
UNIVERSITY OF VAASA

FACULTY OF TECHNOLOGY

TELECOMMUNICATIONS ENGINEERING

Xiang Chao

WIRELESS NETWORK STUDY AND ANALYSIS USING NS2 SIMUL ATOR

Master’s thesis for the degree of Master of Science in Technology submitted for

inspection in Vaasa, 14th of May, 2008.

Supervisor D.Sc. (Tech.) Mohammed Salem Elmusrati

Instructor D.Sc. (Tech.) Mohammed Salem Elmusrati

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Osuva

https://core.ac.uk/display/197965585?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

TABLE OF CONTENTS

ABBREVIATIONS AND SYMBOLS………………………………..…………………4

ABSTRACT……………………………………………………….…………………….6

1. INTRODUCTION…………………………………………..………………………7

1.1. The History of NS2……………………………………………………………..7

1.2. Basic Operation Flow of Using NS2…………………………………………...8

1.3. Assistant Tools in NS2……………..………………………………..………….9

1.3.1. NAM………………………..…………………………….….…………..9

1.3.2. Trace File……………………………………………………………….10

1.3.3. Xgraph and Gnuplot……………………………………………………14

2. INSTALLATION OF NS2………………………..………………………………..18

2.1. Installation NS under Linux with Ns-allinone………………..……………….19

2.2. Installation NS2 on Windows with Cygwin…………………………………..21

2.2.1. Installation of Cygwin …………………………………….…………21

2.2.2. Installation of Ns-allinone under Cygwin…...…….………………..….23

3. BASIC CONCEPTS OF NS2………………………..………………………...…….26

3.1. Two Languages Implemented NS2……………………………………...…….26

3.2. OTCL Variable and Express Method…………………..……………………...27

3.3. NS2 Structure and Models…………………………………………………….29

3.4. Node…………………………………………………………………………...30

3.4.1. Creating and Structure of Node………………………………………...30

 3.4.2. The Node Configuration……..…………………………………………31

3.5. Link……………………………………………………………………………32

3.6. Agent………….……………………………………………………………….33

4. SIMULATIONS……………………………………..……………………………….35

4.1. Simulation of TCP Protocol………………...…………………………………35

3

 4.1.1. Description of TCP………………………..……………………………35

 4.1.2. Tracing and Analysis with Examples….………………………………..36

4.2. Simulation of Router Layer…………………...………………………………42

4.3. Simulation of Wireless Network………………………………………………44

4.3.1. The Routing Protocol Algorithm……………………………………….45

4.3.2. Simulation of A Mobile Example………………………………………48

5. EMULATIONS…………………………………..………..…………………………51

5.1. Introduction of NSE………………………………………...…………………51

5.2. Integration NS2 with Other Simulation Packages……………...……………..55

5.2.1. One Example of Integration……………………………………………55

5.3. Architecture of Integration…………………………………………………….57

5.4. Related Protocol………………………………………………………………61

5.4.1. Add New Route Protocol in NS2……………………………………….61

5.5. Result Analysis ……………………………………………………………….63

6. LIMITATIONS OF NS2……………………………..………………………………66

7. CONCLUSIONS…………………………………….………………………………69

BIBLIOGRAPHIES……………………………………....……………………………70

APPENDICES………………………………...…….….…………………………….74

4

ABBREVIATIONS AND SYMBOLS

AODV Ad-hoc On-demand Distance Vector

API Application Programming Interface

ARP Address Resolution Protocol

ARQ Automatic Repeat-Request

CBR Constant Bit Rate

CONSER Collaborative Simulation for Education and Research

DARPA Defense Advanced Research Projects Agency

DSDV Destination-Sequenced Distance Vector

DSR Dynamic Source Routing

ECN Explicit Congestion Notification

FTP File Transfer Protocol

HUT Helsinki University of Technology

ICSI International Computer Science Institute

ICIR ICSI Networking Group

ISI Information Sciences Institute

LBL Lawrence Berkeley National Laboratory

LMNR Local Multiple Next Hop Routing Protocol

MAC Media Access Control

MANET Mobile Ad-hoc Network

NAM Network Animator

NS2 Network Simulation Version 2

NSE Network Simulation Emulation

OTCL Object Oriented Extension of TCL

PARC Palo Alto Research Center

RED Random Early Detection

RERR Route Error

5

RREP Route Reply

RREQ Route Request

SAMAN Simulation Augmented by Measurement and Analysis for Network

TCL Tool Command Language

TCLCL TCL with Classes

TCP Transmission Control Protocol

TEG Telecommunication Engineering Group

TORA/IMPE Temporally-Ordered Routing Algorithm

UDP User Datagram Protocol

UMTS Universal Mobile Telecommunications System

USC University of South Carolina

UWB Ultra-Wideband

VBR Variable Bit Rate

VINT Virtual Inter Network Testbed

WiNCS Wireless Networked Control System

WSN Wireless Sensor Network

SYMBOLS

Pt Transmission Power

Pr Received Power

Gt Transmission Antenna Gain

Gr Received Antenna Gain

ht Transmission Antenna Height

hr Received Antenna Height

λ Wavelength

d Distance

L System Loss

χ Lognormal Distribution

6

UNIVERSITY OF VAASA

Faculty of technology
Author: Xiang Chao
Topic of the Thesis: Wireless Network Study and Analysis using NS2

Simulator
Supervisor: Mohammed Salem Elmusrati
Instructor: Mohammed Salem Elmusrati
Degree: Master of Science in Technology
Department: Department of Computer Science
Degree Program: Degree Program in Information Technology
Major of Subject: Telecommunication Engineering
Year of Entering the University: 2006
Year of Completing the Thesis: 2008 Pages: 100

ABSTRACT:

NS2 (Network Simulation version 2) is a well-known generic network simulator. Unlike
other expensive simulation software, it is free and based on open source. It is widely
used to simulate and emulate communication networks. Furthermore, it has a rich
library of network and protocol objects, which almost involve most of the aspects of
network technology. This makes NS2 the most favorable simulation software which is
widely used in academic research. On the other hand, the results of the simulation are
validated by many research centers. For this reason many published articles about
network technology show their results by using NS2 simulation. Additionally, act an
excellent instruction tool NS2 is widely utilized in education. Nowadays, NS2 becomes
more and more popular in scientific research and education.

Nevertheless, NS2 is quite difficult to handle for a beginner. Some reasons are: the
content of NS2 is very huge; the official NS manual is not updated regularly and a lot of
relative knowledge and tools are involved to operate NS2 efficiently.

NS2 will be one of the main tools in the research activities of the Telecommunication
Engineering Group (TEG). Hence, the main target of this thesis is to study NS2 deeply
and to show how to construct an emulation environment by using NS2 and MATLAB.
Different simulators are given to demonstrate how to proceed with NS2. This thesis will
be one reference for TEG researches for the applications of NS2.

KEYWORDS: NS2, Simulation, Integration, Emulation

7

1. INTRODUCTION

NS (version 2) is a discrete event simulator forcing on network research. NS2 provides

substantial support for simulation of Transmission Control Protocol (TCP), routing, and

multicast protocols over wired and wireless (local and satellite) networks. It can also

implement such behaviors like File Transfer Protocol (FTP), Telnet, Web, Constant Bit

Rate (CBR) and Variable Bit Rate (VBR), router queue management mechanism such as

Drop Tail, Random Early Detection (RED) and Class-Based Queueing (CBQ), routing

algorithms such as Dijkstra, and more (Chung & Claypool A 2003). The multicasting

and some of the Media Access Control (MAC) layer protocols can also be simulated by

NS2.

1.1. The History of NS2

NS development began in 1989 as a variant of the REAL network simulator. By 1995,

NS has been supported by the Defense Advanced Research Projects Agency (DARPA),

the Virtual Inter Network Testbed (VINT) project at Lawrence Berkeley National

Laboratory (LBL), Palo Alto Research Center (PARC), University of California,

Berkeley (UCB), and the Information Sciences Institute of the University of Southern

California (USC/ISI) (NS2 wikipedia 2008).

NS is now developed in collaboration between a number of different researchers and

institutes, including Simulation Augmented by Measurement and Analysis for Network

(SAMAN), Collaborative Simulation for Education and Research (CONSER), and the

ICSI Networking Group (ICIR). Long-running contributions have also come from Sun

Microsystems and the UCB Daedelus and Carnegie Mellon University’s Monarch

projects, cited by the NS homepage for wireless code additions. (NS2 wikipedia 2008.)

8

The latest version of NS2 is ns-2.33. For documentation on recent changes, see the NS

Change History (Information Sciences Institute B 2006).

The development of the 3rd Generation of NS has begun development on July 1, 2006

and will take four years (NS2 wikipedia 2008).

1.2. Basic Operation Flow of Using NS2

NS2 is an Object-oriented Tool Command Language (OTCL) script interpreter that has

a simulation event scheduler, network component object libraries and network setup

(plumbing) module libraries (actually, plumbing modules are implemented as member

functions of the base simulator object) as shown in Figure 1.1. (Chung & Claypool A

2003).

Figure 1.1: Simplified flow chart of using NS2 (Chung & Claypool A 2003.)

To use NS, the first step is to edit the program in OTCL script language. In order to

setup and run a simulation network, a user should write an OTCL script that initiates an

event scheduler, sets up the network topology by using the network objects and the

OTCL: TCL interpreter with OO

extension

NS simulator Library

♦ Event Scheduler Objects

♦ Network Component Objects

♦ Network Setup Helping

Modules (Plumbing Modules)

OTCL

Script

Simulation

Simulation

results

Trace File

Analysis

NAM

Network

Animator

9

plumbing functions in the library, and tells traffic sources when to start and stop

transmitting packets through the event scheduler. The term "plumbing" is used for a

network setup, because setting up a network is plumbing possible data paths among

network objects by setting the "neighbor" pointer of an object to the address of an

appropriate object. When a user wants to make a new network object, he or she can

easily make an object either by writing a new object or by making a compound object

from the object library, and plumb the data path through the object (Chung & Claypool

A 2003). This sounds like a complicated job, but the plumbing OTCL modules actually

make the job very easy. The power of NS comes from this plumbing.

After the NS2 is running, a trace file is generated automatically, which contains the

entire event schedule during the simulation. The trace file makes the result analysis of

the simulation possible and the user can observe the entire communication process via

the special tool called Network Animator (NAM).

The format of the trace file and the method to analyze it will be introduced later.

1.3. Assistant Tools in NS2

1.3.1. NAM

NAM began at Lawrence Berkeley National Laboratory (LBL). It has evolved

vigorously over the past few years. The NAM development effort was an ongoing

collaboration with the Virtual Inter Network Testbed (VINT) project. Currently, it is

being developed at Information Sciences Institute (ISI) as part of the Simulation

Augmented by Measurement and Analysis for Network (SAMAN) and Collaborative

Simulation for Education and Research (CONSER) projects. (Buchheim 2002).

10

NAM is a Tool Command Language (TCL) based animation tool for viewing network

simulation traces and real world packet trace (Buchheim 2002). The first step to use

NAM is to produce the trace file. The trace file should contain topology information,

e.g., nodes, links, as well as packet traces. Usually, the trace file is generated by NS2.

During an NS simulation, a user can produce topology configurations, layout

information, and packet traces using tracing events in NS.

When the trace file is generated, it is ready to be animated by NAM. Upon startup,

NAM will read the trace file, create topology, pop up a window, do layout if necessary,

and then pause at the time of the first packet in the trace file. Through its user interface,

NAM provides control over many aspects of animation. (Buchheim 2002).

More information about NAM will be given later.

1.3.2. Trace File

The trace file format depends on the simulated network whether it is wired or wireless

as explained next.

♦ Wired Case

After the simulation a trace file will be created to record the process of all the events

during the simulation. The wired network trace file usually looks like Table 1:

11

Table 1: Model of trace file

state time From
node

To
node

type size flag fid Src
addr

Dst
addr

Seq
num

id

+ 1.959779 2 3 tcp 1040 ------- 1 0.0 3.0 63 379

r
1.95992

5
2 0 ack 40 ------- 1 3.0 0.0 54 374

+
1.95992

5
0 2 tcp 1040 ------- 1 0.0 3.0 64 382

-
1.95992

5
0 2 tcp 1040 ------- 1 0.0 3.0 64 382

r 1.962 1 2 cbr 1000 ------- 2 1.0 3.1 231 380

+ 1.962 2 3 cbr 1000 ------- 2 1.0 3.1 231 380

d 1.962 2 3 cbr 1000 ------- 2 1.0 3.1 231 380

Now there are 7 trace entries in Table 1. It is clear that there are three enque operations

mean join into the waiting queue list (indicated by “+” in the first column), one deque

operations which mean leave from the waiting queue list (indicated by “-”), two

receive events (indicated by “r”), and one drop event (indicated by “d”) (this had better

be a trace fragment, or some packets would have just vanished!).

The simulated time (in seconds) at which each event occurred is listed in the second

column. The third and fourth columns indicate between which two nodes the tracing

happens. The fifth field is a descriptive name for the type of packet. The sixth field is

the packet’s size, encoded in its IP header.

Characters from the seventh to the tenth field represent special flag bits which may be

enabled. Presently only one such bit exists (explicit congestion notification, or ECN)

(Harding 2005). In this example, Explicit Congestion Notification (ECN) is not used.

12

The next field gives the IP flow identifier field as defined for IP version 6.1. The two

subsequent fields indicate the packet’s source and destination node addresses,

respectively. The following field indicates the sequence number. The last field is a

unique packet identifier. Each new packet created in the simulation is assigned for a

new, unique identifier.

For the first recode:

+ 1.959779 2 3 tcp 1040 ------- 1 0.0 3.0 63 379

It means it is a TCP packet whose size is 1040 bytes; deliver from node 2 to node 3 at

time 1.959779(s). The TCP connection in this case is noted as field 1. The other data

present that: the source address of the packet is 0.0 and the direction address of it is 3.0.

The sequence number of the packet is 63 and the packet ID of it is 379. They are

important data to analyze the simulation as well as to demo on NAM file.

♦ Wireless Case

In wireless case, the trace files have some different formats, the specific explain can be

found in “~ns/trace/cmu-trace.cc”, the instance shown below is an Ad-hoc On-demand

Distance Vector (AODV) case:

s -t 0.001529932 -Hs 26 -Hd -2 -Ni 26 -Nx 585.08 -Ny 960.45 -Nz 0.00 -Ne

200.000000 -Nl RTR -Nw --- -Ma 0 -Md 0 -Ms 0 -Mt 0 -Is 26.255 -Id -1.255 -It IMEP

-Il 44 -If 0 -Ii 0 -Iv 1 -P aodvt -Pt 0x1 -Ph 1 -Pd 26 -Pds 2 -Pl 4.000000 -Pc HELLO

r -t 0.003927946 -Hs 1 -Hd -2 -Ni 1 -Nx 400.00 -Ny 200.00 -Nz 0.00 -Ne 199.999842

-Nl RTR -Nw --- -Ma 0 -Md 6000000 -Ms ffff0008 -Mt 0 -Is 6.255 -Id -1.255 -It IMEP

-Il 44 -If 0 -Ii 0 -Iv 1 -P aodvt -Pt 0x1 -Ph 1 -Pd 6 -Pds 2 -Pl 4.000000 -Pc HELLO

13

(1) Event type: in the previous example, the first filed means the event type. There are

four styles: s (send), r (receive), d (drop), f (forward).

(2) General flag: the second field is begun with “-t”, means the time of the event.

(3) Next hop information: this filed presents the information of the next hop, leaded by

“-H”: -Hs (Hop source Node ID), -Hd (Hop destination Node ID).

(4) Node Property: this field denotes the Properties of the nodes, such as the node ID,

trace level, leaded by “-N”. –Ni (Node ID), -Nx, -Ny, -Nz (Node Coordinates), -Ne

(Node Energy Level), -Nl (Network trace Level: AGT, RTR, MAC, etc.), -Nw (drop

reason).

(5) IP Level Packet Information: leaded by “-I”. -Is (source address, source port num),

-Id (destination address, dest port number), -It (packet type), -If (flow ID), -Ii (unique

ID), -Iv (TTL value).

(6)MAC Level Packet Information: leaded by “-M”. -Ma (duration), -Md (Destination

Ethernet Address), -Ms (Source Ethernet Address), -Mt (Ethernet Type).

(7) Packet Specific Information: presents the types of the route protocol type. In AODV

case this field is leaded by “-P aodv”. -Pt (type), -Ph(Hop Count), -Pb (Broadcast

ID),-Pd (Destination) -Pds (Destination Sequence Number), -Ps (Source), -Pss (Source

Sequence Number), -Pl (Lifetime), -Pc (Operation: REQUEST, REPLY, ERROR,

HELLO).

There are many different types of trace files in the practical case such as: Address

Resolution Protocol (ARP), CBR, TCP. The main difference of these trace file is in the

field of “-P”. (Harding 2005.)

14

1.3.3. Xgraph and Gnuplot

Xgraph and Gnuplot are two plotter tools of NS2 used to show the results of the

simulations.

Xgraph is a general purpose x-y data plotter, the operation of which is using the first

column as the X-axis data, and Y-axis is decided by the second column then plot the

graph. It will be discussed in more details in Chapter 4.

Gnuplot is one kind of command-driven interactive function plotting program. It is a

program with a fairly long history, dating back to 1986 (Gnuplot 2008). Its function is to

generate two or three-dimensional plots of data, which is utilized to analyze the data and

functions.

Nowadays, Gnupolt is widely used on UNIX, Linux and Windows platform. The

operation methods are almost similar on different platforms. Below the paper will

introduce some simple examples of how to apply Gnuplot in Linux.

Run the command Gnuplot, shown as the Figure 1.2.

15

Figure 1.2: Interface of Gnupolt.

Type “plot sin(x)”, then obtain the graph show as the Figure 1.3.

:

Figure 1.3: sin(x) plot in Gnupolt

To set the interval of x-axis, one can use the command: gnuplot>set xtics -10,1,10;

gnuplot>plot sin(x). It means marking on x-axis from -10 to 10 and the unit of the

marking is 1. It is the same method to reset y-axis.

16

Figure 1.4: Reset the interval of x-axis

The command “set grid” and “unset grid” used to set or cancel the grid in the x-y plane.

Figure 1.5: Set grid of the plot

Sometimes logarithms are necessary to analyze the results. The command of setting the

coordinates system transformation is: set logscale <axis> <base> (axes can be x,y,z or

combination of them; default base is 10).

For some complicated case, a substituted software TraceGraph is recommended. It is

easy to operate and analyze the trace file result. Just like the NS2, it is also a free

software to the public, which can be obtained form the official website

http://140.116.72.80/~smallko/ns2/setup.htm (Ke 2004). The TraceGraph can run under

Windows, Linux, UNIX and MAC OS systems. It can be downloaded from

http://www.tracegraph.com./ (Malek 2007).

17

Although the TraceGraph can help user to analyze the entire trace file based on different

network types, for the beginners using AWK to analyze trace files is recommend. AWK

is a programming language that gets its name from the 3 people who invented it (Aho,

Weinberger, and Kernighan). The users can learn more technology about the data

analysis via using AWK program.

18

2. INSTALLATION OF NS2

The Network Simulator (NS-2) is developed for several kinds of UNIX (FreeBSD,

Linux, SunOS and Solaris), so it is smoothest when installed on the UNIX platform

(Information Sciences Institute A 2006). NS also can be built and run under Windows.

Normal scenarios should run on any ordinary machine, but very large scenarios benefit

from large amounts of memory size (e.g. 1GB) (Information Sciences Institute A 2006).

Several available packets support the Simulator, such as: Tool Command Language

(TCL/TK), Object Oriented Extension of TCL (OTCL), TCL with Classes (TCLCL) and

so on. TK is an open source, cross-platform widget toolkit, that is, a library of basic

elements for building a graphical user interface. Since the components depend on each

other, they should be built in the listed order. The software packets of the NS2 also

conclude some relative tools: NAM and Xgraph.

There are two kinds of ways to install it: one way is unpacking the pieces packets in

proper order and then install them manually; the other way is getting everything at once

by the allinone installation packet. The latest installation method is recommended,

because of its convenience for beginners. If the manual way is necessary, the website

below can be referenced:

http://www.isi.edu/nsnam/ns/ns-build.html#pieces.

In this chapter the installation of the allinone under both Linux and Windows will be

introduced in details. The latest version of the NS2 for Linux is 2.32, and 2.29 for

Windows.

19

2.1. Installation under Linux with Ns-allinone

1. Download the ns-allinone-2.32.tar.gz from:

 http://www.isi.edu/nsnam/ns/ns-build.html#allinone

2. Assume current directory is /home/nsuser/

3. Use the tar command to decompress the file: tar xzvf ns-allinone- 2.32.tar.gz

4. Change the current directory as ns-allinone-2.32: cd ns-allinone-2.32.

5. Run command: ./install

The NS system will be installed automatically. After the successful installation, it shows

the following output (as Figure 2.1):

20

Figure 2.1: Reset the parameters after the successful installation

In Figure 2.1., NS reminds user to set 3 parameters: PATH, LD_LIBRARY_PATH and

TCL_LIBRARY. The command below should be added to the .bashrc file:

#export NS_HOME=/home/wlan/NS2/ns-allinone-2.32/

#export PATH=$NS_HOME/tcl8.4.5/unix:$NS_HOME/tk8.4.5/unix:$NS_HOME/bin:

$PATH

#export LD_LIBRARY_PATH=$NS_HOME/tcl8.4.5/unix:$NS_HOME/tk8.4.5/unix:\

#$NS_HOME/otcl-1.8:$NS_HOME/lib:$LD_LIBRARY_PATH

#export TCL_LIBRARY=$NS_HOME/tcl8.4.5/library

6. Run ./validate to make sure whether the NS2 has been installed correctly.

21

2.2 Installation NS2 on Windows with Cygwin

Cygwin is a Linux-like environment for Windows. It consists of two parts: (Cygwin

homepage 2008).

� A DLL (cygwin1.dll) which acts as a Linux Application Programming Interface

(API) emulation layer providing substantial Linux API functionality.

� A collection of tools which provide Linux looking and feeling.

The Cygwin DLL currently works with all recent, commercially released x86 32 bit and

64 bit versions of Windows, with the exception of Windows CE. (Cygwin homepage

2008.)

2.2.1 Installation of Cygwin

1. Download Cygwin, from http://www.cygwin.com/ (Cygwin homepage 2008).

2. Select the bottom of “Install or update now”

3. Install from Internet, as the Figure 2.2.:

22

Figure 2.2: Interface of Cygwin installation

4. Install the Cygwin to the default directory: c:\cygwin

5. Select the method of network connection: Direct Connection

6. Add some necessary package for the NS2: gcc, gcc-core, gcc, g++, gawk, gzip,

make, patch, perl, w32api, tar, xorg-x11-base, xorg-x11-bin, xorg-x11-bin-dlls,

xorg-x11-devel, xorg-x11-libs-data, xorg-x11-etc,x-startup-scripts.

7. After the successful installation the new file “home” will be generated in the

current directory c:\cygwin.(Cygwin homepage 2008.)

More details about the Cygwin installation can be found in (Information Sciences

Institute 2005).

23

2.2.2 Installation of Ns-allinone under Cygwin

1. The Visual C++ is necessary for installation NS2 on the Windows plat, so please

make sure which has been installed.

2. Download the ns-allinone-2.29.tar.gz to c:\cygwin\home\Administrator

 http://www.isi.edu/nsnam/dist/ns-allinone-2.29.2.tar.gz/

3. Find the icon of cygwin on the Desktop and type: tar xvfs ns-allinone-

2.29.tar.gz

4. Modify some settings after the decompression: (Ke 2004).

� Modify the makefile.vc located in otcl-1.11: annotate STATIC_TCLTK=1.

� Modify the makefile.win located in tclcl-1.17:

 The location of the file is:

 C:\cygwin\home\Administrator\ns-allinone-2.29\tclcl-1.17\conf\makefile.win

Edit: MSVDIR=C:\Program Files\Microsoft Visual Studio\VC98（the current

directory of VC++）

LOCAL_SRC=C:\cygwin\home\Administrator\ns-allinone-2.29; annotate

STATIC_LIB=1

Reset the values: TK_VER=83，TCL_VER = 83，TCL_SUFFIX = 8.4.11，

TK_SUFFIX = 8.4.11， OTCL_DIR = $(LOCAL_SRC)\otcl-1.11，

TCLCL_DIR = $(LOCAL_SRC)\tclcl-1.17。

� Modify the file makefile.win in ns-2.29:

 The location of the target file is:

24

 C:\cygwin\home\Administrator\ns-allinone-2.29\ ns-2.29\conf\makefile.win

Edit: MSVDIR=C:\Program Files\Microsoft Visual Studio\VC98（the current

directory of VC++）

LOCAL_SRC=C:\cygwin\home\Administrator\ns-allinone-2.29， annotate

STATIC_LIB=1

Reset the values: TK_VER=83，TCL_VER = 83，TCL_SUFFIX = 8.4.11，

TK_SUFFIX = 8.4.11， OTCL_DIR = $(LOCAL_SRC)\otcl-1.11，

TCLCL_DIR = $(LOCAL_SRC)\tclcl-1.17. (Ke 2004.)

� Replace .relid”as .relid’in the below files to avoid the bug mentioned in the

link: http://ns-2.blogspot.com/2006/05/pr...2-allinone.html/

 C:\cygwin\home\Administrator\ns-allinone-2.29\tcl8.4.11\unixconfigure

 C:\cygwin\home\Administrator\ns-allinone-2.29\tcl8.4.11\unix\tcl.m4

 C:\cygwin\home\Administrator\ns-allinone-2.29\tk8.4.11\unix\configure

 C:\cygwin\home\Administrator\ns-allinone-2.29\tk8.4.11\unix\tcl.m4

 C:\cygwin\home\Administrator\ns-allinone-2.29\otcl-1.11\configure

5. Type cd ns-allinone-2.29 to change the current directory to ns-allinone-2.29. Then

run command: ./install.

6. Finally, some path parameters should be added to the .bashrc file, which is just like

the final process of NS2 installation on the Linux platform:

#export NS_HOME=/home/wlan/NS2/ns-allinone-2.32/

#export PATH=$NS_HOME/tcl8.4.5/unix:$NS_HOME/tk8.4.5/unix:$NS_HOME/

bin:$PATH

#export LD_LIBRARY_PATH=$NS_HOME/tcl8.4.5/unix:$NS_HOME/tk8.4.5/ unix:\

#$NS_HOME/otcl-1.8:$NS_HOME/lib:$LD_LIBRARY_PATH

25

#export TCL_LIBRARY=$NS_HOME/tcl8.4.5/library

7. Run ./validate on the startxwin.bat whose address is c:\cygwin\usr\X11R6\bin to

make sure whether the NS2 has been installed correctly. The process will take some

time.

The information for installation different version of ns-allinone can be seen in (Nilsson

1998: 56-61).

In windows, there are two possibilities to install NS2: using Cygwin and using VC++.

Using Cygwin will make the installation almost the same as that for Linux; using VC++

is a variation and not recommended by the NS2 development group.

26

3. BASIC CONCEPTS OF NS2

3.1. Two Languages Implemented NS2

The programs in NS2 are briefly written in C++ and OTCL (TCL script language with

Object-oriented extensions). These two languages are connected with each other via

TCLCL class in NS2. Two relative classes realize the facility: one in C++; the other in

OTCL. Therefore, both two structures are contained in NS (Xu, Pang & Zhao 2003: 45).

The main functions of the facilities are realized in C++; Otcl mainly support the

interface faced to the user. To the C++ programmer, object-oriented programming in

OTCL may feel unfamiliar at first. Here are some of the differences to help to orient.

(OTCL Tutorial 1995.)

� Instead of a single class declaration in C++, write multiple definitions in OTCL.

Each method definition (with instproc) adds a method to a class. Each instance

variable definition (with set or via instvar in a method body) adds an instance

variable to an object (OTCL Tutorial 1995).

� Instead of a constructor in C++, write an init instproc in OTCL. Instead of a

destructor in C++, write a destroy instproc in OTCL (OTCL Tutorial 1995). Unlike

constructors and destructors, init and destroy methods do not combine with base

classes automatically. They should be combined explicitly with next.

� Unlike C++, OTCL methods are always called through the object. The name self,

which is equivalent to this in C++, may be used inside the method bodies. Unlike

C++, OTCL methods are always virtual.

27

� Instead of calling shadowed methods by naming the method explicitly as in C++,

call them with next. Next searches further up the inheritance graph to find

shadowed methods automatically. It allows methods to be combined without

naming dependencies.

� Avoid using static methods and variables, since there is no exact analogue in

OTCL. Place shared variables on the class object and access them from methods by

using $class. This behavior will then be inherited. For inherited methods on classes,

program with meta-classes. If inheritance is not needed, use proc methods on the

class object. (OTCL Tutorial 1995.)

The basic model of NS2 implementation is shown as Figure 3.1.:

Figure 3.1: Architecture of NS2 implementation (Wang 2004: 4.)

Simulation

Scenario

TCL

C++
Implementation

set ns_ [new Simulator]

set node_(0) [$ns_ node]

set node_(1) [$ns_ node]

class MobileNode : public Node

{

 friend class PositionHandler;

 public:

 MobileNode();

 •

 •

}

1 2

28

It is easy to read from Figure 3.1, that C++ is hard to modify and adjust. However,

sometimes changing the model and re–run the program is also quite important.

Although TCL script is used to simulate varying parameters or configurations slightly,

which means it can avoid the drawback of C++ easily. Maybe it will take a longer time

to run the program sometimes.

For this reason, in NS the classes in C++ and in Otcl have some relationship. Most

inheritance characters of the facilities belong to both sides. When an element is created

in Otcl, it will be automatically created in C++ at mean time, in order to operate and

control each other easily.

3.2. OTCL Variable and Express Method

Add a symbol “$” in front of the name of variable, such as, $a, $b. All the separate

symbols in the function or program always are the curly brackets {}. Variable binding

with the command set, like: set $a 5. Time is specified as a real value, optionally

suffixed by a 'm' to express time in milli-seconds, 'n' to express time in nano-seconds, or

'p' to express time in pico-seconds. The default time is expressed in seconds. For

example: $object set timevar 1500e9p. Command [expr …] is utilized to obtain the

calculated value, [expr $a + $b]. Notice that the square brackets are necessary.

29

3.3. NS2 Structure and Models

Figure 3.2: Classic hierarchy structure of NS2 (Xu, Pang & Zhao 2003: 17.)

From the hierarchy Figure 3.2, it can be seen that TCL Object is the base class for most

of the other classes in the compiled hierarchies. There are two classes which can create

the NS Object according to the number of the output interface: Connector (only one

output) and Classfier (more than one output). In NS2, all the processes of the simulation

are defined and controlled by a TCL class called Simulator, which offers a series ports

for the simulation running, including the port for “event scheduler”.

Relative TCL command: set ns [new Simulator]; #establish a new simulation. $ns halt;

#stop the scheduler. $ns run; #begin the scheduler. $ns at <time> <event>; #at <time>

do the <event>.

TCL Object

NS Object

Connector Classifier

Snoop Queue Queue Delay Agent Trace Addr Classifier Mcast Classifier

In Out Drp Edrp Drop Tail TCP UDP Enq Deq Drop Recv RED

Reno SACK

Others

30

3.4. Node

A node is an important structure of the Topology. In this section the methods of creating

and controlling nodes will be introduced.

3.4.1. Creating and Structure of Node

The Node itself is a standalone class in OTCL. However, most of the components of the

node are themselves TCLObjects. In this way, the method of creating a node is very

simple: call node directly in the class simulator. TCL command: set ns [new Simulator]

$ns node

The typical structure of a unicast node is as shown in Figure 3.2.:

Figure 3.2: the structure of the node (Fall & Varadhan 2000: 41-42).

The structure of the node includes two TCL objects, which called address classifier and

port classifier. Both are used to determine the destination address and the target agent of

each node. By default, nodes in NS are constructed for unicast simulations. In order to

enable a multicast simulation, the simulation should be created with an option

“-multicast on”, e.g.: set ns [new Simulator -multicast on]. The structure of the multicast

Node

Link Link Link

Agent Agent

Agent

agents_ dmux_

classifier_

Addr classifier_

Port classifier_

31

node is shown in Figure 3.3.

Figure 3.3.: Internal Structure of a Multicast Node (Fall & Varadhan 2000: 41-42).

3.4.2. The Node Configuration

The attributes of the node should be defined before the node is created. The attributes

include the channel type, propagation model, routing protocol and decide whether

switch the trace function of each layer (Agent, Router and MAC).

set val(chan) Channel/WirelessChannel ;# channel type
set val(prop) Propagation/TwoRayGround ;# radio-propagation

model
set val(ant) Antenna/OmniAntenna ;# Antenna type
set val(ll) LL ;# Link layer type
set val(ifq) Queue/DropTail/PriQueue ;# Interface queue

type
set val(ifqlen) 50 ;# max packet in ifq
set val(netif) Phy/WirelessPhy ;# network interface

type
set val(mac) Mac/802_11 ;# MAC type

Multicast

Node

 Switch_

Multiclassifier_

classifier_
dmux_

<S1,G1>

<S2,G2>

Replicators

Agent

Agent

Agent

agents_

Link Link Link

entry_

32

set val(rp) AODV ;# ad-hoc routing
protocol

set val(nn) 2 ;# number of
mobilenodes

configure nodes
$ns_ node-config -adhocRouting $val(rp) \
 -llType $val(ll) \
 -macType $val(mac) \
 -ifqType $val(ifq) \
 -ifqLen $val(ifqlen) \
 -antType $val(ant) \
 -propType $val(prop) \
 -phyType $val(netif) \
 -topoInstance $topo \
 -channelType $val(chan) \
 -agentTrace ON \
 -routerTrace ON \
 -macTrace OFF \
 -movementTrace OFF

3.5. Link

The method of creating a link between the nodes is: $ns duplexlink node1 node2

bandwidth delay queuetype. (Chung & Claypool B 2003.)

The purpose of the command is that two simplex links of specified bandwidth and

delay, and connects the two specified nodes will be created. In NS, the output queue of a

node is implemented as a part of a link; therefore users should specify the queuetype

when they create links. In the common simulation case, DropTail queue is used. If the

reader wants to use a RED queue, this can be done by the replacement of the word

DropTail with RED. The NS implementation of a link is shown in a later section. Like a

node, a link is a compound object and users can create its sub objects and connect them

33

and the nodes. Link source codes can be found in "ns2/tcl/libs/nslib.tcl" and

"ns2/tcl/libs/ns link. tcl" files. One thing to note is that a user can insert error modules in

a link component to simulate a lossy link (actually users can make and insert any

network objects). Refer to the NS documentation to find out how to do this.

3.6 Agent

Agents represent endpoints where network-layer packets are constructed or consumed,

and are used in the implementation of protocols at various layer. (Fall & Varadhan 2000:

71-75.)

There are several agents supported in NS2. Names of them can be seen in OTCL, now

list some main agents (Fall & Varadhan 2000: 71-75):

TCP: a”Tahoe” TCP sender (cwnd=1 on any loss)

TCP/FullTcp: a more full-functioned TCP with 2-way traffic

TCPSink: a Reno or Tahoe TCP receiver

UDP: a basic User Datagram Protocol (UDP) agent

Null: a degenerate agent that discards packets used with udp agent

In the script, it is clear that the functions “set tcp [new Agent/TCP]”, “set

udp [new Agent/UDP]”, “set sink [new Agent/TCPSink] ”, “set null

[new Agent/Null]” are used to create the new agent. The model of the creation is

that: set <name> [new Agent/<agent name>]. Because, shown as the example, there are

two packet flows: FTP and CBR, to separate them, two different flow_IDs are

necessary. The commands “$tcp set fid_ 1”, “$udp set fid_ 2” are written for this task.

The ID of the TCP flow is set by 1, UDP 2. (Fall & Varadhan 2000: 71-75.)

34

After the agents have been created the next step is to attach the nodes to the related

agent. In this case, the tcp packets flow from node s1 to node d, so s1 is attached to Tcp

agent and node d is attached to TCP Sink by the command “$ns attach-agent $s1 $tcp”,

“$ns attach-agent $d $sink”. It means node d is the final destination of the connection.

“$ns connect $tcp $sink” is used to establish the TCP connection. For the UDP

connection it works similar.

Applications sit on top of transport agents in NS. They are hooked together and

communicate with one agent via the applications programming interface (API).

Through API, applications request services from the underlying transport agents. FTP

and CBR are two most common application used in NS2. The structure of the

application and the agent is shown as the figure 3.4. The attach-agent method is used to

attach an application to an agent, as shown in the common example: “set ftp [new

Application/FTP], $ftp attach-agent $tcp”.

Figure 3.4: Application and the agent (Fall & Varadhan 2000: 93).

Application/

Traffic/

Exponential

Agent/TCP/FullTcp Agent/UDP

Application/FTP

API API

Traffic generators Simulated application

35

4. SIMULATIONS

In this chapter, we will introduce some simulations to demonstrate the main concepts of

NS2.

4.1. Simulation of TCP Protocol

TCP (transmission control protocol) is one of the core protocols of the internet protocol

suite, which is responsible for the transmission in the Internet traffic. Because of its

reliability and suitability for the applications like file transfer and e-mail that sometimes

the entire suite is referred to as "the TCP/IP protocol suite." Although TCP protocol is

already widely developed, it continues to evolve.

In this chapter, the operation of TCP will be described at first. Then we present several

NS scripts to illustrate the analysis of TCP through simulations.

4.1.1. Description of TCP

TCP has several characters: TCP service is obtained by both the sender and receiver

creating end points. In TCP, the entire address of a source is called socket. It is

organized hierarchically within a node. The user or process ID of the socket is called a

port in TCP. The ID of port is included in the transport header for both source and

destination, whereas the network and node IDs appear in the IP header. It is the reason

that all sessions will normally have the same source and destination address in the IP

header and only can be distinguished in the transport header if they are going from the

given source host and to a given destination host (Bertesekas & Gallager 1992: 124).

Thus all sessions between the same pair of host could be viewed as being multiplexed

36

together at the transport layer to a lower-layer session.

TCP provides reliable end-to-end transmission using sliding window Automatic

Repeat-Request (ARQ). TCP allows the destination to control the flow of data from the

source host. This is implemented by a 16-bit field called a window, which decides how

many bytes beyond the request number can be accepted.

4.1.2. Tracing and Analyze by Examples

The explaining of the main TCL script of the example is shown in detail as below (the

whole TCL script seen in APPENDIX I):

$ns duplex-link $s1 $r 2Mb 10ms DropTail

The purpose of the command is to set a duplex link between node s1 and node r, with

2Mbps bandwidth and 10ms delay. The link selects DropTail as the queue model.

$ns duplex-link $s2 $r 2Mb 10ms DropTail

The previous command is used to connect node s2 and node r with a duplex link. The

bandwidth of the link is 2Mb, delay is 10ms and queue model is DropTail.

$ns duplex-link $r $d 1.7Mb 20ms DropTail

The purpose of this command is similar to the pervious ones. Connection between node

r and direction node with a 1.7Mbps bandwidth duplex link is required. The delay is

20ms and the queue model is DropTail.

$ns queue-limit $r $d 10

The number of the packets waiting in queue is limited to 10 packets.

37

set tcp [new Agent/TCP]

This command is used to set a TCP agent

$ns attach-agent $s1 $tcp

In this command, the agent TCP is attached to the node s1.

set sink [new Agent/TCPSink]

$ns attach-agent $d $sink

These two commands’ functions are similar to the pervious two: set a sink agent and

attach it to the direction node.

$ns connect $tcp $sink

Now, connect the TCP agent to the sink agent.

$tcp set fid_ 1

In this command TCP agent is set as the first flow ID, which will be demonstrated in

blue.

set ftp [new Application/FTP]

This command is used to establish an FTP application.

$ftp attach-agent $tcp

Then attach the application FTP to the agent TCP.

The main function of the script has been noted and explained step by step. Notice the

follow scripts:

set tcp [new Agent/TCP]

38

set sink [new Agent/TCPSink]

$ns attach-agent $s1 $tcp

$ns attach-agent $d $sink

$ns connect $tcp $sink

The above code illustrates that in NS2, agents are firstly attached to a node via

attach-agent. After that, the applications should be connected to the transport agent.

After the TCL script is written, it has to be saved before it can be run with the command

“./ns name.tcl”. The trace file can be created automatically as well as the NAM file

which is based on the trace file, shown as below:

Figure 4.1.: Trace animator interface of NAM

In the figure, the blue arrows mean the ftp packets and the red ones are cbr packets. The

destination of the packets is the node 3. The bigger squares are the loss packets and the

smaller ones located upper are indications the packets in the waiting place.

39

To analyze the trace file efficiently, the AWK is necessary to be introduced. AWK is a

general purpose programming language that is designed for processing text-based data,

either in files or data streams. The name AWK is derived from the family names of its

authors — Alfred Aho, Peter Weinberger, and Brian Kernighan. The initial purpose of

AWK is to deal with the text file. And the foundation of this language is that if the data

of the input line are matched with the requirement, the command will be executed. If

not, it will deal with the next line automatically. (Fan 2005.)

A simple AWK command will be shown as below to analyze the delay in the example

case.

CBR-delay and FTP-delay

The script of AWK shown in APPENDIX II computes the ftp and cbr packet delay, the

graph plotted in Figure 4.2.

Figure 4.2.: FTP delay and CBR delay

40

After the program run, two files are created: “ftp_delay” and “cbr_delay”. Plot them

with the program, Gnuplot. The graph is shown as the upper. In the graph, the cbr_delay

is stable between 0.1s and 1.0s as well as 4.0s and later, because at that time the ftp

application has not been started or ended. There is only CBR packet in the channel and

no congestion happens. After 1.0s the ftp packets are transmitted. Some packets must

wait in the queue, some got lost. That is the reason of the obviously delay happens

during this period.

Jitter

Jitter is an unwanted time-variation of one or more signal characteristics in electronics

and telecommunications. Jitter may be seen in characteristics such as the interval

between successive pulses, or the amplitude, frequency, or phase of successive cycles

(Jitter wikipedia 2008). Jitter is a significant factor in the design of almost all

communications links. It is a delay variance based on the network estate. That means

the larger the jitter, the more unstable is the network.

Figure 4.3.: Jitter of CBR packets

41

From the jitter plot, it is clear that the change of jitter is synchronous to the end to end

delay. Because the reasons of the change are the same: the FTP packets join in the

transmission. The whole AWK script is shown in APPENDIX IV.

Through AWK we can also compute some other characters in the system, such as loss,

throughput and some others. In the previous example, we can also obtain that 550 CBR

packets are sent and 8 of them are lost. The same, we can compute that 10 FTP packets

are lost among 246 packets in all, which can be computed by APPENDIX III.

Now analyze another TCP model. All the nodes send FTP packets to node 0 via node 1

at a random and delay time internal from 0s to 7s also from 0s to 7s.

Figure 4.4.: Another tcp model

The script of the TCL is almost the same as the previous one. Note that the various of

the random value should be defined at first: set rng [new RNG] (Altman & Jimene 2003:

76); $rng seed 0. set RVstart [new RandomVariable/Uniform]; $RVstart set min_ 0;

$RVstart set max_ 7; $RVstart use-rng $rng. The function of start at a random time from

42

0s to 7s can be realized. The same for the delay set. The whole script will be given in

the APPENDIX VII.

After the analysis we can obtain that there are 2940 packets sent and 93 of them are lost.

4.2. Simulation of Router Layer

The major task at the network layer is routing and flow control. In fact they have been

utilized in the former example. At the network layer, the transmission of packets

between adjacent nodes can be distinguished of one session from another as well as

different packets within the same session (Bertesekas & Gallager 1992: 124). When a

node receives a packet, the information contained in the packet determines the node

how to forward it. Because the header of each packet contained identification numbers

for both the source and destination even each site is accessed during the transmission.

In the virtual circuits, the path through the network is given and there is a certain set of

sessions using each link. It is helpful to realize the link as being shared by a set of

virtual channels distinguished by numbers. When a new session will be established, a

path is set by assigning, on each link of the path, one unused virtual channel to that

session. Each node also keeps a table mapping each busy incoming virtual channel on

each link onto the corresponding outgoing virtual channel and link for the

corresponding session.

43

Figure 4.5.: Model of route selection

In the previous example, there are two different routes from source node 0 to destination

node 5. The static routing, used by NS2, is the simpler one in which the shorter routing

is chosen throughout the connection. The example simulates a disconnection between

node 1 and node 4 from 1.0s to 3.0s. It is necessary to type:

$ns rtmodel-at 1.0 down $S(1) $S(4)

$ns rtmodel-at 3.0 up $S(1) $S(4)

In the example, a default route is chosen the route 0-1-4-5 for setting connections. In

contrast to the static route, the Internet will find an alternative route when the original

route disconnected. The operation in NS2 is used by adding the command: $ns rtproto

DV (Fall & Varadhan 2000: 63).

In the previous example, the link 1-4 is down from 1.0s to 3.0s. In NAM file, it is clear

that the link becomes red during its disconnection. And all the packets transmitted in the

link are drop. Another TCP connection is established from node 0 to node 5.

(APPENDIX VIII)

In the NAM trace, the result can be obtained that in the dynamic routing case, the

signaling packets which are used to determine the path, not only at the beginning, but

44

also at the connectivity changes.

4.3. Simulation of Wireless Network

There are two structures for wireless communication between two hosts. The first is the

centralized cellular network. In this case, the mobile is connected to the fixed base

station, so that the communication between two nodes needs one or more base stations.

Different scenarios can be considered as well, such as hard, soft and softer handover.

The second method of the wireless is based on the ad-hoc network between two mobile

nodes wish to communicate each other. Compared to the fixed base station, the ad-hoc

networks have more limited range of a mobile terminal which means that mobile nodes

do not need to be the source or the destination of the packets, but also to forward the

packets between other mobiles. A cellular station has much larger communication range,

however the advantage of the ad-hoc network is quickly deployable and without an

existing infrastructure.

In cellular networks, the wireless part is restricted to the access to a network, and within

it, the classical routing protocol can be utilized. Ad-hoc network in contrast rely on the

special routing protocols. (Altman & Jimene 2003: 111-125.)

In ad-hoc networks the routing protocols are central. NS2 allows simulating the main

existing routing as well as the transport and applications that use them. The current

routing protocols used by NS2 are (Altman & Jimene 2003: 111-125).:

DSDV - Destination Sequenced Distance Vector

AODV - Ad-hoc on Demand Distance Vector

DSR - Dynamic Source Routing

45

TORA/IMPE - Temporally Ordered Routing Algorithm / Internet Mobile Ad-hoc

Network (MANET) Encapsulation

4.3.1. The Routing Protocol Algorithm

(1) DSDV is a distance vector routing protocol. Each node has a routing table which

indicates the destination. The destination is the next hop and the number of hops to

the destination. Each entry in the routing table contains a sequence number. The

sequence numbers are generally even if a link is present; otherwise, an odd number

is used. The number is generated by the destination, and the emitter needs to send

out the next update with this number. Routing information is distributed between

nodes by sending full dumps infrequently and smaller incremental updates more

frequently (Perkins & Bhagwat 2004: 236-238). If a router receives new

information, then it uses the latest sequence number. If the sequence number is the

same as the one already in the table, the route with the better metric is used. Stale

entries are those entries that have not been updated for a while. Such entries as well

as the routes using those nodes as next hops are deleted (Perkins & Bhagwat 2004:

236-238). If a node detected that a route to the destination has been broken, then its

hop number is set to infinity and its sequence number is updated but an odd number

assigned. (Altman & Jimene 2003: 111-125.)

(2) AODV is a distance vector type routing. It is an on demand algorithm, meaning that

it builds routes between nodes only as desired by source nodes. It maintains these

routes as long as they are needed by the sources. Additionally, AODV forms trees

which connect multicast group members. The trees are composed of the group

members and the nodes needed to connect the members. AODV uses sequence

numbers to ensure the freshness of routes. It is loop-free, self-starting, and scales to

large numbers of mobile nodes.(Belding 2007.)

46

The protocol use different messages to discover and maintain links: Route Requests

(RREQs), Route Replies (RREPs) and Route Errors (RERRs). These messages are

typed via UDP, and normal IP header processing applies.

When a source node desires a route to a destination for which it does not already

have a route, it broadcasts a RREQ packet across the network. Nodes receiving this

packet update their information for the source node and set up backwards pointers to

the source node in the route tables. In addition to the source node's IP address,

current sequence number, and broadcast ID, the RREQ also contains the most recent

sequence number for the destination of which the source node is aware. A node

receiving the RREQ may send a RREP if it is either the destination or if it has a

route to the destination with corresponding sequence number greater than or equal

to that contained in the RREQ. If this is the case, it unicasts a RREP back to the

source. Otherwise, it rebroadcasts the RREQ. Nodes keep track of the RREQ's

source IP address and broadcast ID. If they receive a RREQ which they have already

processed, they discard the RREQ and do not forward it. (Belding 2007.)

When the RREP propagates back to the source, the nodes set up forward pointers to

the destination. Once the source node receives the RREP, it may begin to forward

data packets to the destination. If the source later receives a RREP containing a

greater sequence number or contains the same sequence number with a smaller hop

count, it may update its routing information for that destination and begin to use the

better route. (Belding 2007.)

Nodes, part of an active route, may offer connectivity information by broadcasting

local “Hello” messages (special RREP messages) to its neighbors. If “Hello”

47

messages stop arriving from a neighbor beyond some time threshold, the connection

is assumed to be lost.

As long as the route remains active, it will continue to be maintained. A route is

considered active as long as there are data packets periodically traveling from the

source to the destination along that path. Once the source stops sending data packets,

the links will time out and eventually be deleted from the intermediate node routing

tables. If a link break occurs while the route is active, the node upstream of the

break propagates a RERR message to the source node to inform it of the now

unreachable destination(s). After receiving the RERR, if the source node still desires

the route, it can reinitiate route discovery.

AODV does not allow the handling of unidirectional links.

(3) DSR uses source routing instead of relying on the routing table at each intermediate

device. A source requested to send a packet to the destination broadcast a RREQ

packet. Nodes receive the RREQ packet and search in their route cache for a route

to the destination. If a route can not be found, the RREQ will be transmitted further

and the node will add its own address to the recorded hop sequence. The process

will be lasted, till the destination can be found or a node with the route to the

destination are reached. The route back can be computed based on the hop record. If

the routes are not symmetric, DSR checks the route cache of the replying node. If a

new route is found, it will be instead. Compared to AODV protocol, the

unidirectional links handling is allowed in DSR. (DSR wikipedia 2006.)

(4) TORA is one protocol of the family of link reversal protocols. It may provide

several routes between the source and the destination. There are three parts of the

TORA: creating, maintaining and erasing routes. At each node a separate copy of

48

TORA is run. Therefore, TORA builds a directed acyclic graph rooted in the

destination. It associates a height with each node in the network. Message flows

from the higher heights to the lower heights. When a node has no downstream link it

reverses the direction of one or more links. If a node can not find the route to the

particular destination, it sets the corresponding local height to the maximum value.

(TODA wikipedia 2005.)

4.3.2. Simulation of a Mobile Example

NS2 can simulate many kinds of communication networks. Next we demonstrate how to

simulate a wireless network.

Figure 4.6.: Example in wireless case

One node moves to another when enter the certain range the path connected and the

packets send to each other. When the node moves beyond the communication range, the

packets are lost. In the wireless case, the signal power strength goes inverse ratio with

49

the rising distance. There are different fading formulas in different propagation models.

The whole TCL script can be seen in APPENDIX IX.

Only when the received power is over the threshold the receiver node receives packets

correctly. Default value of the threshold is: and the distance is 250 meters. In the NS

script the receive value can the reset by the command: Phy/WirelessPhy set RXThresh_

(new value).

NS2 provides three propagation models: FreeSpace, TwoRayGround and Shadowing

model.

In the FreeSpace model the received power represents:

2

2(4)
t t r

r

PG G
P

d L

λ
π

= (1)

Where Pt is Transmission Power; Pr is Received Power; Gt means Transmission

Antenna Gain and Gr means Received Antenna Gain; λ means Wavelength; d is

Distance; at last, L shows System Loss.

In the TwoRayGround model: if d <
4 t rh hπ

λ
, the receive power is equal to the FreeSpace

case; else the receive power presents

2

4

()t t r t r
r

PG G h h
P

d L
= (2)

Where ht is Transmission Antenna Height; hr is Antenna Height for the received antenna.

50

In the Shadowing model, the distance d has been defined as 1. So the receive power is

shown:

2

2(4)
t t r

r

PG G
P

L

λ χ
π

= (3)

Whereχ indicates the lognormal distribute.

In NS2 the parameters in the formula are set as: λ = 3.0e8/freq; transmission power, Pt

= 0.28183815; transmission antenna gain Gt = 1.0; received antenna gain Gr = 1.0;

frequency freq = 914.0e6; loss sysLoss = 1.0; transmission antenna height ht = 1.5;

received antenna height hr = 1.5.

In NS2, there is a tool used to compute the threshold value of the received power based

on the different communication range. The tool is located in: ~ns/indep-utils.

.

Compile the file: g++ threshold.cc -o threshold at first. The command format of

threshold presents: threshold -m <propagation-model> [other-options] distance. Obtain

the new value of received power based on the new distance.

51

5. EMULATIONS

This chapter describes the emulation facility of NS. Emulation refers to the ability to

introduce the simulator into a live network. Special objects within the simulator are

capable of introducing live traffic into the simulator and injecting traffic from the

simulator into the live network. (Fall & Varadhan 2000: 336-341.)

Because of the currently limited portability of emulation, it is compiled into Network

Simulation Emulation (NSE) only. Before the emulation it is necessary to built firstly

(build it with “make nse”). And make sure that -lnsl -ldl -lpcap\ are in lib of makefile.

5.1. Introduction of NSE

Network simulator emulator (NSE) is an extension to NS2, which provides basic

utilities for reading and writing live packets from/to the live network. Figure 5.1

represents the emulation model implemented in NSE (Nethi, Pohjola, et al. 2007: 4).

52

Figure 5.1.: Internal Flow Diagram of NSE (Nethi, Pohjola, et al. 2007: 4)

The emulation facility can be subdivided into two modes:

1. opaque mode – live data treated as opaque data packets

2. protocol mode – live data may be interpreted or generated by simulator

In opaque mode, the simulator treats network data as uninterpretable packets. In

particular, real-world protocol fields are not directly used by the simulator. In opaque

mode, live data packets may be dropped, delayed, re-ordered, or duplicated. Because no

protocol processing is performed, protocol-specific traffic manipulation scenarios may

not be performed (Fall & Varadhan 2000: 336-341).

In protocol mode, the simulator is able to interpret or generate live network data packets

which contain arbitrary field assignments.

The components of the Network Simulator Emulator (NSE) are listed below:

Node Node Node

Tap Agent Tap Agent Tap Agent

Network object

Ethernet Interface

NS2 Simulator
Wired cum wireless

simulation

53

Real-time scheduler: The real-time scheduler attempts to synchronize the execution of

events in real-time. The function of the scheduler is used to introduce an NS simulated

network into a real-world topology to experiment with easily-configured network

topologies, like cross-traffic, etc. This only works for relatively slow network traffic

data rates, as the simulator must be able to keep paces with the real-world packet arrival

rate, and this synchronization is not presently enforced (Nethi, Pohjola, et al. 2007: 4).

TapAgent: This class is a simple class derived from the base Agent class. As such, it is

able to generate simulator packets containing arbitrarily-assigned values within the NS

common header. The tap agent handles the settings of the common header packet size

field and the type field. The packet type field is PT_LIVE for packets injected into the

simulator. Each tap agent can have at most one associated network object, although

more than one tap agent may be instantiated on a single simulator node. It is also

responsible for writing packets onto the network interface (Nethi, Pohjola, et al. 2007:

4).

Network objects: Network objects provide access to a live network (or to a trace file of

captured network packets). There are several forms of network objects, depending on

the protocol layer specified for access to the underlying network, in addition to the

facilities provided by the host operating system. Use of some network objects requires

special access privileges where noted. Generally, network objects provide an entry point

into the live network at a particular protocol layer (e.g. link, raw IP, UDP, etc) and with

a particular access mode (read-only, write-only, or read-write). Some network objects

provide specialized facilities such as filtering or promiscuous access (i.e. the pcap/bpf

network object) or group membership (i.e. UDP/IP multicast). The C++ class Network

is provided as a base class from which specific network objects are derived.

Three network objects are currently supported in NSE: Pcap/BPF, raw IP, and UDP/IP.

54

Each is described below:

Pcap/BPF objects provide an extended interface to the LBNL packet capture library

(libpcap) (Nethi, Pohjola, et al. 2007: 4). This library provides the ability to capture

link-layer frames in a promiscuous fashion from network interface drivers (i.e. a copy is

made for those programs making use of libpcap). It also provides the ability to read and

write packet trace files in the “tcpdump” format. The extended interface provided by NS

also allows for writing frames out to the network interface driver, provided the driver

itself allows this action. Use of the library to capture or create live traffic may be

protected; one generally requires at least read access to the system’s packet filter facility

which may need to be arranged through a system administrator (Information Sciences

Institute C 2006).

Raw IP objects provide raw access to the IP protocol, and allow the complete

specification of IP packets (including header). The implementation makes use of a raw

socket. In most UNIX systems, access to such sockets requires super-user privileges

(Information Sciences Institute C 2006). In addition, the interface to raw sockets is not

such a common standard than other types of sockets. The class Network/IP provides raw

IP functionality plus a base class from which other network objects implementing

higher-layer protocols are derived.

UDP/IP objects provide access to the system's UDP implementation along with support

for IP multicast group membership operations. (Information Sciences Institute C 2006.)

55

5.2. Integration NS2 with Other Simulation Packages

The function of NSE is capable of introducing live traffic into the simulator and

injecting traffic from the simulator into the live networks, which provide a possibility of

evaluating the performance of communication protocols in real-time control systems

and similarly test robustness and performance properties of control and data fusion

algorithms in networked environments. Hence, it can be realized the integration NS2

with other packets under the NSE mode. (Fall & Varadhan 2000: 336-341.)

The traditional control theory is not suitable for the asynchronous systems, because it

assumes constant sample times. Hence, it is necessary to develop a theory which can

integrate wireless communication and control. NS2 can integrate with different

simulator to realize the combination between controlling part and simulation part. In

this thesis we select MATLAB as an example. Because MATLAB is also a widely

employed research tools used in control system design and simulation.

The key features of the integration are: 1) support for powerful control design and

implementation tools provided by MATLAB, Simulink and xPC Target enabling

automatic code generation from Simulink models for real-time execution, 2) real-time

control of a true or simulated process over a user-specified network, 3) capability to

emulate any wired/wireless networks readily available in NS2, 4) easy-to-use network

configuration tool and 5) the platform is accessible over the Internet, i.e. it supports

remote experimenting. (Nethi, Pohjola, et al. 2005: 8.)

5.2.1. One Example of Integration

Now we take the example of ‘PiccSIM’, which is developed by the Communication and

control Engineering Groups at Helsinki University of Technology (HUT), to illustrate

56

the integration NS2 with other packets.

PiccSIM is a platform for modeling, design, simulation and implementation of network

control systems, and it integrates the control design tools available in MATLAB with

NS2.

By using the PiccSIM platform, it is possible to integrate the network simulator with

real processes and to only simulate the network while the control algorithms are

executed on a real-time operating system, which controls real processes. The key idea is

that a mobile node can measure the distances to its nearby static sensor nodes, and a

temporal mobile node location can be computed by using at least three distance

measurements (Nethi, Pohjola, et al. 2005: 8). Once the command center tracks the

mobile node, it can guide it towards the reference path.

During the process of the research we have amended the exist demonstration of HUT:

In the HUT case, the sensor nodes are static by the uniform distributed. This means that

the distance between each neighbor node can be controlled within the communication

range easily. The system consists of the static wireless sensor nodes scattered in a grid

distribution. The distances between each node are 200 meters and the distance

measurement range is defined as 300 meters. If the distance between the mobile node

and static nodes is less than 300 meters, the distance between them will be measured

and transmitted to the computation center for estimating the position of the mobile

node.

In our case, shown in APPENDIX X., the significant change is that all the static sensor

nodes are randomly deployed in the network area which is helpful for the application in

the real environment. The locations of the randomly static nodes are defined by the

57

localization method. As the scenario, all the static wireless sensor nodes are randomly

deployed, a reference path is also randomly created and the mobile node should work

follow the computed path. We simulate this scenario via the wireless networked control

system (WiNCS). The objective of this work is to present the integrated control

processing under the simulative Wireless Sensor Network (WSN) environment. Both

the location of the sensor nodes and the mobile path are created by MATLAB, but are

read to NS2 by the source command (Fall & Varadhan 2000: 336-341).

Based on these work, we can make the simulation case more closely approximately to

the real situation. The results can be used to support the future development.

5.3 Architecture of Integration

The PiccSIM system typically consists of three computers (MoCoNet Server, RTOS

xPC Target and NS2) and an I/O controller board (link to real process), but in our case

the remote accessibility property is disregarded, so two computers are enough: one for

NS2 and another for MATLAB. In Figure 5.2, they are connected via their own local

area network (LAN).

58

Figure 5.2.: Nodes in the xPC Target and the NS2 network are associated with UDP

port numbers (Nethi, Pohjola, et al. 2007: 3)

The xPC target runs a real-time operating system. The main function of this computer is

to measure and control the processes based on the user specified algorithms, which are

made with a Simulink model in the MATLAB, storm where UDP or TCP packets are

transmitted then the xPC transmits signals (i.e. UDP packets) to the network simulator.

The NS2 computer is using the emulation (NSE) to capture the User Datagram Protocol

(UDP) packets and inject them into simulated wireless network model. Thus

communication between any two nodes in the control system is passed through NS2.

Figure 5.2 shows the connectivity mapping between xPC Target and NS2 nodes. UDP

port numbers are used to tap and inject the packet to the corresponding node in NS2.

Figure 5.2 shows the components of the integration model. The process is measured and

controlled with xPC Target computer equipped with an I/O controller board. One of the

nodes in the network acts as the process controller that computes the control signal for

Controller logic

I/O Board

22005

22001

U
D

P
 port num

bers

Node 5

Node 4

Node 3

Node 2

Node 1

S
E

N
S

O
R

S

Simulated wireless

Network

Process

xPC TARGET

LAN
NS2

59

the process. The signal is transmitted over the network to the actuator in the process

(Nethi, Pohjola, et al. 2007: 3). The sensor and actuator nodes in the real process and the

simulated network are associated by their UDP port numbers, which makes it possible

that the real process maps to the simulated network.

In Figure 5.2, the process of communication is presented clearly. Node 1 is the source

and Node 5 is the destination. Node 1 on the xPC Target represents a sensor. It creates

UDP packets of the signals measured either from a real case or a simulated process. Any

packet generated by Node 1 is destined to Node 5 (a controller node) passes through the

simulated network on NS2.

The NS2 computer uses packet filtering tools to capture the UDP packets and associates

it to the correct node in the simulated network by the UDP destination port number. It

then performs a mapping for the simulated destination node and the packet is injected

into the simulated network in NS2. After a successful receipt, the packet is sent back to

the xPC Target via the LAN.

In the NS2 part the key commands to connect two computers are:

set ns [new Simulator]

$ns use-scheduler RealTime

Create a new simulator and the real-time scheduler requires the following specification

at the beginning of a simulation script.

set me [exec hostname]

The purpose of this command is to determine the name of the local system.

60

set pf1 [new Network/Pcap/Live]

This command creates an instance of the pcap network object for capturing live traffic.

$pf1 set promisc_ true

The function of this command is to tell the packet filter whether it should configure the

undelying interface in promiscuous mode.

set intf [$pf1 open readonly]

The open call activates the packet filter, and may be specified as readonly, writeonly, or

readwrite. Itreturns the name of the network interface the filter is associated with.

puts "pf1 configured on interface $intf"

set filt "(ip src host foobar) and (not ether broad cast)"

set nbytes [$pf1 filter $filt]

puts "filter compiled to $nbytes bytes"

The filter method is used to create a Berkeley Packet Filter (BPF)-compatible packet

filter program which is loaded into the underlying BPF machinery. The filter method

returns the number of bytes used by the filter predicate.

puts "drops: [$pf1 pdrops], pkts: [$pf1 pkts]"

The pdrops and pkts methods are available for statistics collection. They report the

number of packets dropped by the filter due to buffer exhaustion and the total number of

packets that arrived at the filter, respectively (not the number of packets accepted by the

filter).

61

5.4. Related Protocol

Multi-path routing consists of finding routes between a source node and a destination

node. Multi-path routing doesn’t provide only schemes for an efficient resource

management but also improves overall system performance (Nethi, Pohjola, et al. 2007:

3). Multi-path routing exploits path diversity and compensates the dynamic and

unpredictable nature of sensor networks.

In this thesis, the popular Ad hoc On Demand Distance Vector routing protocol (AODV)

is chosen to work as well as Local Multiple Next Hop Routing Protocol (LMNR) (Nethi,

Pohjola, et al. 2005: 8). LMNR makes the network congested by reason of a lot of

traffic generated. It tries to find multiple paths, and contrary to many multi-paths

routing protocols, it uses single path to avoid synchronization of packets at the

destination node (Nethi, Pohjola, et al. 2005: 6). The strongpoint of the LMNR scheme

is that each source and the intermediate nodes give the liberty to choose from multiple

local paths the destination, which allows local route selection making it adaptive to a

dynamically changing environment.

5.4.1. Add New Route Protocol in NS2

In our case the protocol LMNR named AODVT. Although it is a multicast routing

protocol developed from the AODV algorithm, it is still a new protocol in NS2. This

section will introduce the method of how to add a new protocol in NS2. Here we select

AODV as a sample to add a new protocol to the NS2 without changing the content. In

the real time simulation the AODVT is provided from the HUT emulation case.

(1) Copy the aodv fold located in ~/ns-allinone-2.32/ns-2.32 to aodvt, and replaces all

the “AODV” or “aodv” by “AODVT” and “aodvt” in aodv.cc and aodv.h. (Xu 2008.)

62

(2) Modify the packet.h file in the ~/ns-allinone-2.32/ns-2.32/common. Find the word of

“aodv”, obtain that: name_[PT_AODV]= "AODV"; PT_AODV. Copy them and replace

the aodv by aodvt: name_[PT_AODV]= "AODV";name_[PT_AODVT]= "AODVT";

PT_AODV, PT_AODVT.

(3) Modify the ns-lib.tcl file which is located in ~/ns-allinone-2.32/ns-2.32/tcl/lib.

Search the term “AODV” and “aodv” in the file and duplicate it with “AODVT” and

“aodvt” respectively.

(4) Edit ns-packet.tcl file just like the previous example. The file’s location is

~/ns-allinone-2.29/ns-2.29/tcl/lib.

(5) Modify the makefile in ~/ns-allinone-2.32/ns-2.32. Search the word of “aodv.o” and

then obtain the sentence “aodv/aodv_logs.o aodv/aodv.o \; aodv/aodv_rtable.o

aodv/aodv_rqueue.o \” Add the related command “aodvt/aodv_logs.o aodvt/aodv.o \;

aodvt/aodv_rtable.o aodvt/aodv_rqueue.o \” after the command about aodv.

(6) After the previous steps a new route protocol named aodvt is almost installed, but

the trace format needs still some modification. It is necessary to modify the files:

cmu-trace.cc and cmu-trace.h, in ~/ns-allinone-2.32/ns-2.32/trace. Add the relative

command according the aodv part: void CMUTrace::format_aodvt(Packet *p, int offset)

{…}. (Xu 2008.)

(7) Do “make clean” in the terminal at the directory: ~/ns-allinone-2.32/ns-2.32, after

that do “make”.

These were the main processes of adding a new route protocol in NS2. In conclusion the

63

best solution is to search the term “AODV” and “aodv” in all the NS2 files and replace

it with “AODVT” and “aodvt” respectively.

5.5 Result Analysis

Due to the trace file in AODV protocol is very complicated; the result here is analyzed

via the software “TraceGragh”, which is easier to operate than coding the AWK script. It

can analyze most of parameters of the simulation, such as: end to end delay, throughput,

jitter, etc. However, in the simple case the AWK language is still recommended for

beginners to realize and to manage the basic concept of the computing process for the

analysis result.

It is well known that the major problems arising from wireless networks are varying

because of the time delay and packet losses in the communication process. Hence, this

section analyzes the different results based on two different protocols: AODV and

LMNR.

During the simulation we observe three parameters mainly in two different scenarios:

End to End delay, Jitter and the number of the dropped packets. The last one means the

level of the reasonable utilization in the network resource. Figure 5.3, Figure 5.4 and

Figure 5.5 present the network properties difference between the AODV and LMNR

during the simulation period.

64

AODV LMNR

Figure 5.3.: End to End delay: AODV vs. LMNR

In Figure 5.3, it can be recognized that the End to End delay in AODV is much higher

than in LMNR. From 50s to 200s the delays under AODV protocol vary frequently,

while in LMNR during the same time period no delay appears which exactly explains

the character of LMNR well. It makes the network congested because of a lot of the

highly generated traffic. It tries to find multiple paths, and contrary to many multi-paths

routing protocols. A single path is used to avoid synchronization of packets at the

destination node (Nethi, Pohjola, Gao & Jantti 2005).

AODV LMNR

 Figure 5.4.: Jitter: AODV vs. LMNR

65

The situation of Jitter shown as Figure 5.4 is almost synchronous to the situation of an

End to End delay. Because a jitter is a delay variance based on the network estate.

Figure 5.4 shows that the networks are based on LMNR protocol which is much more

stable than the networks based on AODV protocol.

AODV LMNR

Figure 5.5.: The number of the dropped packets: AODV vs. LMNR

To prove this point, Figure 5.5 delivers the number of the dropped packets between two

protocols. In LMNR case, there are only approximately 90 packets dropped within the

simulation process compared to the huge amount (close to 6000) of the dropped packets

under VODA protocol, and the drops only happen within the first 60 seconds during the

simulation of LMNR caused by the high traffic. Nevertheless, the drops appear

continuously during the whole process of the AODV simulation.

In a nutshell, the new protocol LMNR is much more adaptive for a dynamic and

unpredictable nature of sensor networks.

66

6. LIMITATIONS OF NS2

Although NS2 is widely used for simulation of different network systems, and many

experiments have leveraged it to examine protocols and distributed systems. However,

it has some limitations. The purpose of this chapter is to discuss several limitations of

NS2.

On one hand, NS2 integrates the TCL scripting language into the tool, and therefore

offers similar flexibility and determinism in the simulation. The main limitation with

NS2 is that it is exclusively a simulation framework; a protocol authored for NS2 must

be re-implemented to test in deployment (Demmer, Levis, et al. 2005: 2). Suppose that

there is an environment that runs identical application code in simulation and in

deployment, a particular implementation can be examined in simulation as well on

actual hardware, and multiple implementations can be compared in terms of code

complexity, size, and execution time.

On the other hand, due to the simulations in NS2 are very detailed for the packet data,

during the simulation process huge amount of packets are created, results that it can not

simulate the large-scale networks, special for Wireless Sensor Networks (WSN)

scenarios.

A simulator model of a real-world system is necessarily a simplification of the

real-world system itself. Now we describe some of the limitations of the simulation

model embodied in the current release of NS2:

67

♦ TCP

The simulator model for one-way TCP is described previously. There is no dynamic

window advertisement, segment and ACK number computations are in units of packets,

and there is no SYN/FIN connection establishment/teardown (Information Sciences

Institute 2002).

♦ Two-Way TCP (FullTCP)

The simulator model for two-way TCP is described in Section 17.3 on the NS Manual

(Fall & Varadhan 2000: 170-172). It is very similar to a 4.x BSD TCP, except there is no

dynamic window advertisement, no 2MSL-wait or persist states, no urgent data, and no

RESET segments. Recently, SACK, Newreno, and Tahoe functionality have been added

to FullTCP.

Limitations to FullTCP: There is not a complete validation test which suites for

FullTCP. For example, BugFix_ does not work correctly for FullTCP. The test for

BugFix_, "ns test-suite-simple-full.tcl tahoe4", has been commented out from

test-suite-simple-full.tcl. (Information Sciences Institute 2002.)

Except the previous mentioned limitations, one of the biggest drawbacks to NS2 is too

difficult to master for the beginners. There are several reasons result that: firstly, the

content of NS2 is very huge, the official NS manual can not update regularly, which

makes the beginner hard to understand; secondly, a lot of relative knowledge and tools

are involved to operate NS2 efficiently.

Furthermore, as an open source software NS2 is not exploited by the same company or

person. That means version format maybe developed very quickly and sometimes even

68

without unification, while the documentation is often limited and out of date with the

current release of the simulator. The consecution of the NS manual is also not very well.

Else the code consistency is lacking at times in the code base and across releases.

However, the complete set of some paid simulators modules provides more features

than NS2, and they therefore will be more attractive to network operators

Finally, there is a lack of tools to describe simulation scenarios and analyze or visualize

simulation trace files. These tools are often written with scripting languages. The lack of

generalized analysis tools may lead to that, that different people measure different

values for the same metric names.

Fortunately, most current limitations can be overcome by consulting the highly dynamic

newsgroups and browsing the source code.

.

69

7. CONCLUSIONS

NS2 is widely used to simulate and emulate telecommunication networks. And with its

rich libraries of network and protocol objects, it can simulate most aspects of network

technology. The results of the simulation are validated, which makes NS2 to be one of

the most favorable simulation software which is widely used in education and research.

This thesis gives a particular description of the NS2 installation under different

platforms. Furthermore, the structures and main operation principles are also presented

in detail.

Many useful scenarios for the simulations have been presented, which can help the NS2

users to familiarize with the method of TCL script coding and analyze the results. It also

illustrates how to construct an emulation environment using NS2 and MATLAB. This

joining of NS2 and MATLAB can considerably enhance the application of NS2 for real

system simulations. Different examples are given to demonstrate how to proceed with

NS2 and MATLAB.

Although NS2 is a very strong network simulation tool, it has many limitations and

disadvantages were discussed in Chapter 6.

In the future work we will implement NS2 for simulations of different communication

scenarios, such as: Universal Mobile Telecommunications System (UMTS),

Ultra-Wideband (UWB), Worldwide Interoperability for Microwave Access (WiMAX)

and Satellite Network communications.

70

BIBLIOGRAPHIES

Altman, Eitan & Tania. Jimene (2003). NS Simulation for Beginners, 76, 111-125, Univ.

de Los Andes, Merida, Venezuela and ESSI, Sophia-Antipolis, France.

Belding-Royer, Elizabeth (2007). AODV Description [online] [cited 2008-4-12].

Available from Internet: <URL: http://moment.cs.ucsb.edu/AODV/aodv.html>.

Bertesekas, Dimitri & Robert Gallager (1992). Data Networks second edition, 124.

Prentice Hall, Upper Saddle River, NJ 07458 1992.

Buchheim, Tim (2002). Nam: Network Animator [online] [cited 2008-1-24]. Available

from Internet: <URL: http://www.isi.edu/nsnam/nam/>.

Chung, Jae & Mark Claypool A (2003). NS2 overview [online] [cited 2007-10-14].

Available from Internet: <URL: http://nile.wpi.edu/NS/overview.html>.

Chung, Jae & Mark Claypool B (2003). Simple Simulation Example [online] [cited

2008-3-23]. Available from Internet:

<URL: http://nile.wpi.edu/NS/simple_ns.html>.

Cygwin homepage (2008) [online] [cited 2008-1-16]. Available from Internet:

<URL: http://www.cygwin.com/>.

71

Demmer, Michael, Philip Levis, August Joki, Eric Brewer & David Culler (2005).

TYTHON: A DYNAMIC SIMULATION ENVIRONMENT FOR SENSOR

NETWORKS, 2. University of California, Berkeley Computer Science Division

Berkeley, CA 94720.

DSR wikipedia (2006) [online] [cited 2008-4-12]. Available from Internet:

<URL: http://en.wikipedia.org/wiki/Dynamic_Source_Routing>.

Fall, Kevin & Kannan Varadhan (2000). The ns Manual, 40-41, 63, 72-75, 93, 170-172,

336-341. UC Berkeley, LBL, USC/ISI, and Xerox PARC.

Fan, Qiang (2005). AWK manual [online] [cited 2007-11-10]. Available from Internet:

<URL: http://fanqiang.chinaunix.net/program/other/2005-09-07/3621.shtml>.

Gnuplot homepage (2008) [online] [cited 2008-3-23]. Available from Internet:

<URL: http://en.wikipedia.org/wiki/Gnuplot>.

Harding, Chris (2005). NS-2 Trace Formats [online] [cited 2008-1-24]. Available from

Internet: <URL: http://k-lug.org/~griswold/NS2/ns2-trace-formats.html>.

Information Sciences Institute, (2002). Ns Limitations, [online] [cited 2008-4-6].

Available from Internet:

<URL: http://www.isi.edu/nsnam/ns/ns-limitations.html>.

Information Sciences Institute, (2005). Building ns-2 on Cygwin [online] [cited

2007-11-15]. Available from Internet:

<URL: http://www.isi.edu/nsnam/ns/ns-cygwin-old.html>.

72

Information Sciences Institute A (2006). The Network Simulator – ns-2 [online] [cited

2007-10-14]. Available from Internet: <URL: http://www.isi.edu/nsnam/ns/>.

Information Sciences Institute B, (2006). NS: change log [online] [cited 2007-11-29].

Available from Internet: <URL: http://www.isi.edu/nsnam/ns/CHANGES.html>.

Information Sciences Institute C, (2006). Network Emulation with the NS Simulator

[online] [cited 2008-4-20]. Available from Internet:

 <URL: http://www.isi.edu/nsnam/ns/ns-emulation.html>.

Jitter wikipedia (2008) [online] [cited 2008-3-30]. Available from Internet:

<URL: http://en.wikipedia.org/wiki/Jitter>.

Ke, Zhiheng (2004).Winxp + Cygwin + ns-allinone-2.29.2 setup [online] [cited

2008-2-5]. Available from Internet:

<URL: http://140.116.72.80/~smallko/ns2/setup.htm>.

Malek, Jaroslaw (2007). Trace graph - Network Simulator NS-2 trace files analyzer

[online] [cited 2008-4-15]. Available from Internet:

 <URL:http://www.tracegraph.com./>.

NS2 wikipedia (2008) [online] [cited 2007-11-28]. Available from Internet:

<URL: http://en.wikipedia.org/wiki/Ns2>.

Nethi, Shekar, Mikael Pohjola, Lasse Eriksson & Riku Jantti (2007). “Platform for

Emulating Networked Control Systems in Laboratory Environments”, to appear in

Proc. IEEE Inter-national Symposium on a World of Wireless, Mobile and

Multimedia Networks (IEEE WoWMoM 2007), Helsinki, Finland.

73

Nethi, Shekar, Chao Gao, Riku Jäntti & Mikael Pohjola (2007), Localized Multiple

Next-hop Routing Protocol, appear in Proc.7th international conference on ITS

telecommunication (ITST 2007), Paris, France.

Nilsson, Johan (1998). Real-time control systems with delays, 56-61. Ph.D. dissertation,

Lund Institute of Technology, 1998.

OTCL Tutorial (1995) [online] [cited 2007-10-13]. Available from Internet:

<URL: http://www.openmash.org/developers/docs/otcl-doc/doc/tutorial.html>.

Perkins, Charles & Pravin Bhagwat (2004). Highly Dynamic Destination-Sequenced

Distance-Vector Routing (DSDV) for Mobile Computers, 236-238. Computer

Science Department University of Maryland College Park, MD 20742.

TODA wikipedia (2005) [online] [cited 2008-4-12]. Available from Internet:

<URL: http://en.wikipedia.org/wiki/TORA>.

Wang, Jianping (2004). ns-2 Tutorial, 4. Multimedia Networking Group, the

Department of Computer Science, UVA.

Xu, Leiming, Bo Pang & Yao Zhao (2003). NS and Network Simulation, 17-45. Posts &

Telecommunications Press: ISBN 7-115-11867-1/TN.2213.

Xu, Leiming (2001). How to Add a New Protocol in NS2 [online] [cited 2008-4-23],

Available from Internet:

<URL: http://netarchlab.tsinghua.edu.cn/~zm/presentation/ns-extend-xlming.ppt>.

74

APPENDIX I

#creat a new ns file
set ns [new Simulator]

#set the defferent color for defferent application
$ns color 1 Blue
$ns color 2 Red

#open a new nam file named out.nam and save the process in it
set nf [open out.nam w]
$ns namtrace-all $nf

#open a tr file to save the process and save the process in it
set nd [open out.tr w]
$ns trace-all $nd

#finish function
proc finish {} {
 global ns nf nd
 $ns flush-trace
 #close the file
 close $nf
 close $nd
 #show the nam file
 exec nam out.nam &
 exit 0
}

#set the nodes s1:id0 s2:id1 r:id2 d:id3
set s1 [$ns node]
set s2 [$ns node]
set r [$ns node]
set d [$ns node]

#set the links connection from the source nodes to node r with bandwidth: 2Mbps,
#delay: 10ms, queue model:DropTail
$ns duplex-link $s1 $r 2Mb 10ms DropTail
$ns duplex-link $s2 $r 2Mb 10ms DropTail

#connect node r to the direction node d with bandwidth: 1.7Mbps, delay: 10ms, queue

75

#model:DropTail
$ns duplex-link $r $d 1.7Mb 20ms DropTail

set Queue Limit:10 packets in the link r - d
$ns queue-limit $r $d 10

#observe the queue change between r - d
$ns duplex-link-op $r $d queuePos 0.5

#set tcp connection
set tcp [new Agent/TCP]
$ns attach-agent $s1 $tcp
set sink [new Agent/TCPSink]
$ns attach-agent $d $sink
$ns connect $tcp $sink

#plot the tcp in blue
$tcp set fid_ 1

#establish FTP on tcp
set ftp [new Application/FTP]
$ftp attach-agent $tcp
$ftp set type_ FTP

#set udp connection
set udp [new Agent/UDP]
$ns attach-agent $s2 $udp
set null [new Agent/Null]
$ns attach-agent $d $null
$ns connect $udp $null

#plot the udp in red
$udp set fid_ 2

#establish cbr on udp
set cbr [new Application/Traffic/CBR]
$cbr attach-agent $udp
$cbr set type_ CBR

#set the size of packet 1K bytes
$cbr set packet_size_ 1000

76

#rate of cbr 1M bps
$cbr set rate_ 1mb
$cbr set random_ false

#set the time when FTP & CBR start and stop
$ns at 0.1 "$cbr start"
$ns at 1.0 "$ftp start"
$ns at 4.0 "$ftp stop"
$ns at 4.5 "$cbr stop"

#detach the tcp connection
$ns at 4.5 "#ns detach-agent $s1 $tcp"
$ns at 4.5 "$ns detach-agent $d $sink"

#call the finish function
$ns at 5.0 "finish"

#run it
$ns run

77

APPENDIX II

BEGIN {

beginning,set the record the highest packet ID

highest_packet_id = 0;

}

{ action = $1;

time = $2;

flow_id = $8;

packet_id = $12;

record the highest current ID

if (packet_id > highest_packet_id)

highest_packet_id = packet_id;

record the flow ID and time

if (start_time[packet_id] == 0)

start_time[packet_id] = time;

flow_num[packet_id]=flow_id;

record the obtain time of all the packet

if (action == "r") {

end_time[packet_id] = time;

} else {

the time of the loss packet is -1

78

end_time[packet_id] = -1;

}

}

END {

calculate end-to-end delay

for (packet_id = 0; packet_id <= highest_packet_id; packet_id++) {

packet_duration = end_time[packet_id] - start_time[packet_id];

save the result

if (packet_duration > 0) {

if (flow_num[packet_id]==1){

printf("%f %f\n", start_time[packet_id], packet_duration) > "ftp_delay";

} else {

printf("%f %f\n", start_time[packet_id], packet_duration) > "cbr_delay";

}

}

}

}

79

APPENDIX III

BEGIN {

 fsDrops = 0;

 numFs = 0;

}

{

 action = $1;

 time = $2;

 node_1 = $3;

 node_2 = $4;

 type = $5;

 flow_id = $8;

 node_1_address = $9;

 node_2_address = $10;

 seq_no =$11;

 packet_id = $12;

if (node_1==1&&node_2==2&&action=="+")

 numFs++;

 if (flow_id == 2&&action == "d")

 fsDrops++;

}

END {

 printf ("number of packets sent:%d lost:%d\n",numFs,fsDrops);

}

80

APPENDIX IV

BEGIN {

 old_time = 0;

 old_seq_no = 0;

 i = 0;

}

{

 action = $1;

 time = $2;

 node_1 = $3;

 node_2 = $4;

 type = $5;

 flow_id = $8;

 node_1_address = $9;

 node_2_address = $10;

 seq_no =$11;

 packet_id = $12;

 if (node_1==2&&node_2==3&&type=="cbr"&&action=="r") {

 dif = seq_no - old_seq_no;

 if (dif == 0) {

 dif = 1;

 }

 jitter[i] = (time - old_time)/dif;

81

 seq[i] = seq_no;

 i = i + 1;

 old_seq_no = seq_no;

 old_time = time;

 }

}

END {

 for (j = 1; j < i ; j++) {

 printf ("%d\t%f\n",seq[j],jitter[j]);

}

}

82

APPENDIX V

BEGIN {

 init = 0;

 i = 0;

}

{

 action = $1;

 time = $2;

 node_1 = $3;

 node_2 = $4;

 type = $5;

 pktsize = $6;

 flow_id = $8;

 node_1_address = $9;

 node_2_address = $10;

 seq_no =$11;

 packet_id = $12;

 if (action=="r"&&node_1==2&&node_2==3&&flow_id=="2") {

 pkt_byte_sum[i+1]=pkt_byte_sum[i]+pktsize;

 if (init == 0) {

 start_time=time;

 init = 1;

}

83

end_time[i] = time;

i = i + 1;

}

}

END {

 printf ("%.2f\t%.2f\n",end_time[0],0);

 for (j = 1; j < i; j++){

 th = pkt_byte_sum[j]/(end_time[j] - start_time)*8/1000;

 printf("%.2f\t%.2f\n",end_time[j],th);

}

 printf("%.2f\t%.2f\n",end_time[i-1],0);

}

84

APPENDIX VI

BEGIN {

 fsDrops = 0;

 numFs = 0;

 }

{

 action = $1;

 time = $2;

 node_1 = $3;

 node_2 = $4;

 type = $5;

 flow_id = $8;

 node_1_address = $9;

 node_2_address = $10;

 seq_no =$11;

 packet_id = $12;

 if (node_1==1&&node_2==2&&action=="+")

 numFs++;

 if (flow_id == 2&&action == "d")

 fsDrops++;

}

END {

 printf ("number of packets sent:%d lost:%d\n",numFs,fsDrops); }

85

APPENDIX VII

#creat a new ns file

set ns [new Simulator]

#open a new nam file named out and save the process in it

set nf [open many.nam w]

$ns namtrace-all $nf

#open a tr file and save the process

set tf [open many.tr w]

$ns trace-all $tf

set windowVsTime [open win w]

set param [open parameters w]

#finish function

proc finish {} {

 global ns nf tf

 $ns flush-trace

 #close the file

 close $nf

 close $tf

 #show the nam file

 exec nam many.nam &

 exit 0

}

86

#set the nodes

set n0 [$ns node]

set n1 [$ns node]

#r - d bandwidth 1.7Mbps; delay:10ms; queue model:DropTail

$ns duplex-link $n0 $n1 0.7Mb 20ms DropTail

set NumSrc 5

set Duration 10

#set the other nodes

for {set j 1} {$j <= $NumSrc} {incr j} {

set S($j) [$ns node]}

#creat a random generator

set rng [new RNG]

$rng seed 0

set RVdly [new RandomVariable/Uniform]

$RVdly set min_ 1

$RVdly set max_ 5

$RVdly use-rng $rng

set RVstart [new RandomVariable/Uniform]

$RVstart set min_ 0

$RVstart set max_ 7

$RVstart use-rng $rng

87

#set random delay for the nodes

for {set i 1} {$i <= $NumSrc} {incr i} {

set dly($i) [expr [$RVdly value]]

set startT($i) [expr [$RVstart value]]

puts $param "dly($i) $dly($i) ms"

puts $param "startT($i) $startT($i) sec"}

for {set j 1} {$j <= $NumSrc} {incr j} {

$ns duplex-link $S($j) $n1 10Mb $dly($j)ms DropTail

$ns queue-limit $S($j) $n1 100}

#observe the queue change between r - d

$ns duplex-link-op $n1 $n0 queuePos 0.5

$ns queue-limit $n1 $n0 10

#set tcp source

for {set j 1} {$j <= $NumSrc} {incr j} {

set tcp_src($j) [new Agent/TCP/Reno]}

#set tcp destination

for {set j 1} {$j <= $NumSrc} {incr j} {

set tcp_snk($j) [new Agent/TCPSink]}

#the beginning of tcp is S($i)

for {set j 1} {$j <= $NumSrc} {incr j} {

$ns attach-agent $S($j) $tcp_src($j)

$ns attach-agent $n0 $tcp_snk($j)

88

$ns connect $tcp_src($j) $tcp_snk($j)}

#establish FTP on tcp

for {set j 1} {$j <= $NumSrc} {incr j} {

set ftp($j) [$tcp_src($j) attach-source FTP]}

for {set j 1} {$j <= $NumSrc} {incr j} {

$tcp_src($j) set packetSize_ 552}

for {set i 1} {$i <= $NumSrc} {incr i} {

$ns at $startT($i) "$ftp($i) start"

$ns at $Duration "$ftp($i) stop"}

#call the finish function

$ns at [expr $Duration] "finish"

#run it

$ns run

89

APPENDIX VIII

#creat a new ns file

set ns [new Simulator]

#open a new nam file named out and save the process

set nf [open uni.nam w]

$ns namtrace-all $nf

#open a tr file to save the process

set tf [open uni.tr w]

$ns trace-all $tf

#finish function

proc finish {} {

 global ns nf tf

 $ns flush-trace

 #close the file

 close $nf

 close $tf

 #show the nam file

 exec nam uni.nam &

 exit 0

}

$ns color 1 blue

$ns color 2 red

90

$ns rtproto DV

set node 5

#set the nodes

for {set j 0} {$j <= $node} {incr j} {

set S($j) [$ns node]}

$ns duplex-link $S(0) $S(1) 0.3Mb 10ms DropTail

$ns duplex-link $S(1) $S(2) 0.3Mb 10ms DropTail

$ns duplex-link $S(2) $S(3) 0.3Mb 10ms DropTail

$ns duplex-link $S(1) $S(4) 0.3Mb 10ms DropTail

$ns duplex-link $S(3) $S(5) 0.5Mb 10ms DropTail

$ns duplex-link $S(4) $S(5) 0.5Mb 10ms DropTail

set tcp [new Agent/TCP/Newreno]

$ns attach-agent $S(0) $tcp

set sink [new Agent/TCPSink/DelAck]

$ns attach-agent $S(5) $sink

$ns connect $tcp $sink

$tcp set fid_ 1

set ftp [new Application/FTP]

$ftp attach-agent $tcp

$ftp set type FTP

$ns rtmodel-at 1.0 down $S(1) $S(4)

$ns rtmodel-at 3.0 up $S(1) $S(4)

91

$ns at 0.1 "$ftp start"

#call the finish function

$ns at 5.0 "finish"

#run it

$ns run

92

APPENDIX IX

#set the parameters for the wireless channel

set val(chan) Channel/WirelessChannel ;# channel type

set val(prop) Propagation/TwoRayGround ;# radio-propagation model

set val(ant) Antenna/OmniAntenna ;# Antenna type

set val(ll) LL ;# Link layer type

set val(ifq) Queue/DropTail/PriQueue ;# Interface queue type

set val(ifqlen) 50 ;# max packet in ifq

set val(netif) Phy/WirelessPhy ;# network interface type

set val(mac) Mac/802_11 ;# MAC type

set val(rp) DSDV ;# ad-hoc routing protocol

set val(nn) 2 ;# number of mobilenodes

set ns_ [new Simulator]

set nd [open out1.tr w]

$ns_ trace-all $nd

set nf [open out1.nam w]

$ns_ namtrace-all-wireless $nf 100 100

#define the finish function

proc finish {} {

global ns nf nd

$ns_ flush-trace

close $nf

close $nd

exec nam out1.nam &

exit 0

93

}

set topo [new Topography]

$topo load_flatgrid 100 100

create-god $val(nn)

Configure nodes

$ns_ node-config -adhocRouting $val(rp) \

 -llType $val(ll) \

 -macType $val(mac) \

 -ifqType $val(ifq) \

 -ifqLen $val(ifqlen) \

 -antType $val(ant) \

 -propType $val(prop) \

 -phyType $val(netif) \

 -topoInstance $topo \

 -channelType $val(chan) \

 -agentTrace ON \

 -routerTrace ON \

 -macTrace OFF \

 -movementTrace OFF

Provide initial (X,Y, for now Z=0) co-ordinates for node_(0) and node_(1)

for {set i 0} {$i < $val(nn) } {incr i} {

 set node_($i) [$ns_ node]

 $node_($i) random-motion 0 ;# disable random motion

 }

94

$node_(0) set X_ 5.0

$node_(0) set Y_ 2.0

$node_(0) set Z_ 0.0

$node_(1) set X_ 90.0

$node_(1) set Y_ 85.0

$node_(1) set Z_ 0.0

Node_(1) starts to move towards node_(0)

$ns_ at 50.0 "$node_(1) setdest 25.0 20.0 15.0"

$ns_ at 10.0 "$node_(0) setdest 20.0 18.0 1.0"

Node_(1) then starts to move away from node_(0)

$ns_ at 100.0 "$node_(1) setdest 49.0 48.0 15.0"

TCP connections between node_(0) and node_(1)

set tcp [new Agent/TCP]

$tcp set class_ 2

set sink [new Agent/TCPSink]

$ns_ attach-agent $node_(0) $tcp

$ns_ attach-agent $node_(1) $sink

$ns_ connect $tcp $sink

set ftp [new Application/FTP]

$ftp attach-agent $tcp

$ns_ at 10.0 "$ftp start"

Tell nodes when the simulation ends

for {set i 0} {$i < $val(nn) } {incr i} {

95

 $ns_ at 150.0 "$node_($i) reset";

}

$ns_ at 150.0001 "stop"

$ns_ at 150.0002 "puts \"NS EXITING...\" ; $ns_ halt"

#stop function

proc stop {} {

 global ns_ nf nd

 $ns_ flush-trace

 close $nf

 close $nd

 exec nam out1.nam &

 exit 0

}

puts "Starting Simulation..."

$ns_ run

96

APPENDIX X

Define options

set opt(chan) Channel/WirelessChannel

set opt(prop) Propagation/FreeSpace

set opt(netif) Phy/WirelessPhy

set opt(mac) Mac/Simple

set opt(ifq) Queue/DropTail/PriQueue

set opt(ll) LL

set opt(ant) Antenna/OmniAntenna

set opt(x) 500 ;# X dimension of the topography

set opt(y) 500 ;# Y dimension of the topography

set opt(ifqlen) 100 ;# max packet in ifq

set opt(seed) 0.0

set opt(tr) Simple.tr ;# trace file

set opt(nm) Simple.nam ;#nam file

set opt(adhocRouting) AODV ;#Routing table

set opt(nn) 27 ;# how many nodes are simulated

set opt(stop) 500 ;# simulation time

set the source file path

set opt(mobility) "/home/simulation/simulation_files/mobility080303.txt"

set opt(location) "/home/simulation/simulation_files/NodesPosition"

set opt(mnode) "/home/simulation/simulation_files/mobile_node.txt"

set opt(CommRange) "/home/simulation/simulation_files/CommRange.txt"

set ns_ [new Simulator]; # Intialize simulator

$ns_ use-scheduler RealTime; # Real time schedular

97

set wtopo [new Topography]

create trace object for ns and nam

set tracefd [open $opt(tr) w]

$wtopo load_flatgrid $opt(x) $opt(y)

set namtrace [open $opt(nm) w]

$ns_ trace-all $tracefd

set tracefd [open $opt(tr) w]

$ns_ namtrace-all-wireless $namtrace $opt(x) $opt(y)

$ns_ use-newtrace

set god_ [create-god $opt(nn)]

set chan_1_ [new $opt(chan)]

Configure nodes

$ns_ node-config -adhocRouting $opt(adhocRouting) \

 -llType $opt(ll) \

 -macType $opt(mac) \

 -ifqType $opt(ifq) \

 -ifqLen $opt(ifqlen) \

 -antType $opt(ant) \

 -propType $opt(prop) \

 -phyType $opt(netif) \

 -channel $chan_1_ \

 -energyModel "EnergyModel" \

 -initialEnergy 100 \

 -rxPower 0.3 \

 -txPower 0.3 \

 -topoInstance $wtopo \

 -agentTrace ON\

98

 -routerTrace ON\

 -macTrace OFF

#set the communication range

$opt(netif) set RXThresh_ 1.20174e-09

set nn1 [expr $opt(nn)]

for {set i 0} {$i < $nn1} {incr i} {

 set node_($i) [$ns_ node]

#disable random motion

 $node_($i) random-motion 0

}

set n 0;

#read from the source file which has been defined

source $opt(location)

source $opt(mnode)

$node_(25) color "red"

$node_(25) shape "box"

$node_(25) set X_ 300.0

$node_(25) set Y_ 100.0

$node_(25) set Z_ 0.0

set c 22200

99

for {set i 25} {$i < 27} {incr i 1} {

Create a TCPTap Agent

set tap($i) [new Agent/Tap];

set ipnet($i) [new Network/IP]; # Create a Network agent

$ipnet($i) open writeonly

$tap($i) network $ipnet($i); # Connect network agent to tap agent

$ns_ attach-agent $node_($i) $tap($i); # Attach agent to the node.

}

set k 0;

for {set i $i} {$i < [expr $opt(nn)+27]} {incr i 1} {

set p [expr $c+$k]

Configure the Entry point

set tap($i) [new Agent/Tap]; # Create the TCPTap Agen

set bpf($i) [new Network/Pcap/Live]; # Create the bpf

set dev [$bpf($i) open readonly eth0]

$bpf($i) filter "src 130.233.125.158 and src port $p"

$tap($i) network $bpf($i); # Connect bpf to TCPTap Agent

$ns_ attach-agent $node_($k) $tap($i); # Attach TCPTap Agent to the node

incr k;

}

source $opt(mobility)

source $opt(location)

100

for {set i 0} {$i < $opt(nn)} {incr i} {

 $ns_ initial_node_pos $node_($i) 20

}

Tell nodes when the simulation ends

for {set i 0} {$i < $opt(nn) } {incr i} {

 $ns_ at $opt(stop).000000001 "$node_($i) reset";

}

tell nam the simulation stop time

$ns_ at $opt(stop).000000001 "$ns_ halt"

"puts \"NS EXITING...\" ; $ns_ halt"

puts "Starting Simulation..."

$ns_ run

