
Representation of Self-Similar
Gaussian Processes

PROCEEDINGS OF THE UNIVERSITY OF VAASA

WORKING PAPERS 6
MATHEMATICS 3

ADIL YAZIGI

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Osuva

https://core.ac.uk/display/197967368?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 



 III 

 

Publisher  Date of publication  
Vaasan yliopisto  January  2014 
Author Type of publication  
Adil Yazigi Working Papers 

Name and number of series  
Proceedings of the University of 
Vaasa 

Contact information ISBN  
University of Vaasa  
Department of Mathematics and  
Statistics  
P.O. Box 700  
FI–65101 Vaasa, Finland 

978–952–476–525–1 
ISSN  
1799–7658 
Number 
of pages 

Language 

14 English 
Title of publication  
 
Representation of self-similar Gaussian processes. 
Abstract 
We develop the canonical Volterra representation for a self-similar Gaussian 
process by using the Lamperti transformation of the corresponding stationary 
Gaussian process, where this latter one admits a canonical integral representation 
under the assumption of pure non-determinism.  We apply the representation 
obtained for the self-similar Gaussian process to derive an expression for Gauss-
ian processes that are equivalent in law to the self-similar Gaussian process in 
question. 
Keywords 
Self-similar processes; Gaussian processes; canonical Volterra representation;  
Lamperti transformation;  stationary Gaussian process;  equivalence in law;  
homogeneous kernels. 





 V 

Contents

1.  INTRODUCTION AND PRELIMINARIES .............................................................. 1 

2.  THE CANONICAL VOLTERRA REPRESENTATION AND  

      SELF-SIMILARITY ................................................................................................... 2 

3.  APPLICATION TO THE EQUIVALENCE IN LAW ................................................ 5 

REFERENCES ................................................................................................................. 8 
 
 

 





REPRESENTATION OF SELF-SIMILAR GAUSSIAN

PROCESSES

ADIL YAZIGI

Abstract. We develop the canonical Volterra representation for a self-
similar Gaussian process by using the Lamperti transformation of the
corresponding stationary Gaussian process, where this latter one admits
a canonical integral representation under the assumption of pure non-
determinism. We apply the representation obtained for the self-similar
Gaussian process to derive an expression for Gaussian processes that are
equivalent in law to the self-similar Gaussian process in question.

Mathematics Subject Classification (2010): 60G15, 60G18, 60G22.

Keywords: Self-similar processes; Gaussian processes; canonical Volterra repre-

sentation; Lamperti transformation; stationary Gaussian process; equivalence in
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1. Introduction and preliminaries

In this paper, we will formulate a canonical Volterra representation for
self-similar centered Gaussian processes. The role of the canonical Volterra
representation which was first introduced by Levy in [13] and [14], and
later developed by Hida in [7], is to provide an integral representation for a
Gaussian process X in terms of a Brownian motion W and a non-random
Volterra kernel k such that the expression

Xt =

∫ t

0
k(t, s) dWs

holds and the Gaussian processes X and W generate the same filtration.
It is known, [3], that when the kernel k satisfies the homogeneity property
for some degree α , i.e. k(at, as) = aαk(t, s), a > 0, the Gaussian process
X is self-similar with index α + 1

2 . Thus, the main goal of this paper is
to seek a general construction of the canonical Volterra representation for
self-similar Gaussian processes under some suitable conditions, and one way
to achieve this, is to use the linear Lamperti transformation that defines
the one-one correspondence between stationary processes and self-similar
processes. In section 2, we will formulate the explicit form of the canonical
Volterra representation for self-similar Gaussian processes in the light of
the classical canonical representation of the stationary processes given by
Karhunen in [10]. In section 3, we give an application of the representation
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2 YAZIGI, A.

obtained to derive an expression for a Gaussian process equivalent in law to
the self-similar Gaussian process.

In our mathematical settings, we take T > 1 to be a fixed time horizon,
and the process X = (Xt; t ∈ [0, T ]) to be a centered Gaussian process with
covariance r(t, s) = E(XtXs), enjoying the self-similarity property for some
β > 0, i.e.

(Xat)0≤t≤T/a
d
= (aβXt)0≤t≤T , for all a > 0,

where
d
= denotes equality in distributions, or equivalently ,

(1.1) r(t, s) = E(XtXs) = T 2β r

(
t

T
,
s

T

)
, 0 ≤ t, s ≤ T.

In particular, we have r(t, t) = t2βE(X2
1 ), which is finite and continuous

function at every (t, t) in [0, T ]2 , and therefore, is continuous at every
(t, s) ∈ [0, T ]2 , [15].

We denote by Hη(t) the closed linear subspace of L2([0, T ]) generated by
Gaussian random variables ηs for s ≤ t . We call the Volterra representation
of X the integral representation of the form

(1.2) Xt =

∫ t

0
k(t, s) dWs, t ∈ [0, T ],

where W = (Wt; t ∈ [0, T ]) is a standard Brownian motion and the kernel
k(t, s) is a Volterra kernel, i.e. a measurable function on [0, T ]× [0, T ] that

satisfies
∫ T
0

∫ t
0 k(t, s)2 ds dt < ∞ , and k(t, s) = 0 for s > t . The Gaussian

process X with such representation is called a Gaussian Volterra process,
provided with k and W .
Moreover, if the canonical property

(1.3) HX(t) = HW (t)

holds for each t , the Volterra representation is said to be canonical. An
equivalent to the property (1.3) is that if there exits at each t a function φ

such that
∫ t
0 k(t, s)φ(s) ds = 0, one has φ ≡ 0. This means that the k(t, ·)’s

are linearly independent and the family {k(t, ·), t ∈ [0, T ]} spans a vector
space dense in L2([0, T ]).

1.4. Remark. If we associate with the canonical kernel k a Volterra integral

operator K defined on L2([0, T ]) by Kφ(t) =
∫ t
0 k(t, s)φ(s) ds , it is injective

by (1.3) and K(L2([0, T ])) is dense in L2([0, T ]). The covariance operator
has the decomposition R = KK∗ and the covariance r is factorable, i.e.

r(t, s) =

∫ t∧s

0
k(t, u)k(s, u) du.

2. The Canonical Volterra representation and self-similarity

The Gaussian process X is β–self-similar, and according to Lamperti
[12], it can be transformed into a stationary Gaussian process Y defined by:

(2.1) Y (t) := e−βtX(et), t ∈ (−∞, log T ].



REPRESENTATION OF SELF-SIMILAR GAUSSIAN PROCESSES 3

Conversely, X can be recovered from Y by the inverse Lamperti transfor-
mation

(2.2) X(t) = tβY (log t), t ∈ [0, T ].

It is obvious that the mean-continuity of the process Y follows from the fact
that

E(Yt − Ys)2 = 2
(
r(1, 1)− e−(t−s)βr(et−s, 1)

)
converges to zero when t approaches s . As was shown by Hida & Hitsuda
(§3, [8]), which is a well-known classical result that has been established by
Karhunen (§3, Satz 5, [10]), the stationary Gaussian process Y admits the
canonical representation

(2.3) Yt =

∫ t

−∞
GT (t− s) dW ∗s ,

where GT is a measurable function that belongs to L2(R, du) such that
GT (u) = 0 when u < 0, and W ∗ is a standard Brownian motion such that
the property HY (t) = HW ∗(t) holds for each t . A necessary and sufficient
condition for the existence of the representation (2.3) is that Y is purely non-
deterministic. Following Cramer [4], a process Z is purely non-deterministic
if and only if the condition

(C)
⋂
t

HZ(t) = {0},

is fulfilled, where {0} is the L2–subspace spanned by the constants. The
condition (C) means that HZ(t) varies with t and the remote past is trivial;
see also [10], [6], and [8].

Next, we shall extend the property of pure non-determinism to the self-
similar centered Gaussian process X , which will be a main tool to construct
Volterra representation for X .

2.4. Theorem. The self-similar centered Gaussian process X = (Xt; t ∈
[0, T ]) satisfies the condition (C) if and only if there exist a standard Brow-
nian motion W and a Volterra kernel k such that X has the representation

(2.5) Xt =

∫ t

0
k(t, s) dWs,

where the Volterra kernel k is defined by

(2.6) k(t, s) = tβ−
1
2 F

(s
t

)
for some function F ∈ L2(R+, du) independent of β , with F (u) = 0 for
1 < u.

Moreover, HX(t) = HW (t) holds for each t.

Proof. The fact that X is purely non-deterministic is equivalent to that Y
is purely non-deterministic since⋂

t∈(0,T )

HX(t) =
⋂

t∈(0,T )

HY (log t) =
⋂

t∈(−∞,log T )

HY (t).
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Thus Y admits the representation (2.3) for some square integrable kernel
GT and a standard Brownian motion W ∗ . By the inverse Lamperti trans-
formation, we obtain

X(t) =

∫ log t

−∞
tβGT (log t− s) dW ∗s =

∫ t

0
tβs−

1
2GT

(
log

t

s

)
dWs,

where dWs = s
1
2 dW ∗log s . We take the Volterra kernel k to be defined as

k(t, s) = tβ−
1
2 F

(
s
t

)
, where F (u) = u−

1
2GT (log u−1) ∈ L2(R+, du) vanish-

ing when u < 1 since GT (u) = 0 when u < 0, i.e. for t < s , we have
F ( st ) = 0, and then, k(t, s) = 0. Indeed,∫ ∞

0
F (u)2 du =

∫ ∞
0

GT (log u−1)2
du

u
=

∫ ∞
−∞

GT (v)2 dv <∞,

and ∫ T

0

∫ t

0
F
(s
t

)2
dsdt =

∫ T

0
t dt

∫ 1

0
F (u)2 du

=

∫ T

0
t dt

∫ ∞
0

GT (v)2 dv <∞.

Thus,∫ T

0

∫ t

0
t2β−1F

(s
t

)2
ds dt =

(∫ T

0
t2β
)(∫ 1

0
F (u)2 du

)
dt <∞

Considering the closed linear subspace HdW (t) of L2([0, T ]) that is gener-
ated by Ws−Wu for all u ≤ s ≤ t , we have HdW (t) = HW (t) since W0 = 0,
and therefore, the canonical property follows from the equalities

HX(t) = HY (log t) = HdW ∗(log t) = HdW (t) = HW (t).

�

2.7. Remark. In the case where the process X is trivial self-similar, i.e.
Xt = tβX1 a.e., 0 ≤ t ≤ T , the condition (C) is not satisfied since⋂
t∈(0,T )HX(t) = HX(1). Thus, X has no Volterra representation in this

case.

A function f(t, s) is said to be homogeneous with degree α if it satisfies
the equality f(at, as) = aαf(t, s), a > 0. From the expression (2.6) of
canonical kernel, it is easy to see that k is homogeneous with degree β− 1

2 ,

i.e. k(t, s) = T β−
1
2k( tT ,

s
T ), for all s < t ∈ [0, T ] . The next corollary, which

follows immediately from theorem (2.4), will characterize the class of the
canonical kernels of the self-similar Gaussian Volterra process.

2.8. Corollary. Let X = (Xt; t ∈ [0, T ]) be a centered Gaussian process that
satisfies (C), then the following are equivalent:

(i) X is β -self-similar for some β > 0, i.e.

r(t, s) = T 2βr(
t

T
,
s

T
).

(ii) X is a Gaussian Volterra process with representation (2.5) such
that the kernel k is homogeneous with degree β − 1

2 .
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Furthermore, for any bounded unitary endomorphism U on L2([0, T ]),
with adjoint U∗ = U−1 , the kernel k is homogeneous with degree β − 1

2 if
and only if Uk(t, ·) is homogeneous with the same degree.

Proof. (i)⇒ (ii) follows from theorem (2.4). (ii)⇒ (i): If the kernel k is
homogeneous with degree β − 1

2 , it implies that

r(t, s) =

∫ t∧s

0
k(t, u)k(s, u) du = T 2βr(

t

T
,
s

T
).

Let the scaling operator Sf(t) = T
1
2 f(Tt) with adjoint S∗f(t) = T−

1
2 f( tT )

to be defined for all f ∈ L2([0, T ]), and let the notation kt(·) := k(t, ·). The
homogeneity of k means that kt(s) = T β(S∗k t

T
)(s), then we have

Ukt(s) = T β(US∗k t
T

)(s) = T β−
1
2 (SUS∗k t

T
)(
s

T
).

To show the equality SUS∗k t
T

= Uk t
T

, we will use the Mellin transform∫ ∞
0

(SUS∗k t
T

)(s) sp−1 ds =

∫ ∞
0

(US∗k t
T

)(s) (S∗sp−1) ds

= T
1
2
−p
∫ ∞
0

(US∗k t
T

)(s) sp−1 ds

= T
1
2
−p
∫ ∞
0

(S∗k t
T

)(s) (U∗sp−1) ds

= T−p
∫ ∞
0

k t
T

(
s

T
) (U∗sp−1) ds

=

∫ ∞
0

k t
T

(u) (U∗up−1) du =

∫ ∞
0

Uk t
T

(u)up−1 du,

and the uniqueness property of the Mellin transform implies that

SUS∗k t
T

= Uk t
T
.

For the last part of the proof, since we have that Uk(t, ·) is homogeneous, it
is enough to take U = I , the Identity operator, then k is homogeneous. �

3. Application to the equivalence in law

In this section, we shall emphasize the self-similarity property under the
equivalence of laws of Gaussian processes. It is known that the laws of two
Gaussian processes are either equivalent or singular. Therefore, as we are
interested in the case of equivalence, we shall recall the case of the Brownian
motion, see [8] and [9]. By the Hitsuda representation theorem, a centered

Gaussian process W̃ = (W̃t; t ∈ [0, T ]) is equivalent in law to the standard

Brownian motion W = (Wt; t ∈ [0, T ]) if and only if W̃ can be represented
in a unique way by

(3.1) W̃t = Wt −
∫ t

0

∫ s

0
l(s, u) dWu ds,
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where l(s, u) is a Volterra kernel, i.e.

(3.2)

∫ T

0

∫ t

0
l(t, s)2 dsdt <∞, l(t, s) = 0 for t < s,

and such that the equality H
W̃

(t) = HW (t) holds for each t . If we denote

by P and P̃ the laws of W and W̃ respectively, these two processes are

equivalent in law if P and P̃ are equivalent, and the Radon-Nikodym density
is given by

dP̃
dP

= exp

{∫ T

0

∫ s

0
l(s, u)dWu dWs −

1

2

∫ T

0

(∫ s

0
l(s, u)dWs

)2

ds

}
.

The centered Gaussian process W̃ is a standard Brownian motion under P̃
with Ẽ(W̃tW̃s) = E(WtWs), hence, it is self-similar with index 1

2 under P̃ .

It follows from (3.1) that the covariance of W̃ under P has the form of

E(W̃tW̃s) = t ∧ s−
∫ t∧s

0

∫ s

u
l(v, u) dv du−

∫ t∧s

0

∫ t

u
l(v, u) dv du

+

∫ t

0

∫ s

0

∫ v1∧v2

0
l(v1, u) l(v2, u) dudv1 dv2.

This last formula was first appeared in [7].

3.3. Remark. The standard Brownian motion W is a purely non-deterministic

process, and from the equality H
W̃

(t) = HW (t), it follows that W̃ is also
purely non-deterministic.

The class of Hitsuda representation can be extended to the class of the
Gaussian Volterra processes, see [2] and [18]. A centered Gaussian process

X̃ = (X̃t; t ∈ [0, T ]) is equivalent in law to a Gaussian Volterra process X

if and only if there exits a unique centered Gaussian process, namely W̃ ,
satisfying (3.1) and (3.2), and such that

(3.4) X̃t =

∫ t

0
k(t, s) dW̃s = Xt −

∫ t

0
k(t, s)

∫ s

0
l(s, u) dWu ds,

where the kernel k(t, s) and the standard Brownian motion stand for the

Volterra representation of X , i.e. Xt =
∫ t
0 k(t, s) dWs .

3.5. Proposition. Let X = (Xt; t ∈ [0, T ]) be a centered Gaussian β -self–
similar satisfying the condition (C), then

(i) A centered Gaussian process X̃ = (X̃t; t ∈ [0, T ]) is equivalent in

law to X if and only if X̃ admits a representation of the form of

(3.6) X̃t = Xt − tβ−
1
2

∫ t

0
z(t, s) dWs,

where W is a standard Brownian motion, and the kernel z(t, s) is
independent of β provided with the expression

z(t, s) =

∫ t

s
F
(v
t

)
l(v, s) dv, s < t,

for some function F ∈ L2(R+,du) and Volterra kernel l(v, s).
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(ii) In addition, X̃ is β -self–similar if and only if X̃ = X .

Proof. i) By theorem (2.4), X has a Volterra representation with a kernel

k(t, s) = tβ−
1
2F
(
s
t

)
, F ∈ L2(R+,du), and a standard Brownian motion W .

By rewriting (3.4) as

X̃t = Xt −
∫ t

0

∫ t

s
k(t, u)l(u, s) du dWs,

proves the claim.

ii) Since the kernel k is (β − 1
2 )-homogeneous, X̃ is β -self–similar if and

only if W̃ is 1
2 -self-similar. Firstly, we will show that the necessary and the

sufficient condition for the claim to be true for W̃ is that l is homogeneous
with degree −1.

If we rewrite the representation (3.1) as

(3.7) W̃t = Wt −
∫ t

0
L(t, s) dWs,

where L(t, s) :=
∫ t
s l(u, s) du , we see the fact that l is homogeneous with

degree −1 is equivalent to that L is homogeneous with degree 0. Suppose

now that L is 0-homogeneous. The covariance of W̃ is expressed as

E(W̃tW̃s) = t ∧ s−
∫ t∧s

0
L(t, u) du−

∫ t∧s

0
L(s, u) du

+

∫ t∧s

0
L(t, u)L(s, u) du,

and by the change of variables: u = vT and the 0-homogeneity of L , we
have L(t, u) = L( tT , v), L(s, u) = L( sT , v) and∫ t∧s

0
L(t, u)L(u, s) du = T

∫ T
t
∧ s

T

0
L(

t

T
, v)L(

s

T
, v) dv.

Similarly,
∫ t∧s
0 L(t, u) du = T

∫ T
t
∧ s

T
0 L( tT , v) dv and

∫ t∧s
0 L(s, u) du =

T
∫ T

t
∧ s

T
0 L( sT , v) dv. Thus,

E(W̃tW̃s) = T E(W̃ t
T
W̃ s

T
),

which means that W̃ is 1
2 –self-similar. Now, suppose that W̃ is 1

2 –self-

similar and consider the centered Gaussian process (W̃t −Wt)t , it is a 1
2 –

self-similar process since its Lamperti transformation (e−
t
2 (W̃et −Wet))t is

stationary. On the other hand, H
W̃−W (t) = HW (t) for all t , and hence, it

is satisfies the condition (C). By theorem (2.4), there exist a Volterra kernel
k , which is homogeneous with degree 0, and a standard Brownian motion
W such that

W̃t −Wt =

∫ t

0
k(t, s) dW s.
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Due to the uniqueness of the representation (3.7) that follows from (3.1),
we have L = k and W = W , and thus L is 0-homogeneous, i.e. l is
(−1)-homogeneous.

Secondly, combining the square integrability condition (3.2) with the ho-
mogeneity property l(t, s) = 1

a l(
t
a ,

s
a), a > 0, gives∫ T

0

∫ t

0
l(t, s)2 ds dt =

∫ T
a

0

∫ t
a

0
l

(
t

a
,
s

a

)2 1

a2
ds dt =

∫ T
a

0

∫ t′

0
l(t′, s′)2 ds′ dt′

which is finite for all a > 0. This implies that l = 0.

Finally, we conclude that W̃ = W , and consequently X̃ = X . �
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[1] Alòs, E., Mazet, O. and Nualart, D. Stochastic calculus with respect to Gaussian
processes. Ann. Probab. 29, 766–801 (2001).

[2] Baudoin, F. and Nualart, D. Equivalence of Volterra processes. Stochastic Pro-
cess. Appl. 107(2), 327-350, 2003.

[3] Jost, C. A note on ergodic transformations of self-similar Volterra Gaussian pro-
cesses. Electron. Commun. Probab.12, 259–266, 2007.

[4] Cramer, H. On the structure of purely non-deterministic processes. Ark. Mat. 4,
249–266, 1961.

[5] Dym, H.and McKean, H. P. Gaussian processes, function theory and the inverse
spectral problem. Academic press, New York–London, 1976.

[6] Hida, T. Brownian motion. Application of Mathematics, vol. 11, Springer- Verlag,
1980.

[7] Hida, T. Canonical representations of Gaussian processes and their applications.
Mem. Coll.Sci.Univ. Kyoto 33, 109–155, 1960.

[8] Hida, T. and Hitsuda, M. Gaussian processes. AMS Translations, 1993.
[9] Hitsuda, M. Representation of Gaussian processes equivalent to Wiener process.

Osaka J. Math. 5, 299312, 1968.
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