

De Jong function F3.
Runs Pops Min Max Mean Std. Dev.  Skew. Kurt.
Best Run Worst Pop. -42.00  -15.00 -31.75 8.00 0.00 -1.00
Best Pop. -38.00 0.00 -26.08 11.00 1.00 0.00
Worst Run Worst Pop. -47.00  -17.00 -32.33 10.00 0.00 -2.00
Best Pop. -6.00 0.00 -4.67 1.00 8.00 40.00

The function has been multiplied by -1 to adapt it to DDBGA. The descriptive statistics
point out that the initial population in the best run had a better quality. However, the
final population in the worst run seems to have been improved more and therefore

become more homogeneous than the respective one in the worst run. Figure 36
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illustrates the role of each operator in improving the population fitness value in the best

run.
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Figure 36. The relative fitness improvement made by each operator in the best run for

the De Jong function F3.

The population minimum fitness value was improved 9% by the higher quartile variable
crossover operator. The maximum fitness value was improved 100% by the higher
quartile variable replacement operator in the only generation 1. Figure 37 illustrates the

role of each operator in improving the population fitness value in the worst run.
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Figure 37. The relative fitness improvement made by each operator for the worst run

for the De Jong function F3.
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The smallest improvement to the population minimum fitness value was made by the
higher quartile variable replacement operator and the greatest improvement (80%) was
made by the integer mutation operator in generation 1. The population maximum fitness
value was finally improved 100% by the integer mutation operator in generation 3.
Table 15 summarizes the survival rates of male and female chromosomes during the

initialization and crossover operations.

Table 15. Comparison of survival of male and female chromosomes.

Chromosome Sex Survival Rate in Selection Survival Rate in Crossover
(%) (%)
Worst Run Best Run
Male 50 - -
Female 49 - -

Male and female chromosomes survived equally during the initialization phase.
However, since the classic crossover operator was not used to solve this problem, there
is no information about the survival rates of chromosomes of different sex during the

crossover operations.

6.8 The De Jong Function F4

The De Jong function F4 is a minimization problem and its mathematical representation

is the following:

30
D ix! +N(0,1), where —1.28 <x, <1.28, for i =1,...,30. (51)

i=1

N(0,1) is a random variable produced by Gaussian noise having mean value 0 and
standard deviation 1. This function without Gaussian noise has a global minimum value

of 0 at (x,,x,,...,x5) =(0,0,...,0). This function with noise is designed to test the

behavior of a minimization algorithm in the presence of noise. This function appears to
be flawed as no definite global minimum exists (Ingber & Rosen 1992; Storn et al.
1995). The algorithm performance was tested on this function with and without noise.
All other operators except for the integer mutation operator were used to solve this

problem without noise. There would be no need for the integer mutation operator due to
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the short valid range of variables. The population refreshing procedure was not used

too. Table 16 summarizes the statistics of test runs for the function without noise.

Table 16. Summary of test runs for the De Jong function F4 without noise.

Summary Generations Evaluations Time to Total Total
to approx. approx. Evaluations Elapsed
optimal optimal (s) Time (s)
Best Run 1 55 0.00 55 0.00
Worst Run 1 518 0.00 518 0.00
Mean 1.00 149.92 0.00 352.02 0.00
Median 1.00 141.00 0.00 414.00 0.00
Mode 1.00 141.00 0.00 61.00 0.00
Std. Dev. 0.00 94.67 0.00 159.56 0.00

The algorithm solved the problem without noise on average in 1 generation and 352
evaluations in less than 1 second. The optimal value was found in the best case in 1
generation only after 55 evaluations in less than 1 second. In the worst case, the global
optimum was found in 1 generation and 518 evaluations in less than 1 second. When the
effect of extreme cases is eliminated, the optimal value was found on average in 1
generation, 414 evaluations and less than 1 second. Most typically, the algorithm solved

the problem in 1 generation and 61 evaluations in less than 1 second.

The algorithm performance was also tested on the noisy version of the function. The
fitness value for the noisy function was calculated by first calculating the sum of the
first part and then adding a randomly generated Gaussian number to the sum. The
desired fitness value precision was set to £0.001 and the maximum number of function
evaluations was set to 1735. The average of achieved optimal values over 50 runs was

0.00006 £0.001596 . Table 17 summarizes test statistics.

Table 17. Summary of test runs for the De Jong function F4 with noise.
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Summary Generations Evaluations Time to Total Total
to approx. approx. Evaluations Elapsed
optimal optimal (s) Time (s)
Best Run 1 512 0.00 512 0.00
Worst Run 3 525 0.00 1735 1.00
Mean 2.78 499.92 0.02 1581.68 0.90
Median 3.00 525.00 0.00 1731.00 1.00
Mode 3.00 525.00 0.00 1731.00 1.00
Std. Dev. 0.46 160.99 0.14 304.41 0.51

The algorithm solved the problem on average in 3 generations and 1582 evaluations in 1
second. The optimal value was found in the best case in 1 generation after 512
evaluations in less than 1 second. When the effect of extreme cases is eliminated, the
optimal value was found on average in 3 generations and 1731 evaluations in 1 second.
Most typically, the algorithm solved the problem in 3 generations and 1731 evaluations
in 1 second. Table 18 summarizes the most important descriptive statistics of the test

runs.

Table 18. Descriptive statistics of the population fitness values for the test runs on the

De Jong function F4 without noise.

Runs Pops Min Max Mean Std. Dev.  Skew. Kurt.
Worst Pop. -333.96 -130.95 -243.90 59.00 0.00 -1.00
Best Run
Best Pop. -104.35 0.00 -17.99 37.00 -1.00 1.00
Worst Worst Pop. -464.86 -146.01 -233.31 93.00 -1.00 1.00
Run Best Pop. -0.02 0.00 0.00 0.00 0.00 -3.00

The function has been multiplied by -1 to adapt it to DDBGA. The mean fitness value in
the initial population of the best run was worse than the respective value in the worst
run. However, in the worst run the algorithm seems to have improved all individuals so
that the fitness population deviation in the final population is much smaller than the
respective value in the best run and is virtually 0. The role of each operator in

improving the population fitness values during the best run is depicted in Figure 38.
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Figure 38. The relative fitness improvement made by each operator in the best run for

the De Jong function F4 without noise.

The greatest improvement (28%) to the population minimum fitness value was made by
the higher quartile crossover operator in the only generation 1. The greatest
improvement (100%) to the population maximum fitness value was made by the higher
quartile variable replacement operator. Figure 39 illustrates the role of each operator in

improving the population fitness value in the worst run.
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Figure 39. The relative fitness improvement made by each operator for the worst run

for the De Jong function F4 without noise.
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The smallest improvement to the population minimum fitness value was made by the
higher quartile variable crossover operator and the greatest improvement (65%) was
made by the random building block operator in the only generation 1. The smallest
improvement to the population maximum fitness value was made by the higher quartile
variable crossover operator and the greatest improvement (100%) was made by the
decimal mutation operator. Table 19 summarizes the survival rate statistics of the male

and female chromosomes.

Table 19. Comparison of survival of male and female chromosomes.

Chromosome Sex Survival Rate in Selection Survival Rate in Crossover
(%) (%)
Worst Run Best Run
Male 68 33 46
Female 31 66 53

Male chromosomes seem to have survived in more than twice as many cases as female
chromosomes during the initialization phase. However, female chromosomes have
produced better offspring. The superiority of female chromosomes in producing better

offspring is more obvious during the worst run.

6.9 The De Jong Function F5

The De Jong function F5 is a minimization function and its mathematical representation

is the following:

(52)

1
1 | ’
4 " Zf:l/fj(xlaxz)
where -65.536 < x, <65.536, fori =12, k=500, f,(x,,x,)=j+ z; (x, = al.j)6 and

a;

|—32 -16 0 16 32 -32 -16 .. 0 16 32
|32 -32 -32 32 -32 -16 -16 ... 32 32 32
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This function has a global minimum value of 0.998004 at (x,,x,)=(-32,-32). All

operators and the population refreshing procedure were used to solve this problem.

Table 20 summarizes the test runs statistics.

Table 20. Summary of test runs for the De Jong function F5.

Summary Generations Evaluations Time to Total Total
to approx. approx. Evaluations Elapsed
optimal optimal (s) Time (s)
Best Run 1 97 0.00 97 0.00
Worst Run 9 1624 1.00 1812 1.00
Mean 2.58 372.22 0.14 469.86 0.14
Median 2.00 280.50 0.00 341.00 0.00
Mode 2.00 99.00 0.00 323.00 0.00
Std. Dev. 1.69 342.99 0.40 353.93 0.40

The algorithm solved the problem on average in 3 generations and 470 evaluations in

0.14 seconds. In the best case, it took 1 generation, 97 evaluations and less than 1

second to solve the problem. In the worst case, the algorithm solved the problem in 9

generations, 1812 evaluations and 1 second. When the effect of outliers is eliminated,

the algorithm solved the problem on average in 2 generations, 341 evaluations and in

less than 1 second. Most typically, the algorithm solved the problem in 2 generations,

323 evaluations and in less than 1 second. Table 21 gives a summary of the most

important descriptive statistics of the initial and the final populations in the best and the

worst run.

Table 21. Descriptive statistics of the population fitness values for the test runs on the

De Jong function F5.
Runs Pops Min Max Mean Std. Dev. Skew. Kurt.
Worst Pop.  -500.00  -181.39  -457.83 95.00  2.00  3.00
BestRun 4 gt Pop. -167.44  -0.998 -50.23 60.00  -1.00  -1.00
Worst Pop.  -500.00  -407.90  -490.34 2600 200  6.00
WorstRun | ot Pop. -0.998  -0.998 -0.998 0.00 0.00  -3.00

The function has been multiplied by -1 to adapt it to DDBGA. The minimum fitness

values in the initial populations of both the best run and the worst run were equal.
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However, the maximum fitness value in the initial population of the best run was
significantly better than the respective value in the worst population. The mean fitness
value in the initial population of the best run was also better than the respective value in
the worst run. Moreover, fitness values were much more deviated in the initial
population of the best run. Figure 40 illustrates the role of each operator in improving

the population fitness values.
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Figure 40. The relative fitness improvement made by each operator in the best run for

the De Jong function F5.

The population minimum fitness value was improved 66% by the integer mutation
operator in the only generation 1. The smallest improvement to the maximum fitness
value was made by the higher quartile variable crossover operator and the greatest
improvement (100%) was made by the integer mutation operator. Figure 41 depicts

development of the population fitness values in the worst run.
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Figure 41. The relative fitness improvement made by each operator in the worst run for

the De Jong function F5.

The smallest improvement to the population minimum fitness value was made by the
elitist crossover operator and the greatest improvement (96%) was made by the decimal
mutation operator in generation 1. The smallest improvement to the population
maximum fitness value was made by the elitist crossover operator and the greatest
improvement (92%) was made by the higher quartile crossover operator in generation 1.
Table 22 summarizes the survival of male and female chromosomes in the selection and

crossover operations.

Table 22. Comparison of survival of male and female chromosomes.

Chromosome Sex Survival Rate in Selection Survival Rate in Crossover
(%) (%)
Worst Run Best Run
Male 49 78 33
Female 50 21 66

The female chromosomes survived almost equally during the initialization. However,
female chromosomes produced better offspring two times more than male chromosomes
during the best run. But, male chromosomes produced better offspring almost four times

more than female chromosomes during the worst run.
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6.10 The Griewank Function F1

The Griewank function F1 is a minimization function and its mathematical presentation

is the following:

1 ) n x,—100
— . —100)" — cos(——~—)+1, where -600<x.<600. 53
4000;(% ) =] 1. cos( NG )+1,w X; (53)

This function has a global minimum value of 0 at x; =100 for i =1,2,...n. This function

has also many local minima; therefore it is very difficult to find the true minimum.
When the number of variables was one, all operators except for the following ones were
used: the higher quartile variable crossover operator, the higher quartile variable
replacement and elitist variable crossover operator. However, for other cases all
operators and the population refreshing procedure at the end of each generation were
used. The summary of test runs results for the number of variables being 2 and 100 is
reported in Table 23. For the summary of test runs results for other cases refer to

Appendix A.

Table 23. Summary of test runs for the Griewank function with different number of

variables (n).

n Run Generations  Evaluations to Time to Total Total

Summary approx. approx. Evaluations elapsed
optimal optimal(s) Time(s)

Best Run 2 336 0 336 0
Worst Run 35 5759 4 6587 5

2 Mean 10.84 1714.74 1.08 2009.3 1.36
Median 10 1435.5 1 1866 1
Mode 3 362 0 557 0
Std. Dev. 7.52 1342.07 1.24 1441.07 1.5
Best Run 1 191 0 191 0
Worst Run 1 2787 6 2954 6
Mean 1 2399.12 4.82 2435.54 4.88

100 Median 1 2519 5 2519 5
Mode 1 2599 5 2599 5
Std. Dev. 0 4443 1.04 4144 0.98

Statistics drawn from 450 runs point out that the algorithm solved the problem on

average in 5 generations, 1460 evaluations and 1 second. When the effect of outliers is
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eliminated, the statistics reveal that the algorithm solved the problem in 3 generations
and 1065 generations in less than 1 second. Most typically, the algorithm solved the
problem in 3 generations and less than 1 second. Table 24 summarizes the descriptive
statistics for test runs in case the number of variables is 2 and 100. For the descriptive

statistics for other cases, refer to Appendix A.

Table 24.  Descriptive statistics of the population fitness values for the test runs on the

Griewank function with different numbers of variables (n).

n Runs Pops Min Max Mean Std. Dev. Skew.  Kurt.
Best Worst Pop. -143.25 -12.83 -81.44 44.00 0.00 -2.00

5 Run Best Pop. -0.96 0.00 -0.62 0.00 0.00 -3.00
Worst | Worst Pop. -189.57 -29.97 -80.34 53.00 -1.00 -1.00
Run Best Pop. 0.00 0.00 0.00 0.00 0.00 -3.00
Best Worst Pop.  -4098.27 -2516.00  -3223.00 405.00 0.00 0.00

100 Run Best Pop. -0.86 0.00 -0.20 0.00 0.00 -3.00
Worst | Worst Pop.  -3995.68  -2909.00  -3434.00 370.00 0.00 -2.00
Run Best Pop. -3140.14 0.00 -1279.00 1579.00 0.00 -2.00

The function has been multiplied by -1 to adapt it to DDBGA. When the number of
variables was 2, the minimum and maximum population fitness values were better in
the worst population of the best run than the respective values in the worst population of
the worst run. However, the mean fitness value was slightly worse in the worst
population of the best run than the same value in the worst population of the worst run.
Fitness variation in the worst population of the best run seems to have been less than
that of the worst population of the worst run. During both runs the algorithm seems to

have improved all individuals in the best populations.

When the number of variables was 100, the mean fitness value in the worst population
of the best run was worse than the same value in the worst population of the worst run.
Nevertheless, the fitness variation in the worst population of the best run was greater
than the same value in the worst population of the worst run. It also seems that the
algorithm has improved almost all individuals during the best run, but there is still a lot

of fitness variation in the best population of the worst run.
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The ability of operators to improve the quality of the fitness population was tracked.
Below, the role of each operator in improving the minimum and maximum fitness value
of the population for the best run and the worst run for the number of variables being 2
and 100 are presented graphically. Figure 42 illustrates development of the population

fitness values in the best run when the number of variables was 2.
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Figure 42. The relative fitness improvement made by each operator in the best run for

the Griewank function with 2 variables.

The smallest improvement to the population minimum fitness value was made by the
decimal mutation operator and the greatest improvement (94%) was made by the integer
mutation operator in generation 1. The smallest improvement to the population
maximum fitness value was made by the random building block operator and the
greatest improvement (74%) was made by the higher quartile crossover operator in
generation 1. Figure 43 illustrates the development of population fitness values in the

worst run when the number of variables was 2.
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Relative Fitness Improvement Process
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Figure 43. The relative fitness improvement made by each operator for the worst run

for the Griewank function with 2 variables.

The smallest improvement to the population minimum fitness value was made by the
elitist variable crossover operator and the greatest improvement (91%) was made by the
integer mutation operator in generation 1. The smallest improvement to the population
maximum fitness value was made by the elitist crossover operator and the greatest
improvement (90%) was made by the higher quartile crossover operator in generation 1.
Figure 44 illustrates the development of the population fitness values in the best run

when the number of variables was 100.

Relative Fitness Improvement Process

120 4
100 +
80

m Max
iz Min

60 -

40 ~
20 +

Fitness Improvement (%)

o

Init0 HQCO HQVCO HQVRO

Operator

Figure 44. The relative fitness improvement made by each operator in the best run for

the Griewank function with 100 variables.
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The smallest improvement to the population minimum fitness value was made by the
higher quartile variable crossover operator and the greatest improvement (17%) was
made by the higher quartile crossover operator. The smallest improvement to the
population maximum fitness value was made by the higher quartile crossover operator
and the greatest improvement (100%) was made by the higher quartile variable
replacement operator. Figure 45 illustrates the role of each operator in improving the

population fitness value in the worst run when the number of variables was 100.
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Figure 45. The relative fitness improvement made by each operator for the worst run

for the Griewank function with 100 variables.

The smallest improvement to the population minimum fitness value was made by the
higher quartile variable crossover operator and the greatest improvement (99%) was
made by the decimal mutation operator in the only generation 1. The smallest
improvement to the population maximum fitness value was made by the higher quartile
variable crossover operator and the greatest improvement (100%) was made by the
elitist decimal mutation operator in generation 1. Table 25 summarizes the survival

rates of the male and female chromosomes.
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Table 25. Comparison of survival of male and female chromosomes.

Variables Chromosome Sex Survival Rate in Survival Rate in
Selection (%) Crossover (%)
Worst Run Best Run
2 Male 50 92 100
Female 49 7 0
Male 0 81 0
100 Female 100 18 100

When the number of variables was 2, the male and female chromosomes survived
equally in the initialization phase. However, the male chromosomes produced better
offspring in the crossover operations in almost all cases both during the worst and the

best run.

When the number of wvariables was 100, the female chromosomes survived
overwhelmingly better than the male chromosomes in the initialization phase. Also in
the best run female chromosomes produced better offspring in all cases in the crossover
operations. However, the situation was almost opposite in the worst run when the ratio

of producing better offspring was 81% over 18% in favor of male chromosomes.

6.11 The Rosenbrock Function F1

The Rosenbrock function F1 is a multimodal minimization function and its

mathematical presentation is the following:

n—1
> (100(x,,, —x,°)* +(x, —1)*), where —100 < x, <100. (54)

i=1

This function has a global minimum value of 0 at x, =1.0 for i =1,2,...,n . All operators

were used to solve this problem. The population refreshing procedure was not used. The
summary of test results for the number of variables being 2 and 100 is reported in Table

26. See Appendix A for the summary of test results for other cases.
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Table 26. Summary of test runs for the Rosenbrock function with different number of

variables (n).

n Summary Generations Evaluation Time to Total Total
to approx. approx. Evaluations Elapsed
optimal optimal (s) Time (s)

Best Run 2.00 181.00 0.00 250.00 0.00

Worst Run 14.00 2672.00 1.00 2672.00 1.00

Mean 6.20 957.58 0.40 1130.94 0.46

2 Median 6.00 734.50 0.00 1079.50 0.00

Mode 4.00 1480.00 0.00 1480.00 0.00

Std. Dev. 3.33 626.32 0.70 647.30 0.71

Best Run 1.00 75.00 0.00 75.00 0.00

Worst Run 1.00 2963.00 7.00 2963.00 7.00

Mean 1.00 2325.68 4.24 2325.68 4.24

100 Mean 1.00 2325.68 4.24 2325.68 4.24

Median 1.00 2420.00 4.00 2420.00 4.00

Mode 1.00 2486.00 4.00 2486.00 4.00

Std. Dev. 0.00 414.44 1.02 414.44 1.02

Statistics drawn from 400 test runs reveal that on average the algorithm solved the
problem in 2 generations, 881 evaluations and 0.7 second. When the effect of extreme
cases is eliminated, the median of run statistics point out that the algorithm solved the
problem in 2 generations, 619 evaluations in less than 1 second. No typical run could be
distinguished from the statistics. Table 27 presents the summary of descriptive statistics
for test runs in which the number of variables is 2 and 100. See Appendix A for

descriptive statistics of other test cases.
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Table 27. Descriptive statistics of the population fitness values for the test runs on

Rosenbrock function with different numbers of variables (n).

n Runs Pops Min Max Mean Std. Dev. Skew.
Best Worst Pop. -2.90E+07 -6.07E+01 -3.37E+06 8.58E+06 -2
es
Run
Best Pop. -4.80E-05 0.00E+00 -3.90E-05 0.00E+00 0
2
Worst Pop. -1.20E+07 -6.90E+01 -1.19E+06 3.53E+06 -2
Worst
Run
Best Pop. -3.00E-06 0.00E+00 -2.00E-06 0.00E+00 0
Worst Pop. -1.60E+11 -1.30E+11 -1.47E+11 1.0IE+10 0
Best
Run
Best Pop. -8.28E+01 0.00E+00 -4.17E+01 4.20E+01 0
100
Worst Pop. -1.80E+11 -1.00E+11 -1.49E+11 2.45E+10 0
Worst
Run
Best Pop. -1.24E-02 0.00E+00 -6.03E-03 0.00E+00 0

The function has been multiplied by -1 to adapt it to DDBGA. The algorithm seems to
have improved the population members more during the worst runs so that the
minimum and the mean fitness values in the final populations of the worst runs are
better than the respective values in the final populations of the best runs. Figure 46
depicts the role of each operator in improving the population fitness value for the best

run in case the number of variables was 2.
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Figure 46. The relative fitness improvement made by each operator in the best run for

the Rosenbrock function with 2 variables.

The smallest improvement to the population minimum fitness value was made by the
higher quartile variable crossover operator and the greatest improvement (99%) was
made by the elitist variable crossover operator in generation 1. The smallest
improvement to the population maximum fitness value was made by the higher quartile
crossover operator and the greatest improvement (99%) was made by the elitist
crossover operator in generation 1. Figure 47 depicts the role of each operator in
improving the population fitness value for the worst run in case the number of variables

was 2.
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Figure 47. The relative fitness improvement made by each operator for the worst run

for the Rosenbrock function with 2 variables.

The smallest improvement to the population minimum fitness value was made by the
higher quartile crossover operator and the greatest improvement (99%) was made by the
elitist variable crossover operator in generation 1. The smallest improvement to the
population maximum fitness value was made by the random building block operator
and the greatest improvement (99%) was made by the elitist crossover operator in
generation 1. Figure 48 illustrates the role of each operator in improving the population

fitness value for the best run in case the number of variables was 100.
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Figure 48. The relative fitness improvement made by each operator in the best run for

the Rosenbrock function with 100 variables.
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The population minimum fitness value was improved 14% by the higher quartile
crossover operator in the only generation 1. The greatest improvement (100%) to the
population maximum fitness value was made by the higher quartile variable
replacement operator. Figure 49 illustrates the role of each operator in improving the

population fitness value for the worst run in case the number of variables was 100.
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Figure 49. The relative fitness improvement made by each operator for the worst run

for the Rosenbrock function with 100 variables.

The smallest improvement to the population minimum fitness value was made by the
elitist integer mutation operator and the greatest improvement (99%) was made by the
decimal mutation operator in generation 1. The smallest improvement to the population
maximum fitness value was made by the higher quartile variable crossover operator and
the greatest improvement (100%) was made by the elitist decimal mutation operator in

generation 1. Table 28 summarizes the survival rates of male and female chromosomes.

Table 28. Comparison of survival of male and female chromosomes.

Variables Chromosome Sex Survival Rate in Selection Survival Rate in Crossover
(%) (%)
Worst Run Best Run
2 Male 50 100 100
Female 49 0 0
Male 50 100 100
100 Female 50 0 0
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The statistics drawn from 50 runs reveals that when the number of variables was 2, on
average the male chromosomes were better in 50% of cases and female chromosomes
were better in 49% of cases. In both the worst run and the best run, male chromosomes
produced better offspring than female chromosomes in all cases during the crossover

operation.

When the number of variables was 100, the male and female chromosomes survived
equally during the selection. Also here in both the worst run and the best run, male
chromosomes produced better offspring than female chromosomes in all cases during

the crossover operation.

6.12 The Rastrigin Function F1

The Rastrigin function F1 is a multimodal minimization function and its mathematical

presentation is the following:

Z:(x,2 —10cos(2mx;)+10) where-5.12 <x, <5.12. (55)

i=l1

This function and has a global minimum value of 0 at x, =0, for i =12,..n. All

operators were used for solving this problem. However, the population refreshing
procedure was not used. The following tables provide the summary of test runs for the
number of variables being 2 and 100. For the summary of test runs for other cases, refer

to Appendix A.
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Table 29. Summary of test runs for the Rastrigin function F1 with different number of

variables (n).

n Summary Generations  Evaluations to Time to Total Total
approx. approx. Evaluations Elapsed
optimal optimal (s) Time (s)
Best Run 1 54 0 54 0
Worst Run 8 1457 1 1457 1
Mean 3.14 409.12 0.02 551.64 0.04
2 | Median 3 378.5 0 456 0
Mode 2 374 0 303 0
Std. Dev. 1.48 228.79 0.14 272.21 0.2
Best Run 1 1717 3 1717 3
Worst Run 1 2922 6 2922 6
100 | Mean 1 2399.38 4.06 2399.38 4.06
Median 1 2447 4 2447 4
Mode 1 #N/A 4 #N/A 4
Std. Dev. 0 218.5 0.62 218.5 0.62

Statistics drawn form 450 runs point out that the algorithm solved the problem on
average in 2 generations and 893 evaluations in 0.62 second. When the effect of
extreme cases is eliminated, the algorithm solved the problem in 2 generations and 499
evaluations in less than 1 second. Most typically, the algorithm solved the problem in 2
generations in less than 1 second. Table 30 gives a summary of the most relevant
descriptive statistics of test runs in case the number of variables was 2 and 100. For the

summary of descriptive statistics for other cases, refer to Appendix A.
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Table 30. Descriptive statistics of the population fitness values for the test runs on

Rastrigin function with different numbers of variables (n).

n Runs Pops Min Max Mean Std. Dev.  Skew. Kurt.
Worst Pop. -67.30 -2.60 -14.58 17.0 -2.0 5.0
Best Run
) Best Pop. 0.00 0.00 0.00 0.0 0.0 -3.0
Worst Worst Pop. -50.69 -6.78 -19.87 13.0 -1.0 0.0
Run Best Pop. 0.00 0.00 0.00 0.0 00  -3.0
Worst Pop.  -1760.95  -1586.74 ) 58.0 0.0 2.0
Best Run P 1653.10
100 Best Pop. -1.97 0.00 -1.15 1.0 0.0 -2.0
. - i 52.0 0.0 2.0
Worst Worst Pop. 1758.26 1614.97 1676.31
Run Best Pop. -0.01 0.00 0.00 0.0 0.0 -3.0

The function has been multiplied by -1 to adapt it to DDBGA. The interesting point

observable from Table 30 is that as the number of variables increases, the distance

between the fitness of the best individual in the population and the optimal fitness value

increases. The fitness of the best individual in initial population in the best run in case

the number of variables was 2, was —2.6, but the same value in case the number of

variables was 100, was almost -1587. However, the algorithm needed only 1569 more

generations and 3 more seconds to reach the optimal fitness value. Figure 50 illustrates

the role of each operator in improving the population fitness value of the best run in

case the number of variables was 2.
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Figure 50. The relative fitness improvement made by each operator in the best run for

the Rastrigin function with 2 variables.

The population minimum fitness value was improved 27% by the higher quartile
crossover operator. The greatest improvement (100%) by the population maximum
fitness value was made by the higher quartile variable replacement operator in the only
generation 1. Figure 51 illustrates the role of each operator in improving the population

fitness value of the worst run in case the number of variables was 2.
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Figure 51. The relative fitness improvement made by each operator in the worst run for

the Rastrigin function with 2 variables.



ACTA WASAENSIA 151

The smallest improvement to the population minimum fitness value was made by the
higher quartile variable crossover operator and the greatest improvement (67%) was
made by the decimal mutation operator in generation 1. The smallest improvement to
the population maximum fitness value was made by the higher quartile variable
crossover operator and the greatest improvement (74%) was made by the elitist integer
mutation operator in generation 1. Figure 52 depicts the population fitness improvement

process for the worst run when the number of variables was 100.
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Figure 52. The relative fitness improvement made by each operator in the best run for

the Rastrigin function with 100 variables.

The smallest improvement to the population minimum fitness value was made by the
random building block operator and the greatest improvement (99%) was made by the
integer mutation operator in the only generation 1. The smallest improvement to the
population maximum fitness value was made by the higher quartile crossover operator
and the greatest improvement (100%) was made by the decimal mutation operator.

Figure 53 illustrates the population fitness improvement process for the worst run.
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Figure 53. The relative fitness improvement made by each operator for the worst run

for the Rastrigin function with 100 variables.

The smallest improvement to the population minimum fitness value was made by the
integer mutation operator and the greatest improvement (99%) was made by the elitist
crossover operator. The smallest improvement to the population maximum fitness value
was made by the higher quartile variable replacement operator and the greatest
improvement (100%) was made by the elitist integer mutation operator in the only
generation 1. Table 31 summarizes the survival rates of male and female chromosomes

during the population initialization and the crossover operations.

Table 31. Comparison of survival of male and female chromosomes.

Variables Chromosome Sex Survival Rate in Survival Rate in
Selection (%) Crossover (%)
Worst Run  Best Run
2 Male 77 80 92
Female 22 20 8
100 Male 50 57 66
Female 50 42 33

The statistics drawn from 50 runs revealed that on average the male chromosomes were
better in slightly more than 77% of cases and female chromosomes were better in

almost 22% of cases when the number of variables was 2.
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When the number of variables was 2, in the best run during the crossover operator the
male chromosomes produced better offspring in 92% of cases and female chromosomes
produced better offspring in 8% of cases. In the worst run, during the crossover operator
the male chromosomes produced better offspring in 80% of cases and female

chromosomes produced better offspring in 20% of cases.

When the number of variables was 100, male and female chromosomes were equally
good; in 50% of cases, male chromosomes were selected and in 50% of cases, female
chromosomes were selected. In the worst run, male chromosomes produced better
offspring in 57% of cases and female chromosomes produced better offspring in 42% of
cases. In the best run, male chromosomes produced better offspring in 66% of cases and

female chromosomes produced better offspring in 33% of cases.

6.13 The Schaffer Function F6

The Schaffer function F6 is a minimization function and its mathematical representation

is the following:

i \[x? +x* —0.5
05+ NGO TH _, where ~100 < x, <100, for i =1,2. (56)
[1.0+0.001(x] +x3) ]

This function has a global minimum of 0 at (x,,x,)=(0,0). The following operators

were not used for solving the problem: the decimal mutation operator and the elitist
decimal mutation operator. The population refreshing procedure was not used too.

Table 32 summarizes the statistics of these test runs.

Table 32. Summary of test runs for the Schaffer function Fo6.

Summary Generations Evaluations Time to Total Total
to approx. approx. Evaluations Elapsed
optimal optimal (s) Time (s)
Best Run 1 54 0 54 0

Worst Run 9 533 0 1033 0
Mean 3.02 231.7 0 345.9 0.06
Median 3 220 0 334.5 0
Mode 2 220 0 335 0
Std. Dev. 1.857033 116.0136 0 212.3081 0.239898
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The algorithm solved the problem on average in 3 generations, 346 evaluations and 0.06
seconds. In the best case, solving the problem took 1 generation, 54 evaluations and less
than 1 second. In the worst case, it took 9 generations, 1033 evaluations and less than 1
second to achieve the optimal value. Most typically, the algorithm solved the problem
in 2 generations, 335 evaluations and less than 1 second. Table 33 gives a summary of
the most important descriptive statistics of the initial and the final populations in the

best and the worst run.

Table 33. Descriptive statistics of the population fitness values for the test runs on the

Schaffer function F6.
Runs Pops Min Max Mean  Std. Dev. Skew. Kurt.
Worst Pop, 051 2049 050 000 000 -3.00
Best Run Best Pop. -0.50 0.00 -0.45 0.00 000  -3.00
Worst Pop. 058 2044050 000 000 -3.00
WorstRun 4 Pop. -0.01 0.00  -0.01 000 000  -3.00

The function has been multiplied by -1 to adapt it to DDBGA. The descriptive statistics
of the population fitness values seem to have been quite similar in both the best run and
the worst run. However, the algorithm seems to have had time to improve the
individuals in the population more during the worst run. Although the population
minimum fitness value in the initial populations of both the best run and the worst run
was almost equal, in the worst run the algorithm seem to have improved the minimum
fitness value quite close to the optimal value. Figure 54 shows the role of each operator

in improving the population fitness value in the best run.
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Figure 54. The relative fitness improvement made by each operator in the best run for

the Schaffer function F6.

The population minimum fitness value was not improved at all. The greatest
improvement (100%) to the population maximum fitness value was made by the higher
quartile variable replacement operator in the only generation 1. Figure 55 depicts the

relative fitness improvement in the worst run.

Relative Fitness Improvement Process

120 +
100 +

S
k=
£
q>, %0 m Max
O 60 .
Q @ Min
E 40
(]
8 20+
£
i: 0 - al

Init0 RBB1 EIM2 RBB4 EIM5 RBB7

Operator

Figure 55. The relative fitness improvement made by each operator for the worst run

for the Schaffer function F6.

The smallest improvement to the population minimum fitness value was made by the

higher quartile variable crossover operator, and the greatest improvement (54%) was
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made by the elitist crossover operator in generation 1. Further improvement was made
throughout the run. However, no more improvement was made to the population
minimum fitness value during the last generation. The smallest improvement to the
population maximum fitness value was made by the higher quartile crossover operator
in generation 1. The final improvement (100%) was made by the integer mutation
operator in the last generation. Table 34 summarizes the survival rates of male and

female chromosomes during the initialization and crossover operations.

Table 34. Comparison of survival of male and female chromosomes.

Chromosome Sex Survival Rate in Selection (%) Survival Rate in Crossover (%)
Worst Run Best Run

Male 50 77 66

Female 50 22 33

The male and female chromosomes seem to have survived equally in the selection
phase. During the best run, male chromosomes produced better offspring in the
crossover operation two times more. During the worst run, male chromosomes produced

better offspring in 3.5 times more cases.

6.14 The Schaffer Function F7

The Schaffer function F7 is a minimization problem and its mathematical representation

is the following:
(x7 +x2)"% [sin® (50(x + x2)*') +1.0] , where —100 < x, <100, for i =1,2.  (57)

This function has a global minimum value of 0 at (x,,x,)=(0,0). The following

operators were not used for solving the problem: the decimal mutation operator and the
elitist decimal mutation operator. The population refreshing procedure was not used too.

Table 35 gives a summary of the statistics of test runs.
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Table 35. Summary of test runs for the Schaffer function F7.

Summary Generations Evaluations Time to Total Total
to approx. approx. Evaluations Elapsed
optimal optimal (s) Time (s)
Best Run 1 54 0 54 0
Worst Run 4 421 0 421 0
Mean 1.84 206.8 0.02 206.8 0.02
Median 2 213.5 0 213.5 0
Mode 1 104 0 104 0
Std. Dev. 0.841767 96.90538 0.141421 96.90538 0.141421

The algorithm found the global optimal value in all cases. In the best case, it took 1
generation, 54 evaluations and less than 1 second to solve the problem. In the worst
case, it took 4 generations, 421 evaluation and less than 1 second to solve the problem.
On average, it took 2 seconds, 207 evaluations and less than 1 second to solve the
problem. Most typically, the algorithm solved the problem in 1 generation, 104
evaluations and less than 1 second. Table 36 summarizes the most important descriptive

statistics of the best run and the worst run.

Table 36. Descriptive statistics of the population fitness values for the test runs on the

Schaffer function F7.

Runs Pops Min Max Mean Std. Dev. Skew. Kaurt.

Worst Pop.  -16.475 2.263 -11.323 3.0 2.0 5.0
Best Run

Best Pop. -13.642 0.000 -8.571 4.0 1.0 0.0

Worst Pop.  -21.940 -7.432 -13.488 4.0 0.0 0.0
Worst Run

Best Pop. -1.228 0.000 -1.099 0.0 00  -3.0

The function has been multiplied by -1 to adapt it to DDBGA. The most important
descriptive statistics of the fitness values of the initial population were better in the best
run than the respective values in the worst run. However, the final population in the
worst run seems to be much more homogenous than the respective one in the best run;
the population members have been improved so that the mean fitness value in the last
population is much better than the respective value in the best run. Figure 56 shows the

role of each operator in improving the population fitness value in the best run.
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Figure 56. The relative fitness improvement made by each operator in the best run for

the Schaffer function F7.

The population minimum fitness value was improved only by the higher quartile
crossover operator in the only generation 1. The population maximum fitness value was
improved only by the higher quartile variable replacement operator after which the

optimal value was achieved. Figure 57 depicts the relative fitness improvement process

for the worst run.
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Figure 57. The relative fitness improvement made by each operator in the worst run for

the Schaffer function F7.
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The smallest improvement to the population minimum fitness value was made by the
elitist variable crossover operator, and the greatest improvement (27%) was made by
the higher quartile crossover operator. More improvement was made throughout the
run. However, no more improvement was made to the population minimum fitness
value during the last generation. The smallest improvement to the population maximum
fitness value was made by the higher quartile variable crossover operator and the
greatest improvement (14%) was made by the elitist crossover operator in generation 1.

Table 37 summarizes the survival rates of male and female chromosomes.

Table 37. Comparison of survival of male and female chromosomes.

Chromosome Sex Survival Rate in Selection Survival Rate in Crossover
(%) (%)
Worst Run Best Run
Male 50 44 33
Female 50 55 66

Male and female chromosomes survived equally in the selection phase. However,
female chromosomes seem to have produced better offspring during the crossover
operation in the worst run as well as in the best run. Superiority of female chromosomes

in producing better offspring seems to be clearer during the best run than the worst run.
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7. Summary of Test Runs

The DDBGA algorithm was tested on 44 test problems in 2200 runs. Table 38

summarizes statistics drawn from the results of all runs.

Table 38. Summary statistics for 2200 runs.

Run Generations Evaluations to Time to Total Total
Summary approx. optimal approx. Evaluations elapsed
optimal(s) Time(s)
Mean 3.36 886.99 0.69 1050.31 0.81
Std. Dev. 2.69 667.41 1.48 702.00 1.59
Median 2 706.75 0 809.50 0
Mode 1 #N/A 0 #N/A 0

The overall summary statistics for the runs indicate that the algorithm solved the
problems on average in 3 generations and 1050 function evaluations in less than 1
second. When the effect of extreme cases is eliminated, the algorithm solved the
problem on average in 2 generation, 810 function evaluations in less than 1 second.

Most typically the algorithm solved the problem in 1 generation and less than 1 second.

However, finding the approximate optimal values took even less time and resources.
The summary statistics point out that the algorithm solved the problems to their
approximate optimal values on average in 887 evaluations in less than 1 second. When
extreme cases are ignored, on average the algorithm solved the problems to their

approximate optimal values in 707 function evaluations in less than 1 second.

The efficiency of the operators in finding better individuals and improving the
population fitness values was also studied. The efficiency of operators in improving the
minimum, maximum and mean fitness values of the population was analyzed. This
analysis pointed out that operators can be put in slightly different orders for improving
different fitness value statistics of the population. Table 39 summarizes the statistics.

These statistics are the average values of the relative improvement achieved after
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calling each operator and are calculated based on the statistics reported for each test

function in Chapter 6.

Table 39. Comparison of the efficiency of operators in improving the population
fitness values. Operators are: integer mutation (IM), decimal mutation
(DM), elitist crossover (EC), random building block (RBB), elitist variable
crossover (EVC), higher quartile crossover (HQC), elitist decimal mutation
(EDM), higher quartile variable replacement (HQVR), elitist integer
mutation (EIM), higher quartile variable crossover (HQVC).

Operator Average Improvement of Average Improvement Average Improvement
Population Min. Fitness  of Population Max. of Population Mean

Fitness Fitness

IM 59.60 26.86 2183214396.09

DM 55.53 43.15 14848738.01

EC 47.08 10.51 138298.35

RBB 24.32 4.68 2081.63

EVC 11.23 0.02 792.67

HQC 14.85 7.63 45.17

EDM 8.67 12.75 43.23

HQVR 7.23 28.06 36.94

EIM 4.40 6.55 24.10

HQVC 3.75 2.44 9.43

The operators can be put into two distinct categories based on their efficiency in
improving the population mean fitness value. The more efficient category includes: 1)
integer mutation operator, 2) decimal mutation operator, 3) elitist crossover operator, 4)
random building block operator, and 5) elitist variable crossover operator. The less

efficient category includes the rest of operators.

The efficiency order of the operators in improving the population minimum fitness
value is different: 1) integer mutation operator, 2) decimal mutation operator, 3) elitist
crossover operator, 4) random building block operator, 5) higher quartile crossover
operator, 6) elitist variable crossover operator, 7) elitist decimal mutation operator, 8)
higher quartile variable replacement operator, 9) elitist integer mutation operator and
10) higher quartile variable crossover operator. The operators can be put into two

distinct categories based on their efficiency in improving the population minimum
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fitness value: 1) the more efficient category includes operators 1-4, 2) the less efficient

category includes operators 5-10.

The efficiency order of the operators in improving the population maximum fitness
value is: 1) decimal mutation operator, 2) higher quartile variable replacement operator,
3) integer mutation operator, 4) elitist decimal mutation operator, 5) elitist crossover
operator, 6) higher quartile crossover operator, 7) elitist integer mutation operator, 8)
random building block operator, 9) higher quartile variable crossover operator, and 10)
elitist variable crossover operator. Operators 1-3 form the category of more efficient

operators while the rest of operators form the less efficient category.

The most efficient operators are the integer mutation and the decimal mutation
operators, which have been able to improve the population fitness values the most. The

least efficient operator seems to be the higher quartile variable crossover operator.

The usefulness of repeating the higher quartile crossover operator and elitist crossover
operator on the same individual indexes and crossover points was also studied. The
study revealed that this resulted into more successful crossover operations in around
less than 1% of cases depending on how often the crossover operators were called. In a
test run with 10-dimensional Griewank function, in 40 cases the operation was repeated
with the same parent indexes and crossover points two times, in 18 cases the operation
was repeated three times, in seven cases the operation was repeated four times and in

one case the operation was repeated up to five times.

The survival of male and female chromosomes throughout test runs was also studied.
The analysis revealed that male and female chromosomes survived equally during
initialization. However, male chromosomes produced better offspring in 68% of cases

while female chromosomes produced better offspring in around 32% of cases.

7.1 Comparison with Other Known Algorithms

The performance of the DDBGA was compared to the performance of some other well

known algorithms, like classical GA, Differential Evolution (DE) (Storn et al. 1995),
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Adaptive Simulated Annealing (ASA) (Ingber 1993), Annealed Nedler & Mead
approach (ANM) (Press, Teukolsky, Vetterling & Flannery 1992) and Particle Swarm
Optimization (PSO) (Kennedy & Eberhart 1995). According to (Krink 2005) DE is the
best default choice for numerical optimization of single-objective problems. The
comparison test run results for other algorithms are based on the data presented in
(Storn et al. 1995) and (Krink, Filipi¢ & Fogel 2004; Krink 2005). In addition, the GA
Playground Toolkit (Dolan 2005) was used and tested for some problems. This toolkit
presents a classic GA. The problems tested on the GA Playground were the 10-
dimensional versions of the Ackley, the Griewank, the Rastrigin and the Rosenborck
functions. The most important parameters in the GA Playground were: population
size=30, crossover rate=100% and mutation rate=3% (5% for the Rosenbrock

function). Table 40 summarizes the test results.

Table 40. Comparison of the average fitness values achieved by the GA Playground
and the DDBGA. The GA Playground was run 30 times up to more than

2000 function evaluations for each test function.

Function Average Fitness

GA Playground DDBGA
Ackley (10D) 5.56+0.93 0.0+0.0
Griewank (10D) 2.51+0.66 0.0+0.0
Rastrigin (10D) 9.40+ 2.66 0.0+£0.0
Rosenbrock (10D) 13.81+ 11.58 0.0+0.0

The performance and efficiency of the GA Playground was not comparable with the
DDBGA. The DDBGA achieved the global optimal value for the 10-dimensional
versions of these functions in 1056 function evaluations for the Ackley function, in
1357 function evaluations for the Griewank function, in 561 function evaluations for the
Rastrigin function and in 609 function evaluations for the Rosenbrock function.

More runs up to more than 1000000 function evaluations were made with each test
problem in order to find out how close the GA Playground can get to the optimal values.

The best optimal value achieved was 0.0130449 while the real global optimal value is 0.
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In the following, the statistics presented in (Storn et al. 1995) are used to compare the
DDBGA with some other well-known algorithms. The Griewank function is presented
in a slightly different form in (Storn et al. 1995):

1 < 2 " X; .
— > (x) = cos(—=)+1, where -400<x.<400,fori=1,...,n. 58
qo00 20" T costp) 1 (58)

Also the De Jong function F4 is presented by including a random variable 7 with
uniform distribution and bounded by [0,1) inside the summation instead of just adding it

to the summation result:

29
D (x!(i+1)+n), where x, €[-1.28,1.28], for i =0,...,29. (59)

i=0

This modified version of the De Jong F4 function has a minimum value of

£(0)<30E[5] =15, where E[y] is the expectation of 7 (Storn et al. 1995).

Therefore, the performance of DDBGA was also tested for these functions with new run
sequences consisting of 50 test runs for each function. Comparing the number of
function evaluations presented in Table 41 points out that the DDBGA has competed
very well with other well-known algorithms and has performed much better than both

versions of differential evolution.

Table 41. Comparison of Annealed Nedler & Mead (ANM), Adaptive Simulated
Annealing (ASA), two versions of Differential Evolution (DE) and the
DDBGA for the number of function evaluations to achieve the optimal

value. A hyphen means misconvergence (Storn et al. 1995).

Function ANM ASA DE1 DE2 DDBGA
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De Jong F1 95 397 490 392 353
De Jong F2 106 11275 746 615 411
De Jong F3 90258 354 915 1300 202
De Jong F4 - 4812 2378 2873 713
De Jong F5 - 1379 735 828 470
Griewank (D10) - - 22167 12804 686

All operators were used for the Griewank function and the De Jong F5 function. For
other functions, the used operators are mentioned earlier. The DDBGA has been clearly
superior to the both versions of the differential evolution algorithm (DE) in all test
cases. The most significant difference is observable in solving the 10 dimensional
Griewank function, where DDBGA finds the problem’s global optimum value in only a
fraction of function evaluations compared to both versions of DE. According to (Storn
et al. 1995) the Griewank function has many local minima and it is very difficult to find
the true minimum. However, while the DDBGA solved the problem on average in only
686 trials, the DE needed on average at least 12804 and at most 22167 evaluations to
solve the problem. The DDBGA has also been superior to ASA in all cases and far
superior to ANM in solving the De Jong function F3.

In (Krink et al. 2004; Krink 2005) the efficiency of DE, PSO and an EA algorithm in
solving the Schaffer F6 (2D), the sphere (5D), the Griewank (50D), the Rastrigin F1
(50D) and the Rosenbrock (50D) functions with and without noise have been compared
and some statistics have been presented. The Sphere (5D) function is the same as the De

Jong function F3 with this difference that for the Sphere function the valid variable
range is [—100,100]. Candidate solutions were represented as arrays of floating-point
numbers in algorithms. Parameters for the algorithms are reported in Table 42, where
popSize is the population size, CF is the crossover factor, f is the scaling factor, @ is
the inertia weight, whose value is linearly decreasing from 1.0 to 0.7 during the run,

@in> Poa are the lower and upper bounds of the random velocity rule weights, p, is the

crossover rate, p, is the mutation rate, o, is the mutation variance, n is the elitist size.

Table 42. Algorithm parameters for differential evolution (DE), particle swarm

optimization (PSO) and evolutionary algorithm (EA). (Krink et al. 2004).
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DE PSO EA
popSize 50 popSize 490 popSize 100
CF 0.8 o 1.0->0.7 » 1.0
c
f 05 gpmin o13 pm 0.3
o 2378 o 0.01
n 10

Re-sampling is the most common way to tackle noise in the noisy functions. The idea
with re-sampling is to evaluate the same candidate solution » times and to estimate the
real fitness value by the mean of the samples (Krink et al. 2004). This means that for
each re-sampling rate s, the fitness of each candidate solution is replaced by the

average of s noisy fitness (re-)evaluations. In other words, for a noisy function f the

averaged function f' with re-sampling rate s is calculated in the following way:

fr=E- (60)

This means that during the algorithm run, the fitness value of any candidate solution
was calculated and summed together for the number of re-sampling rate and then
averaged. In (Krink et al. 2004) the noise re-sampling rate has been selected to be 1, 5,
20, 50 and 100. Therefore, the DDBGA was also tested on these problems to give more
comparative statistics for these algorithms. The DDBGA was run 50 times for each test

case.

In the following tables the average values of the best fitness function values found by
algorithms are reported. The global optimal value for all functions is 0. For the noisy
versions of the functions the achieved optimal value should be as close to 0 as possible.
Also the standard deviation values related to the calculation of average values are
reported. For DDBGA these statistics are drawn from 50 test runs. For other

algorithms, they are estimated from 30 values (Krink 2005).
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Table 43. Comparison of the average of the best fitness values achieved with different

algorithms for the Schaffer function F6 after 100000 fitness function

evaluations. s stands for the re-sampling rate.

Noise DE PSO EA DDBGA

s=0 0+0 0.00453+£0.00090  3.33067E-17+0 0.0+0.0

s=1 0.48988+0.00582  0.44486+0.01667  0.25829+0.03045  2.20E-07+1.92876E-05
s=5 0.40360+0.03030  0.37603+0.02978  0.12859+0.01678 1.61E-05+8.48851E-05
s=20 0.16597+0.02753  0.19964+0.03328  0.06730+0.01066  -9.68E-05+0.000464474
s=50 0.12729+0.01829  0.09242+0.01634  0.04769+0.00757  0.0020315+0.009497522
s=100 0.09795+0.01209  0.06972+0.00639  0.06277+0.00743  -2.77E-02+0.062652344

These average values found by the algorithm for the function variables were:
(0.975459.586, 1.739+58.693) for s=1, (-3.304+55.971,-9.356+53.738) for s=5, (-
1.609+£19.467, 2.056+18.554) for s=20, (8.208+37.646, 9.753+39.548), for s=50, (-
3.218+19.013, -1.143+23.217) for s=100. The global optimum value for the non-noisy
version of the Schaffer function F6 is at (0,0).

Table 44. Comparison of the average of the best fitness values achieved with different
algorithms for the Sphere (5D) function after 100000 fitness function

evaluations. s stands for the re-sampling rate.

Noise DE PSO EA DDBGA

s=0 4.12744E-152+0 2.51130E-8+0 6.71654E-20+0 0+0

s=1 0.36484+0.05182 0.25249+0.02603 0.04078+0.00543 -5.4E-6+3.6236E-5
s=5 0.13315+0.01266 0.16702+0.03072 0.02690+0.00363  -1.6765E-5+8.998E-5
s=20 0.07364+0.00811 0.11501+0.01649 0.02205+0.00290 -4.7E-6+£2.3E-4
s=50 0.07004+0.00686 0.06478+0.00739 0.01765+0.00233 -1.59E-5£3.19E-4
s=100 0.08165+0.00800 0.07135+0.00938 0.03929+0.00396 1.39E-4+1.17E-3

These average values found by the algorithm for the function variables were:
-0.0551+£0.2666 for s=1, 0.02998+0.18368 for s=5, -0.001544+0.16540 for s=20,
-0.00248+0.11527 for s=50 and -0.00298+0.10253 for s=100. The global optimum for

the non-noisy version of the Sphere (5D) function is at 0 for all variables.

Table 45. Comparison of the average of the best fitness values achieved with different
algorithms for the Griewank (50D) function after 500000 fitness function

evaluations. s stands for the sampling rate.
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Noise DE PSO EA DDBGA

s=0 0+0 1.54900+0.06695  0.00624+0.00138 0+0

s=1 3.31514+0.07388 11.2462+0.50951  1.14598+0.00307 -2.18E-05+4.32E-04
s=5 2.42183+0.03616 16.6429+0.70800  1.10223+0.00342 -4.60E-07+1.11E-05
s=20 2.67093+0.03895 85.4865+2.13148  1.44349+0.01381 -2.80E-07+3.49215E-05
s=50 46.8197+0.96449 143.021£2.33228  3.69626+0.13127 1.61E-05+£5.91E-05
s=100 233.802+6.25840 194.188+4.90959  18.0858+0.99646 -7.08E-06+7.39E-05

These average values found by the algorithm for the function variables were:
99.5224+3.2656 for s=lI,
99.969+0.1545 for s=50 and 100.0042+0.1312 for s=100. The global optimum for the

non-noisy version of Griewank (50D) function is at 100 for all variables.

Table 46.

99.99244+0.3576 for s=5,

100.0638+0.2109 for s=20,

Comparison of the average of the best fitness values achieved with different

algorithms for the Rastrigin (50D) function after 500000 fitness function

evaluations. s stands for re-sampling rate.

Noise DE PSO EA DDBGA
s=0 0+0 13.1162+1.44815  32.6679+1.94017 0.0+0.0
s=1 2.35249+0.06062  55.9704+2.19902  30.7511+1.32780 0.0+0.0
s=5 14.0355+0.47935  160.500+2.67500  31.4725+2.02356 0.0+0.0
s=20 167.628+2.12569  313.184+3.93659  39.1777+2.11529 0.0+0.0
s=50 314.762+2.88650  380.178+4.88706  74.8577+2.69437 0.0+0.0
s=100 438.036+3.67504  418.265+5.35434  147.800+£2.93208 0.0+0.0

These average values found by the algorithm for the function variables were:
-0.00095+ 0.00611 for s=1, 0.00061+ 0.00496 for s=5, -0.00085+0.0036 for s=20,
-0.0006+0.0027 for s=50 and -0.00067+0.00260 for s=100. The global optimum for the

non-noisy version of the Rastrigin (50D) function is at 0 for all variables.

Table 47. Comparison of the average of the best fitness values achieved with different

algorithms for the Rosenbrock (50D) function after 500000 fitness function

evaluations. s stands for re-sampling rate.

Noise DE PSO EA DDBGA

s=0 35.3176+0.27444 5142.4542929.47  79.8180+10.4477 0+0

s=1 47.6188+0.15811 4884.68+886.599  118.940+13.2322 -1.58E-06+3.28E-05
s=5 47.0404+0.13932 368512+39755.5  341.788+49.6738 3.82E-06+1.10E-04
s=20 7917.46+£352.851 1.61E+7+1.18E+6  1859.06+261.844 3.36E-05+2.35E-04
s=50 1.65E+7+903677 5.57TE+7+2.38E+6  35477.7+4656.17 -3.56E-03+2.53E-02
s=100  2.98E+8+1.04E+7  1.17E+8+7.38E+6 257488+19371.2 -0.11610826+0.382981454
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These average values found by the algorithm for the function variables were:
1.0008+0.0078 for s=1, 1.0006+0.0062 for s=5, 0.9994+0.0024 for s=20,
0.9998+0.0014 for s=50 and 0.9998+0.006 for s=100. The global optimum for the

non-noisy version of the Rosenbrock (50D) function is at 1 for all variables.

Comparing the DDBGA with six other well-known algorithms on 36 different test
problems clearly proves the superiority of the DDBGA over other algorithms. The
DDBGA converged to the global optimum of the test functions in all cases. The
DDBGA seems to be far superior to the other algorithms when the test problems include

many variables and/or are noisy.
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8. Conclusions

In order to introduce new ideas for implementing the theory of genetic algorithms and
methods for controlling its parameters, a literature survey was done and a novel method
to implement the genetic algorithm was presented. Implementing the genetic algorithm

required re-thinking of all phases in the evolutionary process of the genetic algorithm.

As a result, all phases of the genetic algorithm were implemented in more or less new
ways. The algorithm is called distributional decimal binary genetic algorithm
(DDBGA). The population size was set to 12. Otherwise, the algorithm did not use any
pre-set parameter. No stochastic method was used to adjust the selective pressure during
the run. Instead, a set of operators was developed to control the search in an implicit
self-adaptive way. The algorithm makes heavy use of the population distribution and

decimal operators together with binary operators.

Combining the binary and real value operators as it is presented here, removes the
dilemma of whether to choose the binary or real value representation. The DDBGA
combines advantages of binary and real value representations and exploits the search

space in a polymorphic way.

Each run was implemented as a sequence of short runs with relatively small number of
generations. A sequence of short runs seems to be a good alternative to a single long
run. In each short run the population is generated from scratch. This would offer new
chances to the operators to work with new solution candidates and avoid getting stuck
in local optimum values. This approach is actually a solution for multimodal problems
with many global optimal values. Each distinct run with new population lets the
algorithm start from different starting points in the search space and find all possible

global optimum values.

Male and female chromosomes were introduced and utilized during the algorithm run.
A female chromosome was created by flipping each bit in the original chromosome to

its opposite value. Experimentations showed that this technique could frequently
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convert individuals very quickly to much better ones and hence improve the population
quality. The summary of statistics related to the survival of male and female
chromosomes reported in Chapter 6 revealed that female chromosomes have managed
equally with male chromosomes in the initialization. However, female chromosomes

produced better offspring than male chromosomes in only around 32% of cases.

The survivor selection procedure used in the algorithm lets new offspring replace any
individual with lower fitness and also gives a chance to improve the worst individual in
the population by replacing it with a better individual. The very interesting point here is
that individuals can be eliminated and replaced by a new offspring without even
participating to any competition. However, offspring are not automatically copied to
the population. On the other hand, offspring do not need to be better than their own
parents in order to be copied to the population. This survivor selection procedure makes
use of any successful genetic operator and does not miss any chance to improve the
population average fitness. This also reduces the number of necessary repetitions of
genetic operators for improving the population since some individuals can be replaced

by better ones as the sub-effect of operators on other individuals.

New approaches for implementing classical genetic operators and several new operators
were presented. However, to avoid unnecessary function evaluations expertise
knowledge could be utilized to select the most relevant operators for each problem. For
instance, if the valid range of a variable is between 0 and less then 2, using the operator,
which tries to find a better solution of the greater integer magnitude will lead to

unsuccessful trials and increase the number of function evaluations.

Parents for genetic operators were selected mainly from the higher quartile of the fitness
population. Intensive efforts were made to improve individuals in the higher quartile

and also the elitist individual.

Repeating the higher quartile crossover operator and elitist crossover operator on the
same individual indexes and crossover points produced better offspring occasionally in

around less than 1% of cases.
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For multidimensional problems, the variable crossover operator makes sure that the
exchanged bit strings between individuals in the crossover operator represent whole

variables and not only a portion of them.

In addition, the variable replacement operator for multiple variable problems tests in
turn whether substituting the rest of variables with one variable in the same individual

could improve the fitness value of the individual.

The so-called random building block operator selects randomly two crossover points on
an individual, then randomly generates a binary string of length determined by the index
difference between the crossover points and then copies the generated random building

block to the individual on crossover points.

The so-called decimal operators also take care of implementing changes of different
magnitudes. These are tricky and very efficient operators, which modify the binary
representations of individuals in an intelligent manner so that the result will be within
certain decimal limits. These operators proved to be a very efficient solution to the
Hamming cliff phenomenon, since they do not let the binary representation fox the

algorithm.

The integer mutation operator, which can be compared to the multiple point mutation
operator, selects randomly an integer mutation number between 0 and the magnitude of
the integer part of the variable and randomly decides whether to add or subtract the

mutation number from the variable.

The decimal mutation operator selects randomly a decimal mutation value greater than
0 and less than 1. Then it randomly decides whether to add or subtract the mutation
decimal value from the variable.

These decimal operators were implemented separately for the elitist individual in
smaller magnitudes. The integer mutation operator for the elitist individual selects
randomly either 1 or —1 and adds it to the variable in the elitist individual. The elitist

mutation operator for the elitist individual selects randomly a decimal mutation number
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greater than zero and less than or equal to 0.1. Then it randomly decides whether to add

or subtract this mutation number from the variable.

Analyzing efficiency of these operators revealed that the most efficient operator was the
integer mutation operator and the least efficient operator was the higher quartile
variable crossover operator. For many dimensional and noisy problems all operators
were normally used. However, for some problems with few variables some operators
were left out to avoid unnecessary function evaluations. The criteria for selecting
operators were 1) the valid range of the variables and 2) the observation about the
efficiency of operators through experimentation. The set of most appropriate operators
that would lead to the minimum function evaluation was not the same for all test

functions.

Also a so-called just-in-time or on-demand search space exploration technique was
presented. In this approach a population of fairly small size is initialized and maintained
in the beginning. After each operation, the diversity in the population is measured and if
it is zero, the elitist individual is reserved and the rest of individuals are replaced by
new randomly generated individuals. This approach saves resources by significantly
reducing the number of unnecessary evaluations and at the same time gives the
algorithm access to new potential solutions in the search space. Two versions of on-
demand search space exploration were implemented for different problems: 1) after
each operator, 2) after each generation. The algorithm proved to be able to overcome
the lack of diversity without refreshing the population for most test problems. However,
in some cases refreshing the population seemed to improve the efficiency of the
algorithm by reducing the number of function evaluations. Refreshing the population
after each operator ensures diversity in the population. However, in some cases it
increases the number of function evaluations unnecessarily. Therefore, in some cases
the population was refreshed only at the end of each generation if the population
consisted of only one distinct individual. This was particularly observable in solving the
Griewank function.

The algorithm proved to be very efficient, robust and capable of solving all benchmark
test functions. Therefore, based on the achieved results it can be recommended that

instead of trying to develop techniques for controlling parameters, focus should be
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shifted to developing new operators and also new methods for implementing traditional
operators. So far, major attention has been paid to the quantitative aspects of the
operators, like rates. However, it seems that the quality of operators plays a significant
role in the successfulness of operators. Techniques presented here, suggest a
straightforward approach for how to select individuals for breeding and how to
implement changes in a more deterministic way without forgetting the role of

randomness in the evolutionary process.

Furthermore, presented statistics and the way the efficiency of each operator is tracked,
show a new way to justify the use of new operators. Each time a new operator is
suggested, its efficiency in improving the population fitness compared to previous

population can be presented as it is done here.
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Appendix A
Table A1. Summary of test runs for the Ackley function with different number of
variables (n).
n Run Generations  Evaluations Time to Total Total
Summary to approx. approx. Evaluations elapsed
optimal optimal(s) Time(s)
Best Run 2.00 232.00 0.00 232.00 0.00
Worst Run 25.00 445.00 0.00 3682.00 2.00
1 Mean 8.22 528.22 0.02 1143.46 0.40
Median 6.00 529.00 0.00 843.00 0.00
Mode 6.00 340.00 0.00 #N/A 0.00
Std. Dev. 5.47 214.43 0.14 820.90 0.67
Best Run 2.00 375.00 0.00 375.00 0.00
Worst Run 8.00 1685.00 1.00 1685.00 1.00
3 Mean 4.88 789.98 0.10 990.58 0.20
Median 5.00 804.50 0.00 967.50 0.00
Mode 5.00 #N/A 0.00 #N/A 0.00
Std. Dev. 1.57 278.23 0.30 329.72 0.45
Best Run 1.00 259.00 0.00 259.00 0.00
4 Worst Run 9.00 734.00 1.00 2227.00 3.00
Mean 4.14 729.20 0.04 964.28 0.20
Median 4.00 706.00 0.00 903.00 0.00
Mode 3.00 706.00 0.00 729.00 0.00
Std. Dev. 1.69 241.14 0.20 414.35 0.53
Best Run 2.00 473.00 0.00 473.00 0.00
Worst Run 10.00 1179.00 0.00 2582.00 1.00
5 Mean 4.12 836.30 0.06 1061.26 0.16
Median 4.00 784.50 0.00 1037.50 0.00
Mode 4.00 496.00 0.00 1066.00 0.00
Std. Dev. 1.57 291.95 0.31 406.09 0.42
Best Run 1.00 357.00 0.00 439.00 0.00
Worst Run 5.00 1623.00 1.00 2043.00 1.00
10 Mean 2.64 889.00 0.14 1056.20 0.22
Median 2.50 772.00 0.00 1011.00 0.00
Mode 2.00 760.00 0.00 761.00 0.00
Std. Dev. 0.88 319.65 0.40 340.12 0.51
Best Run 1.00 612.00 0.00 612.00 0.00
Worst Run 3.00 1365.00 1.00 2150.00 1.00
20 Mean 2.18 1150.22 0.28 1386.12 0.56
Median 2.00 1301.50 0.00 1311.00 0.00
Mode 2.00 627.00 0.00 1311.00 0.00
Std. Dev. 0.52 369.17 0.50 390.71 0.64
Best Run 1.00 1340.00 1.00 1340.00 1.00
Worst Run 2.00 3028.00 4.00 3138.00 4.00
50 Mean 1.64 1885.40 2.18 2334.88 2.80
Median 2.00 1557.50 2.00 2721.00 3.00
Mode 2.00 1437.00 2.00 1563.00 3.00
Std. Dev. 0.48 621.18 1.12 651.79 1.01




190 ACTA WASAENSIA

Table A2. Descriptive statistics of the population fitness values for the test runs on the

Ackley function with different numbers of variables (n).

n Runs Pops Min Max Mean  Std. Dev. Skew. Kurt.
Best Run Worst Pop. -22.08 -0.64 -17.37 5.00 3.00 8.00

1 Best Pop. 0.00 0.00 0.00 0.00 0.00 -3.00
Worst Worst Pop. -22.28 -3.64 -19.31 5.00 2.00 5.00

Run Best Pop. 0.00 0.00 0.00 0.00 0.00 -3.00

Best Run Worst Pop. -20.09 -15.94  -17.58 1.00 1.00 6.00

3 Best Pop. 0.00 0.00 0.00 0.00 0.00 -3.00
Worst Worst Pop. -20.15 -14.33 -19.03 1.00 9.00  41.00

Run Best Pop. 0.00 0.00 0.00 0.00 0.00 -3.00

Best Run Worst Pop. -20.84 -14.36 -18.65 1.00 6.00  35.00

4 Best Pop. -1.66 0.00 -0.20 0.00 0.00 0-3.0
Worst Worst Pop. -20.65 -13.23 -18.96 1.00 16.00  96.00

Run Best Pop. 0.00 0.00 0.00 0.00 0.00 -3.00

Best Run Worst Pop. -20.86 -17.19 -19.36 1.00 0.00 1.00

5 Best Pop. -0.02 0.00 0.00 0.00 0.00 -3.00
Worst Worst Pop. -20.42 -16.24 -19.05 1.00 1.00 3.00

Run Best Pop. 0.00 0.00 0.00 0.00 0.00 -3.00

Best Run Worst Pop. -20.89 -19.23 -20.14 0.00 0.00 -3.00

10 Best Pop. -1.01 0.00 -0.61 0.00 0.00 -3.00
Worst Worst Pop. -20.69 -19.75 -20.21 0.00 0.00 -3.00

Run Best Pop. -0.02 0.00 0.00 0.00 0.00 -3.00

Best Run Worst Pop. -21.01 -20.32 -20.70 0.00 0.00 -3.00

20 Best Pop. -0.01 0.00 -0.01 0.00 0.00 -3.00
Worst Worst Pop. -20.98 -20.43 -20.74 0.00 0.00 -3.00

Run Best Pop. -0.12 0.00 -0.01 0.00 0.00 -3.00

Best Run Worst Pop. -21.18 -20.87 -21.03 0.00 0.00 -3.00

50 Best Pop. 0.00 0.00 0.00 0.00 0.00 -3.00
Worst Worst Pop. -21.16 -20.32 -20.95 0.00 0.00 -3.00

Run Best Pop. -0.01 0.00 -0.01 0.00 0.00 -3.00




ACTA WASAENSIA 191

Table A3. Summary of test runs for the Griewank function with different number of

variables (n).

n Run Generations  Evaluations to Time to Total Total
Summary approx. approx. Evaluations elapsed
optimal optimal(s) Time(s)
Best Run 1.00 148.00 0.00 152.00 0.00
Worst Run 46.00 6638.00 5.00 6712.00 5.00
1 Mean 9.86 956.52 0.48 1357.12 0.72
Median 6.00 340.00 0.00 837.00 0.00
Mode 6.00 148.00 0.00 268.00 0.00
Std. Dev. 10.53 1574.26 1.16 1541.77 1.20
Best Run 1.00 166.00 0.00 166.00 0.00
Worst Run 30.00 6326.00 4.00 6456.00 4.00
3 Mean 9.46 1767.92 0.76 1991.60 0.88
Median 8.00 1323.00 1.00 1639.50 1.00
Mode 6.00 168.00 0.00 #N/A 0.00
Std. Dev. 6.62 1435.85 0.94 1438.69 0.96
Best Run 1.00 191.00 0.00 191.00 0.00
Worst Run 14.00 3181.00 1.00 3399.00 2.00
4 Mean 5.40 1016.30 0.30 1236.30 0.40
Median 5.00 857.00 0.00 1064.50 0.00
Mode 3.00 416.00 0.00 475.00 0.00
Std. Dev. 3.32 732.44 0.68 797.69 0.76
Best Run 1.00 146.00 0.00 146.00 0.00
Worst Run 13.00 3449.00 4.00 3449.00 4.00
Mean 3.70 781.26 0.10 921.42 0.14
5 | Median 3.00 736.00 0.00 834.00 0.00
Mode 3.00 472.00 0.00 715.00 0.00
Std. Dev. 1.84 507.54 0.58 487.59 0.61
Best Run 1.00 348.00 0.00 348.00 0.00
Worst Run 4.00 1575.00 1.00 1643.00 1.00
10 Mean 2.20 682.72 0.08 851.78 0.10
Median 2.00 752.00 0.00 817.00 0.00
Mode 2.00 752.00 0.00 426.00 0.00
Std. Dev. 0.81 287.35 0.27 309.01 0.30
Best Run 1.00 551.00 0.00 551.00 0.00
Worst Run 2.00 1312.00 0.00 1398.00 0.00
20 Mean 1.40 782.92 0.10 893.72 0.18
Median 1.00 627.00 0.00 708.50 0.00
Mode 1.00 627.00 0.00 714.00 0.00
Std. Dev. 0.49 285.73 0.30 314.04 0.39
Best Run 1.00 825.00 1.00 1273.00 2.00
Worst Run 2.00 825.00 0.00 2726.00 3.00
50 Mean 1.04 1360.40 1.14 1444.30 1.26
Median 1.00 1374.50 1.00 1379.00 1.00
Mode 1.00 1437.00 1.00 1275.00 1.00
Std. Dev. 0.20 123.93 0.40 261.59 0.53
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Table A4. Descriptive statistics of the population fitness values for the test runs on the

Griewank function with different numbers of variables (n).

n | Runs Pops Min Max Mean Std. Dev. Skew.  Kurt.
Worst Pop.  -72.1 0 718.09 2 ] 0

Best R
. CSEEUL 1 Best Pop. 0 0 0 0 0 3
Worst Pop. 921  -0.61  -38.57 32 0 2

R
Worst Run | <t Pop. -0.46 0 -0.19 0 0 3
Worst Pop. 204 2951 -92.48 56 0 1
3 BestRun | p <t Pop. 95 0 -42.41 38 0 2
Worst Pop. -226 -20.36 -109.88 58 0 -1

tR
Worst Run | b <t Pop. 0 0 0 0 0 3
Worst Pop.  -198 94 -102.86 55 0 1
s BestRun | <t Pop. -0.04 0 -0.01 0 0 3
Worst Pop.  -289  -32.18  -160.52 80 0 2

Worst R
OrStRUN 1 Best Pop. 0 0 0 0 0 3
Worst Pop. -349 -92.87 -209.77 79 0 -1

Best R
s estRun 4 pest Pop. -0.05 0 -0.01 0 0 3
Worst Run | WorstPop. 295 2002 -17039 72 0 -1
Best Pop. 0 0 0 0 0 -3
Worst Pop. 511 -204  -376.49 107 0 2

Best R
1 eSRUR ! Best Pop. 0 0 0 0 0 3
Worst Run Worst Pop. -476 =212 -342.38 84 0 -2
Best Pop. 0 0 0 0 0 -3
Worst Pop. 002 379 -603.1 155 0 1
" BestRun 1 <t Pop. 2.6 0 112 1 0 2
Worst Run Worst Pop. -834 -330 -590.2 150 0 -1
Best Pop. -672 0 -56 193 -2 6
Worst Pop.  -1918  -1439  -1649 170 0 2

Best R
50 eSURUR 1 Best Pop. 1.22 0 -0.38 0 0 3
Worst Rug | WorstPop. 2279 1407 -1665 256 1 0
Best Pop. 1623 0 -520.4 769 0 2
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Table AS5. Summary of test runs for the Rastrigin function F1.
n Summary Generations Evaluations to Time to Total Total
approx. optimal approx. Evaluations Elapsed
optimal (s) Time (s)
Best Run 1 148 0 148 0
Worst Run 22 264 0 3219 2
1 Mean 5.48 350.78 0.04 751.3 0.18
Median 4 285.5 0 524.5 0
Mode 3 152 0 446 0
Std. Dev. 4.13 226.35 0.2 602.01 0.48
Best Run 1 162 0 162 0
Worst Run 5 793 0 1080 0
3 Mean 2.64 453.1 0.06 533.66 0.06
Median 3 413 0 486 0
Mode 2 854 0 372 0
Std. Dev. 0.96 201.48 0.24 216.84 0.24
Best Run 1 191 0 191 0
Worst Run 8 1548 0 1994 1
4 Mean 255 489.6 0.04 563.04 0.06
Median 2 444 0 487 0
Mode 2 428 0 428 0
Std. Dev. 1.15 223.58 0.2 289.07 0.24
Best Run 1 144 0 144 0
Worst Run 6 994 0 1555 1
5 Mean 222 457.52 0.04 562.94 0.1
Median 2 467.5 0 499 0
Mode 2 222 0 548 0
Std. Dev. 1.04 207.13 0.2 278.95 0.3
Best Run 1 329 0 329 0
Worst Run 3 954 0 954 0
10 Mean 1.52 561.44 0.02 561.44 0.02
Median 1 446.5 0 446.5 0
Mode 1 447 0 447 0
Std. Dev. 0.68 207.3 0.14 207.3 0.14
Best Run 1 342 0 342 0
Worst Run 2 1447 1 1447 1
20 Mean 1.26 795.78 0.1 795.78 0.1
Median 1 707.5 0 707.5 0
Mode 1 713 0 713 0
Std. Dev. 0.44 287.72 0.3 287.72 0.3
Best Run 1.00 79.00 0.00 79.00 0.00
Worst Run 1.00 1595.00 1.00 1595.00 1.00
Mean 1.00 1317.88 0.96 1317.88 0.96
50 | Median 1.00 1359.50 1.00 1359.50 1.00
Mode 1.00 1383.00 1.00 1383.00 1.00
Std. Dev. 0.00 259.32 0.35 259.32 0.35
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Table A6. Descriptive statistics of the population fitness values for the test runs on

Rastrigin function with different numbers of variables (n).

n Runs Pops Min Max Mean Std. Dev. Skew. Kurt.
Worst Pop. -28.8 -0.06 -14.6 8 0 -1
Best Run
Best Pop. 0 0 0 0 0 -3
1
Worst Worst Pop. -31.8 -1.5 -12.7 10 0 -2
Run Best Pop. 0 0 0 0 0 -3
Best Run Worst Pop. -83.81 -18.54 -40.06 21 0 -1
3 Best Pop. 0 0 0 0 0 -3
Worst Worst Pop. -63.36 -14.01 -35.92 17 0 -2
Run Best Pop. 0 0 0 0 0 3
Best Run Worst Pop. -64.28 -31.18 -42.69 11 0 -1
4 Best Pop. 0 0 0 0 0 -3
Worst Worst Pop. -52.07 -27.33 -42.03 7 1 1
Run Best Pop. 0 0 0 0 3
Worst Pop. -69.92 -23.12 -51.47 15 0 -1
Best Run
5 Best Pop. -0.5 0 -0.17 0 0 -3
Worst Worst Pop. -64.15 -25.37 -44.84 14 0 -2
Run Best Pop. 0 0 0 0 0 3
Best Run Worst Pop. -155.96  -114.52 -136 15 0 -2
Best Pop. 0 0 0 0 0 -3
10 Worst Worst Pop. -155.29  -114.47  -133.08 13 0 -2
Run Best Pop. 0 0 0 0 0 3
Worst Pop. -322.45  -258.69 -288.6 19 0 -1
Best Run
20 Best Pop. -3.47 0 -1.69 1 0 5
Worst Worst Pop. -323.34  -280.92  -305.43 15 0 -2
Run Best Pop. -0.07 0 -0.03 0 0 3
Worst Pop. -863.62  -723.98  -804.08 46 0 -1
Best Run
Best Pop. -0.01 0 -0.01 0 0 -3
50
Worst Worst Pop. -850.15  -752.68  -804.04 34 0 -2
Run
Best Pop. -0.06 0 -0.05 0 0 -3
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Table A7. Summary of test runs for the Rosenbrock function with different number of

variables (n).

n Summary Generations Evaluation to Time to Total Total
approx. optimal approx. Evaluations Elapsed
optimal (s) Time (s)

Best Run 1.00 57.00 0.00 57.00 0.00
Worst Run 8.00 1711.00 1.00 1711.00 1.00

3 | Mean 3.10 615.74 0.14 615.74 0.14
Median 3.00 522.50 0.00 522.50 0.00
Mode 2.00 363.00 0.00 363.00 0.00

Std. Dev. 1.53 334.24 0.35 334.24 0.35

Best Run 1.00 192.00 0.00 192.00 0.00
Worst Run 6.00 1329.00 0.00 1329.00 0.00

4 | Mean 2.68 602.86 0.06 602.86 0.06
Median 2.00 512.00 0.00 512.00 0.00
Mode 2.00 672.00 0.00 672.00 0.00

Std. Dev. 1.15 264.89 0.24 264.89 0.24

Best Run 1.00 146.00 0.00 146.00 0.00
Worst Run 5.00 1383.00 1.00 1383.00 1.00

5 | Mean 2.34 592.86 0.08 592.86 0.08
Median 2.00 533.50 0.00 533.50 0.00
Mode 2.00 218.00 0.00 218.00 0.00

Std. Dev. 0.92 258.16 0.27 258.16 0.27

Best Run 1.00 341.00 0.00 341.00 0.00
Worst Run 3.00 1252.00 0.00 1252.00 0.00

10 Mean 1.60 609.20 0.04 609.20 0.04
Median 2.00 722.50 0.00 722.50 0.00
Mode 2.00 423.00 0.00 423.00 0.00

Std. Dev. 0.53 199.46 0.20 199.46 0.20

Best Run 1.00 539.00 0.00 539.00 0.00
Worst Run 2.00 1409.00 1.00 1409.00 1.00

20 Mean 1.18 745.78 0.10 745.78 0.10
Median 1.00 619.00 0.00 619.00 0.00
Mode 1.00 596.00 0.00 596.00 0.00

Std. Dev. 0.39 252.65 0.30 252.65 0.30

Best Run 1.00 61.00 0.00 61.00 0.00
Worst Run 1.00 1562.00 1.00 1562.00 1.00

50 | Mean 1.00 1302.48 1.08 1302.48 1.08
Median 1.00 1342.50 1.00 1342.50 1.00
Mode 1.00 1341.00 1.00 1341.00 1.00

Std. Dev. 0.00 212.17 0.34 212.17 0.34
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Table A8. Descriptive statistics of the population fitness values for the test runs on
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Rosenbrock function with different numbers of variables (n).

n Runs Pops Min Max Mean Std. Dev. Skew. Kurt.
Worst 3.10E+08  -227568  -6.20E+07  3.12E+08 -166 2
Best Run | Pop.

3 Best Pop. -35445 0 -8285 14557 -1 1
Worst l‘f;‘l’)”t -1.00E+09  -333713  -2.20E+08  2.91E+08 2 2
Run Best Pop.  -1.00E-06 0 -1.00E-06 0 0 3

Worst
-1.40E+09  -180369  -2.90E+08  4.09E+08 -1 2
Best Run | Pop.

s Best Pop.  -3.12E-04 0 -2.84E-04 0 0 0
Worst ;Y)‘l’)“t -4.80E+08  -1.20E+07 -120E+08  1.28E+08 -1 2
Run Best Pop.  -1.40E-05 0 -9.00E-06 0 0 1

Worst -1.90E+09  -1.30E+08 -6.60E+08  4.92E+08 -1 2
Best Run | Pop.

5 Best Pop. -0.06406 0 -0.03287 0 0 0
Worst },‘(’)‘:St 2.30E+09  -1.20E+08 -7.20E+08  7.55E+08 -1 2
Run Best Pop.  -2.00E-06 0 ~1.00E-06 0 0 3

Worst 29.50E+09  -1.90E+09 -4.40E+09 2337467715 0 -1
Best Run | Pop.

1 Best Pop.  -5.66E-04 0 -426E-04 2413738 2 -3
Worst ;,Y)‘I’)“t -9.90E+09  -6.70E+08 -5.61E+09 3153121821 0 2
Run Best Pop.  -1.00E-06 0 -1.00E-06 0 0 3

Worst 2.40E+10  -1.30E+10 -1.93E+10 3813356653 0 2
Best Run | Pop.

20 Best Pop.  -19.7376 0 -5.56449 8 -1 -1
Worst ;Y)‘l’)“t 2.60E+10  -1.70E+10  -2.16E+10 3768494242 0 2
Run Best Pop.  -6.38073 0 -1.86768 2 -1 1
Best Run I‘X)‘l’;“ 8.60E+10 -5.50E+10 -6.68E+10 10815749638 0 -1

50 Best Pop. -212.635 0 -101.159 102 0 -2
Mkt Worst Z720E+10  -520E+10  -6.46E+10 6854101733 0 -1
Run Pop.

Best Pop.  -1.41223 0 -0.95826 0 0 -3






