Metadata, citation and similar papers at core.ac.uk

Provided by Osuva

UNIVERSITY OF VAASA
FACULTY OF TECHNOLOGY
TELECOMMUNICATIONS ENGINEERING

Xiang Chao

WIRELESS NETWORK STUDY AND ANALYSIS USING NS2 SIMUL ATOR

Master’s thesis for the degree of Master of Sciemcelechnology submitted for

inspection in Vaasa, Y4of May, 2008.

Supervisor D.Sc. (Tech.) Mohammed Salem Elmusrati

Instructor D.Sc. (Tech.) Mohammed Salem Elmusrati

https://core.ac.uk/display/197965585?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TABLE OF CONTENTS

ABBREVIATIONS AND SYMBOLS......coi i e A

AB S T R A T . e e e s 6
1. INTRODUCTION. .. .o e e e e e e e e e e e e 7
1.1. The History Of NS 2.o e e e e e e 7
1.2. Basic Operation Flow of USINg NS2....... ..o 8
1.3. AsSistant TOOIS IN NS2.......i i e e e e 9
1.3 L NAM e e 9
1.3.2. Trace File.....o e e e e e 10
1.3.3. Xgraph and Gnuplot.........coo i 14

2. INSTALLATION OF NS2......cciiiiiiiii 000018

2.1. Installation NS under Linux with Ns-allinone.................c.cooeie e, 19
2.2. Installation NS2 on Windows with Cygwin..............cvvemeeviieiennnnn. 21
2.2.1. Installation of Cygwinc.ooiiiiiiiiiiii i e 21

2.2.2. Installation of Ns-allinone under Cygwin...........ccovvveiiivnnnnns 23

3. BASIC CONCEPTS OF NS2... i e e e e e e 26

3.1. Two Languages Implemented NS2............ccooiiiiiiiiiici i e e e .26

3.2. OTCL Variable and Express Method. ... oo iiiiiiii i, 27

3.3. NS2 Structure and ModelS. ... 9.2

A NOAE. .. 30
3.4.1. Creating and Structure of Node.............cocoiiiiiiiiiiiie e e 30
3.4.2. The Node Configuration............o.eveiieiii e e e 31

G I G o = o | PP 1
4. SIMULATIONS . . e e e e e e e aeas 35
4.1. Simulation of TCP ProtoCol............ocuomme i e 35

4.1.1. Description of TCP......c.ovviiiiii i e i e a0, 3D
4.1.2. Tracing and Analysis with Examples...........c.ccoooiii i, 36
4.2. Simulation Of ROULEN LaYEr.......o.vie it iiicemee e e e ene e e 42
4.3. Simulation of Wireless Network.............oovvieiii i ceeees 44
4.3.1. The Routing Protocol Algorithm...................ccco i vveienneen 45
4.3.2. Simulation of A Mobile Example.............coooo i, 48
O, EMU L AT ION S . .. e e e e e e e 51
5.1. Introduction Of NSE... ... e 51
5.2. Integration NS2 with Other Simulation Packages...................ccceuneee. 55
5.2.1. One Example of Integration..............cccceviiiiiiiii i D5
5.3. Architecture of Integration................coooiiiiiiiiiii i i e v ee e DT
5.4. Related ProtoCol...o e 61
5.4.1. Add New Route Protocol InNS2..............cccoovvviiiiiiievnnnnn 61
5.5. RESUIt ANAIYSIS ... vviieie i e a0 .03
6. LIMITATIONS OF NS2... .. i et ee e eneee ... OO
7. CONCLUSIONS . .. e e e e e e e e 69
BIBLIOGRAPHIES e e e e e e e e e ee e 70

ABBREVIATIONS AND SYMBOLS

AODV
AP
ARP
ARQ
CBR
CONSER
DARPA
DSDV
DSR
ECN
FTP
HUT
ICSI
ICIR
IS|
LBL
LMNR
MAC
MANET
NAM
NS2
NSE
OTCL
PARC
RED
RERR

Ad-hoc On-demand Distance Vector
Application Programming Interface
Address Resolution Protocol
Automatic Repeat-Request

Constant Bit Rate

Collaborative Simulation for Education ares&arch

Defense Advanced Research Projects Agency

Destination-Sequenced Distance Vector
Dynamic Source Routing

Explicit Congestion Notification

File Transfer Protocol

Helsinki University of Technology
International Computer Science Institute
ICSI Networking Group

Information Sciences Institute

Lawrence Berkeley National Laboratory
Local Multiple Next Hop Routing Protocol
Media Access Control

Mobile Ad-hoc Network

Network Animator

Network Simulation Version 2

Network Simulation Emulation

Object Oriented Extension of TCL

Palo Alto Research Center

Random Early Detection

Route Error

RREP
RREQ
SAMAN
TCL
TCLCL
TCP
TEG
TORA/IMPE
UDP
UMTS
usc
UWB
VBR
VINT
WINCS

WSN

SYMBOLS
P

Pr

Gt

G

hy

hr

A

Route Reply

Route Request

Simulation Augmented by Measurement and Asislyor Network

Tool Command Language

TCL with Classes

Transmission Control Protocol
Telecommunication Engineering Group
Temporally-Ordered Routing Algorithm
User Datagram Protocol

Universal Mobile Telecommunications System
University of South Carolina
Ultra-Wideband

Variable Bit Rate

Virtual Inter Network Testbed

Wireless Networked Control System

Wireless Sensor Network

Transmission Power
Received Power
Transmission Antenna Gain
Received Antenna Gain
Transmission Antenna Height
Received Antenna Height
Wavelength

Distance

System Loss

Lognormal Distribution

UNIVERSITY OF VAASA

Faculty of technology

Author: Xiang Chao

Topic of the Thesis: Wireless Network Study and Analysis using NS2
Simulator

Supervisor: Mohammed Salem Elmusrati

Instructor: Mohammed Salem Elmusrati

Degree: Master of Science in Technology

Department: Department of Computer Science

Degree Program Degree Program in Information Technology

Major of Subject: Telecommunication Engineering

Year of Entering the University: 2006

Year of Completing the Thesis: 2008 Pages: 100

ABSTRACT:

NS2 (Network Simulation version 2) is a well-knogneric network simulator. Unlike
other expensive simulation software, it is free &#aded on open source. It is widely
used to simulate and emulate communication netwdfkisthermore, it has a rich
library of network and protocol objects, which abhanvolve most of the aspects of
network technology. This makes NS2 the most faderabmulation software which is
widely used in academic research. On the other,htwedresults of the simulation are
validated by many research centers. For this reasany published articles about
network technology show their results by using NBRulation. Additionally, act an
excellent instruction tool NS2 is widely utilized €ducation. Nowadays, NS2 becomes
more and more popular in scientific research andtabn.

Nevertheless, NS2 is quite difficult to handle Bheginner. Some reasons are: the
content of NS2 is very huge; the official NS manisaiot updated regularly and a lot of
relative knowledge and tools are involved to opeN$2 efficiently.

NS2 will be one of the main tools in the researctivdies of the Telecommunication
Engineering Group (TEG). Hence, the main targdahisf thesis is to study NS2 deeply
and to show how to construct an emulation envirarinbg using NS2 and MATLAB.
Different simulators are given to demonstrate howroceed with NS2. This thesis will
be one reference for TEG researches for the apiplnsaof NS2.

KEYWORDS: NS2, Simulation, Integration, Emulation

1. INTRODUCTION

NS (version 2) is a discrete event simulator fagabm network research. NS2 provides
substantial support for simulation of Transmiss@tntrol Protocol (TCP), routing, and
multicast protocols over wired and wireless (loaatl satellite) networks. It can also
implement such behaviors like File Transfer ProtdEd@ P), Telnet, Web, Constant Bit
Rate (CBR) and Variable Bit Rate (VBR), router gei@anagement mechanism such as
Drop Tail, Random Early Detection (RED) and Class&] Queuein¢CBQ), routing
algorithms such as Dijkstra, and more (Chung & @t} A 2003). The multicasting
and some of the Media Access Control (MAC) layert@eols can also be simulated by

NS2.

1.1. The History of NS2

NS development began in 1989 as a variant of th&lR&etwork simulator. By 1995,
NS has been supported by the Defense Advanced iRbdewjects Agency (DARPA),
the Virtual Inter Network Testbed (VINT) project dawrence Berkeley National
Laboratory (LBL), Palo Alto Research Center (PAR®iversity of California,

Berkeley (UCB), and the Information Sciences Institof the University of Southern

California (USC/ISI) (NS2 wikipedia 2008).

NS is now developed in collaboration between a remdj different researchers and
institutes, including Simulation Augmented by Measoent and Analysis for Network
(SAMAN), Collaborative Simulation for Education afksearch (CONSER), and the
ICSI Networking Group (ICIR). Long-running contritiens have also come from Sun
Microsystems and the UCB Daedelus and Carnegie oMelniversity’'s Monarch

projects, cited by the NS homepage for wirelese@attlitions. (NS2 wikipedia 2008.)

The latest version of NS2 is ns-2.33. For docunigmabn recent changes, see the NS

Change History (Information Sciences Institute B&0

The development of thé®3Generation of NS has begun development on JuR0Q6
and will take four years (NS2 wikipedia 2008).

1.2. Basic Operation Flow of Using NS2

NS2 is an Object-oriented Tool Command LanguageQQTscript interpreter that has
a simulation event scheduler, network componengéathjbraries and network setup
(plumbing) module libraries (actually, plumbing nubes are implemented as member
functions of the base simulator object) as showhkigure 1.1. (Chung & Claypool A

2003).

é OTCL: TCL interpreter with OO Q
= > . —_—
oTeL extension _

Simulation Analysis
Script)]
.) NS simulator Library results
Simulation _ . N
¢ Event Scheduler Objects Trace File 2)"—'0
. Network Component Objects NAM
. Network Setup Helping Network
Modules (Plumbing Modules) Animator

Figure 1.1: Simplified flow chart of using NS2 (Chung & Clayd@2003.)

To use NS, the first step is to edit the progran©iRCL script language. In order to
setup and run a simulation network, a user shouiigd\&n OTCL script that initiates an

event scheduler, sets up the network topology liyguthe network objects and the

plumbing functions in the library, and tells traffsources when to start and stop
transmitting packets through the event schedulae rm "plumbing" is used for a
network setup, because setting up a network is Iplugnpossible data paths among
network objects by setting the "neighbor" pointéran object to the address of an
appropriate object. When a user wants to make ametwork object, he or she can
easily make an object either by writing a new objacby making a compound object
from the object library, and plumb the data patiodlgh the object (Chung & Claypool
A 2003). This sounds like a complicated job, bt plumbing OTCL modules actually

make the job very easy. The power of NS comes ftosplumbing.

After the NS2 is running, a trace file is generatedomatically, which contains the
entire event schedule during the simulation. Thedrfile makes the result analysis of
the simulation possible and the user can obsememiire communication process via

the special tool called Network Animator (NAM).

The format of the trace file and the method to yreit will be introduced later.

1.3. Assistant Tools in NS2

1.3.1. NAM

NAM began at Lawrence Berkeley National LaboratdtyBL). It has evolved
vigorously over the past few years. The NAM develept effort was an ongoing
collaboration with the Virtual Inter Network Testb€VINT) project. Currently, it is
being developed at Information Sciences Institut®)(as part of the Simulation
Augmented by Measurement and Analysis for Netw@RNIAN) and Collaborative
Simulation for Education and Research (CONSER)gatsj (Buchheim 2002).

10

NAM is a Tool Command Language (TCL) based aninmatawl! for viewing network
simulation traces and real world packet trace (Beah 2002). The first step to use
NAM is to produce the trace file. The trace fileogld contain topology information,
e.g., nodes, links, as well as packet traces. Usuhe trace file is generated by NS2.
During an NS simulation, a user can produce topol@gnfigurations, layout

information, and packet traces using tracing evenk$S.

When the trace file is generated, it is ready toahanated by NAM. Upon startup,

NAM will read the trace file, create topology, pop a window, do layout if necessary,
and then pause at the time of the first packehénttace file. Through its user interface,
NAM provides control over many aspects of animati@uchheim 2002).

More information about NAM will be given later.

1.3.2. Trace File

The trace file format depends on the simulated odtwhether it is wired or wireless

as explained next.

¢ Wired Case

After the simulation a trace file will be createmrecord the process of all the events

during the simulation. The wired network trace fikually looks like Table 1:

11

Table 1: Model of trace file

state| time |From|To |type | size | flag | fid | STC |Dst | Seq |iqg
node | node addr | addr | num

+ 1.95977' | 2 3 tcp | 104Q ------- 1 0.0 | 3.0 | 63 379
1.95992

r . 2 0 ack | 40 | ------ 1 3.0 | 0.0 | 54 374
1.95992

+ c 0 2 tcp | 104Q ------- 1 0.0 | 3.0 | 64 382
1.95992

- . 0 2 tcp | 104Q ------- 1 0.0 | 3.0 | 64 382

r 1.962 1 2 cbr| 1000------- 2 1.0 | 3.1 | 231| 380

+ 1.962 2 3 cbr| 1000------- 2 1.0 | 3.1 | 231| 380

d 1.962 2 3 cbr| 1000------- 2 1.0 | 3.1 | 231| 380

Now there are 7 trace entries in Table 1. It isuctbat there are three enque operations
mean join into the waiting queue list (indicated“wy in the first column), one deque
operations which mean leave from the waiting qudig¢ (indicated by *“-”), two
receive events (indicated by “r”), and one dropré\({endicated by “d”) (this had better

be a trace fragment, or some packets would havegqusshed!).

The simulated time (in seconds) at which each eweantirred is listed in the second
column. The third and fourth columns indicate betwevhich two nodes the tracing
happens. The fifth field is a descriptive nametfer type of packet. The sixth field is

the packet’s size, encoded in its IP header.

Characters from the seventh to the tenth fieldesgmt special flag bits which may be
enabled. Presently only one such bit exists (expdiengestion notification, or ECN)

(Harding 2005). In this example, Explicit Congestidotification (ECN) is not used.

12

The next field gives the IP flow identifier fields alefined for IP version 6.1. The two
subsequent fields indicate the packet's source dedtination node addresses,
respectively. The following field indicates the segce number. The last field is a
unique packet identifier. Each new packet createtheé simulation is assigned for a

new, unique identifier.

For the first recode:

+ 1.959779 2 3 tcp | 104Q ------- 1 00 | 3.0 | 63 | 379

It means it is a TCP packet whose size is 1040shyteliver from node 2 to node 3 at
time 1.959779(s). The TCP connection in this caseoited as field 1. The other data
present that: the source address of the packed isnal the direction address of it is 3.0.
The sequence number of the packet is 63 and thieepdid of it is 379. They are

important data to analyze the simulation as wetbatemo on NAM file.

+ Wireless Case

In wireless case, the trace files have some diftei@@mats, the specific explain can be
found in “~ns/trace/cmu-trace.cc”, the instancevamdelow is an Ad-hoc On-demand

Distance Vector (AODV) case:

s -t 0.001529932 -Hs 26 -Hd -2 -Ni 26 -Nx 585.08y-860.45 -Nz 0.00 -Ne
200.000000 -NI RTR -Nw --- -Ma 0 -Md 0 -Ms 0 -Mt-B 26.255 -Id -1.255 -It IMEP
-1144 -1f 0 -1i O -lv 1 -P aodvt -Pt 0x1 -Ph 1 - -Pds 2 -PI 4.000000 -Pc HELLO

r -t 0.003927946 -Hs 1 -Hd -2 -Ni 1 -Nx 400.00 -R§0.00 -Nz 0.00 -Ne 199.999842
-NI RTR -Nw --- -Ma 0 -Md 6000000 -Ms ffff0008 -M2 -Is 6.255 -Id -1.255 -It IMEP
-1144 -If 0 -1i O -lv 1 -P aodvt -Pt 0x1 -Ph 1 -Rd-Pds 2 -PI 4.000000 -Pc HELLO

13

(1) Event type: in the previous example, the fillsd means the event type. There are

four styles: s (send), r (receive), d (drop), fard).

(2) General flag: the second field is begun witf}, ‘imeans the time of the event.

(3) Next hop information: this filed presents théormation of the next hop, leaded by

“-H": -Hs (Hop source Node ID), -Hd (Hop destinatidlode ID).

(4) Node Property: this field denotes the Propsrtethe nodes, such as the node ID,
trace level, leaded by “-N”. —Ni (Node ID), -Nx, yN-Nz (Node Coordinates), -Ne
(Node Energy Level), -NI (Network trace Level: AGRTR, MAC, etc.), -Nw (drop

reason).

(5) IP Level Packet Information: leaded by “-I"s-{source address, source port num),
-Id (destination address, dest port number), dicket type), -If (flow ID), -li (unique
ID), -Iv (TTL value).

(6)MAC Level Packet Information: leaded by “-M”. @A(duration), -Md (Destination
Ethernet Address), -Ms (Source Ethernet Addreb&)(Ethernet Type).

(7) Packet Specific Information: presents the typlethe route protocol type. In AODV
case this field is leaded by “-P aodv”. -Pt (typé?h(Hop Count), -Pb (Broadcast
ID),-Pd (Destination) -Pds (Destination Sequencenbler), -Ps (Source), -Pss (Source
Sequence Number), -Pl (Lifetime), -Pc (OperatiorEQRIEST, REPLY, ERROR,
HELLO).

There are many different types of trace files ie fhractical case such as: Address
Resolution Protocol (ARP), CBR, TCP. The main ddfece of these trace file is in the
field of “-P”. (Harding 2005.)

14

1.3.3. Xgraph and Gnuplot

Xgraph and Gnuplot are two plotter tools of NS2duse show the results of the

simulations.

Xgraph is a general purpose x-y data plotter, theration of which is using the first
column as the X-axis data, and Y-axis is decidedhaysecond column then plot the

graph. It will be discussed in more details in Gbagd.

Gnuplot is one kind of command-driven interactivadtion plotting program. It is a
program with a fairly long history, dating back1®86 (Gnuplot 2008). Its function is to
generate two or three-dimensional plots of datachvis utilized to analyze the data and

functions.
Nowadays, Gnupolt is widely used on UNIX, Linux aWdndows platform. The
operation methods are almost similar on differelaitfprms. Below the paper will

introduce some simple examples of how to apply Gtup Linux.

Run the command Gnuplot, shown as the Figure 1.2.

15

File Edit wiew Terminal Tabs Help
xiang@xiang-desktop:~% gnuplot

GNUPLOT

Version 4.0 patchlewvel @

last modified Thu Apr 15 14:44:22 CEST 2004
System: Linux 2.6.17-12-generic

Copyright (C) 1986 - 1993, 1998, 2004
Thomas Williams, Colin Kelley and many others

This is gnuplot version 4.0. Please refer to the documentation
Tor command syntax changes. The old syntax will be accepted
throughout the 4.0 series, but all sawve Tiles use the new syntax.

Type "help® to access the on-line reference manual.
The gnuplot FAQ is awvailable fTrom
http://www.gnuplot.info/Taqg/

Send comments and requests Tor help to
=gnuplot-inTo@lists.sourcetorge.net>

send bugs, suggestions and mods to
<=gnuplot-bugs@lists.sourceforge.net>

Terminal type set to "x11°
gnuplot>]

Figure 1.2: Interface of Gnupolt.

Type “plot sin(x)”, then obtain the graph show las Figure 1.3.

.

VAVAV

Z.==977. 1.0=F0o0

o o o ¢
f P f

| + ¥ ¥
B @ & N OO N B D O K

1o

Figure 1.3:sin(x) plot in Gnupolt

To set the interval of x-axis, one can use the canun gnuplot>set xtics -10,1,10;
gnuplot>plot sin(x). It means marking on x-axisnrce10 to 10 and the unit of the

marking is 1. It is the same method to reset y-axis

16

Sieisiciieas e o= s

Figure 1.4: Reset the interval of x-axis

————— —=

The command “set grid” and “unset grid” used tometancel the grid in the x-y plane.

N & ul] [

o o o o

=]
—o.2
—o. 4
—o.6

—o.g .. : oMo G0 o offo oo oienooionoka

—10 -9 —= — —=
5.45456. 1.0227%

Figure 1.5: Set grid of the plot

Sometimes logarithms are necessary to analyzesthuts. The command of setting the
coordinates system transformation is: set logscales> <base> (axes can be x,y,z or

combination of them; default base is 10).

For some complicated case, a substituted softweaeeGraph is recommended. It is
easy to operate and analyze the trace file redufit like the NS2, it is also a free
software to the public, which can be obtained forme official website

http://140.116.72.80/~smallko/ns2/setup.l{tte 2004). The TraceGraph can run under

Windows, Linux, UNIX and MAC OS systems. It can ®wnloaded from

http://www.tracegraph.com(Malek 2007).

17

Although the TraceGraph can help user to analyeettire trace file based on different
network types, for the beginners using AWK to amalirace files is recommend. AWK
is a programming language that gets its name flrBtpeople who invented it (Aho,
Weinberger, and Kernighan). The users can learnentechnology about the data

analysis via using AWK program.

18

2. INSTALLATION OF NS2

The Network Simulator (NS-2) is developed for saledinds of UNIX (FreeBSD,
Linux, SunOS and Solaris), so it is smoothest wimstalled on the UNIX platform
(Information Sciences Institute A 2006). NS alsa ba built and run under Windows.
Normal scenarios should run on any ordinary magltboe very large scenarios benefit

from large amounts of memory size (e.g. 1GB) (Imfation Sciences Institute A 2006).

Several available packets support the Simulatach sas: Tool Command Language
(TCL/TK), Object Oriented Extension of TCL (OTCO)CL with Classes (TCLCL) and
so on. TK is an open source, cross-platform widgetkit, that is, a library of basic
elements for building a graphical user interfadac& the components depend on each
other, they should be built in the listed ordereTdoftware packets of the NS2 also

conclude some relative tools: NAM and Xgraph.

There are two kinds of ways to install it: one wayunpacking the pieces packets in
proper order and then install them manually; theptvay is getting everything at once
by the allinone installation packet. The latesttatiation method is recommended,
because of its convenience for beginners. If thauabway is necessary, the website
below can be referenced:

http://www.isi.edu/nsnam/ns/ns-build.html#pieces

In this chapter the installation of the allinonedanboth Linux and Windows will be
introduced in details. The latest version of the2N6r Linux is 2.32, and 2.29 for

Windows.

19

2.1. Installation under Linux with Ns-allinone

1. Download the ns-allinone-2.32.tar.gz from:

http://www.isi.edu/nsnam/ns/ns-build.html#allinone

2. Assume current directory is /home/nsuser/

3. Use the tar command to decompress the file: tafr xz2allinone- 2.32.tar.gz

4. Change the current directory as ns-allinone-2.8z1szallinone-2.32.

5. Run command: ./install

The NS system will be installed automatically. Aftiee successful installation, it shows

the following output (as Figure 2.1):

20

Ns-allinone package has been installed successfully.
Here are the installation places:

tc18.4.15: /home/wlan/NS2/NS/ns-allinone-2.32/{bin,include,1ib}
tk8.4.15: /home/wlan/NS2/NS/ns-allinone-2.32/{bin,include, lib}
otcl: /home/wlan/NS2/NS/ns-allinone-2.32/0tcl-1.13

tclel: /home/wlan/NS2/NS/ns-allinone-2.32/tclcl-1.19

ns: /home/wlan/NS2/NS/ns-allinone-2.32/ns-2.32/ns

xgraph: /home/wlan/NS2/NS/ns-allinone-2.32/xgraph-12.1
gt-itm: /home/wlan/NS2/NS/ns-allinone-2.32/itm, edriver, sgb2alt, sgb2ns, sgb2comns, sgb2hierns

Please put /home/wlan/NS2/NS/ns-allinone-2.32/bin:/home/wlan/NS2/NS/ns-allinone-2.32/tcl18.4.15/unix:/home/
5/unix
into your PATH environment; so that you'll be able to run itm/tclsh/wish/xgraph.

IMPORTANT NOTICES:

(1) You MUST put /home/wlan/NS2/NS/ns-allinone-2.32/0tcl-1.13, /home/wlan/NS2/NS/ns-allinone-2.32/1ib,
into your LD_LIBRARY_PATH environment variable.
If it complains about X libraries, add path to your X libraries
into LD_LIBRARY_PATH.
If you are using csh, you can set it like:
setenv LD_LIBRARY_PATH <paths>
If you are using sh, you can set it like:
export LD_LIBRARY_PATH=<paths>

S

You MUST put /home/wlan/NS2/NS/ns-allinone-2.32/tcl18.4.15/1ibrary inte your TCL_LIBRARY environmental
variable. Otherwise ns/nam will complain during startup.

After these steps, you can now run the ns validation suite with
cd ns-2.32; ./validate

For trouble shooting, please first read ns problems page
http://www.1si.edu/nsnam/ns/ns-problems.html. Also search the ns mailing list archive
for related posts.

wlan@linux-hlrg:~/NS2/NS/ns-allinone-2.32> |

Figure 2.1: Reset the parameters after the successful irsalla

In Figure 2.1., NS reminds user to set 3 parameR&EH, LD _LIBRARY_PATH and
TCL_LIBRARY. The command below should be addedh® .bashrc file:

#export NS_HOME=/home/wlan/NS2/ns-allinone-2.32/

#export PATH=$NS HOME/tcl8.4.5/unix:$NS_HOME/tk&Anix:$NS_HOME/bin:
$PATH

#export LD_LIBRARY_PATH=$NS HOME/tcl8.4.5/unix:3NSOME/tk8.4.5/unix:\
#$NS_HOME/otcl-1.8:3NS_HOME/lib:$LD_LIBRARY_PATH

#export TCL_LIBRARY=$NS_HOME/tcl8.4.5/library

6. Run ./validate to make sure whether the NS2 has ins¢alled correctly.

21

2.2 Installation NS2 on Windows with Cygwin

Cygwin is a Linux-like environment for Windows. d¢bnsists of two parts: (Cygwin

homepage 2008).

e A DLL (cygwinl.dll) which acts as a Linux Applicath Programming Interface

(API) emulation layer providing substantial LinuAfunctionality.

e A collection of tools which provide Linux lookingnd feeling.

The Cygwin DLL currently works with all recent, comercially released x86 32 bit and

64 bit versions of Windows, with the exception ofindbws CE. (Cygwin homepage

2008.)

2.2.1 Installation of Cygwin

1. Download Cygwin, from http://www.cygwin.condCygwin homepage 2008).

2. Select the bottom of “Install or update now”

3. Install from Internet, as the Figure 2.2.:

22

® Cygwin Setup — Choose Installation Type

Chooze A Download Source
Chonze whether to install or download from the internet, o install from files n
a local directary.

() install from Intemet
[downloaded files will be kept for future re-usef

() Download ‘wWithaout Installing

() Install from Local Directory

Figure 2.2: Interface of Cygwin installation

4. Install the Cygwin to the default directory: c:\evig

5. Select the method of network connection: Direct i@ation

6. Add some necessary package for the NS2: gcc, ge;-goc, g++, gawk, gzip,

make, patch, perl, w32api, tar, xorg-x1ll-base, xdfrbin, xorg-x11-bin-dlls,

xorg-x11-devel, xorg-x11-libs-data, xorg-x11-etspartup-scripts.

7. After the successful installation the new file “hefhwill be generated in the

current directory c:\cygwin.(Cygwin homepage 2008.)

More details about the Cygwin installation can loeinfd in (Information Sciences

Institute 2005).

23

2.2.2 Installation of Ns-allinone under Cygwin

N

The Visual C++ is necessary for installation NS2tlba Windows plat, so please

make sure which has been installed.

Download the ns-allinone-2.29.tar.gz to c:\cygworite\Administrator

http://www.isi.edu/nsnam/dist/ns-allinone-2.2%2dz/

Find the icon of cygwin on the Desktop and tyfae:xvfs ns-allinone-

2.29.tar.gz

Modify some settings after the decompression: (B@42.

® Modify the makefile.vc located in otcl-1.11: annet&TATIC_TCLTK=1.

® Modify the makefile.win located in tclcl-1.17:

The location of the file is:
C:\cygwin\home\Administrator\ns-allinone-2.29\elc1 7\conf\imakefile.win
Edit: MSVDIR=C:\Program Files\Microsoft Visual StiotvVC98 (the current
directory of VC++
LOCAL_SRC=C:\cygwin\home\Administrator\ns-allino@e29; annotate
STATIC_LIB=1

Reset the values: TK_VER=83TCL_VER = 83 TCL_SUFFIX = 8.4.11
TK_SUFFIX = 8.4.11, OTCL_DIR = $(LOCAL_SRC)\otcl-1.11,
TCLCL_DIR = $(LOCAL_SRC)\tclcl-1.17

Modify the file makefile.win in ns-2.29:

The location of the target file is:

24

C:\cygwin\home\Administrator\ns-allinone-2.29\ 229\confimakefile.win
Edit: MSVDIR=C:\Program Files\Microsoft Visual SietVC98 (the current
directory of VC++
LOCAL_SRC=C:\cygwin\home\Administrator\ns-allino@e29 , annotate
STATIC_LIB=1

Reset the values: TK_VER=83TCL_VER = 83 TCL_SUFFIX = 8.4.11
TK_SUFFIX = 8.4.11, OTCL DIR = $(LOCAL_SRC)\otcl-1.11
TCLCL_DIR = $(LOCAL_SRC)\tclcl-1.17. (Ke 2004.)

Replace .relid"as .relid’'in the below files to astaihe bug mentioned in the

link: http://ns-2.blogspot.com/2006/05/pr...2-adlive.html/

C:\cygwin\nome\Administrator\ns-allinone-2.29\tel8. 1\unixconfigure
C:\cygwin\home\Administrator\ns-allinone-2.29\te18 1\unix\tcl.m4
C:\cygwin\home\Administrator\ns-allinone-2.29\t¢&8 1\unix\configure
C:\cygwin\home\Administrator\ns-allinone-2.29\t8.1\unix\tcl.m4

C:\cygwin\home\Administrator\ns-allinone-2.29\efcll1\configure

5. Type cd ns-allinone-2.29 to change the currentctbrg to ns-allinone-2.29. Then

run

command:/install.

6. Finally, some path parameters should be addedetdbtkshrc file, which is just like

the final process of NS2 installation on the Lirplatform:

#export

#export

NS HOME=/home/wlan/NS2/ns-allinone-2.32/
PATH=3NS_HOME/tcl8.4.5/unix:$NS_HOME/tk&AINix:3NS_HOME/

bin:$PATH

#export

LD_LIBRARY_PATH=$NS_HOME/tcl8.4.5/unix:3NSOME/tk8.4.5/ unix:\

#$NS_HOME/otcl-1.8:$NS_HOME/lib:$LD_LIBRARY PATH

25

#export TCL_LIBRARY=$NS_HOME/tcl8.4.5/library

7. Run ./validate on the startxwin.bat whose address:\tygwin\usr\X11R6\bin to
make sure whether the NS2 has been installed ¢lyrr€he process will take some

time.

The information for installation different versiai ns-allinone can be seen in (Nilsson

1998: 56-61).

In windows, there are two possibilities to instdb2: using Cygwin and using VC++.
Using Cygwin will make the installation almost th@me as that for Linux; using VC++

is a variation and not recommended by the NS2 deweént group.

26

3. BASIC CONCEPTS OF NS2

3.1. Two Languages Implemented NS2

The programs in NS2 are briefly written in C++ @d@CL (TCL script language with
Object-oriented extensions). These two languagescannected with each other via
TCLCL class in NS2. Two relative classes realize fdrcility: one in C++; the other in
OTCL. Therefore, both two structures are containegdS (Xu, Pang & Zhao 2003: 45).
The main functions of the facilities are realized C++; Otcl mainly support the
interface faced to the user. To the C++ programmigject-oriented programming in
OTCL may feel unfamiliar at first. Here are sometloé differences to help to orient.

(OTCL Tutorial 1995.)

® Instead of a single class declaration in C++, wniteltiple definitions in OTCL.
Each method definition (with instproc) adds a mdtho a class. Each instance
variable definition (with set or via instvar in aethod body) adds an instance

variable to an object (OTCL Tutorial 1995).

® Instead of a constructor in C++, write an init prsc in OTCL. Instead of a
destructor in C++, write a destroy instproc in OT@TCL Tutorial 1995). Unlike
constructors and destructors, init and destroy otsthdo not combine with base

classes automatically. They should be combined@#plwith next.

® Unlike C++, OTCL methods are always called throtigd object. The name self,
which is equivalent to this in C++, may be useddeghe method bodies. Unlike

C++, OTCL methods are always virtual.

27

® Instead of calling shadowed methods by naming tethad explicitly as in C++,
call them with next. Next searches further up thbeeritance graph to find
shadowed methods automatically. It allows methamlsbé combined without

naming dependencies.

® Avoid using static methods and variables, sinceethe no exact analogue in
OTCL. Place shared variables on the class objettacess them from methods by
using $class. This behavior will then be inheritédr inherited methods on classes,
program with meta-classes. If inheritance is nadeel, use proc methods on the

class object. (OTCL Tutorial 1995.)

The basic model of NS2 implementation is shownigarg 3.1.:

O—

set ns_ [new Simulator]
TCL set node_(0) [$ns_ node]
set node_(1) [$ns_ node]

Simulation
Scenario

v

[} class MobileNode : public Node
C++

: {

Implementation
piementatio friend class PositionHandler;

public:

MobileNode();

Figure 3.1: Architecture of NS2 implementation (Wang 2004: 4.)

28

It is easy to read from Figure 3.1, that C++ isdhtr modify and adjust. However,
sometimes changing the model and re-run the progsamalso quite important.
Although TCL script is used to simulate varying graeters or configurations slightly,
which means it can avoid the drawback of C++ eaBllgybe it will take a longer time

to run the program sometimes.

For this reason, in NS the classes in C++ and il Rdve some relationship. Most
inheritance characters of the facilities belondgpdth sides. When an element is created
in Otcl, it will be automatically created in C++ @mtean time, in order to operate and

control each other easily.

3.2. OTCL Variable and Express Method

Add a symbol “$” in front of the name of variabkych as, $a, $b. All the separate
symbols in the function or program always are theycbrackets {}. Variable binding
with the command set, like: set $a 5. Time is dptias a real value, optionally
suffixed by a 'm' to express time in milli-seconds{o express time in nano-seconds, or
'p' to express time in pico-seconds. The defaufetis expressed in seconds. For
example: $object set timevar 1500e9p. Command [expiis utilized to obtain the

calculated value, [expr $a + $b]. Notice that thease brackets are necessary.

29

3.3.NS2 Structure and Models

|Reno| SACK

Figure 3.2: Classic hierarchy structure of NS2 (Xu, Pang &@Ba03: 17.)

From the hierarchy Figure 3.2, it can be seenTidt Object is the base class for most
of the other classes in the compiled hierarchibé&rd@ are two classes which can create
the NS Object according to the number of the outptérface: Connector (only one
output) and Classfier (more than one output). Il2 N8l the processes of the simulation
are defined and controlled by a TCL class calleduator, which offers a series ports

for the simulation running, including the port fevent scheduler”.

Relative TCL command: set ns [new Simulator]; #glggth a new simulation. $ns halt;
#stop the scheduler. $ns run; #begin the schedkrerat <time> <event>; #at <time>

do the <event>.

30

3.4. Node

A node is an important structure of the Topologythis section the methods of creating

and controlling nodes will be introduced.

3.4.1. Creating and Structure of Node

The Node itself is a standalone class in OTCL. Hegemost of the components of the
node are themselves TCLODbjects. In this way, théhateof creating a node is very
simple: call node directly in the class simulaldCL command: set ns [new Simulator]

$ns node

The typical structure of a unicast node is as shiovkigure 3.2.:

agents

Figure 3.2:the structure of the node (Fall & Varadhan 200042}

The structure of the node includes two TCL objestsich called address classifier and
port classifier. Both are used to determine theinigson address and the target agent of
each node. By default, nodes in NS are constructednicast simulations. In order to
enable a multicast simulation, the simulation stiobe created with an option

“-multicast on”, e.g.: set ns [new Simulator -medist on]. The structure of the multicast

31

node is shown in Figure 3.3.

Multicast

Node dmux
classifier_

Figure 3.3.:Internal Structure of a Multicast Node (Fall & Vdhan 2000: 41-42).

3.4.2. The Node Configuration

The attributes of the node should be defined befugenode is created. The attributes
include the channel type, propagation model, rguimotocol and decide whether

switch the trace function of each layer (Agent, Roand MAC).

set val(chan) Channel/WirelessChannel ;# channel type

set val(prop) Propagation/TwoRayGround ;# radio-propagation
model

setval(ant) Antenna/OmniAntenna ;# Antenna type

set val(ll) LL # Link layer type

set val(ifq) Queue/DropTail/PriQueue # Interface queue
type

set val(ifglen) 50 ;# max packet in ifq

set val(netif) Phy/WirelessPhy # network interface
type

set val(mac) Mac/802_11 # MAC type

32

set val(rp) AODV # ad-hoc routing
protocol

set val(nn) 2 H number of
mobilenodes

configure nodes

$ns_ node-config -adhocRouting $val(rp) \
-lIType $val(ll) \
-macType $val(mac) \
-ifqType $val(ifg) \
-ifgLen $val(ifglen) \
-antType $val(ant) \
-propType $val(prop) \
-phyType $val(netif) \
-topolnstance $topo \
-channelType $val(chan) \
-agentTrace ON\
-routerTrace ON \
-macTrace OFF \
-movementTrace OFF

3.5. Link

The method of creating a link between the nodes$is duplexlink nodel node2

bandwidth delay queuetype. (Chung & Claypool B 2P03

The purpose of the command is that two simplexsliok specified bandwidth and
delay, and connects the two specified nodes witireated. In NS, the output queue of a
node is implemented as a part of a link; theretmgers should specify the queuetype
when they create links. In the common simulatiosecd®ropTail queue is used. If the
reader wants to use a RED queue, this can be dprikebreplacement of the word
DropTail with RED. The NS implementation of a litkshown in a later section. Like a

node, a link is a compound object and users caatecrts sub objects and connect them

33

and the nodes. Link source codes can be found BR/teVlibs/nslib.tcl* and
"ns2/tcl/libs/ns link. tcl" files. One thing to rets that a user can insert error modules in
a link component to simulate a lossy link (actuallsers can make and insert any

network objects). Refer to the NS documentatiofinith out how to do this.

3.6 Agent

Agents represent endpoints where network-layer gitachkre constructed or consumed,
and are used in the implementation of protocolsabus layer. (Fall & Varadhan 2000:

71-75))

There are several agents supported in NS2. Naméneof can be seen in OTCL, now
list some main agents (Fall & Varadhan 2000: 71-75)

TCP: a"Tahoe” TCP sender (cwnd=1 on any loss)

TCP/FullTcp: a more full-functioned TCP with 2-wagffic

TCPSink: a Reno or Tahoe TCP receiver

UDP: a basic User Datagram Protocol (UDP) agent

Null: a degenerate agent that discards packetswisledidp agent

In the script, it is clear that the functiofset tcp [new Agent/TCP]”, “set
udp[newAgent/UDP]”,"setsink[newAgent/TCPSink] " “setnull

[new Agent/Null]” are used to create the new agent. The model afréation is
that: set <name> [new Agent/<agent name>]. Becals®yn as the example, there are
two packet flows: FTP and CBR, to separate themg tlifferent flow IDs are
necessary. The commands “$tcp set fid_ 17, “Suddide 2" are written for this task.

The ID of the TCP flow is set by 1, UDP 2. (FalMaradhan 2000: 71-75.)

34

After the agents have been created the next stép astach the nodes to the related
agent. In this case, the tcp packets flow from ngidéo node d, so sl is attached to Tcp
agent and node d is attached to TCP Sink by thev@md “$ns attach-agent $s1 $tcp”,
“$ns attach-agent $d $sink”. It means node d isfithed destination of the connection.
“$ns connect $tcp $sink” is used to establish th@PTconnection. For the UDP

connection it works similar.

Applications sit on top of transport agents in Nihey are hooked together and
communicate with one agent via the applicationsgrnmming interface (API).
Through API, applications request services fromuhderlying transport agents. FTP
and CBR are two most common application used in .NB# structure of the
application and the agent is shown as the figute The attach-agent method is used to
attach an application to an agent, as shown inctramon example: “set ftp [new

Application/FTP], $ftp attach-agent $tcp”.

Traffic generators Simulated application
A Y
: Application/ : : Application/FTP |
: Traffic/ | : :
: Exponential : : :
-) \)

I API I API
T T T T T T T DN >
: Agent/UDP || Agent/TCP/FullTcp |
| X :
' | |
' | |
' | 1
\o VRN /

g

Figure 3.4: Application and the agent (Fall & Varadhan 2000). 93

35

4. SIMULATIONS

In this chapter, we will introduce some simulatie@siemonstrate the main concepts of

NS2.

4.1. Simulation of TCP Protocol

TCP (transmission control protocol) is one of tleecprotocols of the internet protocol
suite, which is responsible for the transmissiorthie Internet traffic. Because of its
reliability and suitability for the applicationké file transfer and e-mail that sometimes
the entire suite is referred to as "the TCP/IPquolk suite." Although TCP protocol is

already widely developed, it continues to evolve.

In this chapter, the operation of TCP will be désexl at first. Then we present several

NS scripts to illustrate the analysis of TCP thioggnulations.

4.1.1. Description of TCP

TCP has several characters: TCP service is obtdigeooth the sender and receiver
creating end points. In TCP, the entire address fource is called socket. It is
organized hierarchically within a node. The usepmrcess ID of the socket is called a
port in TCP. The ID of port is included in the tsport header for both source and
destination, whereas the network and node IDs appdhe IP header. It is the reason
that all sessions will normally have the same sewed destination address in the IP
header and only can be distinguished in the trams$@ader if they are going from the
given source host and to a given destination HBstt¢sekas & Gallager 1992: 124).

Thus all sessions between the same pair of hostl t@uviewed as being multiplexed

36

together at the transport layer to a lower-layssim.

TCP provides reliable end-to-end transmission usstiging window Automatic
Repeat-Request (ARQ). TCP allows the destinatiatotdrol the flow of data from the
source host. This is implemented by a 16-bit fiedtled a window, which decides how

many bytes beyond the request number can be adcepte

4.1.2. Tracing and Analyze by Examples

The explaining of the main TCL script of the exaenf@ shown in detail as below (the

whole TCL script seen in APPENDIX

$ns duplex-link $s1 $r 2Mb 10ms DropTail
The purpose of the command is to set a duplexdetkveen node s1 and node r, with

2Mbps bandwidth and 10ms delay. The link selectgpDail as the queue model.

$ns duplex-link $s2 $r 2Mb 10ms DropTail
The previous command is used to connect node saahe r with a duplex link. The

bandwidth of the link is 2Mb, delay is 10ms andwgienodel is DropTalil.

$ns duplex-link $r $d 1.7Mb 20ms DropTail
The purpose of this command is similar to the parsiones. Connection between node
r and direction node with a 1.7Mbps bandwidth dugiek is required. The delay is

20ms and the queue model is DropTail.

$ns queue-limit $r $d 10

The number of the packets waiting in queue is &ohiio 10 packets.

37

set tcp [new Agent/TCP]

This command is used to set a TCP agent

$ns attach-agent $s1 $tcp

In this command, the agent TCP is attached to ¢tide 131.

set sink [new Agent/TCPSink]
$ns attach-agent $d $sink
These two commands’ functions are similar to thesipas two: set a sink agent and

attach it to the direction node.

$ns connect $tcp $sink

Now, connect the TCP agent to the sink agent.
$tcp set fid_ 1
In this command TCP agent is set as the first flbwwhich will be demonstrated in

blue.

set ftp [new Application/FTP]

This command is used to establish an FTP applicatio

$ftp attach-agent $tcp

Then attach the application FTP to the agent TCP.

The main function of the script has been noted exylained step by step. Notice the

follow scripts:

set tcp [new Agent/TCP]

38

set sink [new Agent/TCPSink]
$ns attach-agent $s1 $tcp
$ns attach-agent $d $sink

$ns connect $tcp $sink

The above code illustrates that in NS2, agentsfiasdy attached to a node via
attach-agent. After that, the applications shoudcbnnected to the transport agent.
After the TCL script is written, it has to be savfore it can be run with the command
“.Ins name.tcl”. The trace file can be created mnatiically as well as the NAM file

which is based on the trace file, shown as below:

|00 ainkdndndpasnsiaa e e o) B[]

File Views Analysis |nmefxiangfnsz.-"ns—z.32fexample.-"nut.na]|

.«|.*|..|;‘.»|‘ 1.405?4?‘|5‘EP=5_131-_“!“3

= [
@ ’

i

E @ =®

]

|IIIIIIIII|I|:EIII|IIIIIIIII|IIIIIIIII LT

Figure 4.1.: Trace animator interface of NAM

In the figure, the blue arrows mean the ftp packetsthe red ones are cbr packets. The
destination of the packets is the node 3. The biggeares are the loss packets and the

smaller ones located upper are indications thegiadk the waiting place.

39

To analyze the trace file efficiently, the AWK iggessary to be introduced. AWK is a
general purpose programming language that is dedipr processing text-based data,
either in files or data streams. The name AWK igveel from the family names of its
authors — Alfred Aho, Peter Weinberger, and Briar{ghan. The initial purpose of
AWK is to deal with the text file. And the foundai of this language is that if the data
of the input line are matched with the requireméim¢, command will be executed. If

not, it will deal with the next line automaticalffzan 2005.)

A simple AWK command will be shown as below to gmal the delay in the example

case.

CBR-delay and FTP-delay

The script of AWK shown in APPENDIX computes the ftp and cbr packet delay, the

graph plotted in Figure 4.2.

[§ + T
"chr_delay"
"Frp_delay" +
o.09 |- - + g
i + o+ +
[V 1 ol -F ; B
I ﬂa l
+ . [
"r f Il
LR b ' + B
+ o + "
4 + ! I
0.0 | - - B
-+ + - + ‘ + + |
+ i f
I |
[B
+
-+
N
| i | I
a.od - I | .
+
.05 L o - - a o
] 0.5 1 1.5 z Z.5 <] 5.5 4 4.5

Figure 4.2.:FTP delay and CBR delay

40

After the program run, two files are created: “fiplay” and “cbr_delay”. Plot them

with the program, Gnuplot. The graph is shown asugpper. In the graph, the cbr_delay
is stable between 0.1s and 1.0s as well as 4.04aser] because at that time the ftp
application has not been started or ended. ThayalysCBR packet in the channel and
no congestion happens. After 1.0s the ftp packetdransmitted. Some packets must
wait in the queue, some got lost. That is the neasfothe obviously delay happens

during this period.

Jitter

Jitter is an unwanted time-variation of one or msignal characteristics in electronics
and telecommunications. Jitter may be seen in charatics such as the interval
between successive pulses, or the amplitude, freyuer phase of successive cycles
(Jitter wikipedia 2008). Jitter is a significantcfar in the design of almost all
communications links. It is a delay variance basedhe network estate. That means

the larger the jitter, the more unstable is thevoe.

0015

T jitter

LUk R 1
LU ok B o 1
LU ok B o 1

LI ok B 1

.ol - 1

LT e= R 1

Lo elel I r r r b

LU T e o 1

LT T 1

Lo el et o b
U L il LIF b L IR

000

L L L L L
] 100 200 I00 el falels] [=Lels]

Figure 4.3.: Jitter of CBR packets

41

From the jitter plot, it is clear that the chandgitber is synchronous to the end to end
delay. Because the reasons of the change are mhe: $he FTP packets join in the

transmission. The whole AWK script is shown in ARNRHEX IV.

Through AWK we can also compute some other chaiatethe system, such as loss,
throughput and some others. In the previous exagm@ecan also obtain that 550 CBR
packets are sent and 8 of them are lost. The samean compute that 10 FTP packets

are lost among 246 packets in all, which can beptged by APPENDIXII.

Now analyze another TCP model. All the nodes sefd packets to node 0 via node 1

at a random and delay time internal from Os tolgs from Os to 7s.

©\ 2
. _®\—‘
AN @
@ @
®

Figure 4.4.: Another tcp model

The script of the TCL is almost the same as theipus one. Note that the various of
the random value should be defined at first: sgfnew RNG] (Altman & Jimene 2003:
76); $rng seed 0. set RVstart [new RandomVariablgddm]; $RVstart set min_ 0;

$RVstart set max_ 7; $RVstart use-rng $rng. Thetion of start at a random time from

42

Os to 7s can be realized. The same for the delayfse whole script will be given in

the APPENDIX VII.

After the analysis we can obtain that there areD3$atkets sent and 93 of them are lost.

4.2. Simulation of Router Layer

The major task at the network layer is routing 8od control. In fact they have been
utilized in the former example. At the network lgyéhe transmission of packets
between adjacent nodes can be distinguished ofsession from another as well as
different packets within the same session (Beresék Gallager 1992: 124). When a
node receives a packet, the information contaimethé packet determines the node
how to forward it. Because the header of each pamk&tained identification numbers

for both the source and destination even eachsséecessed during the transmission.

In the virtual circuits, the path through the netkvis given and there is a certain set of
sessions using each link. It is helpful to realize link as being shared by a set of
virtual channels distinguished by numbers. Wherea session will be established, a
path is set by assigning, on each link of the patte unused virtual channel to that
session. Each node also keeps a table mappingbeaghincoming virtual channel on
each link onto the corresponding outgoing virtudlammel and link for the

corresponding session.

43

Os ®; = - © g
| \
/ \ |
R =g T
o o v

Figure 4.5.: Model of route selection

In the previous example, there are two differentes from source node 0 to destination
node 5. The static routing, used by NS2, is theoknone in which the shorter routing
is chosen throughout the connection. The examphellaies a disconnection between

node 1 and node 4 from 1.0s to 3.0s. It is necgssdype:

$ns rtmodel-at 1.0 down $S(1) $S(4)
$ns rtmodel-at 3.0 up $S(1) $S(4)

In the example, a default route is chosen the rbeie4-5 for setting connections. In
contrast to the static route, the Internet willdfian alternative route when the original
route disconnected. The operation in NS2 is useddayng the command: $ns rtproto

DV (Fall & Varadhan 2000: 63).

In the previous example, the link 1-4 is down frars to 3.0s. In NAM file, it is clear
that the link becomes red during its disconnectfomd all the packets transmitted in the
link are drop. Another TCP connection is establisfeom node O to node 5.

(APPENDIX VIII)

In the NAM trace, the result can be obtained tlmathe dynamic routing case, the

signaling packets which are used to determine #tl, mot only at the beginning, but

44

also at the connectivity changes.

4.3. Simulation of Wireless Network

There are two structures for wireless communicatietween two hosts. The first is the
centralized cellular network. In this case, the ieks connected to the fixed base
station, so that the communication between two sao@®ds one or more base stations.
Different scenarios can be considered as well, sischard, soft and softer handover.
The second method of the wireless is based ondti®a network between two mobile
nodes wish to communicate each other. Compareldetdixed base station, the ad-hoc
networks have more limited range of a mobile teahimhich means that mobile nodes
do not need to be the source or the destinatiaihefpackets, but also to forward the
packets between other mobiles. A cellular statias much larger communication range,
however the advantage of the ad-hoc network isktpuideployable and without an

existing infrastructure.

In cellular networks, the wireless part is reséttcto the access to a network, and within
it, the classical routing protocol can be utilizédl-hoc network in contrast rely on the

special routing protocols. (Altman & Jimene 200B1-125.)

In ad-hoc networks the routing protocols are cénhi&2 allows simulating the main
existing routing as well as the transport and apgilbns that use them. The current

routing protocols used by NS2 are (Altman & Jim2663: 111-125).:

DSDV - Destination Sequenced Distance Vector
AODV - Ad-hoc on Demand Distance Vector

DSR - Dynamic Source Routing

45

TORA/IMPE - Temporally Ordered Routing Algorithm Ihternet Mobile Ad-hoc
Network (MANET) Encapsulation

4.3.1. The Routing Protocol Algorithm

(1) DSDV is a distance vector routing protocol. Each node & routing table which
indicates the destination. The destination is t&et hop and the number of hops to
the destination. Each entry in the routing tablatams a sequence number. The
sequence numbers are generally even if a linkasemt; otherwise, an odd number
is used. The number is generated by the destinadiwh the emitter needs to send
out the next update with this number. Routing infation is distributed between
nodes by sending full dumps infrequently and smahieremental updates more
frequently (Perkins & Bhagwat 2004: 236-238). If rauter receives new
information, then it uses the latest sequence nunifbihe sequence number is the
same as the one already in the table, the route thvt better metric is used. Stale
entries are those entries that have not been upflata while. Such entries as well
as the routes using those nodes as next hops latediéPerkins & Bhagwat 2004:
236-238). If a node detected that a route to tistimtion has been broken, then its
hop number is set to infinity and its sequence remidupdated but an odd number

assigned. (Altman & Jimene 2003: 111-125.)

(2) AODV is a distance vector type routing. It is an on dedalgorithm, meaning that
it builds routes between nodes only as desiredobyce nodes. It maintains these
routes as long as they are needed by the sourdektighally, AODV forms trees
which connect multicast group members. The treescamposed of the group
members and the nodes needed to connect the mem{#@B3V uses sequence
numbers to ensure the freshness of routes. loig-Iee, self-starting, and scales to

large numbers of mobile nodes.(Belding 2007.)

46

The protocol use different messages to discovemaadtain links: Route Requests
(RREQSs), Route Replies (RREPs) and Route ErrorfRfRfr. These messages are
typed via UDP, and normal IP header processingegpl

When a source node desires a route to a destinftionhich it does not already
have a route, it broadcasts a RREQ packet acressettvork. Nodes receiving this
packet update their information for the source naxaie set up backwards pointers to
the source node in the route tables. In additiorth source node's IP address,
current sequence number, and broadcast ID, the R&&fxontains the most recent
sequence number for the destination of which the@cgnode is aware. A node
receiving the RREQ may send a RREP if it is eitier destination or if it has a
route to the destination with corresponding segeenanber greater than or equal
to that contained in the RREQ. If this is the cas@nicasts a RREP back to the
source. Otherwise, it rebroadcasts the RREQ. Nééep track of the RREQ's
source IP address and broadcast ID. If they re@RBEQ which they have already

processed, they discard the RREQ and do not forikg8elding 2007.)

When the RREP propagates back to the source, thesrset up forward pointers to
the destination. Once the source node receiveRRIEP, it may begin to forward
data packets to the destination. If the source leeeives a RREP containing a
greater sequence number or contains the same sequember with a smaller hop
count, it may update its routing information foatldestination and begin to use the

better route. (Belding 2007.)

Nodes, part of an active route, may offer connégtimformation by broadcasting

local “Hello” messages (special RREP messages)tstoneighbors. If “Hello”

a7

messages stop arriving from a neighbor beyond soneethreshold, the connection

is assumed to be lost.

As long as the route remains active, it will coognto be maintained. A route is
considered active as long as there are data papketsdically traveling from the
source to the destination along that path. Oncedece stops sending data packets,
the links will time out and eventually be deletednh the intermediate node routing
tables. If a link break occurs while the route cdivee, the node upstream of the
break propagates a RERR message to the sourcetaddéorm it of the now
unreachable destination(s). After receiving the RERthe source node still desires

the route, it can reinitiate route discovery.

AODV does not allow the handling of unidirectiohiaks.

(3) DSR uses source routing instead of relying on theimgutable at each intermediate

device. A source requested to send a packet taekgnation broadcast a RREQ
packet. Nodes receive the RREQ packet and searitteiinroute cache for a route
to the destination. If a route can not be found, RREQ will be transmitted further
and the node will add its own address to the reabittbp sequence. The process
will be lasted, till the destination can be founda node with the route to the
destination are reached. The route back can be wechjpased on the hop record. If
the routes are not symmetric, DSR checks the rcatbe of the replying node. If a
new route is found, it will be instead. Compared A®@DV protocol, the

unidirectional links handling is allowed in DSR.$R wikipedia 2006.)

(4) TORA is one protocol of the family of link reversal poools. It may provide

several routes between the source and the destindihere are three parts of the

TORA: creating, maintaining and erasing routeseath node a separate copy of

48

TORA is run. Therefore, TORA builds a directed dicygraph rooted in the

destination. It associates a height with each nodéhe network. Message flows
from the higher heights to the lower heights. Whearode has no downstream link it
reverses the direction of one or more links. Ifag@en can not find the route to the
particular destination, it sets the correspondoaal height to the maximum value.

(TODA wikipedia 2005.)

4.3.2. Simulation of a Mobile Example

NS2 can simulate many kinds of communication netaolext we demonstrate how to

simulate a wireless network.

®
/\ /
/’// \\ ’
/
\
o) @
*
n
$
o® +

Figure 4.6.: Example in wireless case

One node moves to another when enter the certamgerthe path connected and the
packets send to each other. When the node movesithélye communication range, the

packets are lost. In the wireless case, the sigmakr strength goes inverse ratio with

49

the rising distance. There are different fadingrfolas in different propagation models.

The whole TCL script can be seen in APPENDIX IX.

Only when the received power is over the threshioddreceiver node receives packets
correctly. Default value of the threshold is: ahe tlistance is 250 meters. In the NS
script the receive value can the reset by the camdmhy/WirelessPhy set RXThresh_

(new value).

NS2 provides three propagation models: FreeSpageRayGround and Shadowing

model.

In the FreeSpace model the received power represent

n _RGG N’

r (477d)2|_ (1)

Where R is Transmission Power;,RAs Received Power; Gneans Transmission
Antenna Gain and Gmeans Received Antenna Gaid; means Wavelength; d is

Distance; at last, L shows System Loss.

In the TwoRayGround model: if din%, the receive power is equal to the FreeSpace

case; else the receive power presents

» _RGG (hh)’

r 4oL (@)

Where his Transmission Antenna Height;iiAntenna Height for the received antenna.

50

In the Shadowing model, the distance d has beaneadefs 1. So the receive power is

shown:
2
p - F;GtGg/l 3)
(4m)°L

Wherey indicates the lognormal distribute.

In NS2 the parameters in the formula are set/As:3.0e8/freq; transmission power, Pt
=0.28183815; transmission antenna gair 6.0; received antenna gain £1.0;
frequency freq = 914.0e6; loss sysLoss = 1.0; tmésson antenna height; = 1.5;

received antenna height#+11.5.

In NS2, there is a tool used to compute the thidshaue of the received power based

on the different communication range. The toobisated in: ~ns/indep-utils.

Compile the file: g++ threshold.cc -o threshold fast. The command format of
threshold presents: threshold -m <propagation-mofiggher-options] distance. Obtain

the new value of received power based on the nstarte.

51

5. EMULATIONS

This chapter describes the emulation facility of. NEgnulation refers to the ability to
introduce the simulator into a live network. Spéahbjects within the simulator are
capable of introducing live traffic into the simtda and injecting traffic from the

simulator into the live network. (Fall & Varadha@(D: 336-341.)

Because of the currently limited portability of eiation, it is compiled into Network
Simulation Emulation (NSE) only. Before the emudatiit is necessary to built firstly

(build it with “make nse”). And make sure that IAgll -Ipcap\ are in lib of makefile.

5.1. Introduction of NSE

Network simulator emulator (NSE) is an extensionN82, which provides basic

utilities for reading and writing live packets frétm the live network. Figure 5.1

represents the emulation model implemented in N&#h(, Pohjola, et al. 2007: 4).

52

Wired cum wireless

NS2 Simulator LT

simulation

'

Tap Agent| | Tap Agent Tap Agent

i ' '

| Network object |

A
v

chernet InterfD

Figure 5.1.: Internal Flow Diagram of NSE (Nethi, Pohjola, t2007: 4)

The emulation facility can be subdivided into twodes:

1. opaque mode — live data treated as opaque datatpack

2. protocol mode — live data may be interpreted oregated by simulator

In opagque mode, the simulator treats network datauminterpretable packets. In
particular, real-world protocol fields are not ditlg used by the simulator. In opaque
mode, live data packets may be dropped, delayeatdered, or duplicated. Because no
protocol processing is performed, protocol-spedifadfic manipulation scenarios may

not be performed (Fall & Varadhan 2000: 336-341).

In protocol mode, the simulator is able to intetfmegenerate live network data packets

which contain arbitrary field assignments.

The components of the Network Simulator Emulatads@) are listed below:

53

Real-time scheduler:The real-time scheduler attempts to synchronizest@eution of
events in real-time. The function of the schedidensed to introduce aNS simulated
network into a real-world topology to experimenttiwieasily-configured network
topologies, like cross-traffic, etc. This only werkor relatively slow network traffic
data rates, as the simulator must be able to keegspwith the real-world packet arrival

rate, and this synchronization is not presentlprrgd (Nethi, Pohjola, et al. 2007: 4).

TapAgent: This class is a simple class derived from the Bagant class. As such, it is
able to generate simulator packets containing rariit-assigned values within the NS
common header. The tap agent handles the settinpe @ommon header packet size
field and the type field. The packet type fieldA$_LIVE for packets injected into the
simulator. Each tap agent can have at most oneciagsth network object, although
more than one tap agent may be instantiated omglessimulator node. It is also
responsible for writing packets onto the networeiface (Nethi, Pohjola, et al. 2007:

4).

Network objects: Network objects provide access to a live networki¢ a trace file of
captured network packets). There are several fainmsetwork objects, depending on
the protocol layer specified for access to the dgohg network, in addition to the
facilities provided by the host operating systersef some network objects requires
special access privileges where noted. Generaltyark objects provide an entry point
into the live network at a particular protocol laye.g. link, raw IP, UDP, etc) and with
a particular access mode (read-only, write-onlyread-write). Some network objects
provide specialized facilities such as filteringmomiscuous access (i.e. the pcap/bpf
network object) or group membership (i.e. UDP/IFtmoast). The C++ class Network

is provided as a base class from which specifizvoi objects are derived.

Three network objects are currently supported ireNBcap/BPF, raw IP, and UDP/IP.

54

Each is described below:

Pcap/BPF objects provide an extended interface to the LB¥icket capture library

(libpcap) (Nethi, Pohjola, et al. 2007: 4). Thibréry provides the ability to capture
link-layer frames in a promiscuous fashion fromwaek interface drivers (i.e. a copy is
made for those programs making use of libpca@lskh provides the ability to read and
write packet trace files in the “tcpdump” formahé extended interface provided by NS
also allows for writing frames out to the networiteirface driver, provided the driver
itself allows this action. Use of the library toptare or create live traffic may be
protected; one generally requires at least rea€lsado the system'’s packet filter facility
which may need to be arranged through a systemrastnaitor (Information Sciences

Institute C 2006).

Raw IP objects provide raw access to the IP protocol, afidw the complete
specification of IP packets (including header). Tiplementation makes use of a raw
socket. In most UNIX systems, access to such ssdlegjuires super-user privileges
(Information Sciences Institute C 2006). In additithe interface to raw sockets is not
such a common standard than other types of sockie¢sclass Network/IBrovides raw
IP functionality plus a base class from which otinetwork objects implementing

higher-layer protocols are derived.

UDP/IP objects provide access to the system’'s UDP impi&atien along with support

for IP multicast group membership operations. (imfation Sciences Institute C 2006.)

55

5.2. Integration NS2 with Other Simulation Packages

The function of NSE is capable of introducing liteffic into the simulator and
injecting traffic from the simulator into the liveetworks, which provide a possibility of
evaluating the performance of communication prdsdo real-time control systems
and similarly test robustness and performance ptiegeof control and data fusion
algorithms in networked environments. Hence, it banrealized the integration NS2

with other packets under the NSE mode. (Fall & ¥aen 2000: 336-341.)

The traditional control theory is not suitable tbe asynchronous systems, because it
assumes constant sample times. Hence, it is negdssdevelop a theory which can
integrate wireless communication and control. NS#h antegrate with different
simulator to realize the combination between cdimig part and simulation part. In
this thesis we select MATLAB as an example. BecaU#d LAB is also a widely

employed research tools used in control systengdesid simulation.

The key features of the integration are: 1) suppartpowerful control design and
implementation tools provided by MATLAB, Simulinknd xPC Target enabling
automatic code generation from Simulink modelsréal-time execution, 2) real-time
control of a true or simulated process over a gpecified network, 3) capability to
emulate any wired/wireless networks readily avddah NS2, 4) easy-to-use network
configuration tool and 5) the platform is accessibler the Internet, i.e. it supports

remote experimenting. (Nethi, Pohjola, et al. 2080%:

5.2.1. One Example of Integration

Now we take the example of ‘PiccSIM’, which is dieged by the Communication and

control Engineering Groups at Helsinki UniversityT@chnology (HUT), to illustrate

56

the integration NS2 with other packets.

PiccSIM is a platform for modeling, design, simidatand implementation of network
control systems, and it integrates the controlgiesools available in MATLAB with

NS2.

By using the PiccSIM platform, it is possible tdegrate the network simulator with
real processes and to only simulate the networklewtiie control algorithms are
executed on a real-time operating system, whichrotsreal processes. The key idea is
that a mobile node can measure the distances te#dy static sensor nodes, and a
temporal mobile node location can be computed hpgust least three distance
measurements (Nethi, Pohjola, et al. 2005: 8). Gheecommand center tracks the

mobile node, it can guide it towards the refergpath.

During the process of the research we have ameaheezkist demonstration of HUT:

In the HUT case, the sensor nodes are static byritierm distributed. This means that
the distance between each neighbor node can beoltedtwithin the communication
range easily. The system consists of the statielegs sensor nodes scattered in a grid
distribution. The distances between each node &@ r2eters and the distance
measurement range is defined as 300 meters. didtance between the mobile node
and static nodes is less than 300 meters, thendestaetween them will be measured
and transmitted to the computation center for esiimy the position of the mobile

node.

In our case, shown in APPENDIX X., the significahtange is that all the static sensor
nodes are randomly deployed in the network areawisi helpful for the application in

the real environment. The locations of the randostbtic nodes are defined by the

57

localization method. As the scenario, all the statireless sensor nodes are randomly
deployed, a reference path is also randomly creaeldthe mobile node should work
follow the computed path. We simulate this scenaidothe wireless networked control
system (WINCS). The objective of this work is toegent the integrated control
processing under the simulative Wireless Sensowdtét (WSN) environment. Both
the location of the sensor nodes and the mobile pa created by MATLAB, but are
read to NS2 by the source command (Fall & Varadttdl0: 336-341).

Based on these work, we can make the simulatioa case closely approximately to

the real situation. The results can be used to@tipe future development.

5.3 Architecture of Integration

The PiccSIM system typically consists of three cateps (MoCoNet Server, RTOS
xPC Target and NS2) and an I/O controller boamk(to real process), but in our case
the remote accessibility property is disregardediwsedo computers are enough: one for
NS2 and another for MATLAB. In Figure 5.2, they a@nnected via their own local

area network (LAN).

58

xPC TARGET
: NS2
Controller logic <| LAN
O
o 22005 =
Node 5@ <¢—1—— lw} "
%) o o
g Node 4O -8 O
8 Node 30O g’ b O
U
a Node 20 % Q
NOde 1. 1> 22001 g './/,
7
\ 4 T Simulated wireless
I/O Board Network
Process

Figure 5.2: Nodes in the xPC Target and the NS2 networkaassciated with UDP
port numbers (Nethi, Pohjola, et al. 2007: 3)

The xPC target runs a real-time operating systdre.ain function of this computer is
to measure and control the processes based orséhespecified algorithms, which are
made with a Simulink model in the MATLAB, storm wkeUDP or TCP packets are

transmitted then the xPC transmits signals (i.ePyiackets) to the network simulator.

The NS2 computer is using the emulation (NSE) fiwa the User Datagram Protocol
(UDP) packets and inject them into simulated wselenetwork model. Thus

communication between any two nodes in the corstystem is passed through NS2.
Figure 5.2 shows the connectivity mapping betwele@ Xarget and NS2 nodes. UDP

port numbers are used to tap and inject the paokeée corresponding node in NS2.

Figure 5.2 shows the components of the integratiodel. The process is measured and
controlled with xPC Target computer equipped withl/® controller board. One of the

nodes in the network acts as the process contithiggrcomputes the control signal for

59

the process. The signal is transmitted over thevorét to the actuator in the process
(Nethi, Pohjola, et al. 2007: 3). The sensor aridador nodes in the real process and the
simulated network are associated by their UDP pomhbers, which makes it possible

that the real process maps to the simulated network

In Figure 5.2, the process of communication is gmé=d clearly. Node 1 is the source
and Node 5 is the destination. Node 1 on the xPGetaepresents a sensor. It creates
UDP packets of the signals measured either froeabcase or a simulated process. Any
packet generated by Node 1 is destined to Nodecbr(aoller node) passes through the

simulated network on NS2.

The NS2 computer uses packet filtering tools tduwrapthe UDP packets and associates
it to the correct node in the simulated networktlby UDP destination port number. It

then performs a mapping for the simulated desbnatiode and the packet is injected
into the simulated network in NS2. After a succeksdceipt, the packet is sent back to

the xPC Target via the LAN.

In the NS2 part the key commands to connect twopeders are:

set ns [new Simulator]
$ns use-scheduler RealTime
Create a new simulator and the real-time schedabprires the following specification

at the beginning of a simulation script.

set me [exec hostname]

The purpose of this command is to determine theenafnthe local system.

60

set pfl [new Network/Pcap/Live]

This command creates an instance of the pcap newixpect for capturing live traffic.

$pfl set promisc_ true
The function of this command is to tell the padilétr whether it should configure the

undelying interface in promiscuous mode.

set intf [$pfl open readonly]
The open call activates the packet filter, and ip@gpecified as readonly, writeonly, or

readwrite. Itreturns the name of the network irsteefthe filter is associated with.

puts "pfl configured on interface $intf"

set filt "(ip src host foobar) and (not ether broad cast)"

set nbytes [$pfl filter $filt]

puts "filter compiled to $nbytes bytes"

The filter method is used to create a Berkeley Paéter (BPF)-compatible packet
filter program which is loaded into the underlyiB§F machinery. The filter method

returns the number of bytes used by the filter joad.

puts "drops: [$pfl pdrops], pkts: [$pfl pkts]"

The pdrops and pkts methods are available forssitai collection. They report the
number of packets dropped by the filter due todaudixhaustion and the total number of
packets that arrived at the filter, respectiveigt the number of packets accepted by the

filter).

61

5.4. Related Protocol

Multi-path routing consists of finding routes beemea source node and a destination
node. Multi-path routing doesn’t provide only sclemfor an efficient resource
management but also improves overall system pedoca (Nethi, Pohjola, et al. 2007:
3). Multi-path routing exploits path diversity amtbmpensates the dynamic and

unpredictable nature of sensor networks.

In this thesis, the popular Ad hoc On Demand Distaviector routing protocol (AODV)

is chosen to work as well as Local Multiple NextgdHeouting Protocol (LMNR) (Nethi,

Pohjola, et al. 2005: 8). LMNR makes the networkgested by reason of a lot of
traffic generated. It tries to find multiple pathsnd contrary to many multi-paths
routing protocols, it uses single path to avoid céyonization of packets at the
destination node (Nethi, Pohjola, et al. 2005:Téje strongpoint of the LMNR scheme
is that each source and the intermediate nodestigévéberty to choose from multiple
local paths the destination, which allows localteoselection making it adaptive to a

dynamically changing environment.

5.4.1. Add New Route Protocol in NS2

In our case the protocol LMNR named AODVT. Althoughis a multicast routing
protocol developed from the AODV algorithm, it isllsa new protocol in NS2. This
section will introduce the method of how to addeavrprotocol in NS2. Here we select
AODV as a sample to add a new protocol to the N&Rowt changing the content. In

the real time simulation the AODVT is provided frahe HUT emulation case.

(1) Copy the aodv fold located in ~/ns-allinone-2322.32 to aodvt, and replaces all
the “AODV” or “aodv” by “AODVT” and “aodvt” in aodwcc and aodv.h. (Xu 2008.)

62

(2) Modify the packet.h file in the ~/ns-allinone82/ns-2.32/common. Find the word of
“aodv”, obtain that: name_[PT_AODV]="AODV"; PT_AOD Copy them and replace
the aodv by aodvt: name_[PT_AODV]= "AODV";name_[FAODVT]= "AODVT";
PT_AODV, PT_AODVT.

(3) Modify the ns-lib.tcl file which is located ir/ns-allinone-2.32/ns-2.32/tcl/lib.
Search the term “AODV” and “aodv” in the file andgicate it with “AODVT” and

“aodvt” respectively.

(4) Edit ns-packet.tcl file just like the previolexample. The file’s location is

~/ns-allinone-2.29/ns-2.29/tcl/lib.

(5) Modify the makefile in ~/ns-allinone-2.32/ns-2.%earch the word of “aodv.0” and
then obtain the sentence *“aodv/aodv_logs.0o aodv/aod; aodv/aodv_rtable.o
aodv/aodv_rqueue.o \" Add the related command “daddv_logs.o aodvt/aodv.o \,

aodvt/aodv_rtable.o aodvt/aodv_rqueue.o \” afterabimmand about aodv.

(6) After the previous steps a new route protoa@hed aodvt is almost installed, but
the trace format needs still some modificationisltnecessary to modify the files:
cmu-trace.cc and cmu-trace.h, in ~/ns-allinone-282/32/trace. Add the relative
command according the aodv part: void CMUTracenfar aodvt(Packet *p, int offset)

{...}. (Xu 2008.)

(7) Do “make clean” in the terminal at the diregtor/ns-allinone-2.32/ns-2.32, after

that do “make”.

These were the main processes of adding a new poatigcol in NS2. In conclusion the

63

best solution is to search the term “AODV” and “abuh all the NS2 files and replace

it with “AODVT” and “aodvt” respectively.

5.5 Result Analysis

Due to the trace file in AODV protocol is very colcpated; the result here is analyzed
via the software “TraceGragh”, which is easier pemte than coding the AWK script. It
can analyze most of parameters of the simulatiach 8s: end to end delay, throughput,
jitter, etc. However, in the simple case the AWKdaage is still recommended for
beginners to realize and to manage the basic cowédpe computing process for the

analysis result.

It is well known that the major problems arisingrr wireless networks are varying
because of the time delay and packet losses indhmemunication process. Hence, this
section analyzes the different results based on different protocols: AODV and

LMNR.

During the simulation we observe three parametaiyin two different scenarios:
End to End delay, Jitter and the number of the pedpgpackets. The last one means the
level of the reasonable utilization in the netwoekource. Figure 5.3, Figure 5.4 and
Figure 5.5 present the network properties diffeeehetween the AODV and LMNR

during the simulation period.

AODV

64

T T T T T T
18 | _ Send event time vs gimulation End2End delay X send event time
| STLAGT DTLAGT

T

ec]

End2End delay [s
o

20 40 &0 &0 100 120

140 160

nacket send time at source node [secl

180 20

sec]

End2End delay [

LMNR

STLAGT DTLAGT

T T T T T T
‘ — Send event fime vs simulation End2End delay X send event time L

il 40 B0 &0 100 120 140

packet send fime at source node [sec]

160 180 200

Figure 5.3.: End to End delay: AODV vs. LMNR

In Figure 5.3, it can be recognized that the Enéirtd delay in AODV is much higher
than in LMNR. From 50s to 200s the delays under AQ@otocol vary frequently,
while in LMNR during the same time period no defgppears which exactly explains
the character of LMNR well. It makes the networlkgested because of a lot of the
highly generated traffic. It tries to find multipgaths, and contrary to many multi-paths
routing protocols. A single path is used to avoyhchronization of packets at the
destination node (Nethi, Pohjola, Gao & Jantti 2005

AODV LMNR

T I I I T T I I I I i T
8 [_ Receive events time vs simulation jitter ¥ receive event time [|7 Receive events time vs simulation jitter X receive event time
‘ STLAGT DTLAGT 9 STLAGT DTLAGT
16
8
r
7
12
4
5]
g g .
g 3
4 2
2 1
‘ I I
0 0 &0 a0 100 0 0 150 180 M 0 a0 &0 a0 100 120 140 160 180 200

pcket receive it destnaton rode [sec] packet recaire fime at destination node [sec]

Figure 5.4.:Jitter: AODV vs. LMNR

65

The situation of Jitter shown as Figure 5.4 is atsynchronous to the situation of an
End to End delay. Because a jitter is a delay wagabased on the network estate.
Figure 5.4 shows that the networks are based on RNdkdtocol which is much more

stable than the networks based on AODV protocol.

AODV LMNR

I I I
T T T : T -
— Cumulatve surn of numbers ofall the dropped packets Xtme — Cumulative sum of numbers of al the dropped packets Xtime

550

5000 Ij

2 4500 J_)/
£ -

= Ao

5 w0 /f /
e 3000

2 2 4

5 o0] 5

H Ty .

2 e i =

s =

E

ERES =

3
5
g
1000 /
;H/H 1n
S0

0 0 60 8 100 [40 160 180 20 n £l SU @ E 60
drop event time [sec] rop evert fime [sec]

m of numbers of dropped pack

L

Figure 5.5.: The number of the dropped packets: AODV vs. LMNR

To prove this point, Figure 5.5 delivers the numiiethe dropped packets between two
protocols. In LMNR case, there are only approxinya®® packets dropped within the
simulation process compared to the huge amourgddim 6000) of the dropped packets
under VODA protocol, and the drops only happen mithe first 60 seconds during the
simulation of LMNR caused by the high traffic. Neteless, the drops appear

continuously during the whole process of the AODdation.

In a nutshell, the new protocol LMNR is much momajstive for a dynamic and

unpredictable nature of sensor networks.

66

6. LIMITATIONS OF NS2

Although NS2 is widely used for simulation of dié@t network systems, and many
experiments have leveraged it to examine protoaots distributed systems. However,
it has some limitations. The purpose of this cha@eo discuss several limitations of

NS2.

On one hand, NS2 integrates the TCL scripting lagguinto the tool, and therefore
offers similar flexibility and determinism in thénsulation. The main limitation with
NS2 is that it is exclusively a simulation framewoa protocol authored for NS2 must
be re-implemented to test in deployment (Demmeyjd,eet al. 2005: 2). Suppose that
there is an environment that runs identical appboacode in simulation and in
deployment, a particular implementation can be emadin simulation as well on
actual hardware, and multiple implementations cancbmpared in terms of code

complexity, size, and execution time.

On the other hand, due to the simulations in N®2vary detailed for the packet data,
during the simulation process huge amount of packet created, results that it can not
simulate the large-scale networks, special for Wa® Sensor Networks (WSN)

scenarios.

A simulator model of a real-world system is neceBsaa simplification of the
real-world system itself. Now we describe some @ timitations of the simulation

model embodied in the current release of NS2:

67

¢+ TCP

The simulator model for one-way TCP is describeevipusly. There is no dynamic
window advertisement, segment and ACK number coatjouits are in units of packets,
and there is no SYN/FIN connection establishmesadkewvn (Information Sciences

Institute 2002).

¢ Two-Way TCP (FullTCP)

The simulator model for two-way TCP is describedsection 17.3 on the NS Manual
(Fall & Varadhan 2000: 170-172). It is very simitara 4.x BSD TCP, except there is no
dynamic window advertisement, no 2MSL-wait or p&rstates, no urgent data, and no
RESET segments. Recently, SACK, Newreno, and Tahostionality have been added
to FullTCP.

Limitations to FullTCP: There is not a complete idation test which suites for
FullTCP. For example, BugFix_ does not work cotyeéor FullTCP. The test for
BugFix_, "ns test-suite-simple-full.tcl tahoe4", shébeen commented out from

test-suite-simple-full.tcl. (Information Sciencessiitute 2002.)

Except the previous mentioned limitations, onehaf biggest drawbacks to NS2 is too
difficult to master for the beginners. There argesal reasons result that: firstly, the
content of NS2 is very huge, the official NS mancah not update regularly, which
makes the beginner hard to understand; secondity,d relative knowledge and tools

are involved to operate NS2 efficiently.

Furthermore, as an open source software NS2 isxplbited by the same company or

person. That means version format maybe developgdquickly and sometimes even

68

without unification, while the documentation iseaftlimited and out of date with the
current release of the simulator. The consecutfidheNS manual is also not very well.

Else the code consistency is lacking at timesénctide base and across releases.

However, the complete set of some paid simulatoosiules provides more features

than NS2, and they therefore will be more attractovnetwork operators

Finally, there is a lack of tools to describe siatan scenarios and analyze or visualize
simulation trace files. These tools are often wnittvith scripting languages. The lack of
generalized analysis tools may lead to that, thfierdnt people measure different

values for the same metric names.

Fortunately, most current limitations can be ovaredy consulting the highly dynamic

newsgroups and browsing the source code.

69

7. CONCLUSIONS

NS2 is widely used to simulate and emulate telecamoation networks. And with its
rich libraries of network and protocol objectscén simulate most aspects of network
technology. The results of the simulation are \&kd, which makes NS2 to be one of

the most favorable simulation software which iselydused in education and research.

This thesis gives a particular description of th&2Ninstallation under different
platforms. Furthermore, the structures and mairraijma principles are also presented

in detail.

Many useful scenarios for the simulations have h@esented, which can help the NS2
users to familiarize with the method of TCL scigpding and analyze the results. It also
illustrates how to construct an emulation environtmgsing NS2 and MATLAB. This
joining of NS2 and MATLAB can considerably enhartlee application of NS2 for real
system simulations. Different examples are givenddmonstrate how to proceed with

NS2 and MATLAB.

Although NS2 is a very strong network simulatiomltat has many limitations and

disadvantages were discussed in Chapter 6.

In the future work we will implement NS2 for simtitans of different communication
scenarios, such as: Universal Mobile Telecommuimpat System (UMTS),
Ultra-Wideband (UWB), Worldwide Interoperability fdlicrowave Access (WiMAX)

and Satellite Network communications.

70

BIBLIOGRAPHIES

Altman, Eitan & Tania. Jimene (2003). NS SimulatfonBeginners, 76, 111-125, Univ.

de Los Andes, Merida, Venezuela and ESSI, Sophiiglis, France.

Belding-Royer, Elizabeth (2007). AODV Descriptiomn|ine] [cited 2008-4-12].
Available from Internet: <URLhttp://moment.cs.ucsb.edu/AODV/aodv.html

Bertesekas, Dimitri & Robert Gallager (1992). D&tatworks second edition, 124.
Prentice Hall, Upper Saddle River, NJ 07458 1992.

Buchheim, Tim (2002). Nam: Network Animator [onl]Heited 2008-1-24]. Available

from Internet: <URLNttp://www.isi.edu/nsnam/nam/

Chung, Jae & Mark Claypool A (2003). NS2 overvieanl[ne] [cited 2007-10-14].

Available from Internet: <URLhttp://nile.wpi.edu/NS/overview.html

Chung, Jae & Mark Claypool B (2003). Simple SimigkatExample [online] [cited
2008-3-23]. Available from Internet:

<URL: http://nile.wpi.edu/NS/simple ns.html

Cygwin homepage (2008) [online] [cited 2008-1-¥8jailable from Internet:
<URL: http://www.cygwin.comn#.

71

Demmer, Michael, Philip Levis, August Joki, EriceBrer & David Culler (2005).
TYTHON: A DYNAMIC SIMULATION ENVIRONMENT FOR SENSOR
NETWORKS, 2. University of California, Berkeley Cpuoiter Science Division
Berkeley, CA 94720.

DSR wikipedia (2006) [online] [cited 2008-4-12]. &lable from Internet:

<URL: http://en.wikipedia.org/wiki/Dynamic_Source_Routing

Fall, Kevin & Kannan Varadhan (2000). The ns Mandét41, 63, 72-75, 93, 170-172,
336-341. UC Berkeley, LBL, USC/ISI, and Xerox PARC.

Fan, Qiang (2005). AWK manual [online] [cited 200%7-10]. Available from Internet:
<URL: http://fangiang.chinaunix.net/program/other/200500%3621.sht.

Gnuplot homepage (2008) [online] [cited 2008-3-28kilable from Internet:
<URL: http://en.wikipedia.org/wiki/Gnuplct

Harding, Chris (2005). NS-2 Trace Formats [onlife#fed 2008-1-24]. Available from
Internet: <URL:http://k-lug.org/~griswold/NS2/ns2-trace-formats.hsm

Information Sciences Institute, (2002). Ns Limitas, [online] [cited 2008-4-6].
Available from Internet:

<URL: http://www.isi.edu/nsnam/ns/ns-limitations.html

Information Sciences Institute, (2005). Building-Zison Cygwin [online] [cited
2007-11-15]. Available from Internet:

<URL: http://www.isi.edu/nsnam/ns/ns-cygwin-old.html

72

Information Sciences Institute A (2006). The Netkv&imulator — ns-2 [online] [cited

2007-10-14]. Available from Internet: <URbttp://www.isi.edu/nsnam/rs/

Information Sciences Institute B, (2006). NS: cheuhgg [online] [cited 2007-11-29].
Available from Internet: <URL: http://www.isi.edugnam/ns/CHANGES.html

Information Sciences Institute C, (2006). Netwonktation with the NS Simulator
[online] [cited 2008-4-20]. Available from Internet

<URL: http://www.isi.edu/nsnam/ns/ns-emulation.h#m

Jitter wikipedia (2008) [online] [cited 2008-3-3@)vailable from Internet:
<URL: http://en.wikipedia.org/wiki/Jittex.

Ke, Zhiheng (2004).Winxp + Cygwin + ns-allinone22 setup [online] [cited
2008-2-5]. Available from Internet:
<URL: http://140.116.72.80/~smallko/ns2/setup.htm>

Malek, Jaroslaw (2007). Trace graph - Network Satarl NS-2 trace files analyzer
[online] [cited 2008-4-15]. Available from Internet

<URL:http://www.tracegraph.con®/

NS2 wikipedia (2008) [online] [cited 2007-11-28]v&ilable from Internet:
<URL.: http://en.wikipedia.org/wiki/Ns2.

Nethi, Shekar, Mikael Pohjola, Lasse Eriksson & Rikantti (2007). “Platform for
Emulating Networked Control Systems in LaboratonyiEonments”, to appear in
Proc. IEEE Inter-national Symposium on a World oiréléss, Mobile and

Multimedia Networks (IEEE WoWMoM 2007), Helsinkiirffand.

73

Nethi, Shekar, Chao Gao, Riku Jantti & Mikael P¢dj¢2007), Localized Multiple
Next-hop Routing Protocol, appear in Prdtifternational conference on ITS

telecommunication (ITST 2007), Paris, France.

Nilsson, Johan (1998). Real-time control systenth delays, 56-61. Ph.D. dissertation,

Lund Institute of Technology, 1998.

OTCL Tutorial (1995) [online] [cited 2007-10-13]vailable from Internet:
<URL: http://www.openmash.org/developers/docs/otcl-dogditorial.htm}.

Perkins, Charles & Pravin Bhagwat (2004). Highlyn@snic Destination-Sequenced
Distance-Vector Routing (DSDV) for Mobile Computef236-238. Computer
Science Department University of Maryland Collegek? MD 20742.

TODA wikipedia (2005) [online] [cited 2008-4-12]vAilable from Internet:
<URL.: http://en.wikipedia.org/wiki/ TORA.

Wang, Jianping (2004). ns-2 Tutorial, 4. MultimedMetworking Group, the

Department of Computer Science, UVA.

Xu, Leiming, Bo Pang & Yao Zhao (2003). NS and NatwSimulation, 17-45. Posts &
Telecommunications Press: ISBN 7-115-11867-1/TN3221

Xu, Leiming (2001). How to Add a New Protocol in Rlfonline] [cited 2008-4-23],
Available from Internet:

<URL: http://netarchlab.tsinghua.edu.cn/~zm/presentatsmakiend-xIming.ppt.

74
APPENDIX |

#creat a new nsfile
set ns [new Simulator]

#set the defferent color for defferent application
$ns color 1 Blue
$ns color 2 Red

#open a new nam file named out.nam and save the processin it
set nf [open out.nam w]
$ns namtrace-all $nf

#open a tr fileto save the process and save the processin it
set nd [open out.tr w]
$ns trace-all $nd

#finish function
proc finish {} {
global ns nf nd
$ns flush-trace
#close the file
close $nf
close $nd
#show the nam file
exec nam out.nam &
exit 0

}

#set the nodes s1:1d0 s2:id1 r:id2 d:id3
set s1 [$ns node]

set s2 [$ns node]

set r [$ns node]

set d [$ns node]

#set the links connection from the source nodes to node r with bandwidth: 2Mbyps,
#delay: 10ms, queue model: DropTail

$ns duplex-link $s1 $r 2Mb 10ms DropTail

$ns duplex-link $s2 $r 2Mb 10ms DropTail

#connect node r to the direction node d with bandwidth: 1.7Mbps, delay: 10ms, queue

75

#model: DropTail
$ns duplex-link $r $d 1.7Mb 20ms DropTail

set Queue Limit: 10 packetsin thelinkr - d
$ns queue-limit $r $d 10

#observe the queue change betweenr - d
$ns duplex-link-op $r $d queuePos 0.5

#set tcp connection

set tcp [new Agent/TCP]

$ns attach-agent $s1 $tcp

set sink [new Agent/TCPSink]
$ns attach-agent $d $sink
$ns connect $tcp $sink

#plot thetcp in blue
$tcp set fid_ 1

#establish FTP on tcp

set ftp [new Application/FTP]
$ftp attach-agent $tcp

$ftp set type_ FTP

#set udp connection

set udp [new Agent/UDP]
$ns attach-agent $s2 $udp
set null [new Agent/Null]
$ns attach-agent $d $null
$ns connect $udp $null

#plot theudp inred
$udp set fid_ 2

#establish cbr on udp

set cbr [new Application/Traffic/ CBR]
$cbr attach-agent $Sudp

$cbr set type_ CBR

#set the size of packet 1K bytes
$cbr set packet_size 1000

76

#rate of cbr 1M bps
$cbr set rate_ 1mb
$cbr set random_ false

#set the time when FTP & CBR start and stop
$ns at 0.1 "$cbr start"
$ns at 1.0 "$ftp start"
$ns at 4.0 "$ftp stop"
$ns at 4.5 "$cbr stop”

#detach the tcp connection
$ns at 4.5 "#ns detach-agent $s1 $tcp"
$ns at 4.5 "$ns detach-agent $d $sink”

#call the finish function
$ns at 5.0 "finish"

#runit
$ns run

77

APPENDIX I

BEGIN {

beginning,set the record the highest packet 1D
highest_packet_id = 0;

{ action =$1;
time = $2;
flow_id = $8;
packet_id = $12;

record the highest current ID
if (packet_id > highest_packet _id)
highest_packet_id = packet_id;

record the flow ID and time
if (start_time[packet_id] ==0)
start_time[packet_id] = time;

flow_num([packet_id]=flow_id;

record the obtain time of all the packet
if (action =="r") {
end_time[packet_id] = time;

} else {

the time of the loss packet is-1

78

end_time[packet_id] = -1;
}

END {

calculate end-to-end delay
for (packet_id = 0; packet_id <= highest_packetpatket id++) {
packet_duration = end_time[packet_id] - start_tpaeket id];

save the result
if (packet_duration > 0) {
if (flow_num[packet_id]==1){
printf("%f %f\n", start_time[packet_id], packet_dciion) > "ftp_delay";
} else {
printf("%f %f\n", start_time[packet_id], packet_dciion) > "cbr_delay";
}

79

APPENDIX IlI

BEGIN {
fsDrops = 0;

numFs = 0;

action = $1;
time = $2;
node 1 = $3;
node 2 = $4;
type = $5;
flow_id = $8;
node_1 address = $9;
node_2_ address = $10;
seq_no =$11;
packet_id = $12;
if (node_1==1&&node_2==2&&action=="+")
numFs++;
if (flow_id == 2&&action =="d")

fsDrops++;

END {

printf ("number of packets sent:%d lost:%daomFs,fsDrops);

80

APPENDIX IV

BEGIN {
old_time = 0;
old_seqg_no =0;

i=0;

action = $1;

time = $2;

node 1 = $3;

node 2 = $4;

type = $5;

flow_id = $8;

node_1 address = $9;
node_2 address = $10;
seq_no =$11;
packet_id = $12;

if (node_1==2&&node_2==3&&type=="cbr"&&action=¥") {

dif = seq_no - old_seq_no;

if (dif==0) {
dif = 1;

jitter[i] = (time - old_time)/dif;

81

seq[i] = seq_no;
i=i+1;
old_seqg_no = seq_no;

old_time = time;

}
}
END {
for (j=1;j<i;j++){
printf ("%d\t%f\n",seq[j],jitter[j]);
}

82

APPENDIX V

BEGIN {
init = 0;
i=0;

action = $1;

time = $2;

node 1 = $3;

node 2 = $4;

type = $5;

pktsize = $6;

flow_id = $8;
node 1 address = $9;
node_2 address = $10;
seq_no =$11;
packet_id = $12;

if (action=="r"&&node_1==2&&node_2==3&&flow_id="2") {
pkt_byte sum[i+1]=pkt_byte sum([i]+pkisjz

if (init==0){
start_time=time;

init=1;

83

end_time[i] = time;
i=i+1;

}

END {
printf ("%.2\t%.2f\n",end_time[0],0);

for (j=1;] <i; j++){
th = pkt_byte _sum([j]/(end_time[j] - start_time)i®00;
printf("%.2f\t%.2f\n",end_time[j],th);

}
printf("%.2f\t%.2\n",end_time[i-1],0);

84

APPENDIX VI

BEGIN {
fsDrops = 0;
numFs = 0;

}

action = $1;

time = $2;

node 1 = $3;

node 2 = $4;

type = $5;

flow_id = $8;

node_1 address = $9;
node_2 address = $10;
seq_no =$11;
packet_id = $12;

if (node_1==1&&node_2==2&&action=="+")

numFs++;

if (flow_id == 2&&action =="d")

fsDrops++;

END {

printf ("number of packets sent:%d lost:%daomFs,fsDrops);

}

85

APPENDIX VII

#creat a new nsfile

set ns [new Simulator]

#open a new nam file named out and save the processin it
set nf [open many.nam w]

$ns namtrace-all $nf

#open a tr file and save the process
set tf [open many.tr w]

$ns trace-all $tf

set windowVsTime [open win w]

set param [open parameters w]

#finish function
proc finish {} {
global ns nf tf
$ns flush-trace
#close the file
close $nf
close $tf
#show the nam file
exec nam many.nam &

exit 0

86

#set the nodes
set n0 [$ns node]

set nl [$ns node]

#r - d bandwidth 1.7Mbps; delay: 10ms; queue model: DropTail
$ns duplex-link $n0 $n1 0.7Mb 20ms DropTail

set NumSrc 5

set Duration 10

#set the other nodes
for {set j 1} {$j <= $SNumSrc} {incr j} {
set S(3$j) [$ns node]}

#creat a random generator
set rng [new RNG]
$rng seed 0

set RVvdly [new RandomVariable/Uniform]
$RVdly set min_ 1

$RVdly set max_ 5

$RVdly use-rng $rng

set RVstart [new RandomVariable/Uniform]
$RVstart set min_ 0
$RVstart set max_ 7

$RVstart use-rng $rng

87

#set random delay for the nodes

for {set i 1} {$i <= $NumSrc} {incr i} {
set dly($i) [expr [$RVdly value]]

set startT($i) [expr [$RVstart value]]
puts $param "dly($i) $dly($i) ms"

puts $param "startT($i) $startT($i) sec"}

for {set j 1} {$j <= $NumSrc} {incr j} {
$ns duplex-link $S($j) $n1 10Mb $dly($j)ms DropTail
$ns queue-limit $S($j) $n1 100}

#observe the queue change betweenr - d
$ns duplex-link-op $n1 $n0 queuePos 0.5
$ns queue-limit $nl1 $n0 10

#set tcp source
for {set j 1} {$j <= $NumSrc} {incr j} {
set tcp_src($j) [new Agent/TCP/Reno]}

#set tcp destination
for {set j 1} {$j <= $NumSrc} {incr j} {
set tcp_snk($)) [new Agent/TCPSink]}

#the beginning of tcp is Y$i)

for {set j 1} {$j <= $SNumSrc} {incr j} {
$ns attach-agent $S($j) $tcp_src($))
$ns attach-agent $n0 $tcp_snk($))

88

$ns connect $tcp_src($j) $tep_snk($))}

#establish FTP on tcp

for {set j 1} {$j <= $NumSrc} {incr j} {

set ftp($)) [$tcp_src($)) attach-source FTP]}
for {set j 1} {$j <= $NumSrc} {incr j} {
$tcp_src($)) set packetSize 552}

for {seti 1} {$i <= $NumSrc} {incr i} {

$ns at $startT($i) "$ftp($i) start"

$ns at $Duration "$ftp($i) stop"}

#call the finish function

$ns at [expr $Duration] “finish"

#runit

$ns run

89

APPENDIX VIII

#creat a new nsfile

set ns [new Simulator]

#open a new nam file named out and save the process
set nf [open uni.nam w]

$ns namtrace-all $nf

#open a tr file to save the process
set tf [open uni.tr w]

$ns trace-all $tf

#finish function
proc finish {} {
global ns nf tf
$ns flush-trace
#close the file
close $nf
close $tf
#show the nam file
exec nam uni.nam &

exit 0

$ns color 1 blue

$ns color 2 red

90

$ns rtproto DV

set node 5

#set the nodes

for {set j O} {$j <= $node} {incr j} {

set S($j) [$ns node]}

$ns duplex-link $S(0) $S(1) 0.3Mb 10ms DropTail
$ns duplex-link $S(1) $S(2) 0.3Mb 10ms DropTail
$ns duplex-link $S(2) $S(3) 0.3Mb 10ms DropTail
$ns duplex-link $S(1) $S(4) 0.3Mb 10ms DropTail
$ns duplex-link $S(3) $S(5) 0.5Mb 10ms DropTail
$ns duplex-link $S(4) $S(5) 0.5Mb 10ms DropTail

set tcp [new Agent/TCP/Newreno]
$ns attach-agent $S(0) $tcp

set sink [new Agent/TCPSink/DelAckK]
$ns attach-agent $S(5) $sink

$ns connect $tcp $sink

$tcp set fid_ 1

set ftp [new Application/FTP]
$ftp attach-agent $tcp
$ftp set type FTP

$ns rtmodel-at 1.0 down $S(1) $S(4)
$ns rtmodel-at 3.0 up $S(1) $S(4)

$ns at 0.1 "$ftp start"

#call the finish function
$ns at 5.0 "finish"

#run it

$ns run

91

92

APPENDIX IX

#set the parameters for the wireless channel

set val(chan) Channel/WirelessChannel hahoel type

set val(prop) Propagation/TwoRayGroundagia-propagation model
set val(ant) Antenna/OmniAntenna ftehna type

set val(ll) LL Ak layer type

set val(ifq) Queue/DropTail/PriQueue rerface queue type

set val(ifglen) 50 Faxnpacket in ifq

set val(netif) Phy/WirelessPhy gtwork interface type

set val(mac) Mac/802_11 AGItype

set val(rp) DSDV @-hoc routing protocol
set val(nn) 2 whmber of mobilenodes
setns_ [new Simulator]

set nd [open outl.tr w]

$ns_ trace-all $nd

set nf [open outl.nam w]

$ns_ namtrace-all-wireless $nf 100 100

#define the finish function
proc finish {} {

global ns nf nd

$ns_ flush-trace

close $nf

close $nd

exec nam outl.nam &

exit 0

93

set topo [new Topography]
$topo load_flatgrid 100 100

create-god $val(nn)

Configure nodes

$ns_ node-config -adhocRouting $val(rp) \
-IIType $val(ll) \
-macType $val(mac) \
-ifqType $val(ifg) \
-ifgLen $val(ifglen) \
-antType $val(ant) \
-propType $val(prop) \
-phyType $val(netif) \
-topolnstance $topo \
-channelType $val(chan) \
-agentTrace ON\
-routerTrace ON \
-macTrace OFF \

-movementTrace OFF

Provideinitial (X,Y, for now Z=0) co-ordinates for node (0) and node (1)
for {set i 0} {$i < $val(nn) } {incr i} {
set node_($i) [$ns_ node]

$node_($i) random-motion O digable random motion

94

$node_(0) set X_ 5.0
$node_(0)setY_ 2.0
$node_(0)setZ_ 0.0

$node_(1) set X_90.0
$node_ (1) set Y_85.0
$node_(1)setZ_0.0

Node (1) starts to move towards node_(0)
$ns_ at 50.0 "$node_(1) setdest 25.0 20.0 15.0"
$ns_ at 10.0 "$node_(0) setdest 20.0 18.0 1.0"

Node (1) then starts to move away from node_(0)

$ns_at 100.0 "$node (1) setdest 49.0 48.0 15.0"

TCP connections between node (0) and node (1)
set tcp [new Agent/TCP]

$tcp set class_ 2

set sink [new Agent/TCPSink]

$ns_ attach-agent $node_(0) $tcp

$ns_ attach-agent $node_(1) $sink

$ns_ connect $tcp $sink

set ftp [new Application/FTP]

$ftp attach-agent $tcp

$ns_ at 10.0 "$ftp start"

Tl nodes when the simulation ends

for {set i O} {$i < $val(nn) } {incr i} {

95

$ns_ at 150.0 "$node_($i) reset";

$ns_ at 150.0001 "stop"
$ns_ at 150.0002 "puts \"NS EXITING...\" ; $ns_thal
#stop function
proc stop {} {
global ns_ nf nd
$ns_ flush-trace
close $nf
close $nd
exec nam outl.nam &

exit 0

puts "Starting Simulation..."

$ns_ run

APPENDIX X

Define options
set opt(chan)
set opt(prop)
set opt(netif)
set opt(mac)
set opt(ifq)

set opt(ll)

set opt(ant)

set opt(x)

set opt(y)

set opt(ifglen)
set opt(seed)
set opt(tr)

set opt(nm)

set opt(adhocRouting)
set opt(nn)

set opt(stop)

set the source file path
set opt(mobility)

set opt(location)

set opt(mnode)

set opt(CommRange)

set ns_ [new Simulator];

96

Channel/WirelessChannel
Propagation/FreeSpace
Phy/WirelessPhy

Mac/Simple
Queue/DropTail/PriQueue
LL

Antenna/OmniAntenna
500 ;# X dimension of the topograph
500 ;#Y dimension of the topograph
100 ;# max packet in ifq

0.0
Simple.tr # trace file

Simple.nam ;#nam file

AODV ;#Routing table

27 # how many nodes are siradlat

500 # simulation time

"/home/simulation/simulationle/mobility080303.txt"
"home/simulation/simulatioe$/NodesPosition"
"/home/simulation/simulation_filesbile_node.txt"

"lhome/simulation/simulatidiesfiCommRange.txt"

Intialize simulator

$ns_ use-scheduler RealTime; # Real time schedular

97

set wtopo [new Topography]

create trace object for ns and nam

set tracefd [open $opt(tr) w]

$wtopo load_flatgrid $opt(x) $opt(y)

set namtrace [open $opt(nm) w]

$ns_ trace-all $tracefd

set tracefd [open $opt(tr) w]

$ns_ namtrace-all-wireless $namtrace $opt(x) $ppt(y
$ns_ use-newtrace

set god__ [create-god $opt(nn)]

set chan_1_ [new $opt(chan)]

Configure nodes
$ns_ node-config -adhocRouting $opt(adhocRouting) \
-IIType $opt(ll) \
-macType $opt(mac) \
-ifqType $opt(ifq) \
-ifgLen $opt(ifglen) \
-antType $opt(ant) \
-propType $opt(prop) \
-phyType $opt(netif) \
-channel $chan_1_ \
-energyModel "EnergyModel” \
-initialEnergy 100 \
-rxPower 0.3\
-txPower 0.3\
-topolnstance $wtopo \

-agentTrace ON\

98

-routerTrace ON\

-macTrace OFF

#set the communication range
$opt(netif) set RXThresh_ 1.20174e-09

set nnl [expr $opt(nn)]

for {set i 0} {$i < $nn1} {incr i} {
set node_($i) [$ns_ node]

#disable random motion

$node_($i) random-motion 0

}

setn O;

#read from the sour ce file which has been defined
source $opt(location)

source $opt(mnode)

$node_(25) color "red"
$node_(25) shape "box"
$node_(25) set X_300.0
$node_(25) set Y_ 100.0
$node_(25) set Z_ 0.0

set ¢ 22200

99

for {seti 25} {$i < 27}{incril}{

Create a TCPTap Agent
set tap($i) [new Agent/Tap];
set ipnet($i) [new Network/IP]; # Create atNork agent

Sipnet($i) open writeonly

$tap($i) network Sipnet($i); # Connaetwork agent to tap agent
$ns_ attach-agent $node_($i) $tap($i); tadkt agent to the node.

}

set k O;

for {set i $i} {$i < [expr Popt(nn)+27]} {incri B {
set p [expr $c+$K]

Configure the Entry point

set tap($i) [new Agent/Tap]; # Create tl@&Tap Agen
set bpf($i) [new Network/Pcap/Live]; # Create b

set dev [$bpf($i) open readonly eth0]

$bpf($i) filter "src 130.233.125.158 and src @hpt

$tap($i) network $bpf($i); # Connbégf to TCPTap Agent

$ns_ attach-agent $node_($k) $tap($i); taakt TCPTap Agent to the node
incr k;

}

source $opt(mobility)

source $opt(location)

100

for {set i O} {$i < $opt(nn)} {incr i} {
$ns_ initial_node_pos $node ($i) 20

Tell nodes when the simulation ends
for {set i O} {$i < $opt(nn) } {incr i} {
$ns_ at $opt(stop).000000001 "$node_($i) reset"
}

tell nam the simulation stop time

$ns_at $opt(stop).000000001 "$ns_ halt"

#"puts\"NSEXITING...\" ; $ns_halt"
puts "Starting Simulation..."

$ns_ run

