

UNIVERSITY OF VAASA

FACULTY OF TECHNOLOGY

COMMUNICATION AND SYSTEMS ENGINEERING

Zhuang ZhiZhong

Implementation and Performance Evaluation of Algorithms Running

on Distributed Systems

Master’s thesis for the degree of Master of Science in Communication and Systems

Engineering submitted for inspection, Vaasa, 13 September 2016

Supervisor Timo Mantere

Instructor Tobias Glocker

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Osuva

https://core.ac.uk/display/197965821?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

ACKNOWLEDGEMENT

This thesis aim to study the different time complexity of three sorting algorithms in

Raspberry Pi, personal computer and distributed systems.

First of all, I would like to express my sincere gratitude to my thesis instructor Tobias

Glocker for his constant guidance and patient instruction during my thesis research.

Moreover, I should present my great appreciations to Timo Mantere and the staffs in

the University of Vaasa who has provided me the essential devices for my thesis. At

last, I would like to express great thanks to my families and friends who give me

encouragement and support.

 3

TABLE OF CONTENTS PAGE

ACKNOWLEDGEMENT 2

ABBREVIATIONS 5

ABSTRACT: 6

1. INTRODUCTION 7

2. BACKGROUND INFORMATION 9

2.1. Sockets and Socket Communication 9

2.1.1 TCP/IP 10

2.1.2 Running Process (Application mode) of Socket Communication 10

2.1.3 Sockets Programming in JAVA 11

2.2. Distributed Systems 13

2.3. Raspberry Pi 14

2.4. The Function of Random Number Generation and Time Measurement 18

2.5. GUI Server 19

3. ALGORITHMS AND SOFTWARE IMPLEMENTATION 20

3.1. Bubble Sort 21

3.2. Quick Sort 26

3.3. Heap Sort 30

3.3.1 Tree and Max Heap 30

 4

3.3.2 Heap Sort 32

3.4. Software Implementation 41

4. EXPERIMENTAL PART 47

4.1. Information of Hardware 47

4.2. Experimental Part 47

4.2.1 Sorting Algorithms running on PC (one client) 48

4.2.2 Sorting Algorithms running on PC (two clients) 50

4.2.3 Sorting Algorithms running on one Raspberry Pi 52

4.2.4 Sorting Algorithms running on two Raspberry Pi’s 54

4.3. Stability performance of Algorithms 56

4.4. Result of Experimental Part 59

5. CONCLUSION AND FUTURE WORK 62

REFERENCES 64

 5

 ABBREVIATIONS

CPU Central Processing Unit

GPIO General-purpose input/output

GPU Graphical Processing Unit

GUI Graphical User Interface

HDMI High Definition Multimedia Interface

IDE Integrated Development Environment

IP Internet Protocol

IT Information Technology

JRE Java Runtime Environment

LAN Local Area Network

PC Personal Computer

RAM Random-Access Memory

SSH Secure Shell

TCP Transmission Control Protocol

UDP User Datagram Protocol

USB Universal Serial Bus

 6

University of Vaasa

Faculty of Technology

Author: ZhiZhong Zhuang

Topic of the Thesis: Implementation and Performance Evaluation of

Algorithms Running on Distributed Systems

Supervisor: Timo Mantere

Instructor: Tobias Glocker

Degree: Master of Science in Technology

Degree Programme: Degree programme in Communications

 Systems Engineering

Major: Telecommunication Engineering

Year of Entering the University: 2014

Year of Completing the Thesis: 2016 Pages: 65

 ABSTRACT:

With the rapid development of technology, people are fully engrossed by the

information age. A single computer does not have enough ability to process the huge

information and communication that generated on the Internet every day. However,

a distributed system offers quick and precise solutions for a variety of complex

problems in different fields. There are several definitions on distributed systems,

these definitions can be summarized as a system in which hardware or software

components located at networked computers communicate and coordinate their

actions only by message passing. In comparison to a personal computer (PC), a

distributed system has more resources to increase performance. Because distributed

system can separate the task when handling complexity problems or massive data.

This thesis focuses on implementation and performance evaluation of algorithms

running on distributed systems. Mainly measures the time complexity of algorithms

(bubble sort, quick sort, and heap sort) executed on distributed system and a

personal computer. Then takes the comparison between them. Distributed systems

consist of two Raspberries Pi and a personal computer. Two raspberries Pi regarded

as two clients and the personal computer is a server. Sockets are used for the

communication between the clients and the server. The Graphical User Interface

(GUI) has been implemented on the server. The server generates the random

numbers, selects the sort algorithm, separates the task and sends it to two clients. On

the client, the random numbers will be sorted then two clients return the result of the

task to the server. The server receives the sorted numbers and displays it.

Furthermore, the GUI shows the measured sorting time.

KEYWORDS: Distributed System, Sorting Algorithm, Time Complexity, Random

Numbers, GUI, Socket Communication

 7

1. INTRODUCTION

Nowadays, sorting algorithms are regarded as one of the most important areas in

computer science. Sorting is normally considered to be the procedure of

repositioning a known set of objects in ascending or descending order according to

specified key values belong to these objects. Different sorting algorithms use

different techniques to sort a set of objects. The sorting algorithm is a fundamental

application in computer science and mathematics. Thus, this thesis uses sorting

algorithms to test the performance of distributed systems and a single computer. An

efficient sorting algorithm not only saves time but also consumes less energy. In

order to choose the best sorting algorithm for application, several factors like size,

data type and distribution of the elements in a data set need be considered. Generally,

the performance of algorithms is measured by the standard Big O(n) notation which

is used to describe the complexity of the algorithm.

Over the years, distributed systems become more and more popular which has been

implemented widely in the world. Furthermore, a computer has been used to process

a complex problem not only email, reading news, shopping or simply accessing

information. However, it has to be noticed that the single CPU still has significant

limitations of computing ability. The research found that a collection of the

microprocessor could produce better performance than a single CPU with a lower

cost, which is the original intention of distributed systems. That means the

distributed systems that consists a collection of the average computer could have

better performance than a single supercomputer. With distributed systems, many

difficult and complex tasks can be solved in short time. This is one of the benefits of

distributed system. In addition, there is no denying that some application itself is

distributed. A case in point is a bank may have many branches, distributed systems

are necessary to create for management. Most queries and updates are performed in

the local branch. Each branch can exchange information and share the data for

cooperation and management. What’s more, there are huge hardware resources

wasted in the world, if these resources can be utilized, there will be lower cost and

shorter time to solve a complex task. Therefore, it is reasonable to believe that the

 8

distributed system will be more and more important in the future, and it is worth to

studying it.

On the other hand, currently, electronic devices with embedded systems are widely

utilized in a variety of technical fields. Raspberry Pi is a kind of embedded systems.

In this thesis, raspberry pi used to act as the client in distributed system. Different

from the personal computer, the program executed on embedded system normally

has been coded before the equipment is being used.

This thesis mainly focuses on the comparison of three sorting algorithms (bubble

sort, quick sort, and heap sort) running on one and two client(s). The sorting

algorithms have been evaluated based on the sorting time of the different amount of

random numbers.

This thesis consists of five chapters. In the first two chapters, sockets and socket

communication, why to choose JAVA and functions in JAVA, the definition of

distributed systems, the properties of Raspberry Pi has been introduced. In the third

chapter, the sorting algorithms and the software implementation are described. The

fourth chapter presents the results of experiments. The fifth chapter mentioned what

have introduced in and contained the conclusion and the future work.

 9

2. BACKGROUND INFORMATION

2.1. Socket and Socket Communication

As figure 1 shows that socket is an interface between an application process layer

and transport layer which used to describe IP address and port number. IP address

identifies a unique computer within the network and port number specifies which

application the message will send to. Most of the application will take the initiative

to bind a port when it starts otherwise the operating system will assign a port to it

automatically. Thus with socket system can build a link between client and server.

Figure 1. Socket Description (Chebrolu 2015).

There are two types of sockets, stream socket and datagram socket. Stream socket

used for connection-oriented TCP service applications, if server output two items

into a socket in order, the client will receive them in the same order, the stream

socket is secure but inefficient. The second kind is datagram socket, used for

connectionless UDP service. It needs the receiver to analysis the integrity,

rearrangement or request retransmission but high efficiency. In this thesis, stream

socket has been applied in the application of experiment.

 10

A socket enables a Client-Server communication. The socket in a server is passive

socket because the server is passively waiting for the request of client. The socket in

a client is an active socket because client initiates the communication but the client

must know the address and the port of the server.

2.1.1 TCP/IP

TCP/IP represented as Transmission Control Protocol/Internet Protocol. TCP

(Transmission Control Protocol) is a connection-oriented transport protocols. TCP

can provide reliable transmission by using sequence number and acknowledgement

messages. If the data has been lost in transit from source to destination. TCP can

retransmit the data until successful delivery has been achieved. Internet protocol is

the principal communication protocol in the Internet. IP defines the structure of

packet and addressing method. Thus, the data can be encapsulated as packet and then

the packet can be delivered to the destination based on the IP address.

TCP/IP is normally considered to be a 4-lager structure: Link layer, network layer,

transport layer, and application layer. Therefore, TCP/IP is a protocol suite, which is

the combination of different protocols at various layers. TCP/IP defines how

electronic devices connect to the Internet and the transmission standard between each

device.

2.1.2 Running Process (Application mode) of Socket Communication

As the figure 2 shows, the server initiates a new socket of a certain socket type with

socket () method for communication. Then, bind the IP address and port number

with bind () method, begin listening with listen () method. The client connects to

server’s listening socket. Once connection establishes successfully, the server will

create a new socket immediately responsible for communication. Server and client

exchange information by read () method and write () method until the client closes

the connection.

 11

Figure 2. Flowchart of sockets communication.

2.1.3 Sockets Programming in JAVA

JAVA is one of the most popular programming languages in the world. In this thesis,

all programs are coded in JAVA. There are some reasons why choosing JAVA.

Firstly, there are many excellent IDE, a vast array of 3rd party libraries and the huge

amount of documentation available, which provide great convenient to develop a

Create

Socket

bind

Listening

Accept?

Send/Receive

Close Stream

Create Stream

Close socket

Start

End

Create

Socket

Start

Request

connect

Create Stream

Send/Receive

Close Stream

Close socket

End

Server

Client

Yes

No

 12

project with JAVA. Secondly, JAVA is a cross-platform language so that JAVA

programs can be executed on PC and Raspberry Pi properly. Thirdly, the features of

JAVA such as sturdy garbage collection, memory management, and native threads

are suitable for the project in this thesis.

In JAVA, the class is different in server and client. In the server, the socket that has

been applied in the class named “ServerSocket”. In the client, the socket has been

applied for the socket communication.

In the server side, firstly, create ServerSocket object, bind listening port and keep

listening to the request from the client by accept () method. Secondly, create an

input stream that used to send the message to the client and create an output stream

that used to receive the message from the client. After connection established, read

the message send from the client by input stream. Send respond message by output

stream. Then close the socket after communication is terminated. (Chebrolu, 2006)

In the client side, create socket object, get aim IP address and port number to request

connect. After connection established, send the message by output stream and

receive the message by input stream. Close socket after communicating is

terminated.

ServerSocket (int port), create socket bind to specify port.

Create basic Sever class:

package com.zhuang;

public class Server{

 public static void main(String[] args){

ServerSocket serverSocket = new ServerSocket(8888);

While(ture)

 13

{

Socket Socket = Server.accept();

DataOutputStream dos = new DataOutputStream(Socket.getOutputStream());

DataInputStream dis = new DataInputStream(Socket.getInputStream());

dos.writeUTF(Message);

dos.flush();

String listFin = null;

listFin = dis.readUTF()

dos.close();

dis.close();

Socket();

 }

 }

}

The code above is a basic part of the class on a server. It needs more programming

to achieve additional functions.

2.2. Distributed Systems

The technical development of the systems creates more and more difficult

computing problems that cannot be solved by one single processor in a short time.

On the other hand, the developments in computer science have resulted in the

availability of fast and inexpensive processors. Many processors that connected to

the network are inactive. If these processors work together in a system over a

network, the system may have the great computing power to deal complex tasks. A

collection of microprocessors offer a better performance than mainframes, this is the

idea of distributed computing announced in the 1970s.

 14

A distributed system is based on the concept of distributed computing, which is an

application that executes a collection of protocols to coordinate the actions of

multiple processes on a communication network so that all components in the

system cooperate to perform a single or small set of related tasks. In this thesis, a

simple distributed system model consist of one PC and two Raspberry Pi Boards.

The task is an implementation of the sorting algorithms. (M. Thampi, 2009)

With the continuing advances in communication technology, distributed systems

will be an important field in computer science. It is a very valuable subject.

2.3. Raspberry Pi

Raspberry Pi board is a complex integrated circuit that integrates the major

functional elements include a programmable processor, on-chip memory,

accelerating function hardware (e.g. GPU). Both hardware and software are analogy

components. As figure 3 shows the Raspberry Pi Model B that used in this thesis. In

experimental part, the Raspberry Pi board is used to act as the client in the

distributed system.

 15

Figure 3. Raspberry Pi Model B (Burkepile 2013).

In order to access Raspberry Pi board, it needs to connect Raspberry Pi to PC via

cable physically. Then download an SSH software in order to access Raspberry Pi.

In this thesis, an SSH software putty.exe is used to connect Raspberry Pi to the

computer. Raspberry Pi will start automatic when plugging in the power cable and

SD card of it. Finally, open putty.exe on PC, type in IP address and click “Open”

button, as the figure 4 shows. (Seighman, 2012)

 16

Figure 4. Interface of Putty.exe.

Figure 5 shows how to log in and check JRE of Raspberry Pi.

 17

Figure 5. Log in and Execute Command in Putty.exe.

Figure 6 shows the terminal of the Raspberry Pi.

Figure 6. Execute a Small Program on Raspberry Pi.

 18

2.4. The Function of Random Number Generation and Time Measurement

The generation of random numbers is important for filling the array that need to be

sorted. With random number, there are two methods of random number generation:

true randomness and pseudo-randomness. Since this thesis only needs the

unpredictability, pseudo-randomness is suitable for the experiment. The random

number generation function generates the required number of elements from 10 to

98 randomly. The function code is given:

 public static String listGenertor(int size)

 {

 String list = "";

 int[] intList = new int[size];

 for(int i=0; i<size; i++)

 {

 intList[i] = (int)(Math.random()*89 + 10);

 list = list + intList[i] + " ";

 }

 return list;

 }

The time measurement in the experiment applies the method in JAVA default library

called java.lang.System.currentTimeMillis(). This method returns the current time

in milliseconds. The following example function shows the usage of this method.

 public static String timeMeasurement(long time)

 {

 Long startTime = System.currentTimeMillis();

 {

 // Operation need be time measurment

 }

 Long endTime = System.currentTimeMillis();

 19

 Long time = endTime – startTime ;

 return time;

 }

2.5. GUI Server

In the experiment, a GUI of the server is developed to set port and the required

number of elements. With GUI, the original array and sorted array can be shown on

it as well as the sorting time. The GUI is developed by JAVA language with eclipse,

which is one of the most popular IDE (Integrated Development Environment) in the

world. Figure 7 shows the GUI of the server.

Figure 7. GUI of the Server.

 20

3. ALGORITHMS AND SOFTWARE IMPLEMENTATION

In computer science, sorting algorithm is an algorithm that puts the elements of an

array in a certain order. The order includes numerical and lexicographical order. The

Internet generates inestimable data every day, the most basic and common operation

to data is sorting. Therefore, sorting algorithm is very important in computer science

and researcher usually use the sorting algorithm to evaluate the performance of a

system.

In this thesis, a distributed system is developed to test different sorting algorithms.

Each of the sorting algorithms (bubble sort, quick sort, and heap sort) is tested on a

distributed system and on a single PC.

So what determines the performance of an algorithm? Typically, the faster program

has the fewer operations. The operations include data movement or swaps and

comparisons.

1. Time-frequency is the time spent for an algorithm. The number of statement

executions in an algorithm is called statement frequency or time-frequency, denoted

by T (n). The “n” is the size of the array. When n is changing T (n) is also changing.

If exists an auxiliary function called f (n) that makes the limit of T (n)/ f(n) is equal

to non-zero constant when n tends to infinity. Call f (n) is the same order magnitude

of T (n). Denoted by T (n) = O (f (n)), which is the time complexity. In the

algorithm, if the number of statement execution is a constant, then is the time

complexity is O (1). There are some common time complexities: O (n), O (𝑛2), O

(nlog2 𝑛) and O (2𝑛).

2. Space complexity is a measure for an algorithm that needs temporary storage

when running.

 21

3. An algorithm can be declared as stable if the relative order of the elements is

preserved after sorting.

3.1. Bubble Sort

The bubble sorting algorithm is the one of the most famous sorting algorithm in

computer science. The idea of bubble sort is scan elements repeatedly. After the first

round, show up the biggest element at the end of the array. (Dalal, 2004)

Bubble sort works in following way:

1. Compare adjacent elements from the first element, if the first one is greater than

the second one, swap it (ascending order). The largest element will be the last

element after this round.

2. Repeat step 1 for all elements except last one.

3. Repeat step 2 until there are no elements needed to swap.

Figure 8 shows procedures of how bubble sort work in steps.

 22

Figure 8. Flow chart of bubble sort.

The code of bubble sorting algorithm used in the experiment is shown below:

 public static String bubbleSort(int List[])

 {

6 1 2 3 4 5

1 6 2 3 4 5

6 1 2 3 4 5

1 2 6 3 4 5

1 2 3 6 4 5

1 2 3 4 6 5

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

Unsorted

6 > 1, swap

6 > 2, swap

6 > 3, swap

6 > 4, swap

6 > 5, swap

1 < 2, no swap

2 < 3, no swap

3 < 4, no swap

4 < 5, no swap

Sorted

 23

 int size = List.length;

 String result_1 = "";

 for(int i = 0; i < size; i++){

 for(int j = 0; j < size - 1; j++){

 int temp;

 if(List[i]>List[j+1]){

 temp = List[j];

 List[j] = List[i];

 List[i] = temp;

 }

 }

 }

 for(int n=0;n<List.length;n++){

 result_1 = result_1 + List[n] + " ";

 }

 return result_1;

 }

For the bubble sort, the worst case is if all elements in the array are in descending

(ascending) order and if the array must be sorted in ascending (descending) order.

Table 1. Bubble sort in worst case.

Line Execution Time Number of Times

From m to length of array C1 n

From n to length of array C2 n-1

Comparison C3 n(n-1)

Exchange C4 n(n-1)/2

 24

According to table 1, the time consumption is:

T(n) = C1*n + C2*(n-1) + C3*n*(n-1) + C4*n*(n-1)/2

 = 𝑛2 (C3 + C4/2) + n*(C1+C2-C3-C4/2)-C2-C3

 ≤ X*𝑛2 (when n≥1, X = (C3 + C4/2) + (C1+C2-C3-C4/2)-C2-C3))

The result is T(n) = O(𝑛2) in the worst case.

In the best case, the array is already in desired order. In this case, a comparison

statement is needed to check if the array is in the desired order or not.

 public static String bubbleSort(int List[])

 {

 int size = List.length;

 String result_1 = "";

 for(int i = 0; i < size; i++){

 for(int j = 0; j < size - 1; j++)

 {

 int temp;

 int swap = 0;

 if(List[i]>List[j+1]){

 temp = List[j];

 List[j] = List[i];

 List[i] = temp;

 swap++;

 }

 }

 25

 if(swap == 0)

 {

 break;

 }

 }

 for(int n=0;n<List.length;n++){

 result_1 = result_1 + List[n] + " ";

 }

 return result_1;

 }

According to the program, assume:

Table 2. Bubble sort in the best case.

Line Execution Time Number of Times

From m to length of array C1 n

From n to length of array C2 n-1

Comparison C3 n-1

Exchange C4 0

Check C5 1

According to the table 2, the time consumption is:

T(n) = C1*n + C2*(n-1) + C3*(n-1) + C4*0 + C5

 = n*(C1+C2+C3) –C2-C3+C5

 ≤ X*n (when n≥1, X = (C1+C2+C3)-C2-C3+C5)

 26

The result is T(n) = O(n) in the best case.

The relative order of each elements is preserved so bubble sort is a stable sorting

algorithm.

3.2. Quick Sort

Quick sort is one of efficient sorting algorithms. The idea of the algorithm is first to

choose an element from the array as a pivot. Sort the array by comparing every

element to the pivot, so all elements smaller than or equal to the pivot come before

the pivot. In contrast, all elements that are greater than pivot come after the pivot. Of

course, it can be defined that the elements equal to pivot come before or after the

pivot. Recursively apply previous steps to the sub-array of elements before the pivot

and after the pivot until getting a sorted array. Figure 10 shows how quick sort

works. (Iliopoulos, 2013)

Quick sort works in following way:

1. Choose an element in array as a pivot.

2. Create two pointer point to the first element and the last element in array. Move

pointer from the first element to pivot, until an element greater than pivot

(Ascending order) is found. Move another pointer from the last elements to the

pivot until an element smaller than pivot is found and then exchange these two

elements.

3. Repeat step 2 until all elements greater than pivot are placed after pivot and all

elements smaller than pivot are placed before pivot.

4. Repeat step 1, 2 and 3 to the sub-arrays until all elements sorted.

Figure 9 shows an example of quick sort.

 27

Figure 9. Chart of quick sort.

The code of quick sorting algorithm used in experiment shown below:

 public class QuickSort{

 public String quickSort(int List[])

 {

 String quickResult = "";

 if(List.length > 0){

1 8 9 7 4 5 Unsorted 2

1 8 9 7 4 5 2

pivot j i

1 8 9 7 4 5 2

j i

1 2 9 7 4 5 8

j i

1 2 5 7 4 9 8

j i

1 2 5 4 7 9 8

Pivot value = 7

8>7>2 swap 8 and 2

9>7>5 swap 9 and 5

7>4 swap 7 and 4

……

Run recursively

1 2 4 5 7 8 Sorted 9

 28

 quickSort(List,0,List.length - 1);

 }

 for(int n=0;n<List.length;n++){

 quickResult = quickResult + List[n] + " ";

 }

 return quickResult;

 }

 private static void quickSort(int[] List, int low, int high){

 if(low < high){

 int middle = getMiddle(List, low, high);

 quickSort(List, low, middle-1);

 quickSort(List, middle+1, high);

 }

 }

 private static int getMiddle(int[] List, int low, int high){

 int temp = List[low]; // Choose first element as pivot

 while(low<high){

 // Find a element smaller than pivot then exchange

 while(low < high && List[high] >= temp){

 high--;

 }

 List[low] = List[high];

 while(low < high && List[low] <= temp){

 low++;

 }

 List[high] = List[low];

 }

 List[low] = temp;

 return low;

 }

 29

}

According to the program, the time consumption of quick sort includes three part, let

T(N) be the time cost to quicksort n elements:

1. Time to sort left partition = T(L).

2. Time to sort right partition = T(R).

3. Time for partitioning at current recursive step = O(n)

In the worst case, the pivot always is the smallest element or greatest element.

T(n) = T(0) + T(n-1) + O(n)

 = O(1) + T(n-1) + O(n)

 = T(n-1) + O(n)

 = T(n-2) + O(n-1) + O(n)

 = T(n-3) + O(n-2) + O(n-1) + O(n)

 =∑ 𝑂(n)𝑛
𝑖=1 = O (𝑛2)

In the best situation, the pivot is the middle value of the array:

T(n) = T(n/2) + T(n/2) + O(n)

 = 2T(n/2) +O(n)

Let’s assume the size of array is n, k = log2 𝑛.

First recursion needs n loops; Second recursion, needs 2*(n/2) loops ….

 30

So n + 2*(n/2) + 4*(n/4) + ….. + n*(n/2) = k*n = nlog2 𝑛

Result is T(n) = O(nlog2 𝑛)

Average time complexity of quick sort is close to the best situation so the time

complexity is O (nlog2 𝑛). Moreover, the relative order of equal sort items is not

preserved so quick sort is not a stable sort.

3.3. Heap Sort

3.3.1 Tree and Max Heap

Before introducing heap sort, it necessary to understand what is the tree (Binary

Tree) and heap. The tree is a collection of nodes. Each node can have a parent node

and sub-node. The node that has not a parent node named the root node. A node

without children named a leave node. Figure 10 is a model of the tree. A heap is a

special binary tree called a complete binary tree.

Figure 10. Binary Tree.

17

9 15

6 5 10

8

Right child

Right child

Root node

Left subtree

Left child

 31

Heap always meet some properties: max heap, each node’s value is equal to or

smaller than the value of their parent. Min heap means each node’s value is not less

than the value of their parent. Heap sort adapted to sort huge amount of data because

heap sort does not require much recursion, this is an advantage of this sorting

algorithm. Heap sort needs to apply a kind of data structure called max heap (etc.

complete binary tree). In this tree, each layer is filled except for the last layer (see

figure 11). (Stassiy, 2014)

Figure 11. Complete Binary Tree (Max Heap).

Let i be the node number of one node, then we can get its parent node, left node and

right node number. Parent node number = i/2, left node number = i*2 and right node

number = 2*i + 1.

11

10 9

8 7 5 6

4 3 2 1 0

 32

3.3.2 Heap Sort

Heap sort is based on max heap, max heap is any root node bigger than its child

node and every child tree is max heap as well. Therefore, in max heap, the root node

is the maximum one. Then exchange root node with the last node in the array. After

this, rebuild a new max heap. Repeat this procession until getting a sorted array.

Heap sort works in following way:

1. Build max heap.

2. Exchange the root node and the last node in the tree. Move the last node to the

last position of the array.

3. Length of array minus one. Rebuild max heap.

4. Repeat step 2 and 3 until all element sorted.

The figures 12-24 shows an example of heap sort.

16 31 62 90 14 83 11

Figure 12. Original Array and Tree.

16

31

62

90

14

11

83

 33

It needs to get max heap first before sorting. General, start with the rightmost node.

Compare this node with its sub-node, if sub-node larger, exchange them until getting

the largest node in this position.

Figure 13. Exchange node [3] and node [7].

Then move to the node before the start node, repeat the operation.

Figure 14. Exchange node [2] and node [4], then more forward node.

16

31

83

90

14

11

62

16

31

83

90

14

11

62

 34

Figure 15. Last step is to compare root node with its sub-node then exchange if

necessary.

Figure 16. Get the largest node in first node, and then repeat operation in node order.

16

90

83

31

14

11

62

90

16

83

31

14

11

62

 35

Figure 17. The Max Heap is finished.

Figure 18. Exchange the first node with the last node then rebuild max heap.

90

31

83

16

14

11

62

83

31

62

16

14

90

11

 36

Figure 19. Exchange the first node with the last node then rebuild max heap.

Figure 20. Exchange the first node with the last node then rebuild max heap.

62

31

11

16

14

90

83

31

16

11

14

62

90

83

 37

Figure 21. Exchange the first node with the last node then rebuild max heap.

Figure 22. Exchange the first node with the last node then rebuild max heap.

16

14

11

31

62

90

83

14

11

16

31

62

90

83

 38

Figure 23. Exchange the first node with the last node then rebuild max heap.

Figure 24. The sorting is completed.

The code of heap sort in Java is shown below:

public class HeapSort {

 static int[] List;

 static int n;

 public void HeapSort(int[] List0){

 List = List0;

 buildMaxHeap(List);

 for(int i=n; i > 0; i--){

 exchange(0,i);

 n = n-1;

11

14

16

31

62

90

83

11 14

16

31

62

90

83

 39

 maxHeap(List,0);

 }

 }

 private static void buildMaxHeap(int[] List){

 n = List.length -1;

 for(int i = n/2; i >= 0; i--){

 maxHeap(List, i);

 }

 }

 private static void maxHeap(int[] List,int index){

 int left = index*2;

 int right = index*2 + 1;

 int largest = 0;

 if(left < n && List[left] > List[index]){

 largest = left;

 }else{largest = index ;}

 if(right <= n && List[right] > List[largest]){

 largest = right;

 }

 if(largest != index){

 exchange(index,largest);

 maxHeap(List,largest);

 }

 }

 public static void exchange(int i,int j){

 int t = List[i];

 List[i] = List[j];

 List[j] = t;

 }

}

 40

According to the program, let T(n) be the time to run heap sort on an array of size n.

 𝑇(𝑛) = 𝑇𝑏𝑢𝑖𝑙𝑑ℎ𝑒𝑎𝑝(𝑛) + ∑ 𝑇ℎ𝑒𝑎𝑝𝑖𝑓𝑦(𝑘)

𝑛−1

𝑘=1

 (1)

Since heapify is used in build heap as well:

𝑇ℎ𝑒𝑎𝑝𝑖𝑓𝑦(𝑛) = 𝑂(1) + 𝑇ℎ𝑒𝑎𝑝𝑖𝑓𝑦(𝑠𝑖𝑧𝑒 𝑜𝑓 𝑠𝑢𝑏𝑡𝑟𝑒𝑒) (2)

Let h be the depth of heap, n be the number of nodes.

 2ℎ ≤ n ≤ 2ℎ+1 − 1 (3)

If heap is a complete binary tree.

 n = 2ℎ+1 − 1 (4)

In tree, level 1 has 20 = 1 node. Level 2 has 21 = 2 nodes. Let l be the number of

level count from the bottommost level. There are 2ℎ−𝑙 nodes in l level. There are

∑ 2ℎ−𝑙ℎ
𝑙=0 nodes except the nodes in the bottommost level.

Since there is no comparison operation in bottommost level:

 𝑇𝑏𝑢𝑖𝑙𝑑ℎ𝑒𝑎𝑝(𝑛) = 2 ∗ ∑ 2ℎ−𝑙

ℎ

𝑙=0

 (5)

 = 2ℎ+1 ∗ ∑
1

2𝑙

ℎ

𝑙=0

≤ 2ℎ+1 (6)

Recall equation (4), 𝑇𝑏𝑢𝑖𝑙𝑑ℎ𝑒𝑎𝑝(𝑛) = 𝑇(𝑛) = 𝑂(𝑛) (7)

 41

For the heapification, each time the root node must be compared level by level, thus

the complexity is related to h. From the equation (4):

 𝑇ℎ𝑒𝑎𝑝𝑖𝑓𝑦(𝑛) = 𝑂(log2(𝑛 − 1) − 1) = 𝑂(log2 𝑛) (8)

From equation (1), (2), (7), (8), could be find that:

 T(n) = 𝑂(𝑛) + 𝑂((𝑛 − 1) ∗ log2 𝑛) (9)

= O(n ∗ log2 𝑛)

So the time complexity of heap sort is nlog2 𝑛 . In heap sort, every time, after

accessing the largest element in the tree, the max tree must be rebuilt. The relative

order of equal sort elements is not preserved and thus the heap sort is an unstable

sorting method.

3.4. Software Implementation

To evaluate the performance of sorting algorithms between One-Client-System and

distributed systems (two clients) the following setups need to be done. To evaluate

the performance of algorithms on One-Client-system, both server and client are

running on the same PC. The connection between server and client has been

established on the local host. For evaluating the performance of algorithms on

distributed systems, the server, as well as two clients, are running on the same PC.

The connection between server and client has been established on the local host.

To evaluate the performance of the sorting algorithms between PC and Raspberry Pi

the following setups need to be done. To evaluate the performance of the algorithms

on Raspberry Pi, the server runs on PC while the client runs on Raspberry Pi. As the

figure 25 shows, Raspberry Pi is connected to PC through a switch via Ethernet

cable.

 42

Figure 25. Connection of the devices with one client.

For distributed systems, the server runs on the PC while two clients run on the

Raspberry Pi’s. Figure 26 shows the connection of the PC with two Raspberry Pi’s.

 Figure 26. Connection of the devices with two clients.

PC

Switch

Port 8888 for socket connect Port 8888 for socket connect

Running as Sever

192.168.1.4

Send and Receive data

TCP/IP connection

Running as Client

192.168.1.2
Receive data

Sort data with algorithms

Send result back

PC

Switch

Port 8888 for socket connect

Port 8888 for socket connect

Running as Sever

192.168.1.4

Send and Receive data

TCP/IP connection

Running as Client

192.168.1.2
Receive data

Sort data with algorithms

Send result back

Running as Client

192.168.1.3
Receive data
Sort data with algorithms
Send result back

Port 8888 for socket connect

 43

The program can be executed by setup hardware. Figure 27 shows the flowchart of

the program with One-Client-System. There is one server and only one client in this

part.

 44

Figure 27. The flowchart with server and one client.

START

Create

ServerSocket

Bind

Accept

Listening

Send String

If i <

times

Receive String

and time

 i ++

No

Yes

Generate String

i =0

Show the

maximum time

minimum time

and average time

Show string

END

START

Create Socket

Bind

Request Connect

If accept

No

Receive String

Select Algorithm

Get Start Time

Sorting

Get End Time

Send result and

time

If receive

“end”

Yes

END

Server Client

Yes

No

 45

START

Create Socket

Get IP and Port

Request

Connect

If accept

Receive String

from Server

Select

Algorithm

Get Start Time

Sorting

Send result to

another client

by server

Receive result

from another

client by server

If receive

“end”

Yes

END

START

Get Port,

number of

element and

algorithm from

GUI

Create

ServerSocket

Bind

Listening

If accept

Create one

socket Thread

and add it to

thread list

Send string_1

Receive

result_1 and

forward to other

thread in the list

Receive

final_result_1

Thread Start

Send string_2

Receive

result_2 and

forward to other

thread in the list

Receive

final_result_2

Thread Start

Show final

result and time

If click “Send”

button on GUI

Yes

END

No

Click “exit”

button

Close socket

communication

Send “end”

Get final result

Send final result

to server

No

Yes

No

Figure 28. The flowchart with server and two clients

 46

Figure 28 shows the flowchart of the program running on a distributed system.

There is one server and two clients in this part. Each client program runs on one

Raspberry Pi.

Figure 29. UML timing diagram of programs.

Figure 29 shows interactions between server and the two clients.

Clients
Server Thread List Thread 1 Thread 2

Client 1 request

Client 2 request

Create Thread 1

Create Thread 2

Thread Start

Thread Start

Threads

exchange

data via

server

Send result back

Send result back

 47

4. EXPERIMENTAL PART

In this experimental part, the content is to evaluate and compare the time

consumption of different sorting algorithms. The algorithms are evaluated based on

the sorting time for different amounts of random numbers that have to be sorted. For

each amount of random numbers, each algorithm was executed 100 times and the

mean value, the maximum value and the minimum value have been saved to

evaluate the algorithms.

4.1. Information of Hardware

As mentioned before, a PC and two Raspberry Pi boards are used to act as

distributed systems. The PC consists of an Intel Core I7 processor with 8 GB

Random Access Memory (RAM). Raspberry Pi model B used in this experimental

part. The parameter and interface of Raspberry Pi model B: it contains a 512

megabyte (MB) of Random-Access Memory (RAM), 700 MHz ARM v6

Broadcomm CPU+GPU. Boots off SD card for filesystem. USB Audio out, LAN,

HDMI + Composite video out, GPIO pins, powered off 5V. The switch used in

experimental part is HP(j9792a), 12V, 0.17A.

4.2. Experimental Part

There are four main experiments in the experimental part. In the first experiment,

the bubble sort, quick sort and heap sort is running on a single client on the PC. In

the second experiment, the three sorting algorithms are running on two clients,

meaning that the amount of random numbers to be sorted is split. Each client sorts

its array of random numbers. When both clients are ready, they exchange the sorted

array of random numbers to deliver the complete sorted array of random numbers. In

the third experiment, the three sorting algorithms are running on one client on the

Raspberry Pi while the server ran on the PC. In the fourth experiment, there are two

clients running on two Raspberry Pi while the server ran on the PC.

 48

As mentioned before, the time complexity of three algorithms is bubble sort: O (𝑛2),

quick sort: O (n log2 𝑛), heap sort: O (n log2 𝑛). In theory, bubble sort has the

highest sorting time while quick sort and heap sort should have the same

performance.

4.2.1 Sorting Algorithms running on PC (one client)

In this experiment, both server and client running on PC. Table 3 shows the

maximum, minimum and average sorting time with different amount of numbers.

For each amount of random numbers, each algorithm was executed 100 times.

Table 3. Time Consumption of Algorithms with One Client on PC.

One Client on PC / Bubble Sort / Unit: Second

Amount of

random numbers
500 1000 5000 10000 15000 20000

Max

0.00098

0.00243

0.02568

0.09431

0.20901

0.36793

Average

0.00096

0.00221

0.02521

0.09427

0.20894

0.36776

Min

0.00095

0.00209

0.02520

0.09344

0.20862

0.36711

One Client on PC / Quick Sort / Unit: Second

Amount of

random numbers
500 1000 5000 10000 15000 20000

Max

0.00083

0.00198

0.02059

0.07786

0.16992

0.30835

Average

0.00080

0.00185

0.02045

0.07712

0.16927

0.30806

 49

Min

0.00078

0.00167

0.02045

0.07705

0.16854

0.30384

One Client on PC / Heap Sort / Unit: Second

Amount of

random numbers
500 1000 5000 10000 15000 20000

Max

0.00094

0.00197

0.02203

0.07961

0.17837

0.31503

Average

0.00091

0.00196

0.02105

0.07894

0.17694

0.31012

Min

0.00080

0.00189

0.02032

0.07868

0.17427

0.30744

Then compare the time consumption of the three algorithms.

Figure 30. Comparison of the three algorithms executed with one client on PC.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

500 1000 5000 10000 15000 20000

One Client on PC

Bubble Sort Quick Sort Heap Sort

Second

Amount of random numbers

 50

Figure 30 indicate that time consumption of bubble sort increases most with an

increased array size. Quick sort and heap sort has almost the same performance with

an increased array size, which agrees with the same time complexity of two

algorithms.

4.2.2 Sorting Algorithms running on PC (two clients)

In this part, there are two clients. The server divides the original array before

sending them to the clients as described in 4.2.

Table 4 shows the average, maximum and minimum sorting times for the different

amount of random numbers.

Table 4. Time Consumption of the Algorithms with two Clients on PC.

Two Clients on PC / Bubble Sort / Unit: Second

Amount of

random numbers
500 1000 5000 10000 15000 20000

Max

0.00026

0.00062

0.00931

0.03430

0.00772

0.13476

Average

0.00021

0.00055

0.00778

0.33890

0.07516

0.13379

Min

0.00017

0.00051

0.00883

0.03358

0.07572

0.13294

Two Clients on PC / Quick Sort / Unit: Second

Amount of

random numbers
500 1000 5000 10000 15000 20000

Max

0.00021

0.00051

0.00767

0.02960

0.06680

0.11581

Average

0.00018

0.00047

0.00759

0.02950

0.06619

0.11659

 51

Min

0.00015

0.00041

0.00540

0.02938

0.06576

0.11767

Two Clients on PC / Heap Sort / Unit: Second

Amount of

random numbers
500 1000 5000 10000 15000 20000

Max

0.00018

0.00051

0.00798

0.02981

0.06669

0.11763

Average

0.00017

0.00046

0.00763

0.02966

0.06625

0.11737

Min

0.00015

0.00041

0.00749

0.02945

0.06595

0011708

Figure 31 shows the comparison of three algorithms.

 52

Figure 31. Comparison of three algorithms executed with two clients on PC.

According to figure 32, the results demonstrate that the time consumption of bubble

sort increases when the array size is increased. Quick sort and heap sort has almost

the same performance with an increased array size.

4.2.3 Sorting Algorithms running on one Raspberry Pi

This experiment is similar to section 4.2.1 except that the client that sorts the

random numbers is running on Raspberry Pi. The server is running on the PC and

communicates with the Raspberry Pi through sockets. Table 5 shows the maximum,

minimum and average sorting times for the different amount of random numbers.

Table 5. Time Consumption of Algorithms with One Client on Raspberry Pi.

One Client on Raspberry Pi / Bubble Sort / Unit: Second

Amount of

random numbers
500 1000 5000 10000 15000 20000

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

500 1000 5000 10000 15000 20000

Two Clients on PC

Bubble Sort Qucik Sort Heap Sort

Second

 53

Max

0.42000

1.15400

16.7950

77.9070

121.721

214.813

Average

0.36937

1.01047

15.0556

57.0640

120.557

213.522

Min

0.36000

0.96800

14.4160

55.6190

120.213

212.986

One Client on Raspberry Pi / Quick Sort / Unit: Second

Amount of

random numbers
500 1000 5000 10000 15000 20000

Max

0.28700

0.67000

6.45300

20.4730

39.0560

66.4740

Average

0.27444

0.65695

5.97670

19.2637

38.8660

66.3357

Min

0.26900

0.64800

5.88600

18.9110

38.6600

66.2340

One Client on Raspberry Pi / Heap Sort / Unit: Second

Amount of

random numbers
500 1000 5000 10000 15000 20000

Max

0.39200

0.72100

6.68500

21.3520

42.856

66.8450

Average

0.30070

0.71000

6.58675

21.1230

42.845

66.8520

Min

0.29000

0.70100

6.56000

20.9500

42.781

66.8670

Figure 32 shows the comparison of three algorithms.

 54

Figure 32. Comparison of three algorithms executed with one client on Pi.

Figure 32 indicates that the performance of algorithms on raspberry pi is close to the

algorithms on PC: bubble sort has the highest time consumption, the time

consumption of quick and heap sort is much lower. It can be concluded that quick

sort is the fastest algorithm.

4.2.4 Sorting Algorithms running on two Raspberry Pi’s

This experiment is similar to section 4.2.2 except that two clients are running on two

Raspberry Pi’s. Table 5 shows the maximum, minimum and average sorting times

for the different amount of random numbers.

Table 6. Time Consumption of Algorithms with Two Clients on Pi.

Two Clients on Pi / Bubble Sort / Unit: Second

Amount of
500 1000 5000 10000 15000 20000

0

50

100

150

200

250

500 1000 5000 10000 15000 20000

One Client on Raspberry Pi

Bubble Sort Qucik Sort Heap Sort

Second

 55

random numbers

Max

0.40700

0.89700

9.95100

34.6160

68.4990

133.524

Average

0.39160

0.88800

9.50320

32.3420

67.6310

123.431

Min

0.37600

0.88000

9.72100

30.8000

67.1690

116.544

Two Clients on Pi / Quick Sort / Unit: Second

Amount of

random numbers
500 1000 5000 10000 15000 20000

Max

0.36700

0.82800

7.37900

21.394

43.5350

76.3920

Average

0.36600

0.82600

7.34360

21.1660

43.4620

76.3670

Min

0.36400

0.82300

7.30800

21.094

43.404

76.3210

Two Clients on Pi / Heap Sort / Unit: Second

Amount of

random numbers
500 1000 5000 10000 15000 20000

Max

0.40700

0.86200

7.46300

22.9120

46.4550

78.6510

Average

0.39100

0.85500

7.41480

22.4560

45.7610

77.2210

Min

0.38200

0.84800

7.38700

22.2950

45.4020

76.4470

Figure 33 shows the comparison of three algorithms.

 56

Figure 33. Comparison of three algorithms executed with two clients on Pi.

Figure 33 shows similar results as Figure 33 except the sorting time is much faster.

4.3. Stability performance of Algorithms

An efficient sorting algorithm has a stable performance in a different execution

environment. Standard deviation reflects the degree of dispersion of a set of data.

Let’s assume a set of data: 𝑋1, 𝑋2 … … 𝑋𝑛. The mean is µ. Standard deviation is ơ.

 ơ = √
1

𝑛
∑(𝑋𝑖 − µ)2

𝑁

𝑖=1

 (10)

Standard deviation of time consumption can be calculated according to the result of

the previous experiments. Table 7 shows the standard deviation of the sorting times

of the previous experiments.

0

20

40

60

80

100

120

140

500 1000 5000 10000 15000 20000

Two Clients on Raspberry Pi

Bubble Sort Quick Sort Heap Sort

Second

 57

Table 7. Standard deviation of Algorithms with One Client on Pi (1000 numbers).

 Bubble Sort Quick Sort Heap Sort

Standard deviation 0.061203 0.006502 0.006898

Max 1.154000 0.670000 0.721000

Average 1.010470 0.656950 0.710000

Min 0.968000 0.648000 0.701000

Figure 34. Error bar of the three algorithms executed with one client on Raspberry

Pi.

Figure 34 shows the error bar of three algorithms for 1000 random numbers. Which

indicates that quick sort and heap sort have more stable performance than bubble

sort does.

Table 8 shows the standard deviation of the recorded sorting times for the

algorithms running on two Raspberry Pi’s.

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1,1

1,2

Bubble Sort Quick Sort Heap Sort

One Client on Raspberry Pi (1000 numbers)

Min Average Max

Second

 58

Table 8. Standard deviation of Algorithms with Two Clients on Pi (1000 numbers).

 Bubble Sort Quick Sort Heap Sort

Standard deviation 0.0005657 0.0021210 0.0049500

Max 0.8970000 0.8280000 0.8620000

Average 0.8880000 0.8260000 0.8550000

Min 0.8620000 0.8230000 0.8480000

Figure 35. Error bar of the three algorithms executed with two clients on Raspberry

Pi.

The result of figure 35 indicates that quick sort is more stable than heap sort and

heap sort is more stable than bubble sort.

0,8

0,82

0,84

0,86

0,88

0,9

0,92

Bubble Sort Quick Sort Heap Sort

Two Clients on Raspberry Pi (1000 numbers)

Min Average Max

Second

 59

According to figure 34 and 35, it is obvious that there is a smaller standard deviation

when there are two clients running on Raspberry Pi (model of distributed systems)

which means algorithms have more a stable performance in distributed systems.

4.4. Result of Experimental Part

The previous experiments show that bubble sort is the most inefficient sort

algorithm of these three algorithms. The performance of quick sort and heap sort is

quite the same but quick sort is always a little better than heap sort.

The performance of each sorting algorithm executed on PC is much better than

execute on Raspberry Pi. Because the processor of PC is more powerful than

Raspberry Pi’s.

From the table 3 and 4, the figure 36 shows the comparison of time consumption of

the three algorithms with one client and two clients on PC.

 60

Figure 36. Comparison of the three algorithms on PC.

The result of figure 36 indicates that if there are two clients, the performance of each

three algorithms improve a lot in comparison to one client.

From the table 5 and 6, figure 37 shows the comparison of time consumption of the

three algorithms with one client and two clients on Raspberry Pi.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

500 1000 5000 10000 15000 20000

One/Two Client on PC

Bubble Sort / One Client Bubble Sort / Two Clients Quick Sort / One Client

Quick Sort / Two Clients Heap Sort / One Client Heap Sort / Two Clients

Second

 61

Figure 37. Comparison of the three algorithms on Raspberry Pi.

The results of figure 37 can be concluded that: The performance of bubble sort

improve a lot when there are two clients.

The performance of quick Sort and Heap sort is almost the same when there is only

one client and there are two clients. Because the time consumption for data

transmission even more than the time for saving the sorting times. If there is no time

for data transmission between two Raspberry Pi’s, the performance of quick sort and

heap sort improves lot also there are two clients.

Distributed systems can improve the performance of algorithms by dividing tasks

into smaller ones. Nevertheless, there are more time consumption for data

transmission at the same time. Therefore, the distributed system is more suitable for

a bigger amount of numbers that need to be sorted.

0

50

100

150

200

250

500 1000 5000 10000 15000 20000

One / Two Client on Raspberry Pi

Bubble Sort / One Client Bubble Sort / Two Clients Quick Sort / One Client

Quick Sort / Two Clients Heap Sort / One Client Heap Sort / Two Clients

Second

 62

5. CONCLUSION AND FUTURE WORK

In this thesis, the background information includes socket and socket

communication, the definition of TCP/IP protocols, sorting algorithm and

distributed systems was introduced. The information of Raspberry Pi, time

measurement function and the GUI of server were described. Furthermore, the

sorting algorithms (bubble sort, quick sort and heap sort) has been explained in

detail. For the experimental part, a server software with a GUI has been

implemented which generates a certain amount of random numbers and send them to

one or two client(s). There the numbers are being sorted. After being sorted the

client/clients sends/send the random numbers back to the server and the sorting time

is displayed on the GUI. For each amount of random numbers, 100 time

measurements were recorded and the mean value was computed. The server

program always runs on PC. The algorithms were tested with 500, 1000, 5000,

10000, 15000, 20000 random numbers. In the first experiment, one client ran on the

same PC as the server. In second experiment, two clients were running on the same

PC as the server. In the third experiment, one client was running on the Raspberry Pi

while the server ran on the PC. In the fourth experiment, two clients were running

on two Raspberry Pi. It is to mention that when two clients were running, the array

with random numbers was split. The first half was sent to the first client; the second

half was sent to the second client. When the clients have finished sorting their array

part, they exchange it through the server, so that the whole array can be sorted.

The results of the experiments show the following properties:

1. Quick sort has the best performance, heap sort’s performance was close to quick

sort and bubble sort was the most inefficient algorithm.

2. The sorting time was much shorter on the PC than on Raspberry Pi. This is also

plausible because the CPU of a PC is much more powerful than the CPU of a

Raspberry Pi.

3. Distributed systems can reduce the time consumption of solving tasks

significantly for bubble sort. However, distributed systems cost more time for

 63

data transmission and collects result from the client. That the reason why there is

no remarkable improvement for quick sort and heap sort when the client running

on Raspberry Pi. So in practical, the scale of the task, algorithm, additional cost

of distributed systems, all above factors need be considered when applying

distributed systems.

4. The performance of algorithms is more stable in distributed systems than there is

only one client. The reason is the stability of performance can be improved when

two clients share one task. This is an advantage of distributed systems.

This thesis contains the performance evaluation of different sorting algorithms

implemented and tested for distributed systems. The measurement of the energy

consumption as well as further experiments with more clients are left for the future

work.

 64

REFERENCES

Burkepile, A. (2013). Raspberry Pi Airplay Tutorial [online]. Razeware LLC.

Available from the internet:

 <URL: http://www.raywenderlich.com/44918/raspberry-pi-airplay-tutorial>

Bryant Geoff. (1996). Programming TCP/IP with Sockets [online]. Available from

the internet:

 <URL:http://www.cs.carleton.edu/faculty/adalal/teaching/f04/117/notes/search

Sort.pdf>

Csizmar Dalal Amy. (2004). Searching and Sorting Algorithms [online]. Available

from the internet:

 <URL:http://www.cs.carleton.edu/faculty/adalal/teaching/f04/117/notes/search

Sort.pdf >

Chebrolu Kameswari. (2006). Socket Programming [online]. Dept. of Electrical

Engineering. Available from the internet:

 <URL: http://home.iitk.ac.in/~chebrolu/scourse/slides/sockets-tutorial.pdf >

Jorgensen, Beej. (2016). Beej’s guide to Network Programming Using Internet

Sockets [online]. Version 3.0.20. Available from the internet:

 <URL: http://beej.us/guide/bgnet/output/print/bgnet_A4.pdf>

Iliopoulos Vasileios. (2013). The Quicksort algorithm and related topics [online].

Available from the internet:

 <URL: https://arxiv.org/pdf/1503.02504.pdf>

 65

M. Thampi Sabu. (2009). Introduction to Distributed Systems [online]. Available

from the internet:

 <URL: https://arxiv.org/ftp/arxiv/papers/0911/0911.4395.pdf>

Nadiminti Krishna, Marcos Dias de Assunção & Buyya Rajkumar. (2006).

Distributed Systems and Recent Innovations: Challenges and Benefits [online].

Available from the internet:

 <URL: http://www.buyya.com/papers/InfoNet-Article06.pdf>

Seighman Scott. (2012). Developing with Oracle Java Embedded Technology for

the Raspberry Pi [online]. Available from the internet:

 <URL:http://files.meetup.com/1401221/CLE-JUG-Java-Embedded-

Raspberry-Pi-v1_0.pdf>

Stassiy Igor. (2014). Analysis of String Sorting Using Heapsort [online]. Available

from the internet:

 <URL: http://arxiv.org/pdf/1408.5422.pdf>

