
UNIVERSITY OF VAASA

FACULTY OF TECHNOLOGY

TELECOMMUNICATION ENGINEERING

Peilin Zhang

WIRELESS SENSOR SYSTEM FOR MONITORING AND CONTROL

Master ś thesis for the degree of Master of Science in Technology submitted for

inspection, Vaasa, March 20, 2014.

Supervisor Timo Mantere

Instructor Reino Virrankoski

2

ACKNOWLEDGEMENTS

First and foremost, I would like to thank Professor Timo Mantere and Senior

Researcher Reino Virrankoski for their elaborate guidance and constant support

throughout the whole work in this thesis.

Secondly, I would like to thank Principal Lecturer Heikki Palomäki, Researcher

Petri Hänninen and Laboratory Engineer Veli-Matti Eskonen who provided me

a lot of essential and valuable support for my work.

Besides, I would like to thank everyone in the Communications and Systems

Engineering Group, University of Vaasa: Caner Cuhac, Matti Tuomaala,

Ruifeng Duan, Tobias Glocker, Tomi Voltti, Markus Madetoja and other people

who had contributed and helped in any manner leading to my completion of

this thesis.

I also would like to give my sincere thanks to my family who has been giving

me a great support in the material and spiritual all the time.

Peilin Zhang

Vaasa, Finland, March 20, 2014.

3

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... 2

SYMBOLS AND ABBREVIATIONS ... 5

ABSTRACT .. 8

1. INTRODUCTION .. 9

2. WIRELESS SENSOR NETWORKS ... 11

2.1. Wireless Sensor Networks ... 11

2.2. Wireless Automation .. 13

2.3. Network Protocol Stack .. 14

2.4. IEEE 802.15.4 and ZigBee ... 15

2.4.1. IEEE 802.15.4 .. 15

2.4.2. ZigBee .. 17

2.5. Wireless Sensor Nodes ... 19

3. HARDWARE ARCHITECTURE ... 21

3.1. The UWASA Node ... 21

3.1.1. Main Controller ... 23

3.1.2. RF Controller .. 24

3.1.3. MC-RFC Interface.. 25

3.2. SurfNet ... 25

3.2.1. NRF24LE1D Microcontroller .. 27

3.2.2. NRF24L01 RF Transceiver ... 29

3.2.3. SPI Bus ... 35

3.3. UWASA Node Development Board ... 38

3.4. Embedded Linux Server with 3G Module ... 41

3.4.1. FOX Board G20 .. 41

3.4.2. 3G Module .. 43

4

3.5. Complete Hardware Architecture ... 44

4. SOFTWARE DEVELOPMENT AND IMPLEMENTATION 47

4.1. Applied Operating System .. 47

4.2. Applied Protocol Software ... 49

4.3. Message Structure.. 54

4.4. Sink ... 57

4.4.1. Role of the UWASA Node ... 57

4.4.2. SurfNet Receiver .. 59

4.5. SurfNet Sensor Node .. 62

5. EXPERIMENTS AND RESULTS ... 65

5.1. Experimental Setups ... 65

5.2. Communication Capability ... 72

5.2.1. Indoor Scenario .. 72

5.2.2. Outdoor Scenario .. 74

5.3. Power Consumption ... 76

5.3.1. UWASA Node and SurfNet Node in the Sink................................... 76

5.3.2. SurfNet Node with Sensors... 77

5.4. System Performance Evaluation ... 83

6. CONCLUSIONS AND FUTURE WORK .. 85

6.1. Conclusions ... 85

6.2. Future Work .. 86

REFERENCES ... 88

APPENDICES ... 91

5

SYMBOLS AND ABBREVIATIONS

3D Three-Dimensional

3G Third Generation

ACK Acknowledge Character

ADC Analog-to-Digital Converter

AES Advanced Encryption Standard

CAN Controller Area Network

CRC Cyclic Redundancy Check

CS Carrier Sense

CSMA/CA Carrier Sense Multiple Access with Collision Avoidance

CSN Chip Select NOT

DAC Digital-to-Analog converter

DMA Direct Memory Access

FIFO First In First Out

GPIO General Purpose Input/Output

I2C Inter-Integrated Circuit

I2S Inter-IC Sound

IDEs Integrated Development Environments

IEEE Institute of Electrical and Electronics Engineers

ISM Industrial, Scientific and Medical

JTAG Joint Test Action Group

LR-WPANs Low-Rate Wireless Personal Area Networks

MAC Medium Access Control

MC Main Controller

MCU Microprocessor Control Unit

6

MISO Master In Slave Out

MLME MAC Layer Management Entity

MOSI Master Out Slave In

MPDUs MAC Protocol Data Units

MUTEXES Mutual Exclusions

OS Operating System

OSI Open Systems Interconnection

PHY Physical

PID Packet Identification

PRX Primary Receiver

PTX Primary Transmitter

PWM Pulse-Width Modulation

QFN Quad-Flat No-Lead

RF Radio Frequency

RFC Radio Frequency Controller

RPD Received Power Detector

RTC Real-Time Clock

RTOS Real-Time Operation System

RX Receive/Receiver

SAP Service Access Point

SCK Serial Clock

SDCC Small Device C Compiler

SPI Serial Peripheral Interface

SOC System-on-Chip

SRAM Static Random Access Memory

7

SSP Synchronous Serial Port

SYNC Synchronization

TX Transmit/Transmitter

UART Universal Asynchronous Receiver/Transmitter

UAS University of Applied Science

USB Universal Serial Bus

WDT Watchdog Timer

WSN Wireless Sensor Network

8

UNIVERSITY OF VAASA

Faculty of Technology

Author: Peilin Zhang

Topic of the Thesis:
Wireless Sensor System for Monitoring and

Control

Supervisor: Timo Mantere

Instructor: Reino Virrankoski

Degree: Master of Science in Technology

Department: Department of Computer Science

Degree Programme: Degree Programme in Information Technology

Major of Subject: Telecommunication Engineering

Year of Entering the University: 2010

Year of Completing the Thesis: 2014 Pages: 101

ABSTRACT

With the fast development of wireless sensor network (WSN) technology, a

large number of applications have been widely used over the past few years. As

a matter of fact, wireless monitoring and control system is unavoidable one of

the applications that consist of WSN nodes. A generic, modular and stackable

WSN node, named UWASA Node has been developed by the University of

Vaasa and Aalto University lately. Besides, SurfNet node, developed by

Seinäjoki University of Applied Science, is designed as low-power consumption,

high-data rate, small and powerful sensor node that is suitable to implement

the monitoring and control tasks under multiple conditions.

In this work, a wireless sensor system for monitoring and control is integrated

and developed by one UWASA Node, one Linux board, and SurfNet nodes.

Firstly, the basics of WSN including IEEE 802.15.4 and ZigBee standard are

introduced. Secondly, a new design and development of the hardware and

software for the wireless sensor system is explained in detail. After that, several

experiments are performed to verify the system performance due to the limited

computational and power source of the sensor nodes in the WSN. In one word,

this developed wireless sensor system provides a wireless solution for remote

monitoring and control of the deployed environment.

KEYWORDS: WSN, UWASA Node, SurfNet, IEEE 802.15.4, ZigBee, Remote

Environmental Monitoring and Control

9

1. INTRODUCTION

Wireless sensor network (WSN) has been developing rapidly during the latest

decade. Computer science, automation technologies, radio frequency (RF)

technology, electronics and other related techniques have contributed

extensively to the development of WSN technology. Generally, a wireless

sensor node is a device equipped with at least microprocessor, radio transceiver,

memory, power source, analog-to-digital converter (ADC) and one or multiple

sensors. WSN means a wireless network organized by a large number of

wireless sensor nodes disposed in the environment, which can process data,

gather information and communicate with each other directly or over multi-hop

paths within the network. In a WSN, wireless sensor nodes equipped with

processors enable advanced distributed data processing, controlling and other

intelligent operations in the network. Thus, WSN enables access to harsh places

or environments where are impossible to set up the cables. Consequently, it is

quite suitable to apply a wireless sensor system to obtain reliable data from the

wireless network for the purpose of monitoring and control.

Recently, Communications and Systems Engineering Group in University of

Vaasa, jointly with Aalto University, has created a generic software and

hardware architecture for wireless automation, namely, UWASA Node, whose

feasibility has been verified by building five different pilot applications in

different areas: industrial environment, wind turbines, distributed energy

production, greenhouse and cattle house. Additionally, the business potential of

the system and the ways to commercialization were also highly considered in

the research work. (Virrankoski 2012: 1.)

10

In this work, we utilize UWASA Nodes and SurfNet nodes. By using this

architecture, we build a wireless sensor system to monitor circumstances inside

a building. There are two main challenges to overcome in the system

development: the first is how to construct the WSN of the system for the

purpose of environmental monitoring. The second is how to manage the

communication between WSN and the user end. SurfNet nodes are performing

the measurements and transmitting the data to UWASA Node, which acts as a

gateway to the embedded Linux server. These nodes are equipped with

humidity and temperature sensors for collecting data. Since the sensor nodes

have the scarce power resources, the energy efficiency plays an important role

in the system development. Secondly, the compatibility between UWASA Node

and SurfNet nodes is enabled. The UWASA Node communicates with Fox G20

embedded Linux server, and acts as a gateway between the WSN and the user

end. Consequently, the wireless sensor system for the monitoring of

environmental circumstances inside a building can be established.

This thesis is divided into six chapters. In Chapter 2, WSN basics are introduced.

It includes the basics of WSN and wireless sensor nodes, and some discussion

about wireless automation applications, WSN protocols, IEEE 802.15.4 standard

and ZigBee protocol stack. The hardware architecture of the developed

monitoring system is presented in Chapter 3 and the software architecture in

Chapter 4. The performance of the developed system is evaluated through

experiments in Chapter 5. Finally, conclusions and some directions to the future

work are presented in Chapter 6.

11

2. WIRELESS SENSOR NETWORKS

This chapter introduces the background, basics and principles of WSN firstly.

Some discussions about applying WSNs to wireless automation are also

presented. Then, the network protocol stack, IEEE 802.15.4 standard and ZigBee

protocol stack, which have been proposed for WSN are explained briefly.

Finally, it focuses on a number of issues about wireless sensor node that also

relates to the following chapter, where a general explanation of the sensor

nodes in this research will be given.

2.1. Wireless Sensor Networks

In the last decades, the progress of microelectronics, computing, and wireless

communication technologies has facilitated a rapid development of

multi-functional sensor nodes. It enabled the functions of, for example, data

collection, processing and wireless communications, to be implemented well in

the tiny-size sensor nodes. WSN could be a multi-hop and self-organized

network, which consists of a large amount of spatially distributed sensor nodes.

It aims to monitor physical conditions by cooperatively collecting data, possibly

processing it in the network and then transmitting it to the users. In this general

concept of WSN, it implements the data flow by collecting, processing and

transmitting.

Usually the WSN consists of wireless sensor nodes, a sink which acts as a

network gateway, and a user end, as shown in Figure 1. In the monitoring area,

the sensor nodes are able to collect and transmit data to sink node by a single

12

hop or multi-hop manner. The sink node, as a gateway of the WSN,

communicates with the user end via some other communication architecture,

such as the Internet or satellite communication.

Internet/Satellite

User End

Figure 1. WSN network architecture (Wikipedia 2012).

According to the essence of a WSN, the main characteristics of a WSN include

(Wikipedia 2012) the following contents:

 Power consumption constraints for nodes using batteries or energy

harvesting;

 Ability to cope with node failures;

 Mobility of nodes (might be either mobile or static);

 Heterogeneity of nodes;

 Scalability to large scale of deployment;

 Ability to withstand harsh environmental conditions;

 Ease of use.

13

To implement these characteristics, there is a quantity of challenges for WSNs

nowadays. On the one hand, the energy supply for the WSNs node is a

significant constraint which directly determines the lifetime of the sensor node

and even the whole system. Usually one node can only be equipped with a

limited power resource because of its tiny size. The way to maximize the energy

efficiency and the development of innovative energy supply methods are some

of the key challenges in the WSN development.

On the other hand, designing innovative mechanisms, new architectures, as

well as protocol concepts for a wireless network is also challenging because of

the scarce resources of the wireless sensor nodes.

Besides, distributed operations are carried out quite commonly in WSNs, for

example, in weather monitoring applications, the data on weather condition

should be obtained effectively and in time through the server via Internet. Thus,

the development of distributed algorithms feasible for WSNs is a continuous

challenge.

2.2. Wireless Automation

Wireless automation is one of the main developing areas in which WSN

applications have a great business potential. If WSN operates as a part of the

wireless automation system, it must fill the system performance requirements.

The system performance can be assessed in terms of data transmission rate,

sample rate, communication reliability and power efficiency. In wireless

automation, the sensor nodes must be able to fill the performance requirements

14

which are rising from the specifications of the automation system. It usually

means that the same level of energy efficiency as the one achieved in some

monitoring applications cannot be achieved (Virrankoski 2012: 3).

2.3. Network Protocol Stack

Based on the intensive research, several network protocol stacks have been

proposed within a couple of years. As Figure 2 shows, the network protocol

stack of WSN includes physical layer, data link layer, network layer, transport

layer and application layer. The physical layer provides the signal modulation,

wireless transmission and receiving techniques. The data link layer is

responsible for data framing, frame detection, medium access control and error

control. The network layer takes charge of the generation and selection of routes.

The transport layer accomplishes the transmission control of data flow. In the

application layer, various kinds of application software can be implemented.

Besides, the protocol stack has also three management platforms with power,

mobility and task, which correspondingly manage the power consumption,

movement and task scheduling of the nodes in WSN. (Akyildiz, Su,

Sankarasubramaniam & Cayirci 2002: 104–105.)

15

Power Management Platform

Mobility Management Platform

Task Management Platform

Data Link Layer

Physical Layer

Network Layer

Transport Layer

Application Layer

Figure 2. Network protocol stack (Akyildiz, Su, Sankarasubramaniam & Cayirci

2002: 105).

2.4. IEEE 802.15.4 and ZigBee

2.4.1. IEEE 802.15.4

There are some common standards used in WSN communications such as

ZigBee, 6LoWPAN, WirelessHART, all of which are based on the same physical

(PHY) layer and medium access control (MAC) standard IEEE 802.15.4.

IEEE 802.15.4 is the standard that specifies the physical layer and media access

control for low-rate wireless personal area networks (LR-WPANs). It

16

emphasizes the low cost communication of short-range devices with little

underlying infrastructure, intending to reduce power consumption.

In terms of transmission, the network topology in IEEE 802.15.4 is defined as

Star or Peer-to-Peer Topology as illustrated in Figure 3. The sensor nodes can

form a star topology when the transmission ranges are large enough so that

they can transmit their data directly to the sink node. However, a multi-hop

communication is a more common case of sensor network transmission. In

mesh topology, sensor nodes must not only not only measure, process and

transmit their own data, but also serve as relays for other sensor nodes. (IEEE

Standard 802.15.4 2011: 8–9.)

Figure 3. IEEE 802.15.4 network topologies (IEEE Standard 802.15.4 2011: 7).

The IEEE 802.15.4 architecture is defined in terms of PHY layer, MAC layer, and

upper layers. The definition of the network layers is based on the open systems

interconnection (OSI) model, which is presented in Figure 4. The physical layer

17

has two services: data service and management service. The data service

focuses on the transmission and reception of physical layer protocol data units

across the physical radio channel. The MAC layer also provides these two

services. The data service enables the transmission and reception of MAC

protocol data units (MPDUs). The management service connects to the MAC

layer management entity (MLME) service access point (SAP) across the PHY

data service. (IEEE Standard 802.15.4 2011: 10.)

Upper layers

MAC Common Part Sublayer
SAP

MAC Layer Management Entity
SAP

MAC

PHY

PHY Data SAP PHY Layer Management Entity
SAP

Physical Medium

Figure 4. IEEE 802.15.4 network architecture (IEEE Standard 802.15.4 2011: 10).

2.4.2. ZigBee

Based on the IEEE 802.15.4 standard for personal area networks, ZigBee, a

rising specification, is featured as low-complexity, low-power consumption,

low-rate, and low-cost standard for a suite of wireless network communication

18

protocols. It has been recognized as a most common network protocol used in

WSN nowadays. It is comprised by the physical layer, MAC layer based upon

IEEE 802.15.4 standard, network layer and application layer. Figure 5 shows the

ZigBee protocol stack.

Medium Access Control

Physical layer

IEEE 802.15.4

Network layer

Application support sublayer

Security
services

Application
objects

ZigBee device
object

Application layer

ZigBee specification

Figure 5. ZigBee protocol stack (ZigBeeTM Alliance 2008: 2).

Based on IEEE 802.15.4 standard, ZigBee operates in three different industrial,

scientific and medical (ISM) radio bands, which specifically are 868 MHz in

Europe, 915 MHz in the USA and Australia and 2.4 GHz in most countries

worldwide (ZigBeeTM Alliance 2008: 111). Data transmission rates vary from 20

Kbps in the 868 MHz frequency band and 40 Kbps in the 915 MHz frequency

19

band to 250 Kbps in the 2.4 GHz frequency band. (IEEE Standard 802.15.4 2011:

14.)

The ZigBee network layer typically supports star and tree networks, and also

generic mesh networks. In a ZigBee wireless network, the link address can be

short address (16-bit) or long address (64-bit). Accordingly, the network has a

capacity of 216 and 264 of devices, respectively in maximum number. (ZigBeeTM

Alliance 2008: 3.)

ZigBee utilizes the carrier sense multiple access with collision avoidance

(CSMA/CA) in order to avoid the collision between radio carriers. In addition,

to ensure the reliability of data transmission, ZigBee also establishes a complete

communication protocol.

For the purpose of ensuring the security of the data communication between

ZigBee devices, ZigBee uses advanced encryption standard (AES) encryption

algorithm with a key size of 128, to process the encryption of the transmitting

data information.

2.5. Wireless Sensor Nodes

A wireless sensor node is an embedded device with, at least, a microprocessor,

limited power source, some memory and one or several sensors. Sensor nodes

are not only responsible for the data collection and processing, but also for the

storage, management and fusion of the data from other sensor nodes. Therefore,

sensor node can be treated as either a terminal or a router in a WSN.

20

In a WSN, there can be a great many of wireless sensor nodes, which can be all

similar. Alternatively, there can be some different specified types of wireless

sensor nodes or actuators, which have more resources than other ones,

depending on the particular needs. Different tasks can be defined for different

nodes. If it only requires measurement and data transmission, it is easier to

make smaller and more energy efficient nodes. In addition, the software

architecture does not need to be that complicated either. However, if it needs to

make nodes that are more efficiently capable of data processing and data

storing, then the size tends to be bigger as well as the energy consumption, and

the software architecture becomes more complicated.

Generally, one of the sensor nodes acts as a sink node, which is a gateway to

other parts of the communication system. Then the further storing and

processing of the measured data is performed in other parts of the system. For

example, in this wireless system, the UWASA Node, which is connected to the

embedded Linux server, acts as a gateway to the WSN, in other words, as a sink.

Then the Linux server stores the data, which can be processed further and

transmitted to other parts of the system, from the embedded server, for

example to the user end.

In this research, the generic UWASA Node, which acts as a gateway between

the Linux server and the WSN that consists of SurfNet nodes, is integrated to

work with the FOX board G20 and the SurfNet nodes. The related hardware

architecture and the software development are about to be explained further in

the following chapters.

21

3. HARDWARE ARCHITECTURE

System hardware design must be capable to fill the application requirements. It

must also stay at a reasonable price level. In this chapter, the designed system

hardware architecture is described. The hardware components and their

constitutions functioning in a WSN node, for example the UWASA Node or

SurfNet node, are further introduced.

3.1. The UWASA Node

The UWASA Node is a modular and stackable wireless sensor platform. Its

generic, modular architecture enables fast adaptation for development of

different wireless automation applications by providing a means of stacking

relatively simple slave boards (Virrankoski 2012: 32). It mainly consists of a

power module, a main module and a number of slave modules. Figure 6 shows

more details about the generic node stack.

Figure 6. One possible stackable node architecture (Virrankoski 2012: 33).

22

The power module provides management and distribution of power for the

node. The main module, which contains a basic processing unit, memory and

radio frequency hardware, takes charge of processing, computing and

communication. Basically, it is composed of main controller (MC), RF controller

(RFC), and main controller MC-RFC interface circuit. Depending on the target

of the application design, the slave modules can be single or multiple, which

ensures the UWASA Node to maintain the good adaption and extension

interfaces for both hardware and software (Yigitler et al. 2010).

As shown in the Figure 7, the slave module can be maintained in the main

module through the connectors. Therefore, this kind of generic platform,

designed to support a number of wireless automation applications, can be

re-applied in various deployments. These intrinsic factors support the UWASA

Node to be a proper sink node of the WSN in this thesis work as well.

Figure 7. UWASA Node power module, main module and slave module.

23

3.1.1. Main Controller

Table 1. Features of LPC2378 (NXP Semiconductors 2011: 2–3).

Component Features

Processor
 ARM7TDMI-S processor;

 Running at up to 72 MHz.

Memory

 Up to 512 KB on-chip flash program memory;

 32 KB of static random access memory (SRAM) on the ARM local

bus;

 16 KB SRAM for Ethernet interface;

 8 KB SRAM for general-purpose direct memory access (DMA)

use.

Interfaces

and

Peripherals

 Ethernet MAC with associated DMA controller;

 Universal serial bus (USB) 2.0 full-speed device;

 Four Universal asynchronous receiver/transmitter (UART)s with

fractional baud rate generation;

 Controller area network (CAN) controller with two channels;

 Serial peripheral interface (SPI) controller;

 Two synchronous serial port (SSP) controllers;

 Three inter-integrated circuit (I2C)-bus interfaces;

 Inter-IC Sound (I2S);

 SD/MMC memory card interface;

 104 general purpose I/O (GPIO) pins;

 10-bit ADC with input multiplexing among 8 pins;

 10-bit digital-to-analog converter (DAC);

 Four general purpose timers/counters;

 One pulse-width modulation (PWM)/timer block;

 Real-Time Clock (RTC);

 2 KB SRAM powered from the RTC power pin;

 Watchdog Timer (WDT).

Power

 Single 3.3 V power supply (3.0 V to 3.6 V);

 Modes: idle, sleep, power-down, and deep power-down;

 Peripheral Clock Control;

 Consumption: 125 mA(max) - 0.4125 W.

Debug

Interface

 Embedded ICE: Joint Test Action Group (JTAG);

 Embedded Trace.

24

Based on the ARM7TDMI-S processor with a real-time emulation that combines

the microcontroller with 512 KB of high-speed flash memory, LPC2378 from

NXP Semiconductors is proper to be chosen as the main controller (NXP

Semiconductors 2011: 1). Most main features of the MC can be fully depicted in

Table 1.

3.1.2. RF Controller

The CC2431 from Texas Instruments, a system-on-chip (SOC) for ZigBee/IEEE

802.15.4 solutions, is the RF controller of the UWASA Node responsible for

wireless communication. The key features of the microcontroller are illustrated

in Table 2.

Table 2. Features of CC2431 (Texas Instruments 2009: 1).

Component Features

Processor
 8051 MCU;

 32 MHz.

Memory
 128 KB in-system programmable flash;

 8 KB RAM.

Interfaces and

Peripherals

 2.4 GHz IEEE 802.15.4 compliant RF transceiver;

ZigBee® protocol stack;

 Location Engine;

 21 GPIO pins;

 Two powerful USARTs;

 ADC with up to eight inputs and configurable

resolution;

 One IEEE 802.15.4 MAC Timer;

 One general 16-bit timer and two 8-bit timers.

Power

 Supply voltage (2.0 V to 3.6 V);

 Modes: idle, sleep, power-down;

 Consumption: 40 mA(max) - 0.12 W.

Debug Interface  Wire Debug Interface.

25

3.1.3. MC-RFC Interface

Since the MC and the RFC both have the different power supply level, an

interface is required to convert the level smoothly between each controller. As

shown in Table 3, the features of the MC-RFC interface can be observed clearly.

Because of its small form factor, supporting for low power consumption and

high data rate, Texas Instrument TXB0108 is used as the bi-directional voltage

level shifter with auto-direction sensing.

Table 3. Features of TXB0108 (Yigitler 2010: 47).

Component Features

Port 1 Supply Voltage 2.5 V

Port 2 Supply Voltage 3.3 V

Maximal Data Rate 60 Mbps

Power Consumption 4 µA(max)

Form Factor QFN20 Package: 4.65x3.65x1 mm

3.2. SurfNet

SurfNet, as Figure 8 shows, is the name of the WSN architecture developed by

Seinäjoki University of Applied Science (UAS). Additionally, it is improved

further in GENSEN-project. It consists of hardware platforms - SurfNet node,

network protocol and the corresponding application development environment.

The SurfNet node has the size of 23x14x5 mm, and is equipped with a

single-chip nRF24LE1D microcontroller by Nordic Semiconductors. Several

26

sensors such as temperature sensor, humidity sensor and three-dimension (3D)

acceleration sensor can be simultaneously mounted to the node. The node is

powered by batteries that are usually around 3.0 V in total. SurfNet node is also

quite simple and easy to deploy in a wide variety of environments. Therefore, it

is selected to be used in the WSN architecture of this thesis work.

Figure 8. SurfNet node (Palomäki 2010a).

As mentioned before, nRF24LE1D is used as the MC of SurfNet node. The

nRF24LE1D is a member of the ultra-low power and high-performance family

of intelligent 2.4 GHz SOC RF transceivers with embedded microcontrollers

(Nordic Semiconductor 2010: 10). Namely, it mainly contains an enhanced 8051

microprocessor control unit (MCU) and an nRF24L01 2.4G RF transceiver. These

two parts communicate with each other by SPI bus. Since the SurfNet node is

assembled by nRF24LE1D microcontroller, the nRF24LE1D and the nRF24L01

RF transceiver will be discussed in the following part specifically.

27

3.2.1. NRF24LE1D Microcontroller

Besides processor and memory, the main features of nRF24LE1 are presented in

Table 4.

Table 4. Features of nRF24LE1 (Nordic Semiconductor 2010: 11–12).

Component Features

Processor

 Fast 8-bit;

 Intel MCS 51 compliant instruction set;

 Reduced instruction cycle time;

 32 bit multiplication–division unit

Memory

 16 KB of Flash memory with security features;

 1 KB of on-chip RAM memory;

 1 KB Non-volatile data memory

Interfaces and

Peripherals

 GPIO;

 SPI master;

 SPI slave;

 2-Wire master/slave;

 Full duplex serial port;

 PWM;

 External interrupts;

 Timer inputs;

 32.768 kHz crystal oscillator;

 Debug interface;

 High performance 2.4 GHz RF-transceiver;

 A/D converter;

 Analog comparator;

 Encryption/decryption accelerator;

 Random number generator;

Power

Management

 Single 3.0 V power supply (1.9 V to 3.6 V);

 System reset and power supply monitoring;

 Low power design supporting fully static stop/ standby;

 MCU clock frequency from 125 kHz to 16 MHz;

 Voltage regulators supporting low power mode;

 Watchdog and wakeup functionality running in low

power mode

28

As it shows, the microcontroller maintains a number of specifications, which

are quite suitable to be implemented to be used in the sensor node. For example,

the low power design supports sleep mode, standby mode, and deep sleep

mode. That is, these properties can be utilized to reduce the power

consumption by combining multiple working modes based on the requirements

of the application system. According to Palomäki (2010a: 6), the lifetime of

sensor node can be further extended by taking advantage of nodes’ switching

modes and synchronizations (SYNCs).

The nRF24LE1D is an ultra-compact 4×4 mm, 24 pin quad-flat no-leads (QFN)

package (7 generic I/O pins). Its top view of pin assignment for the QFN24 4×4

mm package, and the pin number of the SurfNet node can be found in Figure 9.

Figure 9. Pin assignment and pin number of SurfNet node (Nordic

Semiconductor 2010: 14; Palomäki 2010a).

Moreover, the basic descriptions of the corresponding pin functions can be

found in Table 5. It includes the function of power supply, GPIO and so on,

29

which are corresponding to the pin number of SurfNet node shown in Figure 9.

Table 5. Pin functions of nRF24LE1D.

No. Pin Name Type Description

1 P0.3 Ain3 Digital/Analog I/O GPIO pins

2 VDD Power Power supply (+1.9V to +3.6V DC)

3 P0.6 Ain6 Digital/Analog I/O GPIO pins

4 PROG Digital input Input to enable flash programming

5 RESET Digital input Reset system, low is active

6 P0.5 Ain5 Digital/Analog I/O GPIO pins

7 P0.2 Ain2 Digital/Analog I/O GPIO pins

8 VSS Power Ground (0V)

9 P0.4 Ain4 Digital/Analog I/O GPIO pins

10 VSS Power Negative supply series to ground (0V)

3.2.2. NRF24L01 RF Transceiver

The 2.4 GHz RF transceiver is an integrated radio frequency unit. The ISM radio

band of 2.400–2.4835 GHz is used by the microcontroller. The RF transceiver can

be configured by the register, and the register can be accessed by MCU through

the SPI bus in every mode of operation. Figure 10 presents the internal structure

of the transceiver.

30

Figure 10. RF transceiver block diagram (Nordic Semiconductor 2010: 17).

As shown in Figure 10, it is by SPI bus that the transceiver communicates with

the MCU. Namely, MCU controls the transceiver by three interfaces:

RFCON.rfce, RFCON.rfcsn and RFIRQ. The register map backs up for the

register. That is, it stores the configurations for the transceiver from MCU.

Transmit (TX) first-in-first-out (FIFO) and receive (RX) FIFO are FIFO buffers

which are used for the storage of transmitting and receiving data. There are

four modes of operation for the RF transceiver: power down mode, standby

mode, RX mode, and TX mode. As presented in Table 6, the operating mode can

be altered by configuring the bytes of the responding registers.

31

Table 6. States of RF transceiver and related registers (Nordic Semiconductor

2010: 20).

Mode
PWR_UP

register

PRIM_RX

register
rfce FIFO state

RX mode 1 1 1 -

TX mode 1 0 1
Data in TX FIFO. Will empty all

levels in TX FIFO

TX mode 1 0

Minimum

10 μs high

pulse

Data in TX FIFO. Will empty one

level in TX FIFO

Standby-II 1 0 1 TX FIFO empty

Standby-I 1 - 0 No ongoing packet transmission

Power

Down
0 - - -

The nRF24L01 supports 250 Kbps, 1 Mbps and 2 Mbps data transmission rate.

They can be configured by setting up the RF_DR of the RF_SETUP register.

Using a higher rate decreases the possibility of collision on air. However, by

using a lower rate achieves the higher sensitivity of the data reception. In any

case, the RF transmitter and receiver must maintain the same rate to be able to

communicate with each other. At the rate of 250 Kbps or 1 Mbps, the nRF24L01

occupies 1 MHz bandwidth in the 2.400–2.4835 GHz ISM band. While in the

rate of 2 Mbps, it uses 2 MHz bandwidth in the 2.400–2.4835 ISM band. The

radio frequency (F0) is determined by the RF_CH register, and can be calculated

as:

F0 = (2400 + RF_CH) MHz (1)

32

To ensure a reliable wireless communication, transmitter and receiver must

maintain the same radio frequency channel at the same time, for example, 2440

MHz.

The nRF24L01 received power detector (RPD) is only one bit, which equal to 1

when the received power level is higher than -64 dBm. It means -64 dBm is the

minimum received power level receiver can detect in the RF channel. If the

received power is less than -64 dBm, RPD equals to 0, which means the receiver

has nothing detected. In RX mode, the value of RPD can be read out at any time.

Whenever a package is received or RFCON.rfce is set to 0 by MCU, RPD is

latched. In this way, the function of carrier sense (CS) can be implemented by

checking the value of RPD.

Enhanced ShockBurst™, developed by Nordic Semiconductor, is a packet based

data link layer. It includes such features as automatic packet assembly and

timing, automatic acknowledgement and package retransmission, if needed. It

improves the power efficiency for unidirectional and bi-directional systems,

without adding complexity on the controller. (Nordic Semiconductor 2010:

22–23.)

Moreover, the Enhanced ShockBurst™ makes the bi-directional data link

communication much easier to achieve. Actually, the packet processing in this

mode means the packet exchange between RF transceivers. That is, one

transceiver is considered as a primary receiver (PRX) while the other one is

acting as a primary transmitter (PTX). The procedure of the automatic packet

assembly proceeds as follows:

 1. PTX transmits a packet to PRX, after which PTX is set to receive mode and

33

waits for the acknowledgement character (ACK) packet from PRX;

 2. Once the data packet is received by PRX, the Enhanced ShockBurst™

function automatically assembles and sends an ACK packet to PTX. Then, PRX

returns to the receive mode again;

 3. If PTX does not receive any ACK packet immediately, Enhanced

ShockBurst™ will automatically retransmit the packet again after a

programmable time interval. Then, the PTX is set to receive mode and waits

for an ACK packet.

The parameters of retransmission, for example, retransmission delay time and

times of retransmission, can be configured in the Enhanced ShockBurst™ mode.

After that, all the operations will be completed automatically without any

intervention of the MCU.

Preamble

1 byte

Address

3 - 5 byte

Packet Control

9 bit

Payload

0 - 32 byte

CRC

1 - 2 byte

Payload length

6 bit

PID

2 bit

NO_ACK

1 bit

Figure 11. An Enhanced ShockBurst™ packet (Nordic Semiconductor 2010: 23).

The format of the Enhanced ShockBurst™ packet is shown in Figure 11. It

contains a preamble field, address field, packet control field, payload field and a

cyclic redundancy check (CRC) field. The preamble field is to ensure that the

receiver has enough time for the processing. The address field contains the

address of the receiver. In addition, the packet control field contains nine bits,

34

which consist of six bits of the data payload length, two bits of the packet

identification (PID), and one bit of no acknowledgment flag. The payload field

contains the data defined by the user. CRC field is used for the packet error

detection.

MultiCeiver™ by Nordic Semiconductor is a feature used in RX mode. It

contains a set of six parallel data pipes with unique addresses, as shown in

Figure 12. A data pipe is a logical channel in the physical RF channel. Each one

of them has its own physical address that is configured in the RF transceiver.

Up to six RF transceivers configured as PTX can communicate with one RF

transceiver configured as PRX. In PRX, only one data pipe can receive a packet

at a time. Only after one data pipe receives a complete packet, the other data

pipes can begin to receive. When multiple PTXs are transmitting to a PRX, the

auto retransmission delay function can be used to skew the auto retransmission

so that they only block each other once. (Nordic Semiconductor 2010: 33.)

As shown in Figure 12, PRX and PTX 1, for example, assign the same physical

address of the data pipe, for example, Pipe 1, so that they can communicate

with each other successfully with auto retransmission. The address of PTX can

be configured in the TX_ADDR register while the address configuration of PRX

is stored from RX_ADDR_P0 up to RX_ADDR_P6, which depends on the data

pipe to be used.

35

PRX

PTX2 PTX5

PTX4PTX3

Pipe 1

Pipe 2

Pipe 3 Pipe 4

Pipe 5

Pipe 0

PTX1 PTX6

Radio Frequency Channel N

Addr Data Pipe 1 (RX_ADDR_P1): 0xB3B4B5B6F1

TX_ADDR: 0xB3B4B5B6F1
RX_ADDR_P0:0xB3B4B5B6F1

Addr Data Pipe 0 (RX_ADDR_P0):

Addr Data Pipe 2 (RX_ADDR_P2):

……

Figure 12. MultiCeiver™ used by PRX (Nordic Semiconductor 2010: 35).

3.2.3. SPI Bus

Generally, there are three types of interfaces provided by nRF24LE1D for data

exchange: SPI, 2-Wire and UART. In this research, SPI bus, which is a

synchronous serial data connection between master and slave, is mostly used

for the inter-microcontroller communication of the SurfNet node. Table 7.a

illustrates the pin assignment for the slave SPI bus, which is also applied to the

SurfNet bridge node. The SurfNet bridge node can act as a sink and its

hardware is compatible with all other SurfNet nodes. In our architecture, the

SurfNet bridge connects SurfNet nodes to UWASA Node by operating as a slave

SPI device. Table 7.b shows the pin assignment for the Master SPI bus.

36

Table 7. SPI bus pin assignment.

a. Slave SPI bus

Pin Signal Description Direction

P0.2 SCK Serial Clock Input

P0.3 MOSI Master Out Slave In Input

P0.4 MISO Master In Slave Out Output

P0.5 CSN Chip select NOT Input

P0.6 SYNC Synchronization Output

b. Master SPI bus

Pin Signal Description Direction

P0.2 SCK Serial Clock Output

P0.3 MOSI Master Out Slave In Output

P0.4 MISO Master In Slave Out Input

P0.6 SYNC Synchronization Output

The SPI communication is full-duplex and the data are transferred byte by byte

of 8 bits. After the synchronization between slave and master, the

communication starts. Figure 13 shows the principle of the transmission of one

byte by the SPI mode.

Figure 13. One-byte transmission by SPI (Nordic Semiconductor 2010: 152).

37

As the figure explains, the message frame starts from the CSN lowing edge.

Once the edge rises, the frame ends. There are eight circulations during the

exchanging time, correspondingly for eight bits output. Furthermore, there is

one bit output to master-out-slave-in (MOSI) in each circulation. Then, the clock

signal is set to high state so that the current master-in-slave-out (MISO) bit from

the master device could be captured. After that, the clock signal is set to low

state again. Thus, the circulation for one bit exchanging is done. Afterwards, the

next bit is shifted to be transferred. The timing diagram is given in Figure 14,

and its parameters are presented in Table 8. The proper SPI timing must be set

according to the table so that the SPI device will achieve enough time to react.

Figure 14. SPI timing diagram: one-byte transmission (Nordic Semiconductor

2010: 152).

38

Table 8. SPI timing parameters (CLoad = 5 pF) (Nordic Semiconductor 2010: 153).

3.3. UWASA Node Development Board

UWASA Node development board is designed to provide a set of fast

development interfaces for the MC. It includes the MC-JTAG connector, power

selection block, MC/RFC USB-UART converters, LCD connector, sensor board

connector, SurfNet node connector, extension connector and so forth. The main

interfaces of UWASA Node development board are shown in Figure 15.

The MC-JTAG connector is working with J-Link Debugger from SEGGER,

which is a USB powered JTAG emulator and supported by most Integrated

Development Environments (IDEs), for example, IAR EWARM.

39

Figure 15. Interfaces of UWASA development board in third revision (Cuhac

2012: 18).

The development board has a SurfNet connector, which is designed to connect

the board to SurfNet node. The schematic of the connector is illustrated in

Figure 16. Through the connector, the communication between MC and SurfNet

node can be done smoothly.

40

MC P0 16

MC P1 31

MC P1 23

MC P1 24

MC P1 20

Figure 16. SurfNet connector (Yigitler 2010: 64).

Extension connector is implemented for additional access to peripherals of MC.

In this work it is used for UART communication between UWASA Node and

Linux FOX Board G20, and also for SPI communication between UWASA Node

and SurfNet node. The pin assignment of MC extensions is presented in Figure

17. On the left of the figure, Pin 1 is the power supply of 3.3 V, while Pin 10, 14,

20 are the pins connected to the ground once used. In this work, Pin 18 is

assigned to receive data and Pin 19 is used to transmit data, when UWASA

Node activates the UART communication with Linux board. In EXT2_F, all the

assigned pins in the shown figure are used for connection to SurfNet node. The

connector is the same as the one in the development board.

41

√
√

√

√
√ √

√

√

√

√

√

Figure 17. Extension connectors (Yigitler 2011: 4–5) and the used pins.

3.4. Embedded Linux Server with 3G Module

3.4.1. FOX Board G20

The FOX Board G20 is a low-cost embedded Linux board built of

ARM9@400Mhz Atmel CPU AT91SAM9G20. The hardware specifications of the

FOX Board G20, are presented in Figure 18. Its main features are the following

ones (ACME System 2013):

 Built on the Atmel ARM9@400Mhz CPU module Netus G20-L (included);

 256KB of FLASH memory for the boot loader;

 Two USB 2.0 host ports (12 Mbits);

 One Ethernet 10/100 port;

 One USB device port (12 Mbits);

 One debug serial port (3.3 V);

42

 Two serial ports (3.3 V);

 One serial port for 4DSystems oLed displays;

 5VDC power supply input (compatible with PS5V1A);

 RTC with on-board backup battery;

 GPIO lines (3.3 V);

 4 A/D converter lines, I2C bus, SPI bus;

 Built-in quad power supply Netus PS1 module;

 Average power consumption: 80 mA@5V (0.4 Watt) without micro-SD,

Ethernet link, USB devices or other peripherals.

In this work, the embedded Linux server takes care of data processing, third

generation (3G) communication, and records the sensors and the camera data.

The operations are done in the following sequence. In every cycle, the sensor

measurements are first collected from the wireless sensor nodes. Then a picture

is taken by the web camera, which is also connected to the server. At the end of

each cycle, the embedded server updates the information on the remote server

(website) over 3G connection. In this thesis work, the developed system is used

for remote monitoring of environmental circumstances inside the building.

Since a bidirectional data transmission is enabled, it can be used also for remote

control.

43

Figure 18. Overview of the embedded Linux FOX Board G20 (ACME System

2013).

3.4.2. 3G Module

The type of the 3G module in use is ZTE MF699. It is a 3G HSPA+USB modem,

which is shown in Figure 19. The data transmission speed of ZTE MF669 can

theoretically achieve up to 5.76 Mbps upload and 21.6 Mbps download. It

works compatibly with most types of operating systems (OS): Windows, Mac,

and Linux. Our embedded Linux server connects with cabled Internet server

over the 3G connection provided by ZTE MF669.

44

Figure 19. 3G module: ZTE MF669 HSPA + 3G USB modem.

3.5. Complete Hardware Architecture

The complete hardware architecture and its packaging are presented in Figure

20. In the developed architecture, SurfNet nodes are equipped with

temperature and humidity sensors. They transmit their measurements to the

SurfNet bridge node connected to UWASA Node that acts as a gateway to the

embedded Linux server.

In this system, every SurfNet node is set to sleep for a certain period of time and

they are woken up by an internal timer in each cycle. After that, they collect the

measured data and transmit the whole data in the TX buffer. Then they wait for

the ACK from the receiver, in this case the SurfNet bridge node. Otherwise, the

nodes repeat to transmit the previous measurement. When the times of

repeating equal to the default value that is set in SurfNet node, the node stops

transmitting and goes to sleep. Correspondingly, the SurfNet bridge gives an

45

ACK once it detects the data from the transmitter. Then it sends the data to

UWASA Node by SPI.

UWASA Node

Extension
converter

FOX G20 board

SurfNet node

3G module
USB port

Camera
port

Extension
converter

Figure 20. System hardware architecture and packaging.

Subsequently, after receiving data, UWASA Node updates, and stores the data

packages in different specified buffers. Once it has a request from the Linux

server, UWASA Node forwards the corresponding data to the server through

46

UART. After the embedded Linux server receives the data from UWASA Node,

it logs the time stamp, analyses the package and transfers the data from binary

format to the real value. Then the server transmits the data to the web server by

3G link. Finally, the end user can access to the measurements through the

server.

47

4. SOFTWARE DEVELOPMENT AND IMPLEMENTATION

In this chapter, we will describe the system software architecture. At the

beginning, the OS is discussed in detail, as well as the protocols and

mechanisms, which are implemented in the system. After that, the software

developments related to each part of the system are presented.

4.1. Applied Operating System

FreeRTOS is an increasingly popular real-time operating system (RTOS) for

embedded devices. Since it is also applied to UWASA Node, FreeRTOS is

specifically considered in this thesis. It provides three APIs: task management,

queue management and semaphore/mutual exclusion. Only the most important

APIs exploited in the development will be introduced briefly, which are task

management and semaphore/mutex mechanism.

A task is a set of activities to perform a special function. Each task should have

its own memory resources, and the OS needs an appropriate scheduler to

control the executing of variant tasks. This scheduler allows the tasks to take or

release control of the processor depending on their priorities. (Yigitler 2010:

93–94.)

48

Figure 21. Task state transition (Barry 2009: 20).

As illustrated in Figure 21, there are generally four states of a task: ready,

running, suspended and blocked. Each state can be transited to another by the

assigned functions, which is pointed out in the figure.

Semaphores and mutual exclusions (Mutexes) are both used for the purposes of

resource guarding and inter-task synchronization. Semaphore is a variable that

provides a simple but useful abstraction for controlling access to a resource.

When a task finishes occupying the resource, the resource is released for other

usage. Therefore, a semaphore avoids changing a resource whenever it is taken,

no matter what the priority of the current owner task is. (Yigitler 2010: 99.)

49

Mutexes are binary semaphores that employ a priority inheritance mechanism.

In this mechanism, if a high priority task blocks while attempting to obtain a

mutex, which is currently held by a lower priority task, then the priority of the

task with the mutex is temporarily raised to the same of the blocking task.

Therefore, higher priority task is kept in the blocked state for as short time as

possible, thus minimizing the problem of priority inversion. (Barry 2009: 105.)

4.2. Applied Protocol Software

As for the aspect of software, there are two different development kits

regarding to the different hardware of subsystems, which are used in the

system. IAR Embedded Workbench IDE is used for developing the software for

UWASA Node, while SURFprogrammer, a programming environment for

nRF24LE1 radio controller platform from Seinäjoki UAS, is used for developing

the programs of SurfNet. The details of the mentioned IDEs can be seen in the

Appendix 9 and Appendix 10. We apply two types of sensor nodes in our WSN:

the UWASA Node and SurfNet. The basic operations in the nodes are executed

as presented in Figure 22.

50

Sleep
Send

packet
Receive ACK
with payload

Sleep

Listen to radio channel and SPI
Receive
packet

Send ACK
with payload

Listen to SPI and UART
Exchange

packet
Listen

SurfNet sensor node
operation

SurfNet bridge node
operation (connected

to UWASA Node)

UWASA Node
operation (gateway

to Linux server)

Exchange
packet

Listen

Figure 22. Data packet transaction.

Every time when UWASA Node is powered on, it firstly initializes the

processors, including main processor and RF processor. Then, it handles the

tasks in which it is continuously in listening mode for the requests sent by the

embedded Linux server via UART, or for the data packets transmitted through

SPI by the SurfNet receiver. Otherwise, if there is no transmission request

detected, a timeout occurs and it breaks out of the listening mode. Once the

node gets a request from the Linux server, it checks the data packet, and then it

copies and passes the related buffer to the Linux server, that contains the

humidity and temperature measurements at a certain time collected from one

single sensor node. In addition to acting as a gateway between the WSN and

Linux server, the UWASA Node also powers up the SurfNet node that is

attached into it.

Particularly, there are two operating modes for the receiver: low-latency mode

and low-power mode. In low-latency mode, the receiver keeps listening to the

radio channel continuously. In that case, the receiver obtains a lower time delay,

51

but consumes more power. In low-power mode, the receiver alternates between

sleep mode and listening mode according to pre-set timer. The receiver only

stays in listening mode for a limited time. In this mode, it consumes lower

power. However, it might miss the incoming packets while sleeping. In the

system developed in this work, the low-latency mode is applied in the SurfNet

receiver. The power consumption of the gateway node is not a quite critical

issue, because the SurfNet node, which is connected to UWASA Node in the

gateway, is also powered up by the UWASA Node. If it has data detected in the

RX buffer, the node copies the buffers, transmits them through SPI to UWASA

Node immediately, and then enters back to the listening mode.

The SurfNet sensor node is developed to be used as a low-power sensor node. It

mainly runs in three different modes: sleeping, transmitting and listening. In

every period of time preset by a timer, the node wakes up, gets sensors

powered on. Then the node goes to low-power mode again for several

milliseconds to settle the humidity and temperature sensors. Then it wakes up,

makes the measurements and stores the data in TX buffer, and transmits them.

After that, the node listens to the channel for a small period, for example, 100 µ s.

If the node gets an ACK from the receiver, it ends the listening mode and enters

to sleep mode. If there is an error or collision happening during the wireless

transmission, so that the transmitter cannot get the ACK from the receiver. In

this case, the node retransmits the packet after an assigned delay time, for

example, 250 µ s. This mechanism is designed to reduce the power consumption

of the sensor nodes. By doing so, it also extends the operating time (lifetime) of

the system.

To prevent the transmission collisions, the MultiCeiver™ technique by Nordic

52

Semiconductor is applied in SurfNet nodes. To improve the reliability of the

wireless communication, there is a retransmission function working in the

transmitter if there is any packet collision in the receiver.

Furthermore, while the sensor node is in listening mode for the ACK after one

transmission, CSMA is applied to check whether the radio channel is occupied

by another node or not. That is, the node to listen to the channel by using a

received power detector. If the received power is higher than -64 dBm (3.98×10-7

mW), the channel is detected to be occupied, and the transmission from each

sensor node to receiver is delayed based on the ID number of the sensor node.

CSMA is quite simple and easy to implement. It can enhance the development

efficiency because it does not need centralized control or pre-defined priorities.

According to the MultiCeiver™ technique, there are up to six communication

data pipes from PTXs to PRX. It only allows one data pipe functioning in one

time. In other words, only after the complete transmission is done in one data

pipe, can other data pipes be enabled. When multiple sensor nodes are

transmitting to the receiver through different data pipes, the data pipe, in which

the first packet reaches to the receiver, is enabled prior to the others. The other

sensor nodes listen to the channel for a while, but fail to get an ACK. In this case,

they have to make an auto retransmission delay, the value of which is set based

on the ID number of each sensor node.

53

SleepSend packet

Pipe 1

Sensor node
No.1

Sensor node
No.2

Receiver

Receive
packet from

No.1

Send packet

Listen to the
channel and

wait for ACK

Send
ACK

Pipe 2

X

Pipe 1

Pipe 2

Delay
Re-send the
same packet

Receive
packet from

No.2

Send
ACK

Sleep
Listen to the
channel and

wait for ACK

...

...

...

Pipe 2

Listen to the
channel and

wait for ACK

...

Channel is busy!

Figure 23. Packet collision avoidance by MultiCeiver™ technique.

For example, there are two nodes respectively with ID 1 and ID 2. In addition,

there is a preset time delay of one and two milliseconds respectively in sensor

Node 1 and Node 2. As shown in Figure 23, assuming they are not transmitting

at the same time (which is the worst case explained in next paragraph), the

nodes are trying to transmit one data packet to the receiver. Node 1 first

manages the transmission with the receiver in pipe 1. Before the complete

packet is received, other data pipes are not enabled. In this way, even though

Node 2 transmits the data packet, but it is not able to receive the ACK from the

receiver, because the receiver does not send any at all. It keeps waiting for two

milliseconds. After that, it tries to transmit the data again until the limited times

of retransmission, for example, four times of retransmission.

However, in a worst case, multiple sensor nodes can transmit their data packets

at the same time. The receiver cannot make a judgment that which packet

arrives firstly, and it does not send an ACK back to the sensor nodes. Sensor

nodes cannot detect any ACK and they delay a period of time based on their

54

node ID number, for example, one millisecond for Node 1 and two milliseconds

for Node 2. Then sensor nodes retransmit the same previous data packet when

the delay time is due. In this worst case, there is only one packet collision in the

receiver at the beginning, and the packets in different data pipes will not block

each other again.

By using these techniques, packet collisions from the transmitters can be

effectively prevented. At least, even in the worst case, which means the nodes

transmit the packet absolutely at the same time, the collision of the packet will

not happen more than once.

4.3. Message Structure

According to the architecture of the system, there are three different message

structures that are necessary to be specified. In the WSN, the message between

the SurfNet transmitter and receiver contains eleven bytes, as shown in Figure

24. The message frame starts with hexadecimal value ‘0x2A’ (42 in decimal

values) and ends with ‘0xAB’ (171 in decimal) and ‘0x55’ (85 in decimal).

Because of the SPI communication protocol between UWASA Node and the

SurfNet node attached to it, these three bytes are formatted in the sensor node

from the beginning of the data flow and then they remain the same all the time

to the Linux server.

0x2A Length

Number of byte

Message frame ID of Sensor Node

1 2 3

Data

4-7

Counter

8

Checksum

9

0xAB

10

0x55

11

Figure 24. Message structure between SurfNet nodes.

55

In the frame, the second byte represents the number of bytes, in other words,

the length of the message. The third byte is the ID of the SurfNet sensor node.

Then, the following four bytes are the measured data from the sensor: first two

bytes together means the temperature value in hexadecimal and the next two

bytes means the value of humidity. These hexadecimal values are directly

obtained from sensors and converted by the ADC. The next byte is a counter of

the data packet in one sensor node, from where the number of packets has been

sent by the sensor node can be known. The 9th byte is a checksum byte, which

means the CRC is applied to packet error detection. This message frame is

structured in the SurfNet sensor node.

After the message is received by the SurNet receiver, the node adds its ID

number into the message structure. In addition, it removes the checksum byte

because the byte has been already used for CRC function. Therefore, the new

message still contains eleven bytes, including the receiver’s ID. The receiver

node passes the packet to UWASA Node though SPI. The restructured message

can be seen in Figure 25.

0x2A Length

Number of byte

Message frame ID of Sensor Node

1 2 3

Data

5-8

Counter

9

Checksum 0xAB

10

0x55

11

ID of Receiver

4

One byte removedOne byte added

Figure 25. Message structure between SurfNet receiver and UWASA Node.

When UWASA Node receives the packet, it firstly checks if the start and end

bytes in the message frame are all correct, to ensure there is no error occurring

56

during the SPI transmission. Then UWASA Node saves the whole packet in an

assigned buffer according to the ID number of the sensor node in the message,

for example, packet from SurfNet Node 1 is saved in Buffer 1. In other words,

the format of the packet saved in UWASA Node is not restructured or changed.

Once the Linux servers requests the data, the UWASA Node passes the

corresponding buffer to the server. In this way, the server can obtain the

information from each sensor node in the WSN.

Furthermore, the request packet from Linux server to UWASA Node is also a

message structure need to be specified, which contains only two bytes: ID

number and ‘0x55’ in hexadecimal value. The ID number means that from

which sensor node the server requests the information. More specifically,

according to this byte, UWASA Node is able to find the corresponding buffer

that the server needs. And ‘0x55’ is only an end byte of the message. After

UWASA Node gets the request packet from the Linux server, it also needs to

check whether the end byte of the packet is correct or not. The message

structure is shown in Figure 26.

Number of byte

Message frame ID of Sensor Node

1 2

0x55

Figure 26. Message structure from Linux server to UWASA Node.

57

4.4. Sink

A sink consists of UWASA Node and a SurfNet node attached into it by SPI. It

acts as a gateway between the wireless network and the Linux server.

4.4.1. Role of the UWASA Node

In the software development and implementation of UWASA Node, IAR

Embedded Workbench® IDE for ARM is mainly used. It is a C/C++ compiler

and a debugger tool suite supporting a large number of 8-bit, 16-bit and 32-bit

microcontrollers. Besides, J-link is working with IAR IDE compatibly, which is a

JTAG emulator supporting ARM cores.

When working as a part of the sink, the UWASA Node must guarantee the

reliability of the communication from both SPI and UART. Consequently, its

main responsibility contains listening for queries from the Linux server,

transmitting packets through the UART, receiving and handling data packets

from SurfNet node through SPI. Namely, UWASA Node handles the data

packets after it receives them from the SurfNet node. According to the ID

number in the packet, it stores the packet in the corresponding buffer, for

example, packet from SurfNet Node 1 is saved in Buffer 1, which is explained in

the previous section. If one new packet is coming from the same sensor node,

the related buffer is updated with the latest packet while the previous one is

erased. In this way, it ensures that when the Linux server requests data packet,

the buffer is always filled with the latest one before transmission. The general

flow chart of UWASA Node operation can be seen in Figure 27.

58

Start

Initializations

Create a task function

Listening SPI with
SurfNet receiver

Incoming
data ?

Yes

Timeout ?

Save/Update data in
related buffer

Receive data from
SurfNet receiver

(SPI Communication)

No

No

Yes

Listening UART
with Linux server

New request ? Yes
Check request

packet

Transmit related packet
to Linux server

(UART Communication)

No

Timeout ?

No

Yes

Figure 27. Flow chart of UWASA Node operations in the sink.

59

As the flow chart presents, UWASA Node periodically listens to the buffers for

UART and SPI communications. As soon as UWASA Node obtains data from

SurfNet node, it copies and saves the data to the different buffers related to the

ID number of the sensor node in the packet. If the packet from the same sensor

node is received again, then the related buffer is updated. Once UWASA Node

gets a request from the Linux server (FOX G20) through the UART, it firstly

checks the packet, and transmit the buffer that the server needs according to the

ID number in the packet. After that, UWASA Node goes to listen to SPI with

SurfNet nodes again. To ensure the reliable UART transmissions, the same baud

rate is initialized and configured to both UWASA Node and the Linux server.

When the data packet arrives in the Linux server, the server records a time

stamp in the system immediately, which shows the real time to the users.

4.4.2. SurfNet Receiver

SURFprogrammer programming environment, developed by Seinäjoki UAS, is

used to program the SurfNet nodes. The suite has the related software and

USB-programming stick based on an AT90USB162 controller (see Figure 28).

SURFprogrammer is integrated with a small device C compiler (SDCC), which

compiles C language program into Intel-hex format and the USB-programming

stick transfers the code into the flash memory of the nRF24L1E radio processor,

through an SPI channel (Palomäki 2010b: 3).

60

Figure 28. SURFprogrammer.

In the developed system, some SurfNet nodes are equipped with temperature

and humidity sensors. One of them is connected with UWASA Node and it acts

as a gateway to the Linux server. The details of the SurfNet node operation in a

gateway are illustrated in the general flow chart in Figure 29.

As the figure shows, the SurfNet receiver continuously listens to the radio

channel. Once a packet is captured, the node sends an ACK packet back to the

transmitter and then adds one byte that is the ID number of the receiver to the

packet, as mentioned in the previous section. Then the node passes the

restructured packet to the UWASA Node.

In order to guarantee the quality of radio communication with SurfNet nodes,

the Enhanced ShockBurst™ technique by Nordic Semiconductor is functioning

in the receiver. For example, if the receiver detects a packet for one certain

sensor node, it automatically gives an ACK back to the sensor node. Thus, the

sensor node is aware of the successful transmission. Additionally, the

MultiCeiver™ technique developed by Nordic Semiconductor is also applied at

the receiver. It enables the receiver to receive data packets from multiple paths

(up to six) based on the different communication pipes of the transmitters.

61

Besides, the receiver checks the correctness of the received data. Every time the

receiver obtains a packet, it determines whether there is an error or not by

checking the checksum byte in the data packet. If an error occurs in the packet,

the receiver discards the erroneous packet, and receives another one instead.

Start

Select radio channel

Initialize RF and SPI

Power on RF and start receiving

Listening RF channel
of sensor nodes Receive data packet

(RF Communication)

Incoming
data?

Yes

No Transmit data packet
to UWASA Node

(SPI Communication)

Restructure data packet

Delay

Send an ACK back
(RF Communication)

Figure 29. Flow chart of SurfNet receiver’s operations in the sink.

62

4.5. SurfNet Sensor Node

In the system developed in this thesis work, we use SurfNet nodes to collect the

temperature and humidity measurements. Their small size and low energy

consumption provide the flexibility, which is needed in this sort of monitoring.

The SURFprogrammer programming environment is also used for the nodes, as

explained in the previous section. Figure 30 shows the SurfNet node equipped

with temperature and humidity sensors and one 210 mAh button battery. Since

there are many similar sensor nodes in the network, each node must have a

unique node ID, for example, ID 0 is assigned to be the receiver’s ID.

Figure 30. An encasing of the SurfNet node equipped with temperature and

humidity sensors and a battery.

Enhanced ShockBurst™, MultiCeiver™ and CSMA techniques are implemented

in this system to ensure the reliability of the transmission, which includes the

63

functions such as auto ACK, auto retransmission and some other

communication parameters such as retransmission times, delay time for

receiving ACK, RF power and data rate of transmission, and so forth.

Periodic sleeping and waking up modes are applied in the WSN consisting of

SurfNet nodes to achieve energy savings. Generally, every SurfNet sensor node

has an internal timer inside the node. By using the preset timer, the node wakes

up and sleeps periodically. The sleeping time of the SurfNet node in this system

is set to eight seconds, which can be changed based on different purposes.

After the node wakes up from the sleep mode, firstly it power up humidity and

temperature sensors. There must be at least 2.5 milliseconds for settling down

the humidity sensor, otherwise the measurement can be incorrect (see

APPENDIX 8 in detail). During this settling time, SurfNet also stays in sleep

mode to decrease the power consumption of the node. After settling the sensors,

the sensor node powers on ADC to obtain the measurements of the current

environment. Afterwards, sensor node formats data packet in TX buffer and

prepare to transmit. Then the node powers on the radio and begins to transmit.

After transmission to the receiver, the sensor node stays in listening mode and

waits for an ACK packet. If it receives the ACK from the receiver, the

communication between both nodes is completed. Otherwise, after a preset

time delay, the sensor node tries to retransmit the previous packet. Because the

transmission from each node is asynchronous, each node sets the delay time for

its retransmission based on its node ID to avoid the collision of the data packets

from different nodes to the receiver. Besides, the retransmission times is also

preset in the SurfNet node, for example, in the SurfNet node of the developed

64

system, the retransmission times is set to four. The flow chart presenting the

operation and the main functions of the sensor node can be seen in Figure 31.

Wait for ACK from
SurfNet receiver

Start

Select radio channel

Initialize RF, SPI, ADC
and RTC

Power off radio

ACK
received ?

Set sleeping time

Time to send ?

Start RTC

Stay in sleeping mode

No

Yes Read measured data

Power on ADC

Power off ADC

Power on radio

Transmit data packet

Stop RTC

No

Delay based
on node’s ID

Power on sensors

Set sleeping time

Start RTC

Stay in sleep mode

Time is up ?

No

Yes

Exceed
retransmission

times ?

No

Yes

Stop RTC

Figure 31. Flow chart of SurfNet sensor node's operation.

65

5. EXPERIMENTS AND RESULTS

5.1. Experimental Setups

The developed system is illustrated in Figure 32. It consists of SurfNet Nodes,

UWASA Node, a Linux server Fox G20 and a 3G module. Its performance is

evaluated through following experiments.

Figure 32. Overview of the deployed system.

The first experiment is to measure the packet loss as a function of distance

Users

3G Communication

SurfNet Sensor Nodes

SURFnet, UWASA Node and

Fox G20 with 3G module

Users

66

between the SurfNet nodes. In the experiment, we vary the distance between

one SurfNet node and the sink in indoor and outdoor scenarios. In both

scenarios, the distance between the node and the sink was respectively set to 5,

10, 15, 20, 25, 30, 35, 40, 45, and 50 meters. They were placed one meter above

the ground level. Five sets of measurements were performed at each location.

In each set of measurements, the transmitter sent 255 packets to the receiver in

total and one packet once in every second. That means, the sleeping time of the

transmitter is set to one second. And the receiver keeps on listening all the time.

Once it detects any packet in its RX buffer, it transmits them to UWASA Node

through SPI. In each packet, there is one counter byte that counts the number of

the packet sent by the SurfNet node. The counter in the packet starts from 0x00

to 0xFF except 0x55, because 0x55 is already assigned to distinguish the end of

each packet. Once the UWASA Node receives the packet, it passes every

received packet to PC via USB. Then we can capture the data packets from the

port of PC by using a serial terminal. By recording all the received packets in

the terminal, the packet loss can be calculated by Formula 2. In this experiment,

the number of total packets equals to 255.

 (2)

RealTerm is a terminal software for capturing and controlling data streams.

Here, it is used to capture and analyze the packet. One example about using the

RealTerm is shown in Figure 33. The message structure contains eleven bytes,

which is explained in Chapter 4.3. These bytes are start byte (0x2A), packet

length (0x0B), receiver’s ID (0x01), transmitter’s ID (0x02), humidity (high byte),

humidity (low byte), temperature (high byte), temperature (low byte), counter

67

(from 0x00 to 0xFF, except 0x55), end byte (0xAB), and end byte (0x55).

By calculating the counter byte, the lost packets can be realized. Here is an

example shown in Figure 33 to demonstrate the way to obtain the packet loss of

the communication. In this example, we sent 23 packets with the counter from

0x07 to 0x1D. As shown in the figure, there are 8 lost packets with the counter

from 0x0E to 0x15. In this special case, The observed packet loss as a percentage

of transmitted packages can be calculated as 8/23, which is approximately

34.783%.

Figure 33. One test example in RealTerm, which is a serial capture program.

In these tests of the first experiment, the SurfNet transmitter is configured with

68

the following settings:

 RF-channel is set as (2400 + 40) MHz;

 16-bits CRC is enabled;

 RF data rate: 2 Mbps;

 RF output power in TX mode: 0 dBm (1 mW);

 Auto Acknowledgement function on data pipe is enabled;

 Automatic retransmission is set as:

 Auto retransmit delay: wait 4000 µs;

 Auto retransmit count: up to 15 retransmits if fails;

 Wake up from sleep mode in every one second.

Similarly, the SurfNet receiver is configured with the following settings:

 The RF channel is set as (2400 + 40) MHz;

 16-bits CRC is enabled;

 RF data rate: 2 Mbps;

 Auto Acknowledgement function on data pipe is enabled;

 Automatic retransmission is set to cooperate with the transmitter.

In the second experiment, another significant issue, power consumption of our

system is considered. When measuring the power consumption, we observe

two entities: the SurfNet nodes equipped with sensors and the sink (UWASA

Node and a SurfNet node connected to it by SPI). Since the Linux server is

using an external power supply, the power consumption of the server is not

discussed in this thesis.

In the sink, the UWASA Node is powered by the Linux server and the SurfNet

node attached into it is powered by the UWASA Node. We connected one serial

ampere meter in series between the UWASA Node and the power source. In

69

this way, when the system is operating, the current value of the sink, which

contains the UWASA Node and the SurfNet node connected with it, can be read

from the ampere meter.

According to Palomäki & Huhta (2010), the node protocol software has a

remarkable effect on the node power consumption. The protocol software used

in the SurfNet node is explained in more detail in Chapter 4. For example,

different operating modes, including sleeping mode and short-term listening

mode, are applied for saving power.

The average power consumption of the node is computed by measuring the

current in different operating modes of the SurfNet node, which is equipped

with sensors. In this test, one digital oscilloscope and one test resistor of 1 ohm

are used. The average current taken by SurfNet node is computed by using the

measured voltages over the resistor in different operating modes. The applied

test hardware setup is presented in Figure 34.

70

Figure 34. Hardware setup in SurNet node power consumption measurements

(Nordic Semiconductor 2008: 39).

Average current means the average of every instantaneous current value from

zero to the peak in different phases. To calculate the average current

consumption of the SurfNet node equipped with sensors, the following

formulas are used. In (3), the peak current multiplies by its corresponding

duration time. Then it makes the sum of the results in each phase. After that, it

makes the summation divided by the total duration time of different phases.

That is the average current in this circuit. Moreover, (3) can be transformed to (4)

by turning the peak current to the result of dividing the peak voltage by the

resistance. (5) shows the final transformation result.

71



 (3)



 (4)

 

 
 (5)

By using the oscilloscope shown in Figure 34, we can measure the peak voltage

of the test resistor (1 ohm) in different phases of SurfNet node, as well as the

corresponding time of each phase in the node. According to (5), we can

multiply each peak voltage with the related time in different phases and then

make a summation of them. In addition, we make a summation of the time of

different phases and then times one, which is the resistance value of the test

resistor. Finally, dividing the first summation by the time summation, gives the

average current value of the SurfNet node with its sensors.

In this experiment, one SurfNet node equipped with temperature and humidity

sensors, is configured with the following settings:

 Sleeping time: 2 seconds;

 The RF channel is set as (2400 + 40) MHz;

 16-bits CRC is enabled;

 RF data rate: 2 Mbps;

 RF output power in TX mode: 0 dBm;

 Auto Acknowledgement function on data pipe is enabled;

 Automatic retransmission is set as:

 Auto retransmit delay: wait 250 µs;

 Auto retransmit count: up to 2 retransmissions if fails.

72

5.2. Communication Capability

5.2.1. Indoor Scenario

The indoor experiment was done in the passageway in Technobothnia

Laboratory. Both sides were metal walls, as presented in Figure 35. There was a

line of sight between the transmitter and the receiver in the passageway.

Figure 35. Indoor test environment.

73

The results of the indoor packet loss experiment are presented in Figure 36. The

symbol of black point indicates the percentage of lost packets out of 255 packets

in one distance, and the blue stars are the averages of five sets of measurements

at each location. The blue line, which connects the average values, shows the

packet loss as a function of the communication distance.

Figure 36. Observed packet loss in the indoor environment (0 dBm transmission

power was applied).

As the result shows, when the communication distance is no longer than 25

meters, the packet loss is close to zero. When it reaches to 35 meters, the packet

loss increases and its standard deviation also starts to increase, but the average

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

Communication Distance (m)

P
a
c
k
e
t

L
o
s
s
 (

%
)

Average Value

Measured Values

74

value is still less than 5%. In this case, the system can be still in use. However,

when the communication distance is increased to 45 meters, the communication

cannot be considered reliable anymore because the packet loss is over 50%.

5.2.2. Outdoor Scenario

Similarly, the outdoor experiment was carried out in the open space, which the

passageway outside Fabriikki building. The test condition can be shown in

Figure 37. There were no obstacles in the air between the transmitter and the

receiver.

Figure 37. Test condition of outdoor.

75

The results of the outdoor scenario are presented in Figure 38. The

communication reliability remains quite good up to 20 meters distance. Once

the distance increases from 20 meters, the communication reliability weakens

rapidly, as indicated by the increase of the packet loss and the packet loss

standard deviation. Finally, the connection was completely lost after 30 meters.

Figure 38. Observed packet loss in the outdoor environment (0 dBm

transmission power was applied).

Compared to the indoor tests, the result indicates that the communication

reliability is weaker in this outdoor test scenario. The result was unexpected

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

Communication Distance (m)

P
a
c
k
e
t

L
o
s
s
 (

%
)

Average Value

Measured Values

76

because in principle there should be more signal attenuation in the indoor

environment than in open space and the packet loss of outdoor test should be

better. Specifically, the first thing that explains the result is the attenuation

caused by the brick walls and bushes in the outdoor environment. The radio

signal attenuation might be increased in this environment. The second thing

that affected on the result was the metal walls in the indoor environment, which

might have improved the radio environment there.

5.3. Power Consumption

The power consumption of two subsystems is measured in this part. These

subsystems are the sink, which contains UWASA Node that operates as a

gateway and a SurfNet node connected to the node by SPI, and SurfNet nodes

equipped with sensors.

5.3.1. UWASA Node and SurfNet Node in the Sink

The average current of the devices can be measured by using a serial ampere

meter. The average of the measured current taken by the SurfNet node in the

sink was 18.35 mA. This power is supplied by UWASA Node into which the

SurfNet node is connected in the sink. The measured joint power consumption

of the UWASA Node and the SurfNet node in the sink was 380 mA. However, in

this developed system, they can have an external power supply by the Linux

server.

77

5.3.2. SurfNet Node with Sensors

As explained in Chapter 5.1, the average power consumption of the SurfNet

node with its sensors, is computed by measuring the current in different

operating modes in the node. To obtain the current in the circuit, we can

measure the voltage of a test resistor that is connected to the circuit in series.

1 2 3 4

Figure 39. The current consumption of the SurfNet node equipped with

temperature and humidity sensors, in different operating modes.

Generally, there are four main operation phases for the SurfNet node with the

sensors, which are waking up, settling the sensors, RF active period, and

sleeping. Figure 39 presents the result of current consumption measurements

from the SurfNet node, which is equipped with temperature and humidity

78

sensors. The four main different phases are noted by the yellow numbers in the

figure, including the sleeping mode that is two seconds here:

 1. Waking up from sleeping mode;

 2. Powering and settling down the sensors;

 3. RF active period;

 4. Sleeping.

Furthermore, as the figure shows, in the RF active period, there are also several

operation phases. The details are shown in Figure 40, which presents the result

of current consumption measurements from the SurfNet node with sensors, in

one RF active period. In Figure 40, in total, there are nine different operating

phases in one RF active period, noted by the yellow numbers:

 3.1. Waking up from sleeping mode;

 3.2. Setting RTC;

 3.3. Starting ADC and getting measurements;

 3.4. Preparing transmission interrupt;

 3.5. Starting execution and upload data to TX buffer;

 3.6. RF transmission;

 3.7. Settling as a receiver;

 3.8. RF listening for ACK;

 3.9. Download data in RX buffer.

79

3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9

Figure 40. The current consumption of the SurfNet node sensors, in RF active

period.

Besides, the SurfNet node consumes 3 µA averagely when it stays in sleeping

mode with timers on (Nordic Semiconductor 2010: 183). After measuring the

voltage of other phases, the result can be obtained, which is shown in Table 9.

With the table, we can obtain the average current consumption of the SurfNet

node with the humidity and temperature sensors, by applying the

corresponding values into Formula 5.

80

Table 6. Measured values in each operating mode of SurfNet node with

sensors.

Number Phase Description Voltage(mV) Time(µ s)

1.1 Waking up from sleeping mode 8.5 12

1.2
Setting RTC, powering on sensors and

starting to sleep
2.4 45

2 Settling sensors 0.7 2560

3.1 Waking up from sleeping mode 8.6 12

3.2 Setting RTC 2.4 43

3.3 Starting ADC and getting measurements 8.8 116

3.4 Preparing transmission interrupts 5.2 404

3.5 Execution and upload data to TX buffer 11.8 76

3.6 RF transmission 16.8 148

3.7 Settling as a receiver 9.2 92

3.8 RF listening for an ACK 18.8 91

3.9 Download data in RX buffer 4.4 48

4 Sleeping 0.003 2000000

IAV

 0.0087 mA

As a result, once the sleeping time is set to two seconds and the settling down

time for the sensors is 2.5 milliseconds, the average power consumption of

sensor node with its sensors is 0.0087 approximately. In this situation, if the

81

node is equipped with a button battery of 210 mAh, the lifetime of the node can

be 32 months, which equals two and a half years.

However, because the maximum sleeping time set by RTC is 2 seconds, the

node needs to wake up every 2 seconds, even though it is not the node’s duty

period to transmit. For example, if the sleep time is 8 seconds, the node still

wakes up three times and sets the RTC without any other operations. After it

wakes up, the node checks whether its sleeping is done. Every time the node

wakes up from sleeping mode, it consumes about 8.5 mA and takes 12 µ s for

waking up and consumes about 2.4 mA and takes 45 µ s for setting RTC, no

matter it continues to sleep or wakes up to work, as shown in Table 6.

In the developed system, actually, the sleeping time represents the sampling

interval. The power consumption of the SurfNet node varies along with the

sampling interval, which is the inverse of the sample rate. Figure 41 presents

the power consumption as a function of the sampling interval in the SurfNet

node with sensors. By setting the different sampling intervals as 0.5, 1, 2, 4, 6, 8,

10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, and 38 seconds, the

corresponding power consumption of the SurfNet node with sensors can be

calculated based on the measurements and Formula 5 presented in Chapter 5.1.

As shown in the figure, each blue point represents an average current

consumption at one certain sampling interval.

As the figure shows, when the interval between two samples is set to less than 8

seconds, there is a sharp decrease of the average current consumption. When

the interval increases from 10 seconds to further, the consumption continues to

decrease slightly. In addition, the longer sampling interval is set, the more

82

power the node saves thus the longer lifetime the node obtains. For example, if

the sampling interval is set to 30 seconds, then the power consumption can be

around 3.48 µA. As a result, by using a button battery of 210 mAh and the

sampling interval of 30 seconds, the lifetime of the SurfNet node with

temperature and humidity sensors can be about 6 years and 7 months

theoretically. In our system, we set the sampling interval between each packet to

8 seconds, which is 0.125 Hz. Because we require the system updates the

measurements fast enough, while consumes power as less as possible.

Figure 41. Average current consumption as a function of the sampling interval

of SurfNet node.

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

Sampling Interval (s)

A
v
e
ra

g
e
 C

u
rr

e
n
t

C
o
n
s
u
m

p
ti
o
n
 (

u
A

)

83

5.4. System Performance Evaluation

In this section, to guarantee the communication quality and the low power

consumption features of the developed system, two experiments were deployed

to evaluate the performance. These results are based on the improved software

as described in the last chapter.

Based on the first experiment, the observed reliable communication range can

be 30 meters in indoor scenario and 20 meters outdoor scenario. It shows that

the communication in indoor scenario is more reliable than the one in outdoor.

One reason is that the objects in outdoor environment might increase the

attenuation of the radio signal. Another reason is that the metal walls in the

indoor environment might have improved the radio environment of the

wireless communication. Thus, the obtained result of this experiment might

change if the test condition is different.

Moreover, the result shows that the communication range is limited in both

scenarios. It is because SurfNet node has a limited RF output power that is 0

dBm in TX mode, and a limited receiving sensitivity when in RX mode, which is

-82 dBm at the data rate of 2 Mbps. These conditions have an influence on the

reliable wireless communication range of SurfNet nodes in WSN. In our system,

the reliable communication range between the SurfNet nodes is acceptable as

required.

The second experiment shows the SurfNet nodes with sensors can consume

lower power by increasing the sampling interval of the packet. In the

experiment, we applied to the nodes with 2 seconds sampling interval and 2

84

Mbps data rate that is the maximum rate in the device. In this case, the average

current consumption is approximately 0.0087. That is, if the node is equipped

with a button battery of 210 mAh, the lifetime of the node equals two and a half

years. Additionally, if the sampling interval is set to 30 seconds and other

conditions remain the same, the lifetime of the node can be about six years and

seven months in theory. Therefore, except the subsystems that are supplied by

the external power source, the SurfNet node with sensors powered by a limited

battery can consume lower power by using the developed software. This also

ensures the practicality of the developed system.

Increasing the sampling rate might slow down the update rate of the

measurements in the Linux server. Also, decreasing the data rate can shorten

the communication range. However, for some long-term monitoring

applications, which do not require high data update rate and long-range

wireless communication, it is acceptable to apply this developed system.

Because it can be developed further to improve the power efficiency, so that the

system can operate even longer, for example, increasing the sampling interval

and/or decreasing the data rate in the node.

In one word, through the experiments carried out in this chapter, it turns out

that the developed system satisfies the requirements that we demanded. It can

be applied as a wireless solution of smart home remote application to monitor

the environment.

85

6. CONCLUSIONS AND FUTURE WORK

6.1. Conclusions

The performance of the developed wireless sensor system has been evaluated in

the last chapter. It can be used to monitor environmental circumstances. This

work is completed by developing a WSN and a Linux server, which is

connected to a remote site over the 3G connection. Therefore, the measured

data in the assigned environment can flow from every single sensor node to the

sink node, then to the Linux server and eventually arrive remotely at the user

end by 3G communication.

Generally speaking, this study has achieved two main goals. The primary goal

is to design a low-power consumption WSN appropriate for the environmental

monitoring and control. The first goal has been achieved with the SurfNet node

hardware and software architecture, among which there are transmitters and

receivers in the star network topology. Moreover, the developed software has

been applied to achieve better communication stability and power efficiency of

the system.

The second goal is to set up the 3G communication from the WSN to the sink

and to the user end. In other words, this goal is to manage a module for the sink

so that it is capable of communicating by 3G to the user end. This goal has been

achieved by using the Linux board FOX G20 with a 3G module. As a result, a

newly designed hardware interface has been successfully produced as a

prototype, namely, the joint use of SurfNet nodes, UWASA Node and a Linux

86

server with a 3G module.

Consequently, this application can be also develop for industry, medical use

and some other fields, by expanding the use of the wireless sensor nodes and

creating thoroughly-examined wireless monitoring and control system with all

the necessary implementations and improvements.

6.2. Future Work

Firstly, there is a need for further study to improve the algorithms and

mechanisms of the nodes. To improve the performance of the developed system,

we might need to research the time synchronization algorithms for the WSN,

which makes the communication between the transmitter and the receiver

synchronous. At the same time, the power consumption of the node should be

re-evaluated as well in this case, because there can be more time for a node

staying in RX mode, which consumes more power.

In addition, to improve the reliability of the wireless communication, the

antenna in the node can be developed further so that the transmitting signal

gain can be increased. Thus, the reliable communication range can be increased,

as well.

Moreover, the data security of the wireless communication can be further

improved if it is required. For example, the encryption and decryption function

can be enabled. Furthermore, the AES firmware is available in NRF24LED

device. It can also be developed for the security of the data packet while

87

transmission.

Moreover, the SurfNet node equipped with sensors, can be developed for other

purposes, by changing the sensors. For example, the node can equip with an air

pressure sensor to monitor the air pressure in the environment. Moreover, the

node can be further developed for positioning or localization in a wireless

network.

For the network architecture, the range of the network could be more extensive,

for example, one larger multi-hop WSN. In this case, some advanced algorithms

and mechanisms might be focused and developed, for example, the suitable

time synchronization, precise mechanism for self-adaption, and so on.

This field of research topics could be compared to a gold mine and it has a lot to

deeply dig for, so that it makes increasingly more contributions to the

development of the technology.

88

REFERENCES

Akyildiz, Ian F., Weilian Su, Yogesh Sankarasubramaniam & Erdal Cayirci

(2002). A Survey on Sensor Networks. IEEE Communications Magazine,

Volume: 40, Issue: 8, Aug. 2002, pp. 102–114.

ACME System. FOX Board G20 - Linux Embedded SBC [online]. Available from

the Internet: <URL: http://www.acmesystems.it/FOXG20>.

Barry, Richard (2009). Using the FreeRTOS Real Time Kernel: A Practical Guide

[online]. Available from the Internet: <URL: ftp://ftp.cs.sjtu.edu.cn:990/h

ongzi/embedded%20systems/referece%20books/Using+the+FreeRTOS+Real

+Time+Kernel+-+a+Practical+Guide.pdf>.

Cuhac, Caner, Huseyin Yigitler (2012). The UWASA Node Reference Manual 3.0.0.

Vaasa, Finland: University of Vaasa, 2012.

IEEE Standard 802.15.4 (2011). IEEE Standard for Part 15.4: Low-Rate Wireless

Personal Area Networks (WPANs). Sep. 2011.

Nordic Semiconductor (2008). RF Performance Test Guidelines: White Paper v1.0

[online]. Available from the Internet: <URL: http://www.bdtic.com/Dow

nLoad/NORDIC/RF_Performance_Test_Guidelines_v1_0.pdf>.

Nordic Semiconductor (2010). Ultra-low Power Wireless System On-Chip Solution:

nRF24LE1 Product Specification, v1.6 [online]. Available from the Internet:

http://www.acmesystems.it/FOXG20
ftp://ftp.cs.sjtu.edu.cn:990/hongzi/embedded systems/referece books/Using+the+FreeRTOS+Real+Time+Kernel+-+a+Practical+Guide.pdf
ftp://ftp.cs.sjtu.edu.cn:990/hongzi/embedded systems/referece books/Using+the+FreeRTOS+Real+Time+Kernel+-+a+Practical+Guide.pdf
ftp://ftp.cs.sjtu.edu.cn:990/hongzi/embedded systems/referece books/Using+the+FreeRTOS+Real+Time+Kernel+-+a+Practical+Guide.pdf
http://www.bdtic.com/DownLoad/NORDIC/RF_Performance_Test_Guidelines_v1_0.pdf
http://www.bdtic.com/DownLoad/NORDIC/RF_Performance_Test_Guidelines_v1_0.pdf

89

<URL:http://www.nordicsemi.com/eng/nordic/download_resource/10875/3/

43943441>.

Palomäki, Heikki (2010a). SurfNet data sheet [online]. Available from

SeAMK embedded systems resource page: <URL: http://lompsa.seamk.fi

/sulautetut/>.

Palomäki, Heikki (2010b). SURFprogrammer data sheet [online]. Available from

SeAMK embedded systems resource page: <URL: http://lompsa.seamk.fi

/sulautetut/>.

Palomäki, Heikki & Marko Huhta (2010). Low Power Synchronization in Wireless

Network. Second Workshop on Wireless Communication and Applications

(WoWCA2010), 5–6 May 2010, Vaasa, Finland.

Texas Instruments (2009). CC2431 Data Sheet [online] [cited 8 Jun. 2013].

Available from the Internet: <URL: http://www.ti.com/lit/ds/symlink/cc24

31.pdf>.

Virrankoski, Reino (2012). Generic Sensor Network Architecture for Wireless

Automation (GENSEN) [online]. Vaasa, Finland: University of Vaasa, 2012.

Available from Internet: <URL: http://www.uva.fi/materiaali/pdf/isbn_97

8-952-476-387-5.pdf>.

Wikipedia. Wireless Sensor Network [online] [cited 19 Sep. 2013]. Available from

Internet: <URL: http://en.wikipedia.org/wiki/Wireless_sensor_network>.

http://www.nordicsemi.com/eng/nordic/download_resource/10875/3/43943441
http://www.nordicsemi.com/eng/nordic/download_resource/10875/3/43943441
http://lompsa.seamk.fi/sulautetut/
http://lompsa.seamk.fi/sulautetut/
http://www.ti.com/lit/ds/symlink/cc2431.pdf
http://www.ti.com/lit/ds/symlink/cc2431.pdf
http://www.uva.fi/materiaali/pdf/isbn_978-952-476-387-5.pdf
http://www.uva.fi/materiaali/pdf/isbn_978-952-476-387-5.pdf
http://en.wikipedia.org/wiki/Wireless_sensor_network

90

Yigitler, Huseyin, Reino Virrankoski & Mohammed Elmusrati (2010). Stackable

Wireless Sensor and Actuator Network Platform for Wireless Automation: The

UWASA Node, In: Aalto University Workshop on Wireless Sensor Systems

[online]. Aalto University Wireless Systems Group. Helsinki: Aalto

University.

Yigitler, Huseyin (2010). The UWASA Node Reference Manual. 1st Ed. Vaasa,

Finland: University of Vaasa, 2011.

Yigitler, Huseyin (2011). PCB of Generic Slave Module. Aalto University Wireless

Systems Group. Helsinki, Finland: Aalto University.

ZigBeeTM Alliance (2008). ZigBee Specification [online]. Available from the I

nternet: <URL: http://people.ece.cornell.edu/land/courses/ece4760/FinalPr

ojects/s2011/kjb79_ajm232/pmeter/ZigBee%20Specification.pdf>.

http://people.ece.cornell.edu/land/courses/ece4760/FinalProjects/s2011/kjb79_ajm232/pmeter/ZigBee%20Specification.pdf
http://people.ece.cornell.edu/land/courses/ece4760/FinalProjects/s2011/kjb79_ajm232/pmeter/ZigBee%20Specification.pdf

91

APPENDICES

APPENDIX 1. Schematics of generic slave module: MC_EXT_FFC1.

92

APPENDIX 2. Schematics of generic slave module: MC_EXT_FFC2.

93

APPENDIX 3. Schematics of FFC convertor of UWASA pRoot.

94

APPENDIX 4. Schematics of generic slave module: DEBUG_FFC.

Pin MC_RST is used for resetting the main controller of UWASA Node.

95

APPENDIX 5. Hardware architecture of nRF24LE1.

96

APPENDIX 6. PCB layout of SurfNet node.

97

APPENDIX 7. Circuit schematics of SurfNet node with sensors.

98

APPENDIX 8. The changing output voltage of the resistor in humidity sensor.

In the figure, the blue line represents the voltage output of the power source for

humidity sensor, while the yellow line shows the voltage of the resistor in

humidity sensor. As the figure shows, there should be a time delay for

humidity sensor stabilizing. Otherwise, the measured humidity values would

be incorrect.

99

APPENDIX 9. IAR embedded workbench for ARM IDE.

100

APPENDIX 10. Interface of SURFprogrammer by Seinäjoki USA.

101

APPENDIX 11. Sensor Node 5 and Node 6 calibrate measurements with a

digital thermo-hygrometer in environmental monitoring test.

http://www.wisegeek.com/what-is-a-hygrometer.htm

