

UNIVERSITY OF VAASA

FACULTY OF TECHNOLOGY

TELECOMMUNICATIONS ENGINEERING

Markus Sjöblom

REMOTE MONITORING OF INDUSTRIAL FREQUENCY CONVERTERS

Master´s thesis for the degree of Master of Science in Technology submitted for
inspection at Vaasa, 1st of September 2008.

Supervisor Mohammed Elmusrati

Instructor Stefan Strandberg

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Osuva

https://core.ac.uk/display/197963407?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

TABLE OF CONTENTS page

1 INTRODUCTION... 7

2 FREQUENCY CONVERTERS.. 10

2.1 Structure of a frequency converter ... 10

2.2 Frequency converter control and communication interfaces................................ 12

2.3 Ethernet in frequency converters .. 13

3 REMOTE MONITORING OF EMBEDDED DEVICES... 16

3.1 Remote monitoring motivations ... 16

3.2 Local collecting point based solutions.. 17

3.3 GSM based solutions .. 18

3.4 Ethernet based solutions ... 19

3.4.1 Web server solutions ... 20

3.4.2 Indirect monitoring .. 21

4 REMOTE PROCEDURE CALL (RPC) ... 23

4.1 Remote endpoints ... 24

4.2 Wire representation of data... 25

4.3 Interface design for networks ... 25

4.4 Example RPC application... 26

5 SIMPLE OBJECT ACCESS PROTOCOL (SOAP) ... 29

5.1 Message structure ... 30

5.2 Web Services Description Language (WSDL)... 32

5.3 Integration with databases .. 33

5.4 Security... 34

5.4.1 Web Services Security authentication ... 35

5.5 Software for embedded devices.. 36

6 REMOTE MONITORING WITH SOAP ... 37

6.1 SOAP messaging .. 37

6.1.1 Data representation in XML format .. 39

6.1.2 Authentication and identification .. 41

 3

6.1.3 Service description in WSDL format .. 44

6.2 Frequency converter hardware description... 46

6.3 Frequency converter software description.. 47

6.4 Server software ... 50

6.4.1 Service interface for frequency converters .. 50

6.4.2 Service interface for remote monitoring.. 51

7 EXPERIMENTS AND RESULTS.. 52

7.1 Example case and environment .. 52

7.1.1 Frequency converter control environment... 53

7.1.2 State machine representation of demo control and events 56

7.1.3 Remote monitoring of demo case.. 57

8 CONCLUSIONS AND FUTURE WORK.. 59

9 REFERENCES .. 62

APPENDIXES.. 67

APPENDIX 1. Service description in WSDL format... 67

APPENDIX 2. Remote monitoring view of an example case.................................... 69

 4

ABBREVIATIONS

AC Alternating Current
ADSL Asymmetric Digital Subscriber Line
API Application Programming Interface
DC Direct Current
DHCP Dynamic Host Configuration Protocol
FC Frequency Converter
FTP File Transfer Protocol
GSM Global System for Mobile communications
HMI Human Machine Interface
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
IDL Interface Definition Language
IGBT Insulated-Gate Bipolar Transistor
IP Internet Protocol
ISP Internet Service Provider
LAN Local Area Network
MAC Media Access Control
NAT Network Address Translator
NDR Network Data Representation
PLC Programmable Logic Controller
PPTP Point to Point Tunneling Protocol
PWM Pulse Width Modulation
RAM Random Access Memory
RPC Remote Procedure Call
SHA Secure Hash Algorithm
SMS Short Message Service
SDRAM Synchronous Dynamic Random Access Memory
SOAP Simple Object Access Protocol
SRAM Static Random Access Memory
SSL Secure Sockets Layer
TCP Transmission Control Protocol
URL Uniform Resource Locator
WAP Wireless Application Protocol
WLAN Wireless Local Area Network
WSDL Web Service Definition Language
XDR eXternal Data Representation
XML eXtensible Markup Language

 5

UNIVERSITY OF VAASA

Faculty of technology

Author: Markus Sjöblom
Topic of the thesis: Remote Monitoring of Industrial

Frequency Converters
Supervisor: Mohammed Elmusrati
Instructor: Stefan Strandberg
Degree: Master of Science in Technology
Department: Department of Computer Science
Degree Programme: Degree Programme in Information

Technology
Major of Subject: Telecommunication Engineering
Year of Entering the University: 2003
Year of Completing the Thesis: 2008 Pages: 69
ABSTRACT:

Frequency converters are sometimes mounted at places, in which they have the
most processing power of the surrounding devices. Often the remote
monitoring of frequency converters has been implemented in an external
programmable logic controller PC which is connected to the Internet.
Sometimes it is not reasonable to use an extra computer at the location, which
means the remote connection should be directly connectible to the frequency
converter. This master’s thesis studies the possibility to use SOAP for a remote
connection, established from the frequency converter to an external database
server. The objective is to create a remote monitoring connection which is easily
deployable for the end user. The implementation considers compatibility issues
with firewalls, proxy servers and NAT routers.
KEYWORDS: Remote monitoring, SOAP, Frequency converter

 6

VAASAN YLIOPISTO

Teknillinen tiedekunta

Tekijä: Markus Sjöblom
Diplomityön nimi: Taajuusmuuttajien etämonitorointi
Valvojan nimi: Mohammed Elmusrati
Ohjaajan nimi: Stefan Strandberg
Tutkinto: Diplomi-insinööri
Laitos: Tietotekniikan laitos
Koulutusohjelma: Tietotekniikan koulutusohjelma
Suunta: Tietoliikennetekniikka
Opintojen aloitusvuosi: 2003
Diplomityön valmistumisvuosi: 2008 Sivumäärä: 69
TIIVISTELMÄ:

Taajuusmuuttajia asennetaan joskus paikkoihin, joissa ne ovat
laskentateholtaan ympäristön tehoikkaimpia laitteita. Tällaisissa ympäristöissä
taajuusmuuttajien etämonitorointi on usein toteutettu erillisellä PLC-
tietokoneella, johon ulkoverkosta voidaan ottaa yhteys. Joissakin tapauksissa
PLC:n hankinta kohteen automaatiojärjestelmään on verrattain kallista, jolloin
etäyhteys olisi järkevää hoitaa suoraan taajuusmuuttajaan, joka on kytköksissä
Internetiin. Diplomityössä tutkitaan SOAP-tiedonsiirtoprotokollan käyttöä
taajuusmuuttajien etäyhteyksien luonnissa. Tavoitteena on saada aikaan
etäyhteys, jonka käyttöönotto on loppukäyttäjälle mahdollisimman vaivatonta.
Toteutuksessa otetaan huomioon muunmuassa yhteensopivuus palomuurien,
proxy-palvelinten, sekä NAT-reitittimien kanssa.
AVAINSANAT: Etämonitorointi, SOAP, Taajuusmuuttaja

 7

1 INTRODUCTION

Frequency Converters (FCs) are widely used to drive motors of different sizes

and characteristics in many types of environments. For example in small size

heating stations frequency converters are used to control ventilation pumps and

fuel supply shafts, while measuring inputs from the process through external

inputs like Lambda-sensors. Nowadays FC’s contain strong processors and

external communication ports in a way that in many cases these devices are the

most intelligent ones of the surrounding equipment. With customizable

applications, the frequency converters can be integrated into many process

environments so efficiently, that there is no need for an external Programmable

Logic Controller (PLC).

The main idea for the thesis came from the needs of a team maintaining an

unmanned heating station located at the centre of Vöyri municipality in

Finland. The idea here is to reduce unnecessary maintenance visits to the

station, caused by lack of information in fault alarms. The same team maintains

several stations at nearby area. The maintenance team does not employ anyone

fulltime, but consists of approximately 15 members of local community

inhabitants that take part in maintenance at their own free time. Each of these

members take turns in servicing the heating stations, one at a time. When on

duty, the service-person is required to take actions when the fault alarm is

received. The generation of the fault alarms at the stations is handled by a small

PLC connected to the FCs and relative sensors. An external Global System for

Mobile Communications (GSM) module handles the sending of a Short

Message Service (SMS) message to the person on duty. Practice has shown that

about 90% of the alarms would not have required an immediate visit to the

 8

station because the process could have been left running even for several hours

without any service actions. According to the maintenance team information,

these unnecessary visits could be avoided, if the trend history of some critical

parameters would be remotely monitored. This in other hand would allow the

service-person to prioritize his own work and maybe delay his visit to the

heating station for some time.

Currently the remote monitoring of frequency converters is commonly handled

through an external PLC module because mostly the FCs cannot communicate

with the outside networks without communication ports like Ethernet. It is

predictable though that when the processing power and memory of the

embedded system processors increases, these devices will be equipped with

Ethernet and other optional communication ports besides the more traditional

ones. This means that it is technically possible in near future to establish a direct

remote connection to the FC without a relatively expensive PLC in between.

The purpose of this thesis is to find a remote monitoring solution that will allow

the end user to view parameter history and fault information of the FCs in a

way that the installation and up keeping of the system requires minimum effort

from the end user. Another goal of the thesis is to make the connecting method

so that the connection is immediately established upon plugging the Ethernet

cable to the device and that the connection itself does not require anything more

than a regular internet connection to the station. Connecting must not require

any setups to default firewall settings of a traditional Asymmetric Digital

Subscriber Line (ADSL)-router, a fixed Internet Protocol (IP)-address from the

Internet Service Provider (ISP) or any other special setups. Ideally this would

 9

mean that plugging the device to a standard ADSL-modem is all the setup the

end user must do.

 10

2 FREQUENCY CONVERTERS

A frequency converter is a power electronic device capable of transforming the

frequency of Alternating Current (AC) and thus capable of controlling the

rotational speed of the motor connected to its output. Frequency converters are

typically used to control a three-phased induction motor, which without any

rotation speed control would run at fixed speed all the time. In many cases it is

unnecessary for the motor to run at full speed constantly, meaning that the use

of a frequency converter increases controllability and lifetime of the motor

while reducing the power consumption of the whole system at the same time.

Frequency converters are available for most of today’s three phase motor power

classes, reaching all the way from few hundred Watts to several megawatts.

(Doktar 2006)

2.1 Structure of a frequency converter

The basic components of a frequency converter usually include a rectifier circuit,

a middle circuit and an inverter circuit. The purpose of the rectifier circuit, usually

same as a diode bridge, is to transfer the alternating current into Direct Current

(DC). Bad supply mains tend to cause major interference to the created DC

voltage. This interference is removed from the DC signal at the middle circuit

with condensers and chokes. After the interference filtration, the DC voltage is

converted back to AC by the inverter circuit.

In modern low voltage frequency converters the inverter circuits are mostly

based on Insulated-Gate Bipolar Transistor (IGBT) technology and IGBT-

modules, containing several transistor/diode pairs. Transistors of the IGBT-

 11

module are separately controlled with individual Pulse Width Modulation

(PWM) signals. Thus the PWM signals determine the output frequency of the

AC signal that rotates the motor. Figure 1 assembles the basic components of a

frequency converter. (Wikipedia 2008)

Figure 1. Basic components of a frequency converter.

In addition to the basic components, frequency converters usually contain a lot

of other mandatory parts, such as a control system, built on top of a

microprocessor, and some communication interfaces like serial ports and I/O’s.

A practical assembly for a frequency converter is shown in Figure 2. The Vacon

NX drive in Figure 2 contains a control module for which the customer can

build tailored applications to ensure perfect integration for multiple types of

processes. Interfaces for control panel and extension boards are also included in

addition to the basic FC functionality. (Vacon 2007)

 12

Figure 2. Vacon NX block diagram. (Vacon 2007)

2.2 Frequency converter control and communication interfaces

A frequency converter usually contains a complex system of electronics and

software so that the device would offer maximum controllability and

monitoring capability characteristics. The motor control unit is based on a piece

of software loaded into a microprocessor. It controls the output AC power flow

by performing sophisticated algorithms, which are influenced by

measurements, parameter setups and external signals. Modern FC software is

already so advanced that it is even possible to handle the entire process flow

without an external PLC module. FCs are typically externally controlled

 13

through a panel, I/O interface, Fieldbus or some other communication interface,

like Human Machine Interface (HMI) (Zhang 2006).

Furthermore these same communication interfaces can be used for process

monitoring purposes. It is possible, for instance, to collect measurement data

from the driven motor through a wireless Zigbee-sensor network, and then

send the collected data to a centralized diagnostics server through Ethernet

(Tiainen 2006). Of course this kind of technology would require many optional

peripheral interfaces on top of the basic functionalities of the FC, and the same

goes for the other devices in the system too. However there are plenty of

investigations going on which are focused entirely on developing and

investigating frequency controller communications (Zhang 2006). At the

beginning of 21st century, for instance, Wireless Application Protocol (WAP)

technology was already integrated into a FC, thus enabling wireless remote

monitoring of the drive (Ojanperä 2000). Frequency converter manufacturers

are bringing emerging technologies to their products, so it is probably just a

matter of time when Ethernet or Wireless Local Area Network (WLAN) is a

stock feature in a standard FC model.

2.3 Ethernet in frequency converters

Ethernet is a great competitor to a standard serial line communication. It

enables multiple simultaneous connections to a single physical port. If a device

requires multiple communication protocols, like HMI and Fieldbus, to be

communicating at the same time, it is possible to run these protocols over a

single Ethernet port, while running the same protocols through serial port

 14

would require multiple physical interfaces from the device. Ethernet could save

space as well as costs if it was used instead of serial line communications.

Nowadays Ethernet is more likely to be used for supporting traditional

communication ports rather than as a primary interface for external access. It is

already available to several manufacturers FC models (e.g. ABB, Falcon and

Vacon), at least as an optional feature (ABB 2008, Falcon 2008, Vacon 2008).

Frequency converters contain large number of parameters and monitoring

values that can be externally accessed from outside the device. The majority of

modern frequency converters offer support for some Fieldbus protocol, through

which the drive’s data can be handled. One of the Ethernet based Fieldbus

protocols that have gained popularity among FC manufacturers is Modbus

TCP. Table 1 contains an example demonstration of the monitoring values and

data types, which can be read in real time from a Vacon frequency converter

through the Modbus TCP protocol. Values such as motor torque, power and

speed can easily be accessed through Fieldbus. Outside the table, access to

monitoring the device’s fault history and parameter setup is also possible

through Vacon’s Modbus TCP registers. (Vacon 2008)

Fieldbusses are meant to be used mostly in industrial local area networks

(LAN) and are not suitable for remote monitoring purposes outside the local

network. Modbus TCP for example does not contain any security mechanisms

for preventing third party attacks against the device’s data (Modbus-IDA 2006).

The purpose of this Master’s thesis is to find a suitable communication protocol

and methods that enable remote monitoring of FC’s values. The final solution

must also enable remote controlling of the devices parameters in the future as

 15

well as take into account FC’s hardware and software properties and the

network environment (firewalls etc.) near the frequency converter.

Table 1. Monitoring values(Vacon 2008)

 16

3 REMOTE MONITORING OF EMBEDDED DEVICES

Nowadays there are a lot of embedded devices around us. These devices are

used to control cars and trains, to survey greenhouses and to monitor the

condition of patients at the local health center. Usually the devices contain a

great deal of interesting data, which is sometimes needed to be remotely

monitored. Some of these remote monitoring motivations and implementations

will be discussed in this chapter.

3.1 Remote monitoring motivations

Devices with moving parts that can be worn down often require periodical

maintenance and repairing or replacement of damaged parts. Sometimes these

devices are placed at locations which are difficult or inconvenient to access, or

where the inspections would require the entire system to be shut down. Often

they are located at unmanned stations or at moving platforms, like ships, which

require the maintenance operations to be carefully planned beforehand. Remote

monitoring could enable surveying of these moving parts, thus helping the

maintenance to avoid unnecessary service visits and to reduce additional shut

down costs. Remote monitoring could enable surveillance of the devices

directly from the manufacturer factory, thus enabling remote technical support

to be given in cases that otherwise would require a visit from a specialized

service person. In some cases by remotely monitoring the device, service needs

could be determined and even the statuses of entire processes could be

supervised. Among the few cases mentioned above, many other special

motivations and needs exist for remote monitoring.

 17

3.2 Local collecting point based solutions

Because memory sizes in embedded systems are often small and the processing

capabilities are usually limited, connecting the device into some global network

(e.g. internet or telephone) could be a challenging task. If the devices data needs

to be remotely viewable, it should therefore be connected to the network in

some other way. One often used solution is to collect the data from all the

devices to a centralized collecting point by using Fieldbus protocols and a

Fieldbus master for example. In many cases the Fieldbus master has an

integrated web server and support for Ethernet. Masters are usually equipped

with moderate memories, enabling local data harvesting, storage and

monitoring to be handled from a single centralized computer connected to the

internet. Especially in larger systems a centralized solution could also offer

better network security properties compared to a solution, where each device

handles its own remote monitoring connection.

An example of a centralized remote monitoring system is shown in Figure 3. In

the practical solution, information from the local system is collected into one

central computer by using Eaton PowerNet software for data collection. The

central computer is also equipped with Questra Service Agent software, which

then transports the collected data into Eaton’s central data storage. Clients and

maintenance personnel can now access the collected data via Eaton’s service

pages. (Questra 2004)

 18

Figure 3. Questras remote monitoring solution. (Questra 2004)

However, often the extra costs of purchasing a PLC master or other centralized

server might become relatively expensive especially for small systems, or for

some other reasons the implementation of a centralized solution might just be

too difficult. In these cases, a direct network connection for the device should be

provided.

3.3 GSM based solutions

GSM radio based remote monitoring solutions have been widely used all over

the world. Devices using GSM radio for external communications can usually

be configured to sending alarms via SMS, and often allow parameter data

viewing via a standard phone call connection. An embedded device can be

made GSM compatible by integrating a radio chip directly to the devices

hardware, or by using an external GSM module which can be controlled using

for example standard serial port communications. An example of such a device

is the in4ma GSM module, which enables storage of 40000 time stamped data

 19

records, SMS and email alerts, and a web based remote monitoring connection

(in4ma 2007).

GSM connections are well secured and the network is available throughout the

world. Sometimes though a device might be installed into a location where

wireless connectivity cannot be guaranteed. Such a place could for example be

an elevator shaft, a basement, a mine or some other bad coverage location from

a radio propagation point of view. One other downside with GSM radios is that

each device would require a unique subscription from the service provider.

This can lead to relatively expensive phone bills, when multiple devices are

configured to sending periodical data records.

3.4 Ethernet based solutions

With Ethernet technology the devices can be globally connected to each other

by IP addressing, and they can be uniquely identified from each other by their

Media Access Control (MAC) addresses. With GSM routers, Internet

connections could be provided even to remote locations, meaning that Ethernet

based communications covers at least the same geographical area as GSM based

remote monitoring solutions. One ISP provided internet connection can be

shared among several users by using switches and routers equipped with

Network Address Translators (NAT), which means that a single connection can

be used to connect several simultaneous remote monitoring sessions. Many

different Ethernet based remote monitoring solutions have been implemented

for embedded devices nowadays. One often used solution is to run a web

server on the device itself, and another approach is to form a connection into an

 20

external server where the data will be stored in, and where it can be remotely

accessed from later on.

3.4.1 Web server solutions

An often used approach to implement remote monitoring of a device through

Ethernet is to run a web server on it. Some HTTP server softwares are available

even for embedded devices, which can be configured to hosting some simple

web pages. With such an approach, parameter monitoring and modifications

can be made easily, without installing any special programs, using a PC and a

standard web browser. An example of a commercial device implementing a

web server based remote monitoring solution is ABB’s NETA-01 Ethernet

module. Its web pages can be used to altering frequency converter parameters

and to reading information about system status, fault logs and data logs (ABB

2007).

Implementing the web server based remote monitoring solution outside the

local area network might turn out to be a challenging task. The data itself

should reside on the device itself, which means that the devices memory

capacity would set its own limits to the maximum size of the data storage.

Other problems would be caused by firewalls, proxy servers and NAT’s. A

device that is located at NAT’s sub network does not have its own public IP

address at all, but it has a NAT allocated sub network address instead. From the

outside network point of view, all the communications departing from a NAT

router seems to be originated from a single device only (Ford 2005). Connection

establishment from the internet to a web server located inside a NAT routers

 21

sub network could turn out to be difficult task, and because many ISP provided

ADSL connections are provided with a stock NAT router (Elisa 2006), a client

based remote monitoring approach might be more convenient solution from the

end users point of view.

3.4.2 Indirect monitoring

Many problems caused by NAT’s and firewalls could be dodged, if the

connection was opened from the device itself instead of that the connection

request would come to the device from the internet. Numerous remote

monitoring solutions have been implemented, in which the device connects to

an external server, where it stores the data, and from which the data can be read

afterwards with a standard web browser for example. The previously

mentioned ABB Ethernet module for example uses email for sending monitor

values to the server. Received values are then processed at the database server,

and as a result of the process the maintenance personnel can be alarmed by

different means (e.g. SMS messages) in problematic situations (ABB 2007).

Figure 4 presents the main structure of the ABB NETA-01 Ethernet module’s

remote monitoring solution implementation.

 22

Figure 4. ABB NETA-01 remote monitoring. (ABB 2007)

In the above solution, email was used as the communication protocol between

the frequency converter and the database. Many other protocols have been used

in similar solutions to delivering data to the database server as well. Point-To-

Point Tunneling Protocol (PPTP) (Clarke 2004) and File Transfer Protocol (FTP)

(Kim 2000) among other communication protocols have been used for data

transportation in existing implementations. The thesis will not cover all the

communication protocols that can be used to establish remote monitoring

connections, but a solution for one protocol will be presented in details.

 23

4 REMOTE PROCEDURE CALL (RPC)

The roots of Remote Procedure Call (RPC) extend more than three decades back

to the year 1976, when it was first introduced in RFC 707 (White 1976). RPC was

designed as a request/ response protocol that mimics the procedural

programming languages and was known as the client/ server model at the

beginning. The idea of RPC was to balance the load in the network systems by

distributing the process between the working computers. When designing these

distributed systems, the researchers soon realized that the networking

functionality should be hidden from the actual application. As a side effect of

this layer model, the development of distributed systems became much easier.

RPC maps nicely to a function call in C/C++ languages. Similar to C functions,

RPC is based on request/response procedure model. In C this means that after

the function is called, the caller will transfer the execution control to the

function and then wait for the function to complete its work before receiving

the execution control back. Similarly to C, in RPC the function will return only

after the remote procedure has finished and returned the result to the caller.

This is the easiest way to manage concurrency in the application but does not

mean that RPC would not come with a set of its own problems. Problems

related to things such as remote connectivity, mutual wire representation of

data, interface design for network bandwidth, and exception handling emerge.

An example of an RPC call will be given in section 4.4 Example RPC

Application. (Scribner 2000)

 24

4.1 Remote endpoints

The first step in making an RPC call is to connect to the remote host. In TCP/IP

the connection will be formed according to the IP address and port number.

The client makes a query for a specific service to the RPC server, which then

returns the port number of the requested service, if it has been registered to the

Distributed Component Object Model (DCOM) endpoint mapper of the host.

An example of a RPC call connection has been given in Figure 5. In the

example, the client connects to the server’s RPC port 135 and requests the port

information of the email service. The server then returns the port number 1248

of the requested service to the client, which can then connect directly to the

email service port of the host. (Sakellariadis 2008)

Figure 5. Example RPC query(Sakellariadis 2008)

 25

4.2 Wire representation of data

In locally executed procedures, the parameters have been placed on the stack

into unambiguous locations so that both the caller and the procedure have

knowledge of the location and size of the parameters. These parameter

placements have already been determined during the compiling of the code and

stay intact during the life of the binary executable. A bond like this is difficult to

make between two separate computers. This means that we have to have a

common way to represent the data online so that both ends interpret and feed

the data in correct order and format. For RPC there are a few representation

methods such as the Network Data Representation (NDR) and Sun’s eXternal

Data Representation (XDR). The Interface Definition Language (IDL) was

designed to be used for describing RPC interfaces. A demonstration example is

shown in the Figure 6. (Scribner 2000)

Figure 6. Interface Definition Language (Scribner 2000)

4.3 Interface design for networks

When using RPC it is very important to consider processing times, network

congestion, system errors and slow transmission rates. It is also important to

consider these matters at the design phase of the interfaces, so that for example

an optimal balance between the number of remote calls and the payload of a

 26

single call could be found. A good rule for designing a remote procedure

system is that it works best for typical use rather than pathological situations. A

good implementation is easy to use and serves the client in the most optimal

way. (Scribner 2000)

4.4 Example RPC application

Storing of a parameter history over a long period of time in an embedded

device memory is challenging. A parameter value with a size of four bytes,

which is read every ten seconds, requires 24 bytes of memory storage for each

recorded minute. Two weeks of parameter history for five parameters would

then require memory space of

(2*7*24*60*60) (s) * (1/10) (1/s) * 5 * 4 bytes = 2419200 bytes.

Even powerful embedded device processors might have difficulties storing

these amounts of data without external memory expansions. The Static Random

Access Memory (SRAM) size of Atmel AT91RM9200 for example is only 16

kilobytes (ATMEL 2006). Processor memories could be expanded with an

external memory such as Synchronous Dynamic Random Access Memory

(SDRAM), but an alternative approach is to store the data outside the device,

into an external database.

RPC technology allows routines to be driven at remote locations. An example of

RPC functionality has been introduced in Figures 7 and 8. In the example code

 27

of Figure 7 the parameter is normally stored to a parameter array located at

device’s Random Access Memory (RAM).

Figure 7. Parameter stored to local RAM.

When the array sizes are so large, that the physical restrictions of the memory

sizes become a problem, the data should be stored somewhere else than into the

device memory. By using RPC the parameters can be stored to a remote

memory space. This kind of memory storage could for example be a MySQL

database, located at a distant server. Figure 8 demonstrates identical parameter

saving to Figure 7, but with RPC implementation now included.

 28

Figure 8. Parameter stored to external memory space by using RPC.

What is noticeable about the RPC usage is that the networking functionality has

been completely hidden from the interface. For the application itself the

saveParameter function looks completely same whether RPC is used or not. The

processing time of the Figure 8 function might be longer than the one of Figure

7, but both of these functions block execution until the process has been

completed.

 29

5 SIMPLE OBJECT ACCESS PROTOCOL (SOAP)

Port 135 of the RPC protocol, among the ports used by many other RPC based

protocols, is often blocked by firewalls for security reasons especially in

corporate networks. However, for application development it is important that

programs could somehow communicate with each other through the internet.

Unlike the previously mentioned RPC protocols, the communications for Hyper

Text Transfer Protocol (HTTP) are usually allowed to go through most firewall

and proxy server setups. Furthermore HTTP has been implemented for

numerous different platforms and programming languages and for this reason

it is a suitable communications protocol between multiple devices with

different technologies. Unfortunately the protocol has been designed for

delivering hyper text, and is not suitable for communications between

applications as such. For this reason, the Simple Object Access Protocol (SOAP)

specification was originally designed aside HTTP. (W3Schools 2008)

SOAP is a communications protocol that enables exchanging of eXtensible

Markup Language (XML) based messages between applications. First SOAP

specification was released 1999 by the name SOAP: Simple Object Access Protocol

Specification (version 1.0). Later on version 1.1 of the protocol was released in

2000 and 1.2 in 2001 (W3C 2007). Compared to other RPC based protocols,

SOAP’s special characteristics are that it is based on XML language and that it

fits well into today’s modern internet infrastructure. Other special

characteristics for the protocol are its firewall penetration ability, platform

independency, programming language independency, simplicity and

extensibility. Aside from the traditional RPC protocols, SOAP uses other

application layer protocols for message transportation. It is mostly

 30

recommended to use the protocol together with HTTP, from which SOAP

inherits the firewall and proxy server penetration abilities. (W3Schools 2008)

5.1 Message structure

For each SOAP version, a W3C defined specification exists (W3C 2007). These

specifications define for example that SOAP messages should be composed in

XML format and that each message must contain at least an envelope element

and a body element. SOAP messages must also contain sources for the used

namespaces from which an accurate XML schema description for the elements

can be found. W3C has defined several elements for SOAP, enabling rich and

unambiguous communications between applications. Definitions for multiple

data types, like int, float and double, have been made for each SOAP version, and

are commonly available for public usage at W3C web site. As an example, the

default namespace for the SOAP version 1.2 can be found at

“http://www.w3.org/2001/12/soap-encoding”.

One SOAP transaction can contain several elements in both query and response

messages. The elements can be in the form of an array or a structure and

furthermore an element can contain other elements in its substructure. This

enables a very dynamical and extensible communication interface between the

applications that are using SOAP for data transportation. It is also possible to

create custom namespaces for the protocol, enabling the transportation of very

unique structures and arrays between the endpoints. New transaction interfaces

and message structures for SOAP can be described with the Web Service

Definition Language (WSDL).

 31

SOAP can be used together with multiple application layer communication

protocols, but it is mostly recommended to be used together with HTTP. On top

of a SOAP message, HTTP adds for example the required delivery information,

so that a message can find its way to the right procedure call through the

internet. An example of a simple SOAP query (upper) -, and response (lower)

message tied to HTTP has been given below. The example SOAP RPC function

GetStockPrice returns a stock price for the requested item. The client requested a

price for an item IBM, to which the server responded with a price of 34.5.

(W3Schools 2008)

POST /InStock HTTP/1.1

Host: www.example.org

Content-Type: application/soap+xml; charset=utf-8

Content-Length: nnn

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

 <soap:Body xmlns:m="http://www.example.org/stock">

 <m:GetStockPrice>

 <m:StockName>IBM</m:StockName>

 </m:GetStockPrice>

 </soap:Body>

</soap:Envelope>

HTTP/1.1 200 OK

Content-Type: application/soap+xml; charset=utf-8

Content-Length: nnn

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

 <soap:Body xmlns:m="http://www.example.org/stock">

 <m:GetStockPriceResponse>

 <m:Price>34.5</m:Price>

 </m:GetStockPriceResponse>

 </soap:Body>

</soap:Envelope>

 32

5.2 Web Services Description Language (WSDL)

WSDL is a description language built into XML format and can be used to

describe the characteristics of a web service accurately. A WSDL file contains

for example the information about the main characteristics, used

communications ports and message data structures of a service. Furthermore it

can be used to describe new customized namespaces and element types for the

use of multiple types of procedure calls. WSDL is often used together with

SOAP and the XML schema to describe web service content available on the

internet. A client program can read the WSDL file, containing a list of the

available services from the server, and then connect to these services by using

SOAP as the communication protocol. A simple SOAP service description in

WSDL form has been given below.

<message name="GetStockPriceRequest">

 <part name="StockName" type="xs:string"/>

</message>

<message name="GetStockPriceResponse">

 <part name="Price" type="xs:decimal"/>

</message>

<portType name="glossaryTerms">

 <operation name="GetStockPrice">

 <input message="GetStockPriceRequest"/>

 <output message="GetStockPriceResponse"/>

</operation>

</portType>

<binding type="glossaryTerms" name="b1">

 <soap:binding style="document"

 transport="http://schemas.xmlsoap.org/soap/http" />

 <operation>

 <soap:operation

 soapAction=" http://www.example.org/stock"/>

 <input>

 <soap:body use="literal"/>

 </input>

 <output>

 <soap:body use="literal"/>

 </output>

 </operation>

</binding>

 33

The above example WSDL file was already referenced by an earlier example at

section 5.1. The GetStockPrice operation of the example service takes a StockName

parameter of type string as an input, and then returns a Price variable of type

decimal as an output response. (W3schools 2008)

5.3 Integration with databases

SOAP Application Programming Interface (API) has been implemented into

numerous web server environments which also include interfaces for database

accessing. PhP for example is often used for web server programming and

contains libraries for the handling of both SOAP- and MySQL messages.

Because of these integrated libraries, it is relatively easy for the server side

programmer to store the data, received in a SOAP message, into a database.

There are some considerations to be taken into account when selecting an

appropriate server software environment. The speed and efficiency of SOAP

message parsing and database operations for example should be carefully

considered when the group of clients grows into thousands of users and the

amount of data to be stored is huge. Wrong software solutions might affect

negatively into the performance and capacity of the system, which means that

careful comparisons between different environments should be made.

Although the purpose of this master’s thesis is not to go through different web

server technologies, an example implementation for one environment will still

be introduced in chapter 6.

 34

5.4 Security

The SOAP specification does not define any security for the communications.

However, encryption and authentication are critical for many applications. For

example the remote control of a frequency converter with an unsecured

communications would expose the whole process to the threat of an attack.

Since the SOAP messages are transported inside the data content of another

application layer protocols, the security mechanisms of these protocols can be

used for securing SOAP messages as well. For example HTTP communications

can be secured together with Secure Sockets Layer (SSL), which means that

SOAP can also be used together with Hyper Text Transfer Protocol Secure

(HTTPS) (Wikipedia 2008b). However, the usage of HTTPS is not entirely

problem free. When used together with proxy servers for example, the end-to-

end security will be entirely lost (Wikipedia 2008b). If the message integrity

should be kept all the way from the application to another, the content should

be secured before delivering it to HTTP or HTTPS.

WS-Security is an Oasis-Open published and maintained standard, which

defines methods for securing web services. WS-security defines how to attach

signatures and security tokens into SOAP message headers in a way that end-

to-end security can be reached (Wikipedia 2008b). By using WS-security, the

SOAP messages can be encrypted efficiently enough so that the usage of SSL

encryption is not mandatory anymore. This means that compatibility with

proxies can be achieved, and thus secure SOAP communications on top of

HTTP is possible (MSDN 2008).

 35

5.4.1 Web Services Security authentication

WS-Security provides a UsernameToken profile for SOAP client authentication.

Client password and username can be transported inside the SOAP message

header either in plain text or in an encrypted form. Aside from plain text

representation, encrypting the client password protects the system against reply

attacks and thus improves system security.

UsernameToken profile specifies the user password to be coded using two

altering values that are transported to the server inside the SOAP security

message. These two values must never be the same twice, so that reply attacks

can be efficiently blocked at server side. The profile specifies an algorithm of the

form

 Password_Digest = Base64(SHA-1(nonce+created+password)) (1)

to be used when coding the clients password. Algorithm 1 takes a string of

three variables as an input and gives a base-64 number as an output. The input

string is formed of the user’s plaintext password, encryption creation time and a

nonce or number used once in other words. The given input string is hashed

using the Secure Hash Algorithm (SHA) version 1, and then transformed into

base-64 numerical format. The receiver has the user’s plaintext password stored

in some memory space, and upon receiving the authentication header the

server does exactly the same operation with the same input values and

compares the output to the sent, encrypted password. If the encrypted

passwords match, the user has been authenticated. WS-Security

 36

UsernameToken element will be transported inside the SOAP message header

element in the following form. (OASIS 2004)

<S11:Envelope xmlns:S11="..." xmlns:wsse="..." xmlns:wsu= "...">

 <S11:Header>

 <wsse:Security>

 <wsse:UsernameToken>

 <wsse:Username>NNK</wsse:Username>

 <wsse:Password Type="...#PasswordDigest">

 weYI3nXd8LjMNVksCKFV8t3rgHh3Rw==

 </wsse:Password>

 <wsse:Nonce>WScqanjCEAC4mQoBE07sAQ==</wsse:Nonce>

 <wsu:Created>2003-07-16T01:24:32Z</wsu:Created>

 </wsse:UsernameToken>

 </wsse:Security>

 </S11:Header>

</S11:Envelope>

5.5 Software for embedded devices

Only a limited amount of memory is available when dealing with embedded

devices, meaning that the memory consumption of the software should be

carefully taken into account. Recently, a lot of research activities have been

trying to deliver SOAP into embedded communications. SOAP has already

been used even in small sensor network communications (Janêcek 2004), and

small footprint SOAP software is commercially available (gSOAP 2008, eSOAP

2008).

 37

6 REMOTE MONITORING WITH SOAP

This chapter describes in detail, how the actual implementation of remote

monitoring is done for the frequency converters. Outlines for the software

requirements were described earlier in the introduction chapter. According to

the requirements, the remote monitoring software should be operational with

minimum configuration and the implementation itself should suite the modern

internet infrastructure as well as possible. This means that the solution should

take into account operational environments, which might include devices such

as NAT’s, firewalls and proxy servers. The final implementation should also be

as self acting as possible so that the setup required from end user can be

minimized.

Remote monitoring software was implemented with SOAP communication

protocol on Vacon OPT-CI Ethernet option card. The software enables remote

monitoring of six freely selectable frequency converter parameters in one

second intervals. Due to software dynamics, further additions such as fault

information transport, remote control, or some other remote communication

features are possible without major modifications to the current

implementation.

6.1 SOAP messaging

SOAP was chosen as the remote monitoring protocol due to its dynamicity,

extendibility, platform independency and modern internet infrastructure

suitability. With SOAP messages the parameter data transport from the

frequency converter to the database server and the data handling with different

 38

kinds of server side software can be done relatively easy. Furthermore many

server side software packages that support SOAP messaging also support some

database languages. This means that the data processing from the actual

message to a database cell is simple. SOAP has also been used in other remote

monitoring solutions, such as the previously mentioned Questra solution,

meaning that a fusion to other systems with moderate changes could also be

possible in the future.

SOAP messaging is neither fast nor light (Davis 2002), so it is not very suitable

for dense real time data transmission. For the remote monitoring

implementation, transmission of six values every second produces only 30 data

units every fifth second. All of these values can be fitted into one single SOAP

message, which means that a new message would be generated every five

seconds. This gives both the transmitting and the receiving side plenty of time

to process the request and response messages, meaning that light density

remote monitoring of parameters could be implemented with SOAP.

SOAP communication is based on XML, which means that the first step to data

transportation is to mold it into XML format. Communication also requires

some sort of authentication mechanism for identifying the client, and also some

sort of identification to separate the devices from each other. Transmitting

frequency converter monitoring values over the net is not supposed to be a

highly critical matter, meaning that there is no need for encrypting the actual

payload of the message. For other, more critical applications, the data could be

encrypted by using HTTPS or WS-Security mechanisms. The following sections

describe the structure of the transmitted SOAP message.

 39

6.1.1 Data representation in XML format

Values that can be read from the frequency converter can be of very different

types, depending on their actual use purposes on the device. In table 1 we see

that the monitoring values consists of three different data types. Parameters

which can contain both positive and negative values are represented in integer

format, while exclusively positive values are represented in unsigned integer

format. Boolean format can be used for representing the value of a digital input,

and accurate decimal values can be represented in float format. The data type

sizes can also vary from one single bit, all the way to 64 bits and even more. The

actual data type of the value must thus be included in the SOAP message so

that the receiver knows how to handle the data.

In Vacon frequency converters the remotely monitored values and parameters

are called IDs. IDs on the FC are separated from each other with an ID number.

Because the remote monitoring messaging was implemented in a way that one

single SOAP message can contain multiple units from different moments, the

transmitted ID unit must thus include an ID number, ID value and a timestamp

from the record moment. With these elements, one single value could be

represented in XML format in the following way.

<ID>

 <TimeStamp>12:00:00.00</TimeStamp>

 <IDNumber>1</IDNumber>

 <IDValue>100</IDValue>

</ID>

On the example above, the ID 1 value at 12 o’clock was 100, but the

representation does not yet show any types of individual elements. XML

Schema documentation standard can be used for describing different kinds of

 40

XML structures and types. With XML Schema documentation, unique

namespaces together with custom element structures and data descriptions can

be unambiguously used to describe XML data. The previous ID unit can be

described with XML Schema complexType structure in following way.

<xsd:schema tns='www.example.com'

 xmlns:xsd='http://www.w3.org/2001/XMLSchema'>

 <xsd:complexType name='ID'>

 <xsd:all>

 <xsd:element name='TS' type='xsd:time'/>

 <xsd:element name='Nr' type='xsd:int'/>

 <xsd:element name='ERROR' type='xsi:string'

 minOccurs='0' maxOccurs='1'/>

 <xsd:element name='BOOL' type='xsd:boolean'

 minOccurs='0' maxOccurs='1'/>

 <xsd:element name='BYTE' type='xsd:byte'

 minOccurs='0' maxOccurs='1'/>

 <xsd:element name='SHORT' type='xsd:short'

 minOccurs='0' maxOccurs='1'/>

 <xsd:element name='SINT' type='xsd:int'

 minOccurs='0' maxOccurs='1'/>

 <xsd:element name='UBYTE' type='xsd:unsignedByte'

 minOccurs='0' maxOccurs='1'/>

 <xsd:element name='USHORT' type='xsd:unsignedShort'

 minOccurs='0' maxOccurs='1'/>

 <xsd:element name='UINT' type='xsd:unsignedInt'

 minOccurs='0' maxOccurs='1'/>

 <xsd:element name='REAL4' type='xsd:double'

 minOccurs='0' maxOccurs='1'/>

 </xsd:all>

 </xsd:complexType>

</xsd:schema>

On the XML Schema description above a tns namespace, which includes an ID

complex type, was defined. Because the element names increase the payload,

the name lengths have been kept minimal. By using XML Schema

documentation, it is now possible to map the data types of each individual

element. Timestamp TS was defined as a time type defined at 2001 W3

XMLSchema, while ID number Nr is of type int of the same documentation.

Multiple elements were defined for the actual ID value so that the same ID

complex type element could be used to transmit different types of monitoring

 41

values. Boolean data for instance can be transmitted inside the BOOL element,

and an error message of string format can be transmitted inside the ERROR

element. The occurrences of ID value elements have been limited with

minOccurs and maxOccurs parameters so it is now possible to transmit an ID

element in the following format.

<tns:ID>

 <tns:TS>12:00:00.00</TS>

 <tns:Nr>1</tns:Nr>

 <tns:SINT>100</tns:SINT>

</tns:ID>

All the data types of the used elements can be unambiguously identified from

the above example by referencing the XML Schema documentation. A WSDL

document that describes the web service is in XML Schema format, and can

contain the descriptions for all the elements used in the communication. The

WSDL document of the remote monitoring service is attached in Appendix 1.

6.1.2 Authentication and identification

If the remote monitoring messages would not include any authentication

information, a third party attacker could easily send false information to the

database by performing a so called reply attack (W3C 2001). Authentication

information, such as a username and a password, can be added to the message

so that the service provider can identify the client and accept the message

content. A message with fixed, plain text identity information is however as

exposed to reply attacks as a message with no identity information at all. This

means that the identity information should alternate between sent messages.

Furthermore the identity information should alternate in a way, that even if the

 42

attacker would know the authentication alternation method, it would not be

possible to predict the next message identity information even while knowing

the contents of previous messages.

WS-Security UsernameToken element provides a standard password hashing

mechanism for SOAP messaging. The remote monitoring service provider

assigns a fixed username-password pair to the client, which then creates a new

hashed password to every message according to Algorithm 1. An example user

101 with password 102 sends a message at 11th of July 2008. According to

Algorithm 1, a message that was created at 1.31.58 o’clock, and which was

provided with nonce +8JRA04FAAA=, would then have a hashed password

Base64(SHA-1(+8JRA04FAAA=2008-07-11T01:31:58.000102)) =

XUFmDr88Qxgi/q6afcuGcJCeVPs.

The next message which will be sent five second later with nonce

XdZRAFkGAAA= would have a password

Base64(SHA-1(XdZRAFkGAAA=2008-07-11T01:32:03.000102)) =

B3nLuZ+LkaqYnRyb5TpFlQr8m7c=.

The dataTime timestamps in the above examples were enhanced with red color

to highlight the Algorithm content. The examples demonstrate how the hashed

password will be generated, and how the two generated passwords have

nothing in common. The receiver must know the clients username-password

pair in order to authenticate the user. The receiver performs the same

Algorithm 1 hash procedure with the received nonce and timestamp

 43

information, together with the known plain text password. If the received

password corresponds to the result of the formula outlet, the client is

authenticated.

The WS-Security UsernameToken profile defines that the used nonce must be

unique in each message. This rule causes the hashed password to be different

even if the same timestamp would appear in consecutive messages. Without

breaking the SHA-1 encryption, the attacker must now guess the clients

password in order to access the service. This can be made harder by selecting an

appropriate length and form for the password. UsernameToken profile

provides protection against reply attacks, but does not prevent so called man-

in-the-middle attacks (MSDN 2001), where the attacker can capture the

message, alter the body of the SOAP message, and forward tampered data

content with valid authentication details to the server. This type of attacks are

not considered to be a risk on implemented remote monitoring application, but

should be considered for example in remote control applications. In such cases,

a higher level security mechanism must be considered. The difference between

reply and man-in-the-middle attacks has been visualized in Figure 9.

Figure 9. WS-Security UsernameToken against different types of attacks

 44

In addition to identifying the user, the messages arriving from different devices

must be separated from each other. If it is assumed that the same user

credentials can be used in multiple devices, the devices can be distinguished

from each other for example by adding the device’s MAC-address to the SOAP

message. This method together with UsernameToken profile will be used in the

remote monitoring implementation.

6.1.3 Service description in WSDL format

A full WSDL description of the ID storing service is attached in Appendix 1.

Briefly explained, the remote monitoring RPC function in the WSDL file has

been defined to take the device properties- and n amount of ID elements in an

array format as parameter inputs. This means that the amount of stored IDs in

one message can alter between messages. This gives the possibility to store

more IDs at times when the connection has been down for a while for instance.

In the response message, the service returns a numerical response 1 if the

storing was successful and some negative feedback if the procedure failed. If for

instance the authentication failed, the response will be -1. The SOAP message

header has been defined to contain a WS-Security element, which in this case is

a UsernemeToken element. Furthermore the WSDL description file contains a

binding to the service port, or more precisely to the Uniform Resource Locator

(URL) address of the remote monitoring service.

With the help of a WSDL description file, it is easier to build the server

software. PhP’s SOAP extension for instance can automatically parse the RPC

 45

parameter structure directly from the description file, thus reducing the amount

of mandatory coding. A PhP example, which demonstrates the usage of a

WSDL description file, has been given below. In the example, the Appendix 1

StoreIDs RPC service will be taken into use. The SOAP extension automatically

parses the input parameters from the incoming message and then calls the

actual procedure. Inside the function, these parameters can then be used in the

same way as any other PhP objects, meaning that they can easily be stored to a

database for instance. When the actual function call has been finished, the

SOAP extension will automatically generate a response message according to

the WSDL description file and send it back to the client.

<?php

function StoreIDs($DeviceInfo,$IDArray)

{

 ...

 //Store parameters to database etc.

 ...

 return 1;

}

ini_set("soap.wsdl_cache_enabled", "0");

$server = new SoapServer("RemoteConnection.wsdl");

$server->addFunction("StoreIDs");

$server->handle();

?>

The thesis implementation covers only an ID storing service, but it is relatively

easy to add new RPC functionalities in the future. A fault information storing

could be added to the WSDL file as a new function, and the same description

file could then be used to cover all the SOAP RPC services. Adding a new

service does not require any changes to the old software structures, meaning

that software updates caused by the adding of a new service can be kept

minimal. From the PhP software point of view the fault info storing would only

require porting of a new RPC function from the WSDL file and creating a

functional content for the procedure. It is also possible in certain limits to mold

 46

the existing XML elements. Additional sub elements, like device software

information or serial number, could be added into the device info element for

example. If the updates are correctly defined into the WSDL file, no changes to

the old, operational server software are required. This means that backwards

compatibility can be maintained even when adding new content to the service

interface.

6.2 Frequency converter hardware description

Remote monitoring application was implemented on Vacon OPT-CI option

card. The Ethernet compatible option card can be connected to Vacon NX series

frequency converters, which makes it possible to add the remote monitoring

feature as a post option even to older devices. The card has been equipped with

an ATMEL AT91RM9200 microcontroller, 64MB of SDRAM memory, 32MB of

flash memory and with a 10/100Mbps Ethernet. The OPT-CI card is shown at

Figure 10.

Figure 10. Vacon OPT-CI Ethernet Option Board (Vacon 2008).

 47

6.3 Frequency converter software description

Previously mentioned Modbus TCP protocol has been implemented on Vacon

OPT-CI option card. This makes it already possible for the user to read and

write ID values from the drive over Ethernet. Both SOAP-, and Modbus TCP

protocols use a TCP socket interface for communication, meaning that the

existing software structure of the option card gives a good base for SOAP RPC

communications.

To enable remote monitoring calls, application layer software which provides

an interface for SOAP communication is required on top of the TCP stack.

SOAP communication requires data transformation to XML format, and back to

data again, so the software must contain features of an XML parser.

Furthermore the software must cover at least HTTP client communication

properties, which makes the SOAP software relatively large already. Several

small-memory-foot-printed HTTP softwares, as well as some SOAP software

implementations can already be found on the marked nowadays. Writing the

communications software entirely from the beginning would require so much

work and testing that a complete SOAP/HTTP communications stack was

decided to be used in the implementation. The ID storing SOAP RPC

application was then written on top of this stack.

The frequency converter software consists of several readable values from

power-, current- and torque measures to analog- and digital inputs. These

values have been read from the device to the option card in real time through a

special option bus interface. The option card software has also included some

parameters which could have been altered directly from the frequency

 48

converter’s control panel. The remote monitoring implementation was built on

the top of the existing option card software, thus taking advantage of the

existing TCP/IP communications- and option bus interfaces.

The software implementation is shown in Figure 11. It was realized in a way

that the ID storing application was split into two real time operating system

tasks. The application has six ID address parameters which the user can freely

alter from the FC’s control panel. An independent, periodically every second

driven, task fetches the parameter defined ID values and data types from the

device. A timestamp from the moment of the fetch is added to the ID value, so

that it would be possible for instance to draw a time dependent trend graph

from the collected data later on. The gathered data is then added to a circular

buffer, where it can be read at an appropriate time.

Storing the IDs from the circular buffer into an external memory is done in the

second task. Because it is not reasonable to create new SOAP calls for every ID

to be stored, the task will wait until an appropriate amount of IDs are available

at the buffer. The task will read the ID units one at a time from the circular

buffer, transform these into Subchapter 6.1.1 shown textual XML format, and

finally the units will be placed into an XML array. Among the ID address

parameters, the user can also modify authentication details from the panel.

Based on the given details, a WSS UsernameToken element will be created and

the devices MAC address will also be transformed into XML format. When the

SOAP RPC call’s required information has been gathered, a connection to the

actual remote service can be formed. Because the frequency converter might be

located in such a network location, that all the HTTP connections go through a

proxy server, the user must be able to modify the proxy server address among

 49

the actual database server address from the panel. Using the gathered

information, a SOAP RPC call will then be set up and the task will then stay

waiting for the response message. If the call was successful the task will return

to sleep until the next data call, but in some exceptional circumstances the

errors must be handled. If the authentication details for instance were invalid,

there is no need to create further calls because the user was not identified. In

situations where the call could not be established, for instance due to some

network error, the ID values could temporarily be stored into flash memory

from where they could be restored when the connection is back to working

again. The above description of the software functionality periodically repeats

as long as the remote monitoring feature has been turned on.

Figure 11. Software description for ID storing.

 50

6.4 Server software

The essential purpose of the master’s thesis is not to present different server

side solutions, but one example implementation for one server platform will

still be introduced. A database server was built into a Windows XP PC

computer, that was running an Apache 2.2 server software and a MySQL

database. The web interfaces were written using PhP programming language.

Fundamental purpose of the server software is to store the FC’s transmitted ID

values into a database, and to draw a web browser monitorable trend view

graph from the stored values for the end user.

6.4.1 Service interface for frequency converters

Frequency converters establish a SOAP RPC connection to the Appendix 1

WSDL document defined URL, or more precisely to the address

www.uwasa.fi/~l82962/RemoteConnection/wsdl/RemoteConnection.php. The PhP

code behind the target URL receives the SOAP messages, checks the header

content to authenticate the user and finally performs the WSDL defined RPC

function call implementation for ID storing. The server software interface for

the frequency converter communications has been visualized at Figure 12.

 51

Figure 12. Server software interface for frequency converters.

6.4.2 Service interface for remote monitoring

For the actual remote monitoring purposes, the database server contains a

standard web page for displaying the stored data in graphical format. At the

example implementation, the graphical remote monitoring view was made to

display device specific ID values in a standard web browser. The user can select

a specific device according to received MAC addresses, after which all the

values that have been received from the selected address will be displayed

graphically and sorted according to the ID numbers. The graph’s x-axis displays

time, while the y-axis displays the received ID values. Negative changes

between consecutive ID values are highlighted with blue horizontal lines, while

positive changes are highlighted with red horizontal lines respectively to

enhance small, but significant changes in binary values for instance. An

example remote monitoring case will be introduced at chapter 7.

 52

7 EXPERIMENTS AND RESULTS

This chapter introduces an example use case which demonstrates the usage of

the implemented remote monitoring feature. The complete remote monitoring

system still missed the final database server implementation at the time of

writing this chapter. Due to this cause, the system could not be tested in real use

case environments at this stage. The server side software used in this

demonstration is only a temporary implementation built for demonstrational

and test purposes.

7.1 Example case and environment

The built-up use case with its surrounding environment has been visualized at

Figure 13. The frequency converter, that controls a motor, is connected to a

corporate intranet. The devices at the intranet fetch their IP addresses from a

Dynamic Host Configuration Protocol (DHCP) server, which is also the FC’s

primary task before establishing any other TCP connections. All the TCP

communication that departs from the intranet goes through a proxy server,

which in this case also communicates with the database server, located at the

internet. The remote monitoring client at the figure can observe the ID data that

the frequency converter is transmitting, with a standard web browser from

anywhere, by viewing the web site located at the database server.

 53

Figure 13. Example use case.

7.1.1 Frequency converter control environment

The frequency converter that is used in the example use case is a Vacon NXS

(Vacon 2007) drive, which is connected to a small three phased induction motor.

Furthermore the FC has been equipped with a Vacon OPT-CI option card

supplied with the implemented remote monitoring application and a gateway

to Ethernet.

The FC is locally controlled with an I/O simulator shown at Figure 14. The

simulator has six digital and two analog inputs which can be used to control the

frequency converter. AI1 analog switch shown at the figure is used to alter the

device’s reference frequency. At system software, the position of the switch has

been scaled to gain values between 0 and 100, and the current value can be

 54

externally read through ID 59. The switches DIA1 and DIA2 are used to control

the rotational direction of the motor. When the DIA1 switch is high, the

reference frequency that directly influences to the output frequency is positive

and the direction of the motor rotation is clockwise. Setting the DIA2 switch

high causes the motor to run at counter clockwise direction recursively. When

both of the switches are low, the motor is stopped. Turning the DIA3 switch on,

causes a bogus fault event, which forces the motor to halt immediately. The FC

has been programmed in a way that the engine wont start running again, until

the source of the fault has been removed and the event has been acknowledged

with a reset signal. In this case the reset signal can be given by toggling DIB6

switch on. The last switch used in the example is DIB4, which forces the

reference frequency to be set at a predefined value. The positions of the digital

inputs DIA1-DIA3 can be read via ID 15, and positions of DIB4-DIB6 via ID16

recursively.

A few predefined reference-, minimum- and maximum values exist on the

frequency converter. Maximum output frequency has been set to 50Hz and the

predefined reference frequency behind DIB4 switch is 10Hz. Acceleration time

for the engine from stand-still to maximum speed is 15 seconds, while braking

the speed back to zero takes 10 seconds recursively. Output frequency that is

fed to the engine can be monitored through ID 1 and the reference frequency,

which is the target for the output frequency, can be viewed via ID 25. A

calculated motor temperature can be read through ID 9.

 55

Figure 14. Vacon I/O Simulator

 56

7.1.2 State machine representation of demo control and events

Figure 15. State representation of demo control.

The FC will be driven according to the sequence graph shown at Figure 15.

Firstly the reference frequency will be set to 50Hz by turning the analog input

AI1 fully on. Motor will then be set to accelerate towards the reference

frequency by setting the DIA1 digital input high. After 15 seconds of

acceleration, a bogus fault will be caused with DIA3 switch. The source of the

fault will be removed immediately and the fault will then be reset from the

 57

software by toggling the DIB6 switch on. After the motor has reached its full

speed again, the direction on the rotation will be altered by changing the

positions of switches DIA1 and DIA2. The FC will now slowly stop the engine

and then accelerate it again at reverse direction till it has reached the reference

frequency again. Finally, before stopping the engine completely, the reference

speed will be set to 10Hz by turning the DIB4 switch on.

7.1.3 Remote monitoring of demo case

Before the user can view any values remotely, the desired IDs must first be set

to the implemented application as parameters. Some interesting ID values at the

presented drive sequence are output frequency 1, reference frequency 25,

analog switch position 59 and digital switch positions 15 and 16. Furthermore

the application will be set sending the calculated motor temperature behind ID

9. The application must also be configured with the service provider requested

authentication details and with a proxy server address, so that the sent

messages would found a way out from the intranet. The software is operational

after it has been configured with the mentioned parameters and starts the

periodical sending of given ID values to the database server. The remote

monitoring client can now view the process of the sequence in real time with a

web browser, regardless of his location.

The remote monitoring view, generated by the temporary database server, is

shown at Appendix 2. The sequence of Figure 15 can be accurately followed

from the monitor view, where the events 1-8 have been marked afterwards to

simplify interpretation. At phase 1, the alteration of the analog switch causes

 58

the reference frequency to rise at 50Hz. When the DIN1 switch at phase 2 is then

turned on, the motor starts a steady acceleration until it has finally reached the

target reference frequency. The caused bogus fault at phase 3 causes the motor

to halt, and it will remain stopped until the removal of the fault at phase 4 and

the given reset signal at phase 5 make it accelerate again. Position change of the

digital switches at phase 6 cause a sign change at the reference frequency. This

causes the motor to be decelerated to a stop and then accelerate towards the

reference frequency at reverse speed. Change of DIB4 switch position at phase 7

changes the nominal reference frequency value to be dropped from 50Hz to

10Hz, to which the motor will be decelerated before the final stop at phase 8.

 59

8 CONCLUSIONS AND FUTURE WORK

Support and maintenance of frequency converters could often be made more

dynamic and flexible if the devices could be remotely monitored. Especially on

locations, such as unmanned stations or scattered systems, the maintenance

personnel could plan and schedule their upcoming service visits better, if they

would be able to monitor the data and states of the remote automation

processes. This thesis studied the suitability of SOAP communication as a

remote connection protocol. Furthermore the goal was to find and implement a

dynamic and easily deployable remote connectivity method for an embedded

systems device.

From configuration point of view, SOAP applies well for making effortless

remote connections partly due to its HTTP compatibility. SOAP inherits its

excellent proxy server- and firewall penetration abilities from HTTP protocol. It

is possible to form remote connections from places, where the usage of a regular

web browser is possible. Only infrastructures where SOAP messaging has been

limited with devices, which also monitor the content of HTTP messages, are

excluded. For data protection, an Oasis Open maintained WS-Security standard

provides security elements for SOAP messaging. Furthermore the standard

covers authentication methods, of which a digest access authentication was

implemented in the thesis. WS-Security elements can be used to creating end-

to-end secure SOAP connections, meaning that messages can even be encrypted

without using lower layer encryption mechanisms. It is therefore possible to

securely exchange application data even on top of unsecured transmission

protocols like HTTP.

 60

SOAP communication is relatively slow, so it does not suite for transmitting

dense real time data that well. SOAP can be used to delivering data even in real

time for sparse measurements, thus enabling accurate remote monitoring of

values that do not require frequent sampling rate. The thesis presented a

practical remote monitoring implementation based on SOAP messaging.

Implementation enables the frequency converter to periodically send monitor

able data to a centralized database server, from where a remote monitor client

can view the received values. A SOAP client initiated RPC communication

removes the need for a solid IP-address, meaning that connections can be

formed even from devices behind NAT-routers, commonly used in ordinary

ADSL subscriptions. When using a fixed database server, the mandatory

configuration for enabling remote connections can be minimized, meaning that

service deployment for end user is effortless. The client can monitor frequency

converter processes with a standard browser through web sites located at the

database server, excluding the need for the user to install any special computer

programs for this purpose. Aside user friendly deployment for the service,

other positive features for using a centralized server exist. Especially when

dealing with embedded systems, a lot more data can be stored to an external

database memory than to the devices own limited memory space. Centralized

solution is also easy to maintain, to update for new services and allows features,

like data fusion, to be implemented in the future. SOAP messaging is suitable

for communicating between devices with highly different hardware and

software platforms. Data sorting and storing to a database cell from the

message at the server side turned out to be relatively easy, effortless and

dynamic.

 61

More remote services, like remote control ability and fault information

transportation, can be implemented aside the presented remote monitoring

application in the future. Due to SOAP’s dynamicity, old services can be

updated and new services can be added without losing the backwards

compatibility to existing solutions. More than one connection can be established

from a single device, meaning that several services can be operational even at

the same time. Further investigation would be required to see if SOAP

messaging by itself is reliable enough to handle alert information delivery

without any other alternate transport medium like an SMS message. So far the

implemented service can only be used to providing some additional

information about the states of a process, when the actual alerts to the user

must still be delivered in some other way. Further investigation would also be

required to find an optimal balance between a single SOAP message payload

size, and the amount of message transactions, while considering message

delivery times and the level of network congestion at the same time.

Altogether, SOAP is a reliable communications protocol, which can provide

secure, dynamic and easily deployable remote connection services for

embedded devices.

 62

9 REFERENCES

ABB (2007). Case notes: ABB drives and remote monitoring reduce costs in wastewater

pumping system[online]. [cited 4.6.2008]. Available at:

<http://search.abb.com/library/ABBLibrary.asp?DocumentID=CD27&Lang

uageCode=en&DocumentPartId=1&Action=Launch>

ABB (2008). ABB drives: Product guide for low voltage drives[online]. [cited

27.5.2008]. Available at:

<http://library.abb.com/global/scot/scot201.nsf/veritydisplay/d577948349c8

1125c125741d004d6489/$File/EN_Productguide_forlowvoltagedrivesREVF

.pdf>

ATMEL (2006). ARM920T-based Microcontroller AT91RM9200[online]. [cited

20.5.2008]. Available at:

<http://www.atmel.com/dyn/resources/prod_documents/1768s.pdf>

Clarke M & Jones RW & Bratan T & Larkworthy A (2004). Providing remote

patient monitoring services in residential care homes[online]. [cited 1.8.2008].

Available at: <http://www.health-informatics.org/hc2004/P34_Clarke.pdf>

Davis Dan & Parashar Manish (2002). Latency Performance of SOAP

Implementations[online]. [cited 22.7.2008]. Available at:

<http://www.caip.rutgers.edu/TASSL/Papers/p2p-p2pws02-soap.pdf>

 63

Doktar, Andreas (2006). Utveckling Av Metoder För Mjukvarestimering Av

Temperaturen I Kraftelektronik, Master’s Thesis. Turku, Finland: Åbo

Akademi. 84 s.

Elisa (2006). Zyxel 660H/HW -verkkopäätteen asetukset[online]. Available at:

<http://tuki.elisa.fi/asiakastuki/elisa.do?id=hen_as_yhka_internet,dokume

nttisivu_adsl_0013.htm>

eSOAP (2008). eSOAP Datasheet[online]. [cited 30.5.2008]. Available at:

<http://esoap.ultimodule.com/bin/esoap/templates/default.asp?_resolution

file=templatespath|default.asp&area_3=pages/datasheet>

Falcon (2008). FN Series™ UPS PLUS® - 3kVA to 40kVA Brochure[online]. [cited

27.5.2008]. Available at: <http://www.falconups.com/FN_3-6kVA_-

2TXI_N+1_Brochure_Final.pdf>

Ford Bryan & Srisuresh Pyda & Kegel Dan (2005). Peer-to-Peer Communication

Across Network Address Translators[online]. [cited 4.6.2008]. Available at:

<http://www.bford.info/pub/net/p2pnat.pdf>

gSOAP (2008). gSOAP: SOAP C++ Web Services[online]. [cited 30.5.2008].

Available at: < http://www.cs.fsu.edu/~engelen/soap.html>

in4ma (2007). The in4ma pc[online]. [cited 4.6.2008]. Available at:

<http://www.in4ma.co.uk/downloads/in4ma%20pc%20v2%20technical%20

specification.pdf>

 64

Janêcek Jan (2004). Efficient SOAP processing in embedded systems. Prague: Czech

Technical University in Praque.

Kennard Scribner & Stiver Mark C. (2000). Understanding SOAP. Indiana: Sams

Publishing.

Kim Sang-Oh & Chun Jae-Kun (2000). Remote Monitoring and Control of

Agricultural Storage Facility using Internet[online]. [cited 1.8.2008]. Available

at: <http://zoushoku.narc.affrc.go.jp/ADR/AFITA/afita/afita-

conf/2000/part06/p179.pdf>

Modbus-IDA (2006). MODBUS Messaging on TCP/IP Implementation Guide

V1.0b[online]. [cited 28.5.2008]. Available at:

<http://www.modbus.org/docs/Modbus_Messaging_Implementation_Gui

de_V1_0b.pdf>

MSDN (2005). Implementing Direct Authentication with UsernameToken in WSE 3.0

[online]. [cited 23.7.2008]. Available at: < http://msdn.microsoft.com/en-

us/library/aa480575.aspx>

MSDN (2008). Understanding WS-Security[online]. [cited 30.5.2008]. Available at:

<http://msdn.microsoft.com/en-us/library/ms977327.aspx>

OASIS (2004). Web Services Security UsernameToken Profile 1.0[online]. [cited

8.7.2008]. Available at: <http://docs.oasis-open.org/wss/2004/01/oasis-

200401-wss-username-token-profile-1.0.pdf>

 65

Ojanperä, Reijo (2000). Markkinajohtajuus vaatii tutkimusta[online]. [cited

27.5.2008]. Available at:

<http://www.prosessori.fi/uutiset/uutinen2.asp?id=36849>

PHP (2008a). PHP: MySQL functions[online]. [cited 30.5.2008]. Available at:

<http://fi.php.net/mysql>

PHP (2008b). PHP: SOAP - Manual[online]. [cited 30.5.2008]. Available at:

<http://fi.php.net/soap>

Questra (2004). Case Study: Remote Monitoring Gives Eaton Customers Immediate

Data On Power System Operation[online]. [cited 4.6.2008]. Available at:

<http://www.questra.com/collateral/collateral_files/Case_Study_Eaton.pd>

Sakellariadis Spyros (2002). Protecting Windows RPC Traffic[Online]. [cited

21.5.2008]. Available at:

<http://www.microsoft.com/technet/archive/isa/2000/maintain/rpcwisa.ms

px?mfr=true>

Tiainen R. & Särkimäki V. & Ahola J. & Lindh T. (2006). Utilization Possibilities of

Frequency Converter in Electronic Motor Diagnostics. Lappeenranta, Finland:

Lappeenranta University of Technology.

Vacon (2007). Vacon NXS/P User’s Manual[online]. [cited 27.5.2008]. Available at:

<http://www.vacon.com/File.aspx?id=462819&ext=pdf&routing=396771&n

ame=UD00701T>

 66

Vacon (2008). Ethernet Option Board OPT-CI User’s Manual[online]. [cited

27.5.2008]. Available at:

<http://www.vacon.com/File.aspx?id=462937&ext=pdf&routing=396771&n

ame=UD01043B>

White, James E. (1976). RFC 707: A High-Level Framework for Network-Based

Resource Sharing. California: Stanford Research Institute.

Wikipedia (2008a). Variable-frequency drive[online]. [cited 27.5.2008]. Available

at: < http://en.wikipedia.org/wiki/Variable-frequency_drive>

Wikipedia (2008b). WS-Security[online]. [cited 30.5.2008]. Available at:

<http://en.wikipedia.org/wiki/WS-Security>

W3C (2001). SOAP Security Extensions[online]. [cited 23.7.2008]. Available at:

<http://www.w3.org/TR/SOAP-dsig/ >

W3C (2007). Lates SOAP versions[online]. [cited 29.5.2008]. Available at:

<http://www.w3.org/TR/soap/>

W3Schools (2008). SOAP Tutorial[online]. [cited 29.5.2008]. Available at:

<http://www.w3schools.com/soap/>

Zhang H. D. & Zhou Q. Z. (2006). Communication-based Control Mode of Frequency

Converter. Anhui, China: Anhui University of Technology

 67

APPENDIXES

APPENDIX 1. Service description in WSDL format

<?xml version ='1.0' encoding ='UTF-8' ?>

<definitions name='RemoteConnection'

 targetNamespace='http://www.uwasa.fi/~l82962/RemoteConnection/wsdl/RemoteConnection.wsdl'

 xmlns='http://schemas.xmlsoap.org/wsdl/'

 xmlns:soap='http://schemas.xmlsoap.org/wsdl/soap/'

 xmlns:xsd='http://www.w3.org/2001/XMLSchema'

 xmlns:wsdl='http://schemas.xmlsoap.org/wsdl/'

 xmlns:tns='http://www.uwasa.fi/~l82962/RemoteConnection/wsdl/RemoteConnection.wsdl'

 xmlns:wsse='http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd'>

 <wsdl:types>

 <xsd:schema

 targetNamespace='http://www.uwasa.fi/~l82962/RemoteConnection/wsdl/RemoteConnection.wsdl'

 xmlns:xsd='http://www.w3.org/2001/XMLSchema'>

 <xsd:complexType name='DeviceInfo'>

 <xsd:all>

 <xsd:element name='MACAddress' type='xsd:hexBinary'/>

 </xsd:all>

 </xsd:complexType>

 <xsd:complexType name='ID'>

 <xsd:all>

 <xsd:element name='TS' type='xsd:time'/>

 <xsd:element name='Nr' type='xsd:int'/>

 <xsd:element name='ERROR' type='xsd:string' minOccurs='0' maxOccurs='1'/>

 <xsd:element name='BOOL' type='xsd:boolean' minOccurs='0' maxOccurs='1'/>

 <xsd:element name='BYTE' type='xsd:byte' minOccurs='0' maxOccurs='1'/>

 <xsd:element name='SHORT' type='xsd:short' minOccurs='0' maxOccurs='1'/>

 <xsd:element name='SINT' type='xsd:int' minOccurs='0' maxOccurs='1'/>

 <xsd:element name='UBYTE' type='xsd:unsignedByte' minOccurs='0'

 maxOccurs='1'/>

 <xsd:element name='USHORT' type='xsd:unsignedShort' minOccurs='0'

 maxOccurs='1'/>

 <xsd:element name='UINT' type='xsd:unsignedInt' minOccurs='0'

 maxOccurs='1'/>

 <xsd:element name='REAL4' type='xsd:double' minOccurs='0' maxOccurs='1'/>

 </xsd:all>

 </xsd:complexType>

 <xsd:complexType name='IDArray'>

 <complexContent>

 <restriction base='soapenc:Array'>

 <attribute ref='soapenc:arrayType' wsdl:arrayType='tns:ID[]'/>

 </restriction>

 </complexContent>

 </xsd:complexType>

 </xsd:schema>

 </wsdl:types>

 <message name='Header'>

 <part name='Security' element='wsse:Security'/>

 </message>

 68

 <message name='StoreIDsRequest'>

 <part name='DeviceInfo' type='tns:DeviceInfo'/>

 <part name='IDArray' type='tns:IDArray'/>

 </message>

 <message name='StoreIDsResponse'>

 <part name='Response' type='xsd:int'/>

 </message>

 <portType name='RemoteConnectionPortType'>

 <operation name='StoreIDs'>

 <input message='tns:StoreIDsRequest'/>

 <output message='tns:StoreIDsResponse'/>

 </operation>

 </portType>

 <binding name='RemoteConnectionBinding' type='tns:RemoteConnectionPortType'>

 <soap:binding style='rpc'

 transport='http://schemas.xmlsoap.org/soap/http'/>

 <operation name='StoreIDs'>

 <soap:operation soapAction='StoreIDs'/>

 <input>

 <soap:body

 encodingStyle='http://schemas.xmlsoap.org/soap/encoding/'

 namespace='http://www.uwasa.fi/~l82962/RemoteConnection/wsdl/

 RemoteConnection.wsdl'

 use='encoded'/>

 <soap:header use="literal" message="tns:Header" part="Security"/>

 </input>

 <output>

 <soap:body

 encodingStyle='http://schemas.xmlsoap.org/soap/encoding/'

 namespace='http://www.uwasa.fi/~l82962/RemoteConnection/wsdl/

 RemoteConnection.wsdl'

 use='encoded'/>

 </output>

 </operation>

 </binding>

 <service name='RemoteConnectionService'>

 <port name='RemoteConnectionPort' binding='tns:RemoteConnectionBinding'>

 <soap:address

 location='http://www.uwasa.fi/~l82962/RemoteConnection/wsdl/RemoteConnection.php'/>

 </port>

 </service>

</definitions>

 69

APPENDIX 2. Remote monitoring view of an example case

ID1

ID9

ID15

ID16

ID25

ID59

