
1

UNIVERSITY OF VAASA

FACULTY OF TECHNOLOGY

TELECOMMUNICATION ENGINEERING

Yang Qian

APPLIED CRYPTOGRAPHY IN EMBEDDED SYSTEMS

Master ś thesis for the degree of Master of Science in Technology submitted for

inspection, Vaasa, 26 October, 2013.

Supervisor Prof. Mohammed Elmusrati

Instructor Tobias Glocker

2

ACKNOWLEDGEMENT

This thesis is aimed to study both the principle and practice of cryptography and security

for embedded systems.

First of all, I would like to express sincere appreciation to my thesis instructor Tobias

Glocker for his tremendous and patient instruction and guidance during my thesis

composing process. Moreover, I shall present big thanks to the staffs in Vaasa University

who have provided the essential equipment for my thesis. As well as my classmates and

friends in Finland who encourage me and help a lot in study and daily life. At last, I

sincerely express my gratitude to Tobias Glocker for his immense practical advice in

completing my thesis.

3

TABLE OF CONTENT

ACKNOWLEDGEMENT .. 2

ABBREVIATIONS .. 5

ABSTRACT ... 7

1. INTRODUCTION .. 8

2. SYMMETRIC CRYPTOGRAPHY ... 10

2.1. Block Cipher Principles ... 10

2.2. Data Encryption Standard (DES) .. 12

2.3. Advanced Encryption Standard (AES) .. 13

2.4. Pseudorandom Number Generation and Stream Ciphers .. 21

2.5. Blowfish .. 21

3. ASYMMETRIC CRYPTOGRAPHY .. 23

3.1. The RSA algorithm .. 24

3.2. Diffie-Hellman Key Exchange .. 25

3.3. El GAMAL Cryptographic System ... 26

3.4. Elliptic Curve Cryptosystem ... 28

3.5. Hash Functions .. 33

3.6. Key Management and Distribution.. 35

3.7. User Authentication ... 37

4. ATTACKS .. 39

4.1. Attacks on Hardware and Network ... 40

4.1.1. Power Consumpution and Electromagetic Radiation Attack 41

4.1.2. Time Attacks ... 41

4.1.3. Fault Induction Attacks ... 41

4

4.1.4. Some Possible Countermeasures ... 42

4.2. Attacks on Algorithm .. 42

4.2.1. Uncivilized search ... 42

4.2.2. Pohlig-Hellman algorithm ... 43

4.2.3. Baby-step Giant-step algorithm (BSGS) ... 43

4.2.4. Semaev Smart Satoh Araki Attack .. 44

5. EXPERIMENTAL PART .. 45

5.1. Hardware for Simulations .. 45

5.2. Software used for implementation and for testing .. 47

5.3. Selection and Implementation of Cryptographic Algorithms 49

5.4. Result of the implementation ... 55

5.5 Time Consumption of Different Key Length ... 58

5.6 Power Consumption of Different Frequencies ... 63

6. CONCLUSION AND FUTURE WORK ... 67

REFERENCE ... 69

APPENDIXES .. 73

APPENDIX 1. S-box .. 73

APPENDIX 2 .CAESAR Encryption ... 74

APPENDIX 3. AES Encryption and Decryption .. 78

5

ABBREVIATIONS

AES Advanced Encryption Standard

BSGS Baby Step/Giant Step Method

CM Complex Multiplication

CRT Chinese Remainder Theorem

DES Data Encryption Standard

DHP Diffie-Hellman Problem

DLP Discrete Logarithm Problem

DSA Digital Signature Algorithm

DSS Digital Signature Standard

ECC Elliptic Curve Cryptosystem

ECPP Elliptic Curve Primality Providing Method

ECDLP Elliptic Curve Discrete Logarithm Problem

GF Galois Field

HTTP Secure Hyper-Text Transfer Protocol

IEEE Institute of Electrical and Electronics Engineers

IDEA International Data Encryption Algorithm

KDC Key Distribution Centre

LCM Least Common Multiple

LED Light-Emitting Diode

MOV Menezes-Okamoto-Vanstone attack

6

NAF Non-Adjacent Form

NFS Number Field Sieve

NIST National Institute of Standards and Technology

NSA National Security Agency

OEF Optimal Extensive Field

ONB Optimal Normal Basis

PB Polynomial Basis

PIN Personal Identification Number

PKC Public Key Cryptography

PRF Pseudorandom Function

PRNG Pseudorandom Number Generator

RAM Random Access Memory

RC2 Rivest Cipher

RNS Residue Number System

RSA RSA Cryptosystem

SCA Side Channel Attack

SD Signed Digit

SEA Schoof-Elkies-Atkin algorithm

SEC Standard for Efficient Cryptography

TRNG True Random Number Generator

7

UNIVERSITY OF VAASA

Faculty of Technology

Author: Qian Yang

Topic of the Thesis: Applied cryptography in Embedded Systems

Name of the Supervisor: Professor Mohammed Salem Elmusrati

Instructor: Tobias Glocker

Degree: Master of Science in Technology

Department: Department of Computer Science

Degree Program Degree Program in Information Technology

Major of Subject: Telecommunication Engineering

Year of Entering the University: 2010

Year of Completing the Thesis: 2013 Page: 98

ABSTRACT

Nowadays, it is widely recognized that data security will play a central role in the design of

IT devices. There are more than billion wireless users by now; it faces a growing need for

security of embedded applications.

This thesis focuses on the basic concept; properties and performance of symmetric and

asymmetric cryptosystems. In this thesis, different encryption and decryption algorithms

have been implemented on embedded systems. Moreover, the execution time and power

consumption of each cryptography method have been evaluated as key performance

indicators. CAESAR and AES are implemented for the microcontroller (ATmega8515).

The STK 500 board is used for programming of the ATmega8515. Furthermore it is used

for the communication between the microcontroller and PC to obtain the performance

advantages of the cryptography methods. Time and power consumption are measured by

using an oscilloscope and a multimeter. Furthermore the performance of different

cryptography methods are compared.

KEYWORDS: Cryptography, Embedded System, AES, ECC, security, encryption,

decryption

8

1. INTRODUCTION

The embedded systems and handheld devices have been widely developed in

comparison to a few years ago. From video equipment to mp3 players, cars to smart

phones, and washing machines to home thermostats, more and more embedded devices

interact with the real world and are connected to the internet, and then it’s very common

that those devices meet attacks, hackers and threats. Security issues might result in

physical side effect as potential damages, personal injury, and even death, so it will play

a central role in the design of future IT systems.

Due to the rapid growth of network communication, embedded devices and other

transactions face the challenge of an increasing demand of data security, which concerns

authentication for user admission, intrusion detection as well as any forms of attacks.

Therefore, the security requirements have become critical. The main security issues of

embedded systems will encounter when the data is routed over communication channels

such as Ethernet, Wi-Fi, WiMAX or Bluetooth. Unfortunately, the technology of

security applied in desk computing and enterprise cannot be executed in embedded

systems. But security issues for embedded systems are more than the problems being

addressed for desktop computing.

The possibility of adding security can be specified by hardware or by implementing the

cryptography algorithms in software. This project focuses on cryptography and the

9

implementation of a cryptographic algorithm to protect data by using encryption

technology on embedded systems.

There are several requirements and challenges of the implementation of cryptography

algorithms on embedded systems. Embedded systems are highly cost sensitive, the

length of cryptography key cannot be too big; a slow running cryptographic algorithm

will lead to a long waiting time. The cryptographic technology can be divided into the

two most common algorithmic models: symmetric cipher model and asymmetric-key.

Asymmetric-key algorithms are very computationally intensive compared to symmetric-

key operations. Sufficient cryptographic algorithms need to be selected according to the

hardware and processor of the embedded systems.

The thesis consists of six chapters. In the first three chapters, the theory of cryptosystem

is explained, symmetric cryptography and asymmetric cryptography. Chapter four

introduces several attack methods. After the theoretical introduction it follows the most

significant part of the thesis, the experimental part. Chapter five describes the software

and hardware for the implementation, as well as the implementation algorithms, result

and analysis of the encryption and decryption. Conclusion and future development

regarding to this topic is given in the last chapter “CONCLUSION AND FUTURE

WORK”.

10

2. SYMMETRIC CRYPTOGRAPHY

Symmetric encryption is also known as conventional encryption or single-key

encryption. The encryption and decryption processes are performed by using the same

key. It contains five elements: Plaintext, Encryption Algorithm, Private Key, Ciphertext

and Decryption Algorithm, as the symmetric cryptosystem model is showed in Figure 1.

This system requires a strong encryption algorithm and the security of the private key.

Figure 1. Simplified model of symmetric cryptosystem (Stallings 2011: 57).

2.1. Block Cipher Principles

Block Cipher is a type of symmetric encryption/decryption scheme that transform a

fixed-length block of plaintext into a ciphertext block of the same length. The encryption

transformation process is under the use-provided private key (See Figure 2). Decryption

is the inverse process of encryption to the ciphertext using the same private key and will

result in the original plaintext which was encrypted. Typically the block size is 64 bits or

128 bits.

11

Figure 2. Block Cipher (Stallings 2011: 93).

There are many common block ciphers in use today. These are outlined in Table 1.

Table 1. Common Block Cipher Features (Ian McCombe 2007).

Name Block Size (bits) Key Size (bits) Year

Developed

DES 64 56 1975

RC2 64 8-128(default 64) 1987

AES 128 128,196 or 256 1998

IDEA 64 128 1991

Lucifer 48 48 1971

BlowFish 64 32-448(default

128)

1993

Intel Cascaded Cipher 128 128 2006

12

2.2. Data Encryption Standard (DES)

The Data Encryption Standard is adopted in 1977 by the National Institute of Standards

and Technology (NIST), and the most widely used encryption scheme is based on it. The

encryption process of DES is to transform a 64-bit input in a series of steps into a 64-bit

output within a 56-bit key. The same key is used for the decryption process.

In Figure 3, the first step is permutation and the last step is inverse permutation, after

permutation, the block is broken into two 32 bits blocks, the left one is
iL and the right

part is
iR . Then there are 16 rounds of identical operations, but each of them uses an

individual key
iK 1: ii RL),(: ,11 iiii KRfLR (1)

In decoding,),(:,: 11 iiiiii KLfRLLR
 (2)

13

Figure 3. DES working process (Martti 2009:22).

Traditional DES has only 56 keys and therefore it does not meet the requirements of the

current distributed open network data encryption security. DES is considered as unsafe

after increasing of the clock rate of the computer.

2.3. Advanced Encryption Standard (AES)

Advanced Encryption Standard (AES) is the most popular and secure symmetric system

used in the professional industrial application, which is intended to replace DES for

commercial applications. AES is a specification for encryption of the electronic data and

it was published in 2001 by the National Institute of Standard and Technology (NIST).

AES is the first publicly accessible and open cipher approved by the National Security

14

Agency (NSA) for the top secure information. In Comparison to AES, DES is insecure

due to the small key. (Wikipedia AES 2012a.)

Sometimes the algorithm is called Rijndael, which is combined by the names of the two

Belgian cryptographers, Joan Daemen and Vincent Rijmen. The basic structure of AES

is substitution-permutation network, which can work fast on both software and hardware.

The cipher takes the plaintext block size of 128 bits. The key sizes can be 128, 192 or

256 bits. (Wikipedia AES 2012a.)

AES operates on a 4×4 square matrix of bytes. This block is termed into the State array,

and the AES cipher consists of a number of repetitions of transformation rounds, where

the number of rounds depends on the key length (Table 2).

Table 2. Round and key length.

No. of rounds Key Length (bytes)

10 16

12 24

14 32

The overall AES algorithm structure can be divided in the following steps as shown in

Figure 4, which models the whole process of the AES encryption and decryption and

indicates the sequence of the transformation in each round.

15

Figure 4. AES Encryption and Decryption (Stallings 2011: 178).

Refer to the Figure 4, the process of each steps can be listed as:

16

1) Key Expansion.

AES processes the data block as a single matrix during each round using substitutions

and permutations. Round keys are derived from cipher key which is expanded into an

array of forty-four 32-bit words.

2) Initial Transformation.

A simple bitwise XOR is applied to each byte of the state and the portion of the

expanded key.

3) Rounds.

Four different stages are used; one of permutation and the others are substitution:

Substitute Byte

ShiftRows

 MixColumn

AddRoundKey.

 Those four stages are repeating each round except the final round.

4) Final Round (no MixColumn)

The final round of both encryption and decryption consist three stages:

Substitute Byte

17

ShiftRows

AddRoundKey.

Figure 5. SubBytes step (Wikipedia AES 2012a).

Substitute Byte—each byte is replaced with another one according to an S-box (in

APPENDIX 1), it is a non-linear substitution step shown in Figure 5. The element

is replaced by the using the S-box. The S-box contains all possible 256 2-byte

values for permutation. The substitution process is working in the following way: the

left side byte is used as row value and the right side byte is used as column number.

Then lookup the S-box within these row and column values to pick another 2-byte

output value.

 iiji aSb ,, (3)

18

Galois Field is called finite field, which is a field that contains a finite number of

elements. The method of S-box substitution is based on the property of GF (82), the

addition in GF (82) is XOR.

1) Inverse in GF(82), as the input element ωϵGF(82), the inverse element of ω is

X:

X=

00

0254

1

 (4)

2) Then the sub element of X form byte to bits are (01234567 ,,,,,,, xxxxxxxx),

According to (Stallings 2011: 178) the transformation is:

0

1

1

0

0

0

1

1

11111000

01111100

00111110

00011111

10001111

11000111

11100011

11110011

7

6

5

4

3

2

1

0

'

7

'

6

'

5

'

4

'

3

'

2

'

1

'

0

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

 (5)

ShiftRows—is the row forward shift process. The first row remains the same. For the

second row, shift to left 1-byte circular. For the third row, shift to left 2-byte circular.

Then the fourth row, shift to left 3-byte circular.

19

The transformation can be expressed as:

3,3

2,2

1,1

,0

,3

,2

,1

,0

j

j

j

j

j

j

j

j

b

b

b

b

c

c

c

c

 (6)

The whole process is represented in Figure 6 clearly.

Figure 6. Shift Rows (Wikipedia AES 2012a).

MixColumn—is a forward mix column transformation. The mathematical model of

intermixing between the different columns is in order to reach the confusion of the

encrypted order. The whole process can be defined by the following mathematical model:

 (7)

'

3,3

'

2,3

'

1,3

'

0,3

'

3,2

'

2,2

'

1,2

'

0,2

'

3,1

'

2,1

'

1,1

'

0,1

'

3,0

'

2,0

'

1,0

'

0,0

3,32,31,30,3

3,22,21,20,2

3,12,11,10,1

3,02,01,00,0

02010103

03020101

01030201

01010302

ssss

ssss

ssss

ssss

ssss

ssss

ssss

ssss

20

AddRoundKey—is a forward and inverse transformation. This step is the process that

128 bits of the state are bitwise XORed with the 128bit of the round key. The

mathematic model can be expressed as:

j

j

j

j

j

j

j

j

j

j

j

j

k

k

k

k

d

d

d

d

e

e

e

e

,3

,2

,1

,0

,3

,2

,1

,0

,3

,2

,1

,0

 (8)

Refer to Figure 7; the detail of the transformation process is represented.

Figure 7. AddRoundKey (Wikipedia AES 2012a).

21

The algorithm for decryption makes use of the expanded key in reverse order. The step

AddRoundKey is the same as in encryption. However, the decryption algorithm is no

identical to the encryption algorithm. All the four stages are reversible, and encryption

and decryption are going in opposite vertical directions.

2.4. Pseudorandom Number Generation and Stream Ciphers

The real random number (or random events) in a generating process is according to the

experimental performance of distribution probability, the result is unpredictable, is not

visible. The pseudorandom number is generated according to a certain algorithm

simulation, the sequences of numbers that are not statistically random. And the result is

certain and visible.

Random numbers are widely used in cryptography based on a number of network

security algorithms and protocols. There are some random and pseudorandom number

generators. TRNG is the true random number generator. It is the source of true analog

randomness to a binary output. PRNG is a pseudorandom number generator. PRF is a

pseudorandom function. Those two generators are used to produce pseudorandom

numbers. Both require a fixed value as input, called the seed that should be different

every time to guarantee randomness and unpredictability.

2.5. Blowfish

Blowfish is a substitute for the DES and IDEA encryption algorithm. It is a symmetrical

block cipher (secret or private key), use that a variable key length from 32 to 448 bits.

22

(The U.S. government prohibits the encryption output software to use the key which

key-length is more than 40, unless special-purpose software). Blowfish algorithm is an

alternative encryption method, proposed in 1993 by Bruce Schneier. After the birth of

the 32-bit processor, the speed of blowfish algorithm in the encryption beyond the DES

attracted the attention of the people. Blowfish is a not registered patent, it can be used

free. The round function is shown in Figure 8.

Figure 8. The round functions of Blowfish.

There are some features of blowfish:

 Blowfish is fast

 Blowfish needs only 5 KB of memory is easy to implement and compact

 Blowfish is considered secure

 Encryption consist 16+1 phases, each phase consists of ⊕, + and S-box operation

 Decryption is identical to encryption; keys are used in inverse order. (Martti

2009:35.)

23

3. ASYMMETRIC CRYPTOGRAPHY

Asymmetric cryptography is also known as public-key cryptography, which is a form of

a cryptosystem in which encryption and decryption are performed by different keys.

There is one public key and one private key. The public key is widely distributed, while

the private key is kept secure.

Figure 9. Simplified model of asymmetric cryptography (Information Security).

The process of asymmetric cryptography is to transform the plaintext into ciphertext by

using the public key of the receiver (see Figure 9). The receiver decrypts the ciphertext

with the private key. Anyone who wants to send a message to Alice can encrypt it using

Alice’s public key but only Alice can decrypt it with her private key. The private key

should be kept secret at all times.

The use of public-key cryptosystem can be divided into three categories: Encryption/

decryption; digital signature; key exchange. (Stallings 2011: 57.)

24

3.1. The RSA algorithm

RSA is one kind of public-key algorithm; it stands for Ron Rivest, Adi Shamir, and Len

Adleman who first publicly described it in 1978.

The RSA scheme is a block cipher in which the plaintext and ciphertext are integers

between 0 and n-1 for some n. The public key is created and published by the product of

two large prime numbers, along with an auxiliary value. The prime factors must be kept

secret. Anyone can use the public key to encrypt a message, only someone with

knowledge of the prime factors can feasibly decode the message. At present RSA is the

most widely used public key cryptography, which is based on the principle of trapdoor

one-way function, as it is shown in the Figure 10,

Figure 10. RSA is based on trapdoor one-way function principle.

The RSA algorithm is simple and easy to use. But as decomposition method of big

integers is progressing, and the improvement of the speed of the computers and the

25

development of computer networks, the key length has to be increased in order to

guarantee the safety of RSA. Increasing the key length will slow down the encryption

and decryption speed. Hardware based implementation would be difficult. Thus RSA

will be limited in terms of the key length.

Compared to DES, the speed of RSA is 1000 times slower than DES in hardware. In

software, RSA is 100 times slower than DES. Those numbers might be changed slightly

as technology changes, but the speeds of RSA can never approach the symmetric

algorithms. Refer to the Table 3, it shows RSA speeds for different modulus lengths

with 8-bit public key.

Table 3. RSA Speeds for Different Modulus Lengths with an 8-bit Public Key

(J.B.Lacy 1993).

 512 bits 768 bits 1,024 bits

Encrypt 0.03 sec 0.05 sec 0.08 sec

Decrypt 0.16 sec 0.48 sec 0.93 sec

Sign 0.16 sec 0.52 sec 0.97 sec

Verify 0.02 sec 0.07 sec 0.08 sec

3.2. Diffie-Hellman Key Exchange

Diffie-Hellman Key Exchange is a security protocol. The math method is simple. Alice

and Bob can use this algorithm to generate a secret key. First, Alice and Bob agree on a

large prime, n and g, g < n and g is a primitive root of n. These two integers don’t need

26

to be secret; Alice and Bob can agree to them over some insecure channels, which even

are common among a group of users.

The algorithm works as follows:

(1) Alice Key Generation:

ngX x mod , x is a large random integer

(2) Bob Key Generation:

ngY y mod , y is a large random integer

(3) Calculation of secret key by Alice:

nYk x mod

(4) Calculation of secret key by Bob:

nXk y mod'

Diffie-Hellman key exchange protocol can easily be extended to work with more people,

just add more people and more rounds of computations.

This algorithm is not suitable for embedded systems. It can be used for the key

distribution. Both sides can use this algorithm to generate a secret key, but it cannot be

used for encryption and decryption of the message. (Stallings 2011: 327.)

3.3. El GAMAL Cryptographic System

The ElGamal algorithm is public-key cryptography which is based on Diffie-Hellman

key exchange. ElGamal contains key generation, encryption algorithm and decryption

27

algorithm which were described by Taher Elgamal in 1984. It can be used for both

digital signature and message encryption.

Key generation

Alice generates a key pair, first two random numbers are chosen, g and x; a prime p, g

and x are smaller than p.

Alice computes pgy x mod , the public key is y, g and p, can be shared among groups

of users. And x is kept private.

ElGamal Encryption

Plaintext is M, a random number k is chosen, k is relatively prime of p-1.

a, b are ciphertexts, the length is two times of plaintext,

)(mod pga k (9)

)(mod pMyb k (10)

Decrypting:)(mod/ pabM x (11)

ElGamal Signatures

The signing message is M, a random number k is chosen, k is relatively prime of p-1,

M= (ax+bk) mod (p-1) (12)

This signature is the pair a and b. The value of k should be kept private.

Verifying:)(mod)(mod pgpay Mba (13)

http://en.wikipedia.org/wiki/Taher_Elgamal

28

Table 4. Gives some sample software speed of ElGamal (J.B.Lacy 1993).

 512 bits 768 bits 1024 bits

Encrypt 0.33 sec 0.80 sec 1.09 sec

Decrypt 0.24 sec 0.58 sec 0.77 sec

Sign 0.25 sec 0.47 sec 0.63 sec

Verify 1.37 sec 5.12 sex 9.30 sec

Table 4 shows that ElGamal when comparing the measurement with Table 3 is slower

than RSA.

3.4. Elliptic Curve Cryptosystem

In 1985, Miller and Koblitz firstly suggested to use Elliptic Curve in cryptography

independently, which is based on the algebraic structure of elliptic curves over finite

fields. Elliptic Curves are becoming more popular is because the keys size is much

shorter than the public key systems which are based on the integer factorization or finite

field discrete logarithm problem. Compared to RSA, the security level of ECC is higher.

A key of 160 bits in ECC is secure as a 1024 bits RSA key as shown in Table 5. As a

result, due to the short key length, the elliptic curve cryptosystem needs less bandwidth,

less running time as well as lower power cost and it is suitable for the development of

security products like PDA, mobile phone and embedded card .It will replace RSA in the

near future. ECC becomes one of most efficient public-key cryptosystem.

29

Table 5. Key length of ECC and RSA with same security level.

ECC key length

(bits)

RSA key length

(bits)

Crack Time /MIPS

(year)

ECC/RSA key

length rate

106 512 410 5:1

160 1024 1110 7:1

210 2048 2010 10:1

600 21000 7810 35:1

In general, cubic equations for elliptic curves take the Weierstrass equation:

edxcxxbyaxyy 232

 (14)

Where a, b, c, d, e are real numbers and x, y take the values of real numbers. The elliptic

curve can be seen as a set of all solutions to equations of the form:

baxxy 32

 (15)

The curve discriminant equation is: =-16(23 274 ba) (16)

A group can be defined on a set E (a, b) for specific values of a and b in Equation (14),

the following condition is met:

0274 23 ba (17)

The process of ECC Diffie-Hellman Key Exchange can be done by the following step.

First pick a large integer q, which is a prime or an integer of the form of m2 . Then the

30

elliptic curve parameters a, b must be applied for Equation (14) or (15), which defines

the elliptic group of the points),(baEq . In the next step a base point G= (11, yx) in

),(baEq is selected, whose order is larger than value n.

A key exchange between user Alice and Bob can be described in Figure 11.

Figure 11. ECC Diffie-Hellman Key Exchange (Stallings 2011: 343).

ECC Encryption and Decryption

 User Alice Key Generation

Select private An nnA

Calculate public AP GnP AA

 User Bob Key Generation

Select private Bn nnB

Calculate public BP GnP BB

 Calculation of Secret Key by User Alice

BA PnK

Calculation of Secret Key by User Bob

AB PnK

31

Choose Elliptic curve over GF (m2) for instant, the preparation assignments are:

 Select GF(p)

 Select elliptic curve E

 Select base point G(x,y)

 Applied algorithm for transforming plaintext into the points of elliptic curve, called

encryption process

 Generating the private and public keys between sender Alice and receiver Bob.

Select one private key n, calculate the public key),(yxnnGP . For Alice, the

private key is An , and the public key is),(yxnGnP AAA . For Bob, the private

key is Bn and the public key is),(yxnGnP BBB .

Encryption: Alice sends encrypted message to Bob

 Choose random number k, 11 pk

 Get the corresponding points),(mm yx by encoding the plaintext;

 Calculate the cipher text }),(),,({ Bmmm kPyxyxkC , and the cipher text here

turns into two points on the elliptic curve.

Decryption, Bob decrypts the received message from Alice:

 Calculation

),(

),(),(),(

)),(())),((),((

)()),((

mm

BBmm

BBmm

BBmm

yx

yxknyxknyx

yxknyxnkyx

kGnkPyx

 (18)

32

 Get the corresponding plaintext by decoding the points),(mm yx .

The study and implementation of elliptic curve cryptography is now becoming a focus in

public-key cryptosystems, and its foundation relies on the difficulty to solve the discrete

logarithm of the elliptic curve Abelian group.

The set of points on the elliptic curve, together with a special point O called the point at

infinity can be equipped with an Abelian group structure by the following addition

operation.

Additional algorithm:

Input: modulus p, integer]1[, pba

Output: c=(a+b) mod p

000 bac

For i from 1 to t-1 do: carrybac 111

If carry =1, then c=c-p

If pc , then c=c-p

Return (c)

Subtraction algorithm

33

Input: modulus p, integer]1[, pba

Output: c= (a+b) mod p

000 bac

For i from 1 to t-1 do: carrybac 111

If carry =1, then c=c+p

Return (c)

3.5. Hash Functions

A hash function is any algorithm that maps large data sets of variable lengths to smaller

fixed length data sets. For instance, an address name, having a variable length, could be

hashed to a single integer. The values returned by a hash function are called hash values,

hash codes, hash sums, checksums or simply hashes.

Some common uses hash functions:

Mxxf maxmod:)((19)

When max (M) is a prime and normal not close to n2 ;

MlongitXxtruncxf maxmod)max*)max/((:)((20)

This is used for integer;

http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Data_set
http://en.wikipedia.org/wiki/Integer

34

)1000000mod)1000*(:)(xdivxxf (21)

First Square meter then get the middle value.

In original sense, good hash functions are usually required to meet certain properties

listed below:

Determinism--the hash procedure must be deterministic. It means for a given input value

the output hash value must be the same.

Uniformity-- A good hash function should map the expected inputs as evenly as possible

over its output range. That is, every hash value in the output range should be generated

with roughly the same probability.

Variable range—in many applications, the hash function range may be different for each

run of the program.

Variable range with minimal movement—the hash table is refers to a dynamic hash table

when the hash function is used to store values in a hash table that outlives the run of the

program, and the hash table needs to be expanded or shrunk.

Data normalization—accomplishes normalizing the input before hashing it. That is, any

two inputs that are considered equivalent must yield the same hash value.

Continuity—Hash function is used for searching similar data, which must be as

continuous as possible.

http://en.wikipedia.org/wiki/Probability

35

3.6. Key Management and Distribution

Key management includes key generation, storage, distribution, using and destroy. The

main target is to make sure that the key delivery via the public network is safely. A good

key management system should include three aspects:

 Keys are hard to be stolen

 Under certain conditions, it should be useless to steal the keys because they have a

limited lifetime

 Key distribution and exchange process are transparent to the users; users don’t need

to manage the keys personally.

The key distribution is the way that delivers a key to two parties who are intended to

exchange secure encrypted data. A protocol is needed that provides a secure distribution

of the keys. There are two kinds’ keys that are involved in key distribution. Master keys

are infrequently used and they last for a long time. The other is session keys, which are

generated and distributed for temporary use between two parties.

Key distribution technique is a term that refers to the means of delivering a key between

two parties that want to exchange data without allowing others to see the key. So far,

the two main techniques are described Key Distribution Centre (KDC) and Diffie-

Hellman. The process of Diffie-Hellman is described in chapter 3.2.

Kerberos is an authentication service designed for key distribution environment, it

applies symmetric cryptography algorithms to establish a trustable third party KDC

36

verification system and verifies the authenticity of the two parties that communication

with each other. The main function of Kerberos is to solve the key management and

distribution. There are three parties in this communication: two communication parties

that need to be verified and a trustable third party (KDC). Each party should only keep

the encryption key with KDC secure, and KDC will safeguard the different encryption

keys for individual users. When two parties want to communicate, they apply to KDC

and KDC will encrypt the session keys by their individual keys .Then keys will be sent

back (Stallings 2011: 435).The process is illustrated in Figure 12.

Figure 12. Key Distribution Scenario (Stallings 2011: 439).

37

3.7. User Authentication

In most computer security contents, user authentication is a mean of identifying the user

and verifying that the user is allowed to access some strict network. For example, a user

must be identified as a particular student to access the universities weboodi system or

webmail service. A user must be identified as a member of IEEE to in order to view the

IEEE materials. Furthermore, a user must be identified as a system administrator in

order to access the document about the network administration. User authentication is

the basis for access control and for user accountability.

There are two steps for remote user authentication:

 Identification step: Presenting an identifier to the security network, like user name

and password.

 Verification step: Server and database. Generate authentication information to

confirm the user’s access right.

There are four possibilities that can be used individually or together to authenticate the

users.

 Individual knows: A password, a PIN, or answers to a prearranged set of questions.

 Individual possesses: Tokens, like cryptography keys, smart cards, physical keys

and electronic keys.

 Static biometrics: Fingerprint, face and retina.

 Dynamic biometrics: Voice pattern and handwriting characteristics

38

The remote User-authentication can be divided into two methods: mutual authentication

and one-way authentication. Mutual authentication should consider the key distribution

issues and should enable two communication parties to satisfy themselves mutually

about the other’s identity; one-way authentication can be applied for the e-mail system.

A Remote user authentication can use symmetric encryption and asymmetric encryption

with Kerberos service.

39

4. ATTACKS

Attacks can be active or passive. An ‘active attack’ attempts to delete, add or use other

method to affect the channel. A ‘passive attack’ only monitors the channel, does not

affect the system resources.

Types of attacks:

 Passive Attack

 Within ciphertext: attempts to get secret key or plaintext by observing

ciphertext

 Knows some plaintext and relative ciphertext, but this attack it difficult to

realize

 Knows some plaintext, attempts to know the encryption algorithms

 Choosing relative plaintext to attack

 Choosing ciphertext to attack

 Choosing relative ciphertext to attack

40

Refer to Figure 13, which is shown the four attacks on Four Levels:

Figure 13. Four different levels attack.

Refer to the elliptic curve cryptosystem; most attacks on ECC are focusing on

algorithms.

4.1. Attacks on Hardware and Network

It can be realized by a Side-Channel Attack (SCA), this method is powerful because

there is no unified counter plan. SCA can be classified by invasive attacks and non-

invasive attacks. Invasive attacks include probing and fault induction attacks. Non-

invasive attacks include timing attacks and leaked-information attacks.

Attacks on Mechanisms

Attacks on Protocols

Attacks on Hardware and Network

Attacks on algorithm

41

4.1.1. Power Consumpution and Electromagetic Radiation Attack

In this kind of attack, the rival get system leaked information by means of measures or

by analyzing the switch, current and power. Those information include hamming

distance, bit string and operation order. Some attacks can even get the RAM information

via CPU RAM address.

Similar, they can get the information via the equipment’s electromagetic radiation.

Because of electromagnetic radiation, an attacker can get data without getting close to

the equipment.

4.1.2. Time Attacks

The target of time attack is a computational process nD, where n is fixed, and where D

is a rational point on the elliptic curve.This kind of attack is to analyse the selected time.

The principle is that for a software or a device, different input consumes time differently.

In theory, time randomization and process interrupt randomization are the ways to resist

timimg attack. But in practice, those method are too strict, there is no perfect resist

method.

4.1.3. Fault Induction Attacks

Fault Induction Attacks is to do wrong operation deliberately, get the secure information

from the output result.

42

The method for assist this attack is simple, examine intermediate result. If the

intermediate result not belongs to the curve point group, recalculate it.

4.1.4. Some Possible Countermeasures

 Non area differentiation in basic operation, at least make operation atomic;

 Group randomized, at least for base point;

 Check if the intermediate result is reasonable;

 Well stored precomputation result in hard disk;

 Electromagnetic shielding;

 Random process interrupt, random timing. (Avanzi 2005.)

4.2. Attacks on Algorithm

These kind attacks mostly rely on the mathematical algorithm, for ECC, it will aim to

attack the ECC discrete logarithm ECDLP. Because of the features of ECC are

complicated and attractive, it can be observed from different angles and get different

properties. Meanwhile, the attacker obtains ideas from its characters.

4.2.1. Uncivilized search

Uncivilized search on elliptic curve is : a given curve E, point P and a random point Q,

calculate P, 2P, 3P…until get Q=IP. The worst situation of this algorithm needs process

n times elliptic curve addition, complexity is O(n).

43

4.2.2. Pohlig-Hellman algorithm

This algorithm makes use of factorization. By means of factoring n, the ECDLP how to

solve l change into how to solve all the prime factors of n. Then regain l by CRT.

In order to withstand this attack, when we choose elliptic curve, the curve degree should

be aliquot of a big prime n or be a big prime.

4.2.3. Baby-step Giant-step algorithm (BSGS)

We describe the BSBG method for a general finite abelian group, with n elements. By

the Pohlig-Hellman simplification it can be assumed that n is prime. This method is the

improvement of uncivilized search, but it costs more Random Access Memory (RAM).

By means of precalculated and store the number of n elliptic curve points, the

complexity of the worse situation can be decreased to O (n) Pollard Rho Method. And

the main problem of the method is that the storage space of O (n) group elements.

This method in practice is a way of integer generation, and can be used for big integer

factorization. When solving the ECDLP problem, Pollard Rho method simplify Baby-

step Giant-step which saves memory space. After this improvement, the complexity of

this method is around O (
2

n). Based on this method, it is possible to parallelize

Pollard Pho method, arithmetic complexity decreased to O (
r

n
2

)

44

4.2.4. Semaev Smart Satoh Araki Attack

Prime Field Anomalous can solve ECDLP quickly. But this attack won’t diffuse to other

infinite field. It is to solve the ECDLP in subgroups of order p, where p is the

characteristic of the field of the definition of the curve. An attack can be avoided by

checking if the infinite element numbers are equal to the elliptic curve point members.

45

5. EXPERIMENTAL PART

In the experimental part, the content is about simulation regarding to security and

performance on CAESAR and AES.

5.1. Hardware for Simulations

The STK500 board is manufactured by ATMEL in Sweden and it is equipped with an

ATmega8515 microcontroller (see Figure 14), starter kit for 8-bit AVR. These

microcontrollers are available in different configurations. It consists of a RS-232

interface to PC for programming and control, an additional RS-232 port for general use.

It works with a regular power supply for 10-15V DC power.

Figure 14. ATMEL STK 500.

46

The key features of STK500 I used are listed below:

 RS232 Interface to PC for programming and control

 Regulated power supply for 10-15V DC power

 Sockets for 8-pin, 20-pin, 28-pin, and 40-pin AVR devices

 Parallel and Serial High-Voltage Programming of AVR devices

 Serial In-System Programming (ISP) of AVR devices

 In-System Programmer for Programming AVR devices in External Target

System

 8 Push-buttons for general use

 8 LEDS for general use

 All I/O ports easily accessible through pin header connectors

 Additional RS232 port for general use

 Expansion connectors for plug-in modules and prototyping area

And the key Parameter Value of the chipcon is listed below:

 Flash (Kbytes): 8 Kbytes

 Pin Count: 44

 Max. Operating Frequency: 16 MHz

 CPU: 8-bit AVR

 # of Touch Channels: 16

 Hardware QTouch Acquisition: No

 Max I/O Pins: 35

 Ext Interrupts: 3

 USB Speed: No

 USB Interface: No

47

Figure 15. STK 500 Components (ATMEL User guide).

5.2. Software used for implementation and for testing

The software which is used to program the microcontroller on STK500 development

board is Atmel Studio 6.0. Realterm is used for the communication between the PC and

the microcontroller. The FrontPage of Atmel Studio 6.0 is shown in Figure 16.

48

Figure 16. AtmelStudio 6.0 FrontPage.

The experiment will be done with Realterm, which is created mostly to represent a better

alternative to the ubiquitous HyperTerminal application. In this project, the most

impressive part of this application is the fact that it can emulate almost any kind of

terminal used for serial communication. The FrontPage of Realterm is shown in Figure

17.

49

Figure 17. The Realterm FrontPage.

5.3. Selection and Implementation of Cryptographic Algorithms

The experiment is done with three programs containing the implementations of

cryptography algorithms CAESAR and AES. The procedure is shown in Figure 18.

First the program that contains the selected crypto graphical algorithms is compiled and

uploaded to the microcontroller. This is done with Atmel AVR studio. In this case serial

cable must be connected with the programming port of the STK500 board. Then the

serial cable must be connected with the communication serial port in order to

communicate with the microcontroller over the Realterm software.

50

In Figure 18, the STK 500 is connected to the PC via RS232 port. There are two RS232

ports on STK 500, one is for programming which is occupied when using Atmel studio

6.0; the other one is for communication when communicates with Realterm.

Figure 18. Schematic Diagram.

A. CAESAR

CAESAR encryption (Caesar cipher), known as shift cipher, is the simplest encryption

method. It is a type of substitution cipher in which each letter in the plaintext is replaced

by a letter some fixed number of positions down the alphabet. Each letter in the alphabet

will be replaced with a constants right shift k.

http://en.wikipedia.org/wiki/Substitution_cipher
http://en.wikipedia.org/wiki/Plaintext
http://en.wikipedia.org/wiki/Alphabet

51

Figure 19. CAESAR letter left shift of 3 (Wikipedia CAESAR 2013).

See Figure 19, for example if k equals 3, each letter would move forward by three, and

A will be replaced by D. B is replaced with E, and so on. The letters which sit in end of

the alphabet will roll back to the beginning. So, W will be replaced by Z, X will be

replaced by A.

B. AES

Due to the less security of DES, AES is a specification for encryption of the electronic

data and it was published in 2001 by the National Institute of Standard and Technology

(NIST). It aims to develop a royalty-free cryptographic technique for public authorities

and private department. There are no known approaches for an attack in case of AES-

128. (Biryukov & Khovratovich 2009.)

52

Table 6. AES Parameters (The AES Cipher).

Key Size

(words/bytes/bits)

4/16/128

6/24/192

8/32/256

Plaintext block

size

(words/bytes/bits)

4/16/128

4/16/128

4/16/128

Number of rounds 10 12 14

Round key size

(words/bytes/bits)

4/16/128

4/16/128

4/16/128

Expanded key size

(words/bytes)

44/176

52/208

60/240

AES can be used with a variable block and key length; there are 56 bits for DES which

will increase the computational power and are easy to break (NIST 2001). Refer to the

Table 6, if a 128 bits key is chosen, the message M is divided into several blocks 1m ,

2m … nm . A simple bitwise XOR is applied to each byte of the block and the portion of

the expanded key is processed in 10 rounds using following operations as well the

Figure 20.

Substitution: Each byte is replaced with another one according to a 256-byte look-up

table called the S-box.

Permutation: Cyclically shifting of lines in state array. The bytes in each of the 4 rows

in the state are rotated by (n-1) where n represents the row number from 1 to 4.

53

Diffusion: Performing matrix multiplication, each byte of a column with every other

byte. The state can be considered to be a 4*4 matrix and this transformation can be

achieved by multiplying this matrix by:

02010103

03020101

01030201

01010302

In the last round this step must be omitted.

Key Generation: Performing XOR operation. In this transformation, the round key is

simply added to the state, which is done by GF (82).

The decryption of AES uses the inverse function of encryption and the same key-

schedule for the round keys, which need longer processing time due to high complexity.

54

Figure 20. The procedure of AES encryption and decryption.

AES works with three key lengths, thus three different versions of the encryption and

decryption scheme have been prepared. The key sizes used for an AES cipher specified

the number of repetitions of transformation rounds. The numbers of repetitions of

transformation rounds are as follows:

 10 rounds for 128-bit key;

 12 rounds for 192-bit key;

55

 14 rounds for 256-bit key.

5.4. Result of the implementation

A. CAESAR

After programming the STK 500 with ATMEL studio, Realterm is used for the

communication between PC and microcontroller.

A string is sent from the Realterm application (running on the PC) to the microcontroller,

where the string will be encrypted. The encrypted string is sent back to the Realterm

application, after that the microcontroller decrypts the string again and sends it to the

Realterm application.

Figure 21. CAESAR algorithm encryption.

56

Plain message is ABCD and cipher message is BCDE, see Figure 21.

The decryption is quite simple here; just reverse the key shift. The encrypted key is 1, so

the decrypted key is -1. Figure 22 illustrates the decryption result.

Figure 22. CAESAR algorithm decryption.

B. AES

The result of AES encryption and decryption is shown in Figure 23.The block message

is 128 bits. AES has 10 rounds for a key length 128 bits; 12 rounds for a 192-bit key and

14 rounds for a 256-bit key. In this experiment, the time and current consumption for the

encryption and decryption is measured.

57

Figure 23. AES Encryption and Decryption result.

58

5.5 Time Consumption of Different Key Length

A. CAESAR encryption and decryption

An oscilloscope is used for measuring the times. Before and after the encryption/

decryption a selected pin is toggled. Then the encryption time with different number of

bytes and different frequencies is measured. Figure 24 is the screenshot of the CAESAR

encryption time measuring result for 50bytes and a beginning of 8 MHz on oscilloscope.

Figure 24. The screenshot of CAESAR encryption time at 8 MHz and 50bytes message

on oscilloscope.

The result of time consumption for CAESAR encryption with different bytes and

different frequencies is shown in Table 7. For CAESAR, decryption is just the reverse

procedure of encryption, so the time consumption is just the same as encryption.

59

Table 7. The result of CAESAR encryption time of different times with different

frequencies and messages bytes

 Frequency

NO. of bytes

1MHz

4MHz

8MHZ

50 12.80 ms 3.12ms 1.56ms

100 25.40ms 6.20ms 3.12ms

150 38.00ms 9.30ms 4.72ms

200 50.08ms 12.30ms 6.28ms

The relationship between the encryption time and the frequency is linear; as well it is

linear with the plaintext bytes. The bigger the frequency, the shorter the time

consumption is; the more the number of bytes, the higher the time consumption. Figure

25 represents those relationships.

Generally, decryption time is just the same as encryption in CAESAR.

60

Figure 25. The relationship among CAESAR, frequency and message bytes.

B. AES

In this section, the encryption and decryption times of AES are measured and compared

by using different key lengths at different frequencies. An oscilloscope is used for

measuring the times. Before and after the encryption/ decryption a selected pin is

toggled. Figure 26 is the screenshot of the AES encryption time measuring result for 50

bytes and a frequency of 8 MHz on oscilloscope.

0

10

20

30

40

50

60

50 100 150 200

Time(ms)

NO. of Bytes

CAESAR Encryption Time with Different
Frequencies and Message Bytes

1MHz

4MHz

8MHZ

61

Figure 26. The screenshot of the AES encryption time at 8MHz 128 bit key on

oscilloscope.

The result of time consumption for AES encryption with different key lengths and

different frequencies is shown is the Table 8.

Table 8. Results of AES Encryption time consumption on Atmel STK 500 with different

key lengths and different frequencies.

 Frequency

Key Length Rounds 1MHz 4MHz 8MHz

128 bit 10 8.80ms 2.20ms 1.20ms

192 bit 12 10.60ms 2.78ms 1.40ms

256 bit 14 13.40ms 3.24ms 1.66ms

The relationship of AES encryption time consumption with different key lengths and

different frequencies is shown as a bar chart in Figure 27.

62

Figure 27. The bar chart of the relationship among AES encryption time consumption,

frequency and key lengths.

The comparison to the encryption time obtain in Table 8, the decryption time is a little

bit longer than the encryption (see Table 9).

Table 9. Results of the AES Decryption time consumption on Atmel STK 500 with

different key lengths and different frequencies.

 Frequency

Key Length Rounds 1MHz 4MHz 8MHz

128 bit 10 9.60ms 2.50ms 1.24ms

192 bit 12 11.40ms 2.90ms 1.48ms

256 bit 14 13.60ms 3.30ms 1.72ms

0

2

4

6

8

10

12

14

16

128bits 192bits 256bits

Time(ms)

The Bar Chart of AES Encryption Time with
Different Key Length

1MHz

4MHz

8MHz

63

The relationship of AES encryption time consumption with different key lengths and

different frequencies is shown as a bar chart in Figure 28.

Figure 28. The bar chart of the relationship among AES decryption time consumption,

frequency and key lengths.

5.6 Power Consumption of Different Frequencies

A multimeter is used for measuring the current. Idle current is measured when the circuit

is idle; maximum current is measured when the circuit is being operated under

encryption and decryption process. The circuit model is illustrated in Figure 29. The

input voltage is 12 Volts. Then the power consumption can be calculated by formula

Power= current *voltage.

0

2

4

6

8

10

12

14

16

128bits 192bits 256bits

Time(ms)

The Bar Chart of AES Decryption Time with
Different Key Length

1MHz

4MHz

8MHz

64

Figure 29. Circuit Model.

The current consumption of CAESAR is measured, and the result is listed in Table 10.

Table 10. Results of CAESAR idle and max current measurement

Frequency 1 MHz 4MHz 8MHz

Idle Current 102.5mA 107.2mA 111.9mA

Max Current 110mA 114.5mA 118.6mA

The relationship of CAESAR encryption current consumption with different frequencies

is shown as a bar chart in Figure 30.

Figure 30. The bar chart shows the relationship between CAESAR encryption current

consumption and frequency.

90

100

110

120

1 MHz 4MHz 8MHz

(mA)

Bar chart of CAESAR idle current and
max current

Idle Current

Max Current

65

The maximum power consumption at 1MHz is calculated as: P=V*I= 12Volts *

110mA= 1.32 Watt. Then the power/time =1.32watt / 12.8 ms= 103.125 watt/s. When

Frequency at 4MHz, P/T = 440.38 watt/s. More power consumption results in less time

consumption. This principle is the same for AES cryptography.

The current consumption of AES is measured, and the result is listed in Table 11.

Table 11. Results of AES idle and max current measurement.

Frequency 1 MHz 4MHz 8MHz

Idle Current 99.9 mA 103.8mA 106.7mA

Max Current 101.7mA 106.6mA 110.3mA

The relationship of the CAESAR encryption current consumption with different

frequencies is shown as a bar chart in Figure 31.

94

96

98

100

102

104

106

108

110

112

1MHz 4MHz 8MHz

(mA)

Bar chart of AES idle current and max
current

Idle Current

Max Current

66

Figure 31. The bar chart of the relationship between AES encryption current

consumption and frequency.

The result shows that the higher the frequency, the higher the current consumption. Here

voltage is constant; the power consumption is increasing with the rise of the frequency.

67

6. CONCLUSION AND FUTURE WORK

In this thesis, symmetric cryptography and asymmetric cryptography algorithms were

analyzed and researched in the theoretical section. Different algorithms were compared

by the key lengths, the length of encryption time and decryption time, as well the

security of itself. In the practical section, CAESAR and AES were coded by C language

and programmed on an embedded system (Atmel STK 500 board). Time consumption

and power consumption of each algorithm were measured. The higher the frequency is,

the less the time consumption is. Bigger messages or longer key lengths lead to more

time consumptions. Regarding to the power consumption, a higher frequency results in

more power consumption. After analyzing those results, it is obviously shown that

power consumption decreases when time consumption increases.

ECC is a new secure innovation in the information security field that can be adapted in

the future telecommunication and embedded system area. Absolute advantages in

computing speed and storage space, it is a research hot spot in current public

cryptography systems. As a matter of factor, there are still rooms for improvement on

the implementation of ECC with software.

There are still many problems in the research field of ECC, which become the bottleneck

of its development and application, such as embedded plaintext algorithm, curve and

basis of calculation and the selection of safety curve algorithm. The calculation of

ECDLP is the core research of the elliptic curve. Future works on ECC are based on

three aspects: how to select the high security level Elliptic Curve, which means the

68

selected algorithm is easy to be applied and hard to brake. In the Elliptic Curve

Cryptosystem, the times of points on the elliptic curve group take up a large proportion

of the whole operation. The efficiency is related to the execution of the whole procedure.

As far as the application and development of Smart Card and wireless communication

field are concerned, what is significant to be researched is how to enhance the defense

capability of the chip itself.

69

REFERENCE

Announcing the Advanced Encryption Standard (AES). Available from the Internet:

< www. Nist.gov>

Avanzi R.M (2005). Side Channel Attacks on Implementations of Curve-Based

Cryptographic Primitives (preprint),eprint.

ATMEL, AVR STK500 User Guide

Bailey D & Paar C(1998). Optimal Extension Field for Fast Arithmetic in Public-Key

Algorithms , CRYPTO’98, lNCS 1462,pp.472-485.

Bailey D & Paar C (2001). Efficient Arithmetic in Finite Field Extensions with

Application in Elliptic Curve Cryptography, Journal of Cryptography, Vol 14,

pp.153-176

Biryukov, A & D. Khovratovich (2009). “Distinguisher and Realated-Key Attack on the

Full AES-256.”CRYPTO’09.

Connected: An Internet Encyclopedia."Block Ciphers". April 1997. Available from the

Internet: <URL: http://www.freesoft.org/CIE/Topics/143.htm>

I.A. Semaev (1998). Evaluation of discrete logarithms on some elliptic curves. Math.

Comp., 67, 353-356.

http://www.freesoft.org/CIE/Topics/143.htm

70

Ian B., Gadiel S. and Nigel S (1999). Elliptic Curves in Cryptography. ISBN 0-521-

65374-6

Ian McCombe April 04, 2007. Available from the Internet:

<URL:

http://imps.mcmaster.ca/courses/SE-4C0307/wiki/mccombi/blockciphers.html>.

Information Security. Available from the Internet:

<URL:http://www.javvin.com/networksecurity/dictionary.html>

J.B.Lacy, D.P.Mitchell & W.M.Schell (1984). “CryptoLib: Cryptography in Software,”

UNIX Security Symposium IV Proceeddings of Crypto 83, Plenum Press, pp.3-

23.

Jean-Sebastien Coron. Resistance against Differential Power Analysis for Elliptic Curve

Cryptosystems.

J.H. Silverman (1986). The Arithmetic of Elliptic Curves. Springer-Verlag, GTM 106.

Martti Penttonen (2009). Date Security [online] [cited 13 March 2009]. Available from

the Internet: <URL: www.cs.uku.fi/~penttion/secu/>.

N.P.Smart (1998). The Algorithmic Resolution of Diophamtine Equations. Cambridge

University Press.

Ondrej H, Pavel K, Petr H & Petr F (2011). Performance Evaluation of Symmetric

Cryptography in Embedded Systems.

http://imps.mcmaster.ca/courses/SE-4C0307/wiki/mccombi/blockciphers.html
http://www.cs.uku.fi/~penttion/secu/

71

Ptiotr B, Wiealaw W & Tomasz A. Implementation of symmetric Cryptography in

Embedded Systems for Secure Measurement Systems.

Schneier Bruce (1996). APPLIED CRYPTOGRAPHY. Protocols, Algorithms, and

Source Code in C. ISBN:0-471-12845-7.

Shammi D., Aaron A & Saurabh B. Optimizing AES for Embedded Devices and

Wireless Sensor Network.

S. Chari, C. Jutla, J.R. Rao & P. Rohatgi (1999). A cautionary note regarding evaluation

of AES candidates on smart-cards, Proceedings of the second AES Candidate

Conference, March, pp. 133-147.

Smart N (1999). The Discrete Logarithm Problem on Elliptic Curves of Trace One.

Journal of Cryptography, Vol.12,pp.193-196.

Satoh T. & Araki K (1998). Fermat Quotient and The Polynimial Time Discrete Log

Algorithm for Anomalous Elliptic Curves, Commentarii Mathematici

Universitatis Sancti Pauli, Vol.47, pp.81-92.

The AES Cipher. Available from the Internet: < http://flylib.com/books/en/3.190.1.55/1/>

Thomas W, Jorge G & Christof P (2003). Cryptography in Embedded Systems: An

Overview. Pp.735-744, Design & Elektronik, Nuernberg, Germany, Feb. 18-20.

http://flylib.com/books/en/3.190.1.55/1/

72

Wang L, Zhao H & Bai Gq. A Cost-Efficient Implementation of Public-KEY

Cryptography on Embedded Systems.

Wang Qingxian, The application of Elliptic Curves Cryptography in Embedded Systems.

Welschenbach M (2001). Cryptography in C and C++. ISBN: 1-893115-95-X.

Wikipedia (2013a). CAESAR cipher. Available from the Internet:

<http://en.wikipedia.org/wiki/Caesar_cipher>.

Wikipedia (2012a) . Advanced Encryption Standard. Available from the Internet:

<http://en.wikipedia.org/wiki/AES>.

AES 算 法 自 主 学 习 报 告 . Available from the

Internet:<http://wenku.baidu.com/view/e6b01b8671fe910ef12df8d8.html?from=r

elated&hasrec=1>.

杨新国, 基于 AES的加密技术研究及应用. Available from the Internet:

 <http://www.doc88.com/p-735479808402.html>.

http://wenku.baidu.com/view/e6b01b8671fe910ef12df8d8.html?from=related&hasrec=1
http://wenku.baidu.com/view/e6b01b8671fe910ef12df8d8.html?from=related&hasrec=1
http://www.doc88.com/p-735479808402.html

73

APPENDIXES

APPENDIX 1. S-box(William Stallings 2011: 181)

Inverse S-box

74

APPENDIX 2. CAESAR Encryption

CAESAR encryption code

Copyright (C) 2013, Qian Yang (t94781@student.uwasa.fi)

University of Vaasa

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <avr/interrupt.h>

#define ARRAY_SIZE 220

static volatile uint8_t count;

static char buffer[ARRAY_SIZE];

void caesar(char *, const int);

// ISR for USART receive

ISR(USART_RX_vect)

{

 buffer[count] = UDR;

 if(buffer[count] == '\r' || count == (ARRAY_SIZE -1))

75

 {

 buffer[count] == '\0';

 // set PB0 to 1

 PORTB |= (1 << PB0);

 caesar(buffer, 10);

 // set PB0 to 0

 PORTB &= ~(1 << PB0);

 int i;

 for(i = 0; i < count; i++)

 {

 usart_putc(buffer[i]);

 buffer[i] = '\0';

 }

 count = 0;

 }

 else

 count++;

}

int main(void)

76

{

 // define PB0 of PORTB as output

 DDRB |= (1 << PB0);

 // set PB0 to 0

 PORTB &= ~(1 << PB0);

 // initialize USART

 //UBRRL = 103; // 8MHz Baudrate 9600

 //UBRRL = 51; // 4MHz Baudrate 9600

 UBRRL = 12; // 1MHz Baudrate 9600

 UCSRA |= (1 << U2X);

 UCSRB |= (1 << RXCIE) | (1 << RXEN) | (1 << TXEN);

 // initialize count variable

 count = 0;

 // enable interrupt

 sei();

 while(1);

 return 0;

}

inline void caesar(char *str, const int offset)

{

77

 for(;*str!='\0';str++)

 {

 if(*str>='A' && *str<='Z')

 *str = 'A' + (*str - 'A' + offset) % 26;

 else if(*str>='a' && *str<='z')

 *str = 'a' + (*str - 'a' + offset) % 26;

 }

}

void usart_putc(unsigned char c)

{

 // wait for an empty transmit buffer

 // UDRE = USART Data Register Empty

 // if UDRE = 1 the buffer is empty

 while(!(UCSRA & (1 << UDRE)));

 // USART I/O Data Register

 UDR = c;

}

78

APPENDIX 3. AES Encryption and Decryption

AES Encryption and Decryption code

Original author: Karl Malbrain, malbrain@yahoo.com

Modified and ported to Atmel AVR by: Yang Qian

(t94781@student.uwasa.fi)

University of Vaasa

// AES only supports Nb=4

#define Nb 4

// The number of columns comprising a state in AES. This is a constant in AES.

Value=4

#define Nk 4 // number of columns in a key

#define Nr 10 // number of rounds in encryption

#define Sbox(i) (pgm_read_byte(&P_Sbox[i]))

const unsigned char P_Sbox[256] __attribute__ ((__progmem__)) = {

// forward s-box

0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7,

0xab, 0x76,

0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4,

0x72, 0xc0,

0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8,

0x31, 0x15,

0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27,

0xb2, 0x75,

0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3,

0x2f, 0x84,

0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c,

0x58, 0xcf,

0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c,

79

0x9f, 0xa8,

0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff,

0xf3, 0xd2,

0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d,

0x19, 0x73,

0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e,

0x0b, 0xdb,

0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95,

0xe4, 0x79,

0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a,

0xae, 0x08,

0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd,

0x8b, 0x8a,

0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1,

0x1d, 0x9e,

0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55,

0x28, 0xdf,

0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54,

0xbb, 0x16};

#define InvSbox(i) (pgm_read_byte(&P_InvSbox[i]))

const unsigned char P_InvSbox[256] __attribute__ ((__progmem__)) = { // inverse s-

box

0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3,

0xd7, 0xfb,

0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde,

0xe9, 0xcb,

0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa,

0xc3, 0x4e,

0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b,

0xd1, 0x25,

0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65,

0xb6, 0x92,

80

0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d,

0x9d, 0x84,

0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3,

0x45, 0x06,

0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13,

0x8a, 0x6b,

0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4,

0xe6, 0x73,

0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75,

0xdf, 0x6e,

0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18,

0xbe, 0x1b,

0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd,

0x5a, 0xf4,

0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80,

0xec, 0x5f,

0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9,

0x9c, 0xef,

0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53,

0x99, 0x61,

0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21,

0x0c, 0x7d};

// combined Xtimes2[Sbox[]]

#define Xtime2Sbox(i) (pgm_read_byte(&P_Xtime2Sbox[i]))

const unsigned char P_Xtime2Sbox[256] __attribute__ ((__progmem__)) = {

0xc6, 0xf8, 0xee, 0xf6, 0xff, 0xd6, 0xde, 0x91, 0x60, 0x02, 0xce, 0x56, 0xe7, 0xb5,

0x4d, 0xec,

0x8f, 0x1f, 0x89, 0xfa, 0xef, 0xb2, 0x8e, 0xfb, 0x41, 0xb3, 0x5f, 0x45, 0x23, 0x53,

0xe4, 0x9b,

0x75, 0xe1, 0x3d, 0x4c, 0x6c, 0x7e, 0xf5, 0x83, 0x68, 0x51, 0xd1, 0xf9, 0xe2, 0xab,

0x62, 0x2a,

0x08, 0x95, 0x46, 0x9d, 0x30, 0x37, 0x0a, 0x2f, 0x0e, 0x24, 0x1b, 0xdf, 0xcd, 0x4e,

81

0x7f, 0xea,

0x12, 0x1d, 0x58, 0x34, 0x36, 0xdc, 0xb4, 0x5b, 0xa4, 0x76, 0xb7, 0x7d, 0x52, 0xdd,

0x5e, 0x13,

0xa6, 0xb9, 0x00, 0xc1, 0x40, 0xe3, 0x79, 0xb6, 0xd4, 0x8d, 0x67, 0x72, 0x94, 0x98,

0xb0, 0x85,

0xbb, 0xc5, 0x4f, 0xed, 0x86, 0x9a, 0x66, 0x11, 0x8a, 0xe9, 0x04, 0xfe, 0xa0, 0x78,

0x25, 0x4b,

0xa2, 0x5d, 0x80, 0x05, 0x3f, 0x21, 0x70, 0xf1, 0x63, 0x77, 0xaf, 0x42, 0x20, 0xe5,

0xfd, 0xbf,

0x81, 0x18, 0x26, 0xc3, 0xbe, 0x35, 0x88, 0x2e, 0x93, 0x55, 0xfc, 0x7a, 0xc8, 0xba,

0x32, 0xe6,

0xc0, 0x19, 0x9e, 0xa3, 0x44, 0x54, 0x3b, 0x0b, 0x8c, 0xc7, 0x6b, 0x28, 0xa7, 0xbc,

0x16, 0xad,

0xdb, 0x64, 0x74, 0x14, 0x92, 0x0c, 0x48, 0xb8, 0x9f, 0xbd, 0x43, 0xc4, 0x39, 0x31,

0xd3, 0xf2,

0xd5, 0x8b, 0x6e, 0xda, 0x01, 0xb1, 0x9c, 0x49, 0xd8, 0xac, 0xf3, 0xcf, 0xca, 0xf4,

0x47, 0x10,

0x6f, 0xf0, 0x4a, 0x5c, 0x38, 0x57, 0x73, 0x97, 0xcb, 0xa1, 0xe8, 0x3e, 0x96, 0x61,

0x0d, 0x0f,

0xe0, 0x7c, 0x71, 0xcc, 0x90, 0x06, 0xf7, 0x1c, 0xc2, 0x6a, 0xae, 0x69, 0x17, 0x99,

0x3a, 0x27,

0xd9, 0xeb, 0x2b, 0x22, 0xd2, 0xa9, 0x07, 0x33, 0x2d, 0x3c, 0x15, 0xc9, 0x87, 0xaa,

0x50, 0xa5,

0x03, 0x59, 0x09, 0x1a, 0x65, 0xd7, 0x84, 0xd0, 0x82, 0x29, 0x5a, 0x1e, 0x7b, 0xa8,

0x6d, 0x2c

};

// combined Xtimes3[Sbox[]]

#define Xtime3Sbox(i) (pgm_read_byte(&P_Xtime3Sbox[i]))

const unsigned char P_Xtime3Sbox[256] __attribute__ ((__progmem__)) = {

0xa5, 0x84, 0x99, 0x8d, 0x0d, 0xbd, 0xb1, 0x54, 0x50, 0x03, 0xa9, 0x7d, 0x19, 0x62,

0xe6, 0x9a,

0x45, 0x9d, 0x40, 0x87, 0x15, 0xeb, 0xc9, 0x0b, 0xec, 0x67, 0xfd, 0xea, 0xbf, 0xf7,

82

0x96, 0x5b,

0xc2, 0x1c, 0xae, 0x6a, 0x5a, 0x41, 0x02, 0x4f, 0x5c, 0xf4, 0x34, 0x08, 0x93, 0x73,

0x53, 0x3f,

0x0c, 0x52, 0x65, 0x5e, 0x28, 0xa1, 0x0f, 0xb5, 0x09, 0x36, 0x9b, 0x3d, 0x26, 0x69,

0xcd, 0x9f,

0x1b, 0x9e, 0x74, 0x2e, 0x2d, 0xb2, 0xee, 0xfb, 0xf6, 0x4d, 0x61, 0xce, 0x7b, 0x3e,

0x71, 0x97,

0xf5, 0x68, 0x00, 0x2c, 0x60, 0x1f, 0xc8, 0xed, 0xbe, 0x46, 0xd9, 0x4b, 0xde, 0xd4,

0xe8, 0x4a,

0x6b, 0x2a, 0xe5, 0x16, 0xc5, 0xd7, 0x55, 0x94, 0xcf, 0x10, 0x06, 0x81, 0xf0, 0x44,

0xba, 0xe3,

0xf3, 0xfe, 0xc0, 0x8a, 0xad, 0xbc, 0x48, 0x04, 0xdf, 0xc1, 0x75, 0x63, 0x30, 0x1a,

0x0e, 0x6d,

0x4c, 0x14, 0x35, 0x2f, 0xe1, 0xa2, 0xcc, 0x39, 0x57, 0xf2, 0x82, 0x47, 0xac, 0xe7,

0x2b, 0x95,

0xa0, 0x98, 0xd1, 0x7f, 0x66, 0x7e, 0xab, 0x83, 0xca, 0x29, 0xd3, 0x3c, 0x79, 0xe2,

0x1d, 0x76,

0x3b, 0x56, 0x4e, 0x1e, 0xdb, 0x0a, 0x6c, 0xe4, 0x5d, 0x6e, 0xef, 0xa6, 0xa8, 0xa4,

0x37, 0x8b,

0x32, 0x43, 0x59, 0xb7, 0x8c, 0x64, 0xd2, 0xe0, 0xb4, 0xfa, 0x07, 0x25, 0xaf, 0x8e,

0xe9, 0x18,

0xd5, 0x88, 0x6f, 0x72, 0x24, 0xf1, 0xc7, 0x51, 0x23, 0x7c, 0x9c, 0x21, 0xdd, 0xdc,

0x86, 0x85,

0x90, 0x42, 0xc4, 0xaa, 0xd8, 0x05, 0x01, 0x12, 0xa3, 0x5f, 0xf9, 0xd0, 0x91, 0x58,

0x27, 0xb9,

0x38, 0x13, 0xb3, 0x33, 0xbb, 0x70, 0x89, 0xa7, 0xb6, 0x22, 0x92, 0x20, 0x49, 0xff,

0x78, 0x7a,

0x8f, 0xf8, 0x80, 0x17, 0xda, 0x31, 0xc6, 0xb8, 0xc3, 0xb0, 0x77, 0x11, 0xcb, 0xfc,

0xd6, 0x3a

};

// modular multiplication tables

// based on:

83

// Xtime2[x] = (x & 0x80 ? 0x1b : 0) ^ (x + x)

// Xtime3[x] = x^Xtime2[x];

#define Xtime2(i) (pgm_read_byte(&P_Xtime2[i]))

const unsigned char P_Xtime2[256] __attribute__ ((__progmem__)) = {

0x00, 0x02, 0x04, 0x06, 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16, 0x18, 0x1a,

0x1c, 0x1e,

0x20, 0x22, 0x24, 0x26, 0x28, 0x2a, 0x2c, 0x2e, 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a,

0x3c, 0x3e,

0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e, 0x50, 0x52, 0x54, 0x56, 0x58, 0x5a,

0x5c, 0x5e,

0x60, 0x62, 0x64, 0x66, 0x68, 0x6a, 0x6c, 0x6e, 0x70, 0x72, 0x74, 0x76, 0x78, 0x7a,

0x7c, 0x7e,

0x80, 0x82, 0x84, 0x86, 0x88, 0x8a, 0x8c, 0x8e, 0x90, 0x92, 0x94, 0x96, 0x98, 0x9a,

0x9c, 0x9e,

0xa0, 0xa2, 0xa4, 0xa6, 0xa8, 0xaa, 0xac, 0xae, 0xb0, 0xb2, 0xb4, 0xb6, 0xb8, 0xba,

0xbc, 0xbe,

0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce, 0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda,

0xdc, 0xde,

0xe0, 0xe2, 0xe4, 0xe6, 0xe8, 0xea, 0xec, 0xee, 0xf0, 0xf2, 0xf4, 0xf6, 0xf8, 0xfa, 0xfc,

0xfe,

0x1b, 0x19, 0x1f, 0x1d, 0x13, 0x11, 0x17, 0x15, 0x0b, 0x09, 0x0f, 0x0d, 0x03, 0x01,

0x07, 0x05,

0x3b, 0x39, 0x3f, 0x3d, 0x33, 0x31, 0x37, 0x35, 0x2b, 0x29, 0x2f, 0x2d, 0x23, 0x21,

0x27, 0x25,

0x5b, 0x59, 0x5f, 0x5d, 0x53, 0x51, 0x57, 0x55, 0x4b, 0x49, 0x4f, 0x4d, 0x43, 0x41,

0x47, 0x45,

0x7b, 0x79, 0x7f, 0x7d, 0x73, 0x71, 0x77, 0x75, 0x6b, 0x69, 0x6f, 0x6d, 0x63, 0x61,

0x67, 0x65,

0x9b, 0x99, 0x9f, 0x9d, 0x93, 0x91, 0x97, 0x95, 0x8b, 0x89, 0x8f, 0x8d, 0x83, 0x81,

0x87, 0x85,

0xbb, 0xb9, 0xbf, 0xbd, 0xb3, 0xb1, 0xb7, 0xb5, 0xab, 0xa9, 0xaf, 0xad, 0xa3, 0xa1,

84

0xa7, 0xa5,

0xdb, 0xd9, 0xdf, 0xdd, 0xd3, 0xd1, 0xd7, 0xd5, 0xcb, 0xc9, 0xcf, 0xcd, 0xc3, 0xc1,

0xc7, 0xc5,

0xfb, 0xf9, 0xff, 0xfd, 0xf3, 0xf1, 0xf7, 0xf5, 0xeb, 0xe9, 0xef, 0xed, 0xe3, 0xe1, 0xe7,

0xe5};

#define Xtime9(i) (pgm_read_byte(&P_Xtime9[i]))

const unsigned char P_Xtime9[256] __attribute__ ((__progmem__)) = {

0x00, 0x09, 0x12, 0x1b, 0x24, 0x2d, 0x36, 0x3f, 0x48, 0x41, 0x5a, 0x53, 0x6c, 0x65,

0x7e, 0x77,

0x90, 0x99, 0x82, 0x8b, 0xb4, 0xbd, 0xa6, 0xaf, 0xd8, 0xd1, 0xca, 0xc3, 0xfc, 0xf5,

0xee, 0xe7,

0x3b, 0x32, 0x29, 0x20, 0x1f, 0x16, 0x0d, 0x04, 0x73, 0x7a, 0x61, 0x68, 0x57, 0x5e,

0x45, 0x4c,

0xab, 0xa2, 0xb9, 0xb0, 0x8f, 0x86, 0x9d, 0x94, 0xe3, 0xea, 0xf1, 0xf8, 0xc7, 0xce,

0xd5, 0xdc,

0x76, 0x7f, 0x64, 0x6d, 0x52, 0x5b, 0x40, 0x49, 0x3e, 0x37, 0x2c, 0x25, 0x1a, 0x13,

0x08, 0x01,

0xe6, 0xef, 0xf4, 0xfd, 0xc2, 0xcb, 0xd0, 0xd9, 0xae, 0xa7, 0xbc, 0xb5, 0x8a, 0x83,

0x98, 0x91,

0x4d, 0x44, 0x5f, 0x56, 0x69, 0x60, 0x7b, 0x72, 0x05, 0x0c, 0x17, 0x1e, 0x21, 0x28,

0x33, 0x3a,

0xdd, 0xd4, 0xcf, 0xc6, 0xf9, 0xf0, 0xeb, 0xe2, 0x95, 0x9c, 0x87, 0x8e, 0xb1, 0xb8,

0xa3, 0xaa,

0xec, 0xe5, 0xfe, 0xf7, 0xc8, 0xc1, 0xda, 0xd3, 0xa4, 0xad, 0xb6, 0xbf, 0x80, 0x89,

0x92, 0x9b,

0x7c, 0x75, 0x6e, 0x67, 0x58, 0x51, 0x4a, 0x43, 0x34, 0x3d, 0x26, 0x2f, 0x10, 0x19,

0x02, 0x0b,

0xd7, 0xde, 0xc5, 0xcc, 0xf3, 0xfa, 0xe1, 0xe8, 0x9f, 0x96, 0x8d, 0x84, 0xbb, 0xb2,

0xa9, 0xa0,

0x47, 0x4e, 0x55, 0x5c, 0x63, 0x6a, 0x71, 0x78, 0x0f, 0x06, 0x1d, 0x14, 0x2b, 0x22,

0x39, 0x30,

0x9a, 0x93, 0x88, 0x81, 0xbe, 0xb7, 0xac, 0xa5, 0xd2, 0xdb, 0xc0, 0xc9, 0xf6, 0xff,

85

0xe4, 0xed,

0x0a, 0x03, 0x18, 0x11, 0x2e, 0x27, 0x3c, 0x35, 0x42, 0x4b, 0x50, 0x59, 0x66, 0x6f,

0x74, 0x7d,

0xa1, 0xa8, 0xb3, 0xba, 0x85, 0x8c, 0x97, 0x9e, 0xe9, 0xe0, 0xfb, 0xf2, 0xcd, 0xc4,

0xdf, 0xd6,

0x31, 0x38, 0x23, 0x2a, 0x15, 0x1c, 0x07, 0x0e, 0x79, 0x70, 0x6b, 0x62, 0x5d, 0x54,

0x4f, 0x46};

#define XtimeB(i) (pgm_read_byte(&P_XtimeB[i]))

const unsigned char P_XtimeB[256] __attribute__ ((__progmem__)) = {

0x00, 0x0b, 0x16, 0x1d, 0x2c, 0x27, 0x3a, 0x31, 0x58, 0x53, 0x4e, 0x45, 0x74, 0x7f,

0x62, 0x69,

0xb0, 0xbb, 0xa6, 0xad, 0x9c, 0x97, 0x8a, 0x81, 0xe8, 0xe3, 0xfe, 0xf5, 0xc4, 0xcf,

0xd2, 0xd9,

0x7b, 0x70, 0x6d, 0x66, 0x57, 0x5c, 0x41, 0x4a, 0x23, 0x28, 0x35, 0x3e, 0x0f, 0x04,

0x19, 0x12,

0xcb, 0xc0, 0xdd, 0xd6, 0xe7, 0xec, 0xf1, 0xfa, 0x93, 0x98, 0x85, 0x8e, 0xbf, 0xb4,

0xa9, 0xa2,

0xf6, 0xfd, 0xe0, 0xeb, 0xda, 0xd1, 0xcc, 0xc7, 0xae, 0xa5, 0xb8, 0xb3, 0x82, 0x89,

0x94, 0x9f,

0x46, 0x4d, 0x50, 0x5b, 0x6a, 0x61, 0x7c, 0x77, 0x1e, 0x15, 0x08, 0x03, 0x32, 0x39,

0x24, 0x2f,

0x8d, 0x86, 0x9b, 0x90, 0xa1, 0xaa, 0xb7, 0xbc, 0xd5, 0xde, 0xc3, 0xc8, 0xf9, 0xf2,

0xef, 0xe4,

0x3d, 0x36, 0x2b, 0x20, 0x11, 0x1a, 0x07, 0x0c, 0x65, 0x6e, 0x73, 0x78, 0x49, 0x42,

0x5f, 0x54,

0xf7, 0xfc, 0xe1, 0xea, 0xdb, 0xd0, 0xcd, 0xc6, 0xaf, 0xa4, 0xb9, 0xb2, 0x83, 0x88,

0x95, 0x9e,

0x47, 0x4c, 0x51, 0x5a, 0x6b, 0x60, 0x7d, 0x76, 0x1f, 0x14, 0x09, 0x02, 0x33, 0x38,

0x25, 0x2e,

0x8c, 0x87, 0x9a, 0x91, 0xa0, 0xab, 0xb6, 0xbd, 0xd4, 0xdf, 0xc2, 0xc9, 0xf8, 0xf3,

0xee, 0xe5,

0x3c, 0x37, 0x2a, 0x21, 0x10, 0x1b, 0x06, 0x0d, 0x64, 0x6f, 0x72, 0x79, 0x48, 0x43,

86

0x5e, 0x55,

0x01, 0x0a, 0x17, 0x1c, 0x2d, 0x26, 0x3b, 0x30, 0x59, 0x52, 0x4f, 0x44, 0x75, 0x7e,

0x63, 0x68,

0xb1, 0xba, 0xa7, 0xac, 0x9d, 0x96, 0x8b, 0x80, 0xe9, 0xe2, 0xff, 0xf4, 0xc5, 0xce,

0xd3, 0xd8,

0x7a, 0x71, 0x6c, 0x67, 0x56, 0x5d, 0x40, 0x4b, 0x22, 0x29, 0x34, 0x3f, 0x0e, 0x05,

0x18, 0x13,

0xca, 0xc1, 0xdc, 0xd7, 0xe6, 0xed, 0xf0, 0xfb, 0x92, 0x99, 0x84, 0x8f, 0xbe, 0xb5,

0xa8, 0xa3};

#define XtimeD(i) (pgm_read_byte(&P_XtimeD[i]))

const unsigned char P_XtimeD[256] __attribute__ ((__progmem__)) = {

0x00, 0x0d, 0x1a, 0x17, 0x34, 0x39, 0x2e, 0x23, 0x68, 0x65, 0x72, 0x7f, 0x5c, 0x51,

0x46, 0x4b,

0xd0, 0xdd, 0xca, 0xc7, 0xe4, 0xe9, 0xfe, 0xf3, 0xb8, 0xb5, 0xa2, 0xaf, 0x8c, 0x81,

0x96, 0x9b,

0xbb, 0xb6, 0xa1, 0xac, 0x8f, 0x82, 0x95, 0x98, 0xd3, 0xde, 0xc9, 0xc4, 0xe7, 0xea,

0xfd, 0xf0,

0x6b, 0x66, 0x71, 0x7c, 0x5f, 0x52, 0x45, 0x48, 0x03, 0x0e, 0x19, 0x14, 0x37, 0x3a,

0x2d, 0x20,

0x6d, 0x60, 0x77, 0x7a, 0x59, 0x54, 0x43, 0x4e, 0x05, 0x08, 0x1f, 0x12, 0x31, 0x3c,

0x2b, 0x26,

0xbd, 0xb0, 0xa7, 0xaa, 0x89, 0x84, 0x93, 0x9e, 0xd5, 0xd8, 0xcf, 0xc2, 0xe1, 0xec,

0xfb, 0xf6,

0xd6, 0xdb, 0xcc, 0xc1, 0xe2, 0xef, 0xf8, 0xf5, 0xbe, 0xb3, 0xa4, 0xa9, 0x8a, 0x87,

0x90, 0x9d,

0x06, 0x0b, 0x1c, 0x11, 0x32, 0x3f, 0x28, 0x25, 0x6e, 0x63, 0x74, 0x79, 0x5a, 0x57,

0x40, 0x4d,

0xda, 0xd7, 0xc0, 0xcd, 0xee, 0xe3, 0xf4, 0xf9, 0xb2, 0xbf, 0xa8, 0xa5, 0x86, 0x8b,

0x9c, 0x91,

0x0a, 0x07, 0x10, 0x1d, 0x3e, 0x33, 0x24, 0x29, 0x62, 0x6f, 0x78, 0x75, 0x56, 0x5b,

0x4c, 0x41,

0x61, 0x6c, 0x7b, 0x76, 0x55, 0x58, 0x4f, 0x42, 0x09, 0x04, 0x13, 0x1e, 0x3d, 0x30,

87

0x27, 0x2a,

0xb1, 0xbc, 0xab, 0xa6, 0x85, 0x88, 0x9f, 0x92, 0xd9, 0xd4, 0xc3, 0xce, 0xed, 0xe0,

0xf7, 0xfa,

0xb7, 0xba, 0xad, 0xa0, 0x83, 0x8e, 0x99, 0x94, 0xdf, 0xd2, 0xc5, 0xc8, 0xeb, 0xe6,

0xf1, 0xfc,

0x67, 0x6a, 0x7d, 0x70, 0x53, 0x5e, 0x49, 0x44, 0x0f, 0x02, 0x15, 0x18, 0x3b, 0x36,

0x21, 0x2c,

0x0c, 0x01, 0x16, 0x1b, 0x38, 0x35, 0x22, 0x2f, 0x64, 0x69, 0x7e, 0x73, 0x50, 0x5d,

0x4a, 0x47,

0xdc, 0xd1, 0xc6, 0xcb, 0xe8, 0xe5, 0xf2, 0xff, 0xb4, 0xb9, 0xae, 0xa3, 0x80, 0x8d,

0x9a, 0x97};

#define XtimeE(i) (pgm_read_byte(&P_XtimeE[i]))

const unsigned char P_XtimeE[256] __attribute__ ((__progmem__)) = {

0x00, 0x0e, 0x1c, 0x12, 0x38, 0x36, 0x24, 0x2a, 0x70, 0x7e, 0x6c, 0x62, 0x48, 0x46,

0x54, 0x5a,

0xe0, 0xee, 0xfc, 0xf2, 0xd8, 0xd6, 0xc4, 0xca, 0x90, 0x9e, 0x8c, 0x82, 0xa8, 0xa6,

0xb4, 0xba,

0xdb, 0xd5, 0xc7, 0xc9, 0xe3, 0xed, 0xff, 0xf1, 0xab, 0xa5, 0xb7, 0xb9, 0x93, 0x9d,

0x8f, 0x81,

0x3b, 0x35, 0x27, 0x29, 0x03, 0x0d, 0x1f, 0x11, 0x4b, 0x45, 0x57, 0x59, 0x73, 0x7d,

0x6f, 0x61,

0xad, 0xa3, 0xb1, 0xbf, 0x95, 0x9b, 0x89, 0x87, 0xdd, 0xd3, 0xc1, 0xcf, 0xe5, 0xeb,

0xf9, 0xf7,

0x4d, 0x43, 0x51, 0x5f, 0x75, 0x7b, 0x69, 0x67, 0x3d, 0x33, 0x21, 0x2f, 0x05, 0x0b,

0x19, 0x17,

0x76, 0x78, 0x6a, 0x64, 0x4e, 0x40, 0x52, 0x5c, 0x06, 0x08, 0x1a, 0x14, 0x3e, 0x30,

0x22, 0x2c,

0x96, 0x98, 0x8a, 0x84, 0xae, 0xa0, 0xb2, 0xbc, 0xe6, 0xe8, 0xfa, 0xf4, 0xde, 0xd0,

0xc2, 0xcc,

0x41, 0x4f, 0x5d, 0x53, 0x79, 0x77, 0x65, 0x6b, 0x31, 0x3f, 0x2d, 0x23, 0x09, 0x07,

0x15, 0x1b,

0xa1, 0xaf, 0xbd, 0xb3, 0x99, 0x97, 0x85, 0x8b, 0xd1, 0xdf, 0xcd, 0xc3, 0xe9, 0xe7,

88

0xf5, 0xfb,

0x9a, 0x94, 0x86, 0x88, 0xa2, 0xac, 0xbe, 0xb0, 0xea, 0xe4, 0xf6, 0xf8, 0xd2, 0xdc,

0xce, 0xc0,

0x7a, 0x74, 0x66, 0x68, 0x42, 0x4c, 0x5e, 0x50, 0x0a, 0x04, 0x16, 0x18, 0x32, 0x3c,

0x2e, 0x20,

0xec, 0xe2, 0xf0, 0xfe, 0xd4, 0xda, 0xc8, 0xc6, 0x9c, 0x92, 0x80, 0x8e, 0xa4, 0xaa,

0xb8, 0xb6,

0x0c, 0x02, 0x10, 0x1e, 0x34, 0x3a, 0x28, 0x26, 0x7c, 0x72, 0x60, 0x6e, 0x44, 0x4a,

0x58, 0x56,

0x37, 0x39, 0x2b, 0x25, 0x0f, 0x01, 0x13, 0x1d, 0x47, 0x49, 0x5b, 0x55, 0x7f, 0x71,

0x63, 0x6d,

0xd7, 0xd9, 0xcb, 0xc5, 0xef, 0xe1, 0xf3, 0xfd, 0xa7, 0xa9, 0xbb, 0xb5, 0x9f, 0x91,

0x83, 0x8d};

// exchanges columns in each of 4 rows

// row0 - unchanged, row1- shifted left 1,

// row2 - shifted left 2 and row3 - shifted left 3

void ShiftRows (unsigned char *state)

{

 unsigned char tmp;

 // just substitute row 0

 state[0] = Sbox(state[0]), state[4] = Sbox(state[4]);

 state[8] = Sbox(state[8]), state[12] = Sbox(state[12]);

 // rotate row 1

 tmp = Sbox(state[1]), state[1] = Sbox(state[5]);

 state[5] = Sbox(state[9]), state[9] = Sbox(state[13]), state[13] = tmp;

 // rotate row 2

 tmp = Sbox(state[2]), state[2] = Sbox(state[10]), state[10] = tmp;

 tmp = Sbox(state[6]), state[6] = Sbox(state[14]), state[14] = tmp;

89

 // rotate row 3

 tmp = Sbox(state[15]), state[15] = Sbox(state[11]);

 state[11] = Sbox(state[7]), state[7] = Sbox(state[3]), state[3] = tmp;

}

// restores columns in each of 4 rows

// row0 - unchanged, row1- shifted right 1,

// row2 - shifted right 2 and row3 - shifted right 3

void InvShiftRows (unsigned char *state)

{

 unsigned char tmp;

 // restore row 0

 state[0] = InvSbox(state[0]), state[4] = InvSbox(state[4]);

 state[8] = InvSbox(state[8]), state[12] = InvSbox(state[12]);

 // restore row 1

 tmp = InvSbox(state[13]), state[13] = InvSbox(state[9]);

 state[9] = InvSbox(state[5]), state[5] = InvSbox(state[1]), state[1] = tmp;

 // restore row 2

 tmp = InvSbox(state[2]), state[2] = InvSbox(state[10]), state[10] = tmp;

 tmp = InvSbox(state[6]), state[6] = InvSbox(state[14]), state[14] = tmp;

 // restore row 3

 tmp = InvSbox(state[3]), state[3] = InvSbox(state[7]);

 state[7] = InvSbox(state[11]), state[11] = InvSbox(state[15]), state[15] = tmp;

}

// recombine and mix each row in a column

void MixSubColumns (unsigned char *state)

{

unsigned char tmp[4 * Nb];

90

 // mixing column 0

 tmp[0] = Xtime2Sbox(state[0]) ^ Xtime3Sbox(state[5]) ^ Sbox(state[10]) ^

Sbox(state[15]);

 tmp[1] = Sbox(state[0]) ^ Xtime2Sbox(state[5]) ^ Xtime3Sbox(state[10]) ^

Sbox(state[15]);

 tmp[2] = Sbox(state[0]) ^ Sbox(state[5]) ^ Xtime2Sbox(state[10]) ^

Xtime3Sbox(state[15]);

 tmp[3] = Xtime3Sbox(state[0]) ^ Sbox(state[5]) ^ Sbox(state[10]) ^

Xtime2Sbox(state[15]);

 // mixing column 1

 tmp[4] = Xtime2Sbox(state[4]) ^ Xtime3Sbox(state[9]) ^ Sbox(state[14]) ^

Sbox(state[3]);

 tmp[5] = Sbox(state[4]) ^ Xtime2Sbox(state[9]) ^ Xtime3Sbox(state[14]) ^

Sbox(state[3]);

 tmp[6] = Sbox(state[4]) ^ Sbox(state[9]) ^ Xtime2Sbox(state[14]) ^

Xtime3Sbox(state[3]);

 tmp[7] = Xtime3Sbox(state[4]) ^ Sbox(state[9]) ^ Sbox(state[14]) ^

Xtime2Sbox(state[3]);

 // mixing column 2

 tmp[8] = Xtime2Sbox(state[8]) ^ Xtime3Sbox(state[13]) ^ Sbox(state[2]) ^

Sbox(state[7]);

 tmp[9] = Sbox(state[8]) ^ Xtime2Sbox(state[13]) ^ Xtime3Sbox(state[2]) ^

Sbox(state[7]);

 tmp[10] = Sbox(state[8]) ^ Sbox(state[13]) ^ Xtime2Sbox(state[2]) ^

Xtime3Sbox(state[7]);

 tmp[11] = Xtime3Sbox(state[8]) ^ Sbox(state[13]) ^ Sbox(state[2]) ^

Xtime2Sbox(state[7]);

 // mixing column 3

 tmp[12] = Xtime2Sbox(state[12]) ^ Xtime3Sbox(state[1]) ^ Sbox(state[6]) ^

91

Sbox(state[11]);

 tmp[13] = Sbox(state[12]) ^ Xtime2Sbox(state[1]) ^ Xtime3Sbox(state[6]) ^

Sbox(state[11]);

 tmp[14] = Sbox(state[12]) ^ Sbox(state[1]) ^ Xtime2Sbox(state[6]) ^

Xtime3Sbox(state[11]);

 tmp[15] = Xtime3Sbox(state[12]) ^ Sbox(state[1]) ^ Sbox(state[6]) ^

Xtime2Sbox(state[11]);

 memcpy (state, tmp, sizeof(tmp));

}

// restore and un-mix each row in a column

void InvMixSubColumns (unsigned char *state)

{

unsigned char tmp[4 * Nb];

int i;

 // restore column 0

 tmp[0] = XtimeE(state[0]) ^ XtimeB(state[1]) ^ XtimeD(state[2]) ^

Xtime9(state[3]);

 tmp[5] = Xtime9(state[0]) ^ XtimeE(state[1]) ^ XtimeB(state[2]) ^

XtimeD(state[3]);

 tmp[10] = XtimeD(state[0]) ^ Xtime9(state[1]) ^ XtimeE(state[2]) ^

XtimeB(state[3]);

 tmp[15] = XtimeB(state[0]) ^ XtimeD(state[1]) ^ Xtime9(state[2]) ^

XtimeE(state[3]);

 // restore column 1

 tmp[4] = XtimeE(state[4]) ^ XtimeB(state[5]) ^ XtimeD(state[6]) ^

Xtime9(state[7]);

 tmp[9] = Xtime9(state[4]) ^ XtimeE(state[5]) ^ XtimeB(state[6]) ^

XtimeD(state[7]);

 tmp[14] = XtimeD(state[4]) ^ Xtime9(state[5]) ^ XtimeE(state[6]) ^

92

XtimeB(state[7]);

 tmp[3] = XtimeB(state[4]) ^ XtimeD(state[5]) ^ Xtime9(state[6]) ^

XtimeE(state[7]);

 // restore column 2

 tmp[8] = XtimeE(state[8]) ^ XtimeB(state[9]) ^ XtimeD(state[10]) ^

Xtime9(state[11]);

 tmp[13] = Xtime9(state[8]) ^ XtimeE(state[9]) ^ XtimeB(state[10]) ^

XtimeD(state[11]);

 tmp[2] = XtimeD(state[8]) ^ Xtime9(state[9]) ^ XtimeE(state[10]) ^

XtimeB(state[11]);

 tmp[7] = XtimeB(state[8]) ^ XtimeD(state[9]) ^ Xtime9(state[10]) ^

XtimeE(state[11]);

 // restore column 3

 tmp[12] = XtimeE(state[12]) ^ XtimeB(state[13]) ^ XtimeD(state[14]) ^

Xtime9(state[15]);

 tmp[1] = Xtime9(state[12]) ^ XtimeE(state[13]) ^ XtimeB(state[14]) ^

XtimeD(state[15]);

 tmp[6] = XtimeD(state[12]) ^ Xtime9(state[13]) ^ XtimeE(state[14]) ^

XtimeB(state[15]);

 tmp[11] = XtimeB(state[12]) ^ XtimeD(state[13]) ^ Xtime9(state[14]) ^

XtimeE(state[15]);

 for(i=0; i < 4 * Nb; i++)

 state[i] = InvSbox(tmp[i]);

}

// encrypt/decrypt columns of the key

// n.b. you can replace this with

// byte-wise xor if you wish.

void AddRoundKey (unsigned *state, unsigned *key)

93

{

 int idx;

 for(idx = 0; idx < 4; idx++)

 state[idx] ^= key[idx];

}

unsigned char Rcon[11] = {0x00, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,

0x1b, 0x36};

// produce Nb bytes for each round

void ExpandKey (unsigned char *key, unsigned char *expkey)

{

 unsigned char tmp0, tmp1, tmp2, tmp3, tmp4;

 unsigned idx;

 memcpy (expkey, key, Nk * 4);

 for(idx = Nk; idx < Nb * (Nr + 1); idx++) {

 tmp0 = expkey[4*idx - 4];

 tmp1 = expkey[4*idx - 3];

 tmp2 = expkey[4*idx - 2];

 tmp3 = expkey[4*idx - 1];

 if(!(idx % Nk)) {

 tmp4 = tmp3;

 tmp3 = Sbox(tmp0);

 tmp0 = Sbox(tmp1) ^ Rcon[idx/Nk];

 tmp1 = Sbox(tmp2);

 tmp2 = Sbox(tmp4);

 } else if(Nk > 6 && idx % Nk == 4) {

 tmp0 = Sbox(tmp0);

 tmp1 = Sbox(tmp1);

 tmp2 = Sbox(tmp2);

94

 tmp3 = Sbox(tmp3);

 }

 expkey[4*idx+0] = expkey[4*idx - 4*Nk + 0] ^ tmp0;

 expkey[4*idx+1] = expkey[4*idx - 4*Nk + 1] ^ tmp1;

 expkey[4*idx+2] = expkey[4*idx - 4*Nk + 2] ^ tmp2;

 expkey[4*idx+3] = expkey[4*idx - 4*Nk + 3] ^ tmp3;

 }

}

// encrypt one 128 bit block

void Encrypt (unsigned char *in, unsigned char *expkey, unsigned char *out)

{

 unsigned char state[Nb * 4];

 unsigned round;

 memcpy (state, in, Nb * 4);

 AddRoundKey ((unsigned *)state, (unsigned *)expkey);

 for(round = 1; round < Nr + 1; round++) {

 if(round < Nr)

 MixSubColumns (state);

 else

 ShiftRows (state);

 AddRoundKey ((unsigned *)state, (unsigned *)expkey + round * Nb);

 }

 memcpy (out, state, sizeof(state));

}

void Decrypt (unsigned char *in, unsigned char *expkey, unsigned char *out)

{

95

 unsigned char state[Nb * 4];

 unsigned round;

 memcpy (state, in, sizeof(state));

 AddRoundKey ((unsigned *)state, (unsigned *)expkey + Nr * Nb);

 InvShiftRows(state);

 for(round = Nr; round--;)

 {

 AddRoundKey ((unsigned *)state, (unsigned *)expkey + round * Nb);

 if(round)

 InvMixSubColumns (state);

 }

 memcpy (out, state, sizeof(state));

}

#define USR UCSRA

void printP (PGM_P string){

 char c;

 c=pgm_read_byte(string);

 while (c) {

 loop_until_bit_is_set(USR, UDRE);

 UDR = c;

 c=pgm_read_byte(++string);

 }

 return;

 }

96

void print (const char *string){

 while (*string) {

 loop_until_bit_is_set(USR, UDRE);

 UDR = *string++;

 }

 return;

 }

void scan(char *string){

char c;

 do {

 do {

 loop_until_bit_is_set(USR, RXC);

 c =UDR;

 } while bit_is_set(USR, FE);

 *string++ = c;

 //echo the character

 loop_until_bit_is_set(USR, UDRE);

 UDR = c;

 } while (c != '\r');

 loop_until_bit_is_set(USR, UDRE);

 UDR = '\n';

 string[-1]=0;

 }

void UART_init(void) // initialize USART

{

 UBRRH = 0;

 UBRRL = 103; // 8MHz, Baudrate: 9600

 UCSRA = (1<<U2X);

 UCSRB = (1<<TXEN)|(1<<RXEN);

 UCSRC = (1<<URSEL)|(1<<UCSZ0)|(1<<UCSZ1)|(1<<USBS);

}

97

#define itoa10(N,S) itoa(N,S,10)

#define itoa16(N,S) itoa(N,S,16)

//DEMO

unsigned char sampleout[16];

unsigned char samplekey[] = {0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab,

0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c};

unsigned char samplein[] = {0x32, 0x43, 0xf6, 0xa8, 0x88, 0x5a, 0x30, 0x8d, 0x31,

0x31, 0x98, 0xa2, 0xe0, 0x37, 0x07, 0x34};

int main(void)

{

 UART_init();

 unsigned char expkey[4 * Nb * (Nr + 1)];

 unsigned char i;

 char c[8];

 printP(PSTR("Original: "));

 for(i = 0; i < 16; i++) {itoa16(samplein[i],c);print(c); print(" ");}

 printP(PSTR("\n"));

 ExpandKey (samplekey, expkey);

 Encrypt (samplein, expkey, sampleout);

 printP(PSTR("Encrypted: "));

 for(i = 0; i < 16; i++) {itoa16(sampleout[i],c);print(c); print(" ");}

 printP(PSTR("\n"));

98

 Decrypt (sampleout, expkey, samplein);

 printP(PSTR("Decrypted: "));

 for(i = 0; i < 16; i++) {itoa16(samplein[i],c);print(c); print(" ");}

 printP(PSTR("\n"));

}

