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1 INTRODUCTION

As models for random phenomena, Gaussian processes represent an important class
of stochastic processes in probability theory. Besides the linear structure that Gaus-
sian objects display, they acquire nice properties and geometric features that are
simple to analyse, and which leads to interesting results involving the theory of
random processes and functional analysis that comes closely connected to different
applications in quantum physics, statistics, machine learning, finance and biology.
The modern theory of the Gaussian distribution has known developments since
many applications rely on Gaussian distributions, and also since random variables
which arise in applications may be approximated by normal distributions which can
be controlled by their covariances. Brownian motion or Wiener process which is the
most celebrated Gaussian process plays a essential role in the theory of diffusion
processes, the stochastic differential equations and sample continuous martingales.
It is also the key feature to understand the white noise.
In a historical brief, it was Francis Galton and Karl Pearson during 1889-1893 who
first used the term “normal” for the Gaussian distribution. However, the Gaussian
distribution first came to the attention of the scientists in the eighteenth century
recognized at that time as the “Laplace’s second law” where the bell-shaped curve
appeared in his work on an early version of central limit theorem, the “Moivre-
Laplace theorem”. Later, C. F. Gauss developed the formula of the distribution
through the theory of errors and called it “la loi des erreurs”, which is afterwards
adopted by the French school as “Laplace-Gauss’s law”, and as “Gauss’s law” by
the English school.
For any stochastic process, series and integral representations provide a powerful
tool in the analysis of properties of the process. The well-known Karhunen-Loève
series expansion can be applied for Gaussian processes as well as for any second
order stochastic process, it is given in terms of eigenvalues and eigenfunctions that
are sometimes difficult to express explicitly even for some well-studied processes,
moreover, the representation is not unique since there are many ways to expand the
process in form of series. On the other hand, to illustrate a Gaussian process with an
integral representation, namely the one of Volterra-type, offers a good help to check
closely the intrinsic properties of the process in a visualized style which turn out to
be useful for good applications especially in the prediction theory. These properties
such as sample paths regularity and invariance of the covariance are derived from
the deterministic kernel and the Brownian motion that form the Volterra integral
representation.
The Volterra-type integral representation of Gaussian processes has been introduced
by Paul Lévy in 1955 with a major breakthrough in this area. Lévy’s starting point
was to solve a non-linear integral equation that is a factorization of the covariance
kernel by using Hilbert space tools. As the solution is naturally a kernel, Lévy’s
main interest was to provide a solution that is unique and which preserves the canon-
icity, an interesting property which lets the linear spaces of the underlying process
and that of the Brownian motion to be the same. In 1950, Karhunen studied the sta-
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tionary Gaussian processes and introduced their canonical integral representation
by using the concept of pure non-determinism under the heavy machinery of com-
plex analysis which was at its golden age at that time. Later, the theory has been
developed by Hitsuda in 1960 by involving more probabilistic methods such as the
equivalence of Gaussian measures and the Girsanov theorem.
When the question comes to the change of measure, it arises the attention to the
construction of Gaussian bridge as a linear transformation that leaves the measure
of the underlying Gaussian process invariant. Being as natural model for the in-
sider trading strategy as well as for many different applications, Gaussian bridges
exhibit a different treatment to the problem of the enlargement of filtration. Given
a Gaussian process X , the bridge of X is a Gaussian process which behaves like X
under the condition that the process X reaches a certain value at a fixed time hori-
zon. Gaussian bridges can be also defined through Doob’s-h-transform that Doob
has introduced in 1957 to investigate conditioned Markov processes. Later, several
authors considered the Gaussian bridges in their works, especially the Brownian
bridges, pointing out the importance of this process in probability theory.
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2 GAUSSIAN PROCESSES

Throughout this thesis, all the processes are real-valued Gaussian processes. First,
we recall the basic notions of Gaussian processes and give some of their well-known
properties. For more details on Gaussian processes, we refer to Adler (1990), Bo-
gachev (1998), Ibragimov & Rozanov (1970), Kahane (1985), Lifshits (1995) and
Neveu (1968).

2.1 General facts

A random variableX defined on a complete probability space (Ω,F ,P) is Gaussian
if its characteristic function ϕX(u) = E(eiuX), u ∈ R, has the form

ϕX(u) = eimu−
1
2
σ2u2 , m ∈ R, σ > 0,

where m = E(X) is the mean and σ2 = Var(X) is the variance. For an n-
dimensional random vectorX = (X1, . . . , Xn)ᵀ, the characteristic function is given
by

ϕX(u) = E(eiu
ᵀX) = eiu

ᵀm− 1
2
uᵀRu, m ∈ Rn, R ∈ Rn×n,

for all u ∈ Rn, where m = (E(X1), . . . ,E(Xn))ᵀ is the mean vector and R =
[Rij]

n
i,j=1 = [Cov(Xi, Xj)]

n
i,j=1 is the covariance matrix which is symmetric and

non-negative in the sense that

aᵀRa =
n∑
i=1

n∑
j=1

Rijaiaj ≥ 0

holds for any a = (a1, . . . , an)ᵀ ∈ Rn. This definition will be extended to the
Gaussian processes.

Definition 2.1. Let T ⊆ R. A stochastic process X = (Xt)t∈T is a Gaussian
process if any finite linear combination

∑
αiXti , αi ∈ R, ti ∈ T, i = 1, . . . , n, is a

Gaussian random variable. In other words, the law (finite-dimensional distributions)
of the random vector (Xt1 , . . . , Xtn)ᵀ is Gaussian for any collection of ti ∈ T,
i = 1, . . . , n.

We denote the equality of finite-dimensional distributions by X1 d
= X2 of two

Gaussian processes X1 and X2 which defines an equivalence class of equally dis-
tributed Gaussian processes. At this point, we note that a Gaussian process X =
(Xt)t∈T is uniquely determined by its mean function m(t) = E(Xt), t ∈ T, and
by its covariance function R(t, s) = Cov(Xt, Xs), s, t ∈ T. Conversely, for
any function m(t), t ∈ T, and for any symmetric non-negative definite function
R : T × T → R, there exists a unique (in law) Gaussian process having mean and
covariance that coincide respectively with m and R on T. Upon the non-negative
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definiteness property, a Gaussian process is said to be non-degenerate if its covari-
ance function is positive definite; otherwise, it is degenerate.
We now introduce some of the most important types of stochastic processes.

Definition 2.2. Let X = (Xt)t∈T be a process, then

1. X is a stationary process if for all h > 0 such that t+ h ∈ T, t ∈ T,

(Xt+h)t∈T
d
= (Xt)t∈T.

2. X is a self-similar process with index β > 0 (β-self-similar) if for all a > 0
such that at ∈ T, t ∈ T,

(Xat)t∈T
d
= aβ(Xt)t∈T.

3. X has stationary increment if for all h > 0 such that t+ h ∈ T, t ∈ T,

(Xt+h −Xt)t∈T
d
= (Xh −X0)t∈T.

Self-similar processes are steadily connected to stationary processes by a determin-
istic time change. This relationship is expressed by the classical Lamperti trans-
formation which builds a one-to-one correspondence between these two types of
processes.

Lemma 2.3 (Lamperti, 1962). If (Yt)t∈R is a stationary process and for some β > 0

Xt = tβYlog t, t ≥ 0,

then X = (Xt)t≥0 is β-self-similar process. Conversely, if X = (Xt)t≥0 is a β-self-
similar process, β > 0, and

Yt = e−tβXet , t ∈ R,

then, the process Y = (Yt)t∈R is stationary.

By the mean of Definition 2.1, the Gaussian class is invariant under the Lamperti
transformation. For a Gaussian process X = (Xt)t∈T with mean m(t) and co-
variance R(t, s), the stationarity asserts that E(Xt+h) = E(Xt) and R(t + h, t) =
R(h, 0) for all t and h, which indicate that the mean function is constant and the co-
variance function depends only on the difference h. In case of self-similarity with
an index β > 0, we have E(Xat) = aβE(Xt) andR(at, as) = a2βR(t, s), moreover,
it follows that X0 = 0 a.s. since X0 = Xa.0

d
= aβX0 for any a > 0.

Remark 2.4. A process X 6≡ 0 cannot be self-similar and stationary at the same
time, if such a process exits, then E(XtXs) = R(t − s, 0) = E(Xt−sX0) = 0 and
E(Xt) = tβE(X1) = constant, for all t and s. This implies that X ≡ 0.
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Theorem 2.5. Let X be a Gaussian process with a covariance function R. X is
Markov if and only if

R(t, s) =
R(t, u)R(s, u)

R(u, u)
, s ≤ u ≤ t.

Proof. See Kallenberg (1997, p. 204).

2.2 Abstract Wiener integrals and related Hilbert spaces

Here and in what follows, we take T = [0, T ] for a fixed finite time horizon T > 0.
We recall some Hilbert spaces related to Gaussian processes.
First, we observe that under the norm ‖f‖2 = (E(f 2))

1
2 , the Gaussian random

variables are elements of the Hilbert space L2(Ω,F ,P) of (equivalence classes)
square-integrable random variables on Ω, and the Gaussian Hilbert space associated
with a Gaussian process X = (Xt)t∈[0,T ] is to be defined as the first chaos

HX(T ) := span{Xt; t ∈ [0, T ]} ⊂ L2(Ω,F ,P),

where the closure is in L2(Ω,F ,P).

Definition 2.6. Let t ∈ [0, T ]. The linear space HX(t) is the Gaussian closed
linear subspace of L2(Ω,F ,P) generated by the random variables Xs, s ≤ t, i.e.
HX(t) = span{Xs; s ≤ t}, where the closure is taken in L2(Ω,F ,P).

The linear space is a Gaussian Hilbert space with the inner product Cov[·, ·].

Definition 2.7 (Mean-continuity). A stochastic process X = (Xt)t∈[0,T ] is said to
be mean-continuous (or mean-square continuous) if E

(
|Xt −Xs|2

)
converges to 0

when t tends to s.

The mean-continuity can be well seen as the continuity in t of the curve generated by
Xs, s ≤ t, in the Hilbert space L2(Ω,F ,P). On the other hand, the mean-continuity
of a Gaussian process X = (Xt)t∈[0,T ] with covariance function R is equivalent to
the continuity of R(·, ·) at the diagonal (t, t) for any t ∈ [0, T ], and by Loève (1978,
p. 136), this shall imply that R(·, ·) is continuous at every (t, s) ∈ [0, T ]2.
For a mean-continuous stationary Gaussian process X = (Xt)t∈R with zero-mean
and covariance function R(t − s) = E(XtXs), the Bochner theorem asserts that R
admits the representation

R(t− s) =

∫
R
eiλ(t−s) d∆(λ), (2.1)

with a unique positive, symmetric finite measure ∆ called the spectral measure of
the stationary Gaussian process X . As pointed out by Doob (1990), if the covari-
ance R is integrable, there exits a continuous spectral density f(λ) = d∆

dλ
(λ) which
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is the inverse Fourier transform of R. We have

R(t− s) =

∫
R
eiλ(t−s)f(λ) dλ =

∫
R
eiλt(eiλs)∗f(λ) dλ, (2.2)

where (eiλs)∗ is the complex conjugate of eiλs. A good account of the spectral
representations can be found in Ibragimov & Rozanov (1970) and Yaglom (1962).
Another essential approach related to the linear spaces is the construction of the
Wiener integral with respect to X .

Definition 2.8. Let t ∈ [0, T ]. The abstract Wiener integrand space Λt(X) is the
completion of the linear span of the indicator functions 1s := 1[0,s), s ≤ t, under the
inner product 〈·, ·〉 extended bilinearly from the relation

〈1s, 1u〉 = R(s, u).

The elements of the abstract Wiener integrand space are equivalence classes of
Cauchy sequences (fn)∞n=1 of piecewise constant functions. The equivalence of
(fn)∞n=1 and (gn)∞n=1 means that

‖fn − gn‖ → 0, as n→∞,

where ‖·‖ =
√
〈·, ·〉.

The space Λt(X) is isometric toHt(X). Indeed, the relation

IXt [1s] := Xs, s ≤ t, (2.3)

can be extended linearly into an isometry from Λt(X) ontoHt(X).

Definition 2.9. The isometry IXt : Λt(X) → Ht(X) extended from the relation
(2.3) is the abstract Wiener integral. We denote∫ t

0

f(s) dXs := IXt [f ].

2.3 Regularity of Gaussian processes

For a fixed ω, a stochastic process is viewed as a function X : [0, T ] → R called
the sample path or the trajectory of the process, and we say that a process X =
(Xt)t∈[0,T ] has continuous sample paths, if the function X(, ω) is continuous on
[0, T ] for P-almost every ω ∈ Ω. Although the Gaussian processes are uniquely de-
termined in terms of finite-dimensional distributions, this does not suffice to charac-
terize the regularity of their paths, thus, it is natural to put conditions on the sample
paths as well as on the finite-dimensional distributions. First, we review some pre-
vious works related to the continuity of Gaussian processes.
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2.3.1 Earlier works

In prior results, we recite the work of Fernique (1964) where a sufficient condition
for the sample paths of a Gaussian process X = (Xt)t∈[0,T ] is expressed in terms of
incremental variance, i.e. E(Xt−Xs)

2, by assuming that E(Xt−Xs)
2 ≤ Ψ(t− s)

where Ψ is a nondecreasing function on [0, ε] for some ε > 0 and 0 ≤ s ≤ t ≤ ε,
and such that the integral ∫ ε

0

Ψ(u)

u(log u)
1
2

du

is finite. In this case, X has continuous sample paths with probability one. Another
geometric approach to find a sufficient condition is due to Dudley (1967, 1973)
where he employs the metric entropy of [0, T ], that is, H(ε) = logN(ε) where
N(ε) represents to the smallest number of closed balls of radius ε covering [0, T ] in
the pseudo-metric dX(s, t) = (E(Xt −Xs)

2)
1
2 , s, t ∈ [0, T ]. The Dudley condition

reads ∫ ∞
0

(logN(ε))
1
2 dε <∞.

The Dudley sufficient condition for the continuity of Gaussian processes turn-out
to be also necessary in the case of stationary Gaussian processes, c.f. Marcus &
Rosen (2006, chap 6.) and Kahane (1985, p. 212). Additionally to this case, we
mention the Belyaev dichotomy of stationary Gaussian processes known as Belyaev
alternative which shows that a stationary Gaussian process is either continuous a.s.
or unbounded a.s. on every compact interval, see Belyaev (1961).
To obtain necessary and sufficient condition, Talagrand (1987) introduces the con-
cept of majorizing measure. A probability measure µ defined on the space ([0, T ], dX)
is called a majorizing measure if

sup
t∈[0,T ]

∫ ∞
0

(
log

1

µ(BdX (t, ε))

)
dε <∞,

where BdX (t, ε) is the closed ball with radius ε and center t in the intrinsic pseudo-
metric dX . Then a Gaussian process X = (Xt)t∈[0,T ] is continuous a.s. if and only
if there exits a majorizing measure µ on ([0, T ], dX) such that

lim
δ→0

sup
t∈[0,T ]

∫ δ

0

(
log

1

µ(BdX (t, ε))

)
dε = 0.

2.3.2 Hölder continuity

In the theory of stochastic processes, we often use the Hölder scale to quantify the
regularity of the paths of a process. A simpler sufficient condition to guarantee the
almost certain continuity of the sample paths of Gaussian processes would be the
Hölder continuity of the covariance with any order greater than zero.
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Definition 2.10 (Hölder-continuity). A stochastic processX = (Xt)t∈[0,T ] is Hölder
continuous of order γ ∈ [0, 1] if there exists a finite positive random variable h such
that

sup
s,t∈[0,T ];s6=t

|Xt −Xs|
|t− s|γ

≤ h,

almost surely.

The most useful tool to study the Hölder regularity is certainly the famous the fol-
lowing Kolmogorov-Čentsov criterion which represents a sufficient condition.

Theorem 2.11 (Kolmogorov-Čentsov). If a stochastic process X = (Xt)t∈[0,T ] sat-
isfies

E (|Xt −Xs|α) ≤ C |t− s|1+δ , s, t ∈ [0, T ] (2.4)

for some α > 0, δ > 0 and C > 0, then there exists a continuous modification of X
which is Hölder continuous of any order a < δ

α
.

For the Gaussian case, we have the following corollary:

Corollary 2.12. Let X = (Xt)t∈[0,T ] be a Gaussian process and suppose that there
exists a constant C such that

E
(
|Xt −Xs|2

)
≤ C |t− s|2α , s, t ∈ [0, T ], (2.5)

then X has a continuous modification which is Hölder continuous of order a < α.

Proof. Since Xt −Xs is Gaussian, it follows from (2.5) that

E (|Xt −Xs|p) ≤ Cp |t− s|αp

holds for every p ≥ 1. By Kolmogorov-Čentsov criterion (2.4), X has a continuous
modification which is Hölder continuous of order a < α− 1

p
.

Theorem 2.13. LetX = (Xt)t∈[0,T ] be a β-self-similar andH-Hölder, thenH ≤ β.

Proof. We have

sup
0≤s,t≤T

|Xt −Xs|
|t− s|

≥ sup
0≤t≤T

|Xt|
tH

d
= sup

0≤t≤T
|X1|

tβ

tH
=∞

if H ≥ β.

2.4 Examples

Here we give two interesting and well-studied Gaussian processes : the fractional
Brownian motion and the fractional Ornstein-Uhlenbeck processes.
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2.4.1 Fractional Brownian motion

The fractional Brownian motion is seen as a generalization of standard Brownian
motion with a dependence structure of the increments and the memory of the pro-
cess. In many applications, empirical data exhibit a so-called long-range depen-
dence structure, i.e. the process behaviour after a given time t not only rely on the
state of the process at t but also depends on the whole history up to time t. To
describe this behaviour, Mandelbrot & van Ness (1968) used a process that they
called fractional Brownian motion. However, this process was introduced earlier by
Kolmogorov in 1940 as model to study turbulence in fluids. See Molchan (2003)
for full historical account, and Biagini et al. (2008), Embrechts & Maejima (2002),
Mishura (2008) and Samorodnitsky & Taqqu (1994) for more details on fractional
Brownian motion.
A zero mean Gaussian process BH = (BH)t≥0 is a fractional Brownian motion
with Hurst index H ∈ (0, 1) if its covariance function R(t, s) has the form

R(t, s) =
1

2
(s2H + t2H − |t− s|2H). (2.6)

Remark 2.14. If H = 1
2
, BH is the standard Brownian motion, and if H = 1, we

have R(t, s) = ts or equivalently B1 = tξ a.s. for some standard normal random
variable ξ.

The fractional Brownian motion is H-self-similar and has stationary increments.
Moreover, it has a continuous modification which is Hölder continuous of any order
a < H . Indeed, the covariance function (2.6) satisfies R(at, as) = a2HR(t, s) for
any a > 0. Else, we have E|BH

t −BH
s |2 = |t− s|2H , and by Proposition 3 (Lifshits,

1995, Sec.4), BH has stationary increments. The Hölder continuity follows directly
from Corollary 2.12.

Definition 2.15. Let (ηn)n≥0 be a stationary sequence of random variables. (ηn)n≥0

exhibits long-range dependence if its correlation function ρ(n) satisfies

∞∑
n=0

ρ(n) =∞.

If
∑∞

n=0 ρ(n) <∞, then (ηn)n≥0 exhibits short-range dependence.

From the stationarity of increments of the fractional Brownian motion, it follows
that the sequence (BH

n − BH
n−1)n∈N which is called fractional Gaussian noise is

stationary. Denote its autocovarinace function by

ρH(n) := Cov(BH
n −BH

n−1, B
H
1 −BH

0 ),

we have ρH(n) ∼ H(2H − 1)n2H−2. Therefore, if H > 1
2
, it holds that ρH(n) > 0

and
∑

n∈N |ρH(n)| = ∞ which means that the increments of the corresponding
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fractional Brownian motion exhibits a long-range dependence. If H < 1
2
, we have

ρH(n) < 0 and
∑

n∈N |ρH(n)| < ∞, and in this case the increments exhibits a
short-range dependence. When H = 1

2
, it has independent increments since it is a

standard Brownian motion.
As a consequence of Theorem 2.5, the fractional Brownian motion is Markovian if
and only if H = 1

2
. Note that it is a semimartingale if and only if H = 1

2
, see for

instance Biagini et al. (2008).
The representation of fractional Brownian motion as a Wiener integral has been
considered by many authors. For a one-sided fractional Brownian motion, we recall
the Molchan & Golosov (1969) representation

BH
t =

∫ t

0

kH(t, s) dWs, t ≥ 0,

where the deterministic kernel k(t, s) is the fractional integral of the form of

kH(t, s) = cHs
1
2
−H
∫ t

s

(u− s)H−
3
2 uH−

1
2 du, for H >

1

2
,

kH(t, s) = dH

((
t

s

)H− 1
2

(t− s)H−
1
2

−
(
H − 1

2

)
s

1
2
−H
∫ t

s

uH−
3
2 (u− s)H−

1
2 du

)
, for H <

1

2
,

where cH =
(

H(2H−1)

B(2−2H,H− 1
2

)

) 1
2
, dH =

(
2H

(1−2H)B(1−2H,H+ 1
2

)

) 1
2
. B denotes the Beta

function.

2.4.2 Ornstein-Uhlenbeck processes

One of the most natural example of stationary Gaussian processes is the classical
Ornstein-Uhlenbeck process which is derived from the Brownian motion by Lam-
perti transformation, see Cheridito et al. (2003), Embrechts & Maejima (2002),
Kaarakka & Salminen (2011) and Lifshits (1995) for more details.
A stationary Gaussian process (Yt)t∈R is a Ornstein-Uhlenbeck process if it is con-
tinuous, has a zero mean and covariance

E(Y α
t Y

α
s ) =

1

2α
e−α|t−s|, (2.7)

where α > 0. It is given by the Lamperti transformation

Y α
t = e−αtWat ,

where W = (Wt)t∈R is two-sided Brownian motion and at = e2αt

2α
. The Ornstein-
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Uhlenbeck process can be obtained as a solution of the Langevin equation

dY θ
t = −θY θ

t dt+ dWt,

which is expressed as

Y θ
t =

∫ t

−∞
e−θ(t−s) dWs.

By checking the covariances, it is easy to see that for α = 1
2θ

the processes Y α and
Y θ are equivalent in law. Nevertheless, it has been proven in Cheridito et al. (2003)
and Kaarakka & Salminen (2011) that these two stationary Gaussian processes are
not the same if we replace the Brownian motion with a fractional Brownian motion,
as they exhibit different dependence structure of the increments.
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3 INTEGRAL REPRESENTATIONS OF GAUSSIAN
PROCESSES

In this section, we introduce the integral representations of Fredholm and Volterra
types that express the Gaussian processes in terms of the standard Brownian mo-
tion. The terminologies of these two types are devoted to the Fredholm and the
Volterra integral operators from the theory of integral equations; further properties
and applications can be found in Gohberg & Kreı̆n (1969, 1970) and Corduneanu
(1991).

Definition 3.1 (Fredholm & Volterra representations). Let X = (Xt)t∈[0,T ] be a
Gaussian process. We call a Fredholm representation of X the integral representa-
tion of the form

Xt =

∫ T

0

F (t, s) dWs, 0 ≤ t ≤ T, (3.1)

where W is a standard Brownian motion and F ∈ L2([0, T ]2). If the kernel F is of
Volterra type, i.e., F (t, s) = 0 when t < s, then the representation (3.1) is called a
Volterra representation of X and we write

Xt =

∫ t

0

F (t, s) dWs, 0 ≤ t ≤ T. (3.2)

Denote by (FXt )t∈[0,T ] and (FWt )t∈[0,T ] the complete filtration of X and W respec-
tively. The difference between the Fredholm and the Volterra representation is that
for the construction of X in (3.1) at any point t, one needs the entire path of the
underlying Brownian motion W up to time T , i.e., FXt ⊂ FWT , or equivalently
HX(t) ⊂ HW (T ), while in (3.2) the process X at t is generated from the path of W
up to t, and which indicates that FXt ⊂ FWt and HX(t) ⊂ HW (t). The interesting
case of Volterra representation is when the filtrations coincide (see Definition 3.4
below), in this special case, the representation is dynamically invertible in the sense
that the linear spaces HX(t) and HW (t) are the same at every time t which means
that the processes X and W can be constructed from each others without knowing
the future-time development of X or W .
The following theorem states that the Fredholm representation of a Gaussian pro-
cess X exists always under the sufficient and the necessary condition of trace prop-
erty of its covariance.

Theorem 3.2. Let X = (Xt)t∈[0,T ] be a Gaussian process with covariance function
R. Then, X admits a Fredholm representation if and only if the covariance R is of
trace class, i.e, ∫ T

0

R(t, t) dt <∞.

Proof. A complete proof is illustrated in Sottinen & Viitasaari (2014).
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Remark 3.3. The representation is unique in the sense that for any another repre-
sentation with a kernel F ′, we have F ′(t, ·) = UF (t, ·) whereU is a unitary operator
on L2([0, T ]).

Definition 3.4 (Canonical representation). The Volterra representation (3.2) is said
to be canonical if it satisfies

FXt = FWt , 0 ≤ t ≤ T.

An equivalent to the canonical property is that if there exists a random variable
η =

∫ T
0
φ(s) dWs , φ ∈ L2([0, T ]), such that it is independent of Xt for all

0 ≤ t ≤ T , i.e.
∫ t

0
F (t, s)φ(s) ds = 0 , one has φ ≡ 0. This means that the

family {F (t, ·), 0 ≤ t ≤ T} is linearly independent and spans a vector space that is
dense in L2([0, T ]). If we associate with the canonical kernel F a Volterra integral
operator F defined on L2([0, T ]) by Fφ(t) =

∫ t
0
F (t, s)φ(s) ds, it follows from

the canonical property that F is injective and F (L2([0, T ])) is dense in L2([0, T ]).
The covariance integral operator, denoted by R, which is associated with the kernel
R(t, s) has the decomposition R = FF ∗, where F ∗ is the adjoint operator of F .
In this case, the covariance R is factorizable and has the factorization

R(t, s) =

∫ t∧s

0

F (t, u)F (s, u) du, 0 ≤ t, s ≤ T. (3.3)

Here we would like to note that in the works of Lévy (1956a,b, 1957) which marked
the beginning of the theory of the Volterra representation of Gaussian processes,
Lévy introduction of this concept was motivated by solving the non-linear integral
equation (3.3) within the Hilbert space settings.

Example 3.5 (Lévy’s problem). In a counter-example to the canonicity introduced
by Lévy (1957) , we consider the Gaussian process represented by

Xt =

∫ t

0

{
3− 12

u

t
+ 10

(u
t

)2
}

dWu, 0 ≤ t ≤ T, (3.4)

and the random variable η =
∫ T

0
s dWs. It is easy to see that η is independent of

Xt for all t, and therefore, the representation (3.4) is not canonical. Notice that
the Gaussian process (3.4) is self-similar with index 0. For this particular problem,
there has been a discussion in Long (1968) where the author generalizes the results
of Lévy and Hida & Hitsuda on the canonical representations by endowing the
linear space with the scale invariant measure dm(u) = du

u
, instead of the Lebesgue

measure du.

Unlike the Fredholm representation, the canonical Volterra representation requires
more assumptions. One of these representations that have been heavily studied in
the literature is that of stationary Gaussian processes, see Cramér & Leadbetter
(1967), Doob (1990), Dym & McKean (1976), Hida & Hitsuda (1993), Ibragimov
& Rozanov (1970) and Karhunen (1950).
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Definition 3.6 (PND). Let T ⊆ R and consider a finite second moments process
Z = (Zt)t∈T. Let HZ(t) be the closed linear L2-subspace generated by the ran-
dom variables Zs, s ≤ t. Then Z is said to be purely non-deterministic when the
condition ⋂

t

HZ(t) = {0} (C)

is satisfied, where {0} denotes the L2–subspace spanned by the constants. If⋂
t

HZ(t) = HZ(T),

Z is said to be deterministic.

The above definition is due to Cramér (1961b) in general L2-processes framework,
where the condition (C) emphasizes that the remote past

⋂
tHZ(t) of process Z is

trivial and does not contain any information at all. The most interesting case where
this property fails is devoted to the Gaussian process Xt = tξ where ξ is a standard
normal random variable, here we have

⋂
tHX(t) = span{ξ} which is not a trivial.

Remark 3.7. As the remote past assigns the L2-processes to the determinism or the
pure non-determinism, or to both as in the so-called by Lévy the mixed processes,
this two extreme cases play an important role for decomposition of stationary Gaus-
sian processes. Here we recall the Wold decomposition of a given discrete-time sta-
tionary process (not necessarily Gaussian) with finite second moments. Following
Wold (see e.g. Wold, 1954), an L2-stationary process (Xn, n ∈ Z) has a unique
decomposition Xn = X ′n + X

′′
n where X ′n and X ′′n are two stationary uncorrelated

processes such that (X ′n, n ∈ Z) is purely non-deterministic and (X ′′n, n ∈ Z) is de-
terministic. Generalization of Wold decomposition to the continuous-time as well
as to the multivariate case has been done by Cramér (1961a) and Hanner (1950).

Proposition 3.8. Let Y = (Yt)t∈R be a stationary Gaussian process and let X =
(Xt)t≥0 be a β-self-similar Gaussian process associated to Y through Lamperti
transformation. Then, Y is purely non-deterministic if and only if X is so too.

Proof. Since Xt = tβYlog t for all t ≥ 0, the claim follows from the equality:⋂
t≥0

HX(t) =
⋂
t≥0

HY (log t) =
⋂
t∈R

HY (t).

Theorem 3.9 (Canonical representation of stationary Gaussian processes). LetX =
(Xt)t∈R be a mean-continuous stationary Gaussian process. Then, X admits a
canonical Volterra representation if and only if it is purely non-deterministic. In
this case, X is given by the canonical Volterra representation

Xt =

∫ t

−∞
G(t− s) dWs, t ∈ R,
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where G ∈ L2(R) such that G(u) = 0 for all u < 0, and W = (Wt)t∈R is a
two-sided standard Brownian motion.

Proof. For the proof, see e.g. Karhunen (1950), Hida & Hitsuda (1993) or Dym &
McKean (1976).

Remark 3.10. The proof of Theorem 3.9 was framed under the mean of com-
plex analysis and Hardy spaces calculus which are beyond the scope of this the-
sis. However, we would briefly mention that the canonical kernel G(t − s) is con-
structed via the spectral representation of the covariance R(t − s) = E(XtXs).
By Szegö-Kolmogorov theorem (see e.g. Nikol’skiĭ (1986)), the property of pure
non-determinism is equivalent to the finiteness of the integral

∫
R

log f(λ)
1+λ2

dλ where
f is the spectral density of the stationary Gaussian process X; else, a result of
Rozanov (Dym & McKean, 1976) shows that the density function f in this case
admits the factorization f(λ) = |g(λ)|2 where g is an outer function belonging to
the Hardy space H2+ of analytic functions in the upper half-plane. The classical
Paley-Wiener theorem ensures then the existence of a function G ∈ L2([0,∞))
with G(u) = 0 for u < 0 such that g is the Fourier transform of G. Therefore,
R(t − s) =

∫
RG(t − u)G(s − u) du. To check the canonicity, we suppose that

G ? h = 0 for some h ∈ L2(R+). Then gĥ = 0 on the upper-half plane, where
ĥ is the Fourier transform of h, hence,

∫∞
0
g(ω)eiωth(t) dt = 0 which implies that

h = 0, since the family {g(ω)eiωt, t ≥ 0} is dense in H2+ by Lax theorem (see e.g.
Nikol’skiĭ (1986)).
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4 GAUSSIAN BRIDGES

Let X = (Xt)t∈[0,T ] be a continuous Gaussian process with covariance function R,
mean function m, and X0 = 0, defined on the canonical filtered probability space
(Ω,F ,P), where Ω = C([0, T ]), F is the Borel σ-algebra on C([0, T ]) with respect
to the uniform topology, and P is the probability measure with respect to which the
coordinate processXt(ω) = ω(t), ω ∈ Ω, t ∈ [0, T ], is a centered Gaussian process.
Recall that a bridge measure PT is the regular conditional law

PT = PT [X ∈ ·] = P [X ∈ ·|XT = θ] , θ ∈ R, (4.1)

and a process XT = (XT
t )t∈[0,T ] is called a bridge of X from 0 to θ if it is defined

up to distribution in the sense that

P
[
XT ∈ ·

]
= PT [X ∈ ·] = P [X ∈ ·|XT = θ] , (4.2)

with XT
0 = 0 and XT

T = XT almost surely. Note that we condition on a set of zero
measure and that PT (XT = θ) = 1, however, the regular conditional distribution
always exists in the Polish space of continuous functions on [0, T ], see Shiryaev
(1996, p. 227–228).
The bridge XT can be interpreted as the original process X with an added informa-
tion drift that bridges the process at the final time T . On the other hand, the bridge
can be understood from the initial enlargement of filtration point of view. This
dynamic drift interpretation should turn out to be useful in applications such the
insider trading in finance. On earlier work related to Gaussian bridges, we mention
Baudoin (2002), Baudoin & Coutin (2007) and Gasbarra et al. (2007). One may
also refer to Chaleyat-Maurel & Jeulin (1983) and Jeulin & Yor (1990) for more
details on the enlargement of filtrations, and to Amendiger (2000), Imkeller (2003)
and Gasbarra et al. (2006) for its applications in finance. Furthermore, we would
like also to mention other results by Campi et al. (2011) Chaumont & Uribe Bravo
(2011) Hoyle et al. (2011) on Markovian and Lévy bridges.
From the definitions (4.1) and (4.2), it is clear that the bridge XT is Gaussian since
the conditional laws of Gaussian processes are Gaussian. Among this class, the
Brownian bridge was the most extensively studied bridge, it is given by the equation

W T
t = Wt −

t

T
WT , 0 ≤ t ≤ T, (4.3)

where the conditioning is on the final value WT = 0. The representation (4.3) is
called the orthogonal representation of the Brownian bridge and it is deduced from
the orthogonal decomposition of W with respect to WT , that is,

Wt =

(
Wt −

t

T
WT

)
+
t

T
WT ,

where the bridge W T = (W T
t )t∈[0,T ] has the same law as the conditioned process
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(Wt|WT = 0)t∈[0,T ]. More generally, the orthogonal representation of the Gaussian
bridge XT is the well-known representation (see Gasbarra et al. (2007)) :

XT
t = θ

R(T, t)

R(T, T )
+Xt −

R(T, t)

R(T, T )
XT , 0 ≤ t ≤ T, (4.4)

with mean E(XT ) = θ R(T,t)
R(T,T )

+m(t)− R(T,t)
R(T,T )

m(T ) and covariance

Cov(XT
t , X

T
s ) = R(t, s)− R(T, t)R(T, s)

R(T, T )
.

Remark 4.1. The covariance is independent of θ and m(t), so, in what follows we
may assume that θ = 0 and m(t) = 0.

Example 4.2 (Fractional Brownian bridge). If X is a centered fractional Brownian
motion with Hurst H ∈ (0, 1) and covariance R(t, s) = 1

2
(s2H + t2H − |t− s|2H),

the fractional Brownian bridge from 0 to 0 on the interval [0, T ] is the process

XT
t = Xt −

t2H + T 2H − |t− T |2H

2T 2H
XT , 0 ≤ t ≤ T.

The orthogonal representation of the bridge is characterized by

HXT (t) ⊥ span{XT} = HX(t), 0 ≤ t ≤ T,

where ⊥ indicates the orthogonal direct sum, therefore, the representation is not
canonical since the linear spaces HX(t) and HXT (t) does not coincide at any time
t ∈ [0, T ], and moreover, their natural filtrations FXT and FX are not the same.
But the initially σ(XT )-enlarged filtrations FXT ∨σ(XT ) and FX ∨σ(XT ) are . As
a naturally related question, this motivates to write the canonical representation of
the bridge in its own filtration, which is surely a different bridge process than (4.4).
Indeed, for the case when X = M is a continuous martingale with M0 = 0 and
strictly increasing bracket 〈M〉 for which we haveR(t, s) = 〈M〉t∧s, the key feature
to the canonical form of the bridgeMT is to use the Girsanov theorem since we have
PTt ∼ Pt for all t ∈ [0, T ) and PTT ⊥ PT , where PTt and Pt are the restriction of PT
and P on the filtration Ft. As pointed out in Gasbarra et al. (2007), the Girsanov
theorem leads to the stochastic differential equation:

dMt = dMT
t −

∫ t

0

l(t, s) dMT
s d〈M〉t, 0 ≤ t < T, (4.5)

where l(t, s) = − 1
〈M〉t−〈M〉s . In addition, 〈MT 〉t = 〈M〉t and FMT

t = FM
t for all

t ∈ [0, T ).
The equation (4.5) can be viewed as the Hitsuda representation between two equiv-
alent Gaussian processes (c.f. Hitsuda, 1968). By this fact, the Hitsuda representa-
tion (4.5) can be inverted to express the solution MT in terms of M by taking the
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kernel l∗(t, s) that satisfies the resolvent equation

l(t, s) + l∗(t, s) =

∫ t

s

l(t, u) l∗(u, s) d〈M〉u. (4.6)

The existence and the uniqueness of the resolvent kernel follows from the theory
of integral equations for a given square-integrable kernel, namely l(t, s), (see e.g.
Yosida, 1991, p.118), and the resolvent equation is understood as a necessary and
sufficient condition to construct the solution MT in terms of M . In this regard, the
Hitsuda representation is unique in the sense that if there exist another canonical
representation dMt = dM̃t−

∫ t
0
l̃(t, s) dM̃s d〈M〉t, 0 ≤ t < T , then MT = M̃ and

l(t, s) = l̃(t, s) for almost all t, s ∈ [0, T ).

Theorem 4.3. The process MT defined as

dMT
t = dMt −

∫ t

0

l∗(t, s) dMs d〈M〉t, 0 ≤ t < T, (4.7)

where l∗(t, s) is the kernel defined in (4.6), is a bridge of M .

Proof. Equation (4.7) is the solution to (4.5) if and only if the kernel l∗ satisfies the
resolvent equation. Indeed, suppose (4.7) is the solution to (4.5). This means that

dMt =

(
dMt −

∫ t

0

l∗(t, s) dMs dM〉t
)

−
∫ t

0

l(t, s)

(
dMs −

∫ s

0

l∗(s, u) dMu d〈M〉s
)

d〈M〉t,

or, in the integral form, by using the Fubini’s theorem,

Mt = Mt −
∫ t

0

∫ t

s

l∗(u, s) d〈M〉udMs

−
∫ t

0

∫ t

s

l(u, s) d〈M〉udMs

+

∫ t

0

∫ t

s

∫ s

u

l(s, v)l∗(v, u)d〈M〉v d〈M〉udMs.

The resolvent criterion (4.6) follows by identifying the integrands in the d〈M〉udMs-
integrals above.

The representation (4.7) specifies the Doob-Meyer decomposition ofMT as a semi-
martingale with respect to its own filtration. In the particular example of Brown-
ian motion , the canonical representation of the Brownian bridge conditioned by
WT = 0 is given by

W T
t = Wt −

∫ t

0

∫ s

0

1

T − u
dWu ds =

∫ t

0

T − t
T − s

dWs, (4.8)
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for all t ∈ [0, T ).

Remark 4.4. The singularity at time T between the bridge law and the the un-
derlying process law can be seen from the kernel 1

T−u in (4.8) which loses its
square-integrability at time T . In general, when the kernel l(t, s) is singular, the
corresponding resolvent kernel l∗(t, s) is also singular, see for instance Alili & Wu
(2009) and Wu & Yor (2002) for further details on the topic.
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5 SUMMARIES OF THE ARTICLES

I. Necessary and sufficient conditions for Hölder continuity of Gaussian pro-

cesses

In this article we reproduce the Kolmogorov-Čentsov criterion to give a simple
necessary and sufficient condition for the Hölder continuity of Gaussian processes.
However, this condition is restricted to Gaussian processes. Let X = (Xt)t∈[0,T ] be
a centered Gaussian process and define

d2
X(τ, τ ′) := E[(Xτ −Xτ ′)

2],

σ2
X(τ) := E[X2

τ ].

Our main result is the following:

Theorem 5.1. The Gaussian process X is Hölder continuous of any order a < H
i.e.

|Xt −Xs| ≤ Cε|t− s|H−ε, for all ε > 0 (5.1)

if and only if there exists constants cε such that

dX(t, s) ≤ cε|t− s|H−ε, for all ε > 0. (5.2)

Moreover, the random variables Cε in (5.1) satisfy

E [exp (aCκ
ε )] <∞ (5.3)

for any constants a ∈ R and κ < 2; and also for κ = 2 for small enough positive
a. In particular, the moments of all orders of Cε are finite.

The “if” part is obvious since it follows from the Kolmogorov-Čentsov criterion.
For the “only if‘ part by we need to use the following lemma which is a characteri-
zation of Gaussian processes.

Lemma 5.2. Let ξ = (ξτ )τ∈T be a centered Gaussian family. If supτ∈T |ξτ | < ∞
then supτ∈T E[ξ2

τ ] <∞.

For the second part of the theorem we show the finiteness of the exponential mo-
ments of the variables Cε by using the Garsia–Rademich–Rumsey inequality:

Lemma 5.3. Let p ≥ 1 and α > 1
p
. Then there exists a constant c = cα,p > 0 such

that for any f ∈ C([0, T ]) and for all 0 ≤ s, t ≤ T we have

|f(t)− f(s)|p ≤ cTαp−1|t− s|αp−1

∫ T

0

∫ T

0

|f(x)− f(y)|p

|x− y|αp+1
dxdy.
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In the last section, examples are provided applying Theorem 5.1 for these types
of Gaussian processes: the stationary processes and the processes with stationary
increments as well as the Fredholm and the Volterra processes. We check also
the particular case of self-similar Gaussian processes with the canonical Volterra
representation.

II. Representation of self-similar Gaussian processes

Let X = (Xt; t ∈ [0, T ]) be a β-self-similar Gaussian process. By the inverse Lam-
perti transformation the process X is associated to a stationary Gaussian process
Y = (Yt)t∈(−∞,log T ] through the one-to-one correspondence Xt = tβYlog t. Follow-
ing Karhunen (1950), the canonical Volterra representation of Y exists under the
condition of pure non-determinism ( the condition (C) in Definition 3.6), that is the
representation

Yt =

∫ t

−∞
G(t− s) dW ∗

s

where G is a Volterra kernel and W ∗ is a standard Brownian motion.
Our main result in this paper is the canonical Volterra representation constructed for
the self-similar Gaussian process X by using the pure non-determinism condition.
Since the canonical kernel G is constant on the line {(t + a, s + a), a ∈ R}, it is
indeed clear that the canonical kernel for X shall satisfy the homogeneity property.

Definition 5.4. We say that a function f(t, s) is homogeneous with degree α > 0 if

f(at, as) = aαf(t, s)

holds.

The pure non-determinism condition will be again necessary and sufficient to con-
struct the canonical Volterra representation for X as it can be extended from Y in
the following way:⋂

t∈(0,T )

HX(t) =
⋂

t∈(0,T )

HY (log t) =
⋂

t∈(−∞,log T )

HY (t) = {0} (5.4)

and by Lamperti transformation and time change we are able to state our main
theorem:

Theorem 5.5. The self-similar centered Gaussian process X = (Xt; t ∈ [0, T ])
satisfies the condition (C) if and only if there exist a standard Brownian motion W
and a Volterra kernel k such that X has the representation

Xt =

∫ t

0

k(t, s) dWs, (5.5)



22 Acta Wasaensia

where the Volterra kernel k is defined by

k(t, s) = tβ−
1
2 F
(s
t

)
, s < t, (5.6)

for some function F ∈ L2(R+, du) independent of β, with F (u) = 0 for 1 < u.
Moreover,HX(t) = HW (t) holds for each t.

The expression (5.6) shows that the canonical kernel k(t, s) satisfies the homogene-
ity property of degree (β− 1

2
), in addition, the canonical property is preserved under

Lamperti transformation since we have that

HX(t) = HY (log t) = HdW ∗(log t) = HdW (t) = HW (t).

In the last section and as an application, we will use the representation (5.5) to
define the class of β-self-similar Gaussian processes that are equivalent in law to
X . Let X̃ = (X̃t; t ∈ [0, T ]) be a centered Gaussian process equivalent in law to X .
The Hitsuda representation for Volterra processes asserts the existence of a unique
Volterra kernel l(t, s) and a unique centered Gaussian process W̃ = (W̃t)t∈[0,T ]

equivalent in law to the standard Brownian motion W such that

X̃t =

∫ t

0

k(t, s) dW̃s = Xt −
∫ t

0

k(t, s)

∫ s

0

l(s, u) dWu ds. (5.7)

Under the law of X̃ , W̃ is a standard Brownian motion and X̃ is β-self-similar
since k(t, s) is (β − 1

2
)-homogeneous. In Picard (2011), it has been proven that

a necessary and sufficient condition for X̃ to be β-self-similar under the law X is
that X̃ has the same law as X . We will prove this fact by using the homogeneity
property. From (5.7) we have

X̃t =

∫ t

0

(
k(t, s)− tβ−

1
2 z(t, s)

)
dWs, 0 ≤ t ≤ T,

where z(t, s) =
∫ t
s
F
(
u
t

)
l(u, s) du, s < t. This representation is canonical and

X̃ satisfies the pure non-determinism property since the equivalence of laws im-
plies that HX̃(t) = HX(t) for all t. It turns out that by using Theorem 5.5, the

kernel
(
k(t, s)− tβ− 1

2 z(t, s)
)

is (β − 1
2
)-homogeneous and thus l(t, s) is (−1)-

homogeneous. Now we introduce the following lemma:

Lemma 5.6. If a Volterra kernel on [0, T ]×[0.T ] is homogeneous with degree (−1),
then it vanishes on [0, T ]× [0.T ].

It follows from the lemma that the that X̃ has the same law as X .



Acta Wasaensia 23

III. Generalized Gaussian bridges

In this article we combines and extends the results of Alili (2002) and Gasbarra et al.
(2007). LetX = (Xt)t∈[0,T ] be a continuous Gaussian process with positive definite
covariance functionR, mean functionm of bounded variation, andX0 = m(0). We
define the generalized Gaussian bridge Xg;y as (the law of) the Gaussian process X
conditioned on the set{∫ T

0

g(t) dXt = y

}
=

N⋂
i=1

{∫ T

0

gi(t) dXt = yi

}
, (5.8)

where the functions gi assumed to be linearly independent. For this generalized
Gaussian bridge we will give two types of representations: orthogonal and canoni-
cal. The orthogonal representation is a straightforward extension of the orthogonal
representation of the classical Gaussian bridge which is

Xg;y
t = Xt − 〈〈〈1t,g〉〉〉>〈〈〈g〉〉〉−1

(∫ T

0

g(u) dXu − y

)
, (5.9)

where the matrix

〈〈〈g〉〉〉ij := 〈〈〈gi, gj〉〉〉 := Cov

[∫ T

0

gi(t) dXt ,

∫ T

0

gj(t) dXt

]
.

Since the covariance of Xg;y is independent of m and y, we may assume that
m = 0 and yi = 0 for all i. In the simple case when X = M is a martingale we
start constructing the canonical representation of the generalized Gaussian bridge
Mg,0 =: Mg by defining the matrix

〈〈〈g〉〉〉ij(t) := E
[∫ T

t

gi(s) dXs

∫ T

t

gj(s) dXs

]
(5.10)

and the kernel
`g(t, s) := −g>(t) 〈〈〈g〉〉〉−1(t)g(s), (5.11)

and by the change of probability measure we obtain

dMt = dMg
t −

∫ t

0

`g(t, s) dMg
s d〈M〉t. (5.12)

It follows that the canonical representation of the generalized Gaussian bridge Mg

is given in terms of the resolvent kernel of `g(t, s), `∗g(t, s), which is expressed
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explicitly by

`∗g(t, s) := −`g(t, s)
|〈〈〈g〉〉〉|(t)
|〈〈〈g〉〉〉|(s)

(5.13)

= |〈〈〈g〉〉〉|(t)g>(t)〈〈〈g〉〉〉−1(t)
g(s)

|〈〈〈g〉〉〉|(s)
.

Clearly, `g(t, s) and `∗g(t, s) satisfy the resolvent equation. Thus Mg is represented
canonically as

dMg
t = dMt −

∫ t

0

`∗g(t, s) dMs d〈M〉t, (5.14)

For the non-semimartingale case, the same approach can be used by employment of
the prediction martingale process which is the most natural martingale associated
to the Gaussian non-semimartingale. A typical non-semimartingale example of a
prediction-invertible Gaussian process would be the fractional Brownian motion.

Definition 5.7. For a Gaussian process X = (Xt)t∈[0,T ], the prediction martingale
with respect to (FXt )t∈[0,T ] is the process given by

X̂t := E
[
XT |FXt

]
.

For each t, the element X̂t belongs toHX(t), hence, we can express it by the Wiener
integral

X̂t =

∫ t

0

p(t, s) dXs, 0 ≤ t ≤ T. (5.15)

Definition 5.8. A Gaussian process X is prediction-invertible if (5.15) is true and
there exists for all t ∈ [0, T ] a kernel p−1(t, s) ∈ L2([0, T ]2, d〈X̂〉) such that

Xt =

∫ t

0

p−1(t, s) dX̂s, 0 ≤ t ≤ T. (5.16)

All martingales are trivially prediction-invertible. The prediction invertibility means
that the Gaussian process X and its prediction martingale X̂ can be recovered from
each others. Now, define the operators P and P−1 that extend linearly the kernels p
and p−1 by the relations

P[1t] = p(t, ·),
P−1[1t] = p−1(t, ·).

For a function f such that P−1[f ] ∈ L2([0, T ], d〈X̂〉) and a function ĝ ∈ L2([0, T ], d〈X̂〉),
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we have ∫ T

0

f(t) dXt =

∫ T

0

P−1[f ](t) dX̂t, (5.17)∫ T

0

ĝ(t) dX̂t =

∫ T

0

P[ĝ](t) dXt. (5.18)

This helps to write the bridge conditioning for the prediction martingale X̂ .

Our main result in this section is the following theorem:

Theorem 5.9. Let X be prediction-invertible Gaussian process. Assume that, for
all t ∈ [0, T ] and i = 1, . . . , N , gi1t ∈ Λt(X). Then the generalized bridge Xg

admits the canonical representation

Xg
t = Xt −

∫ t

0

∫ t

s

p−1(t, u)P
[
ˆ̀∗
ĝ(u, ·)

]
(s) d〈X̂〉u dXs, (5.19)

where

ĝi = P−1[gi],

ˆ̀∗
ĝ(u, v) = |〈〈〈ĝ〉〉〉X̂ |(u)ĝ>(u)(〈〈〈ĝ〉〉〉X̂)

−1
(u)

ĝ(v)

|〈〈〈ĝ〉〉〉X̂ |(v)
,

〈〈〈ĝ〉〉〉X̂ij (t) =

∫ T

t

ĝi(s)ĝj(s) d〈M〉s = 〈〈〈g〉〉〉Xij (t).

Next, we apply this result for the invertible Volterra processes.

Definition 5.10. V is an invertible Gaussian Volterra process if it is continuous and
there exist Volterra kernels k and k−1 such that

Vt =

∫ t

0

k(t, s) dWs, (5.20)

Wt =

∫ t

0

k−1(t, s) dVs, (5.21)

where W is the standard Brownian motion and the Wiener integrals (5.20) and
(5.21) are well defined.

Invertible Gaussian Volterra processes are prediction-invertible. Similarly, the Volterra
kernels k(t, s) and k−1(t, s) induce the operators

K[1t] := k(t, ·) and K−1[1t] := k−1(t, ·)
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that can be extended linearly, and moreover, we can write∫ T

0

f(t) dVt =

∫ T

0

K−1[f ](t) dWt,∫ T

0

g(t) dWt =

∫ T

0

K[g](t) dVt.

It follows that the operator K and K−1 and the operatorsP and P−1 are connected
through the relations

K[g] = k(T, ·)P−1[g],

K−1[g] = k−1(T, ·)P[g],

and as an application of the theorem (5.9), we have the corollary:

Corollary 5.11. Let V be an invertible Gaussian Volterra process and let K[gi] ∈
L2([0, T ]) for all i = 1, . . . , N . Denote

g̃(t) :=
K[g](t)

k(T, t)
.

Then the bridge V g admits the canonical representation

V g
t = Vt −

∫ t

0

∫ t

s

k(t, u)k(T, u)

k−1(T, s)
K−1

[
`∗g̃(u, ·)

]
(s) du dVs, (5.22)

where

˜̀̃
g(u, v) = |〈〈〈g̃〉〉〉W |(u)g̃>(u)(〈〈〈g̃〉〉〉W )

−1
(u)

g̃(v)

|〈〈〈g̃〉〉〉W |(v)
,

〈〈〈g̃〉〉〉Wij (t) =

∫ T

t

g̃i(s)g̃j(s) ds = 〈〈〈g〉〉〉Xij (t).

In the final section, we apply the canonical representation of the generalized Gaus-
sian bridges to the insider trading and compute the additional logarithmic utility for
the model

dSt
St

= atd〈M〉t + dMt, (5.23)

where S is a financial asset with S0 = 1, M is a continuous Gaussian martingale
with strictly increasing 〈M〉 with M0 = 0, and the process a is F-adapted satisfying∫ T

0
a2
t d〈M〉t <∞ P-a.s.
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Neveu, J. (1968). Processus Aléatoires Gaussiens. Presses de l’Université de
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a b s t r a c t

The continuity of Gaussian processes is an extensively studied topic and it culminates in
Talagrand’s notion of majorizing measures that gives complicated necessary and sufficient
conditions. In this note we study the Hölder continuity of Gaussian processes. It turns out
that necessary and sufficient conditions can be stated in a simple form that is a variant of
the celebrated Kolmogorov–Čentsov condition.
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1. Introduction

In what follows X will always be a centered Gaussian process on the interval [0, T ]. For a centered Gaussian family
ξ = (ξτ )τ∈T we denote

d2ξ (τ , τ ′) := E[(ξτ − ξτ ′)2],

σ 2
ξ (τ ) := E[ξ 2

τ ].

To put our result in context, we briefly recall the essential results of Gaussian continuity.
One of the earliest results is a sufficient condition due to Fernique (1964): Assume that for some positive ε, and 0 ≤ s ≤

t ≤ ε, there exists a nondecreasing function Ψ on [0, ε] such that σ 2
X (s, t) ≤ Ψ 2(t − s) and

 ε

0

Ψ (u)
u
√
log u

du < ∞. (1)

Then X is continuous. The finiteness of Fernique integral (1) is not necessary for the continuity. Indeed, cf. (Marcus and Shepp,
1970, Sect. 5) for a counter-example.
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Dudley (1967, 1973) found a sufficient condition for the continuity by using metric entropy. Let N(ε) := N([0, T ], dX , ε)
denote the minimum number of closed balls of radius ε in the (pseudo) metric dX needed to cover [0, T ]. If


∞

0


logN(ε) dε < ∞, (2)

then X is continuous. Like in the case of Fernique’s condition, the finiteness of the Dudley integral (2) is not necessary for
continuity, cf. (Marcus and Rosen, 2006, Ch 6.). However, for stationary processes (2) is necessary and sufficient.

Finally, necessary and sufficient conditions were obtained by Talagrand (1987). Denote BdX (t, ε) a ball with radius ε at
center t in the metric dX . A probability measure µ on ([0, T ], dX ) is called amajorizing measure if

sup
t∈[0,T ]


∞

0


log

1
µ


BdX (t, ε)

 dε < ∞. (3)

The Gaussian process X is continuous if and only if there exists a majorizing measure µ on ([0, T ], dX ) such that

lim
δ→0

sup
t∈[0,T ]

 δ

0


log

1
µ(BdX (t, ε))

dε = 0.

2. Main theorem

Talagrand’s necessary and sufficient condition (3) for the continuity of a Gaussian process is rather complicated. In con-
trast, the general Kolmogorov–Čentsov condition for continuity is very simple. It turns out that for Gaussian processes the
Kolmogorov–Čentsov condition is very close to being necessary for Hölder continuity:

Theorem 1. The Gaussian process X is Hölder continuous of any order a < H i.e.

|Xt − Xs| ≤ Cε|t − s|H−ε, for all ε > 0 (4)

if and only if there exist constants cε such that

dX (t, s) ≤ cε|t − s|H−ε, for all ε > 0. (5)

Moreover, the random variables Cε in (4) satisfy

E

exp


aCκ

ε


< ∞ (6)

for any constants a ∈ R and κ < 2; and also for κ = 2 for small enough positive a. In particular, the moments of all orders of Cε

are finite.

The differences between the classical Kolmogorov–Čentsov continuity criterion and Theorem 1 are: (i) Theorem 1 deals
only with Gaussian processes, (ii) there is an ε-gap to the classical Kolmogorov–Čentsov condition and (iii) as a bonus we
obtain that the Hölder constants Cε must have light tails by the estimate (6). Note that the ε-gap cannot be closed. Indeed,
let

Xt = f (t)Bt ,

where B is the fractional Brownian motion with Hurst index H and f (t) = (log log 1/t)−1/2. Then, by the law of the iterated
logarithm due to Arcones (1995), X is Hölder continuous of any order a < H , but (5) does not hold without an ε > 0.

The proof of the first part Theorem 1 is based on the classical Kolmogorov–Čentsov continuity criterion and the following
elementary lemma:

Lemma 1. Let ξ = (ξτ )τ∈T be a centered Gaussian family. If supτ∈T |ξτ | < ∞ then supτ∈T E[ξ 2
τ ] < ∞.

Proof. Since supτ∈T |ξτ | < ∞, P[supτ∈T |ξτ | < x] > 0 for a large enough x ∈ R. Now, for all τ ∈ T, we have that

P

sup
τ∈T

|ξτ | < x


≤ P [|ξτ | < x]

= P


ξτ

σξ (τ )

 <
x

σξ (τ )



=
2

√
2π

 x/σξ (τ )

0
e−

1
2 z

2
dz

≤
2

√
2π

x
σξ (τ )

.
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Consequently,

σ 2
ξ (τ ) ≤

2x2

πP

sup
τ∈T

|ξτ | < x
2 ,

and the claim follows from this. �

The second part on the exponential moments of the Hölder constants of Theorem 1 follows from the following Garsia–
Rademich–Rumsey inequality (Garsia et al., 1970). Let us also note, that this part is intimately connected to the Fernique’s
theorem (Fernique, 1978) on the continuity of Gaussian processes.

Lemma 2. Let p ≥ 1 and α > 1
p . Then there exists a constant c = cα,p > 0 such that for any f ∈ C([0, T ]) and for all 0 ≤ s,

t ≤ T we have

|f (t) − f (s)|p ≤ cTαp−1
|t − s|αp−1

 T

0

 T

0

|f (x) − f (y)|p

|x − y|αp+1
dxdy.

Proof of Theorem 1. The if part follows from the Kolmogorov–Čentsov continuity criterion. For the only-if part assume that
X is Hölder continuous of order a = H − ε, i.e.

sup
t,s∈[0,T ]

|Xt − Xs|

|t − s|H−ε
< ∞.

Define a family ξ = (ξt,s)(t,s)∈[0,T ]2 by setting

ξt,s =
Xt − Xs

|t − s|H−ε
.

Since ξ is a centered Gaussian family that is bounded by the Hölder continuity of X , we obtain, by Lemma 1, that
sup(t,s)∈[0,T ]2 σ 2

ξ (t, s) < ∞. This means that

sup
t,s∈[0,T ]

d2X (t, s)
|t − s|2H−2ε

< ∞,

or

dX (t, s) ≤ Cε|t − s|H−ε.

The property (6) follows from the Garsia–Rademich–Rumsey inequality of Lemma 2. Indeed, by choosing α = H −
ε
2 and

p =
2
ε
we obtain

|Xt − Xs| ≤ cH,εTH−ε
|t − s|H−εξ ,

where

ξ =

 T

0

 T

0

|Xu − Xv|
2
ε

|u − v|
2H
ε

dudv

 ε
2

. (7)

Let us first estimatemoments of ξ . First we recall the fact that for a Gaussian randomvariable Z ∼ N (0, σ 2) and any number
q > 0 we have

E

|Z |

q
= σ q 2

q
2 Γ

 q+1
2


√

π
,

where Γ denotes the Gamma function. Let now δ < ε
2 and p ≥

2
ε
. By Minkowski inequality and estimate (5) we obtain

E

|ξ |

p
≤

 T

0

 T

0

(E|Xu − Xv|
p)

2
pε

|u − v|
2H
ε

dvdu

 pε
2

≤




 T

0

 T

0


cpcδ|u − v|

p(H−δ)
 2

pε

|u − v|
2H
ε

dvdu




pε
2
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= cpcδ2
pε
2

 T

0

 u

0
(u − v)−

2δ
ε dvdu

 pε
2

= cpcδ2
pε
2

 ε

2δ

 pε
2


1 −

ε

2δ

 pε
2
Tq(ε−δ),

where cδ is the constant from (5) and

cq =
2

q
2 Γ

 q+1
2


√

π
. (8)

Hence, we may take

Cε = cH,εTH−εξ ,

where cH,ε is the constant from Garsia–Rademich–Rumsey inequality and ξ is given by (7). Moreover, for any p ≥
2
ε
and any

δ < ε
2 we have estimate

E

|ξ |

p
≤ cpcδ2

pε
2

 ε

2δ

 pε
2


1 −

ε

2δ

 pε
2
Tq(ε−δ).

Consequently,

E

|Cε|

p
≤ cpΓ


p + 1
2



for some constant c = cε,δ,T . Thus, by plugging in (8) to the series expansion of the exponential we obtain

E

exp


aCκ

ε


≤

∞
j=0

ajcκ j Γ


κ j+1
2



Γ (j + 1)
.

So, to finish the proof we need to show that the series above converges. Now, by Stirling’s approximation

Γ (z) =

√
2π

√
z

 z
e

z
(1 + O(1/z)) ,

we obtain (the constant c may vary from line to line)

Γ


κ j+1
2



Γ (j + 1)
∼


κ j+1
2

−
1
2 e−

κ j+1
2


κ j+1
2

 κ j+1
2

(j + 1)−
1
2 e−j−1 (j + 1)j+1

≤ cj
1

√
j + 1

(κ j + 1)
κ j
2

(j + 1)j

≤ cj
1

√
j + 1

(2j + 2)
κ j
2

(j + 1)j

= (2c)j
1

√
j + 1

(j + 1)(
κ
2 −1)j

which is clearly summable since κ < 2. If κ = 2, then in the approximation above we obtain that Γ
 2j+1

2


/Γ (j + 1) ∼ cj

for some constant c . Hence, depending on constant cε,δ,T , we obtain that E

exp


aC2

ε


< ∞ for small enough a > 0. �

3. Applications and examples

Stationary-increment processes. This case is simple:

Corollary 1. If X has stationary increments then it is Hölder continuous of any order a < H if and only if

σ 2
X (t) ≤ cεt2H−ε, for all ε > 0.

Stationary processes. For a stationary process E[XtXs] = r(t − s), where, by the Bochner’s theorem,

r(t) =


∞

−∞

eiλt ∆(dλ),
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where ∆, the spectral measure of X , is finite and symmetric. Since now

d2X (t, s) = 2

r(0) − r(t − s)



we have the following corollary.

Corollary 2. If X is stationary with spectral measure ∆ then it is Hölder continuous of any order a < H if and only if


∞

0


1 − cos(λt)


∆(dλ) ≤ cεt2H−ε for all ε > 0.

Fredholm processes. A bounded process can be viewed as an L2([0, T ])-valued random variable. Hence, the covariance
operator admits a square root with kernel K , and we may represent X as a Gaussian Fredholm process:

Xt =

 T

0
K(t, s) dWs, (9)

where W is a Brownian motion and K ∈ L2([0, T ]
2).

Corollary 3. A Gaussian process X is Hölder continuous of any order a < H if and only if it admits the representation (9) with K
satisfying

 T

0
|K(t, u) − K(s, u)|2 du ≤ cε|t − s|2H−ε for all ε > 0.

Proposition 1. Let X be Gaussian Fredholm process with kernel K .

(i) If for every ε > 0 there exists a function fε ∈ L2([0, T ]) such that

|K(t, u) − K(s, u)| ≤ fε(u)|t − s|H−ε

then X is Hölder continuous of any order a < H.
(ii) If X is Hölder continuous of any order a < H then

fε := lim inf
s→t

|K(t, ·) − K(s, ·)|2

|t − s|2H−ε
∈ L1([0, T ]).

Proof. The first part follows from Corollary 3. Consider then the second part and assume that X is Hölder continuous of any
order a < H and

lim inf
s→t

|K(t, ·) − K(s, ·)|2

|t − s|2H−ε
∉ L1([0, T ]).

By Corollary 3 we know that
 T

0

|K(t, ·) − K(s, ·)|2

|t − s|2H−ε
du ≤ cε.

On the other hand, by Fatou Lemma we have

lim inf
s→t

 T

0

|K(t, ·) − K(s, ·)|2

|t − s|2H−ε
du ≥

 T

0
lim inf

s→t

|K(t, ·) − K(s, ·)|2

|t − s|2H−ε
du = ∞

which is a contradiction. �

Volterra processes.A Fredholmprocess is aVolterra process if its kernelK satisfiesK(t, s) = 0 if s > t . In this case Corollary 3
becomes:

Corollary 4. A Gaussian Volterra process X with kernel K is Hölder continuous of any order a < H if and only if, for all s < t and
ε > 0

(i)
 t
s K(t, u)2du ≤ cε|t − s|2H−ε ,

(ii)
 s
0 |K(t, u) − K(s, u)|2 du ≤ cε|t − s|2H−ε .
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By Alòs et al. (2001, p. 779) the following is a sufficient condition:

Proposition 2. Let X be a Gaussian Volterra process with kernel K that satisfies

(i)
 t
s K(t, u)2 du ≤ c(t − s)2H ,

(ii) K(t, s) is differentiable in t and
 ∂K

∂t (t, s)
 ≤ c(t − s)H−

3
2 .

Then X is Hölder continuous of any order a < H.

Self-similar processes. A process X is self-similar with index β > 0 if

(Xat)0≤t≤T/a
d
=(aβXt)0≤t≤T , for all a > 0.

In the Gaussian case this means that

dX (t, s) = a−βdX (at, as) for all a > 0.

So, it is clear that X cannot be Hölder continuous of order H > β .
Let HX

t be the closed linear subspace of L2(Ω) generated by the Gaussian random variables {Xs; s ≤ t}. Denote HX
0+ :=

∩t∈(0,T ] HX
t . Then X is purely non-deterministic if HX

0+ is trivial. By Yazigi (2014) a purely non-deterministic Gaussian self-
similar process admits the representation

Xt =

 t

0
tβ−

1
2 F

u
t


dWu, (10)

where F ∈ L2([0, 1]) is positive. Consequently:

Corollary 5. Let X be a purely non-deterministic Gaussian self-similar process with index β and representation (10). Then X is
Hölder continuous of any order a < H if and only if

(i)
 t
s t2β−1F( u

t )
2 du ≤ cε|t − s|2H−ε ,

(ii)
 s
0

tβ−
1
2 F

 u
t


− sβ−

1
2 F

 u
s


2
du ≤ cε|t − s|2H−ε

for all s < t and ε > 0.

Proposition 3. Let X be a purely non-deterministic Gaussian self-similar process with index β and representation (10). Then X
is Hölder continuous of any order a < H if

(i) F (x) ≤ c xβ−H(1 − x)H−
1
2 , 0 < x < 1,

(ii)
1 −

F(x)
F(y)

 ≤


 y
x

H−β


1−x
1−y

H−
1
2

− 1
 , 0 < y < x < 1.

Proof. Condition (i) of Corollary 4 follows from assumption (i) and condition (ii) of Corollary 4 follows from assumptions
(i) and (ii) applied to the estimate

tβ−
1
2 F

u
t


− sβ−

1
2 F

u
s

 ≤ F
u
t


tβ−

1
2

1 −
F

 u
s



F
 u
t


 + F

u
s

 tβ−
1
2 − sβ−

1
2

 .

The details are left to the reader. �
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a b s t r a c t

We develop the canonical Volterra representation for a self-similar Gaussian process
by using the Lamperti transformation of the corresponding stationary Gaussian process,
where this latter one admits a canonical integral representation under the assumption of
pure non-determinism.We apply the representation obtained to the equivalence in law for
self-similar Gaussian processes.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction and preliminaries

In this paper, we will construct the canonical Volterra representation for given self-similar centered Gaussian processes.
The role of the canonical Volterra representation which was first introduced by Lévy in Lévy (1956a,b), and later developed
by Hida in Hida (1960), is to provide an integral representation for a Gaussian process X in terms of a Brownian motion W
and a non-random Volterra kernel k such that the expression

Xt =

 t

0
k(t, s) dWs

holds for all t and the Gaussian processes X andW generate the same filtration. It is known, see Jost (2007) and Lévy (1956a),
that if the kernel k satisfies the homogeneity property for some degree α, i.e. k(at, as) = aαk(t, s), a > 0, the Gaussian
process X is self-similar with index α +

1
2 . Thus, the main goal of this paper is to give, under some suitable conditions, a

general construction of the canonical Volterra representation for self-similar Gaussian processes, and which also guaranties
the homogeneity property of the kernel. In Section 2, the linear Lamperti transform that defines the one–one correspondence
between stationary processes and self-similar processes, will be used to express the explicit form of the canonical Volterra
representation for self-similar Gaussian processes in the light of the classical canonical representation of the stationary
processes given by Karhunen in Karhunen (1950). In Section 3, we give an application of the representation obtained to a
Gaussian process equivalent in law to the self-similar Gaussian process.

In our mathematical settings, we take T > 1 to be a fixed time horizon, and on a complete probability space (Ω, F , P)
we consider a centered Gaussian process X = (Xt; t ∈ [0, T ]) that enjoys the self-similarity property for some β > 0, i.e.

(Xat)0≤t≤T/a
d
=(aβXt)0≤t≤T , for all a > 0,

E-mail address: adil.yazigi@uwasa.fi.

http://dx.doi.org/10.1016/j.spl.2015.01.012
0167-7152/© 2015 Elsevier B.V. All rights reserved.
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where d
= denotes equality in distributions, or equivalently,

r(t, s) = E(XtXs) = T 2β r


t
T

,
s
T


, 0 ≤ t, s ≤ T . (1.1)

In particular, we have r(t, t) = t2βE(X2
1 ), which is finite and continuous function at every (t, t) in [0, T ]

2, and therefore, is
continuous at every (t, s) ∈ [0, T ]

2, see Loève (1978). A consequence of the continuity of the covariance function r is that X
is mean-continuous.

We denote by HX (t) the closed linear subspace of L2([0, T ]) generated by the Gaussian random variables Xs for s ≤ t ,
and by (F X

t )t∈[0T ], where F X
t := σ(Xs, s ≤ t), the completed natural filtration of X . We call the Volterra representation of X

the integral representation of the form

Xt =

 t

0
k(t, s) dWs, t ∈ [0, T ], (1.2)

where W = (Wt; t ∈ [0, T ]) is a standard Brownian motion and the kernel k(t, s) is a Volterra kernel, i.e. a measurable
function on [0, T ] × [0, T ] that satisfies

 T
0

 t
0 k(t, s)2 ds dt < ∞, and k(t, s) = 0 for s > t . The Gaussian process X with

such representation is called a Gaussian Volterra process, provided with k andW .
Moreover, the Volterra representation is said to be canonical if the canonical property

F X
t = FW

t

holds for all t , or equivalently
HX (t) = HW (t), for all t. (1.3)

Remark 1.1. (i) An equivalent to the canonical property is that if there exists a random variable η =
 T
0 φ(s) dWs, φ ∈

L2([0, T ]), such that it is independent of Xt for all 0 ≤ t ≤ T , i.e.
 t
0 k(t, s) φ(s) ds = 0, one has φ ≡ 0. This means

that the family {k(t, ·), 0 ≤ t ≤ T } is free and spans a vector space that is dense in L2([0, T ]). If we associate with the
canonical kernel k a Volterra integral operatorK defined on L2([0, T ]) byK φ(t) =

 t
0 k(t, s) φ(s) ds, it follows from the

canonical property (1.3) that K is injective and K (L2([0, T ])) is dense in L2([0, T ]). The covariance integral operator
R associated with the kernel r(t, s) has the decomposition R = K K ∗, where K ∗ is the adjoint operator of K . In this
case, the covariance r is factorable, i.e.

r(t, s) =

 t∧s

0
k(t, u)k(s, u) du.

(ii) A special property for a Volterra integral operator is that it has no eigenvalues, see Gohberg and Krein (1969).

2. The canonical Volterra representation and self-similarity

The Gaussian process X is β-self-similar, and according to Lamperti (1962), it can be transformed into a stationary
Gaussian process Y defined by:

Y (t) := e−βtX(et), t ∈ (−∞, log T ]. (2.1)
Conversely, X can be recovered from Y by the inverse Lamperti transformation

X(t) = tβY (log t), t ∈ [0, T ]. (2.2)
As a consequence of (2.1) and the mean-continuity of X , it is easy to see that Y is mean-continuous since

E(Yt − Ys)
2

= 2

r(1, 1) − e−(t−s)βr(et−s, 1)


converges to zero when t approaches s.

We denote by HY (t) the closed linear subspace of L2((−∞, log T ]) generated by Ys, s ≤ t , to this end, we need to recall
the concept of pure non-determinismwhich is required to construct the canonical representation of the stationary Gaussian
process Y .

Definition 2.1. Let Z be a process with finite second moments and let HZ (t) be the closed linear L2-subspace generated by
the random variables Zs, s ≤ t . Then Z is said to be purely non-deterministic when the condition


t

HZ (t) = {0} (C)

is satisfied, where {0} denotes the L2-subspace spanned by the constants.

The above definition is due to Cramer in general L2-processes framework, see Cramer (1961), where the condition (C)
emphasizes that the remote past


t HZ (t) of process Z is trivial and does not contain any information. In the Gaussian case

which falls naturally into this class, application of the condition (C) that has been investigated was mainly for Gaussian
processes of stationary type; one may refer to Dym and McKean (1979) and Hida and Hitsuda (1993).
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As was shown by Hida and Hitsuda (Section 3, Hida and Hitsuda, 1993), which is a well-known classical result that
was first established by Karhunen (Section 3, Satz 5, Karhunen, 1950), a mean-continuous stationary Gaussian process
admits a canonical representation if and only if it is purely non-deterministic. Under this necessary and sufficient condition,
and following the construction used in Hida and Hitsuda (1993), the stationary Gaussian process Y can be represented
canonically by the form

Yt =

 t

−∞

GT (t − s) dW ∗

s , (2.3)

where GT is a measurable function in L2(R, du) such that GT (u) = 0 for u < 0, and W ∗ is a standard Brownian motion
satisfying the canonical property, i.e.,

HY (t) = HW∗(t), t ∈ (−∞, log T ].

Next, we shall extend the property of pure non-determinism to the self-similar centered Gaussian process X .

Theorem 2.2. The self-similar centered Gaussian process X = (Xt; t ∈ [0, T ]) satisfies the condition (C) if and only if there exist
a standard Brownian motion W and a Volterra kernel k such that X has the representation

Xt =

 t

0
k(t, s) dWs, (2.4)

where the Volterra kernel k is defined by

k(t, s) = tβ−
1
2 F

 s
t


, s < t, (2.5)

for some function F ∈ L2(R+, du) independent of β , with F(u) = 0 for 1 < u.
Moreover, HX (t) = HW (t) holds for each t.

Remark 2.3. In the case where the process X is trivial self-similar, i.e. Xt = tβW1, 0 ≤ t ≤ T , the condition (C) is not
satisfied since


t∈(0,T ) HX (t) = HW (1). Thus, X has no Volterra representation in this case.

Proof. The fact that X is purely non-deterministic is equivalent to that Y is purely non-deterministic since


t∈(0,T )

HX (t) =


t∈(0,T )

HY (log t) =


t∈(−∞,log T )

HY (t).

Thus Y admits the representation (2.3) for some square integrable kernel GT and a standard Brownian motion W ∗. By the
inverse Lamperti transformation, we obtain

X(t) =

 log t

−∞

tβGT (log t − s) dW ∗

s =

 t

0
tβs−

1
2 GT


log

t
s


dWs,

where dWs = s
1
2 dW ∗

log s.We take the Volterra kernel k to be defined as k(t, s) = tβ−
1
2 F

 s
t


, where F(u) = u−

1
2 GT (log u−1) ∈

L2(R+, du) vanishing when u < 1 since GT (u) = 0 when u < 0, i.e. for t < s, we have F( s
t ) = 0, and then, k(t, s) = 0.

Indeed,


∞

0
F(u)2 du =


∞

0
GT (log u−1)2

du
u

=


∞

−∞

GT (v)2 dv < ∞,

and
 T

0

 t

0
F

 s
t

2
ds dt =

 T

0
t dt

 1

0
F(u)2 du

=

 T

0
t dt


∞

0
GT (v)2 dv < ∞.

Thus,
 T

0

 t

0
t2β−1F

 s
t

2
ds dt =

 T

0
t2β

  1

0
F (u)2 du


dt < ∞.

Considering the closed linear subspace HdW (t) of L2([0, T ]) that is generated byWs−Wu for all u ≤ s ≤ t , we have HdW (t) =

HW (t) since W0 = 0, and therefore, the canonical property follows from the equalities

HX (t) = HY (log t) = HdW∗(log t) = HdW (t) = HW (t). �
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Example 2.4 (Fractional Brownian Motion). The fractional Brownian motion (fBm) on [0, T ] with index H ∈ (0, 1) is a cen-
tered Gaussian process BH

= (Bt; 0 ≤ t ≤ T ) with the covariance function RH(t, s) =
1
2 (s

2H
+ t2H − |t − s|2H). The fBm

is H-self-similar, and following Alòs et al. (2001) and Decreusefond and Üstünel (1999), it admits the canonical Volterra
representation with the canonical kernel

kH(t, s) = cHs
1
2 −H

 t

s
(u − s)H−

3
2 uH−

1
2 du, for H >

1
2
,

kH(t, s) = dH


t
s

H−
1
2

(t − s)H−
1
2 −


H −

1
2


s
1
2 −H

 t

s
uH−

3
2 (u − s)H−

1
2 du


, for H <

1
2
,

where cH =


H(2H−1)

B(2−2H,H−
1
2 )

 1
2

, dH =


2H

(1−2H)B(1−2H,H+
1
2 )

 1
2

, here B denotes the Beta function. So, the function F that corre-

sponds to the canonical Volterra representation of fBm has the expressions:

F(u) = cH


u

1
2 −H

 1

u
(z − u)H−

3
2 zH−

1
2 dz


, for H >

1
2
,

and

F(u) = dH


1
u

− 1
H−

1
2

−


H −

1
2


(u)

1
2 −H

 1

u
zH−

3
2 (z − u)H−

1
2 dz


,

for H < 1
2 .

A function f (t, s) is said to be homogeneous with degree α if the equality

f (at, as) = aα f (t, s), a > 0,

holds for all t, s in [0, T ]. From the expression (2.5) of the canonical kernel, it is easy to see that k is homogeneous with
degree β −

1
2 , i.e. k(t, s) = Tβ−

1
2 k( t

T , s
T ), for all s < t ∈ [0, T ].

Given X with the canonical Volterra representation (2.4), let U to be a bounded unitary endomorphism on L2([0, T ])
with adjoint U ∗

= U −1, and define the process B = (B)t := (U ∗(W ))t for each t ∈ [0, T ]. Indeed, B is a standard Brow-
nian motion since the Gaussian measure is preserved under the unitary transformations. With the notation kt(·) := k(t, ·),
the Gaussian process associated with the kernel (U kt)(s) and the standard Brownian motion B has same law as X . For the
covariance operator, we write

R = K K ∗
= K U ∗U K ∗

= (K U ∗)(K U ∗)∗,

where the operator K U ∗ is defined by

(K U ∗)φ(t) =

 t

0
k(t, s) (U ∗φ)(s) ds =

 T

0
(U kt)(s) φ(s) ds, φ ∈ L2([0, T ]).

The associated Gaussian process has then the integral representation
 T
0 (U kt)(s) dBs for all t ∈ [0, T ].

Corollary 2.5. For any bounded unitary endomorphism U on L2([0, T ]), the homogeneity of k is preserved under U .

Proof. Let U be a bounded unitary endomorphism on L2([0, T ]), and let the scaling operator S f (t) = T
1
2 f (Tt)with adjoint

S ∗f (t) = T−
1
2 f ( t

T ) to be defined for all f ∈ L2([0, T ]). The homogeneity of kmeans that

kt(s) = Tβ

S ∗k t

T


(s),

then we have

U kt(s) = Tβ

U S ∗k t

T


(s) = Tβ−

1
2


S U S ∗k t

T

  s
T


.

To show the equality S U S ∗k t
T

= U k t
T
, we will use the Mellin transform


∞

0


S U S ∗k t

T


(s) sp−1 ds =


∞

0


U S ∗k t

T


(s) (S ∗sp−1) ds

= T
1
2 −p


∞

0


U S ∗k t

T


(s) sp−1 ds
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= T
1
2 −p


∞

0


S ∗k t

T


(s) (U ∗sp−1) ds

= T−p


∞

0
k t

T

 s
T


(U ∗sp−1) ds

=


∞

0
k t

T
(u) (U ∗up−1) du =


∞

0
U k t

T
(u) up−1 du,

and the uniqueness property of the Mellin transform implies that

S U S ∗k t
T

= U k t
T
. �

Remark 2.6. The fact that the β-self-similar Gaussian process X satisfies the condition (C), guaranties the existence of the
canonical kernel kwhich is homogeneouswith degreeβ−

1
2 , and its homogeneity is preserved under unitary transformation.

If we consider again the example in Remark 2.3, one has the representation

Xt =

 T

0
tβ1[0,1](s) dWs, 0 ≤ t ≤ T ,

where 1[0,1](s) is the indicator function. In this case, we see that the kernel tβ1[0,1](s) does not satisfy the homogeneity
property of any degree.

3. Application to the equivalence in law

In this section, we shall emphasize the self-similarity property under the equivalence of laws of Gaussian processes.
First, we recall the results shown by Hida–Hitsuda in the case of Brownianmotion, see Hida and Hitsuda (1993) and Hitsuda
(1968). Following Hitsuda’s representation theorem, a centered Gaussian process W = (Wt; t ∈ [0, T ]) is equivalent in law
to a standard Brownian motionW = (Wt; t ∈ [0, T ]) if and only if W can be represented in a unique way by

Wt = Wt −

 t

0

 s

0
l(s, u) dWu ds, (3.1)

where l(s, u) is a Volterra kernel, i.e.
 T

0

 t

0
l(t, s)2 ds dt < ∞, l(t, s) = 0 for t < s, (3.2)

and such that the equalityHW (t) = HW (t)holds for each t .Wenote here that the uniqueness of the canonical decomposition
(3.1) is in the sense that if l′ is a Volterra kernel and W ′

= (W ′
t ; t ∈ [0, T ]) is a standard Brownian motion such that for

0 ≤ t ≤ T

W ′

t −

 t

0

 s

0
l′(s, u) dW ′

u ds = Wt −

 t

0

 s

0
l(s, u) dWu ds,

then l = l′ andW = W ′.
If we denote by P and P the laws of W and W respectively, these two processes are equivalent in law if P and P are

equivalent, and the Radon–Nikodym density is given by

dP
dP

= exp

 T

0

 s

0
l(s, u)dWu dWs −

1
2

 T

0

 s

0
l(s, u)dWs

2

ds


.

The centered Gaussian process W is a standard Brownianmotion underPwithE(Wt Ws) = E(WtWs), hence, it is self-similar
with index 1

2 underP. It follows from (3.1) that the covariance of W under P has the form of

E(Wt Ws) = t ∧ s −

 t∧s

0

 s

u
l(v, u) dv du −

 t∧s

0

 t

u
l(v, u) dv du

+

 t

0

 s

0

 v1∧v2

0
l(v1, u) l(v2, u) du dv1 dv2.

The Hitsuda representation can be extended to the class of the canonical Gaussian Volterra processes, see Baudoin and
Nualart (2003) and Sottinen (2004). A centered Gaussian process X = (Xt; t ∈ [0, T ]) is equivalent in law to a Gaussian
Volterra process X if and only if there exists a unique centered Gaussian process, namely W , satisfying (3.1) and (3.2), and
such that

Xt =

 t

0
k(t, s) dWs = Xt −

 t

0
k(t, s)

 s

0
l(s, u) dWu ds, (3.3)

where the kernel k(t, s) and the standard Brownian motion stand for (1.2), the canonical Volterra representation of X .
Moreover, we have HX (t) = HX (t) for all t .
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Under the condition (C), the kernel k is (β −
1
2 )-homogeneous, and the centered Gaussian process X is β-self-similar

underP since W is a standard Brownian motion. It is obvious that ifX has same law as X , it is β-self-similar under P, and
this condition is also necessary, see Picard (2011). However, in the next proposition, we will use the homogeneity property
of the Volterra kernel l as a necessary and sufficient condition for the self-similarity for the processX , and equivalently forW , under the law P.

Proposition 3.1. Let X = (Xt; t ∈ [0, T ]) be a centered β-self-similar Gaussian process satisfying the condition (C), then

(i) a centered Gaussian process X = (Xt; t ∈ [0, T ]) is equivalent in law to X if and only if X admits a representation of the
form of

Xt = Xt − tβ−
1
2

 t

0
z(t, s) dWs, 0 ≤ t ≤ T , (3.4)

where W is a standard Brownian motion on [0, T ], and the kernel z(t, s) is independent of β and expressed by

z(t, s) =

 t

s
F

u
t


l(u, s) du, s < t,

for a Volterra kernel l and some function F ∈ L2(R+, du) vanishing on (1, ∞].
(ii) In addition,X is β-self-similar if and only if l ≡ 0.

For the proof, we need the following lemma.

Lemma 3.2. If a Volterra kernel on [0, T ] × [0.T ] is homogeneous with degree (−1), then it vanishes on [0, T ] × [0.T ].

Proof. Let a Volterra kernel h be (−1)-homogeneous. Combining the square integrability and the homogeneity property
h(t, s) =

1
a h( t

a ,
s
a ), a > 0, 0 ≤ s < t ≤ T , yields

 T

0

 t

0
h(t, s)2 ds dt =

 T
a

0

 t
a

0
h

t
a
,
s
a

2 1
a2

ds dt =

 T
a

0

 t ′

0
h(t ′, s′)2 ds′ dt ′

which is finite for all a > 0. This implies that h vanishes on [0, T ] × [0.T ]. �

Proof. (i) X satisfies the condition (C), and by Theorem 2.2, it admits a canonical Volterra representation with a standard
Brownian motion W and a kernel of the form of k(t, s) = tβ−

1
2 F

 s
t


, F ∈ L2(R+, du) vanishing on (1, ∞]. By using Fubini

theorem, (3.3) gives

Xt = Xt −

 t

0

 t

s
k(t, u)l(u, s) du dWs, 0 ≤ t ≤ T ,

which proves the claim.
(ii) Suppose thatX is β-self-similar. From (i),X has the representation

Xt =

 t

0


k(t, s) − tβ−

1
2 z(t, s)


dWs, 0 ≤ t ≤ T ,

which is a canonical Volterra representation. Indeed, ifL denotes the Volterra integral operator associatedwith the Volterra
kernel l(t, s), the integral operator K − K L = K (I − L ) that corresponds to the Volterra kernel k(t, s) − tβ−

1
2 z(t, s) is

also a Volterra integral operator, Gohberg and Krein (1969). Here, I denotes the Identity operator. In particular, if we let f ∈

L2([0, T ]) be such that K (I −L )f = 0. By (i) in Remark 1.1, the operator K is injective, hence, (I −L )f = 0, i.e., L f = f .
Therefore, the Volterra integral operator L admits an eigenvalue, which is a contradiction by (ii) in Remark 1.1. So, f ≡ 0.

Now, using the fact that HX (t) = HX (t) for all t , X satisfies also the condition (C), and by Theorem 2.2, the canonical
kernel k(t, s) − tβ−

1
2 z(t, s) is (β −

1
2 )-homogeneous. For a > 0, we write

k(t, s) − tβ−
1
2 z(t, s) = aβ−

1
2


k

t
a
,
s
a


− tβ−

1
2 z


t
a
,
s
a


,

which implies that z(t, s) = z( t
a ,

s
a ), and by the change of variable, we have

 t

s
F

u
t


l(u, s) du =

 t
a

s
a

F

u
t
a


l

u,

s
a


du =

 t

s
F

v

t

 1
a
l
v

a
,
s
a


dv, s < t,

which is equivalent to
 t

0
F

u
t


l(u, s) du =

 t

0
F

u
t

 1
a
l
u
a
,
s
a


dv, s < u < t.
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Taking derivatives with respect to t on both sides, and since F
 u
t


≠ 0, we obtain

l(u, s) =
1
a
l
u
a
,
s
a


, s < u,

which means that l is homogeneous with degree (−1). By applying Lemma 3.2, we get l ≡ 0.
If l ≡ 0, we have E(XtXs) = E(XtXs) which means thatX d

= X . Therefore,X is β-self-similar. �

Remark 3.3. The importance of the condition (C) in Proposition 3.1 can be seen in the case of the fBm with index H = 1,
i.e. BH

t = tBH
1 , 0 ≤ t ≤ T . Here the condition (C) fails. Since fBm is Gaussian, each process is determined by its covariance

E(BH
t B

H
s ) = tsE((BH

1 )2). However, the laws of processes that correspond to different values of E((BH
1 )2) are equivalent, on

the other hand, these laws are different.
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Abstract

A generalized bridge is a stochastic process that is conditioned on N linear functionals of its path.
We consider two types of representations: orthogonal and canonical. The orthogonal representation is
constructed from the entire path of the process. Thus, the future knowledge of the path is needed.
In the canonical representation the filtrations of the bridge and the underlying process coincide. The
canonical representation is provided for prediction-invertible Gaussian processes. All martingales are
trivially prediction-invertible. A typical non-semimartingale example of a prediction-invertible Gaussian
process is the fractional Brownian motion. We apply the canonical bridges to insider trading.
c⃝ 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-SA
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1. Introduction

Let X = (Xt )t∈[0,T ] be a continuous Gaussian process with positive definite covariance
function R, mean function m of bounded variation, and X0 = m(0). We consider the
conditioning, or bridging, of X on N linear functionals GT = [Gi

T ]
N
i=1 of its paths:

GT (X) =

 T

0
g(t) dXt =

 T

0
gi (t) dXt

N

i=1
. (1.1)
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We assume, without any loss of generality, that the functions gi are linearly independent. Indeed,
if this is not the case then the linearly dependent, or redundant, components of g can simply be
removed from the conditioning (1.2) without changing it.

The integrals in the conditioning (1.1) are the so-called abstract Wiener integrals (see
Definition 2.5 later). The abstract Wiener integral

 T
0 g(t) dXt will be well-defined for functions

or generalized functions g that can be approximated by step functions in the inner product ⟨⟨⟨·, ·⟩⟩⟩

defined by the covariance R of X by bilinearly extending the relation ⟨⟨⟨1[0,t), 1[0,s)⟩⟩⟩ = R(t, s).
This means that the integrands g are equivalence classes of Cauchy sequences of step functions
in the norm |||| · |||| induced by the inner product ⟨⟨⟨·, ·⟩⟩⟩. Recall that for the case of Brownian
motion we have R(t, s) = t ∧ s. Therefore, for the Brownian motion, the equivalence classes of
step functions are simply the space L2([0, T ]).

Informally, the generalized Gaussian bridge Xg;y is (the law of) the Gaussian process X
conditioned on the set

 T

0
g(t) dXt = y


=

N
i=1

 T

0
gi (t) dXt = yi


. (1.2)

The rigorous definition is given in Definition 1.3 later.
For the sake of convenience, we will work on the canonical filtered probability space

(Ω , F , F, P), where Ω = C([0, T ]), F is the Borel σ -algebra on C([0, T ]) with respect to
the supremum norm, and P is the Gaussian measure corresponding to the Gaussian coordinate
process Xt (ω) = ω(t): P = P[X ∈ · ]. The filtration F = (Ft )t∈[0,T ] is the intrinsic filtration of
the coordinate process X that is augmented with the null-sets and made right-continuous.

Definition 1.3. The generalized bridge measure Pg;y is the regular conditional law

Pg;y
= Pg;y [X ∈ · ] = P


X ∈ ·


 T

0
g(t) dXt = y


.

A representation of the generalized Gaussian bridge is any process Xg;y satisfying

P


Xg;y
∈ ·


= Pg;y [X ∈ · ] = P


X ∈ ·


 T

0
g(t) dXt = y


.

Note that the conditioning on the P-null-set (1.2) in Definition 1.3 is not a problem, since
the canonical space of continuous processes is a Polish space and all Polish spaces are Borel
spaces and thus admit regular conditional laws, cf. [20, Theorems A1.2 and 6.3]. Also, note
that as a measure Pg;y the generalized Gaussian bridge is unique, but it has several different
representations Xg;y. Indeed, for any representation of the bridge one can combine it with any
P-measure-preserving transformation to get a new representation.

In this paper we provide two different representations for Xg;y. The first representation,
given by Theorem 3.1, is called the orthogonal representation. This representation is a simple
consequence of orthogonal decompositions of Hilbert spaces associated with Gaussian processes
and it can be constructed for any continuous Gaussian process for any conditioning functionals.
The second representation, given by Theorem 4.25, is called the canonical representation.
This representation is more interesting but also requires more assumptions. The canonical
representation is dynamically invertible in the sense that the linear spaces Lt (X) and Lt (Xg;y)

(see Definition 2.1 later) generated by the process X and its bridge representation Xg;y coincide
for all times t ∈ [0, T ). This means that at every time point t ∈ [0, T ) the bridge and
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the underlying process can be constructed from each others without knowing the future-time
development of the underlying process or the bridge. A typical example of a non-semimartingale
Gaussian process for which we can provide the canonically represented generalized bridge is the
fractional Brownian motion.

The canonically represented bridge Xg;y can be interpreted as the original process X with
an added “information drift” that bridges the process at the final time T . This dynamic drift
interpretation should turn out to be useful in applications. We give one such application in
connection to insider trading in Section 5. This application is, we must admit, a bit classical.

On earlier work related to bridges, we would like to mention first Alili [1], Baudoin [5],
Baudoin and Coutin [6] and Gasbarra et al. [13]. In [1] generalized Brownian bridges were
considered. It is our opinion that our article extends [1] considerably, although we do not consider
the “non-canonical representations” of [1]. Indeed, Alili [1] only considered Brownian motion.
Our investigation extends to a large class of non-semimartingale Gaussian processes. Also,
Alili [1] did not give the canonical representation for bridges, i.e. the solution to Eq. (4.9) was not
given. We solve Eq. (4.9) in (4.14). The article [5] is, in a sense, more general than this article,
since we condition on fixed values y, but in [5] the conditioning is on a probability law. However,
in [5] only the Brownian bridge was considered. In that sense our approach is more general. In [6,
13] (simple) bridges were studied in a similar Gaussian setting as in this article. In this article we
generalize the results of [6] and [13] to generalized bridges. Second, we would like to mention the
articles [9,11,14,17] that deal with Markovian and Lévy bridges and [12] that studies generalized
Gaussian bridges in the semimartingale context and their functional quantization.

This paper is organized as follows. In Section 2 we recall some Hilbert spaces related to
Gaussian processes. In Section 3 we give the orthogonal representation for the generalized bridge
in the general Gaussian setting. Section 4 deals with the canonical bridge representation. First
we give the representation for Gaussian martingales. Then we introduce the so-called prediction-
invertible processes and develop the canonical bridge representation for them. Then we consider
invertible Gaussian Volterra processes, such as the fractional Brownian motion, as examples of
prediction-invertible processes. Finally, in Section 5 we apply the bridges to insider trading.
Indeed, the bridge process can be understood from the initial enlargement of filtration point of
view. For more information on the enlargement of filtrations we refer to [10,19].

2. Abstract Wiener integrals and related Hilbert spaces

In this section X = (Xt )t∈[0,T ] is a continuous (and hence separable) Gaussian process with
positive definite covariance R, mean zero and X0 = 0.

Definitions 2.1 and 2.2 give us two central separable Hilbert spaces connected to separable
Gaussian processes.

Definition 2.1. Let t ∈ [0, T ]. The linear space Lt (X) is the Gaussian closed linear subspace
of L2(Ω , F , P) generated by the random variables Xs, s ≤ t , i.e. Lt (X) = span{Xs; s ≤ t},
where the closure is taken in L2(Ω , F , P).

The linear space is a Gaussian Hilbert space with the inner product Cov[·, ·]. Note that since
X is continuous, R is also continuous, and hence Lt (X) is separable, and any orthogonal basis
(ξn)∞n=1 of Lt (X) is a collection of independent standard normal random variables. (Of course,
since we chose to work on the canonical space, L2(Ω , F , P) is itself a separable Hilbert space.)

Definition 2.2. Let t ∈ [0, T ]. The abstract Wiener integrand space Λt (X) is the completion of
the linear span of the indicator functions 1s := 1[0,s), s ≤ t , under the inner product ⟨⟨⟨·, ·⟩⟩⟩
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extended bilinearly from the relation

⟨⟨⟨1s, 1u⟩⟩⟩ = R(s, u).

The elements of the abstract Wiener integrand space are equivalence classes of Cauchy se-
quences ( fn)∞n=1 of piecewise constant functions. The equivalence of ( fn)∞n=1 and (gn)∞n=1 means
that

|||| fn − gn|||| → 0, as n → ∞,

where |||| · |||| =
√

⟨⟨⟨·, ·⟩⟩⟩.

Remark 2.3. (i) The elements of Λt (X) cannot in general be identified with functions as
pointed out e.g. by Pipiras and Taqqu [22] for the case of fractional Brownian motion with
Hurst index H > 1/2. However, if R is of bounded variation one can identity the function
space |Λt |(X) ⊂ Λt (X):

|Λt |(X) =


f ∈ R[0,t]

;

 t

0

 t

0
| f (s) f (u)| |R|(ds, du) < ∞


.

(ii) While one may want to interpret that Λs(X) ⊂ Λt (X) for s ≤ t it may happen that
f ∈ Λt (X), but f 1s ∉ Λs(X). Indeed, it may be that |||| f 1s |||| > |||| f ||||. See Bender and
Elliott [7] for an example in the case of fractional Brownian motion.

The space Λt (X) is isometric to Lt (X). Indeed, the relation

I X
t [1s] := Xs, s ≤ t, (2.4)

can be extended linearly into an isometry from Λt (X) onto Lt (X).

Definition 2.5. The isometry I X
t : Λt (X) → Lt (X) extended from the relation (2.4) is the

abstract Wiener integral. We denote
 t

0
f (s) dXs := I X

t [ f ].

Let us end this section by noting that the abstract Wiener integral and the linear spaces are
now connected as

Lt (X) = {It [ f ]; f ∈ Λt (X)} .

In the special case of the Brownian motion this relation reduces to the well-known Itô isometry
with

Lt (W ) =

 t

0
f (s) dWs; f ∈ L2([0, t])


.

3. Orthogonal generalized bridge representation

Denote by ⟨⟨⟨g⟩⟩⟩ the matrix

⟨⟨⟨g⟩⟩⟩i j := ⟨⟨⟨gi , g j ⟩⟩⟩ := Cov
 T

0
gi (t) dXt ,

 T

0
g j (t) dXt


.
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Note that ⟨⟨⟨g⟩⟩⟩ does not depend on the mean of X nor on the conditioned values y: ⟨⟨⟨g⟩⟩⟩

depends only on the conditioning functions g = [gi ]
N
i=1 and the covariance R. Also, since

g1, . . . , gN are linearly independent and R is positive definite, the matrix ⟨⟨⟨g⟩⟩⟩ is invertible.

Theorem 3.1. The generalized Gaussian bridge Xg;y can be represented as

Xg;y
t = Xt − ⟨⟨⟨1t , g⟩⟩⟩

⊤
⟨⟨⟨g⟩⟩⟩

−1
 T

0
g(u) dXu − y


. (3.2)

Moreover, Xg;y is a Gaussian process with

E


Xg;y
t


= m(t) − ⟨⟨⟨1t , g⟩⟩⟩

⊤
⟨⟨⟨g⟩⟩⟩

−1
 T

0
g(u) dm(u) − y


,

Cov


Xg;y
t , Xg;y

s


= ⟨⟨⟨1t , 1s⟩⟩⟩ − ⟨⟨⟨1t , g⟩⟩⟩

⊤
⟨⟨⟨g⟩⟩⟩

−1
⟨⟨⟨1s, g⟩⟩⟩.

Proof. It is well-known (see, e.g., [24, p. 304]) from the theory of multivariate Gaussian
distributions that conditional distributions are Gaussian with

E


Xt


 T

0
g(u)dXu = y


= m(t) + ⟨⟨⟨1t , g⟩⟩⟩

⊤
⟨⟨⟨g⟩⟩⟩

−1


y −

 T

0
g(u) dm(u)


,

Cov


Xt , Xs


 T

0
g(u) dXu = y


= ⟨⟨⟨1t , 1s⟩⟩⟩ − ⟨⟨⟨1t , g⟩⟩⟩

⊤
⟨⟨⟨g⟩⟩⟩

−1
⟨⟨⟨1s, g⟩⟩⟩.

The claim follows from this. �

Corollary 3.3. Let X be a centered Gaussian process with X0 = 0 and let m be a function of
bounded variation. Denote Xg

:= Xg;0, i.e., Xg is conditioned on {
 T

0 g(t)dXt = 0}. Then

(X + m)
g;y
t = Xg

t +


m(t) − ⟨⟨⟨1t , g⟩⟩⟩

⊤
⟨⟨⟨g⟩⟩⟩

−1
 T

0
g(u) dm(u)


+ ⟨⟨⟨1t , g⟩⟩⟩

⊤
⟨⟨⟨g⟩⟩⟩

−1y.

Remark 3.4. Corollary 3.3 tells us how to construct, by adding a deterministic drift, a general
bridge from a bridge that is constructed from a centered process with conditioning y = 0. So, in
what follows, we shall almost always assume that the process X is centered, i.e. m(t) = 0, and
all conditionings are with y = 0.

Example 3.5. Let X be a zero mean Gaussian process with covariance function R. Consider the
conditioning on the final value and the average value:

XT = 0,

1
T

 T

0
Xt dt = 0.

This is a generalized Gaussian bridge. Indeed,

XT =

 T

0
1 dXt =:

 T

0
g1(t) dXt ,

1
T

 T

0
Xt dt =

 T

0

T − t

T
dXt =:

 T

0
g2(t) dXt .
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Now,

⟨⟨⟨1t , g1⟩⟩⟩ = E [Xt XT ] = R(t, T ),

⟨⟨⟨1t , g2⟩⟩⟩ = E


Xt
1
T

 T

0
Xs ds


=

1
T

 T

0
R(t, s) ds,

⟨⟨⟨g1, g1⟩⟩⟩ = E [XT XT ] = R(T, T ),

⟨⟨⟨g1, g2⟩⟩⟩ = E


XT
1
T

 T

0
Xs ds


=

1
T

 T

0
R(T, s) ds,

⟨⟨⟨g2, g2⟩⟩⟩ = E


1
T

 T

0
Xs ds

1
T

 T

0
Xu du


=

1

T 2

 T

0

 T

0
R(s, u) duds,

|⟨⟨⟨g⟩⟩⟩| =
1

T 2

 T

0

 T

0
R(T, T )R(s, u) − R(T, s)R(T, u) du ds

and

⟨⟨⟨g⟩⟩⟩
−1

=
1

|⟨⟨⟨g⟩⟩⟩|


⟨⟨⟨g2, g2⟩⟩⟩ −⟨⟨⟨g1, g2⟩⟩⟩

−⟨⟨⟨g1, g2⟩⟩⟩ ⟨⟨⟨g1, g1⟩⟩⟩


.

Thus, by Theorem 3.1,

Xg
t = Xt −

⟨⟨⟨1t , g1⟩⟩⟩ ⟨⟨⟨g2, g2⟩⟩⟩ − ⟨⟨⟨1t , g2⟩⟩⟩ ⟨⟨⟨g1, g2⟩⟩⟩

|⟨⟨⟨g⟩⟩⟩|

 T

0
g1(t) dXt

−
⟨⟨⟨1t , g2⟩⟩⟩ ⟨⟨⟨g1, g1⟩⟩⟩ − ⟨⟨⟨1t , g1⟩⟩⟩ ⟨⟨⟨g1, g2⟩⟩⟩

|⟨⟨⟨g⟩⟩⟩|

 T

0
g2(t) dXt

= Xt −

 T
0

 T
0 R(t, T )R(s, u) − R(t, s)R(T, s)ds du T

0

 T
0 R(T, T )R(s, u) − R(T, s)R(T, u) ds du

XT

−
T

 T
0 R(T, T )R(t, s) − R(t, T )R(T, s)ds T

0

 T
0 R(T, T )R(s, u) − R(T, s)R(T, u) ds du

 T

0

T − t

T
dXt .

Remark 3.6. (i) Since Gaussian conditionings are projections in Hilbert space to a subspace, it
is well-known that they can be done iteratively. Indeed, let Xn

:= X g1,...,gn;y1,...,yn and let
X0

:= X be the original process. Then the orthogonal generalized bridge representation X N

can be constructed from the rule

Xn
t = Xn−1

t −
⟨⟨⟨1t , gn⟩⟩⟩n−1

⟨⟨⟨gn, gn⟩⟩⟩n−1

 T

0
gn(u) dXn−1

u − yn


,

where ⟨⟨⟨·, ·⟩⟩⟩n−1 is the inner product in LT (Xn−1).
(ii) If g j = 1t j , j = 1, . . . , N , then the corresponding generalized bridge is a multibridge. That

is, it is pinned down to values y j at points t j . For the multibridge X N
= X1t1 ,...,1tN ;y1,...,yN

the orthogonal bridge decomposition can be constructed from the iteration

X0
t = Xt ,

Xn
t = Xn−1

t −
Rn−1(t, tn)

Rn−1(tn, tn)


Xn−1

tn − yn


,
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where

R0(t, s) = R(t, s),

Rn(t, s) = Rn−1(t, s) −
Rn−1(t, tn)Rn−1(tn, s)

Rn−1(tn, tn)
.

4. Canonical generalized Bridge representation

The problem with the orthogonal bridge representation (3.2) of Xg;y is that in order to
construct it at any point t ∈ [0, T ) one needs the whole path of the underlying process X up
to time T . In this section we construct a bridge representation that is canonical in the following
sense:

Definition 4.1. The bridge Xg;y is of canonical representation if, for all t ∈ [0, T ), Xg;y
t ∈

Lt (X) and Xt ∈ Lt (Xg;y).

Example 4.2. Consider the classical Brownian bridge. That is, condition the Brownian motion
W with g = g = 1. Now, the orthogonal representation is

W 1
t = Wt −

t

T
WT .

This is not a canonical representation, since the future knowledge WT is needed to construct W 1
t

for any t ∈ (0, T ). A canonical representation for the Brownian bridge is, by calculating the ℓ∗
g

in Theorem 4.12,

W 1
t = Wt −

 t

0

 s

0

1
T − u

dWu ds

= (T − t)
 t

0

1
T − s

dWs .

Remark 4.3. Since the conditional laws of Gaussian processes are Gaussian and Gaussian
spaces are linear, the assumptions Xg;y

t ∈ Lt (X) and Xt ∈ Lt (Xg;y) of Definition 4.1 are the
same as assuming that Xg;y

t is F X
t -measurable and Xt is F Xg;y

t -measurable (and, consequently,

F X
t = F Xg;y

t ). This fact is very special to Gaussian processes. Indeed, in general conditioned
processes such as generalized bridges are not linear transformations of the underlying process.

We shall require that the restricted measures Pg,y
t := Pg;y

|Ft and Pt := P|Ft are equivalent
for all t < T (they are obviously singular for t = T ). To this end we assume that the
matrix

⟨⟨⟨g⟩⟩⟩i j (t) := E


Gi
T (X) − Gi

t (X)


G j
T (X) − G j

t (X)


= E
 T

t
gi (s) dXs

 T

t
g j (s) dXs


(4.4)

is invertible for all t < T .

Remark 4.5. On notation: in the previous section we considered the matrix ⟨⟨⟨g⟩⟩⟩, but from now
on we consider the function ⟨⟨⟨g⟩⟩⟩(·). Their connection is of course ⟨⟨⟨g⟩⟩⟩ = ⟨⟨⟨g⟩⟩⟩(0). We hope
that this overloading of notation does not cause confusion to the reader.
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Gaussian martingales

We first construct the canonical representation when the underlying process is a continuous
Gaussian martingale M with strictly increasing bracket ⟨M⟩ and M0 = 0. Note that the bracket
is strictly increasing if and only if the covariance R is positive definite. Indeed, for Gaussian
martingales we have R(t, s) = Var(Mt∧s) = ⟨M⟩t∧s .

Define a Volterra kernel

ℓg(t, s) := −g⊤(t) ⟨⟨⟨g⟩⟩⟩
−1(t) g(s). (4.6)

Note that the kernel ℓg depends on the process M through its covariance ⟨⟨⟨·, ·⟩⟩⟩, and in the
Gaussian martingale case we have

⟨⟨⟨g⟩⟩⟩i j (t) =

 T

t
gi (s)g j (s) d⟨M⟩s .

Lemma 4.7 is the key observation in finding the canonical generalized bridge representation.
Actually, it is a multivariate version of Proposition 6 of [13].

Lemma 4.7. Let ℓg be given by (4.6) and let M be a continuous Gaussian martingale with
strictly increasing bracket ⟨M⟩ and M0 = 0. Then the Radon–Nikodym derivative dPg

t /dPt can
be expressed in the form

dPg
t

dPt
= exp

 t

0

 s

0
ℓg(s, u) dMudMs −

1
2

 t

0

 s

0
ℓg(s, u) dMu

2

d⟨M⟩s



for all t ∈ [0, T ).

Proof. Let

p(y; µ, ) :=
1

(2π)N/2||1/2 exp

−

1
2
(y − µ)⊤−1(y − µ)



be the Gaussian density on RN and let

α
g
t (dy) := P


GT (M) ∈ dy

F M
t



be the conditional law of the conditioning functionals GT (M) =
 T

0 g(s) dMs given the
information F M

t .
First, by Bayes’ formula, we have

dPg
t

dPt
=

dα
g
t

dα
g
0

(0).

Second, by the martingale property, we have

dα
g
t

dα
g
0

(0) =

p


0; Gt (M), ⟨⟨⟨g⟩⟩⟩(t)


p


0; G0(M), ⟨⟨⟨g⟩⟩⟩(0)
 ,

where we have denoted Gt (M) =
 t

0 g(s) dMs .
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Third, denote

p


0; Gt (M), ⟨⟨⟨g⟩⟩⟩(t)


p


0; G0(M), ⟨⟨⟨g⟩⟩⟩(0)
 =:


|⟨⟨⟨g⟩⟩⟩|(0)

|⟨⟨⟨g⟩⟩⟩|(t)

 1
2

exp {F(t, Gt (M)) − F(0, G0(M))} ,

with

F(t, Gt (M)) = −
1
2

 t

0
g(s) dMs

⊤

⟨⟨⟨g⟩⟩⟩
−1(0)

 t

0
g(s) dMs


.

Then, straightforward differentiation yields
 t

0

∂ F

∂s
(s, Gs(M)) ds = −

1
2

 t

0

 s

0
ℓg(s, u) dMu

2

d⟨M⟩s,

 t

0

∂ F

∂x
(s, Gs(M)) dMs =

 t

0

 s

0
ℓg(s, u) dMu dMs,

−
1
2

 t

0

∂2 F

∂x2 (s, Gs(M)) d⟨M⟩s = log


|⟨⟨⟨g⟩⟩⟩|(t)

|⟨⟨⟨g⟩⟩⟩|(0)

 1
2

and the form of the Radon–Nikodym derivative follows by applying the Itô formula. �

Corollary 4.8. The canonical bridge representation Mg satisfies the stochastic differential
equation

dMt = dMg
t −

 t

0
ℓg(t, s) dMg

s d⟨M⟩t , (4.9)

where ℓg is given by (4.6). Moreover ⟨M⟩ = ⟨Mg
⟩.

Proof. The claim follows by using Girsanov’s theorem. �

Remark 4.10. (i) Note that for all ε > 0,
 T −ε

0

 t

0
ℓg(t, s)2 d⟨M⟩s d⟨M⟩t < ∞.

In view of (4.9) this means that the processes M and Mg are equivalent in law on [0, T − ε]

for all ε > 0. Indeed, Eq. (4.9) can be viewed as the Hitsuda representation between two
equivalent Gaussian processes, cf. Hida and Hitsuda [16]. Also note that

 T

0

 t

0
ℓg(t, s)2 d⟨M⟩s d⟨M⟩t = ∞

meaning that the measures P and Pg are singular on [0, T ].
(ii) In the case of the Brownian bridge, cf. Example 4.2, the item (i) above can be clearly seen.

Indeed,

ℓg(t, s) =
1

T − t
and d⟨W ⟩s = ds.

(iii) In the case of y ≠ 0, the formula (4.9) takes the form

dMt = dMg;y
t +


g⊤(t)⟨⟨⟨g⟩⟩⟩

−1(t)y −

 t

0
ℓg(t, s) dMg;y

s


d⟨M⟩t . (4.11)
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Next we solve the stochastic differential equation (4.9) of Corollary 4.8. In general, solving a
Volterra–Stieltjes equation like (4.9) in a closed form is difficult. Of course, the general theory of
Volterra equations suggests that the solution will be of the form (4.14) of Theorem 4.12, where ℓ∗

g
is the resolvent kernel of ℓg determined by the resolvent equation (4.15). Also, the general theory
suggests that the resolvent kernel can be calculated implicitly by using the Neumann series. In
our case the kernel ℓg factorizes in its argument. This allows us to calculate the resolvent ℓ∗

g
explicitly as (4.13). (We would like to point out that a similar SDE was treated in [2,15].)

Theorem 4.12. Let s ≤ t ∈ [0, T ]. Define the Volterra kernel

ℓ∗
g(t, s) := −ℓg(t, s)

|⟨⟨⟨g⟩⟩⟩|(t)

|⟨⟨⟨g⟩⟩⟩|(s)

= |⟨⟨⟨g⟩⟩⟩|(t)g⊤(t)⟨⟨⟨g⟩⟩⟩
−1(t)

g(s)

|⟨⟨⟨g⟩⟩⟩|(s)
. (4.13)

Then the bridge Mg has the canonical representation

dMg
t = dMt −

 t

0
ℓ∗

g(t, s) dMs d⟨M⟩t , (4.14)

i.e., (4.14) is the solution to (4.9).

Proof. Eq. (4.14) is the solution to (4.9) if the kernel ℓ∗
g satisfies the resolvent equation

ℓg(t, s) + ℓ∗
g(t, s) =

 t

s
ℓg(t, u)ℓ∗

g(u, s) d⟨M⟩u . (4.15)

This is well-known if d⟨M⟩u = du, cf. e.g. Riesz and Sz.-Nagy [23]. In the d⟨M⟩ case the
resolvent equation can be derived as in the classical du case. We show the derivation here, for
the convenience of the reader:

Suppose (4.14) is the solution to (4.9). This means that

dMt =


dMt −

 t

0
ℓ∗

g(t, s) dMs d⟨M⟩t



−

 t

0
ℓg(t, s)


dMs −

 s

0
ℓ∗

g(s, u) dMu d⟨M⟩s


d⟨M⟩t ,

or, in the integral form, by using Fubini’s theorem,

Mt = Mt −

 t

0

 t

s
ℓ∗

g(u, s) d⟨M⟩udMs −

 t

0

 t

s
ℓg(u, s) d⟨M⟩udMs

+

 t

0

 t

s

 s

u
ℓg(s, v)ℓ∗

g(v, u)d⟨M⟩v d⟨M⟩udMs .

The resolvent criterion (4.15) follows by identifying the integrands in the d⟨M⟩udMs-integrals
above.

Finally, let us check that the resolvent equation (4.15) is satisfied with ℓg and ℓ∗
g defined by

(4.6) and (4.13), respectively:
 t

s
ℓg(t, u)ℓ∗

g(u, s) d⟨M⟩u

= −

 t

s
g⊤(t)⟨⟨⟨g⟩⟩⟩

−1(t)g(u) |⟨⟨⟨g⟩⟩⟩|(u)g⊤(u)⟨⟨⟨g⟩⟩⟩
−1(u)

g(s)

|⟨⟨⟨g⟩⟩⟩|(s)
d⟨M⟩u
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= −g⊤(t)⟨⟨⟨g⟩⟩⟩
−1(t)

g(s)

|⟨⟨⟨g⟩⟩⟩|(s)

 t

s
g(u)|⟨⟨⟨g⟩⟩⟩|(u)g⊤(u)⟨⟨⟨g⟩⟩⟩

−1(u) d⟨M⟩u

= g⊤(t)⟨⟨⟨g⟩⟩⟩
−1(t)

g(s)

|⟨⟨⟨g⟩⟩⟩|(s)

 t

s
⟨⟨⟨g⟩⟩⟩

−1(u)|⟨⟨⟨g⟩⟩⟩|(u)d⟨⟨⟨g⟩⟩⟩(u)

= g⊤(t)⟨⟨⟨g⟩⟩⟩
−1(t)

g(s)

|⟨⟨⟨g⟩⟩⟩|(s)


|⟨⟨⟨g⟩⟩⟩|(t) − |⟨⟨⟨g⟩⟩⟩|(s)



= g⊤(t)⟨⟨⟨g⟩⟩⟩
−1(t)g(s)

|⟨⟨⟨g⟩⟩⟩|(t)

|⟨⟨⟨g⟩⟩⟩|(s)
− g⊤(t)⟨⟨⟨g⟩⟩⟩

−1(t)g(s)

= ℓ∗
g(t, s) + ℓg(t, s),

since

d⟨⟨⟨g⟩⟩⟩(t) = −g⊤(t)g(t)d⟨M⟩t .

So, the resolvent equation (4.15) holds. �

Gaussian prediction-invertible processes

To construct a canonical representation for bridges of Gaussian non-semimartingales is
problematic, since we cannot apply stochastic calculus to non-semimartingales. In order to
invoke the stochastic calculus we need to associate the Gaussian non-semimartingale with some
martingale. A natural martingale associated with a stochastic process is its prediction martingale:

For a (Gaussian) process X its prediction martingale is the process X̂ defined as

X̂t = E


XT |F X
t


.

Since for Gaussian processes X̂t ∈ Lt (X), we may write, at least informally, that

X̂t =

 t

0
p(t, s) dXs,

where the abstract kernel p depends also on T (since X̂ depends on T ). In Definition 4.16 we
assume that the kernel p exists as a real, and not only formal, function. We also assume that the
kernel p is invertible.

Definition 4.16. A Gaussian process X is prediction-invertible if there exists a kernel p such
that its prediction martingale X̂ is continuous, can be represented as

X̂t =

 t

0
p(t, s) dXs,

and there exists an inverse kernel p−1 such that, for all t ∈ [0, T ], p−1(t, ·) ∈ L2([0, T ], d⟨X̂⟩)

and X can be recovered from X̂ by

Xt =

 t

0
p−1(t, s) dX̂s .

Remark 4.17. In general it seems to be a difficult problem to determine whether a Gaussian
process is prediction-invertible or not. In the discrete time non-degenerate case all Gaussian
processes are prediction-invertible. In continuous time the situation is more difficult, as
Example 4.18 illustrates. Nevertheless, we can immediately see that if the centered Gaussian
process X with covariance R is prediction-invertible, then the covariance must satisfy the
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relation

R(t, s) =

 t∧s

0
p−1(t, u) p−1(s, u) d⟨X̂⟩u,

where the bracket ⟨X̂⟩ can be calculated as the variance of the conditional expectation:

⟨X̂⟩u = Var (E [XT |Fu]) .

However, this criterion does not seem to be very helpful in practice.

Example 4.18. Consider the Gaussian slope Xt = tξ, t ∈ [0, T ], where ξ is a standard normal
random variable. Now, if we consider the “raw filtration” G X

t = σ(Xs; s ≤ t), then X is not
prediction invertible. Indeed, then X̂0 = 0 but X̂t = XT , if t ∈ (0, T ]. So, X̂ is not continuous.
On the other hand, the augmented filtration is simply F X

t = σ(ξ) for all t ∈ [0, T ]. So, X̂ = XT .
Note, however, that in both cases the slope X can be recovered from the prediction martingale:
Xt =

t
T X̂t .

In order to represent abstract Wiener integrals of X in terms of Wiener–Itô integrals of X̂ we
need to extend the kernels p and p−1 to linear operators:

Definition 4.19. Let X be prediction-invertible. Define operators P and P−1 by extending linearly
the relations

P[1t ] = p(t, ·),

P−1
[1t ] = p−1(t, ·).

Now the following lemma is obvious.

Lemma 4.20. Let f be such a function that P−1
[ f ] ∈ L2([0, T ], d⟨X̂⟩) and let ĝ ∈

L2([0, T ], d⟨X̂⟩). Then
 T

0
f (t) dXt =

 T

0
P−1

[ f ](t) dX̂t , (4.21)

 T

0
ĝ(t) dX̂t =

 T

0
P[ĝ](t) dXt . (4.22)

Remark 4.23. (i) Eqs. (4.21) or (4.22) can actually be taken as the definition of the Wiener
integral with respect to X .

(ii) The operators P and P−1 depend on T .
(iii) If p−1(·, s) has bounded variation, we can represent P−1 as

P−1
[ f ](s) = f (s)p−1(T, s) +

 T

s
( f (t) − f (s)) p−1(dt, s).

A similar formula holds for P also, if p(·, s) has bounded variation.
(iv) Let ⟨⟨⟨g⟩⟩⟩

X (t) denote the remaining covariance matrix with respect to X , i.e.,

⟨⟨⟨g⟩⟩⟩
X
i j (t) = E

 T

t
gi (s) dXs

 T

t
g j (s) dXs


.

Let ⟨⟨⟨ĝ⟩⟩⟩
X̂
(t) denote the remaining covariance matrix with respect to X̂ , i.e.,

⟨⟨⟨ĝ⟩⟩⟩
X̂
i j (t) =

 T

t
ĝi (s)ĝ j (s) d⟨X̂⟩s .
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Then

⟨⟨⟨g⟩⟩⟩
X
i j (t) = ⟨⟨⟨P−1

[g]⟩⟩⟩
X̂
i j (t) =

 T

t
P−1

[gi ](s)P−1
[g j ](s) d⟨X̂⟩s .

Now, let Xg be the bridge conditioned on
 T

0 g(s) dXs = 0. By Lemma 4.20 we can rewrite
the conditioning as

 T

0
g(t) dXt =

 T

0
P−1

[g](t) dX̂(t) = 0. (4.24)

With this observation the following theorem, that is the main result of this article, follows.

Theorem 4.25. Let X be prediction-invertible Gaussian process. Assume that, for all t ∈ [0, T ]

and i = 1, . . . , N , gi 1t ∈ Λt (X). Then the generalized bridge Xg admits the canonical
representation

Xg
t = Xt −

 t

0

 t

s
p−1(t, u)P


ℓ̂∗

ĝ(u, ·)

(s) d⟨X̂⟩u dXs, (4.26)

where

ĝi = P−1
[gi ],

ℓ̂∗

ĝ(u, v) = |⟨⟨⟨ĝ⟩⟩⟩
X̂
|(u)ĝ⊤(u)(⟨⟨⟨ĝ⟩⟩⟩

X̂
)−1(u)

ĝ(v)

|⟨⟨⟨ĝ⟩⟩⟩
X̂
|(v)

,

⟨⟨⟨ĝ⟩⟩⟩
X̂
i j (t) =

 T

t
ĝi (s)ĝ j (s) d⟨X̂⟩s = ⟨⟨⟨g⟩⟩⟩

X
i j (t).

Proof. Since X̂ is a Gaussian martingale and because of the equality (4.24) we can use
Theorem 4.12. We obtain

dX̂ ĝ
s = dX̂s −

 s

0
ℓ̂∗

ĝ(s, u) dX̂u d⟨X̂⟩s .

Now, by using the fact that X is prediction invertible, we can recover X from X̂ , and
consequently also Xg from X̂ ĝ by operating with the kernel p−1 in the following way:

Xg
t =

 t

0
p−1(t, s) dX̂ ĝ

s

= Xt −

 t

0
p−1(t, s)

 s

0
ℓ̂∗

ĝ(s, u) dX̂u


d⟨X̂⟩s . (4.27)

The representation (4.27) is a canonical representation already but it is written in terms of the
prediction martingale X̂ of X . In order to represent (4.27) in terms of X we change the Wiener
integral in (4.27) by using Fubini’s theorem and the operator P:

Xg
t = Xt −

 t

0
p−1(t, s)

 s

0
P


ℓ̂∗

ĝ(s, ·)

(u) dXu d⟨X̂⟩s

= Xt −

 t

0

 t

s
p−1(t, u)P


ℓ̂∗

ĝ(u, ·)

(s) d⟨X̂⟩u dXs . �
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Remark 4.28. Recall that, by assumption, the processes Xg and X are equivalent on Ft , t < T .
So, the representation (4.26) is an analogue of the Hitsuda representation for prediction-invertible
processes. Indeed, one can show, just like in [25,26], that a zero mean Gaussian process X̃ is
equivalent in law to the zero mean prediction-invertible Gaussian process X if it admits the
representation

X̃t = Xt −

 t

0
f (t, s) dXs

where

f (t, s) =

 t

s
p−1(t, u)P [v(u, ·)] (s) d⟨X̂⟩u

for some Volterra kernel v ∈ L2([0, T ]
2, d⟨X̂⟩ ⊗ d⟨X̂⟩).

It seems that, except in [13], the prediction-invertible Gaussian processes have not been
studied at all. Therefore, we give a class of prediction-invertible processes that is related to a
class that has been studied in the literature: the Gaussian Volterra processes. See, e.g., Alòs
et al. [3], for a study of stochastic calculus with respect to Gaussian Volterra processes.

Definition 4.29. V is an invertible Gaussian Volterra process if it is continuous and there exist
Volterra kernels k and k−1 such that

Vt =

 t

0
k(t, s) dWs, (4.30)

Wt =

 t

0
k−1(t, s) dVs . (4.31)

Here W is the standard Brownian motion, k(t, ·) ∈ L2([0, t]) = Λt (W ) and k−1(t, ·) ∈ Λt (V )

for all t ∈ [0, T ].

Remark 4.32. (i) The representation (4.30), defining a Gaussian Volterra process, states that
the covariance R of V can be written as

R(t, s) =

 t∧s

0
k(t, u)k(s, u) du.

So, in some sense, the kernel k is the square root, or the Cholesky decomposition, of the
covariance R.

(ii) The inverse relation (4.31) means that the indicators 1t , t ∈ [0, T ], can be approximated in
L2([0, t]) with linear combinations of the functions k(t j , ·), t j ∈ [0, t]. I.e., the indicators
1t belong to the image of the operator K extending the kernel k linearly as discussed
below.

Precisely as with the kernels p and p−1, we can define the operators K and K−1 by linearly
extending the relations

K[1t ] := k(t, ·) and K−1
[1t ] := k−1(t, ·).
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Then, just like with the operators P and P−1, we have

 T

0
f (t) dVt =

 T

0
K[ f ](t) dWt ,

 T

0
g(t) dWt =

 T

0
K−1

[g](t) dVt .

The connection between the operators K and K−1 and the operators P and P−1 are

K[g] = k(T, ·)P−1
[g],

K−1
[g] = k−1(T, ·)P[g].

So, invertible Gaussian Volterra processes are prediction-invertible and the following corollary
to Theorem 4.25 is obvious:

Corollary 4.33. Let V be an invertible Gaussian Volterra process and let K[gi ] ∈ L2([0, T ])

for all i = 1, . . . , N. Denote

g̃(t) := K[g](t).

Then the bridge V g admits the canonical representation

V g
t = Vt −

 t

0

 t

s
k(t, u)K−1


ℓ̃∗

g̃(u, ·)

(s) du dVs, (4.34)

where

ℓ̃g̃(u, v) = |⟨⟨⟨g̃⟩⟩⟩
W

|(u)g̃⊤(u)(⟨⟨⟨g̃⟩⟩⟩
W )−1(u)

g̃(v)

|⟨⟨⟨g̃⟩⟩⟩
W

|(v)
,

⟨⟨⟨g̃⟩⟩⟩
W
i j (t) =

 T

t
g̃i (s)g̃ j (s) ds = ⟨⟨⟨g⟩⟩⟩

V
i j (t).

Example 4.35. The fractional Brownian motion B = (Bt )t∈[0,T ] with Hurst index H ∈ (0, 1) is
a centered Gaussian process with B0 = 0 and covariance function

R(t, s) =
1
2


t2H

+ s2H
− |t − s|2H


.

Another way of defining the fractional Brownian motion is that it is the unique centered Gaussian
H -self-similar process with stationary increments normalized so that E[B2

1 ] = 1.
It is well-known that the fractional Brownian motion is an invertible Gaussian Volterra process

with

K[ f ](s) = cH s
1
2 −H I

H−
1
2

T −


( · )H−

1
2 f


(s), (4.36)

K−1
[ f ](s) =

1
cH

s
1
2 −H I

1
2 −H
T −


( · )H−

1
2 f


(s). (4.37)
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Here I
H−

1
2

T −
and I

1
2 −H
T −

are the Riemann–Liouville fractional integrals over [0, T ] of order H −
1
2

and 1
2 − H , respectively:

I
H−

1
2

T −
[ f ](t) =




1




H −
1
2


 T

t

f (s)

(s − t)
3
2 −H

ds, for H >
1
2
,

−1




3
2 − H

 d
dt

 T

t

f (s)

(s − t)H−
1
2

ds, for H <
1
2
,

and cH is the normalizing constant

cH =


2H


H +

1
2





3
2 − H



(2 − 2H)




1
2

.

Here

(x) =


∞

0
e−t t x−1 dt

is the Gamma function. For the proofs of these facts and for more information on the fractional
Brownian motion we refer to the monographs by Biagini et al. [8] and Mishura [21].

One can calculate the canonical representation for generalized fractional Brownian bridges
by using the representation (4.34) by plugging in the operators K and K−1 defined by (4.36)
and (4.37), respectively. Unfortunately, even for a simple bridge the formula becomes very
complicated. Indeed, consider the standard fractional Brownian bridge B1, i.e., the conditioning
is g(t) = 1T (t). Then

g̃(t) = K[1T ](t) = k(T, t)

is given by (4.36). Consequently,

⟨⟨⟨g̃⟩⟩⟩
W (t) =

 T

t
k(T, s)2 ds,

ℓ̃∗

g̃(u, v) = k(T, u)
k(T, v) T

v
k(T, w)2 dw

.

We obtain the canonical representation for the fractional Brownian bridge:

B1
t = Bt −

 t

0

 t

s
k(t, u)k(T, u)K−1


k(T, ·) T

·
k(T, w)2 dw


(s) du dBs .

This representation can be made “explicit” by plugging in the definitions (4.36) and (4.37). It
seems, however, very difficult to simplify the resulting formula.

5. Application to insider trading

We consider insider trading in the context of initial enlargement of filtrations. Our approach
here is motivated by Amendiger [4] and Imkeller [18], where only one condition was used.
We extend that investigation to multiple conditions although otherwise our investigation is less
general than in [4].
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Consider an insider who has at time t = 0 some insider information of the evolution of the
price process of a financial asset S over a period [0, T ]. We want to calculate the additional
expected utility for the insider trader. To make the maximization of the utility of terminal wealth
reasonable we have to assume that our model is arbitrage-free. In our Gaussian realm this boils
down to assuming that the (discounted) asset prices are governed by the equation

dSt

St
= at d⟨M⟩t + dMt , (5.1)

where S0 = 1, M is a continuous Gaussian martingale with strictly increasing ⟨M⟩ with M0 = 0,
and the process a is F-adapted satisfying

 T
0 a2

t d⟨M⟩t < ∞ P-a.s.
Assuming that the trading ends at time T − ε, the insider knows some functionals of the

return over the interval [0, T ]. If ε = 0 there is obviously arbitrage for the insider. The
insider information will define a collection of functionals Gi

T (M) =
 T

0 gi (t) dMt , where
gi ∈ L2([0, T ], d⟨M⟩), i = 1, . . . , N , such that

 T

0
g(t)

dSt

St
= y = [yi ]

N
i=1, (5.2)

for some y ∈ RN . This is equivalent to the conditioning of the Gaussian martingale M on the
linear functionals GT = [Gi

T ]
N
i=1 of the log-returns:

GT (M) =

 T

0
g(t) dMt =

 T

0
gi (t) dMt

N

i=1
.

Indeed, the connection is
 T

0
g(t) dMt = y − ⟨⟨⟨a, g⟩⟩⟩ =: y′,

where

⟨⟨⟨a, g⟩⟩⟩ = [⟨⟨⟨a, gi ⟩⟩⟩]
N
i=1 =

 T

0
at gi (t) d⟨M⟩t

N

i=1
.

As the natural filtration F represents the information available to the ordinary trader, the insider
trader’s information flow is described by a larger filtration G = (Gt )t∈[0,T ] given by

Gt = Ft ∨ σ(G1
T , . . . , G N

T ).

Under the augmented filtration G, M is no longer a martingale. It is a Gaussian semimartingale
with the semimartingale decomposition

dMt = dM̃t +

 t

0
ℓg(t, s) dMs − g⊤(t)⟨⟨⟨g⟩⟩⟩

−1(t)y′


d⟨M⟩t , (5.3)

where M̃ is a continuous G-martingale with bracket ⟨M⟩, and which can be constructed through
the formula (4.11).

In this market, we consider the portfolio process π defined on [0, T − ε] × Ω as the fraction
of the total wealth invested in the asset S. So the dynamics of the discounted value process
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associated to a self-financing strategy π is defined by V0 = v0 and

dVt

Vt
= πt

dSt

St
, for t ∈ [0, T − ε],

or equivalently by

Vt = v0 exp
 t

0
πs dMs +

 t

0


πsas −

1
2
π2

s


d⟨M⟩s


. (5.4)

Let us denote by ⟨⟨⟨·, ·⟩⟩⟩ε and |||| · ||||ε the inner product and the norm on L2([0, T − ε], d⟨M⟩).
For the ordinary trader, the process π is assumed to be a non-negative F-progressively

measurable process such that

(i) P[||||π ||||
2
ε < ∞] = 1.

(ii) P[⟨⟨⟨π, f ⟩⟩⟩ε < ∞] = 1, for all f ∈ L2([0, T − ε], d⟨M⟩).

We denote this class of portfolios by Π (F). By analogy, the class of the portfolios disposable
to the insider trader shall be denoted by Π (G), the class of non-negative G-progressively
measurable processes that satisfy the conditions (i) and (ii) above.

The aim of both investors is to maximize the expected utility of the terminal wealth VT −ε, by
finding an optimal portfolio π on [0, T − ε] that solves the optimization problem

max
π

E

U (VT −ε)


.

Here, the utility function U will be the logarithmic utility function, and the utility of the process
(5.4) valued at time T − ε is

log VT −ε = log v0 +

 T −ε

0
πs dMs +

 T −ε

0


πsas −

1
2
π2

s


d⟨M⟩s

= log v0 +

 T −ε

0
πs dMs +

1
2

 T −ε

0
πs (2as − πs) d⟨M⟩s

= log v0 +

 T −ε

0
πs dMs +

1
2
⟨⟨⟨π, 2a − π⟩⟩⟩ε. (5.5)

From the ordinary trader’s point of view M is a martingale. So, E
 T −ε

0 πs dMs


= 0 for

every π ∈ Π (F) and, consequently,

E

U (VT −ε)


= log v0 +

1
2

E

⟨⟨⟨π, 2a − π⟩⟩⟩ε


.

Therefore, the ordinary trader, given Π (F), will solve the optimization problem

max
π∈Π (F)

E

U (VT −ε)


= log v0 +

1
2

max
π∈Π (F )

E

⟨⟨⟨π, 2a − π⟩⟩⟩ε



over the term ⟨⟨⟨π, 2a − π⟩⟩⟩ε = 2⟨⟨⟨π, a⟩⟩⟩ε −||||π ||||
2
ε . By using the polarization identity we obtain

⟨⟨⟨π, 2a − π⟩⟩⟩ε = ||||a||||
2
ε − ||||π − a||||

2
ε ≤ ||||a||||

2
ε.
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Thus, the maximum is obtained with the choice πt = at for t ∈ [0, T −ε], and maximal expected
utility value is

max
π∈Π (F)

E

U (VT −ε)


= log v0 +

1
2

E

||||a||||

2
ε


.

From the insider trader’s point of view the process M is not a martingale under his information
flow G. The insider can update his utility of terminal wealth (5.5) by considering (5.3), where M̃
is a continuous G-martingale. This gives

log VT −ε = log v0 +

 T −ε

0
πs dM̃s +

1
2
⟨⟨⟨π, 2a − π⟩⟩⟩ε

+


π,


·

0
ℓg(·, t) dMt − g⊤

⟨⟨⟨g⟩⟩⟩
−1y′



ε

.

Now, the insider maximizes the expected utility over all π ∈ Π (G):

max
π∈Π (G)

E

log VT −ε


= log v0 +

1
2

max
π∈Π (G)

E

×


π, 2


a +


·

0
ℓg(·, t) dMt − g⊤

⟨⟨⟨g⟩⟩⟩
−1y′


− π



ε


.

The optimal portfolio π for the insider trader can be computed in the same way as for the ordinary
trader. We obtain the optimal portfolio

πt = at +

 t

0
ℓg(t, s) dMs − g⊤(t)⟨⟨⟨g⟩⟩⟩

−1(t)y′, t ∈ [0, T − ε].

Let us then calculate the additional expected logarithmic utility for the insider trader. Since

E


a,


·

0
ℓg(·, s) dMs − g⊤

⟨⟨⟨g⟩⟩⟩
−1y′



ε


= 0,

we obtain that

∆T −ε = max
π∈Π (G)

E

U (VT −ε)


− max

π∈Π (F)
E


U (VT −ε)



=
1
2

E







·

0
ℓg(·, s) dMs − g⊤

⟨⟨⟨g⟩⟩⟩
−1y′





2

ε


.

Now, let us use the short-hand notation

Gt :=

 t

0
g(s) dMs,

⟨⟨⟨g⟩⟩⟩(t, s) := ⟨⟨⟨g⟩⟩⟩(t) − ⟨⟨⟨g⟩⟩⟩(s),

⟨⟨⟨g⟩⟩⟩
−1(t, s) := ⟨⟨⟨g⟩⟩⟩

−1(t) − ⟨⟨⟨g⟩⟩⟩
−1(s).

Then, by expanding the square |||| · ||||
2
ε , we obtain

2∆T −ε = E







·

0
ℓg(·, s) dMs − g⊤

⟨⟨⟨g⟩⟩⟩
−1y′





2

ε



= E

||||g⊤

⟨⟨⟨g⟩⟩⟩
−1 

y′
+ G


||||

2
ε
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= E
 T −ε

0
y′⊤

⟨⟨⟨g⟩⟩⟩
−1(t)g(t)g⊤(t)⟨⟨⟨g⟩⟩⟩

−1(t)y′ d⟨M⟩t



+ E
 T −ε

0
G⊤

t ⟨⟨⟨g⟩⟩⟩
−1(t)g(t)g⊤(t)⟨⟨⟨g⟩⟩⟩

−1(t)Gt d⟨M⟩t


.

Now the formula E[x⊤Ax] = Tr[ACovx] + E[x]
⊤AE[x] yields

2∆T −ε =

 T −ε

0
y′⊤

⟨⟨⟨g⟩⟩⟩
−1(t)g(t)g⊤(t)⟨⟨⟨g⟩⟩⟩

−1(t)y′ d⟨M⟩t

+

 T −ε

0
Tr


⟨⟨⟨g⟩⟩⟩

−1(t)g(t)g⊤(t)⟨⟨⟨g⟩⟩⟩
−1(t)⟨⟨⟨g⟩⟩⟩(0, t)


d⟨M⟩t

= y′⊤
⟨⟨⟨g⟩⟩⟩

−1(T − ε, 0)y′

+

 T −ε

0
Tr


⟨⟨⟨g⟩⟩⟩

−1(t)g(t)g⊤(t)⟨⟨⟨g⟩⟩⟩
−1(t)⟨⟨⟨g⟩⟩⟩(0)


d⟨M⟩t

−

 T −ε

0
Tr


⟨⟨⟨g⟩⟩⟩

−1(t)g(t)g⊤(t)


d⟨M⟩t

= (y − ⟨⟨⟨g, a⟩⟩⟩)⊤ ⟨⟨⟨g⟩⟩⟩
−1(T − ε, 0) (y − ⟨⟨⟨g, a⟩⟩⟩)

+ Tr

⟨⟨⟨g⟩⟩⟩

−1(T − ε, 0)⟨⟨⟨g⟩⟩⟩(0)


+ log
|⟨⟨⟨g⟩⟩⟩|(T − ε)

|⟨⟨⟨g⟩⟩⟩|(0)
.

We have proved the following proposition:

Proposition 5.6. The additional logarithmic utility in the model (5.1) for the insider with
information (5.2) is

∆T −ε = max
π∈Π (G)

E

U (VT −ε)


− max

π∈Π (F)
E


U (VT −ε)



=
1
2

(y − ⟨⟨⟨g, a⟩⟩⟩)⊤

⟨⟨⟨g⟩⟩⟩

−1(T − ε) − ⟨⟨⟨g⟩⟩⟩
−1(0)


(y − ⟨⟨⟨g, a⟩⟩⟩)

+
1
2

Tr


⟨⟨⟨g⟩⟩⟩
−1(T − ε) − ⟨⟨⟨g⟩⟩⟩

−1(0)


⟨⟨⟨g⟩⟩⟩(0)


+
1
2

log
|⟨⟨⟨g⟩⟩⟩|(T − ε)

|⟨⟨⟨g⟩⟩⟩|(0)
.

Example 5.7. Consider the classical Black and Scholes pricing model:

dSt

St
= µdt + σdWt , S0 = 1,

where W = (Wt )t∈[0,T ] is the standard Brownian motion. Assume that the insider trader knows
at time t = 0 that the total and the average return of the stock price over the period [0, T ] are
both zeros and that the trading ends at time T − ε. So, the insider knows that

G1
T =

 T

0
g1(t) dWt =

y1

σ
−

µ

σ
⟨⟨⟨g1, 1T ⟩⟩⟩ = −

µ

σ
⟨⟨⟨g1, 1T ⟩⟩⟩

G2
T =

 T

0
g2(t) dWt =

y2

σ
−

µ

σ
⟨⟨⟨g2, 1T ⟩⟩⟩ = −

µ

σ
⟨⟨⟨g2, 1T ⟩⟩⟩,
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where

g1(t) = 1T (t),

g2(t) =
T − t

T
.

Then, by Proposition 5.6,

∆T −ε =
1
2

µ

σ

2
⟨⟨⟨g, 1T ⟩⟩⟩

⊤


⟨⟨⟨g⟩⟩⟩

−1(T − ε) − ⟨⟨⟨g⟩⟩⟩
−1(0)


⟨⟨⟨g, 1T ⟩⟩⟩

+
1
2

Tr


⟨⟨⟨g⟩⟩⟩
−1(T − ε) − ⟨⟨⟨g⟩⟩⟩

−1(0)


⟨⟨⟨g⟩⟩⟩(0)


+
1
2

log
|⟨⟨⟨g⟩⟩⟩|(T − ε)

|⟨⟨⟨g⟩⟩⟩|(0)
,

with

⟨⟨⟨g⟩⟩⟩
−1(t) =




4
T


T

T − t


−

6
T


T

T − t

2

−
6
T


T

T − t

2 12
T


T

T − t

3




for all t ∈ [0, T − ε]. We obtain

∆T −ε =
1
2

µ

σ

2


3T


T

ε

3

− 6T


T

ε

2

+ 4T


T

ε


− T



+ 2


T

ε

3

− 3


T

ε

2

+ 2


T

ε


− 2 log


T

ε


− 1.

Here it can be nicely seen that ∆0 = 0 (no trading at all) and ∆T = ∞ (the knowledge of the
final values implies arbitrage).
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[17] E. Hoyle, L.P. Hughston, A. Macrina, Lévy random bridges and the modelling of financial information, Stochastic

Process. Appl. 121 (4) (2011) 856–884.
[18] P. Imkeller, Malliavin’s calculus in insider models: additional utility and free lunches, in: Conference on

Applications of Malliavin Calculus in Finance (Rocquencourt, 2001), Math. Finance 13 (1) (2003) 153–169.
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