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SYMBOLS AND ABBREVIATIONS 

A Weight coefficient for sum of absolute error in fitness function 

A, B, C Probability areas for Gaussian distribution 

B Weight coefficient for max error in fitness function 

C Weight coefficient for final error in fitness function 

C(s) Controller transfer function 

D Derivative parameter of PID controller 

d Differential operator sign 

E(s) Control error, Laplace domain 

e, e(t) Control error, time domain 

e∞ Final error 

emax Maximum error 

EVD Extreme Value Distribution  

EVT Extreme Value Theory 

eΣ  Sum of absolute error 

Fn Probability distribution function 

fn, fn(X) Denotation of probability density function  

FPR False Positive Rate 

GA Genetic Algorithm 

GMM Gaussian Mixture Model 

GMVC Generalized Minimum Variance Control 

H(s) Process transfer function 

I Integration parameter of PID controller 

IT Information Technology 

j Imaginary unit 

k Threshold in novelty detection 

Kd Proportional coefficient of PID controller for derivation 

Ki Proportional coefficient of PID controller for integration 

Kp Proportional coefficient of PID controller 

L Laplace operator 

MEVS Multivariate Extreme Value Statistics 

nanorm Set of abnormal 104 PID parameters for testing the analyser 

nnorm Set of 104 normal PID parameters for testing the analyser 
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nt Set of 104 normal PID parameters for training the analyser 

omax Maximum overshoot 

P Proportional parameter of PID controller 

P Probability 

PCA Principal Component Analysis. 

PD Proportional and Derivative 

pdf Probability density function  

PI Proportional and Integral 

PID  Proportional, Integral and Derivative 

s Laplace variable 

t Time 

Td Derivation time 

Ti Integration time 

TPR True Positive Rate 

ts Settling time 

U(s) Input to process Laplace domain 

u(t) Input to process (control variable) 

VMM Variational Mixture Model 

X, Xn Test data (example) 

Y(s) Output from process, Laplace domain 

y, y(t) Output from process, time domain 

Ysp(s) Setpoint, Laplace domain 

ysp, ysp(t) Set point, time domain 

σ Decay ratio 

ω Angular frequency 
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TIIVISTELMÄ 

PID säätäjän toimivuus riippuu siitä miten hyvin sen parametrit on konfiguroitu. Säätä-
jän konfigurointi ei ole helppoa. Siihen käytetään kokemusta ja intuitiota tai automaatti-
sia ohjelmia. Esitämme tavan arvioida säätäjien konfiguroinnin laatua tilastollisin mene-
telmin. Metodi perustuu usean muuttujan ääriarvojen tilastollisiin ominaisuuksiin. Tässä 
työssä esitetään myös analysaattori joka käyttää tätä tilastotieteellistä teoriaa hyväksi. 
Analysaaattori vertaa uusia PID konfigurointeja tunnettuihin PID konfigurointeihin, jot-
ka ovat todettu hyvin toimiviksi. Tämä työkalu auttaa ongelmien torjunnassa PID säätä-
jien konfiguroinnissa. Tavanomaiset epänormaaliuuksien havaintamenetelmät perustu-
vat Gaussin jakaumaan. Työssä esitettävä analysaattori käyttää vaihtelevaa jakautumaa. 
Siksi sen käyttäminen teki datan sovittamisen jakautumaan helpommaksi käyttäjälle. 

Työn yksi osa oli PID konfiguraatioiden luominen, joilla testaisimme analysaattoria. 
Tähän tarvitsimme sekä hyvin että huonosti säädettyjä konfiguraatioita. Molemmista 
tapauksista tarvittiin useita esimerkkejä. Geneettinen algoritmi nähtiin tähän työhön 
erittäin sopivana työkaluna. Geneettisiä algoritmeja on ennenkin käytetty sekä PID sää-
täjien konfigurointiin että testidatan luomiseen. Geneettinen algoritmi ohjelmoitiin Mat-
labissa. PID säätäjiä simuloitiin Simulink mallilla, jota käytettiin hyvyysfunktiossa.  

PID konfiguraatiot simuloitiin ja niiden askelvasteen kuvaajat piirrettiin. Parhaimmat 
geneettisen algoritmin löytämät konfiguraatiot tuottavat vähän virhettä tavoitearvoon 
verrattuna. Virhe näytti myös kasvavan geneettisen algoritmin antaman hyvyysluvun 
laskiessa. Testiparametreille käytettiin kolmea kriteeriä: maksimiylitys, asettumisaika 
sekä eron itseisarvon summa. Jokaiselle kriteerille annettiin raja-arvo. Konfiguraatio 
joka ylitti yhdenkin näistä luokiteltiin epänormaaliksi. 

Analysaattorin toimintaa arvioitiin näillä testikonfiguraatioilla. Analysaattori opetettiin 
ensin normaaleilla konfiguraatioilla ja sen jälkeen testattiin ensin joukolla normaaleja 
konfiguraatioita ja sitten joukolla epänormaaleja parametreja. Tuloksista löytyi 2 väärää 
hälytystä molemmissa tapauksissa 104:stä mahdollisesta. Tämä antoi 98%:n tarkkuu-
den, joka on erittäin korkea epänormaalisuuksien havaintamenetelmälle. 

AVAI�SA�AT: Ääriarvo tilastotiede useilla muuttujilla, PID säätäjä, testidatan luonti, 
geneettinen algoritmi, vaihteleva jakautuma. 
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REFERAT 

Prestanda av PID kontrollers är beroende av deras inställningar. Det är inte enkelt att 
konfigurera en PID kontroller och flera använder deras erfarenhet och intuition, eller 
automatiska program för konfigurering. I det här arbetet presenterar vi en metod för att 
testa kvaliteten av PID kontrollers med hjälp av statistiska metoder. Metoden använder 
sig av extremvärde statistik med flera variabler. Med analysatorn som presenteras i det 
här arbetet kan man jämföra nya PID inställningar till de som man vet har fungerat väl. 
Konventionellt använder man Gaussisk fördelning i extremvärde statistik. Analysatorn i 
det här arbetet använder en varierande fördelning i stället. Det här gjorde det enklare för 
användaren att anpassa data till fördelningen. 

En del av det här arbetet var att producera PID parameter konfigurationer för att testa 
analysatorn med. Vi behövde flera exempel av så väl bra inställda parametrar som dåligt 
inställda parametrar. Vi såg att en genetisk algoritm var det perfekta verktyget för det 
här jobbet. Genetiska algoritmer har förr använts för både generering av test parametrar 
och för inställning av PID kontrollers. Genetiska algoritmen var skriven i Matlab. PID 
kontrollerna simulerades med hjälp av en Simulink modell. 

PID konfigurationerna simulerades och graferna av deras stegsvar ritades. De bästa kon-
figurationerna enligt genetiska algoritmen hade bara litet fel jämfört med målvärdet. Fe-
let mellan målvärde och utmatning steg enligt godhetsvärdet som genetiska algoritmen 
hade givit. Vi gav tre kriterier för varje konfiguration som vi testade analysatorn med: 
max översläng, insvängningstid och summan av absoluta fel. Alla dessa kriterier fick ett 
gränsvärde. Om en konfiguration översteg endast ett av de här gränsvärdena så blev 
kontrollern klassad som onormal. 

Analysatorns prestanda undersöktes med hjälp av dessa konfigurationer. Först var ana-
lysatorn tränad med en grupp av normala parametrar. Efter det var den testad med en 
grupp normala och en grupp av onormala parametrar. Resultaten av båda grupperna gav 
två felbedömda konfigurationer ut av 104 möjliga. Det här betydde att analysatorns pre-
cision var 98%, vilket är ett högt värde för en extremvärde-statistik-applikation. 

�YCKELORD: extremvärde statistik med flera variabler, PID kontroller, test data ge-
nerering, genetiska algoritmer, varierande fördelningar. 
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ABSTRACT 

PID controllers performance depend on how they are tuned. Tuning a controller is not 
easy either and many use their experience and intuition, or automatic software for tun-
ing. We present a way to test the quality of controllers using statistics. The method uses 
multivariate extreme value statistics with novelty detection. With the analyser presented 
in this paper one can compare fresh PID parameters to those that have been tuned well. 
This tool can help in troubleshooting with PID controller tuning. Conventional novelty 
detection methods use a Gaussian mixture model, the analyser here uses a variational 
mixture model instead. This made the fitting process easier for the user. 

Part of this work was to create PID parameter configurations to test the analyser with. 
We needed both well tuned and poorly tuned parameters for testing the algorithm, as 
well as several examples of both cases. A genetic algorithm was seen as a tool that 
would meet these requirements. Genetic algorithms have previously been used for both 
test parameters generation and PID controller tuning in many applications. The genetic 
algorithm was written in Matlab. The reason for using Matlab is that the genetic algo-
rithm uses a Simulink model of a PID control process in its fitness function.  

The parameters were simulated and plots of their step response were drawn. The best 
configurations according to the genetic algorithm had little error compared to the refer-
ence value. The error seemed to rise according to the index of goodness used by the ge-
netic algorithm. We set three criterions on the parameters: maximum overshoot, settling 
time, and sum of absolute error. Each of these criterions had a threshold. Each parame-
ter configuration that crossed at least one of these thresholds were classed abnormal.  

The performance of the analyser was assessed with these parameters. The analyser were 
first trained with a set of normal parameters, then tested with a set of normal and a set of 
abnormal parameters. The results showed 2 false alarms in both cases out of 104 possi-
ble. This gave us an accuracy of 98%, which is a very high one for a novelty detection 
method. 

KEYWORDS: Novelty detection, multivariate extreme value statistics, PID controller, 
test data generation, genetic algorithms, variational mixture model. 



 13 

1. INTRODUCTION 

PID controllers provide many important features, such as proportional feedback, regula-

tion of steady state control error and future error predicion by derivation. This is why 

PID controllers are popular controllers in industry today. It takes only three parameters 

to configure a PID controller. Still, tuning them requires much knowledge and experi-

ence. Their performance may vary greatly depending on how they are configured and 

the parameters can be chosen from a wide range. Also knowing what to measure 

according to the goal is crucial. This is why tuning a controller is not easy and many 

applications have had poorly tuned controllers over the past years. (Åström & Hägglund 

1995: 1-2) 

According to Blevins (2012: 1-2) a research showed that factories which put effort into 

analysing their use of PID controllers improved significantly their production. Such re-

searches concerned monitoring tools, personnel, single processes and overall use in the 

whole factory processes. Because of the popularity of PID controllers, new methods for 

tuning and other tools are constantly being investigated. (Blevins 2012: 1-2) Over the 

past 10 years the controllers have gotten the attention of academics (Åström & Häg-

glund 2001: 1163). 

During that time PID controllers have taken huge leaps in development. The develop-

ment has focused on automatic tuning methods, adaptive control, monitoring and mak-

ing the controllers in such a way that the user does not need much knowledge of con-

trollers. (Blevins 2012: 1-2) 

This thesis investigates a completely new method, where one can assess the quality of 

PID controllers before even running them in a process. This method uses a technique 

called novelty detection. University of Vaasa was investigating a completely new appli-

cation of the novelty detection method, which they called ‘PID outlier detection’. In this 

thesis we will produce an experiment for this method, analyse the results and assess 

how well the method functions. 
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The request to make this investigation came from Wärtsilä, Finland Ltd. Wärtsilä is a 

worldwide company, producing combustion diesel engine power solutions for ships and 

energy markets. They emphasize technological innovation and efficiency. Power plants 

made by Wärtsilä are based on diesel engines. Due to this, in this thesis we will mostly 

focus the outlier detection problem on diesel power plants. (Wärtsilä Ltd 2012)  

A program based on the theory for novelty detection methods had been built by Univer-

sity of Vaasa. The program takes PID parameter triplets as input. First it is trained with 

parameters classified as normal. Then it tests any other sets of parameters and gives an 

estimate of their normality. 

With the analyser presented in this work, one can predetermine PID parameter quality 

without even having to run them in a process. An analyser like this is useful for counter-

ing issues on the field, where there might be poorly tuned controllers. By being able to 

predetermine parameter quality, one can shorten the troubleshooting times.  

In this work we will use a genetic algorithm to produce PID parameters to test how well 

novelty detection works in this field. Then the results will be assessed, both the method 

used to create parameters and the analyser program. 

1.1. Introducing a state of the art method 

Novelty detection is a statistical analysis method used to determine whether data are 

normal or abnormal when compared to a set of data considered normal. The method is 

often used in jet engine, manufacturing processes, power generating facilities and pa-

tient health monitoring. The best use for the method is when examples of abnormal be-

haviour are hard to find. The method works by comparing data that are known to repre-

sent the target in its normal condition, to data which condition is unknown. Then we use 

these to assess the quality of other configurations. (Clifton, Hugeny & Tarassenko 2011: 

371). For engine health the parameters might be e.g. engine vibrations (Clifton, Hu-

gueny & Tarassenko 2009: 15). For patient health monitoring these might be heart rate, 

respiration rate, blood pressure, body temperature, etc. (Clifton, Hugeny & Tarassenko 
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2010: 5). The goal of PID outlier detection is to be able to find out if a set of PID pa-

rameters are normal or abnormal.  

Usually novelty detection methods have used Gaussian Mixture Models (GMM) for dis-

tributions. This work presents a new way for distributing data, using a Variational Mix-

ture Model (VMM). The method was introduced in Vesterback, Bochko, Ruohonen, 

Alander, Bäck, Nylund, Dal & Östman (2012: 405, 412). We will also explain what it 

means to use a VMM instead of a GMM, why it is better and what consequences it 

brings.  

1.2. Previous work 

1.2.1. Novelty detection and PID controllers 

Novelty detection has been used in a number of applications. According to a review of 

the method, written by Miljkovic (2010) these applications include system monitoring, 

aerospace and railroad systems, IT security applications, image processing and video 

surveillance, and even topic detection in text mining, as well as the previously men-

tioned engine and patient health monitoring systems. Several different variants of nov-

elty detection have been used in each of these applications. 

However the use of the statistical approach, using a GMM to create a probability distri-

bution when determining the novelty threshold using extreme value theory (EVT) is 

very limited. The method was introduced in Roberts 1999, where he showed using the 

EVT approach that it worked better than the previously commonly used heuristics 

method to set the novelty threshold. Later Roberts wrote another paper on the same sub-

ject in 2000. (Roberts 1999; Roberts 2000) 

However, this method is weak when used in multivariate, multimodal problems. A solu-

tion was suggested by Clifton et al. (2009). The solution was to use multivariate ex-

treme value statistics (MEVS) for these problems instead of classical EVT. The authors 

investigated these approaches to patient health monitoring and jet engine health moni-

toring in several works, for example in Clifton et al. (2010) and Clifton et al. (2009). 
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Using novelty detection to determine the quality of PID controllers is a new application 

of the method and the only existing work is Vesterback et al. (2012), which was based 

on the same research as this thesis. The same research suggested using a VMM instead 

of the conventional GMM, which is also a new development. 

Because the engine might break, if the output error is too large and it is costly to run a 

process the larger the error is, it is natural to think normal mode is when the process 

output is a reasonably small error. With this in mind, PID controllers can exhibit several 

examples of abnormal behavior. There are few examples of normal behavior, even 

fewer of optimal behavior. There are so many abnormal examples that it is easier to cre-

ate all examples of normal behavior. Since it is easier to find examples of normal behav-

ior, PID controllers are interesting topic to research novelty detection. 

1.2.2. Genetic algorithms 

The use of a genetic algorithm was to create several PID parameters that were realistic. 

These parameters would be used to test the analyser with. Since we needed both well 

tuned and poorly tuned parameters, the genetic algorithm would have to tune PID pa-

rameters. Genetic algorithms have been used for both tuning PID- and other control sys-

tems and creating test parameters for computer software. Below is described some ex-

ample works of these. 

There are several previous works on using genetic algorithms to tune PID controllers 

and other control systems. In Törmänen (1997), genetic algorithms were used for tuning 

directly the PID parameters of a controller. In Goldberg (1985) genetic algorithms were 

used in a learning classifier system for tuning parameters of a simulated natural gas 

pipeline.  

In Kwok & Sheng (1994) genetic algorithms were used to tune six PID controllers, each 

one controlling one joint of a robot arm. In the same work a method of using simulated 

annealing for the same purpose was used. The results were compared to a random 

search method and an empirical method in two experiments of following a circle and 

step motion tracking. Both genetic algorithms and simulated annealing outperformed 
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the two other methods. Out of the two, genetic algorithms slightly out performed simu-

lated annealing. 

In Mitsukura, Yamamoto & Kaneda (1999) a genetic algorithm was used as a part of a 

self-tuning PID process. The self tuning was done online, so the genetic algorithm 

found parameters for a generalized minimum variance control (GMVC) system, which 

was used to derive PID parameters.  

There are also several examples of genetic algorithms being used in producing test data 

for software. Mantere & Alander (2005) mentions uses in interface testing by digital or 

analog input, Ethernet calls and even finding out how fast users learn to use an inter-

face. Another example is Srivastava & Kim (2009), where a genetic algorithm was used 

to find vulnerabilities in software. Here the genetic algorithm outperformed exhaustive 

and local search techniques. 

In Michael, McGraw, Schatz & Walton (1997) a genetic algorithm was compared to a 

random test data generator. The methods were used to create test data for a closed loop 

fuzzy controller and an automatic pilot controller system. Also a library of 10 different 

math problems, such as bubble sort and computing the median was used to test the 

methods against. The genetic algorithm outperformed or was at least as good as the ran-

dom generator in all tests. Especially it performed better in more complex problems. 

In Mantere & Alander (2001) genetic algorithms were investigated for test image gen-

eration. The test images were created for testing different halftoning methods. It is con-

cluded that the genetic algorithm was successful in most cases. In the other cases, the 

genetic algorithm found values close to the highest value reached with a static image 

test. 

1.3. Structure of this thesis 

In chapter 2 we explain the theory behind the method used in this thesis. Novelty detec-

tion, PID controllers and genetic algorithms is presented. In chapter 3 we explain how 

the methods are modified from their typical applications and how they are used in this 
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solution. In this chapter we present the fitness function and Simulink model used in 

simulations. Also the criterions for selecting normal and abnormal parameters are pre-

sented in this chapter. 

Chapter 4 explains the setup of the experiment, presents results of the experiment and 

assesses the results. The first part presents the genetic algorithm and the parameters for 

it. The resulting PID parameters are assessed whether they are suitable for testing. We 

explain how we put together the sets for testing the analyser from the resulting parame-

ters. The second part focuses on the experiments conducted on the analyser. We present 

the results and assess the performance of the analyser. 

Chapter 5 gives an overview of the problem, gives a summary of the experiments con-

ducted and the results from them. Finally there is a discussion about results and ideas 

for future work is presented.  
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2. THEORY 

The theory for this thesis is drawn from three different areas: novelty detection, PID 

controllers and genetic algorithms. Novelty detection is the theory by which we are in-

vestigating whether it is suitable for classifying PID controllers by their normality. The 

analyser is based on this theory. 

To test the analyser we need to know beforehand if the PID controller values are normal 

or abnormal. To do this we need to simulate PID controllers, here the theory for PID 

controllers come in. A genetic algorithm is used to produce the parameters for testing 

the analyser and thus plays an essential role in this work. 

2.1. Novelty Detection 

Novelty detection is best used in an application where examples of normal behaviour 

are easily found but examples of abnormal behaviour is more difficult to find. When we 

know what are the signs of normal behaviour, we can classify the behaviour of un-

known examples. (Clifton et al. 2011: 371) 

Novelty detection uses extreme value theory, which is a method originally used in sta-

tistics and economics. The original application of novelty detection were only con-

cerned with a single variable in a two dimensional space, so they use a univariate ap-

proach. Later novelty detection began to be used in other applications, such as patient 

and engine health monitoring. In these cases we need to look at several variables, which 

is why a multivariate version of EVT has been developed. (Clifton et al. 2011: 371-373) 

First we assume a set of normal data {x1,…, xn} is independent and identically distrib-

uted. Then we assume they are distributed according to a probability density function 

(pdf) denoted fn. The pdf is a representation of the data space of possible values and is 

approximated using a mixture model, usually GMM is used. Then we set a threshold k, 

such that any test data x is considered abnormal if fn(x) < k, where k is defined using 

multivariate extreme value statistics. (Clifton et al. 2011: 372-373) 
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Now we introduce a probability distribution function Fn. With Fn we can define a prob-

ability such that if we were to draw a value from fn it would fall outside the novelty 

threshold with probability 1 – Fn. A calculation of Fn is presented in Equation (1). (Clif-

ton et al. 2011: 372-373)  

( )
( )
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]n,0]

nn ∫
−

=

f
f

f  (1) 

 

We approximate the multivariate multimodal distribution by a single Gaussian kernel. 

We do it only for the ends of fn(x), i.e. where fn is close to zero. This makes the prob-

ability distribution a univariate function. After approximation we can use extreme value 

theory for univariate data. In this case we look at the distribution of the data and find the 

areas with the most extreme densities. Here we consider the most extreme cases to be 

the ones that are the most improbable ones. That is if we took a set of sample normal 

data from fn and used it as our extreme value distribution (EVD) and put a novelty 

threshold on it. Thus any dataset which is more improbable than the EVD values will be 

considered abnormal. (Clifton et al. 2011: 372-377, 381-384; Vesterback et al. 2012: 

410-411)  

Usually a GMM has been used for data distribution. However, using this distribution 

requires stating the number of clusters. This means that when one uses the GMM, one 

has to try different numbers of clusters and evaluate how well each one fits the data. 

This is called fitting. The analyzer uses a VMM, which chooses the number of clusters 

automatically. Using the VMM means it will produce varying results. This is why one 

should still run the algorithm a few times and choose the simplest fitting model. This 

means the model with least Gaussian kernels, or clusters. This is still easier than giving 

different numbers of clusters and comparing the results. (Vesterback et al. 2012: 405, 

412)  
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2.2. PID controllers 

Process control has a wide field of applications. Different feedback control systems, in-

cluding PID controllers have uses in household appliances, industrial automation de-

vices, autopilots for airplanes, temperature control, and power plants to name a few. 

(D’Azzo & Houpis 1995: 1-6; Chen 1993: 2-7) Different control applications have ex-

isted throughout history, the first widely used control device is believed to be Watt’s 

governor in 1788, which regulated steam engines. Maxwell (1868) made his contribu-

tion for governors and control in general in his paper. However modern control began to 

be developed in the beginning of the 1900’s. Especially Black’s invention of the nega-

tive feedback loop for telephone amplifiers in his paper 1934. Negative feedback loops 

are always used in PID control systems. (D’Azzo et al. 1995: 8-12; Black 1934; Max-

well 1868; Chen 1993: 552-558, 561-563) 

PID controllers were also invented during the beginning of the 1900’s. Ziegler & Nich-

ols (1947) mentions that it was common that controllers at their time had some combi-

nations of three components: a proportional action, an automatic reset action i.e. integral 

and a predictive i.e. derivative action. These are the three components of a PID control-

ler. In this paper Ziegler and Nichols laid ground for empirical tuning rules that carries 

its authors name and is still used today. PID controllers have carried on until today; 

Mantz & Tacconi (1989: 1465) mentions them at the time being the most popular. 

Åström et al. (1995: 1) mentions them being popular and recently published Blevins 

(2012: 1) also mentions them being the most popular controller types.  

The idea of a process control system is to manipulate the input of a process so that the 

output will be the desired reference value. In this section we refer to the engine or ma-

chine being controlled as a process. Usually in control applications a negative feedback 

loop is applied, an example is presented in Figure 1. It is simply the process output 

measurement value y(t) connected backwards to influence the input value of the proc-

ess. The output y(t) will be subtracted from the desired value ysp(t) to get the error e(t). 

(Åström et al. 1995: 5-6) 
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This corrects disturbances and also changes the output when needed. If the output y(t) is 

larger than the reference value, setpoint ysp(t), the error e(t) will be negative and the 

process output starts falling. If a controller is added, it adjusts the output in such a way 

that the process will achieve the reference value faster. (Åström et al. 1995: 5-6) 

 

Figure 1. Blockdiagram of a process with a feedback loop. The process block signi-

fies the engine, y(t) is the measured output value from the process, ysp(t) is 

the setpoint, i.e. desired value for the process output. 

The relationship between y(t) and ysp(t) is determined by the process model. The units 

for y(t) and ysp(t) doesn’t have to be the same, as long as they are related. (Fröhr & 

Orttenburger 1982: 11-19) To obtain a process model one uses basic physics formulas 

to calculate the effects of the process on the outcome. Usually in linear systems these 

relationships are expressed by differential equations where the functions are functions 

of time t. The methods for control are universal and can be applied in several different 

fields, such as mechanical-, electrical-, and hydraulic systems. (Chen 1993:14-27)  

 

Figure 2. Example block diagram of a process with a PID controller in time domain. 

The PID controller block is added to signify the controller, e(t) is the error 

signal, which is the separation between ysp(t) and y(t). Between controller 

and process there is the control value u(t). 
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Figure 2 shows a simple PID controller system. The input signal ysp(t) is called set 

point, which is the desired value of the process, y(t) is the system output called process 

variable, u(t) is called control variable, e(t) is the control error, which is the difference 

between the setpoint and process variable ysp(t) – y(t). In other words, this is the error 

between the desired value and system output, which is then given to the PID controller 

for correction. (Åström et al. 1995: 5-6) 

Next we will introduce the Laplace domain before we go to look at the PID components 

more closely. Sometimes differential equations are difficult to calculate with. To make 

it easier to perform calculations on control systems, one can transform the model from 

the time domain into the Laplace domain. When the model is transformed into the 

Laplace domain, derivatives and integrals are replaced with the Laplace variable s and 

1/s. Now one can use ordinary arithmetics when calculating with these functions. 

(Kreyszig 2011: 203-204) Another use of the Laplace domain is one can find the trans-

fer function of the system and each subsystem. The transfer function is the relationship 

between input and output (Fröhr et al. 1982: 216-221). 

Equation (2) shows the Laplace transform on a time domain function and shows how 

the Laplace variable s becomes the function variable. (Kreyszig 2011: 204-205) The 

Laplace variable s is a complex number, presented in Equation (3). The symbols stand 

for decay ratio σ, and angular frequency ω. If one substitutes s with jω, one can study 

the frequency response of the system. This is why the Laplace domain is also called the 

frequency domain. (Fröhr et al. 1982: 37-39). 
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Figure 3 shows the model given in Figure 2 in the Laplace domain. Here we have taken 

the Laplace transform of each signal in Figure 2. Now one can find the transfer function 

for the system. (Åström et al. 1995: 5-6, 64-70; Chen1993: 39-44, 94-98) 
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PID stands for Proportional, Integral and Derivative. These are the three parts of the 

controller and each one has its own influence on the control system behavior. All of 

them use the control error e in some way. (Åström et al. 1995: 70) 

 

Figure 3. Block diagram of PID controller and process in Laplace domain. Now the 

functions are denoted with capital letters because they are in Laplace do-

main. The function argument s is the Laplace variable. (Chen 1993: 39-40, 

567) 

 

Figure 4. Block diagram of PID controller and Process. This Figure shows in detail 

the components of a PID controller. P-, I- and D-blocks signify the three 

components in a PID controller. Kp is the proportional coefficient, Ki is the 

integration coefficient, and Kd is the derivative coefficient. U(s) is found by 

summing all these three components. (Åström et al. 1995: 71) 

The Proportional part of the system has no time delay and reacts on the control error. It 

adds to the control value to the process by multiplying the error e with a gain constant 

Kp. (Fröhr et al. 1982: 125-129; Åström et al. 1995: 64-67) 
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The integral part is used to eliminate steady state error. The integral part has a time de-

lay depending on the integration time Ti. If the Ti is increased, the output will slowly 

creep towards the setpoint, if Ti is smaller the setpoint will often be reached faster but 

the output will oscillate more. In theory the integral part sums all the error from each 

measurement, i.e. it takes into account all the previous error, and multiplies it with a 

weight constant Ki before adding it to the control value. (Fröhr et al. 1982: 129-133, 

156-163; Åström et al. 1995: 67-69) 

The derivative component derives the input, i.e. it tries to predict future error. This is 

done by linear extrapolation and thus also has a time delay Td. The derivative part also 

multiplies the output with its own weight constant Kd. The output from these three parts 

are summed to determine the input for the process. (Åström et al. 1995: 64-70) 

Equation (4) presents the PID controller equation in time domain, where coefficients Kp, 

Ti, and Td are presented in this Equation. Equation (5) and (6) presents how these are 

related to Kp, Ki and Kd. These are integration coefficient and derivative coefficient. One 

can usually calculate Ki and Kd with the formulas given in Equations (5) and (6). To 

make things simple we will use only Kp, Ki and Kd. We will also refer to them as P, I 

and D respectively when we speak of them as PID controller parameters. Equation (12) 

presents the transfer function of a PID controller, which is the Laplace transform of the 

time domain representation. (Åström et al. 1995: 64, 70-72) 
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(Åström et al. 1995: 64, 70-72) 

Equation (12) presents the PID controller equation in the Laplace domain (Åström et al. 

1995: 70). To get from Equation (4) to Equation (12), one has to apply the Laplace 

transform on Equation (4). The Laplace transforms for integrals and derivatives are well 
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defined and presented in Equations (7) and (8) respectively (Kreyszig 2011: 211-213). 

In the applications of this work the initial value u(0 s) will always be 0, because we use 

these functions in simulations, which start at time t=0. First we multiply Kp into the pa-

renthesis of Equation (4) to get to Equation (9). Then we use Equations (5) and (6) on 

Equation (9) to get Equation (10). Now we apply the Laplace transform on both sides. 

The Laplace transform mainly uses integration, which is linear, so we can apply it sepa-

rately on each of the components, as presented in Equation (11). When we make the ap-

propriate transforms on Equation (11), using Equations (7) and (8) in the process, we 

get Equation (12).  
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With the transfer function of a system one can find out whether the system is stable. A 

system is stable when a finite input produces an output which is a finite value when 

time approaches infinity. An analytical way of investigating stability is studying the sys-

tem transfer function. If all the poles of the transfer function are in the left half complex 

plane, the system is stable. That is all the real parts of the roots are less than zero. (Chen 

1993: 125-129) 
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Controller performance depends on the tuning of the controller. There are a number of 

ways to tune a controller. Most of them are based on sets of empirical rules, others are 

analytical. Today though, lots of controllers come with automatic tuning functions 

(Åström et al. 1995: 120-121, 134-164, 234) and there are also many automatic tools to 

help tuning (Mazeda & de Prada 2012: 1), e.g. Matlab having many of them 

(MathWorks 2012a). Another example of a tuning tool is IFTtune, which you can read 

about in Mazeda et al. (2012). 

The quality of the PID controller and the whole system is measured by the process out-

put with respect to the reference value. There are several different approaches and char-

acteristic values one can measure to judge the quality of a controller. When deciding 

what values one wants to measure and/or calculate, one should think about the goal of 

the controller and system one uses to judge a controller. Typical goals are attenuation of 

load disturbance, sensitivity to measurement noise, robustness or setpoint following. 

The output can be measured in different ways. One is in time domain, when one studies 

the time response. The other one is the frequency response, which is studied in the 

Laplace domain. In this work we will focus on the time domain. (Chen 1993: 195-197, 

270-272) What we will investigate is the transient and steady state behaviour of the con-

troller. Transient behaviour happens when the input value changes. This will result in an 

error between the reference value and output, which will be corrected by the controller 

with a time lag. If the error isn’t corrected in a finite time, it is steady state error. (Fröhr 

et al. 1982: 20-24) When measuring the transient output one usually looks at how well 

the output follows the setpoint. (Chen 1993: 195-197) 

This method is called setpoint following, where we look at the error between the two 

signals. After choosing the test function, we are presented with choices between differ-

ent performance criterions. Examples of different criterions that can be used is pre-

sented in Figure 5. (Åström et al. 1995: 127-129) 

When one has decided the goal, there are a number of criterions one can look at when 

assessing the quality of a controller. In the case of setpoint following some examples 

are: rise time; the time it takes for the signal to reach the setpoint, settling time; the time 

it takes before the signal reaches a certain threshold within the setpoint, attenuation; ra-
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tio between two spikes following each other also, overshoot; the places where the out-

put exceeds the setpoint, and the sum of absolute errors; is the integral of the absolute 

value of the difference between the output and setpoint functions. These examples are 

also presented in Figure 5. (Åström et al. 1995: 121, 127-129) Last but certainly not 

least is stability. Stability is a very important criterion because unstable systems might 

wear out faster over time or even break, because of a single change in the reference 

value. (Chen 1993: 125) 

 

Figure 5. Different criterions for evaluation of a PID controller with step response. 

The error between setpoint and output is marked with the gray area.  

 

Figure 6. Examples of different step functions that can be used as reference value 

ysp(t). In image a) ysp(t) = 1 after t = 0 s, in b) ysp(t) = t and in c) ysp(t) = t2. 
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Another important choice before simulation is the choice of test function. A test func-

tion is a typical input values, which will be used as reference value ysp(t) when simulat-

ing. Some examples of test functions are the step function, ramp function and accelera-

tion function, all of them presented in Figure 6. Choice of step function should be made 

according to what the probable reference value will be in the practical application. 

(Chen 1993: 138-141) 

2.3. Computational intelligence 

Just as many other optimisation methods, genetic algorithms work by adjusting current 

values to move towards more optimal solutions on the cost surface. With genetic algo-

rithms, adjusting is based on statistical theory. The algorithms work with both continu-

ous and discrete values. They also use only an objective cost function, which doesn’t 

need derivatives of the cost function or other auxiliary information, but only the good-

ness values of the solutions.  

Cost surface is the outcome of all possible values from the cost function, also called pa-

rameter space. Cost surfaces varies between high and low spikes. High spikes can be 

thought of as hills and low spikes as valleys. In minimum seeking algorithms the aim is 

to find the lowest spike. A usual problem with optimization algorithms is that the deep-

est valley found might not be the lowest point on the whole surface. The lowest point on 

a valley is called the local minimum or optimum, while the lowest point on the whole 

cost surface is called the global minimum or optimum. The same applies in reverse for 

maximum values. Many optimization methods often get stuck in local optimum.  

Optimisation algorithms usually have a cost function and the goal is to find the parame-

ters that produce the optimal outcome for that cost function. In the field of genetic algo-

rithms, these are usually called fitness functions. There are other optimisation methods 

as well, like trial and error, brute force and analytical, which uses calculus on a cost 

function. Optimization problems also differ whether they are discrete or continuous, 

static or dynamic, single or multiple variable. Choice of optimization method should be 

chosen according to the problem. (Goldberg 1989: 2-7, 10, 75-76, 202-204) 
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2.3.1. Genetic algorithms 

A genetic algorithm is an optimisation method which mimics the evolution process of 

nature. The idea was developed by John Holland and his colleagues over a the 1960s 

and –70s, and had been proven robust even in complex search spaces both theoretically 

and empirically. (Goldberg 1989: 1-2; Holland 1992: 66-67, 71-72)  

The advantage of a genetic algorithm includes that it simultaneously searches a large 

range of the cost surface, can deal with problems with a large number of variables, can 

analyse complex cost surfaces, works on multimodal search spaces and, can give a set 

of optimal values instead of only one solution. However genetic algorithms is not the 

best method for all problems. E.g. if auxiliary information, such as derivatives are easily 

attainable, the genetic algorithm might perform worse than solutions designed for the 

particular problem. (Goldberg 1989: 7-9, 15-20; De Jong 2006: 6-19) 

The most basic idea of genetic algorithms is combining pieces of different ideas or con-

figurations, the so called building blocks, that show good potential. In addition to com-

bining ideas the algorithm uses an operator that slightly changes the configuration, 

called the mutation operator. The best of these new genes are selected and new configu-

rations are created out of these in the same manner.  

The reason why this works is, when repeatedly combining parts of good solutions and 

always selecting the best out of those, some of the solutions which show good results 

will have more copies in the population. Also the top solutions can be different, but 

some of them will have similarities, i.e. part of the configurations have the same value, 

this is called implicit parallelism. The partial configurations are called building blocks, 

or schemata. The best building blocks getting more representation is called them getting 

more market share growth and the phenomenon is called the building block hypothesis, 

according to Goldberg (2002: 7) and De Jong (2006: 192-199) this was presented in 

Holland (1975).  

There is no need for separate bookkeeping on which building blocks are good or bad. 

We can be sure that the best building blocks get market share growth because the best 

solutions come from certain regions in the search space and thus the best selected will 
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have some similar parts. This will cause the genetic algorithm to converge towards local 

optimums. New local optimums can be found through the combination of building 

blocks. The neighborhood is explored better with the mutation operator. The mutation 

operator also ensures there’s no important genetic information lost during the way. This 

prevents premature convergence, where the algorithm converges fast towards a few lo-

cal optimums without exploring the cost surface thoroughly. (Goldberg 1989: 6-14, 18-

23; Goldberg 2002: 3-6) 

2.3.2. Genetic algorithm terminology 

A genetic algorithm is used to create parameters of PID controllers in this thesis. There-

fore it is important to know some of the terminology and concepts of genetic algo-

rithms.  

Individual, chromosome, gene, fitness value 

An individual in a genetic algorithm is one possible solution to the problem. Individuals 

can also be called chromosomes or a point on the cost surface. One individual contains 

one solution to the problem. These values are called genes. In the case of the PID con-

trollers an individual can consist of three positive integer values P, I, and D. 

Each individual also has a fitness value. The fitness value measures the goodness of one 

solution on the cost surface. When an individual has a fitness value, the individual can 

be compared with other individuals and they can be ranked. (Goldberg 1989: 10, 21) 

Conventionally configuration parameters for chromosomes have been encoded with bi-

nary strings or real values. Both of them have strengths and weaknesses as well as dif-

ferent ways one can program the algorithm with. With binary encoding one can only use 

discrete values. Also binary numbers can produce redundant values. E.g. representing 

the number 18 in binary numbers would require 5 digits but if 18 is the maximum value 

for a parameter, numbers 100112-111112 will not have anything to represent. Strengths 

of binary coding include that it can produce entirely new numbers in crossover, depend-

ing on the crossing points.  
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Binary representation uses a low cardinal alphabet; only 1’s and 0’s are used to repre-

sent values. In alphabets with higher cardinality one is forced to use higher population 

sizes to get all the different alphabet members represented. Also binary representation 

supports the so important implicit parallelism better. (Herrera, Lozano & Verdegay 

1998: 276-277) 

Real valued representation doesn’t have to be decoded for fitness calculation and thus 

saves processing time. It is found that this is more useful for problems with continuous 

values requiring precision. Also more useful when the parameters can have many dif-

ferent values and the binary representation of a chromosome would get very long. 

(Herrera et al. 1998: 281-282, 287-300) 

Allele, schemata, building blocks 

An allele is a genetic trait or characteristic. For example blue eyes is a trait. An allele 

can be the value for a parameter. In the case of PID controllers, the value 5 for the P-

parameter is a characteristic of that individual.  

A schemata is similar configuration for an individual. Let’s say we have chromosomes, 

which have five binary numbers as their parameters. Two of these individuals could be 

11001 and 11110. These individuals have the same schemata of 11***, the stars in this 

example are any value. Also schemata can be spread over the chromosome, e.g. 01110 

and 01010. These have the common schemata of 01*10. At the same time they have the 

common schemata of 0***0 and *1*1* among others. Building blocks are short and 

highly fit, that survive over generations. They get combined with different building 

blocks and this way gets more market share growth. (Goldberg 1989: 21, 40-41)  

Population 

The population is a group of individuals. In this work we usually refer to the current 

generation by ‘population’. The number of chromosomes in a population is usually set 

at the beginning of the genetic algorithm. (Goldberg 1989: 60-62) It is known that the 

quality of the following populations correlate on the first population (Alander 1991: 

1318; Goldberg 2002: 114). 
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Generation, initial population 

A generation starts from selecting individuals according to their fitness value from the 

current population. Then the next step is to create new individuals by recombining 

genes from two or more individuals, in a process called crossing. The next step is muta-

tion where we explore the area around an individual by tweaking its genes. Then comes 

ranking of individuals, using the fitness function. At this stage we have a completely 

new population than before we started selecting. This is what we call the new genera-

tion, which starts from the selection step over again. (Goldberg 1989: 15-18) 

The first generation is also called the initial population and is usually generated ran-

domly. Another possibility is to give it ready made chromosomes, which reside in areas 

where one assumes the best solutions to be. (Alander 1991: 1313,1316) 

Fitness function, fitness landscape 

Fitness function is the formula which the genetic algorithm uses to calculate the fitness 

value for each individual. The formula is decided by the programmers according to what 

they want to analyse. (Goldberg 1989: 10-11; Goldberg 2002: 3). For easier thought, the 

fitness function can also be called fitness landscape. The performance of the genetic al-

gorithm depends highly on the fitness landscape. (Alander, Zinchenko & Sorokin 2004: 

2933-3934) 

A genetic algorithm mimics natural selection. In nature the environment often decide 

what species and what individual traits will be preserved. The ones that are best at cop-

ing with the environment survive. (Goldberg 2002: 3, 31-37) In the same way it is also 

important to choose the right criterions, because they shape the fitness landscape. If 

chosen correctly the algorithm will output chromosomes with desired values. (Alander 

et al. 2004: 2934).  

Selection 

Selection is one operator in the genetic algorithm. When the individuals of a generation 

have been ranked, the program will select a number of them. The ones not selected will 

be discarded, and the ones selected will “survive” to the next generation. There are 
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many ways of selecting individuals. Some of the selection methods allows for some of 

the worse individuals to survive. (Goldberg 2002: 3-4) This is to keep the population 

diverse, though it is shown in Mantere (2006: 66) that this works poorly. 

One category is stochastic selection methods, where each individual is assigned a prob-

ability of being selected. The probability is in accordance to the individuals fitness func-

tion in relation to the fitness of the population. From here a number of individuals are 

selected randomly. Examples of proportional selection methods are roulette selection 

and stochastic universal sampling.  

Then there is deterministic selection methods. An example of this is elitism, where the 

topmost individuals are selected and copied until the population is filled. (De Jong 

2006: 54-55) 

Crossing 

Crossing is one operator where one combines parts of well fit individuals. The aim of 

crossing is to find new combination of parameters leading to local optimums. Through 

selection one can also find new local optimums when using binary encoding. This is 

because one can split up the parameters in bits. Then if the parents differ much, their 

offspring can also differ a lot from both parents.  

Parent 1   Child 1 

P1  P1 

I1  I1 

D1 D2 

  

Parent 2 Child 2 

P2 P2 

I2 I2 

D2 

 

D1 

Figure 7. Example of how traits are passed on between chromosomes in uniform 

crossover. In this case we use P, I, and D as parameters as genes. 

Crossing is done after the survivors of the previous generation have been selected. Usu-

ally two individuals are selected by random to become parents of two new individuals. 

Then statistically genes are selected from both parents randomly. These genes are com-

bined to create a new individual and the other halves of the parents are used to create 
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another individual. Often two parents with the same set of genes or two very close to 

each other are not allowed to cross. This is another rule made in order to keep the popu-

lation diverse.  

There are also other ways of crossover. If the individual is coded as a binary string, the 

parents can give single binary values. Also the binary strings of chromosomes can be 

divided into groups of bits. Then the parents give away a number of their groups to their 

children. An example is shown in Figure 8.  

Parent 1  Parent 2 

1111 0000 1111  1010 1010 1010 

 

  

 

      

      

      

 

1111 1010 1111  1010 0000 1010 

Child 1  Child 2 

   

Figure 8. The change of traits when using binary coding. The change is made in cer-

tain break points. This example uses 2-point crossover. 

A concern with crossing might be how it affects building blocks. In actuality it doesn’t 

affect building blocks much unless the building blocks are far from each other. E.g. if a 

building block like 1***1* is more likely to be separated than a building block like 

11***. (Goldberg 1989: 12- 20; Goldberg 2002: 3-5) This is used in genetics to map 

traits into chromosomes or distance measurements, and is called genetic linkage. 

(McClean 1997) 

Mutation 

The mutation step occurs once for every generation. In the mutation step the parameters 

of randomly selected chromosomes are slightly modified. When programming bits, the 

bits are chosen randomly from all bits of the whole population. When programming 

with real numbers, the mutated individual is first chosen, then one or more of its genes 

are adjusted by a random positive or negative number. The interval of change is given 

by the programmers at the beginning, usually the number is small. How many individu-

als at each generation are mutated is decided randomly according to a mutation percent-

age set by the user. Mutation rate should be set low, because then it doesn’t affect build-
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ing block growth. This is because this is not the purpose of mutation in the algorithm, 

but to keep around some information that might be important.  

The use of the mutation step is that it helps searching a larger area of the cost surface by 

exploring the neighborhood of the local optimum where the point is located on the cost 

surface. If the change is positive, the area will be explored more when the individual 

gets to mate. (Goldberg 1989: 13-20; Goldberg 2002: 4-6) 

2.3.3. The genetic algorithm 

Now that we know the basic terms of a genetic algorithm, we can take a look on the ba-

sic loop of the algorithm in more detail: 

 

1. Generate initial population. 

2. Calculate fitness. 

3. Selection. 

4. Crossover. 

5. Mutation. 

6. Repeat from step 2 until max number of generations are 

reached or a threshold fitness value is reached. 

 

The first step is to create the initial population. Then the fitness is calculated for each 

individual. After that the individuals are ranked according to their fitness value. This is 

for the selection step, where the survivors of the generation are chosen, where either the 

best fitness value survives or the ones with a better fitness value gets better chances at 

surviving.  

Next is crossover, where the survivors mate and have offspring based on their own 

genes. After crossing comes mutation, where a certain percentage of the survivors get 

their genes modified. The modification is usually not large and is done on one of the 

genes of the individual at hand.  
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After these steps lots of new individuals have been created and some of the old popula-

tion have been selected to stay in the population. Now we have a completely new popu-

lation which we call the new generation.  

From here the genetic algorithm loop starts. The first thing done with a new generation 

is that we calculate the fitness values for the individuals. Then the algorithm goes 

trough all the same steps and goes back to calculating fitness. The loop is iterated a 

number of times until a satisfactory fitness value has been reached or until a set number 

of generations have been reached.  

(Goldberg 2002: 2-4) 
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3. METHODOLOGY 

A method for predetermining PID controller quality was to be investigated. The method 

uses novelty detection with MEVS, to classify PID configurations without having to run 

them in the process. With novelty detection one has to define normal and abnormal be-

haviour. (Vesterback et al. 2012: 404-405) With PID controllers one is usually con-

cerned about the error between the reference value and process output, and stability. 

The first one can be calculated with transient response. For the second one, investigat-

ing transfer functions is one way to determine stability. (Åström et al. 1995: 5-10) From 

this it was determined that normal would be a controller that follows well the reference 

value, with stability as another criterion. 

To test the analyser properly we would need a bunch of parameters of varying quality. 

Part of the goal of this thesis was then to create PID controller parameters for testing the 

analyser. The well tuned parameters would be used as normal parameters to train the 

program. Then we would have another set of normal parameters to see how many of 

those it would erroneously classify as abnormal. Then the last set would be a set of ab-

normal parameters. This would be used to see how many of those the analyser errone-

ously classify as normal. After this we can calculate the accuracy of the analyser. 

We focused on PID controllers. PI or PD controllers should be treated separately from 

PID controllers because of having one dimension less. The results would make no sense 

if these were to be mixed together.  

3.1. Genetic algorithms and criterions used in parameter selection 

To create several PID configurations of varying quality, it would be good to have a pro-

gram come up with them randomly instead of trying to tune them by hand. One is a ran-

dom number generator. There are a few problems with a random number generator; one 

is that it would not necessarily come up with stable parameters, the other reason was it 

would come up with parameters that normally wouldn’t even be considered and lastly it 

would not necessarily come up with any well tuned configurations. 
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A genetic algorithm was used to create a group of parameters overall good according to 

an index of goodness presented later. After this we would use a second set of criterions 

to define them as normal or abnormal. We divide them into three sets: training, normal 

test, and abnormal test set. When we had the parameters we would test them in the ana-

lyser. Then we would see if it can be used in this manner to assess PID controller qual-

ity. 

Genetic algorithms was well suited for the task at hand because it would produce a list 

of parameters, not just one. It could come up with well tuned parameters for the task, as 

well as poorly tuned ones. The parameters would be realistic and the program could be 

made so that it accepts only stable parameters. The program would also come up with 

many parameters, of which many would be of good and bad quality. From this set we 

could choose the most interesting parameters for testing.  

Even though genetic algorithms use random number generators throughout the whole 

session, it is more intelligent than pure random number search generators. This is be-

cause most of the new random values are based on the best values from the previous 

generation. Random number generation is only used to guide the decision making proc-

ess (Goldberg 1989: 10). 

3.1.1. Fitness function 

Every genetic algorithm has a way of ranking its individuals. This is done in the fitness 

function according to a formula. The genetic algorithm would be used in this work to 

come up with a set of overall good parameters. In the fitness function we used Simulink 

to simulate the PID controller. The unit step function was used as input. 

The output would be used in a formula to calculate fitness. The formula was chosen ac-

cording to the goal of creating overall good parameters. A similar function was used in 

the Törmänen (1997), where the genetic algorithm combined with fuzzy logic was em-

ployed to configure PID controllers. This function produced good results to find rea-

sonably good parameters in that work. The function is presented in Equation (13)  

(Törmänen 1997: 32). 
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1

1

max +×+×+× ∞Σ CBA eee
 (13)

 

A, B and C in Equation (13) are weight coefficients. They were chosen by Törmänen 

(1997: 37) as follows: A = 0.02, B = 100 and C = 1. In other words we used three crite-

rions to calculate fitness, each one with a weight on them: sum of absolute error eΣ, 

maximum error emax, and final error e∞. Since our genetic algorithm has a single fitness 

function we take a weighted mean from all of these values. An example of the criterions 

is visualized in Figure 9. An other, more complicated option would have been to use 

Pareto optimization, which optimizes multiple objectives on a Pareto optimal front 

(Goldberg 1989: 197-201). We chose to follow Törmänen’s example for of a more sim-

ple application. 

The criterions Törmänen used are also mentioned in many works as good ways of esti-

mating performance of a PID controller (Åström et al. 1995: 127; Haugen, Fjelddalen, 

Dunia & Edgar 2007: 8-12). eΣ gives an indication of the stationary error (Åström et al. 

1995: 128). The emax is interesting because if it is too high it might break the machine 

operating the process (Haugen et al. 2007: 8-9), while e∞ also indicates the stationary 

error. emax is also an indicator of how well the process reacts to change and eΣ is an indi-

cator of response times. 

The stability of the PID controller was also important; there is no sense in trying out un-

stable ones in the analyser. This was the fourth criterion. Any unstable controller con-

figuration would be discarded by the genetic algorithm automatically.  

In section 2.2 we stated that the test function should be chosen according to the practical 

application. We chose the unit step function was used as reference value, because it tests 

the system for sudden changes in setpoint or disturbances. It is also the easiest to use 

because it only needs a starting and finishing value. Any test function could have been 

used, as long as the same function was used to evaluate each controller. (Fröhr et al. 

1982: 22-23) 
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Figure 9. Step response of criterions used in our fitness function. The step function is 

the straight line at point 1 on the signal axis, the process output is the curv-

ing line. The gray area is the error between output signal and reference sig-

nal. emax is found by finding the largest deviance of the output and reference, 

on the image this is either one of the dots on the output signal. eΣ is found 

by calculating the surface gray area. e∞ is found by taking the absolute value 

of the separation between reference value and the output signal. 

3.1.2. Selecting normal and abnormal PID parameters 

After the genetic algorithm had produced parameters for us we would use a second set 

of criterions for classifying the parameters as normal or abnormal. These criteria were, 

settling time ts, and the maximum overshoot omax. eΣ was also used in this case and is the 

same as in the fitness function of the genetic algorithm. ts is the point in time when the 

output signal reaches a boundary within the setpoint and never goes over it again. omax is 

the error where the output signal is at its highest after the setpoint. If the output never 

goes over the setpoint, maximum overshoot will be zero. An example of these are visu-

alized in Figure 10.  
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Settling time ts is also a very interesting criterion in practice, (Haugen et al. 2007: 10-

11). Also previously we had emax after reaching the reference value for the first time, 

now maximum overshoot was used. omax is much like emax, except that emax indicates 

more the extra expense of running this controller, which is already taken into account in 

the sum of error.  

 

Figure 10. Step response of secondary criteria used. The dashed line marks the thresh-

old set where the function will have to settle within. Settling time ts, is the 

point in time when the output goes within these two lines and never crosses 

them again. Overshoot omax is the value where the output signal is at its 

highest point over the reference value. Sum of absolute errors eΣ is the same 

as in Figure 9. 

Each criteria has its own threshold. If a parameter configuration would exceed one of 

these thresholds, it would be classified as abnormal. The thresholds we used were de-

signed to give reasonable and efficient results. The threshold for omax was set to 10%. 

Settling time ts was put to reach 2% range of reference value within 0.75 s. After inves-

tigating eΣ from the previous run and comparing them to the plot of the same parameter 

configuration we found that some configurations wouldn’t be disqualified by settling 

time nor maximum overshoot, but weren’t really good either. The sum of error eΣ 

mostly will cut controllers with high constant error and some with a combined high omax 
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and ts. We drew the line for eΣ at 450, because it seemed to pass configurations that 

were a little bit better than mediocre. 

3.2. Simulation 

To calculate the fitness we would have to find out the output signal for each configura-

tion. To do this we used Simulink to simulate the PID controllers.  

 

Figure 11. Simulink model used by the genetic algorithm to simulate PID controllers. 

Figure 11 presents the Simulink model used to simulate PID controllers. The model 

would be run from the fitness function. The Step – block represents the input and 

produces a unit step signal. The PID – block represents the PID controller, its values are 

inserted by Matlab before each simulation. The process – block represents the en-

gine. The Abs – block outputs the absolute value of what goes in. In this case it is the 

difference between reference signal and system output. The thin black box on the right 

side with four signals going in is the Mux – block. The simout – block transfers its 

input to Matlab workspace. 

We chose a simple engine transfer function to avoid unnecessary complexity. Inspira-

tion for the function was taken from Mohammed & Koivo (2005: 1-2). The transfer 

function is from a diesel engine with actuator. It is presented in Equation (14). 

ss +205.0

8.0
 (14)
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For setpoint we used the unit step function, which rises to one and stays there for the 

rest of the simulation. The unit step function is a popular way of investigating the tran-

sient response of a system. The simulation time was set to 5 s, so it would not cause too 

many measurement values for the algorithm to become too slow. (Åström et al. 1995: 9) 

The model also had to be given a sampling time or else different runs would turn up 

with a different amount of measurements. This would cause the controllers to get unfair 

evaluation for the fitness function when calculating eΣ. We gave the model a sampling 

time of 0.0001 s. With a 5 s simulation time, this meant 50 001 measurements in one 

simulation. 

 

Figure 12. A block diagram of the relationship between the genetic algorithm and the 

Simulink model. At the beginning the genetic algorithm gives the Simulink 

model parameters for the step function (step time, step size, initial value and 

sample time), process (process transfer function), PID-block (derivative fil-

ter coefficient), and sampling time to the simout-block. The fitness function 

in the genetic algorithm gives each time new parameters for the PID con-

troller, and uses the data from the Simout-block to calculate fitness for the 

individual. 

Figure 12 presents the relationship between the genetic algorithm and the Simulink 

model. At the beginning the genetic algorithm gives the model step time, step size, ini-

tial value, sample time for the step block, transfer function, derivative filter coefficient 
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and sampling time for the simout – block. The fitness function gives the controller it’s 

PID parameters and runs the simulation. The results are used in the fitness function to 

calculate the fitness value for the individual. (Vesterback et al. 2012: 408-409) 

3.3. Calculating fitness 

Before calculating fitness we would create a transfer function in Matlab with the tf – 

function. The transfer function of the PID controller was based on its own parameters as 

presented in Equation (12). After this we would combine this transfer function with the 

engine transfer function by using the feedback – function. This function returns the 

transfer function of the processes in series with each other, with a feedback loop around 

them. This is called the system transfer function. When we have the system transfer 

function, we can use it to calculate the stability of the controller by using the isstable 

– function. (MathWorks 2012b) 

When the simulation was complete the simout – block, presented in Figure 11, would 

transfer to workspace 4 vectors. They included 50 001 measurements each, taken in 

steady intervals over the simulation. The first vector is the output from the system y(t), 

the second is the absolute value of the error e(t), the third is the time t at each measure-

ment point and the last one is the setpoint ysp. 

To calculate fitness we need to know eΣ, emax, and e∞. The sum of errors eΣ was calcu-

lated by summing all the values in e. This was implemented with the sum – function. To 

find emax, we first found out at which point in time the output value y reaches the set-

point ysp. Then we find out which value is the largest in vector e after that point. That 

value would then become the maximum error. The asymptotic error e∞ was simply 

found by taking the value at e(5 s). 

After finding these three values we would take the predetermined coefficients A, B, and 

C for calculation of the fitness as presented by Equation (13). Out of the four vectors we 

have not still used vector 3, the time. This is used later when we select normal and ab-

normal parameters. 
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4. EXPERIMENTS 

4.1. Modelling the engine PID parameters 

Usually when choosing parameters for a genetic algorithm, one wants to find a balance 

between converging fast enough to find good solutions and converging slow enough to 

explore the cost surface enough. (De Jong 2006: 49-69) This means one has to have a 

mix of mechanics that makes the algorithm find values from larger areas and still con-

verge to some point or points. With our goal of finding as many parameters as possible, 

it was more important to search a wide area than to converge fast. According to Alander 

(1992: 65) execution efficiency is only a factor when choosing population size, which 

can lead to long processing time or that the algorithm doesn’t find the global optimum 

before the maximum number of generations is reached. This is why we chose to have 

the algorithm search for a large number of generations, using a large population. We 

also did not have it stop when a satisfactory fitness value had been found, but had it 

continue until a predetermined number of generations was reached. 

We chose a high number of generations and a large population size to get a huge num-

ber of different parameters. Also crossing was not allowed for parameters between par-

ents with exact same genes. The genetic algorithm was set to run for 50 generations 

with an initial population of 1000 randomly created individuals and a normal population 

size of 1000.  

The range for the parameters were set to range from 0.5 to 1 500, where the minimum 

difference between two parameter values were 0.5. We tried to run the algorithm be-

tween 0.5 and 15 000, but it returned worse results.  

Because mutation at a low rate doesn’t affect building block processing (Goldberg 

1989: 20), mutation rate was set to 1%. This was implemented by randomizing at each 

individual between 1-100. If it was 1, the individual would mutate. The best individual 

was not allowed to mutate. When an individual was selected, one of its parameters was 

selected. Then a number between 0.5 and 10 was selected. The parameter was changed 

up or down, also selected randomly, according to that number. The parameter could not 
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go below 0.5 for P and not below 0 for I and D. Mutation is an operator for exploring 

the neighborhood and ensure that genetic information is not lost too early. That is why 

we didn’t have a too large mutation-interval that the parameter could change. 

For crossing we had the top 100 to survive to the next generation and selected 300 indi-

viduals through roulette selection. Then each of the survivors were crossed. The pair-

ings were randomly selected so each individual crossed once. After that we had 80% 

filled of the new population. The remaining 20% were filled by creating new individu-

als randomly.  

 

Table 1. Top 10 parameters given by the genetic algorithm. 

# P I D 
Index of 

goodness 

1 47.5 3 4.5 0.13297 

2 47.5 3 2.5 0.13040 

3 43 3 4.5 0.12059 

4 47.5 5.5 4.5 0.11961 

5 47.5 5.5 2.5 0.11642 

6 47.5 7 4.5 0.11391 

7 47.5 8 4.5 0.11078 

8 47.5 7 2.5 0.1105 

9 43 5.5 4.5 0.10800 

10 47.5 8 2.5 0.10725 

 

The program returned about 22 000 unique parameter configurations. To assess whether 

these parameters were what we wanted them to be, we have given the ten best parame-

ters in Table 1. Also plots of the step response for a few selected PID configurations 

have been drawn in Figures 13–17. Figure 13 shows the step response plot for the best 

parameter set, i.e. the one with the best index of goodness from the genetic algorithm. 

To get a fair evaluation of whether these parameters were what we needed, the simula-

tion results for these plots were produced the same way as in the genetic algorithms fit-

ness function. This meant that they were simulated with a step response and a 5 s tran-

sient time. Here we see no overshoot at all, short settling time, final error and steady 

state error isn’t large either. Figure 14 shows the plot for the worst parameter set se-
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lected for testing. Its parameter values were P = 43, I = 1382.5, D = 8.5. This configura-

tion broke all our secondary criterions, which determine normal or abnormality; too 

large overshoot, too slow settling time and too great of a steady state error. 

 

Figure 13. Step response for the best parameter set given by the genetic algorithm. Pa-

rameters: P = 47.5, I = 3, D = 4.5. 

Figures 15–17 show a plot of the output of the controller for each criterion, where the 

controller barely makes it within the normal limit. Figure 15 shows an output where the 

controller barely meets the sum of absolute error criterion. The sum of absolute error of 

the controller is 417.87 and its parameters: P = 47.5, I = 13, D = 4.5. This is due to the 

fall or undershoot at the beginning and after settling the error is still higher than on most 

for the controllers, this one has next to no overshoot and a fast settling time. 

Figure 16 shows a plot where the controller barely makes the settling time criterion. Set-

tling time here was 0.61 s, and parameters were P = 54, I = 144.5, D = 4.5. Here it sim-

ply takes a long time for the output to decrease after the second rise. This one has a very 

low error when settled, so the sum of the absolute error doesn’t rise too high. 
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Figure 14. Step response for the worst parameter set we used for testing. Parameters: P 

= 43, I = 1382.5, D = 8.5. 

 

Figure 15. Step response of a controller barely making the sum of absolute error crite-

rion. Sum of absolute error is 417.87. Parameters: P = 47.5, I = 13, D = 4.5. 
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Figure 16. Step response of a controller barely making the settling time criterion. Set-

tling time was 0.61 s. Parameters: P = 54, I = 144.5, D = 4.5. 

 

Figure 17. Step response of a controller barely making the overshoot criterion. Over-

shoot was 9.3%. Parameters: P = 82.5, I = 13, D = 5.5. 
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Figure 17 shows the output when the controller barely meets the overshoot criterion 

which here was 9.3% and parameters were P = 82.5, I = 13, D = 5.5. This one has a 

very low error when settled, so the sum of the absolute error doesn’t rise too high and 

settling time works well also. 

When investigating the worse behaviours, the error seen in the output reflected their in-

dex of goodness. Also interpreting the parameters in Table 1, we notice that the values 

are close to each other, which means they come from close by regions. This indicates 

the algorithm converged to a peak on the cost surface. From this we can conclude that 

the algorithm has found well working parameters. 

Now we have to apply the second criteria to find out which parameter sets were normal 

and which not. To do this we analyzed the step responses of the parameters, to see if 

they exceeded any of the new criterions. The analyser program was built in such a way 

that it took 104 parameters for training. For this we made a training set nt of 104 pa-

rameters. For testing we would also use 104 normal and 104 abnormal parameters, we 

will call these the normal test set nnorm and the abnormal test set nanorm. In total 312 pa-

rameter sets of varying quality was to be generated for one test run. 

We took the first 8 normal parameter sets and put them into the training set. Then we 

took the next 8 normal parameter sets and put them into the normal test set. We contin-

ued like this until we had two sets of 104 parameter sets. Then we chose abnormal pa-

rameters and made parameter sets based on why they were abnormal; we chose at least 

8 parameters for every criterion that crossed only one of the criterions, 8 for each com-

bination of criterions where the parameters broke exactly two of the criterions and fi-

nally at least 8 that broke all 3 criterions. There were some controllers with D or I at 0 

proposed by the genetic algorithm. We left those out in this experiment and chose only 

PID controllers. 
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4.2. Engine PID parameter analysis 

We trained the analyser with nt. We used a threshold of 0.999 for training. This gave us 

a two-dimensional region shown in Figure 18. The circles mark the data points and all 

parameters inside the area are expected to be normal. In this case, all data points should 

be inside because the parameters used for training defines what is normal. 

Due to using a VMM, which is stochastic, the program may produce different regions 

when fitting (Vesterback 2012: 410). We tried fitting a few times until we would get as 

simple shape as possible. We stopped at the region drawn by the contour in Figure 18. 

The scaled principal components having unit variations in Figure 18 and the following 

images comes from dimensionality reduction of the PID parameters from 3D-space to 

2D-space, using principal component analysis. In previous fitting rounds we saw re-

gions of different shapes, some with islands, some with more clusters and other shapes 

as well. The reason why we considered this the most reliable was that it was a very 

compact region without any islands, it had a small number of clusters. The region con-

sists of three clusters, presented in Figure 19. A is a circle-like shape, B and C are two 

ellipsoid-like shapes, a large and a thin one. All the areas overlap a little, the thin area 

strikes trough the two others. 

Next we tested the analyser using nnorm. Figure 20 shows results of this. Most data 

points are inside the region, which is good and tells us that the program is working. 

There are two so called false alarms. The parameters for these could be taken from the 

analyser, they were: P = 56.5, I = 185, D = 4 and P = 62, I = 211, D = 4. The analyser 

estimates the data with a probability of 0.999, which were the threshold used. That 

means the parameters classified as abnormal are such with a probability of P > 0.999. 

(Vesterback 2012: 412) 

Figure 21 shows the results from testing the analyser with nanorm. Again, most of the pa-

rameters are where they should be, this time outside of the region. Here we have also a 

few points inside. These are called false positives. (Vesterback et al. 2012: 412) 
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Figure 18. Region after training the analyser. Circles mark PID parameter sets. Normal 

parameter values are expected to be inside this region. 

 

Figure 19. The three main clusters, A (light gray area), B (dark gray area) and C 

(striped area).  
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Figure 20. Results from testing normal data. Here we have two false alarms, but most 

of them fall inside the region. 

 

Figure 21. Results from testing abnormal data. Here we can see a few false positive 

results, but most of them fall outside the region. 
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In addition to the above experiments, we tried two other experiments. We trained the 

analyser with nnorm and used nt as a test set for normal parameters. In the other experi-

ment we used parameters generated in the same run with the genetic algorithm as we 

used the previous parameters. We chose parameters we had not used previously and 

made three more normal sets of 104 parameter triplets and two abnormal sets of 104 

triplets. The results from both of these experiments gave about the same results as the 

first experiment. 

With 102 right evaluations out of 104, we get a true positive rate of (TPR) ~98%, and a 

false positive rate (FPR) of ~2%. The rates were about the same in the following ex-

periments. This gives us an accuracy of 98%, which means the analyzer works well. 

(Vesterback et al. 2012: 412-414) 
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5. SUMMARY, CONCLUSIONS AND FUTURE WORK 

Many control systems have poorly tuned controllers today. This is because it requires 

lots of expertise to tune a PID controller. Many reports from the field state problems 

with closed loop control systems. If one could find a way to predetermine whether the 

parameters are poorly tuned without even running them in the process, it would speed 

up troubleshooting on the field. 

We set out to investigate whether it was possible to use novelty detection for classifying 

PID controller quality. This would be exactly a way of predetermining PID parameter 

quality before running them in a process. An analyser program were built by University 

of Vaasa for this based on theory from novelty detection and multivariate extreme value 

statistics. The analyser would be trained with a set of parameters known to be normal, 

then one could test the quality of new parameters with regard to this training set. 

The goal of the thesis was to create test parameters for the analyser and then assess how 

well the analyser worked. We used a genetic algorithm to produce these. Then we used 

a set of criterions based on step response to classify the parameters as normal or abnor-

mal. 

5.1. The genetic algorithm 

There was not much new use of genetic algorithms in this thesis. They have been used 

to create test parameters for computer programs in many cases before. Also using ge-

netic algorithms to tune PID controllers had been done. Genetic algorithms was a per-

fect tool for the job though. This was because it could find a huge set of parameters, 

where some would be well tuned and some would not and also anything in between. 

The genetic algorithm was built in Matlab. It used a Simulink model for simulation in 

its fitness function. We used the step function as reference value and measurements 

were made with a 5 s transient time. To test whether the genetic algorithm had done 

what we wanted it to, we drew the step response plots for some of the parameters in the 

environment it was simulated in. We analysed these responses and found out the best 
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parameters according to the genetic algorithm had a small error in regard to the criteri-

ons we had set on them. Also the worse parameters performed worse according to one 

or more of the criterions we set on them. Then we concluded the parameters produced 

were realistic and could be used as testing subjects for the PID outlier analyser. 

5.2. PID outlier analyser 

We chose three criteria for the PID parameters: sum of absolute error, maximum over-

shoot, and settling time. We set a threshold on each of these. If a configuration would 

cross any one of these, it would be classed as abnormal. We trained the program with 

parameters classified normal by these criteria. After that we tested the program with a 

set of normal and another set of abnormal parameters. The analyser correctly identified 

most normal parameters as normal and most abnormal parameters as abnormal. 

We got a false positive rate of 98% and a true positive rate of 2%. Thus we conclude 

that the analyser works well. The analyser showed some false positives and false nega-

tives. These cases are the exceptions that still should occur. We conducted a similar ex-

periment and got similar false positive and true positive rates.  

5.3. Novelty detection and variational mixture model 

In novelty detection a variational mixture model was used instead of the conventional 

Gaussian mixture model. This made the fitting part easier for the user. The analyser 

could automatically determine the numbers of Gaussian clusters. Normally one would 

have to run the analyser several times, each time determining the numbers of clusters 

manually. After this one would have to compare the results and choose the most fitting 

result.  

With the VMM the only thing needed to run the analyser was a click on a mouse and we 

would have a region. The fitting process would have to be run a few times to get a few 

regions. Out of these the most compact was selected, which is the region with the fewest 

clusters. 
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5.4. Discussion and future work 

In this work the PID parameters were meant for engine control and were created by 

simulation. The only thing separating engines when simulating is their transfer function. 

The PID values could be created for engines with different transfer functions. Consider-

ing one could change the transfer function, the work might be applicable to any process 

using PID controllers. A suggestion would be to research how changing the transfer 

function affects the outcome. Different types of transfer functions could be investigated 

from different applications.  

Since this is only one test in a single application, this number might not be very accu-

rate. To get a closer reading one could run the test with lots of other transfer functions 

and/or criterions or index of goodness. Also running tests with real life PID values 

would be a future research to get empirical knowledge of the analyser. 

This work only focused on PID controllers. PI- and PD controllers have to be analysed 

separately. Because of having one dimension less, they can’t be analysed together with 

with the PID values. A possible future research might be to investigate if it’s possible to 

analyse PI- or PD controllers the same way and find out whether there are some big dif-

ferences to using the analyser with PID values.  

Now we have found the analyser to be working by simulation. The next step is to verify 

the analyser in the field, after which hopefully we have made tuning and troubleshoot-

ing problems with PID controllers a little bit easier and faster. 
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APPENDIX A 

List of parameters used in testing 
Training parameters: 

P I D Index Sum of error Max Overshoot Settling time (2%)

47.5 3.0 4.5 0.132970 318.1246668 0.001567802 0.2159

47.5 3.0 2.5 0.130400 325.3523254 0.001604443 0.1225

43.0 3.0 4.5 0.120593 355.0714787 0.001894413 0.2460

47.5 5.5 4.5 0.119616 354.0160972 0.002780049 0.2111

47.5 5.5 2.5 0.116419 364.9839493 0.002882279 0.1188

47.5 7.0 4.5 0.113910 371.4635485 0.003476934 0.2083

47.5 8.0 4.5 0.110778 381.6016188 0.003930547 0.2066

47.5 7.0 2.5 0.110499 384.2503566 0.003629401 0.1165

43.0 8.0 4.5 0.099923 426.7422380 0.004706377 0.2338

47.5 13.0 3.5 0.098649 425.4459774 0.006261103 0.1623

47.5 13.0 2.5 0.096358 436.2961470 0.006501594 0.0589

47.5 21.5 4.5 0.092408 443.9168084 0.009420037 0.1868

56.5 13.0 2.5 0.092116 373.8474906 0.023773231 0.0733

57.5 13.0 2.5 0.089670 370.0189997 0.027499490 0.0766

65.5 7.0 4.5 0.089417 270.1123655 0.043968382 0.1223

65.0 7.0 4.5 0.088663 271.8739942 0.042757075 0.1243

57.5 185.0 4.5 0.086349 341.0073864 0.037607210 0.5560

57.0 180.0 4.5 0.086285 343.0117446 0.037292229 0.5626

57.0 181.0 4.5 0.086195 342.8894530 0.037437729 0.5619

59.0 13.0 2.5 0.086185 365.0013625 0.033013127 0.0804

57.0 182.0 4.5 0.086105 342.7708411 0.037582899 0.5611

59.0 149.0 4.5 0.085956 343.2757488 0.037683897 0.5651

56.5 176.0 4.5 0.085915 344.9768255 0.037113346 0.5687

57.0 184.5 4.5 0.085879 342.4893827 0.037944401 0.5593

66.0 13.0 4.5 0.085369 303.3270532 0.045572297 0.1172

56.5 184.5 4.5 0.085357 343.9745229 0.038359812 0.5622

56.5 185.0 4.5 0.085312 343.9235346 0.038432386 0.5618

59.0 176.0 4.5 0.085311 338.3183722 0.039554155 0.5524

59.0 180.0 4.5 0.085195 337.7258594 0.039831970 0.5500

59.0 181.0 4.5 0.085165 337.5854496 0.039901452 0.5494

59.0 182.0 4.5 0.085135 337.4480595 0.039970932 0.5488

59.0 184.5 4.5 0.085057 337.1182148 0.040144624 0.5472

57.5 205.5 4.5 0.084499 339.3455627 0.040475823 0.5408

59.0 201.0 4.5 0.084478 335.4138290 0.041290703 0.5363

59.0 137.0 4.5 0.084465 345.8666812 0.036854464 0.5672

57.0 201.5 4.5 0.084338 341.0943780 0.040351093 0.5464

59.0 205.5 4.5 0.084303 335.0806798 0.041603182 0.5332

55.5 185.0 4.5 0.084244 347.0864489 0.039284834 0.5676

60.0 163.5 4.5 0.084199 338.0826689 0.041149229 0.5515

58.0 144.5 4.5 0.084102 346.8689501 0.034889102 0.5755

56.5 200.5 4.5 0.083901 342.7244889 0.040643196 0.5497

57.0 209.0 4.5 0.083660 340.7249823 0.041385977 0.5406

60.0 185.0 4.5 0.083635 334.6685356 0.042633455 0.5406

57.5 144.5 4.5 0.083454 348.2377505 0.033640806 0.5801

56.5 205.5 4.5 0.083447 342.4762264 0.041340995 0.5458
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57.0 211.5 4.5 0.083435 340.6300144 0.041727489 0.5387

56.5 155.0 4.5 0.083428 348.6571891 0.033922916 0.5833

57.0 149.0 4.5 0.083353 348.5969501 0.032702430 0.5825

56.5 211.5 4.5 0.082905 342.2535053 0.042169020 0.5410

54.0 182.0 4.5 0.082865 352.5660535 0.040164578 0.5787

57.0 144.5 4.5 0.082805 349.6355474 0.032387954 0.5846

56.5 149.0 4.5 0.082701 350.0001967 0.032979618 0.5868

56.5 214.5 4.5 0.082635 342.1702308 0.042579326 0.5387

62.0 99.0 4.5 0.082589 347.2446530 0.041632686 0.4654

54.0 185.0 4.5 0.082588 352.3310973 0.040617194 0.5760

59.0 245.5 4.5 0.082513 333.9447085 0.044404042 0.5056

62.0 136.0 4.5 0.082066 338.5189384 0.044149386 0.5347

62.0 137.0 4.5 0.082046 338.3228243 0.044217578 0.5351

53.5 180.0 4.5 0.082046 354.6019169 0.040314613 0.5833

53.5 185.0 4.5 0.082021 354.2210752 0.041076246 0.5787

69.5 13.0 4.5 0.081954 290.4897323 0.053907931 0.1092

55.5 236.5 5.0 0.081938 340.0660221 0.044029702 0.5447

57.0 137.0 4.5 0.081895 351.4554413 0.031864924 0.5873

62.0 144.5 4.5 0.081894 336.9016630 0.044728964 0.5370

53.5 176.0 4.5 0.081640 354.9692051 0.039698651 0.5870

53.0 182.0 4.5 0.081508 356.3876920 0.041083850 0.5842

53.0 185.0 4.5 0.081446 356.1851725 0.041543032 0.5814

59.0 182.0 5.0 0.081430 330.3412557 0.046737110 0.5673

53.0 181.0 4.5 0.081410 356.4616000 0.040930051 0.5852

55.5 149.0 4.5 0.081396 352.9116786 0.033749466 0.5951

59.0 185.0 5.0 0.081361 329.9942634 0.046910169 0.5654

53.0 180.0 4.5 0.081312 356.5389837 0.040775877 0.5861

57.5 245.5 4.5 0.080975 338.7120954 0.045752299 0.5112

62.0 184.5 4.5 0.080939 330.4458046 0.047459918 0.5280

62.0 185.0 4.5 0.080926 330.3758078 0.047494092 0.5277

53.0 176.0 4.5 0.080915 356.8834198 0.040155389 0.5899

57.5 185.0 5.0 0.080913 334.4065780 0.043533111 0.5750

55.5 144.5 4.5 0.080860 354.0146032 0.033020390 0.5978

56.5 3.0 4.5 0.080755 267.0440482 0.021292710 0.1683

59.0 267 4.5 0.080710 334.2794967 0.047043999 0.4912

62.0 205.5 4.5 0.080331 327.9339792 0.048897411 0.5172

52.0 185.0 4.5 0.080277 360.3447891 0.042500476 0.5866

62.5 185.0 4.5 0.080273 329.3798293 0.048699514 0.5244

52.0 184.5 4.5 0.080257 360.3714152 0.042423072 0.5871

54.0 234.5 5.0 0.080218 346.1536625 0.045163370 0.5522

62.0 211.0 4.5 0.080152 327.4415583 0.049274414 0.5141

53.5 205.5 4.5 0.080136 353.3959148 0.044108758 0.5598

62.0 211.5 4.5 0.080135 327.4002867 0.049308684 0.5138

55.5 234.5 4.5 0.079792 345.6281673 0.046199630 0.5270

59.0 99.0 4.5 0.079764 356.2066274 0.034232601 0.5292

63.0 180.0 4.5 0.079757 329.1016156 0.049559776 0.5230

56.5 247.5 4.5 0.079755 342.2092212 0.046942839 0.5134

56.5 185.0 5.0 0.079730 337.6300875 0.041266984 0.5812

59.0 236.5 5.0 0.079725 327.7277606 0.049885128 0.5301

62.0 13.0 4.5 0.079669 320.5863972 0.035815425 0.1327

53.5 236.5 5.0 0.079643 348.3825987 0.045884315 0.5525
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53.5 234.5 5.0 0.079545 348.3221563 0.045636207 0.5542

62.5 211.0 4.5 0.079522 326.3856734 0.050475004 0.5115

62.5 211.5 4.5 0.079505 326.3423176 0.050509221 0.5112

54.0 245.5 5.0 0.079485 346.5105357 0.046507502 0.5431

62.5 214.5 4.5 0.079407 326.0937486 0.050714515 0.5095

53.5 214.5 4.5 0.079325 353.3256700 0.045397770 0.5518

62.0 234.5 4.5 0.079302 326.0702844 0.050886503 0.5003

53.5 153.5 4.5 0.079264 358.3258947 0.036114378 0.6073
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Normal test parameters: 
P I D Index Sum of error Max Overshoot Settling time (2%)

43.0 5.5 4.5 0.108003 396.1377864 0.003342362 0.2396

47.5 8.0 2.5 0.107255 395.4799053 0.004120346 0.1148

44.0 7.0 4.5 0.105240 405.0041619 0.003999088 0.2295

43.0 7.0 4.5 0.102760 415.6152326 0.004169657 0.2361

44.0 8.0 4.5 0.102335 415.9052107 0.004515524 0.2274

53.0 13.0 2.5 0.101412 390.9451141 0.010401195 0.0508

47.5 13.0 4.5 0.100321 417.8703552 0.006087049 0.1984

53.5 13.0 2.5 0.100021 388.0891881 0.012343574 0.0503

47.5 33.5 4.5 0.088420 447.3915829 0.013613910 0.1735

65.0 8.0 4.5 0.087650 279.0212311 0.042823424 0.1236

65.0 8.5 4.5 0.087183 282.3914626 0.042856598 0.1232

57.5 180.0 4.5 0.086798 341.6098324 0.036888143 0.5595

57.5 181.0 4.5 0.086708 341.4824505 0.037032600 0.5588

57.5 182.0 4.5 0.086619 341.3584944 0.037176733 0.5581

58.0 185.0 4.5 0.086478 339.6359184 0.037708932 0.5530

57.5 184.5 4.5 0.086394 341.0638131 0.037535664 0.5563

57.0 184.5 4.5 0.085879 342.4893827 0.037944401 0.5593

57.0 185.0 4.5 0.085834 342.4356740 0.038016459 0.5589

59.0 155.0 4.5 0.085827 342.0697729 0.038099626 0.5630

56.5 180.0 4.5 0.085765 344.4725228 0.037702947 0.5657

56.5 181.0 4.5 0.085675 344.3557138 0.037849499 0.5649

56.5 182.0 4.5 0.085584 344.2424534 0.037995716 0.5642

56.5 173.0 4.5 0.085567 345.3950101 0.036667514 0.5709

59.0 144.5 4.5 0.085398 344.2176937 0.037372423 0.5663

59.0 185.0 4.5 0.085041 337.0545884 0.040179362 0.5469

59.0 187.5 4.5 0.084960 336.7479850 0.040353040 0.5453

56.5 167.5 4.5 0.084922 346.2549607 0.035841817 0.5749

59.0 190.0 4.5 0.084876 336.4605396 0.040526707 0.5436

57.5 155.0 4.5 0.084743 345.9285420 0.034372111 0.5753

55.5 180.0 4.5 0.084702 347.5795952 0.038544843 0.5717

65.5 13.0 4.5 0.084656 305.3238362 0.044365860 0.1187

55.5 182.0 4.5 0.084519 347.3718063 0.038841865 0.5701

59.0 211.0 4.5 0.084080 334.7408172 0.041986054 0.5294

59.0 211.5 4.5 0.084059 334.7134249 0.042020889 0.5291

57.5 149.0 4.5 0.084005 347.2239621 0.033954092 0.5783

57.5 211.0 4.5 0.084004 339.0859253 0.041225126 0.5367

59.0 213.5 4.5 0.083976 334.6092713 0.042160225 0.5277

57.5 211.5 4.5 0.083959 339.0656420 0.041292842 0.5363

65.0 13.0 4.5 0.083943 307.3644536 0.043155503 0.1203

59.0 214.5 4.5 0.083933 334.5604988 0.042229890 0.5270

62.0 8.0 4.5 0.083169 290.9421048 0.035478261 0.1375

57.0 214.5 4.5 0.083166 340.5330885 0.042135088 0.5364

54.5 185.0 4.5 0.083147 350.5134671 0.040165714 0.5732

60.0 201.5 4.5 0.083097 332.8383055 0.043774105 0.5306

55.5 163.5 4.5 0.083094 349.8958879 0.036039388 0.5848

56.5 211.0 4.5 0.082950 342.2691271 0.042100399 0.5414

59.0 236.5 4.5 0.082949 333.9669211 0.043762044 0.5118

60.5 185.0 4.5 0.082944 333.5411089 0.043854772 0.5375

56.5 185.0 4.0 0.082483 353.2116702 0.040594493 0.5414
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55.5 205.5 4.5 0.082369 345.8523626 0.042234095 0.5506

53.5 182.0 4.5 0.082247 354.4396437 0.040620360 0.5815

54.0 189.0 4.5 0.082218 352.0622338 0.041215768 0.5723

56.5 144.5 4.5 0.082157 351.0637491 0.032262080 0.5891

53.5 181.0 4.5 0.082146 354.5190247 0.040467671 0.5824

55.5 234.5 5.0 0.082107 340.0244411 0.043787501 0.5462

53.5 184.5 4.5 0.082067 354.2554544 0.041000491 0.5791

55.5 211.0 4.5 0.081871 345.6963623 0.043003752 0.5460

55.5 211.5 4.5 0.081826 345.6852254 0.043073293 0.5456

62.0 149.0 4.5 0.081797 336.0875484 0.045035748 0.5374

56.5 141.5 4.5 0.081794 351.7955483 0.031778748 0.5905

53.5 187.5 4.5 0.081789 354.0605106 0.041453690 0.5764

57.5 236.5 4.5 0.081749 338.6373072 0.044598321 0.5178

62.0 153.5 4.5 0.081698 335.2993817 0.045342495 0.5373

53.5 189.0 4.5 0.081650 353.9732027 0.041679101 0.5750

56.5 137.0 4.5 0.081252 352.9283391 0.031046026 0.5922

62.5 144.5 4.5 0.081238 335.7688388 0.045940670 0.5319

57.0 236.5 4.5 0.081225 340.3049090 0.045054323 0.5197

56.5 231.0 4.5 0.081173 341.9962689 0.044794093 0.5259

62.0 176.0 4.5 0.081158 331.6845255 0.046878893 0.5316

62.0 180.0 4.5 0.081057 331.0915603 0.047152333 0.5299

62.0 181.0 4.5 0.081031 330.9458141 0.047220688 0.5295

62.0 182.0 4.5 0.081005 330.8013593 0.047289042 0.5291

56.5 237.0 4.5 0.080652 342.0350142 0.045582758 0.5213

62.0 211.0 4.0 0.080531 338.1032987 0.046554394 0.4953

53.5 201.5 4.5 0.080500 353.4776356 0.043527880 0.5635

62.0 201.0 4.5 0.080472 328.3894476 0.048588912 0.5197

62.5 13.0 4.5 0.080380 318.2604180 0.037048328 0.1304

62.5 181.0 4.5 0.080376 329.9432671 0.048426531 0.5261

62.5 182.0 4.5 0.080350 329.8008992 0.048494779 0.5257

53.5 163.5 4.5 0.080343 356.5345948 0.037733516 0.5985

62.0 213.5 4.5 0.080068 327.2407595 0.049445760 0.5127

53.0 167.5 4.5 0.080058 357.8220360 0.038815995 0.5980

62.0 214.5 4.5 0.080034 327.1642966 0.049514296 0.5121

65.0 36.0 4.5 0.080007 351.1821765 0.044686453 0.1108

63.5 144.5 4.5 0.079957 333.5718574 0.048353470 0.5216

56.5 245.5 4.5 0.079924 342.1664888 0.046685691 0.5149

54.0 214.5 4.5 0.079892 351.2991693 0.044909063 0.5497

62.0 13.0 2.5 0.079849 357.2285713 0.043776139 0.0861

53.5 211.0 4.5 0.079639 353.3354874 0.044899384 0.5549

59.0 7.0 4.5 0.079631 296.6520155 0.027921920 0.1527

55.5 236.5 4.5 0.079620 345.6589978 0.046465112 0.5255

53.5 237.0 5.0 0.079601 348.3983416 0.045946181 0.5520

53.5 211.5 4.5 0.079594 353.3327657 0.044970804 0.5544

53.0 205.5 4.5 0.079562 355.4570954 0.044596761 0.5621

54.5 144.5 4.5 0.079561 357.1131261 0.033805376 0.6064

65.0 43.5 4.5 0.079551 352.5823766 0.045185483 0.1086

62.0 236.5 4.5 0.079224 326.0020093 0.051023975 0.4991

72.0 13.0 4.5 0.079208 282.4253282 0.059751895 0.1051

62.0 237.0 4.5 0.079204 325.9860225 0.051058342 0.4988

65.0 59.0 4.5 0.079191 350.2829215 0.046219638 0.1050
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53.0 211.0 4.5 0.079066 355.4193949 0.045392719 0.5570

56.5 256.0 4.5 0.079043 342.4368707 0.048026017 0.5072

65.5 7.0 2.5 0.079037 308.1706715 0.054877147 0.0897

53.0 211.5 4.5 0.079021 355.4186283 0.045464618 0.5566
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Abnormal parameters: 
P I D Index Sum of error Max Overshoot Settling time (2%) Broken criterion 

43.0 144.5 2.5 0.060260 479.9748280 0.059952387 0.5786 sum of error 

47.5 182.0 2.5 0.060247 459.9704656 0.063990186 0.5106 sum of error 

47.5 185.0 2.5 0.059948 459.8663347 0.064837033 0.5071 sum of error 

38.5 236.5 4.5 0.058547 462.2660870 0.068349120 0.5783 sum of error 

50.0 237.0 2.5 0.057070 451.7441754 0.074874934 0.4481 sum of error 

38.5 236.5 5.5 0.056810 451.1039979 0.060899803 0.6234 sum of error 

35.0 236.5 5.5 0.052697 492.2411654 0.066307577 0.6337 sum of error 

43.0 51.0 5.5 0.052542 456.5175589 0.020781559 0.7417 sum of error 

94.5 13.0 4.5 0.060203 237.8653675 0.108523719 0.0867 max overshoot 

72.0 300.0 6.5 0.059726 283.0628977 0.100818778 0.4866 max overshoot 

82.5 182.0 5.5 0.059653 285.3994643 0.100556247 0.3658 max overshoot 

82.5 185.0 5.5 0.059622 285.1590734 0.100691165 0.3718 max overshoot 

72.0 308.5 6.5 0.059610 283.1857801 0.101120452 0.4833 max overshoot 

82.5 212.5 5.5 0.059332 283.0779295 0.101927595 0.4030 max overshoot 

72.0 339.0 6.5 0.059173 283.9475034 0.102206134 0.4714 max overshoot 

72.0 357.0 6.5 0.058908 284.5418774 0.102847525 0.4643 max overshoot 

47.5 122.0 6.5 0.057992 380.6110604 0.052196616 0.7736 settling time 

43.0 471.0 7.5 0.057687 417.1924341 0.079911386 0.7795 settling time 

43.0 482.0 7.5 0.057541 417.7146851 0.080244941 0.7848 settling time 

47.5 144.5 7.0 0.057207 377.3887820 0.065134083 0.7627 settling time 

43.0 564.5 7.5 0.056457 421.8765558 0.082749366 0.7665 settling time 

43.0 99.0 5.5 0.056381 417.7411882 0.032647478 0.8174 settling time 

43.0 92.0 5.5 0.055944 420.8930366 0.031134783 0.8281 settling time 

50.0 99.0 7.5 0.055908 373.7251363 0.079559957 0.7824 settling time 

38.5 440.0 6.5 0.056821 461.5568558 0.073680140 0.8192 sum of error,settling time 

38.5 455.0 6.5 0.056396 462.7284659 0.074772545 0.8119 sum of error,settling time 

38.5 458.0 6.5 0.056312 462.9660966 0.074988075 0.8103 sum of error,settling time 

38.5 560.5 7.5 0.055934 463.5411532 0.075639209 0.8005 sum of error,settling time 

38.5 440.0 7.5 0.054083 457.2958750 0.071941275 0.8659 sum of error,settling time 

38.5 564.5 6.5 0.053624 471.9361967 0.082094894 0.7541 sum of error,settling time 

38.5 455.0 5.5 0.052970 472.5601128 0.084272881 0.7603 sum of error,settling time 

35.0 339.0 5.5 0.052848 502.0914074 0.078802910 0.8589 sum of error,settling time 

53.0 144.5 8.5 0.053363 349.8735263 0.107421742 0.7545 max overshoot,settling time 

53.0 149.0 8.5 0.053360 349.3826002 0.107529062 0.7513 max overshoot,settling time 

50.0 185.0 9.0 0.050529 363.5069830 0.115204400 0.7554 max overshoot,settling time 

43.0 560.5 8.5 0.050523 418.3939237 0.104252562 0.8055 max overshoot,settling time 

53.0 144.5 9.0 0.050472 350.5343633 0.118022323 0.7674 max overshoot,settling time 

53.0 149.0 9.0 0.050471 350.0703724 0.118120022 0.7643 max overshoot,settling time 

53.5 153.5 9.0 0.050432 347.2757791 0.118830846 0.7555 max overshoot,settling time 

43.0 180.0 9.0 0.050396 410.4272567 0.106342837 0.8119 max overshoot,settling time 

43.0 569.0 4.5 0.049251 458.8405855 0.101272767 0.6265 sum of error,max overshoot 

43.0 582.5 4.5 0.048827 461.0076692 0.102601888 0.6219 sum of error,max overshoot 

43.0 602.5 4.5 0.048210 464.4050764 0.104544042 0.6150 sum of error,max overshoot 

53.0 392.5 2.5 0.048103 457.8439429 0.106318425 0.3441 sum of error,max overshoot 

43.0 1340.0 7.5 0.047815 462.8744815 0.106565830 0.7465 sum of error,max overshoot 

47.5 738.0 4.5 0.047801 450.8449869 0.109031577 0.5536 sum of error,max overshoot 

43.0 1348.5 7.5 0.047737 463.2487005 0.106829828 0.7447 sum of error,max overshoot 

43.0 1360.5 7.5 0.047629 463.7762215 0.107202877 0.7422 sum of error,max overshoot 

43.5 1062.0 6.5 0.049318 460.3700962 0.100691421 0.7518 all 3 
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43.0 1040.0 6.5 0.049249 463.3915813 0.100370531 0.7601 all 3 

43.0 1212.0 7.5 0.049013 457.1353046 0.102602047 0.7729 all 3 

43.0 1213.5 7.5 0.048998 457.2039293 0.102648531 0.7726 all 3 

43.0 1062.0 6.5 0.048946 464.8783933 0.101331158 0.7596 all 3 

43.0 1220.0 7.5 0.048936 457.5009595 0.102849950 0.7713 all 3 

38.5 704.5 8.5 0.048862 464.4039440 0.101777400 0.7670 all 3 

43.0 1229.5 7.5 0.048845 457.9335467 0.103144307 0.7694 all 3 

43.0 45.5 8.5 0.047677 453.4407182 0.091678506 0.2579 sum of error 

35.0 236.5 8.0 0.047525 487.9895140 0.072966106 0.7327 sum of error 

35.0 300.0 8.5 0.047486 489.9933455 0.086961700 0.6736 sum of error 

35.0 293.5 8.5 0.047419 489.8259291 0.086800100 0.6804 sum of error 

35.0 262.5 8.5 0.047103 489.0668557 0.086029762 0.7160 sum of error 

43.0 36.0 8.5 0.046957 467.1754056 0.091447224 0.2720 sum of error 

35.0 245.5 8.5 0.046927 488.7155326 0.085609318 0.7378 sum of error 

35.0 300.0 9.0 0.046779 490.1938297 0.098808011 0.6891 sum of error 

43.0 45.5 8.5 0.047677 453.4407182 0.091678506 0.2579 max overshoot 

35.0 236.5 8.0 0.047525 487.9895140 0.072966106 0.7327 max overshoot 

56.5 987.0 4.5 0.047539 423.6030597 0.115632216 0.4707 max overshoot 

53.0 944.0 8.5 0.047532 368.8632572 0.126609873 0.6276 max overshoot 

72.0 1062.0 7.5 0.047521 306.0502637 0.139222463 0.3130 max overshoot 

53.5 1360.5 7.5 0.047519 390.2283599 0.122395524 0.5141 max overshoot 

72.0 339.0 9.0 0.047511 278.5186544 0.144774079 0.5272 max overshoot 

53.5 944.0 8.5 0.047506 366.2670395 0.127244126 0.6254 max overshoot 

35.0 1062.0 8.5 0.045489 519.0701479 0.106018864 0.9031 all 3 

35.0 1087.0 8.5 0.045317 520.0980610 0.106649833 0.8944 all 3 

35.0 1191.5 7.5 0.045226 541.7103985 0.102771975 0.8176 all 3 

35.0 1111.0 8.5 0.045153 521.0665389 0.107255432 0.8861 all 3 

38.5 1100.5 6.5 0.045080 513.9721974 0.109035325 0.7851 all 3 

35.0 1128.0 8.5 0.045038 521.7408294 0.107684320 0.8803 all 3 

35.0 455.0 9.5 0.045038 492.9834202 0.113437754 0.9778 all 3 

43.0 1382.5 8.5 0.044516 450.3496651 0.124566331 0.7733 all 3 

35.0 185.0 7.5 0.047583 486.2904419 0.058547780 0.7954 sum of error,settling time 

35.0 179.5 7.5 0.047505 486.2206432 0.058379101 0.8056 sum of error,settling time 

35.0 961.5 7.5 0.047443 529.0755517 0.094964226 0.8956 sum of error,settling time 

35.0 799.5 8.5 0.047417 507.3713137 0.099421264 0.9946 sum of error,settling time 

33.0 440.0 5.5 0.047371 542.9973982 0.092501661 0.8102 sum of error,settling time 

35.0 714.0 6.5 0.047329 527.2188172 0.095840974 0.9255 sum of error,settling time 

35.0 982.5 7.5 0.047219 530.2996950 0.095720769 0.8879 sum of error,settling time 

35.0 92.0 6.5 0.047173 489.5559617 0.037067440 0.9825 sum of error,settling time 

35.0 185.0 7.5 0.047583 486.2904419 0.058547780 0.7954 max overshoot,settling time 

43.0 647.5 9.0 0.047464 419.7893571 0.116729411 0.7879 max overshoot,settling time 

43.0 694.0 9.0 0.047175 421.0532836 0.117766219 0.7685 max overshoot,settling time 

43.5 1227.0 8.5 0.045541 441.1746473 0.121347813 0.7990 max overshoot,settling time 

43.0 1227.0 8.5 0.045508 445.2225073 0.120698961 0.8041 max overshoot,settling time 

43.0 185.0 10.0 0.045327 412.5033864 0.128119883 0.8349 max overshoot,settling time 

43.0 1276.0 8.5 0.045188 446.8974985 0.121916909 0.7951 max overshoot,settling time 

43.0 1340.0 8.5 0.044781 449.0007982 0.123509350 0.7821 max overshoot,settling time 

43.0 1369.0 7.5 0.047552 464.1491249 0.107467090 0.7404 sum of error,max overshoot 

47.5 1040.0 5.5 0.047487 451.7388720 0.110234469 0.5218 sum of error,max overshoot 

42.5 1390.5 7.5 0.047325 469.5381147 0.107397959 0.7380 sum of error,max overshoot 

43.0 45.5 9.0 0.047169 452.4998876 0.103365600 0.2651 sum of error,max overshoot 
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47.5 1062.0 5.5 0.047112 454.1264981 0.111436878 0.5169 sum of error,max overshoot 

43.0 640.0 4.5 0.047081 471.4860775 0.108104618 0.6020 sum of error,max overshoot 

43.0 1428.0 7.5 0.047027 466.7246436 0.109300334 0.7282 sum of error,max overshoot 

47.5 768.5 4.5 0.047005 455.4985423 0.111642556 0.5456 sum of error,max overshoot 

 


