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ABSTRACT 

Nowadays, it is widely recognized that data security will play a central role in the design of 

IT devices. There are more than billion wireless users by now; it faces a growing need for 

security of embedded applications. 

This thesis focuses on the basic concept; properties and performance of symmetric and 

asymmetric cryptosystems. In this thesis, different encryption and decryption algorithms 

have been implemented on embedded systems. Moreover, the execution time and power 

consumption of each cryptography method have been evaluated as key performance 

indicators. CAESAR and AES are implemented for the microcontroller (ATmega8515). 

The STK 500 board is used for programming of the ATmega8515. Furthermore it is used 

for the communication between the microcontroller and PC to obtain the performance 

advantages of the cryptography methods. Time and power consumption are measured by 

using an oscilloscope and a multimeter. Furthermore the performance of different  

cryptography methods are compared. 

_____________________________________________________________________ 

KEYWORDS: Cryptography, Embedded System, AES, ECC, security, encryption, 
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1. INTRODUCTION 

The embedded systems and handheld devices have been widely developed in 

comparison to a few years ago. From video equipment to mp3 players, cars to smart 

phones, and washing machines to home thermostats, more and more embedded devices 

interact with the real world and are connected to the internet, and then it’s very common 

that those devices meet attacks, hackers and threats. Security issues might result in 

physical side effect as potential damages, personal injury, and even death, so it will play 

a central role in the design of future IT systems. 

Due to the rapid growth of network communication, embedded devices and other 

transactions face the challenge of an increasing demand of data security, which concerns 

authentication for user admission, intrusion detection as well as any forms of attacks. 

Therefore, the security requirements have become critical. The main security issues of 

embedded systems will encounter when the data is routed over communication channels 

such as Ethernet, Wi-Fi, WiMAX or Bluetooth. Unfortunately, the technology of 

security applied in desk computing and enterprise cannot be executed in embedded 

systems. But security issues for embedded systems are more than the problems being 

addressed for desktop computing. 

The possibility of adding security can be specified by hardware or by implementing the 

cryptography algorithms in software. This project focuses on cryptography and the 
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implementation of a cryptographic algorithm to protect data by using encryption 

technology on embedded systems. 

There are several requirements and challenges of the implementation of cryptography 

algorithms on embedded systems. Embedded systems are highly cost sensitive, the 

length of cryptography key cannot be too big; a slow running cryptographic algorithm 

will lead to a long waiting time. The cryptographic technology can be divided into the 

two most common algorithmic models: symmetric cipher model and asymmetric-key. 

Asymmetric-key algorithms are very computationally intensive compared to symmetric-

key operations. Sufficient cryptographic algorithms need to be selected according to the 

hardware and processor of the embedded systems. 

The thesis consists of six chapters. In the first three chapters, the theory of cryptosystem 

is explained, symmetric cryptography and asymmetric cryptography. Chapter four 

introduces several attack methods. After the theoretical introduction it follows the most 

significant part of the thesis, the experimental part. Chapter five describes the software 

and hardware for the implementation, as well as the implementation algorithms, result 

and analysis of the encryption and decryption. Conclusion and future development 

regarding to this topic is given in the last chapter “CONCLUSION AND FUTURE 

WORK”. 
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2. SYMMETRIC CRYPTOGRAPHY 

Symmetric encryption is also known as conventional encryption or single-key 

encryption. The encryption and decryption processes are performed by using the same 

key. It contains five elements: Plaintext, Encryption Algorithm, Private Key, Ciphertext 

and Decryption Algorithm, as the symmetric cryptosystem model is showed in Figure 1. 

This system requires a strong encryption algorithm and the security of the private key. 

 

Figure 1. Simplified model of symmetric cryptosystem (Stallings 2011: 57). 

2.1. Block Cipher Principles 

Block Cipher is a type of symmetric encryption/decryption scheme that transform a 

fixed-length block of plaintext into a ciphertext block of the same length. The encryption 

transformation process is under the use-provided private key (See Figure 2). Decryption 

is the inverse process of encryption to the ciphertext using the same private key and will 

result in the original plaintext which was encrypted. Typically the block size is 64 bits or 

128 bits. 
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Figure 2. Block Cipher (Stallings 2011: 93). 

There are many common block ciphers in use today. These are outlined in Table 1.  

Table 1. Common Block Cipher Features (Ian McCombe 2007). 

Name Block Size (bits) Key Size (bits) Year 

Developed 

DES 64 56 1975 

RC2 64 8-128(default 64) 1987 

AES 128 128,196 or 256 1998 

IDEA 64 128 1991 

Lucifer 48 48 1971 

BlowFish 64 32-448(default 

128) 

1993 

Intel Cascaded Cipher 128 128 2006 
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2.2. Data Encryption Standard (DES) 

The Data Encryption Standard is adopted in 1977 by the National Institute of Standards 

and Technology (NIST), and the most widely used encryption scheme is based on it. The 

encryption process of DES is to transform a 64-bit input in a series of steps into a 64-bit 

output within a 56-bit key. The same key is used for the decryption process. 

In Figure 3, the first step is permutation and the last step is inverse permutation, after 

permutation, the block is broken into two 32 bits blocks, the left one is 
iL  and the right 

part is
iR . Then there are 16 rounds of identical operations, but each of them uses an 

individual key
iK 1:  ii RL ),(: ,11 iiii KRfLR         (1)  

In decoding, ),(:,: 11 iiiiii KLfRLLR  
      (2) 
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Figure 3. DES working process (Martti 2009:22). 

Traditional DES has only 56 keys and therefore it does not meet the requirements of the 

current distributed open network data encryption security. DES is considered as unsafe 

after increasing of the clock rate of the computer. 

2.3. Advanced Encryption Standard (AES) 

Advanced Encryption Standard (AES) is the most popular and secure symmetric system 

used in the professional industrial application, which is intended to replace DES for 

commercial applications. AES is a specification for encryption of the electronic data and 

it was published in 2001 by the National Institute of Standard and Technology (NIST). 

AES is the first publicly accessible and open cipher approved by the National Security 
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Agency (NSA) for the top secure information. In Comparison to AES, DES is insecure 

due to the small key. (Wikipedia AES 2012a.) 

Sometimes the algorithm is called Rijndael, which is combined by the names of the two 

Belgian cryptographers, Joan Daemen and Vincent Rijmen. The basic structure of AES 

is substitution-permutation network, which can work fast on both software and hardware. 

The cipher takes the plaintext block size of 128 bits. The key sizes can be 128, 192 or 

256 bits. (Wikipedia AES 2012a.) 

AES operates on a 4×4 square matrix of bytes. This block is termed into the State array, 

and the AES cipher consists of a number of repetitions of transformation rounds, where 

the number of rounds depends on the key length (Table 2). 

Table 2. Round and key length. 

No. of rounds Key Length (bytes) 

10 16 

12 24 

14 32 

The overall AES algorithm structure can be divided in the following steps as shown in 

Figure 4, which models the whole process of the AES encryption and decryption and 

indicates the sequence of the transformation in each round. 
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Figure 4. AES Encryption and Decryption (Stallings 2011: 178). 

Refer to the Figure 4, the process of each steps can be listed as: 
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1) Key Expansion. 

AES processes the data block as a single matrix during each round using substitutions 

and permutations. Round keys are derived from cipher key which is expanded into an 

array of forty-four 32-bit words. 

2) Initial Transformation. 

A simple bitwise XOR is applied to each byte of the state and the portion of the 

expanded key. 

3) Rounds. 

Four different stages are used; one of permutation and the others are substitution: 

Substitute Byte 

ShiftRows 

 MixColumn  

AddRoundKey. 

 Those four stages are repeating each round except the final round. 

4) Final Round (no MixColumn) 

The final round of both encryption and decryption consist three stages: 

Substitute Byte 
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ShiftRows 

AddRoundKey.  

 

Figure 5. SubBytes step (Wikipedia AES 2012a). 

Substitute Byte—each byte is replaced with another one according to an S-box (in 

APPENDIX 1), it is a non-linear substitution step shown in Figure 5. The element      

is replaced by the      using the S-box. The S-box contains all possible 256 2-byte 

values for permutation. The substitution process is working in the following way: the 

left side byte is used as row value and the right side byte is used as column number. 

Then lookup the S-box within these row and column values to pick another 2-byte 

output value. 

 iiji aSb ,,            (3) 
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Galois Field is called finite field, which is a field that contains a finite number of 

elements. The method of S-box substitution is based on the property of GF ( 82 ), the 

addition in GF ( 82 ) is XOR. 

1) Inverse in GF( 82 ), as the input element ωϵGF( 82 ), the inverse element of ω  is 

X: 

X= 









00

0254

1




        (4) 

2) Then the sub element of X form byte to bits are ( 01234567 ,,,,,,, xxxxxxxx ), 

According to (Stallings 2011: 178) the transformation is: 
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ShiftRows—is the row forward shift process. The first row remains the same. For the 

second row, shift to left 1-byte circular. For the third row, shift to left 2-byte circular. 

Then the fourth row, shift to left 3-byte circular. 
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The transformation can be expressed as: 
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The whole process is represented in Figure 6 clearly. 

 

Figure  6. Shift Rows (Wikipedia AES 2012a). 

MixColumn—is a forward mix column transformation. The mathematical model of 

intermixing between the different columns is in order to reach the confusion of the 

encrypted order. The whole process can be defined by the following mathematical model: 

 

 (7) 
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AddRoundKey—is a forward and inverse transformation. This step is the process that 

128 bits of the state are bitwise XORed with the 128bit of the round key. The 

mathematic model can be expressed as: 
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Refer to Figure 7; the detail of the transformation process is represented. 

 

Figure 7. AddRoundKey (Wikipedia AES 2012a). 
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The algorithm for decryption makes use of the expanded key in reverse order. The step 

AddRoundKey is the same as in encryption. However, the decryption algorithm is no 

identical to the encryption algorithm. All the four stages are reversible, and encryption 

and decryption are going in opposite vertical directions. 

2.4. Pseudorandom Number Generation and Stream Ciphers 

The real random number (or random events) in a generating process is according to the 

experimental performance of distribution probability, the result is unpredictable, is not 

visible. The pseudorandom number is generated according to a certain algorithm 

simulation, the sequences of numbers that are not statistically random. And the result is 

certain and visible. 

Random numbers are widely used in cryptography based on a number of network 

security algorithms and protocols.  There are some random and pseudorandom number 

generators. TRNG is the true random number generator. It is the source of true analog 

randomness to a binary output. PRNG is a pseudorandom number generator. PRF is a 

pseudorandom function. Those two generators are used to produce pseudorandom 

numbers. Both require a fixed value as input, called the seed that should be different 

every time to guarantee randomness and unpredictability.  

2.5.  Blowfish 

Blowfish is a substitute for the DES and IDEA encryption algorithm. It is a symmetrical 

block cipher (secret or private key), use that a variable key length from 32 to 448 bits. 
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(The U.S. government prohibits the encryption output software to use the key which 

key-length is more than 40, unless special-purpose software). Blowfish algorithm is an 

alternative encryption method, proposed in 1993 by Bruce Schneier. After the birth of 

the 32-bit processor, the speed of blowfish algorithm in the encryption beyond the DES 

attracted the attention of the people. Blowfish is a not registered patent, it can be used 

free. The round function is shown in Figure 8. 

 

Figure 8. The round functions of Blowfish. 

There are some features of blowfish: 

 Blowfish is fast 

 Blowfish needs only 5 KB of memory is easy to implement and compact 

 Blowfish is considered secure 

 Encryption consist 16+1 phases, each phase consists of ⊕, + and S-box operation 

 Decryption is identical to encryption; keys are used in inverse order. (Martti 

2009:35.) 
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3. ASYMMETRIC CRYPTOGRAPHY 

Asymmetric cryptography is also known as public-key cryptography, which is a form of 

a cryptosystem in which encryption and decryption are performed by different keys. 

There is one public key and one private key. The public key is widely distributed, while 

the private key is kept secure. 

 

Figure  9. Simplified model of asymmetric cryptography (Information Security). 

The process of asymmetric cryptography is to transform the plaintext into ciphertext by 

using the public key of the receiver (see Figure 9). The receiver decrypts the ciphertext 

with the private key. Anyone who wants to send a message to Alice can encrypt it using 

Alice’s public key but only Alice can decrypt it with her private key. The private key 

should be kept secret at all times.  

The use of public-key cryptosystem can be divided into three categories: Encryption/ 

decryption; digital signature; key exchange. (Stallings 2011: 57.) 
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3.1. The RSA algorithm 

RSA is one kind of public-key algorithm; it stands for Ron Rivest, Adi Shamir, and Len 

Adleman who first publicly described it in 1978. 

The RSA scheme is a block cipher in which the plaintext and ciphertext are integers 

between 0 and n-1 for some n. The public key is created and published by the product of 

two large prime numbers, along with an auxiliary value. The prime factors must be kept 

secret. Anyone can use the public key to encrypt a message, only someone with 

knowledge of the prime factors can feasibly decode the message. At present RSA is the 

most widely used public key cryptography, which is based on the principle of trapdoor 

one-way function, as it is shown in the Figure 10,  

 

Figure 10. RSA is based on trapdoor one-way function principle.  

The RSA algorithm is simple and easy to use. But as decomposition method of big 

integers is progressing, and the improvement of the speed of the computers and the 
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development of computer networks, the key length has to be increased in order to 

guarantee the safety of RSA. Increasing the key length will slow down the encryption 

and decryption speed. Hardware based implementation would be difficult. Thus RSA 

will be limited in terms of the key length. 

Compared to DES, the speed of RSA is 1000 times slower than DES in hardware. In 

software, RSA is 100 times slower than DES. Those numbers might be changed slightly 

as technology changes, but the speeds of RSA can never approach the symmetric 

algorithms. Refer to the Table 3, it shows RSA speeds for different modulus lengths 

with 8-bit public key. 

Table 3. RSA Speeds for Different Modulus Lengths with an 8-bit Public Key  

(J.B.Lacy 1993). 

 512 bits 768 bits 1,024 bits 

Encrypt 0.03 sec 0.05 sec 0.08 sec 

Decrypt 0.16 sec 0.48 sec 0.93 sec 

Sign 0.16 sec 0.52 sec 0.97 sec 

Verify 0.02 sec 0.07 sec 0.08 sec 

3.2. Diffie-Hellman Key Exchange 

Diffie-Hellman Key Exchange is a security protocol. The math method is simple. Alice 

and Bob can use this algorithm to generate a secret key. First, Alice and Bob agree on a 

large prime, n and g, g < n and g is a primitive root of n. These two integers don’t need 
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to be secret; Alice and Bob can agree to them over some insecure channels, which even 

are common among a group of users. 

The algorithm works as follows: 

(1) Alice Key Generation: 

ngX x mod , x is a large random integer 

(2) Bob Key Generation: 

ngY y mod , y is a large random integer 

(3) Calculation of secret key by Alice: 

nYk x mod  

(4) Calculation of secret key by Bob: 

nXk y mod'   

Diffie-Hellman key exchange protocol can easily be extended to work with more people, 

just add more people and more rounds of computations. 

This algorithm is not suitable for embedded systems. It can be used for the key 

distribution. Both sides can use this algorithm to generate a secret key, but it cannot be 

used for encryption and decryption of the message. (Stallings 2011: 327.) 

3.3. El GAMAL Cryptographic System 

The ElGamal algorithm is public-key cryptography which is based on Diffie-Hellman 

key exchange. ElGamal contains key generation, encryption algorithm and decryption 
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algorithm which were described by Taher Elgamal in 1984. It can be used for both 

digital signature and message encryption.  

Key generation  

Alice generates a key pair, first two random numbers are chosen, g and x; a prime p, g 

and x are smaller than p. 

Alice computes pgy x mod , the public key is y, g and p, can be shared among groups 

of users. And x is kept private. 

ElGamal Encryption 

Plaintext is M, a random number k is chosen, k is relatively prime of p-1. 

a, b are ciphertexts, the length is two times of plaintext, 

)(mod pga k            (9) 

)(mod pMyb k          (10) 

Decrypting: )(mod/ pabM x        (11) 

ElGamal Signatures 

The signing message is M, a random number k is chosen, k is relatively prime of p-1, 

M= (ax+bk) mod (p-1)        (12) 

This signature is the pair a and b. The value of k should be kept private. 

Verifying: )(mod)(mod pgpay Mba        (13) 

http://en.wikipedia.org/wiki/Taher_Elgamal
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Table 4. Gives some sample software speed of ElGamal (J.B.Lacy 1993). 

 512 bits 768 bits 1024 bits 

Encrypt 0.33 sec 0.80 sec 1.09 sec 

Decrypt 0.24 sec 0.58 sec 0.77 sec 

Sign 0.25 sec 0.47 sec 0.63 sec 

Verify 1.37 sec 5.12 sex 9.30 sec 

Table 4 shows that ElGamal when comparing the measurement with Table 3 is slower 

than RSA. 

3.4. Elliptic Curve Cryptosystem 

In 1985, Miller and Koblitz firstly suggested to use Elliptic Curve in cryptography 

independently, which is based on the algebraic structure of elliptic curves over finite 

fields. Elliptic Curves are becoming more popular is because the keys size is much 

shorter than the public key systems which are based on the integer factorization or finite 

field discrete logarithm problem. Compared to RSA, the security level of ECC is higher. 

A key of 160 bits in ECC is secure as a 1024 bits RSA key as shown in Table 5. As a 

result, due to the short key length, the elliptic curve cryptosystem needs less bandwidth, 

less running time as well as lower power cost and it is suitable for the development of 

security products like PDA, mobile phone and embedded card .It will replace RSA in the 

near future. ECC becomes one of most efficient public-key cryptosystem. 
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Table 5. Key length of ECC and RSA with same security level. 

ECC key length 

(bits) 

RSA key length 

(bits) 

Crack Time /MIPS 

(year) 

ECC/RSA key 

length rate 

106 512 410  5:1 

160 1024 1110  7:1 

210 2048 2010  10:1 

600 21000 7810  35:1 

In general, cubic equations for elliptic curves take the Weierstrass equation: 

edxcxxbyaxyy  232

                                                                                  (14) 

Where a, b, c, d, e are real numbers and x, y take the values of real numbers. The elliptic 

curve can be seen as a set of all solutions to equations of the form: 

baxxy  32

                          (15) 

The curve discriminant equation is: =-16( 23 274 ba  )                                              (16) 

A group can be defined on a set E (a, b) for specific values of a and b in Equation (14), 

the following condition is met: 

0274 23  ba                                                                                                                 (17) 

The process of ECC Diffie-Hellman Key Exchange can be done by the following step. 

First pick a large integer q, which is a prime or an integer of the form of m2 . Then the 
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elliptic curve parameters a, b must be applied for Equation (14) or (15), which defines 

the elliptic group of the points ),( baEq . In the next step a base point G= ( 11, yx ) in 

),( baEq is selected, whose order is larger than value n.  

A key exchange between user Alice and Bob can be described in Figure 11. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11.  ECC Diffie-Hellman Key Exchange (Stallings 2011: 343). 

ECC Encryption and Decryption  

                                        User Alice Key Generation 

Select private An                                                          nnA   

Calculate public AP      GnP AA   

 

 

                                         User Bob Key Generation 

Select private Bn                                                          nnB   

Calculate public BP      GnP BB   

 Calculation of Secret Key by User Alice 

BA PnK   

Calculation of Secret Key by User Bob 

AB PnK   
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Choose Elliptic curve over GF ( m2 ) for instant, the preparation assignments are: 

 Select GF(p) 

 Select elliptic curve E 

 Select base point G(x,y) 

 Applied algorithm for transforming plaintext into the points of elliptic curve, called 

encryption process 

 Generating the private and public keys between sender Alice and receiver Bob. 

Select one private key n, calculate the public key ),( yxnnGP  . For Alice, the 

private key is An , and the public key is ),( yxnGnP AAA  . For Bob, the private 

key is Bn and the public key is ),( yxnGnP BBB  . 

Encryption: Alice sends encrypted message to Bob 

 Choose random number k, 11  pk  

 Get the corresponding points ),( mm yx  by encoding the plaintext; 

 Calculate the cipher text }),(),,({ Bmmm kPyxyxkC  , and the cipher text here 

turns into two points on the elliptic curve. 

Decryption, Bob decrypts the received message from Alice: 

 Calculation 

),(

),(),(),(

)),(())),((),((

)()),((

mm

BBmm

BBmm

BBmm

yx

yxknyxknyx

yxknyxnkyx

kGnkPyx









      (18) 
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 Get the corresponding plaintext by decoding the points ),( mm yx . 

The study and implementation of elliptic curve cryptography is now becoming a focus in 

public-key cryptosystems, and its foundation relies on the difficulty to solve the discrete 

logarithm of the elliptic curve Abelian group. 

The set of points on the elliptic curve, together with a special point O called the point at 

infinity can be equipped with an Abelian group structure by the following addition 

operation. 

Additional algorithm: 

Input:   modulus p, integer ]1[,  pba  

Output: c=(a+b) mod p 

000 bac 
 

For i from 1 to t-1 do: carrybac  111  

If carry =1, then c=c-p 

If pc  , then c=c-p 

Return (c) 

Subtraction algorithm 
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Input:   modulus p, integer ]1[,  pba  

Output: c= (a+b) mod p 

000 bac 
 

For i from 1 to t-1 do: carrybac  111  

If carry =1, then c=c+p 

Return (c) 

3.5. Hash Functions 

A hash function is any algorithm that maps large data sets of variable lengths to smaller 

fixed length data sets. For instance, an address name, having a variable length, could be 

hashed to a single integer. The values returned by a hash function are called hash values, 

hash codes, hash sums, checksums or simply hashes. 

Some common uses hash functions: 

Mxxf maxmod:)(             (19) 

When max (M) is a prime and normal not close to n2 ; 

MlongitXxtruncxf maxmod)max*)max/((:)(         (20) 

This is used for integer; 

http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Data_set
http://en.wikipedia.org/wiki/Integer
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)1000000mod)1000*(:)( xdivxxf         (21) 

First Square meter then get the middle value. 

In original sense, good hash functions are usually required to meet certain properties 

listed below: 

Determinism--the hash procedure must be deterministic. It means for a given input value 

the output hash value must be the same. 

Uniformity-- A good hash function should map the expected inputs as evenly as possible 

over its output range. That is, every hash value in the output range should be generated 

with roughly the same probability. 

Variable range—in many applications, the hash function range may be different for each 

run of the program. 

Variable range with minimal movement—the hash table is refers to a dynamic hash table 

when the hash function is used to store values in a hash table that outlives the run of the 

program, and the hash table needs to be expanded or shrunk. 

Data normalization—accomplishes normalizing the input before hashing it. That is, any 

two inputs that are considered equivalent must yield the same hash value. 

Continuity—Hash function is used for searching similar data, which must be as 

continuous as possible. 

http://en.wikipedia.org/wiki/Probability
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3.6.  Key Management and Distribution 

Key management includes key generation, storage, distribution, using and destroy. The 

main target is to make sure that the key delivery via the public network is safely. A good 

key management system should include three aspects: 

 Keys are hard to be stolen 

 Under certain conditions, it should be useless to steal the keys because they have a 

limited lifetime 

 Key distribution and exchange process are transparent to the users; users don’t need 

to manage the keys personally.  

The key distribution is the way that delivers a key to two parties who are intended to 

exchange secure encrypted data. A protocol is needed that provides a secure distribution 

of the keys. There are two kinds’ keys that are involved in key distribution. Master keys 

are infrequently used and they last for a long time. The other is session keys, which are 

generated and distributed for temporary use between two parties.  

Key distribution technique is a term that refers to the means of delivering a key between 

two parties that want to exchange data without allowing others to see the key.  So far, 

the two main techniques are described Key Distribution Centre (KDC) and Diffie-

Hellman. The process of Diffie-Hellman is described in chapter 3.2.  

Kerberos is an authentication service designed for key distribution environment, it 

applies symmetric cryptography algorithms to establish a trustable third party KDC 
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verification system and verifies the authenticity of the two parties that communication 

with each other. The main function of Kerberos is to solve the key management and 

distribution. There are three parties in this communication: two communication parties 

that need to be verified and a trustable third party (KDC). Each party should only keep 

the encryption key with KDC secure, and KDC will safeguard the different encryption 

keys for individual users. When two parties want to communicate, they apply to KDC 

and KDC will encrypt the session keys by their individual keys .Then keys will be sent 

back (Stallings 2011: 435).The process is illustrated in Figure 12. 

 

Figure 12. Key Distribution Scenario (Stallings 2011: 439). 
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3.7. User Authentication 

In most computer security contents, user authentication is a mean of identifying the user 

and verifying that the user is allowed to access some strict network. For example, a user 

must be identified as a particular student to access the universities weboodi system or 

webmail service. A user must be identified as a member of IEEE to in order to view the 

IEEE materials. Furthermore, a user must be identified as a system administrator in 

order to access the document about the network administration. User authentication is 

the basis for access control and for user accountability. 

There are two steps for remote user authentication: 

 Identification step: Presenting an identifier to the security network, like user name 

and password. 

 Verification step: Server and database. Generate authentication information to 

confirm the user’s access right. 

There are four possibilities that can be used individually or together to authenticate the 

users. 

 Individual knows: A password, a PIN, or answers to a prearranged set of questions. 

 Individual possesses: Tokens, like cryptography keys, smart cards, physical keys 

and electronic keys. 

 Static biometrics: Fingerprint, face and retina. 

 Dynamic biometrics: Voice pattern and handwriting characteristics 
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The remote User-authentication can be divided into two methods: mutual authentication 

and one-way authentication. Mutual authentication should consider the key distribution 

issues and should enable two communication parties to satisfy themselves mutually 

about the other’s identity; one-way authentication can be applied for the e-mail system. 

A Remote user authentication can use symmetric encryption and asymmetric encryption 

with Kerberos service. 
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4. ATTACKS 

Attacks can be active or passive. An ‘active attack’ attempts to delete, add or use other 

method to affect the channel. A ‘passive attack’ only monitors the channel, does not 

affect the system resources. 

Types of attacks: 

 Passive Attack 

 Within ciphertext: attempts to get secret key or plaintext by observing 

ciphertext 

 Knows some plaintext and relative ciphertext, but this attack it difficult to 

realize 

 Knows some plaintext, attempts to know the encryption algorithms 

 Choosing relative plaintext to attack 

 Choosing ciphertext to attack 

 Choosing relative ciphertext to attack 
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Refer to Figure 13, which is shown the four attacks on Four Levels: 

 

 

 

 

 

 

 

 

 

Figure 13. Four different levels attack. 

Refer to the elliptic curve cryptosystem; most attacks on ECC are focusing on 

algorithms. 

4.1. Attacks on Hardware and Network  

It can be realized by a Side-Channel Attack (SCA), this method is powerful because 

there is no unified counter plan. SCA can be classified by invasive attacks and non-

invasive attacks. Invasive attacks include probing and fault induction attacks. Non-

invasive attacks include timing attacks and leaked-information attacks. 

Attacks on Mechanisms 

Attacks on Protocols 

Attacks on Hardware and Network 

Attacks on algorithm 
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4.1.1. Power Consumpution and Electromagetic Radiation Attack 

In this kind of attack, the rival get system leaked information by means of measures or 

by analyzing the switch, current and power. Those information include hamming 

distance, bit string and operation order. Some attacks can even get the RAM information 

via CPU RAM address. 

Similar, they can get the information via the equipment’s electromagetic radiation. 

Because of electromagnetic radiation, an attacker can get data without getting close to 

the equipment. 

4.1.2. Time Attacks 

The target of time attack is a computational process nD,  where n is fixed, and where D 

is a rational point on the elliptic curve.This kind of attack is to analyse the selected time. 

The principle is that for a software or a device, different input consumes time differently. 

In theory, time randomization and process interrupt randomization are the ways to resist 

timimg attack. But in practice, those method are too strict, there is no perfect resist 

method. 

4.1.3. Fault Induction Attacks 

Fault Induction Attacks is to do wrong operation deliberately, get the secure information 

from the output result. 
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The method for assist this attack is simple, examine intermediate result. If the 

intermediate result not belongs to the curve point group, recalculate it. 

4.1.4. Some Possible Countermeasures 

 Non area differentiation in basic operation, at least make operation atomic; 

 Group randomized, at least for base point; 

 Check if the intermediate result is reasonable; 

 Well stored precomputation result in hard disk; 

 Electromagnetic shielding; 

 Random process interrupt, random timing. (Avanzi 2005.) 

4.2.  Attacks on Algorithm 

These kind attacks mostly rely on the mathematical algorithm, for ECC, it will aim to 

attack the ECC discrete logarithm ECDLP.  Because of the features of ECC are 

complicated and attractive, it can be observed from different angles and get different 

properties. Meanwhile, the attacker obtains ideas from its characters. 

4.2.1. Uncivilized search 

Uncivilized search on elliptic curve is : a given curve E, point P and a random point Q, 

calculate P, 2P, 3P…until get Q=IP. The worst situation of this algorithm needs process 

n times elliptic curve addition, complexity is O(n). 
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4.2.2.  Pohlig-Hellman algorithm 

This algorithm makes use of factorization. By means of factoring n, the ECDLP how to 

solve l change into how to solve all the prime factors of n. Then regain l by CRT. 

In order to withstand this attack, when we choose elliptic curve, the curve degree should 

be aliquot of a big prime n or be a big prime. 

4.2.3.  Baby-step Giant-step algorithm (BSGS) 

We describe the BSBG method for a general finite abelian group, with n elements. By 

the Pohlig-Hellman simplification it can be assumed that n is prime. This method is the 

improvement of uncivilized search, but it costs more Random Access Memory (RAM). 

By means of precalculated and store the number of n elliptic curve points, the 

complexity of the worse situation can be decreased to O ( n ) Pollard Rho Method. And 

the main problem of the method is that the storage space of O ( n ) group elements. 

This method in practice is a way of integer generation, and can be used for big integer 

factorization. When solving the ECDLP problem, Pollard Rho method simplify Baby-

step Giant-step which saves memory space. After this improvement, the complexity of 

this method is around O (
2

n ). Based on this method, it is possible to parallelize 

Pollard Pho method, arithmetic complexity decreased to O (
r

n
2

 ) 
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4.2.4. Semaev Smart Satoh Araki Attack 

Prime Field Anomalous can solve ECDLP quickly. But this attack won’t diffuse to other 

infinite field. It is to solve the ECDLP in subgroups of order p, where p is the 

characteristic of the field of the definition of the curve. An attack can be avoided by 

checking if the infinite element numbers are equal to the elliptic curve point members. 
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5. EXPERIMENTAL PART 

In the experimental part, the content is about simulation regarding to security and 

performance on CAESAR and AES. 

5.1. Hardware for Simulations 

The STK500 board is manufactured by ATMEL in Sweden and it is equipped with an 

ATmega8515 microcontroller (see Figure 14), starter kit for 8-bit AVR. These 

microcontrollers are available in different configurations. It consists of a RS-232 

interface to PC for programming and control, an additional RS-232 port for general use. 

It works with a regular power supply for 10-15V DC power.  

 

 

Figure 14. ATMEL STK 500. 
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The key features of STK500 I used are listed below: 

 RS232 Interface to PC for programming and control 

 Regulated power supply for 10-15V DC power 

 Sockets for 8-pin, 20-pin, 28-pin, and 40-pin AVR devices 

 Parallel and Serial High-Voltage Programming of AVR devices 

 Serial In-System Programming (ISP) of AVR devices 

 In-System Programmer for Programming AVR devices in External Target 

System 

 8 Push-buttons for general use 

 8 LEDS for general use 

 All I/O ports easily accessible through pin header connectors 

 Additional RS232 port for general use 

 Expansion connectors for plug-in modules and prototyping area 

And the key Parameter Value of the chipcon is listed below: 

 Flash (Kbytes): 8 Kbytes 

 Pin Count: 44 

 Max. Operating Frequency: 16 MHz 

 CPU: 8-bit AVR 

 # of Touch Channels: 16 

 Hardware QTouch Acquisition: No 

 Max I/O Pins: 35 

 Ext Interrupts: 3 

 USB Speed: No 

 USB Interface: No 

 



47 

 

 

Figure 15. STK 500 Components (ATMEL User guide). 

5.2. Software used for implementation and for testing 

The software which is used to program the microcontroller on STK500 development 

board is Atmel Studio 6.0. Realterm is used for the communication between the PC and 

the microcontroller. The FrontPage of Atmel Studio 6.0 is shown in Figure 16.  
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Figure 16.  AtmelStudio 6.0 FrontPage. 

The experiment will be done with Realterm, which is created mostly to represent a better 

alternative to the ubiquitous HyperTerminal application. In this project, the most 

impressive part of this application is the fact that it can emulate almost any kind of 

terminal used for serial communication. The FrontPage of Realterm is shown in Figure 

17. 
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Figure 17. The Realterm FrontPage.  

5.3. Selection and Implementation of Cryptographic Algorithms  

The experiment is done with three programs containing the implementations of 

cryptography algorithms CAESAR and AES. The procedure is shown in Figure 18. 

First the program that contains the selected crypto graphical algorithms is compiled and 

uploaded to the microcontroller. This is done with Atmel AVR studio. In this case serial 

cable must be connected with the programming port of the STK500 board. Then the 

serial cable must be connected with the communication serial port in order to 

communicate with the microcontroller over the Realterm software. 



50 

 

In Figure 18, the STK 500 is connected to the PC via RS232 port. There are two RS232 

ports on STK 500, one is for programming which is occupied when using Atmel studio 

6.0; the other one is for communication when communicates with Realterm. 

 

Figure 18. Schematic Diagram. 

A. CAESAR 

CAESAR encryption (Caesar cipher), known as shift cipher, is the simplest encryption 

method. It is a type of substitution cipher in which each letter in the plaintext is replaced 

by a letter some fixed number of positions down the alphabet. Each letter in the alphabet 

will be replaced with a constants right shift k.  

http://en.wikipedia.org/wiki/Substitution_cipher
http://en.wikipedia.org/wiki/Plaintext
http://en.wikipedia.org/wiki/Alphabet
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Figure 19. CAESAR letter left shift of 3 (Wikipedia CAESAR 2013). 

See Figure 19, for example if k equals 3, each letter would move forward by three, and 

A will be replaced by D. B is replaced with E, and so on. The letters which sit in end of 

the alphabet will roll back to the beginning. So, W will be replaced by Z, X will be 

replaced by A. 

B. AES 

Due to the less security of DES, AES is a specification for encryption of the electronic 

data and it was published in 2001 by the National Institute of Standard and Technology 

(NIST).  It aims to develop a royalty-free cryptographic technique for public authorities 

and private department. There are no known approaches for an attack in case of AES-

128. (Biryukov & Khovratovich 2009.) 
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Table 6. AES Parameters (The AES Cipher). 

Key Size 

(words/bytes/bits) 

 

4/16/128 

 

6/24/192 

 

8/32/256 

Plaintext block 

size 

(words/bytes/bits) 

 

4/16/128 

 

4/16/128 

 

4/16/128 

Number of rounds 10 12 14 

Round key size 

(words/bytes/bits) 

 

4/16/128 

 

4/16/128 

 

4/16/128 

Expanded key size 

(words/bytes) 

 

44/176 

 

52/208 

 

60/240 

AES can be used with a variable block and key length; there are 56 bits for DES which 

will increase the computational power and are easy to break (NIST 2001). Refer to the 

Table 6, if a 128 bits key is chosen, the message M is divided into several blocks 1m ,

2m … nm . A simple bitwise XOR is applied to each byte of the block and the portion of 

the expanded key is processed in 10 rounds using following operations as well the 

Figure 20. 

Substitution: Each byte is replaced with another one according to a 256-byte look-up 

table called the S-box. 

Permutation: Cyclically shifting of lines in state array. The bytes in each of the 4 rows 

in the state are rotated by (n-1) where n represents the row number from 1 to 4. 
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Diffusion: Performing matrix multiplication, each byte of a column with every other 

byte. The state can be considered to be a 4*4 matrix and this transformation can be 

achieved by multiplying this matrix by: 



















02010103

03020101

01030201

01010302

 

In the last round this step must be omitted. 

Key Generation: Performing XOR operation. In this transformation, the round key is 

simply added to the state, which is done by GF ( 82 ). 

The decryption of AES uses the inverse function of encryption and the same key-

schedule for the round keys, which need longer processing time due to high complexity. 
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Figure 20. The procedure of AES encryption and decryption.  

AES works with three key lengths, thus three different versions of the encryption and 

decryption scheme have been prepared. The key sizes used for an AES cipher specified 

the number of repetitions of transformation rounds. The numbers of repetitions of 

transformation rounds are as follows: 

 10 rounds for 128-bit key; 

 12 rounds for 192-bit key; 
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 14 rounds for 256-bit key. 

5.4. Result of the implementation 

A. CAESAR 

After programming the STK 500 with ATMEL studio, Realterm is used for the 

communication between PC and microcontroller. 

A string is sent from the Realterm application (running on the PC) to the microcontroller, 

where the string will be encrypted. The encrypted string is sent back to the Realterm 

application, after that the microcontroller decrypts the string again and sends it to the 

Realterm application. 

 

Figure 21. CAESAR algorithm encryption. 
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Plain message is ABCD and cipher message is BCDE, see Figure 21. 

The decryption is quite simple here; just reverse the key shift. The encrypted key is 1, so 

the decrypted key is -1. Figure 22 illustrates the decryption result. 

 

Figure 22. CAESAR algorithm decryption. 

B. AES 

The result of AES encryption and decryption is shown in Figure 23.The block message 

is 128 bits. AES has 10 rounds for a key length 128 bits; 12 rounds for a 192-bit key and 

14 rounds for a 256-bit key. In this experiment, the time and current consumption for the 

encryption and decryption is measured.  
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Figure 23. AES Encryption and Decryption result. 
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5.5 Time Consumption of Different Key Length 

A. CAESAR encryption and decryption 

An oscilloscope is used for measuring the times. Before and after the encryption/ 

decryption a selected pin is toggled. Then the encryption time with different number of 

bytes and different frequencies is measured. Figure 24 is the screenshot of the CAESAR 

encryption time measuring result for 50bytes and a beginning of 8 MHz on oscilloscope. 

 

Figure 24. The screenshot of CAESAR encryption time at 8 MHz and 50bytes message 

on oscilloscope. 

The result of time consumption for CAESAR encryption with different bytes and 

different frequencies is shown in Table 7. For CAESAR, decryption is just the reverse 

procedure of encryption, so the time consumption is just the same as encryption. 
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Table 7. The result of CAESAR encryption time of different times with different 

frequencies and messages bytes 

   Frequency 

 

 

NO. of bytes 

 

1MHz 

 

4MHz 

 

8MHZ 

50 12.80 ms 3.12ms 1.56ms 

100 25.40ms 6.20ms 3.12ms 

150 38.00ms 9.30ms 4.72ms 

200 50.08ms 12.30ms 6.28ms 

The relationship between the encryption time and the frequency is linear; as well it is 

linear with the plaintext bytes. The bigger the frequency, the shorter the time 

consumption is; the more the number of bytes, the higher the time consumption. Figure 

25 represents those relationships. 

Generally, decryption time is just the same as encryption in CAESAR. 
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Figure 25. The relationship among CAESAR, frequency and message bytes. 

B. AES 

In this section, the encryption and decryption times of AES are measured and compared 

by using different key lengths at different frequencies. An oscilloscope is used for 

measuring the times. Before and after the encryption/ decryption a selected pin is 

toggled. Figure 26 is the screenshot of the AES encryption time measuring result for 50 

bytes and a frequency of 8 MHz on oscilloscope. 
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Figure 26. The screenshot of the AES encryption time at 8MHz 128 bit key on 

oscilloscope. 

The result of time consumption for AES encryption with different key lengths and 

different frequencies is shown is the Table 8.  

Table 8. Results of AES Encryption time consumption on Atmel STK 500 with different 

key lengths and different frequencies. 

                              Frequency 

Key Length Rounds 1MHz 4MHz 8MHz 

128 bit 10 8.80ms 2.20ms 1.20ms 

192 bit 12 10.60ms 2.78ms 1.40ms 

256 bit 14 13.40ms 3.24ms 1.66ms 

The relationship of AES encryption time consumption with different key lengths and 

different frequencies is shown as a bar chart in Figure 27. 



62 

 

 

Figure 27. The bar chart of the relationship among AES encryption time consumption, 

frequency and key lengths. 

The comparison to the encryption time obtain in Table 8, the decryption time is a little 

bit longer than the encryption (see Table 9). 

Table 9. Results of the AES Decryption time consumption on Atmel STK 500 with 

different key lengths and different frequencies. 

                              Frequency 

Key Length Rounds 1MHz 4MHz 8MHz 

128 bit 10 9.60ms 2.50ms 1.24ms 

192 bit 12 11.40ms 2.90ms 1.48ms 

256 bit 14 13.60ms 3.30ms 1.72ms 
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The relationship of AES encryption time consumption with different key lengths and 

different frequencies is shown as a bar chart in Figure 28. 

 

Figure 28. The bar chart of the relationship among AES decryption time consumption, 

frequency and key lengths. 

5.6 Power Consumption of Different Frequencies 

A multimeter is used for measuring the current. Idle current is measured when the circuit 

is idle; maximum current is measured when the circuit is being operated under 

encryption and decryption process. The circuit model is illustrated in Figure 29. The 

input voltage is 12 Volts. Then the power consumption can be calculated by formula 

Power= current *voltage. 
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Figure 29. Circuit Model.  

The current consumption of CAESAR is measured, and the result is listed in Table 10. 

Table 10.  Results of CAESAR idle and max current measurement 

Frequency 1 MHz 4MHz 8MHz 

Idle Current 102.5mA 107.2mA 111.9mA 

Max Current 110mA 114.5mA 118.6mA 

The relationship of CAESAR encryption current consumption with different frequencies 

is shown as a bar chart in Figure 30. 

 

Figure 30. The bar chart shows the relationship between CAESAR encryption current 

consumption and frequency. 
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The maximum power consumption at 1MHz is calculated as: P=V*I= 12Volts * 

110mA= 1.32 Watt. Then the power/time =1.32watt / 12.8 ms= 103.125 watt/s. When 

Frequency at 4MHz, P/T = 440.38 watt/s. More power consumption results in less time 

consumption. This principle is the same for AES cryptography. 

The current consumption of AES is measured, and the result is listed in Table 11. 

Table 11. Results of AES idle and max current measurement. 

Frequency 1 MHz 4MHz 8MHz 

Idle Current 99.9 mA 103.8mA 106.7mA 

Max Current 101.7mA 106.6mA 110.3mA 

The relationship of the CAESAR encryption current consumption with different 

frequencies is shown as a bar chart in Figure 31. 
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Figure 31. The bar chart of the relationship between AES encryption current 

consumption and frequency. 

The result shows that the higher the frequency, the higher the current consumption. Here 

voltage is constant; the power consumption is increasing with the rise of the frequency. 

  



67 

 

6. CONCLUSION AND FUTURE WORK 

In this thesis, symmetric cryptography and asymmetric cryptography algorithms were 

analyzed and researched in the theoretical section.  Different algorithms were compared 

by the key lengths, the length of encryption time and decryption time, as well the 

security of itself. In the practical section, CAESAR and AES were coded by C language 

and programmed on an embedded system (Atmel STK 500 board). Time consumption 

and power consumption of each algorithm were measured. The higher the frequency is, 

the less the time consumption is. Bigger messages or longer key lengths lead to more 

time consumptions. Regarding to the power consumption, a higher frequency results in 

more power consumption. After analyzing those results, it is obviously shown that 

power consumption decreases when time consumption increases. 

ECC is a new secure innovation in the information security field that can be adapted in 

the future telecommunication and embedded system area. Absolute advantages in 

computing speed and storage space, it is a research hot spot in current public 

cryptography systems. As a matter of factor, there are still rooms for improvement on 

the implementation of ECC with software.  

There are still many problems in the research field of ECC, which become the bottleneck 

of its development and application, such as embedded plaintext algorithm, curve and 

basis of calculation and the selection of safety curve algorithm. The calculation of 

ECDLP is the core research of the elliptic curve. Future works on ECC are based on 

three aspects: how to select the high security level Elliptic Curve, which means the 
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selected algorithm is easy to be applied and hard to brake. In the Elliptic Curve 

Cryptosystem, the times of points on the elliptic curve group take up a large proportion 

of the whole operation. The efficiency is related to the execution of the whole procedure. 

As far as the application and development of Smart Card and wireless communication 

field are concerned, what is significant to be researched is how to enhance the defense 

capability of the chip itself.  
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APPENDIXES 

APPENDIX 1. S-box(William Stallings 2011: 181) 

 

Inverse S-box 

 



74 

 

APPENDIX 2. CAESAR Encryption  

################################################################ 

### 

### CAESAR encryption code 

### 

### Copyright (C) 2013, Qian Yang (t94781@student.uwasa.fi) 

### 

### University of Vaasa 

### 

################################################################ 

#include <stdio.h> 

#include <stdlib.h> 

#include <string.h> 

#include <avr/interrupt.h> 

#define ARRAY_SIZE 220 

static volatile uint8_t count; 

static char buffer[ARRAY_SIZE];  

void caesar(char *, const int); 

// ISR for USART receive 

ISR(USART_RX_vect) 

{ 

 buffer[count] = UDR; 

 if(buffer[count] == '\r' || count == (ARRAY_SIZE -1)) 
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 { 

  buffer[count] == '\0'; 

  // set PB0 to 1 

  PORTB |= (1 << PB0); 

     

  caesar(buffer, 10); 

  // set PB0 to 0 

  PORTB &= ~(1 << PB0); 

  int i; 

  for(i = 0; i < count; i++) 

  { 

   usart_putc(buffer[i]); 

   buffer[i] = '\0'; 

  }   

  count = 0;   

 } 

 else  

  count++;  

} 

int main(void) 
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{ 

 // define PB0 of PORTB as output 

 DDRB |= (1 << PB0); 

 // set PB0 to 0 

 PORTB &= ~(1 << PB0); 

 // initialize USART 

 //UBRRL = 103; // 8MHz Baudrate 9600 

 //UBRRL = 51; // 4MHz Baudrate 9600 

 UBRRL = 12; // 1MHz Baudrate 9600 

 UCSRA |= (1 << U2X); 

 UCSRB |= (1 << RXCIE) | (1 << RXEN) | (1 << TXEN); 

 // initialize count variable 

 count = 0; 

 // enable interrupt 

 sei(); 

 while(1); 

 return 0; 

} 

inline void caesar(char *str, const int offset) 

{  



77 

 

 for(;*str!='\0';str++) 

 { 

  if(*str>='A' && *str<='Z') 

  *str = 'A' + (*str - 'A' + offset) % 26; 

  else if(*str>='a' && *str<='z') 

  *str = 'a' + (*str - 'a' + offset) % 26;   

 }  

} 

void usart_putc(unsigned char c) 

{ 

 // wait for an empty transmit buffer 

 // UDRE = USART Data Register Empty 

 // if UDRE = 1 the buffer is empty 

 while(!(UCSRA & (1 << UDRE))); 

 // USART I/O Data Register 

 UDR = c; 

} 

  



78 

 

APPENDIX 3.  AES Encryption and Decryption 

################################################################ 

### AES Encryption and Decryption code 

### 

### Original author: Karl Malbrain, malbrain@yahoo.com 

### Modified and ported to Atmel AVR by: Yang Qian 

### (t94781@student.uwasa.fi) 

### University of Vaasa 

################################################################ 

// AES only supports Nb=4 

#define Nb 4    

// The number of columns comprising a state in AES. This is a constant in AES. 

Value=4 

#define Nk 4   // number of columns in a key 

#define Nr 10   // number of rounds in encryption 

 

#define Sbox(i) (pgm_read_byte(&P_Sbox[i])) 

const unsigned char P_Sbox[256] __attribute__ ((__progmem__)) = {   

// forward s-box 

0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 

0xab, 0x76, 

0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 

0x72, 0xc0, 

0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 

0x31, 0x15, 

0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 

0xb2, 0x75, 

0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 

0x2f, 0x84, 

0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 

0x58, 0xcf, 

0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 
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0x9f, 0xa8, 

0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 

0xf3, 0xd2, 

0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 

0x19, 0x73, 

0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 

0x0b, 0xdb, 

0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 

0xe4, 0x79, 

0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 

0xae, 0x08, 

0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 

0x8b, 0x8a, 

0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 

0x1d, 0x9e, 

0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 

0x28, 0xdf, 

0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 

0xbb, 0x16}; 

 

#define InvSbox(i) (pgm_read_byte(&P_InvSbox[i])) 

const unsigned char P_InvSbox[256] __attribute__ ((__progmem__)) = { // inverse s-

box 

0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 

0xd7, 0xfb, 

0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 

0xe9, 0xcb, 

0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 

0xc3, 0x4e, 

0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 

0xd1, 0x25, 

0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 

0xb6, 0x92, 
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0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 

0x9d, 0x84, 

0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 

0x45, 0x06, 

0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 

0x8a, 0x6b, 

0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 

0xe6, 0x73, 

0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 

0xdf, 0x6e, 

0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 

0xbe, 0x1b, 

0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 

0x5a, 0xf4, 

0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 

0xec, 0x5f, 

0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 

0x9c, 0xef, 

0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 

0x99, 0x61, 

0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 

0x0c, 0x7d}; 

 

// combined Xtimes2[Sbox[]] 

#define Xtime2Sbox(i) (pgm_read_byte(&P_Xtime2Sbox[i])) 

const unsigned char P_Xtime2Sbox[256] __attribute__ ((__progmem__)) = { 

0xc6, 0xf8, 0xee, 0xf6, 0xff, 0xd6, 0xde, 0x91, 0x60, 0x02, 0xce, 0x56, 0xe7, 0xb5, 

0x4d, 0xec,  

0x8f, 0x1f, 0x89, 0xfa, 0xef, 0xb2, 0x8e, 0xfb, 0x41, 0xb3, 0x5f, 0x45, 0x23, 0x53, 

0xe4, 0x9b,  

0x75, 0xe1, 0x3d, 0x4c, 0x6c, 0x7e, 0xf5, 0x83, 0x68, 0x51, 0xd1, 0xf9, 0xe2, 0xab, 

0x62, 0x2a,  

0x08, 0x95, 0x46, 0x9d, 0x30, 0x37, 0x0a, 0x2f, 0x0e, 0x24, 0x1b, 0xdf, 0xcd, 0x4e, 
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0x7f, 0xea,  

0x12, 0x1d, 0x58, 0x34, 0x36, 0xdc, 0xb4, 0x5b, 0xa4, 0x76, 0xb7, 0x7d, 0x52, 0xdd, 

0x5e, 0x13,  

0xa6, 0xb9, 0x00, 0xc1, 0x40, 0xe3, 0x79, 0xb6, 0xd4, 0x8d, 0x67, 0x72, 0x94, 0x98, 

0xb0, 0x85,  

0xbb, 0xc5, 0x4f, 0xed, 0x86, 0x9a, 0x66, 0x11, 0x8a, 0xe9, 0x04, 0xfe, 0xa0, 0x78, 

0x25, 0x4b,  

0xa2, 0x5d, 0x80, 0x05, 0x3f, 0x21, 0x70, 0xf1, 0x63, 0x77, 0xaf, 0x42, 0x20, 0xe5, 

0xfd, 0xbf,  

0x81, 0x18, 0x26, 0xc3, 0xbe, 0x35, 0x88, 0x2e, 0x93, 0x55, 0xfc, 0x7a, 0xc8, 0xba, 

0x32, 0xe6,  

0xc0, 0x19, 0x9e, 0xa3, 0x44, 0x54, 0x3b, 0x0b, 0x8c, 0xc7, 0x6b, 0x28, 0xa7, 0xbc, 

0x16, 0xad,  

0xdb, 0x64, 0x74, 0x14, 0x92, 0x0c, 0x48, 0xb8, 0x9f, 0xbd, 0x43, 0xc4, 0x39, 0x31, 

0xd3, 0xf2,  

0xd5, 0x8b, 0x6e, 0xda, 0x01, 0xb1, 0x9c, 0x49, 0xd8, 0xac, 0xf3, 0xcf, 0xca, 0xf4, 

0x47, 0x10,  

0x6f, 0xf0, 0x4a, 0x5c, 0x38, 0x57, 0x73, 0x97, 0xcb, 0xa1, 0xe8, 0x3e, 0x96, 0x61, 

0x0d, 0x0f,  

0xe0, 0x7c, 0x71, 0xcc, 0x90, 0x06, 0xf7, 0x1c, 0xc2, 0x6a, 0xae, 0x69, 0x17, 0x99, 

0x3a, 0x27,  

0xd9, 0xeb, 0x2b, 0x22, 0xd2, 0xa9, 0x07, 0x33, 0x2d, 0x3c, 0x15, 0xc9, 0x87, 0xaa, 

0x50, 0xa5,  

0x03, 0x59, 0x09, 0x1a, 0x65, 0xd7, 0x84, 0xd0, 0x82, 0x29, 0x5a, 0x1e, 0x7b, 0xa8, 

0x6d, 0x2c  

}; 

 

// combined Xtimes3[Sbox[]] 

#define Xtime3Sbox(i) (pgm_read_byte(&P_Xtime3Sbox[i])) 

const unsigned char P_Xtime3Sbox[256] __attribute__ ((__progmem__)) = { 

0xa5, 0x84, 0x99, 0x8d, 0x0d, 0xbd, 0xb1, 0x54, 0x50, 0x03, 0xa9, 0x7d, 0x19, 0x62, 

0xe6, 0x9a,  

0x45, 0x9d, 0x40, 0x87, 0x15, 0xeb, 0xc9, 0x0b, 0xec, 0x67, 0xfd, 0xea, 0xbf, 0xf7, 
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0x96, 0x5b,  

0xc2, 0x1c, 0xae, 0x6a, 0x5a, 0x41, 0x02, 0x4f, 0x5c, 0xf4, 0x34, 0x08, 0x93, 0x73, 

0x53, 0x3f,  

0x0c, 0x52, 0x65, 0x5e, 0x28, 0xa1, 0x0f, 0xb5, 0x09, 0x36, 0x9b, 0x3d, 0x26, 0x69, 

0xcd, 0x9f,  

0x1b, 0x9e, 0x74, 0x2e, 0x2d, 0xb2, 0xee, 0xfb, 0xf6, 0x4d, 0x61, 0xce, 0x7b, 0x3e, 

0x71, 0x97,  

0xf5, 0x68, 0x00, 0x2c, 0x60, 0x1f, 0xc8, 0xed, 0xbe, 0x46, 0xd9, 0x4b, 0xde, 0xd4, 

0xe8, 0x4a,  

0x6b, 0x2a, 0xe5, 0x16, 0xc5, 0xd7, 0x55, 0x94, 0xcf, 0x10, 0x06, 0x81, 0xf0, 0x44, 

0xba, 0xe3,  

0xf3, 0xfe, 0xc0, 0x8a, 0xad, 0xbc, 0x48, 0x04, 0xdf, 0xc1, 0x75, 0x63, 0x30, 0x1a, 

0x0e, 0x6d,  

0x4c, 0x14, 0x35, 0x2f, 0xe1, 0xa2, 0xcc, 0x39, 0x57, 0xf2, 0x82, 0x47, 0xac, 0xe7, 

0x2b, 0x95,  

0xa0, 0x98, 0xd1, 0x7f, 0x66, 0x7e, 0xab, 0x83, 0xca, 0x29, 0xd3, 0x3c, 0x79, 0xe2, 

0x1d, 0x76,  

0x3b, 0x56, 0x4e, 0x1e, 0xdb, 0x0a, 0x6c, 0xe4, 0x5d, 0x6e, 0xef, 0xa6, 0xa8, 0xa4, 

0x37, 0x8b,  

0x32, 0x43, 0x59, 0xb7, 0x8c, 0x64, 0xd2, 0xe0, 0xb4, 0xfa, 0x07, 0x25, 0xaf, 0x8e, 

0xe9, 0x18,  

0xd5, 0x88, 0x6f, 0x72, 0x24, 0xf1, 0xc7, 0x51, 0x23, 0x7c, 0x9c, 0x21, 0xdd, 0xdc, 

0x86, 0x85,  

0x90, 0x42, 0xc4, 0xaa, 0xd8, 0x05, 0x01, 0x12, 0xa3, 0x5f, 0xf9, 0xd0, 0x91, 0x58, 

0x27, 0xb9,  

0x38, 0x13, 0xb3, 0x33, 0xbb, 0x70, 0x89, 0xa7, 0xb6, 0x22, 0x92, 0x20, 0x49, 0xff, 

0x78, 0x7a,  

0x8f, 0xf8, 0x80, 0x17, 0xda, 0x31, 0xc6, 0xb8, 0xc3, 0xb0, 0x77, 0x11, 0xcb, 0xfc, 

0xd6, 0x3a  

}; 

 

// modular multiplication tables 

// based on: 
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// Xtime2[x] = (x & 0x80 ? 0x1b : 0) ^ (x + x) 

// Xtime3[x] = x^Xtime2[x]; 

 

#define Xtime2(i) (pgm_read_byte(&P_Xtime2[i])) 

const unsigned char P_Xtime2[256] __attribute__ ((__progmem__)) = { 

0x00, 0x02, 0x04, 0x06, 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16, 0x18, 0x1a, 

0x1c, 0x1e,  

0x20, 0x22, 0x24, 0x26, 0x28, 0x2a, 0x2c, 0x2e, 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 

0x3c, 0x3e,  

0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e, 0x50, 0x52, 0x54, 0x56, 0x58, 0x5a, 

0x5c, 0x5e,  

0x60, 0x62, 0x64, 0x66, 0x68, 0x6a, 0x6c, 0x6e, 0x70, 0x72, 0x74, 0x76, 0x78, 0x7a, 

0x7c, 0x7e,  

0x80, 0x82, 0x84, 0x86, 0x88, 0x8a, 0x8c, 0x8e, 0x90, 0x92, 0x94, 0x96, 0x98, 0x9a, 

0x9c, 0x9e,  

0xa0, 0xa2, 0xa4, 0xa6, 0xa8, 0xaa, 0xac, 0xae, 0xb0, 0xb2, 0xb4, 0xb6, 0xb8, 0xba, 

0xbc, 0xbe,  

0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce, 0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 

0xdc, 0xde,  

0xe0, 0xe2, 0xe4, 0xe6, 0xe8, 0xea, 0xec, 0xee, 0xf0, 0xf2, 0xf4, 0xf6, 0xf8, 0xfa, 0xfc, 

0xfe,  

0x1b, 0x19, 0x1f, 0x1d, 0x13, 0x11, 0x17, 0x15, 0x0b, 0x09, 0x0f, 0x0d, 0x03, 0x01, 

0x07, 0x05,  

0x3b, 0x39, 0x3f, 0x3d, 0x33, 0x31, 0x37, 0x35, 0x2b, 0x29, 0x2f, 0x2d, 0x23, 0x21, 

0x27, 0x25,  

0x5b, 0x59, 0x5f, 0x5d, 0x53, 0x51, 0x57, 0x55, 0x4b, 0x49, 0x4f, 0x4d, 0x43, 0x41, 

0x47, 0x45,  

0x7b, 0x79, 0x7f, 0x7d, 0x73, 0x71, 0x77, 0x75, 0x6b, 0x69, 0x6f, 0x6d, 0x63, 0x61, 

0x67, 0x65,  

0x9b, 0x99, 0x9f, 0x9d, 0x93, 0x91, 0x97, 0x95, 0x8b, 0x89, 0x8f, 0x8d, 0x83, 0x81, 

0x87, 0x85,  

0xbb, 0xb9, 0xbf, 0xbd, 0xb3, 0xb1, 0xb7, 0xb5, 0xab, 0xa9, 0xaf, 0xad, 0xa3, 0xa1, 
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0xa7, 0xa5,  

0xdb, 0xd9, 0xdf, 0xdd, 0xd3, 0xd1, 0xd7, 0xd5, 0xcb, 0xc9, 0xcf, 0xcd, 0xc3, 0xc1, 

0xc7, 0xc5,  

0xfb, 0xf9, 0xff, 0xfd, 0xf3, 0xf1, 0xf7, 0xf5, 0xeb, 0xe9, 0xef, 0xed, 0xe3, 0xe1, 0xe7, 

0xe5};  

 

#define Xtime9(i) (pgm_read_byte(&P_Xtime9[i])) 

const unsigned char P_Xtime9[256] __attribute__ ((__progmem__)) = { 

0x00, 0x09, 0x12, 0x1b, 0x24, 0x2d, 0x36, 0x3f, 0x48, 0x41, 0x5a, 0x53, 0x6c, 0x65, 

0x7e, 0x77,  

0x90, 0x99, 0x82, 0x8b, 0xb4, 0xbd, 0xa6, 0xaf, 0xd8, 0xd1, 0xca, 0xc3, 0xfc, 0xf5, 

0xee, 0xe7,  

0x3b, 0x32, 0x29, 0x20, 0x1f, 0x16, 0x0d, 0x04, 0x73, 0x7a, 0x61, 0x68, 0x57, 0x5e, 

0x45, 0x4c,  

0xab, 0xa2, 0xb9, 0xb0, 0x8f, 0x86, 0x9d, 0x94, 0xe3, 0xea, 0xf1, 0xf8, 0xc7, 0xce, 

0xd5, 0xdc,  

0x76, 0x7f, 0x64, 0x6d, 0x52, 0x5b, 0x40, 0x49, 0x3e, 0x37, 0x2c, 0x25, 0x1a, 0x13, 

0x08, 0x01,  

0xe6, 0xef, 0xf4, 0xfd, 0xc2, 0xcb, 0xd0, 0xd9, 0xae, 0xa7, 0xbc, 0xb5, 0x8a, 0x83, 

0x98, 0x91,  

0x4d, 0x44, 0x5f, 0x56, 0x69, 0x60, 0x7b, 0x72, 0x05, 0x0c, 0x17, 0x1e, 0x21, 0x28, 

0x33, 0x3a,  

0xdd, 0xd4, 0xcf, 0xc6, 0xf9, 0xf0, 0xeb, 0xe2, 0x95, 0x9c, 0x87, 0x8e, 0xb1, 0xb8, 

0xa3, 0xaa,  

0xec, 0xe5, 0xfe, 0xf7, 0xc8, 0xc1, 0xda, 0xd3, 0xa4, 0xad, 0xb6, 0xbf, 0x80, 0x89, 

0x92, 0x9b,  

0x7c, 0x75, 0x6e, 0x67, 0x58, 0x51, 0x4a, 0x43, 0x34, 0x3d, 0x26, 0x2f, 0x10, 0x19, 

0x02, 0x0b,  

0xd7, 0xde, 0xc5, 0xcc, 0xf3, 0xfa, 0xe1, 0xe8, 0x9f, 0x96, 0x8d, 0x84, 0xbb, 0xb2, 

0xa9, 0xa0,  

0x47, 0x4e, 0x55, 0x5c, 0x63, 0x6a, 0x71, 0x78, 0x0f, 0x06, 0x1d, 0x14, 0x2b, 0x22, 

0x39, 0x30,  

0x9a, 0x93, 0x88, 0x81, 0xbe, 0xb7, 0xac, 0xa5, 0xd2, 0xdb, 0xc0, 0xc9, 0xf6, 0xff, 
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0xe4, 0xed,  

0x0a, 0x03, 0x18, 0x11, 0x2e, 0x27, 0x3c, 0x35, 0x42, 0x4b, 0x50, 0x59, 0x66, 0x6f, 

0x74, 0x7d,  

0xa1, 0xa8, 0xb3, 0xba, 0x85, 0x8c, 0x97, 0x9e, 0xe9, 0xe0, 0xfb, 0xf2, 0xcd, 0xc4, 

0xdf, 0xd6,  

0x31, 0x38, 0x23, 0x2a, 0x15, 0x1c, 0x07, 0x0e, 0x79, 0x70, 0x6b, 0x62, 0x5d, 0x54, 

0x4f, 0x46}; 

 

#define XtimeB(i) (pgm_read_byte(&P_XtimeB[i])) 

const unsigned char P_XtimeB[256] __attribute__ ((__progmem__)) = { 

0x00, 0x0b, 0x16, 0x1d, 0x2c, 0x27, 0x3a, 0x31, 0x58, 0x53, 0x4e, 0x45, 0x74, 0x7f, 

0x62, 0x69,  

0xb0, 0xbb, 0xa6, 0xad, 0x9c, 0x97, 0x8a, 0x81, 0xe8, 0xe3, 0xfe, 0xf5, 0xc4, 0xcf, 

0xd2, 0xd9,  

0x7b, 0x70, 0x6d, 0x66, 0x57, 0x5c, 0x41, 0x4a, 0x23, 0x28, 0x35, 0x3e, 0x0f, 0x04, 

0x19, 0x12,  

0xcb, 0xc0, 0xdd, 0xd6, 0xe7, 0xec, 0xf1, 0xfa, 0x93, 0x98, 0x85, 0x8e, 0xbf, 0xb4, 

0xa9, 0xa2,  

0xf6, 0xfd, 0xe0, 0xeb, 0xda, 0xd1, 0xcc, 0xc7, 0xae, 0xa5, 0xb8, 0xb3, 0x82, 0x89, 

0x94, 0x9f,  

0x46, 0x4d, 0x50, 0x5b, 0x6a, 0x61, 0x7c, 0x77, 0x1e, 0x15, 0x08, 0x03, 0x32, 0x39, 

0x24, 0x2f,  

0x8d, 0x86, 0x9b, 0x90, 0xa1, 0xaa, 0xb7, 0xbc, 0xd5, 0xde, 0xc3, 0xc8, 0xf9, 0xf2, 

0xef, 0xe4,  

0x3d, 0x36, 0x2b, 0x20, 0x11, 0x1a, 0x07, 0x0c, 0x65, 0x6e, 0x73, 0x78, 0x49, 0x42, 

0x5f, 0x54,  

0xf7, 0xfc, 0xe1, 0xea, 0xdb, 0xd0, 0xcd, 0xc6, 0xaf, 0xa4, 0xb9, 0xb2, 0x83, 0x88, 

0x95, 0x9e,  

0x47, 0x4c, 0x51, 0x5a, 0x6b, 0x60, 0x7d, 0x76, 0x1f, 0x14, 0x09, 0x02, 0x33, 0x38, 

0x25, 0x2e,  

0x8c, 0x87, 0x9a, 0x91, 0xa0, 0xab, 0xb6, 0xbd, 0xd4, 0xdf, 0xc2, 0xc9, 0xf8, 0xf3, 

0xee, 0xe5,  

0x3c, 0x37, 0x2a, 0x21, 0x10, 0x1b, 0x06, 0x0d, 0x64, 0x6f, 0x72, 0x79, 0x48, 0x43, 
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0x5e, 0x55,  

0x01, 0x0a, 0x17, 0x1c, 0x2d, 0x26, 0x3b, 0x30, 0x59, 0x52, 0x4f, 0x44, 0x75, 0x7e, 

0x63, 0x68,  

0xb1, 0xba, 0xa7, 0xac, 0x9d, 0x96, 0x8b, 0x80, 0xe9, 0xe2, 0xff, 0xf4, 0xc5, 0xce, 

0xd3, 0xd8,  

0x7a, 0x71, 0x6c, 0x67, 0x56, 0x5d, 0x40, 0x4b, 0x22, 0x29, 0x34, 0x3f, 0x0e, 0x05, 

0x18, 0x13,  

0xca, 0xc1, 0xdc, 0xd7, 0xe6, 0xed, 0xf0, 0xfb, 0x92, 0x99, 0x84, 0x8f, 0xbe, 0xb5, 

0xa8, 0xa3};  

 

#define XtimeD(i) (pgm_read_byte(&P_XtimeD[i])) 

const unsigned char P_XtimeD[256] __attribute__ ((__progmem__)) = { 

0x00, 0x0d, 0x1a, 0x17, 0x34, 0x39, 0x2e, 0x23, 0x68, 0x65, 0x72, 0x7f, 0x5c, 0x51, 

0x46, 0x4b,  

0xd0, 0xdd, 0xca, 0xc7, 0xe4, 0xe9, 0xfe, 0xf3, 0xb8, 0xb5, 0xa2, 0xaf, 0x8c, 0x81, 

0x96, 0x9b,  

0xbb, 0xb6, 0xa1, 0xac, 0x8f, 0x82, 0x95, 0x98, 0xd3, 0xde, 0xc9, 0xc4, 0xe7, 0xea, 

0xfd, 0xf0,  

0x6b, 0x66, 0x71, 0x7c, 0x5f, 0x52, 0x45, 0x48, 0x03, 0x0e, 0x19, 0x14, 0x37, 0x3a, 

0x2d, 0x20,  

0x6d, 0x60, 0x77, 0x7a, 0x59, 0x54, 0x43, 0x4e, 0x05, 0x08, 0x1f, 0x12, 0x31, 0x3c, 

0x2b, 0x26,  

0xbd, 0xb0, 0xa7, 0xaa, 0x89, 0x84, 0x93, 0x9e, 0xd5, 0xd8, 0xcf, 0xc2, 0xe1, 0xec, 

0xfb, 0xf6,  

0xd6, 0xdb, 0xcc, 0xc1, 0xe2, 0xef, 0xf8, 0xf5, 0xbe, 0xb3, 0xa4, 0xa9, 0x8a, 0x87, 

0x90, 0x9d,  

0x06, 0x0b, 0x1c, 0x11, 0x32, 0x3f, 0x28, 0x25, 0x6e, 0x63, 0x74, 0x79, 0x5a, 0x57, 

0x40, 0x4d,  

0xda, 0xd7, 0xc0, 0xcd, 0xee, 0xe3, 0xf4, 0xf9, 0xb2, 0xbf, 0xa8, 0xa5, 0x86, 0x8b, 

0x9c, 0x91,  

0x0a, 0x07, 0x10, 0x1d, 0x3e, 0x33, 0x24, 0x29, 0x62, 0x6f, 0x78, 0x75, 0x56, 0x5b, 

0x4c, 0x41,  

0x61, 0x6c, 0x7b, 0x76, 0x55, 0x58, 0x4f, 0x42, 0x09, 0x04, 0x13, 0x1e, 0x3d, 0x30, 
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0x27, 0x2a,  

0xb1, 0xbc, 0xab, 0xa6, 0x85, 0x88, 0x9f, 0x92, 0xd9, 0xd4, 0xc3, 0xce, 0xed, 0xe0, 

0xf7, 0xfa,  

0xb7, 0xba, 0xad, 0xa0, 0x83, 0x8e, 0x99, 0x94, 0xdf, 0xd2, 0xc5, 0xc8, 0xeb, 0xe6, 

0xf1, 0xfc,  

0x67, 0x6a, 0x7d, 0x70, 0x53, 0x5e, 0x49, 0x44, 0x0f, 0x02, 0x15, 0x18, 0x3b, 0x36, 

0x21, 0x2c,  

0x0c, 0x01, 0x16, 0x1b, 0x38, 0x35, 0x22, 0x2f, 0x64, 0x69, 0x7e, 0x73, 0x50, 0x5d, 

0x4a, 0x47,  

0xdc, 0xd1, 0xc6, 0xcb, 0xe8, 0xe5, 0xf2, 0xff, 0xb4, 0xb9, 0xae, 0xa3, 0x80, 0x8d, 

0x9a, 0x97};  

 

#define XtimeE(i) (pgm_read_byte(&P_XtimeE[i])) 

const unsigned char P_XtimeE[256] __attribute__ ((__progmem__)) = { 

0x00, 0x0e, 0x1c, 0x12, 0x38, 0x36, 0x24, 0x2a, 0x70, 0x7e, 0x6c, 0x62, 0x48, 0x46, 

0x54, 0x5a,  

0xe0, 0xee, 0xfc, 0xf2, 0xd8, 0xd6, 0xc4, 0xca, 0x90, 0x9e, 0x8c, 0x82, 0xa8, 0xa6, 

0xb4, 0xba,  

0xdb, 0xd5, 0xc7, 0xc9, 0xe3, 0xed, 0xff, 0xf1, 0xab, 0xa5, 0xb7, 0xb9, 0x93, 0x9d, 

0x8f, 0x81,  

0x3b, 0x35, 0x27, 0x29, 0x03, 0x0d, 0x1f, 0x11, 0x4b, 0x45, 0x57, 0x59, 0x73, 0x7d, 

0x6f, 0x61,  

0xad, 0xa3, 0xb1, 0xbf, 0x95, 0x9b, 0x89, 0x87, 0xdd, 0xd3, 0xc1, 0xcf, 0xe5, 0xeb, 

0xf9, 0xf7,  

0x4d, 0x43, 0x51, 0x5f, 0x75, 0x7b, 0x69, 0x67, 0x3d, 0x33, 0x21, 0x2f, 0x05, 0x0b, 

0x19, 0x17,  

0x76, 0x78, 0x6a, 0x64, 0x4e, 0x40, 0x52, 0x5c, 0x06, 0x08, 0x1a, 0x14, 0x3e, 0x30, 

0x22, 0x2c,  

0x96, 0x98, 0x8a, 0x84, 0xae, 0xa0, 0xb2, 0xbc, 0xe6, 0xe8, 0xfa, 0xf4, 0xde, 0xd0, 

0xc2, 0xcc,  

0x41, 0x4f, 0x5d, 0x53, 0x79, 0x77, 0x65, 0x6b, 0x31, 0x3f, 0x2d, 0x23, 0x09, 0x07, 

0x15, 0x1b,  

0xa1, 0xaf, 0xbd, 0xb3, 0x99, 0x97, 0x85, 0x8b, 0xd1, 0xdf, 0xcd, 0xc3, 0xe9, 0xe7, 
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0xf5, 0xfb,  

0x9a, 0x94, 0x86, 0x88, 0xa2, 0xac, 0xbe, 0xb0, 0xea, 0xe4, 0xf6, 0xf8, 0xd2, 0xdc, 

0xce, 0xc0,  

0x7a, 0x74, 0x66, 0x68, 0x42, 0x4c, 0x5e, 0x50, 0x0a, 0x04, 0x16, 0x18, 0x32, 0x3c, 

0x2e, 0x20,  

0xec, 0xe2, 0xf0, 0xfe, 0xd4, 0xda, 0xc8, 0xc6, 0x9c, 0x92, 0x80, 0x8e, 0xa4, 0xaa, 

0xb8, 0xb6,  

0x0c, 0x02, 0x10, 0x1e, 0x34, 0x3a, 0x28, 0x26, 0x7c, 0x72, 0x60, 0x6e, 0x44, 0x4a, 

0x58, 0x56,  

0x37, 0x39, 0x2b, 0x25, 0x0f, 0x01, 0x13, 0x1d, 0x47, 0x49, 0x5b, 0x55, 0x7f, 0x71, 

0x63, 0x6d,  

0xd7, 0xd9, 0xcb, 0xc5, 0xef, 0xe1, 0xf3, 0xfd, 0xa7, 0xa9, 0xbb, 0xb5, 0x9f, 0x91, 

0x83, 0x8d};  

 

// exchanges columns in each of 4 rows 

// row0 - unchanged, row1- shifted left 1,  

// row2 - shifted left 2 and row3 - shifted left 3 

void ShiftRows (unsigned char *state) 

{ 

 unsigned char tmp; 

 

 // just substitute row 0 

 state[0] = Sbox(state[0]), state[4] = Sbox(state[4]); 

 state[8] = Sbox(state[8]), state[12] = Sbox(state[12]); 

 

 // rotate row 1 

 tmp = Sbox(state[1]), state[1] = Sbox(state[5]); 

 state[5] = Sbox(state[9]), state[9] = Sbox(state[13]), state[13] = tmp; 

 

 // rotate row 2 

 tmp = Sbox(state[2]), state[2] = Sbox(state[10]), state[10] = tmp; 

 tmp = Sbox(state[6]), state[6] = Sbox(state[14]), state[14] = tmp; 
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 // rotate row 3 

 tmp = Sbox(state[15]), state[15] = Sbox(state[11]); 

 state[11] = Sbox(state[7]), state[7] = Sbox(state[3]), state[3] = tmp; 

} 

 

// restores columns in each of 4 rows 

// row0 - unchanged, row1- shifted right 1,  

// row2 - shifted right 2 and row3 - shifted right 3 

void InvShiftRows (unsigned char *state) 

{ 

 unsigned char tmp; 

 

 // restore row 0 

 state[0] = InvSbox(state[0]), state[4] = InvSbox(state[4]); 

 state[8] = InvSbox(state[8]), state[12] = InvSbox(state[12]); 

 

 // restore row 1 

 tmp = InvSbox(state[13]), state[13] = InvSbox(state[9]); 

 state[9] = InvSbox(state[5]), state[5] = InvSbox(state[1]), state[1] = tmp; 

 

 // restore row 2 

 tmp = InvSbox(state[2]), state[2] = InvSbox(state[10]), state[10] = tmp; 

 tmp = InvSbox(state[6]), state[6] = InvSbox(state[14]), state[14] = tmp; 

 

 // restore row 3 

 tmp = InvSbox(state[3]), state[3] = InvSbox(state[7]); 

 state[7] = InvSbox(state[11]), state[11] = InvSbox(state[15]), state[15] = tmp; 

} 

 

// recombine and mix each row in a column 

void MixSubColumns (unsigned char *state) 

{ 

unsigned char tmp[4 * Nb]; 
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 // mixing column 0 

 tmp[0] = Xtime2Sbox(state[0]) ^ Xtime3Sbox(state[5]) ^ Sbox(state[10]) ^ 

Sbox(state[15]); 

 tmp[1] = Sbox(state[0]) ^ Xtime2Sbox(state[5]) ^ Xtime3Sbox(state[10]) ^ 

Sbox(state[15]); 

 tmp[2] = Sbox(state[0]) ^ Sbox(state[5]) ^ Xtime2Sbox(state[10]) ^ 

Xtime3Sbox(state[15]); 

 tmp[3] = Xtime3Sbox(state[0]) ^ Sbox(state[5]) ^ Sbox(state[10]) ^ 

Xtime2Sbox(state[15]); 

 

 // mixing column 1 

 tmp[4] = Xtime2Sbox(state[4]) ^ Xtime3Sbox(state[9]) ^ Sbox(state[14]) ^ 

Sbox(state[3]); 

 tmp[5] = Sbox(state[4]) ^ Xtime2Sbox(state[9]) ^ Xtime3Sbox(state[14]) ^ 

Sbox(state[3]); 

 tmp[6] = Sbox(state[4]) ^ Sbox(state[9]) ^ Xtime2Sbox(state[14]) ^ 

Xtime3Sbox(state[3]); 

 tmp[7] = Xtime3Sbox(state[4]) ^ Sbox(state[9]) ^ Sbox(state[14]) ^ 

Xtime2Sbox(state[3]); 

 

 // mixing column 2 

 tmp[8] = Xtime2Sbox(state[8]) ^ Xtime3Sbox(state[13]) ^ Sbox(state[2]) ^ 

Sbox(state[7]); 

 tmp[9] = Sbox(state[8]) ^ Xtime2Sbox(state[13]) ^ Xtime3Sbox(state[2]) ^ 

Sbox(state[7]); 

 tmp[10]  = Sbox(state[8]) ^ Sbox(state[13]) ^ Xtime2Sbox(state[2]) ^ 

Xtime3Sbox(state[7]); 

 tmp[11]  = Xtime3Sbox(state[8]) ^ Sbox(state[13]) ^ Sbox(state[2]) ^ 

Xtime2Sbox(state[7]); 

 

 // mixing column 3 

 tmp[12] = Xtime2Sbox(state[12]) ^ Xtime3Sbox(state[1]) ^ Sbox(state[6]) ^ 
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Sbox(state[11]); 

 tmp[13] = Sbox(state[12]) ^ Xtime2Sbox(state[1]) ^ Xtime3Sbox(state[6]) ^ 

Sbox(state[11]); 

 tmp[14] = Sbox(state[12]) ^ Sbox(state[1]) ^ Xtime2Sbox(state[6]) ^ 

Xtime3Sbox(state[11]); 

 tmp[15] = Xtime3Sbox(state[12]) ^ Sbox(state[1]) ^ Sbox(state[6]) ^ 

Xtime2Sbox(state[11]); 

 

 memcpy (state, tmp, sizeof(tmp)); 

} 

 

// restore and un-mix each row in a column 

void InvMixSubColumns (unsigned char *state) 

{ 

unsigned char tmp[4 * Nb]; 

int i; 

 

 // restore column 0 

 tmp[0] = XtimeE(state[0]) ^ XtimeB(state[1]) ^ XtimeD(state[2]) ^ 

Xtime9(state[3]); 

 tmp[5] = Xtime9(state[0]) ^ XtimeE(state[1]) ^ XtimeB(state[2]) ^ 

XtimeD(state[3]); 

 tmp[10] = XtimeD(state[0]) ^ Xtime9(state[1]) ^ XtimeE(state[2]) ^ 

XtimeB(state[3]); 

 tmp[15] = XtimeB(state[0]) ^ XtimeD(state[1]) ^ Xtime9(state[2]) ^ 

XtimeE(state[3]); 

 

 // restore column 1 

 tmp[4] = XtimeE(state[4]) ^ XtimeB(state[5]) ^ XtimeD(state[6]) ^ 

Xtime9(state[7]); 

 tmp[9] = Xtime9(state[4]) ^ XtimeE(state[5]) ^ XtimeB(state[6]) ^ 

XtimeD(state[7]); 

 tmp[14] = XtimeD(state[4]) ^ Xtime9(state[5]) ^ XtimeE(state[6]) ^ 
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XtimeB(state[7]); 

 tmp[3] = XtimeB(state[4]) ^ XtimeD(state[5]) ^ Xtime9(state[6]) ^ 

XtimeE(state[7]); 

 

 // restore column 2 

 tmp[8] = XtimeE(state[8]) ^ XtimeB(state[9]) ^ XtimeD(state[10]) ^ 

Xtime9(state[11]); 

 tmp[13] = Xtime9(state[8]) ^ XtimeE(state[9]) ^ XtimeB(state[10]) ^ 

XtimeD(state[11]); 

 tmp[2]  = XtimeD(state[8]) ^ Xtime9(state[9]) ^ XtimeE(state[10]) ^ 

XtimeB(state[11]); 

 tmp[7]  = XtimeB(state[8]) ^ XtimeD(state[9]) ^ Xtime9(state[10]) ^ 

XtimeE(state[11]); 

 

 // restore column 3 

 tmp[12] = XtimeE(state[12]) ^ XtimeB(state[13]) ^ XtimeD(state[14]) ^ 

Xtime9(state[15]); 

 tmp[1] = Xtime9(state[12]) ^ XtimeE(state[13]) ^ XtimeB(state[14]) ^ 

XtimeD(state[15]); 

 tmp[6] = XtimeD(state[12]) ^ Xtime9(state[13]) ^ XtimeE(state[14]) ^ 

XtimeB(state[15]); 

 tmp[11] = XtimeB(state[12]) ^ XtimeD(state[13]) ^ Xtime9(state[14]) ^ 

XtimeE(state[15]); 

 

 for( i=0; i < 4 * Nb; i++ ) 

  state[i] = InvSbox(tmp[i]); 

} 

 

// encrypt/decrypt columns of the key 

// n.b. you can replace this with 

//      byte-wise xor if you wish. 

 

void AddRoundKey (unsigned *state, unsigned *key) 
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{ 

 int idx; 

 

 for( idx = 0; idx < 4; idx++ ) 

  state[idx] ^= key[idx]; 

} 

 

unsigned char Rcon[11] = {0x00, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 

0x1b, 0x36}; 

 

// produce Nb bytes for each round 

void ExpandKey (unsigned char *key, unsigned char *expkey) 

{ 

 unsigned char tmp0, tmp1, tmp2, tmp3, tmp4; 

 unsigned idx; 

 

 memcpy (expkey, key, Nk * 4); 

 

 for( idx = Nk; idx < Nb * (Nr + 1); idx++ ) { 

  tmp0 = expkey[4*idx - 4]; 

  tmp1 = expkey[4*idx - 3]; 

  tmp2 = expkey[4*idx - 2]; 

  tmp3 = expkey[4*idx - 1]; 

  if( !(idx % Nk) ) { 

   tmp4 = tmp3; 

   tmp3 = Sbox(tmp0); 

   tmp0 = Sbox(tmp1) ^ Rcon[idx/Nk]; 

   tmp1 = Sbox(tmp2); 

   tmp2 = Sbox(tmp4); 

  } else if( Nk > 6 && idx % Nk == 4 ) { 

   tmp0 = Sbox(tmp0); 

   tmp1 = Sbox(tmp1); 

   tmp2 = Sbox(tmp2); 
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   tmp3 = Sbox(tmp3); 

  } 

 

  expkey[4*idx+0] = expkey[4*idx - 4*Nk + 0] ^ tmp0; 

  expkey[4*idx+1] = expkey[4*idx - 4*Nk + 1] ^ tmp1; 

  expkey[4*idx+2] = expkey[4*idx - 4*Nk + 2] ^ tmp2; 

  expkey[4*idx+3] = expkey[4*idx - 4*Nk + 3] ^ tmp3; 

 } 

} 

 

// encrypt one 128 bit block 

void Encrypt (unsigned char *in, unsigned char *expkey, unsigned char *out) 

{ 

 unsigned char state[Nb * 4]; 

 unsigned round; 

 

 memcpy (state, in, Nb * 4); 

 AddRoundKey ((unsigned *)state, (unsigned *)expkey); 

 

 for( round = 1; round < Nr + 1; round++ ) { 

  if( round < Nr ) 

   MixSubColumns (state); 

  else 

   ShiftRows (state); 

 

  AddRoundKey ((unsigned *)state, (unsigned *)expkey + round * Nb); 

 } 

 

 memcpy (out, state, sizeof(state)); 

} 

 

void Decrypt (unsigned char *in, unsigned char *expkey, unsigned char *out) 

{ 
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 unsigned char state[Nb * 4]; 

 unsigned round; 

 

 memcpy (state, in, sizeof(state)); 

 

 AddRoundKey ((unsigned *)state, (unsigned *)expkey + Nr * Nb); 

 InvShiftRows(state); 

 

 for( round = Nr; round--; ) 

 { 

  AddRoundKey ((unsigned *)state, (unsigned *)expkey + round * Nb); 

  if( round ) 

   InvMixSubColumns (state); 

 }  

 

 memcpy (out, state, sizeof(state)); 

} 

 

#define USR UCSRA 

 

void printP (PGM_P string){ 

        char c; 

        c=pgm_read_byte(string); 

                   while (c) { 

                   loop_until_bit_is_set(USR, UDRE); 

                   UDR = c; 

                   c=pgm_read_byte(++string); 

                   } 

                   return; 

                 } 
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void print (const char *string){ 

                   while (*string) { 

                   loop_until_bit_is_set(USR, UDRE); 

                   UDR = *string++; 

                   } 

                   return; 

                 } 

 

void scan(char *string){ 

char c; 

        do      { 

                do { 

                        loop_until_bit_is_set(USR, RXC); 

                        c =UDR; 

                        } while bit_is_set(USR, FE); 

                *string++ = c; 

                //echo the character 

                loop_until_bit_is_set(USR, UDRE); 

                UDR = c; 

                } while ( c != '\r' ); 

        loop_until_bit_is_set(USR, UDRE); 

        UDR = '\n'; 

        string[-1]=0; 

        } 

 

void UART_init(void)      // initialize USART 

{ 

 UBRRH = 0;  

 UBRRL = 103; // 8MHz, Baudrate: 9600 

 UCSRA = (1<<U2X); 

 UCSRB = (1<<TXEN)|(1<<RXEN); 

 UCSRC = (1<<URSEL)|(1<<UCSZ0)|(1<<UCSZ1)|(1<<USBS); 

} 
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#define itoa10(N,S) itoa(N,S,10) 

#define itoa16(N,S) itoa(N,S,16) 

 

//DEMO 

 

unsigned char sampleout[16]; 

 

unsigned char samplekey[] = {0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 

0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c}; 

 

unsigned char samplein[] = {0x32, 0x43, 0xf6, 0xa8, 0x88, 0x5a, 0x30, 0x8d, 0x31, 

0x31, 0x98, 0xa2, 0xe0, 0x37, 0x07, 0x34}; 

 

int main(void) 

{ 

 UART_init(); 

  

 unsigned char expkey[4 * Nb * (Nr + 1)]; 

 unsigned char i; 

 char c[8]; 

 

 printP(PSTR("Original: ")); 

 for( i = 0; i < 16; i++ ) {itoa16(samplein[i],c);print(c); print(" ");} 

 printP(PSTR("\n")); 

 

 ExpandKey (samplekey, expkey); 

 Encrypt (samplein, expkey, sampleout); 

 

 printP(PSTR("Encrypted: ")); 

 for( i = 0; i < 16; i++ ) {itoa16(sampleout[i],c);print(c); print(" ");} 

 printP(PSTR("\n")); 
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 Decrypt (sampleout, expkey, samplein); 

 

 printP(PSTR("Decrypted: ")); 

 

 for( i = 0; i < 16; i++ ) {itoa16(samplein[i],c);print(c); print(" ");} 

 printP(PSTR("\n")); 

} 

 


