
UNIVERSITY OF VAASA

FACULTY OF TECHNOLOGY

TELECOMMUNICATION ENGINEERING

Antonios-Fanourios Plytas

DESIGN AND IMPLEMENTATION OF A DATA COLLECTION

SYSTEM WITH RASPBERRY PI FOR GREENHOUSE

MONITORING

Master’s thesis for the degree of Master of Science in Technology submitted for inspection,

Vaasa, 13 June, 2014

Supervisor Professor Timo Mantere

Instructor M.Sc. (Tech) Tobias Glocker

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Osuva

https://core.ac.uk/display/197960779?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

ACKNOWLEDGEMENT

First and foremost I would like to express my very great appreciation to my supervisor, Professor

Timo Mantere. I am particularly grateful for the assistance and valuable suggestions given by

my instructor Tobias Glocker. Without his assistance this Master’s thesis would not be

completed.

I would like also to those people who share their knowledge with me during these years.

Thanks to my family for encouraging me and support me emotionally and financially.

3

TABLE OF CONTENTS

ABBREVIATIONS 5

ABSTRACT 7

1. INTRODUCTION 8

2. BACKGROUND AND THEORY 10

 2.1.The Principles of Greenhouse.. 10

 2.2. Humidity and Temperature ... 11

 2.3. SQLite Database ... 12

 2.3.1. SQLite Features .. 13

 2.3.2. Limitations ... 18

 2.4. Raspberry PI ... 19

 2.4.1. Hardware Specifications .. 20

 2.4.2. Raspberry Pi Distributions ... 23

 2.5. Arduino Uno ... 24

 2.5.1. Hardware .. 24

 2.5.2. Software ... 26

 2.6. Serial Communication Interfaces ... 26

 2.6.1. Universal Asynchronous Receiver/Transmitter (UART)............................... 27

 2.6.2. Single Wire... 28

3. HARDWARE IMPLEMENTATION 33

 3.1. System Overview .. 33

 3.2. DHT11 Sensor .. 34

 3.2.1. Overview .. 34

 3.2.2. Communication Process ... 36

 3.3. L293D Half-H Motor Driver .. 37

 3.3.1. H-Bridge basics .. 37

4

 3.3.2. Introduction to L293D IC... 39

 3.4. Design and Implementation of L293D board. ... 40

4. SOFTWARE IMPLEMENTATION 43

 4.1. Setting up the Raspberry Pi ... 43

 4.2. Software Design of the Raspberry Pi .. 48

 4.3. Software Design of the Arduino Uno .. 50

 4.4. Developing a Dynamic Website ... 53

 4.4.1. Understanding the Website Development .. 53

 4.4.2. Website Design .. 54

5. SYSTEM TESTING 58

6. EXPERIMENTS 62

7. CONCLUSION & FUTURE WORK 64

REFERENCES 65

APPENDIXES 74

 APPENDIX 1 ... 74

 APPENDIX 2. .. 75

 APPENDIX 3. .. 78

 APPENDIX 4. .. 83

5

ABBREVIATIONS

AC Alternative Current

ACID Atomicity, Consistency, Isolation, Durability

CEC Consumer Electronics Control

CPU Central Processing Unit

CSS Cascading Style Sheet

DC Direct Current

DHCP Dynamic Host Configuration Protocol

DIP Dual In-line Package

EEPROM Electrical Erasable Programmable Read-Only Memory

EPS External Power Supply

GB Giga Byte

GND Ground

GPIO General Purpose Input Output

GUI Graphic User Interface

HD High Definition

HDMI High-Definition Multimedia Interface

HTML Hypertext Markup Language

HTTP Hyper Text Transfer Protocol

I
2
C Inter- Integrated Circuit

IDE Integrated Development Environment

IP Internet Protocol

KB Kilo Byte

LAMPP Linux, Apache, MySQL, PHP , Perl server

6

LSB Least Significant Bit

MB Mega Byte

MCU Micro Controller Unit

NTC Negative Temperature Coefficient

PoP Package on Package

PWM Pulse Width Modulation

RDBMS Relational Database Management System

ROM Read-Only Memory

SDRAM Synchronous Dynamic Random-Access Memory

SoC System on Chip

SPI Serial Peripheral Interface

SQL Structured Query Language

SRAM Static Random-Access Memory

SSH Secure Shell

TTL Transistor-Transistor Logic

UART Universal Asynchronous Receiver Transmitter

USB Universal Serial Bus

URL Uniform Resource Locator

WiFi Wireless Fidelity

7

UNIVERSITY OF VAASA

Faculty of technology

Author: Antonios-Fanourios Plytas

Topic of the Thesis: Design and Implementation of a data collection

system with Raspberry Pi for Greenhouse

Monitoring.

Supervisor: Professor Timo Mantere

Instructor: Tobias Glocker

Degree: Master of Science in Technology

Degree Programme: Degree Programme in Information Technology

Major of Subject: Telecommunication Engineering

Year of Entering the University: 2012

Year of Completing the Thesis: 2014 Pages: 83

ABSTRACT:

The need to produce high quality vegetables or flowers throughout the whole year, led to

the development of automated greenhouses. Automation systems contribute to achieve the

optimal conditions indoor, enable to be monitored and controlled from distance.

Measurements such as humidity and temperature are critical for plantation growth thus they

need to be accurately monitored and controlled.

The aim of the thesis is the design and implementation of a data collection system in a

greenhouse using two most popular programmable boards, Raspberry Pi and Arduino Uno.

The system collects data of the most essential parameters, as humidity and temperature,

which contribute to the desired climate. To control temperature and humidity, a fully

automated ventilation system maintains the greenhouse’s interior to optimal conditions.

The humidity and temperature measurements are stored in a SQLite database, which is

installed on the Raspberry PI. Over a dynamic webpage the data can be retrieved from

almost every place in the world.

KEYWORDS: Greenhouse, Raspberry Pi, Arduino Uno, SQLite.

8

1. INTRODUCTION

The reproduction control of plants out of season, under modifying conditions is the major

purpose of a greenhouse (Sammons 2005). The most essential aspects of plant growth are

the level of humidity and temperature, providing the required improvement of productivity

and the quality of products (Castilla 2013). Those features can be beneficial for the

cultivation; however they can be harmful for the plants into an uncontrolled interior place.

Over the few decades, automated control systems have been developed for greenhouses,

contributed to improve the quality and quantity of production by constant monitoring and

controlling the cultivation from a long distance.

The aim of the thesis is the design of a monitoring system for a greenhouse. The system

collects information from the inside of the greenhouse such as air temperature, relative

humidity and dew point which are vital factors for plant growth. The two basic components

of the system are the credit-card sized board, Raspberry Pi, which provides server services

and Arduino Uno which provides a powerful I/O interface.

A DHT11 temperature and humidity sensor collects data that are sent to the Arduino board.

To maintain the desired humidity levels into greenhouse, a ventilator involves replacing the

inside air with fresh air. A DC motor operates as ventilator according to humidity levels. To

drive this motor, the L293D H-bridge motor driver IC is used by the system and it is

capable to drive DC motors in two directions under the control of a microcontroller. In

Raspberry Pi, a python script initiates the communication with the Arduino Uno board,

sending a data request.

Once the data are received by the Raspberry Pi, they are stored in a SQLite database.

Saving the data to database, the user can retrieve them by linking to them in a web site.

Thus the user has the real time monitoring of a greenhouse.

The thesis starts with the fundamentals of a greenhouse until the implementation of system.

9

The second chapter begins with providing the essential information about the function of

greenhouse and the parameters that need to be controlled. The chapter continues

introducing the basic components of the system, hardware and software and the

connections of them. The purpose of this chapter is to familiarize the reader with the basic

elements of the system and to give some background context.

The third chapter initializes the system’s implementation, exploring the hardware part. This

chapter is focused on system design, connections between controllers and sensors.

In chapter four the reader has the opportunity to see the correlation of different

programming languages and how to provide the interface between the hardware and the

software.

The chapter five is the system testing in order to confirm that the hardware and software

work properly and identify potential problems.

Chapter six is the experimental part and is focused on efficiency of the system such as

power consumption.

In the conclusion, the final chapter summarizes the concept of the thesis and also the future

work.

10

2. BACKGROUND AND THEORY

2.1. The Principles of Greenhouse

Prior to the description of the system and its key elements, the thesis will focus on

necessary principles of greenhouse for understanding operating procedures. Bakker

(2001:1) describes the greenhouse as “barrier” which isolates the cultivation from the

external environment creating optimal conditions for the plants and protecting them, from

the external factors which could harm the cultivation. More precisely, a greenhouse is a

structure covered by transparent material such as glass or plastic. The plastic material

allows the short-wavelengh infrared light to enter inside but it blocks the long-wavelengh

light. The radiation absorbed by the plants and soil, increasing the temperature. The long

wavelengths of radiation which emitted by the heated objects are blocked by the transparent

material, rising the interior temperature. This process is known as greenhouse effect (see

Figure 1.). The air close to earth becomes warmer than higher therefore the phenomenon of

convection occurs. Because of the trapped radiation, the warm air becomes warmer each

time it rises and falls. The heat leads also to water evaporation which increases the

humidity level, creating desirable conditions for the plants. (Nave 2012a, Nave 2012b,

Bowling 1987).

Figure 1. Greenhouse effect (Littmark 2013).

11

2.2. Humidity and Temperature

To achieve desirable conditions inside the greenhouse it is necessary to control two of the

major factors in the plant growth. These factors are humidity and temperature which are

interrelated. Humidity defines the amount of moisture in the atmosphere. Relative

Humidity (RH) is the most commonly used measurement of humidity and it is expressed as

“ the ratio of the amount of moisture in the air at a specific temperature to the maximum

amount that the air could hold at that temperature, expressed as a percentage” (McColl

2002). The relative humidity is calculated by using the following equation:

Both actual vapor density and saturation vapor density are measured in gramms per cubic

meter (gm/m
3
). For example, if the air temperature is 32

o
C, the saturated vapor density is

33.97 gm/m
3
. In case that the actual humidity is 18.91gm/m

3
 at the same air temperature

then the relative humidity is 55.65% (Nave 2012c). When the relative humidity reaches

100%, the air is saturated and this point is known as dew point (Nave C.R. 2012d).

 The dew point is a measurement of humidity which is related with air temperature and

relative humidity. More precisely, it is the temperature at which the relative humidity rise

up to 100% while the temperature is cooled with constant pressure (Nave C.R. 2012d).

Saturated air will release some moisture through forms of precipitation (Wikipedia 2014a)

or condensation (Wikipedia 2014a), if the temperature decreased more. For example, when

the relative humidity is 85% and the temperature is 20
o
C, condensation occurs at 17.3

o
C. At

95% of humidity with the same air temperature, the condensation occurs at 19.2
o
C.

12

High humidity concentrations cause plant diseases as well as reduction of transpiration.

Eshenaur (2004:1-3) notes that “the relative humidity is usually 25%-70% during the day in

greenhouses”. In order to control the humidity to these levels there are several techniques

improving the efficiency of cultivation. A ventilation system is very important for the

reduction of temperature and humidity as well as air circulation. The system uses

ventilators for the inflow and outflow of air diffusing it along the greenhouse. (Eshenaur

2004, Both 2008: 1-2.)

2.3. SQLite Database

The first thing that comes to mind when hearing of SQL databases is Microsoft’s SQL,

Oracle database etc. Nowadays as the range of embedded systems increases, the needs for

fast, lightweight and reliable relational database management systems (RDBMS) (Kreibich

2010:1) increase as well. The SQLite is designed for this purpose. More specific, according

to the official website “SQLite is an in process library that implements a self-contained,

serverless, zero-configuration, transactional SQL data engine” (SQLite 2014a). In other

words, SQLite database is a single file located in the disk which can be easily shared or

copied to other media. It is designed without external server which means zero-

configuration and simple operation. Furthermore, depending on the target platform and

optimization settings, SQLite library is less than 350KB in size on x86 and less than

400KB in size on x64, making suitable for embedded systems (SQLite 2014b). In addition,

SQLite is in the public domain which means that the source code is not under license or

copyright law, thus it is free to be modified, copied, distributed and used it for any purpose

(SQLite 2014c).

As other popular RDBM systems, the SQLite is used to achieve and manage the data in

multiple tables however some features make it exceptional.

13

2.3.1. SQLite Features

Despite the size, SQLite provides significant features making it exceptional for the

embedded systems.

The SQLite is self-contained which means that the entire database is contained into a less

than half of megabyte library requiring the minimal resources that makes it suitable to

embedded systems. In other words, a single disk file contains the entire database in which

can be backed up into USB memory stick or shared by email. (Kreibich 2010: 2.)

In contrast with the most popular RDBM systems, the SQLite runs directly on the disk

without any administration control or other complex configurations, which make it simple

and convenient for portable environments. Figure 2 illustrates the SQLite architecture in

which every program communicates directly with SQLite file without intermediate process.

In case of traditional SQL databases, the process between client and server is called inter-

process communication. In that case the client sends request to the server and the server

responds with the selected data retrieved from the database. This procedure increases the

overhead and administration complexity thus it is improper for embedded systems.

(Kreibich 2010: 2-4.)

Figure 2. User-SQLite Database interaction (Kreibich 2010: 3).

14

Figure 3. User-Server host interaction (Kreibich 2010: 3).

By eliminating the external dependencies, SQLite has no need of administrative support or

installation process. SQLite runs independently without need to recover after a system

glitch.

Another essential advantage is the dedication of code and documentation to the public

domain. This means that SQLite code and documentation is distributed free without

copyright licenses thus anyone is free to copy, modify or publish the source code without

any restrictions. (SQLite 2014c.)

Furthermore, another feature that makes it essential for the embedded system is the small

library which is less than 400KB and requires less than 256 KB of memory without

optional features (SQLite 2014b).

The integrity of data in RDBM systems like SQLite is defined by the atomic transactions in

which a series of commands either all executed or not at all. In SQLite the transaction

remains atomic even if a system crashes or power loss occurs during the process. The

atomicity however is a part of transaction properties known by the acronym ACID (SQLite

2014d).

15

Every transaction should have atomic characteristics which ensure that all transactions are

committed or aborted.

The transaction is consistent when the database transit from accurate state to another

following integrity rules (Kreibich 2010: 52).

An isolated transaction is referred also as serializable which allows the execution of

transactions in sequence without affecting each other. This implies that the transaction

should include the previous properties that have already been mentioned. (Bernstein and

Newcomer 2009: 13-14.)

Durability means the nonvolatile storage of records when the transaction is committed even

if power loss or system crash occurs. (Bernstein and Newcomer 2009: 14-15.)

SQLite uses five different lock transactions to support the serializable execution of

transactions. These lock states (see Figure 4) ensure that applications have the permission

to read or write.

16

Figure 4. SQLite transactions (Grant 2010: 140).

UNLOCKED: This is the default state without any lock on the database. No one can read or

write on the database at this state.

SHARED: The Shared lock gives the permission to multiple readers at the same time but

not writers.

RESERVED: As the name implies, this lock reserves the database for future modification

but it is still reading. This means that the reserved lock and shared lock have almost the

same characteristics and can coexist but only one reserved lock at the time.

17

PENDING: The Pending lock is the last step before modification. It allows the readers to

keep reading but block the new Shared locks. When the current Shared locks are released,

then the database can be modified, getting an Exclusive Lock.

EXCLUSIVE: Finally, the Exclusive Lock gives the permission for updating the data

allowing only itself and no other kind of locks. (SQLite 2014e.)

To begin with, the Unlock state is the default state where no one can read or write. The

Pending lock after Unlock state represents the path from unlocked state to Shared lock.

Prior SQLite can write to a database, it must read the database to check its content. At this

step the database obtains a Shared lock which gives the permission for reading to multiple

readers but not writers.

To begin immediate transaction obtains a Reserved lock which reserves the writer for a

future update of data. To prevent the loss of data in case of power failure or system crash,

SQLite creates a file before any alternation of data. This file is called rollback journal and

contains a copy of original contents of database, therefore it can recover the database back

to its original state. The prior step of Exclusive lock is the Pending lock which gives

permission to the current Shared locks to keep reading but deny the access to new Shared

locks.

The next step is the Exclusive lock which guarantees that only one writer can update the

data and no other kind of lock is active. In that case a flush must occur, putting the new

data which are written into permanent storage, improving at the same time the integrity of

database. If the data are not committed properly then the rollback activates and restores the

database back to its original size. (SQLite 2014f, Grant and Owens 2010: 138-142.)

18

2.3.2. Limitations

The simplicity is the elemental characteristic of SQLite. It is fast when it is not facing

complex queries, small because it runs into a simple disk file and reliable as a result of

simplicity.

As already mentioned, the SQLite is designed for embedded systems therefore there are

some limitations when it is used for a different purpose. Unlike the large-scale databases,

SQLite operates faster when the user searches or retrieves data. However, it does not work

the same way on larger databases when the complexity increases. (Grand et al 2010: 11.)

SQLite has the ability to permit multiple readers simultaneously, however only one has the

permission to write at a time and only for a few milliseconds. According to the official

SQLite website, (SQLite 2014f) in order to prevent the database update while multiple

readers read the database simultaneously, a shared lock mode obtained. On the other hand,

another lock mode enables before any modification on database. When reserved mode

obtained, SQLite gives the permission to a single process of modifying the database at a

time while multiple processes can read the data. Consequently, SQLite is unsuitable for

applications with high concurrency.

Another limitation is when the database is shared with multiple computers over a network

file system, increasing the delay as a result of reduction the database performance. In

addition, many glitches are contained on network file systems causing volatility to locking

logic. In that case the locking mechanism breaks, allowing more than one process to update

the database at the same time. This leads to the database corruption. (SQLite 2014f, Grant

et al 2010: 12.)

19

2.4. Raspberry PI

The Raspberry PI is a tiny, inexpensive, Linux computer capable to support different kind

of peripherals. The primary aim of the project according to the co-founder, Eden Upton, is

to provide an inexpensive computer which will encourage the new generation to learn

programming beyond the closed confines of universities while creating the future engineers

for the industry (Halfacree 2012, Raspberry Pi Foundation 2014a). The Raspberry

foundation released two models, model A and B (see Figure 5). Both models look similar,

however there are differences on memory capacity, cost and connectivity. The 35$ model B

supports 512MB SDRAM while the 25$ model A supports 256MB. In addition, on model

B has dual USB 2.0 connector while model A has only one. Moreover, the model A lacks a

RJ45 Ethernet port. (Raspberry Pi Foundation 2014b.)

Figure 5. Raspberry Pi Model A and Model B (Monk 2010:2).

20

2.4.1. Hardware Specifications

The main component of Raspberry Pi is the processor which is based on mobile device

chipset. The ARM1176JZF-S which is a part of the Broadcom BCM2835 SoC, is a high

efficient 32bit CPU based on ARMv6 architecture and clocked at 700MHz. (Sjogelid 2013:

8.)

The ARM11 (ARM Ltd) micro architecture provides high performance in low cost and low

power consumption, making it suitable for a wide range of mobile and embedded

applications. One of the beneficial features is the 8-stage pipeline structure, which obtains

higher throughput compared to previous cores and low latency due to effective optimization

techniques. The memory management is another feature of ARM11 which increases the

performance reducing the latency of data and providing separate data and instruction

caches. (Brash 2002: 3-4, Cormie 2002: 1-9). Concerning the graphics, the BCM2835

contains the VideoCore IV multimedia co-processor, providing high level video and

multimedia performance with 1080p HD video and 3D graphics (Broadcom 2014).

The 512MB/ 256MB RAM of the model B and A respectively is a part of SoC chip.

Memory and CPU are designed vertically using the method of Package on Package (PoP).

This method saves space on board, the stacking the memory on the top and the CPU

package on the bottom of package. (Horan 2013: 13.)

Instead of hard disk, the Raspberry Pi supports an SD card for data storage. Concerning the

range of capacity there is variety of storage sizes, from 4GB at least up to 32GB which is

the recommended range for the Raspberry Pi (Sjogelid2013: 11).

As it already mentioned, the model B provides dual USB 2.0 which enables connection

with peripherals such as keyboard, mouse, WiFi dongles etc. To extend the system, a

powered USB hub is suggested, considering that the maximum recommended current is

100mA. (Horan 2013: 2-3.)

21

Ethernet port allows the communication between Raspberry Pi and network through a cat 5

twisted-pair cable. Both USB 2.0 and Ethernet are controlled by the LAN9512 (see Figure

6) which contains a Hi-Speed USB 2.0 hub and an Ethernet controller in one chip. The

following block diagram presents that both USB hub and Ethernet controller are

interconnected in order to provide network functions sharing the only one upstream USB

port. (Horan 2013: 2-3, Microchip Technology 2012: 1-8.)

Figure 6. USB 2.0 and 10/100 Ethernet Controller (Microchip Technology 2012).

The High-Definition Multimedia Interface or HDMI standard provides connection with

high definition signals up to 1920 x 1200 pixels and eight channels of uncompressed audio.

One beneficial feature of HDMI is the Consumer Electronics Control (CEC) (HDMI

2014b) which allows the Raspberry Pi to be fully controllable using the TV’s remote

control. (Sjogelid 2013:10, HDMI 2014a.)

Raspberry Pi provides also an analog video transmission via the composite video output,

allowing to use the television as monitor (Dennis 2013: 10).

22

For analog audio, the Raspberry Pi supports the 3.5mm analog audio jack enabling the

connection of headphones and speakers (Dennis 2013:10).

The General Purpose Input/Output (GPIO) is a low level interface composed of 26-pin

header. This feature allows peripherals and expansion boards to interact directly with

processor. The GPIO supports serial communication interfaces and also supply of 5V, 3.3V

and ground. (Elinux 2014.)

The 5V MicroUSB has been chosen in order to supply the Raspberry Pi with 700mA.

MicroUSB is a common External Power Supply (EPS) thus it is also common with mobile

charges. (Upton 2011, CENELEC 2011.)

Figure 7. Model B features. (Raspberry PI Foundation 2014).

23

Table 1. Specifications of Raspberry Pi Model B (Elinux 2014b).

SoC : Broadcom BCM2835

CPU : 700MHz ARM1176jZF-S

GPU : Broadcom VideoCore IV

Memory : 512MB

USB 2.0 : 2 Ports

Video outputs : Composite RCA, HDMI

Audio outputs : 3.5mm jack, HDMI

Storage : SD card

Network : 10/100 wired Ethernet RJ45

Low-Level peripherals : GPIO pins, SPI, I2C, UART

Power rating : 700mA

Power source : 5V

2.4.2. Raspberry Pi Distributions

As microcomputer, Raspberry Pi runs Linux operating system. There are plenty of Linux

distributions compatible with desktop computers, however they are not appropriate for the

mobile device chip of Raspberry Pi. The designers recommend specific distribution such as

Raspbian, (Raspbian 2014) which is based on Debian Wheezy armhf (Raspberry Pi

Foundation 2014c).

Unless Raspbian, there are the following distributions:

 Pidora which is a mix of Fedora operating system with third-party software (Red

Hat 2014, Raspberry Pi Foundation 2014c).

 Arch Linux which is built for ARM processors (Arch Linux ARM 2014, Raspberry

Pi Foundation 2014c).

24

2.5. Arduino Uno

Arduino is described by Massimo Banzi (2011: 1) as “an open source physical computing

platform based on a simple input/output (I/O) board and a development environment that

implements the Processing language.”

The inexpensive, printed circuit board comes with Atmel’s microcontrollers, capable to

develop interactive prototypes. In other words, the various capabilities of I/O interface

allow interaction with a wide range of sensors or control lights and motors, through the

code. More than fifteen official prototype boards have been developed. (Arduino 2014a.)

Figure 8. Arduino Uno board (Arduino 2014).

2.5.1. Hardware

The Arduino Uno (see Figure 8) board is composed of the high performance and low

consumption ATmega328P-PU, (Atmel Corporation 2014a) designed with picoPower

Technology (Atmel Corporation 2014b). The 28-pin DIP package runs at 16MHz offering

32KB flash memory for storage. It provides various features such as, fourteen digital

channels and six analog, six PWM channels, programmable serial USART, SPI and I
2
C

interfaces, everything in a single package. (Arduino 2014b.)

25

The Arduino Uno can be powered in several ways. The common way is using a USB cable

connected to a personal computer providing 5V. When it operates independently, it can be

powered via AC/DC adaptor connected to a modular barrel connector, providing voltages

between 7V to 12V. Arduino Uno can be operated also the connecting a battery or series of

batteries to the DC power connector or using the input voltage of I/O interface. (Arduino

2014b, Wheat 2011: 5.)

The board has strong capabilities of I/O interface providing 27 pin connectors. A set of 14

pins can be used as digital I/O, with six of them provide 8-bit PWM, four pins support SPI

communications, two serial pins provide UART TTL serial communication and two

external interrupts. On the other side of the board, analog inputs and supply voltages

complete the grouping of the I/O pins. (Arduino 2014b.)

On the following table the technical features are specified:

Table 2. Arduino Uno specifications (Arduino 2014).

Name Arduino Uno

Microcontroller ATmega328P-PU

Operating Voltage 5V

Input Voltage 7-12V

Digital I/O Pins 14

PWM 6

Analog Input Pins 6

DC Current per I/O Pin 40mA

DC Current for 3.3V Pin 50mA

Flash Memory 32KB

SRAM 2KB

EEPROM 1KB

Clock Speed 16MHz

26

2.5.2. Software

Arduino Uno in order to become programmable uses the Arduino Integrated Development

Environment (IDE) cross-platform software. It is a Java application based on Processing,

allowing the code to be written in simplified C/C++, known as Arduino programming

language (Arduino 2014c, McRoberts 2010: 4). The written code on IDE can be easily

compiled and uploaded to microcontroller through the port. Arduino uses a small pre-

installed code which reduces the complexity of loading code in microcontroller, known as

boot loader (Arduino 2014b). In addition, to improve the function of program, Arduino

provides a collection of libraries for different kind of purpose such as the Wire library

which enables interaction between devices or the Servo library which allows the control of

servo motors. Each library is available for everyone to download and reuse them in

different projects. (Arduino 2014d.)

2.6. Serial Communication Interfaces

The fundamental idea of serial communication is the interaction between digital systems

which share the same communication protocol and exchange information in series, one bit

at a time. In addition, serial interfaces transmit their data using a single wire, reducing the

need of extra hardware which is the main advantage over the parallel interfaces. The serial

communication interfaces are classified into two main groups: synchronous and

asynchronous serial interfaces. In the synchronous serial communication, the data and

therefore all the devices are synchronized with the common clock. For that purpose

interfaces require two lines, one for data and one for the clock. On the other hand, in

asynchronous serial communication, external clock is not required thus only one line is

needed. Instead of a clock, asynchronous communication defines parameters which are

common for both master and slave devices. (Summerville 2009: 77, SparkFun Electronics

2012). Afterwards two asynchronous protocols are described, UART and 1-Wire which are

essential for the interaction between embedded systems and sensors.

27

2.6.1. Universal Asynchronous Receiver/Transmitter (UART)

The UART (see Figure 9) is a protocol providing an asynchronous serial communication

over a single wire, between two systems. Compared with a synchronous serial

communication, the UART does not need synchronization from external clock signal

(Fernadez, Darig 2009, Silicon Labs 2014). However, it relies on the internal configurations

for both systems. At the transmitter side, a parallel to serial conversion occurs and the data

transmits sequentially bit by bit. On the other hand, the receiver reassembles the bits and

converts them from serial to parallel. The communication begins adding first a start bit in

order to inform the receiver that a sequence of bits is ready to arrive. The receiver starts to

accept a frame of 8 bits with the Least Significant Bit (LSB), according to baud rate. To

insure the data integrity, parity bit may be sent, which must be agreed from both transmitter

and receiver. Eventually, a stop bit is sent, indicating a new frame can begin after this bit.

(Shibu 2009: 48-49, Lipovski 1999: 408-409, Silicon Labs 2014: 7-8.)

Figure 9. UART frame.

28

2.6.2. Single Wire

The Maxim single wire bus is a half-duplex, bidirectional protocol that transfers signals and

power using only one wire between the master and the one or several slave devices (see

Figure 10) reducing at the same time the interface complexity. The standard speed of 1-

wire is approximately 15.4Kbps and increases up to 125Kbps using the overdrive mode.

Master and slaves use open-drain ports pulled up to a supply through a 3V to 5V pull-up

resistor, providing logic signals. In addition, the most of 1-wire devices are dependent since

the power supply is provided by the host. (Linke 2008, Linke 2009, Maxim Presentation

2014, Willey 2001). The parasite-power devices comprehend the parasitic circuit which is

composed by a capacitor and a diode in series. When the bus is in a high state the capacitor

charges (see Figure 11) and when the low state occurs the capacitor provides energy to the

internal oscillator and control circuit (see Figure 12). (Maxim Presentation 2014.)

Figure 10. Master and Slave devices (Maxim Integrated 2014).

29

Figure 11. Parasitic power when the bus has high state (Maxim Integrated 2014).

Figure 12. Parasitic power when the bus has low state (Maxim Integrated 2014).

30

Each slave device is identified by a unique 64bitROM number (see Figure 13) which

addresses in every 1-wire device on the bus, where several devices are connected on it. The

ROM number is comprised in three parts: an 8bit family code, a 48bit serial number and an

8bit CRC. (Shidu2009: 49-50, Maxim Presentation 2014.)

Figure 13. The ROM number (Maxim Integrated 2014).

The sequence of communication with a single wire device initiates with the line reset by the

master. The slave device responses with a presence pulse. In the next step, the master sends

a ROM command to the selected 1-Wire device initiating the communication. Finally, the

Master is able to send a read/write function from or to the 1-Wire device. More precisely,

the interaction between master and slave devices is divided into timeslots of 60µsec,

sending a Reset pulse by the Master and holding the line low for >480µsec (see Figure 14).

Afterwards, the Master releases the bus and the line pulling up to the high idle state for a

period of 15 to 60µsec. All 1-wire devices on the bus respond with a Presence Pulse by

pulling the bus low for a period of 60 to 240µsec. After this duration the line is released and

the slave devices wait until the end of Recovery time when they return back to high state.

(Shidu 2009: 49-50, Maxim Presentation 2014, Willey 2001.)

Figure 15 shows the procedure of read/write a logic 0 or 1. For writing logic 1 the master

pulls the line low for 1 to 15µsec and releases it, allowing the line to return to the logic high

state. This way the 1-wire devices identify the line status as a write 1 request. In case of

31

Write 0 the Host pulls the line low for a period of 60µsec maximum. Since the bus is low

when the 1-wire device(s) samples the line, the slave devices identify this status as a Write

0. For reading a logic 1, the Master pull low the bus for a 15µsec and releases it for the rest

of the time slot. On the other hand, in case of Read 0 the slave device keeps the line low for

at least 15µsec and this is identified by the host as a Read 0. (Shidu pages 2009: 49-50,

Maxim Presentation 2014, Willey 2001.)

Figure 14. Reset and Presence pulse (Maxim Integrated 2014).

32

Figure 15. Read and Write waveform (Maxim Integrated 2014).

33

3. HARDWARE IMPLEMENTATION

3.1. System Overview

The system is designed in such a way that the user is able to receive the data through

internet connection without any interference by the user. The following diagram illustrates,

the five components of system:

 Raspberry Pi

 Arduino Uno

 DHT11 sensor

 L293D motor driver

 DC Motor

Figure 16. System overview.

34

The Raspberry Pi is connected to Arduino Uno through USB cable, which provides

communication between the boards and power supply to Arduino. Only Raspberry Pi is

connected to external power source. The DHT11 humidity and temperature sensor is

connected to I/O interface of Arduino board, using the single-wire protocol. The L293D H-

bridge motor driver is also connected to I/O interface of Arduino, using one of the six Pulse

Width Modulation (PWM) outputs. The L293D IC is powered from the Arduino Uno with

5 Volts and from external power supply with 10Volts, in orders to provide enough power

to motor.

3.2. DHT11 Sensor

3.2.1. Overview

The DHT11 humidity and temperature sensor is a single row 4-pin blue package which

provides a calibrated digital signal output. This package includes a circuit which is

composed of a 8-bit microcontroller, a resistive change-type humidity sensor and an NTC

thermistor, providing high data integrity and performance. (D-Robotics 2010: 2-3.)

Figure 17. DHT11 humidity and temperature sensor.

35

The sensor operates at range from 3.5 to 5.5 V power supply. It offers a range of relative

humidity measurements from 20% to 90% with ± 5% and temperature measurements from

0
o
C to 50

o
C with ± 2

o
C. The detailed technical specification of DHT11 sensor are included

(see Table 3). (D-Robotics 2010: 3-4.)

Table 3. Technical specifications of DHT11.

Parameters Humidity Temperature

Measurement range

Accuracy

Repeatability

Hysteresis

Long-Term Stability

Response Time (sec)

20% - 90%

± 5%

± 1%

± 1%

± 1% RH/year

6s-15s

0
o
C - 50

o
C

± 2
o
C

± 1
o
C

6s-30s

In order to communicate with a microcomputer unit (MCU), DHT11 uses a single wire

communication protocol. Figure 18 illustrates a typical connection between DHT11 sensor

and MCU. The 1-wire protocol requires a 5K external pull-up resistor for a distance shorter

than 20 meters. (D-Robotics 2010: 3-4.)

36

Figure 18. DHT11 connections (D-Robotics 2010).

3.2.2. Communication Process

The following diagram illustrates the communication process between MCU and DHT11

sensor. The process is initiated with the master´s start signal, pulling the line low for at

least 18µs. After this time, the MCU releases the line and waits for sensor´s response about

20-40µs. The sensor which has detected the MCU´s request, sends out a response signal,

pulling the line low for 80µs and releases it. Once the MCU receives the response signal, it

is ready to accept 40bits of data from DHT11. (D-Robotics 2010: 5-6.)

The data format is the following:

8 bit integral data + 8 bit decimal data + 8 bit integral data + 8 bit integral data +8 bit checksum

Relative humidity Temperature

37

Figure 19. DHT11 waveform.

The DHT11, in order to send “0”, pulls down the line for 50µs and then it pulls in high

voltage level for 26-28µs. In order to transmit “1”, pulls down the line for 50µs and raises it

for 70µs. In other words, both 0 and 1 initiate with 50µs and the positive pulse provides the

information. (D-Robotics 2010: 6-8.)

3.3. L293D Half-H Motor Driver

3.3.1. H-Bridge basics

The half-H bridge is composed of four switching components as the diagram indicates.

Those switches open and close in pairs diagonally. In that way the bridge reverses the

direction of current and thus it controls the direction of motor, changing the polarity. More

precisely, when both switches SW1 and SW4 are opened (SW2 and SW3 are closed) then

the current will be applied across the motor, thus the motor rotates clockwise. On the other

VCC

GND

>18m

sms

20-40µs 80µs 80µs 50µs 26-28µs 50µs 70µs

MCU sends Start signal DHT11 responses Sending 0

Sending 1

DHT11 signal MCU signal

0 1

38

hand, when the switches SW2 and SW3 are opened (SW1 and SW4 are closed), then the

current flows from the right side to the left one, rotating the motor anticlockwise. In case

that SW1 and SW2 (or SW3 and SW4) are closed then the motor stops (McManis

2006).The following truth table summarizes the function of H-bridge.

Table 4. Truth table of H-Bridge.

SW1 SW2 SW3 SW4 Description

1(open) 0(close) 0(close) 1(open) Turn right

0(close) 1(open) 1(open) 0(close) Turn left

1(open) 1(open) 0(close) 0(close) Stop

0(close) 0(close) 1(open) 1(open) Stop

Figure 20. H-Bridge operation.

39

3.3.2. Introduction to L293D IC

The L293D half-H driver is an integrated motor driver in a 16-pin DIP which it is designed

to accept low current signal from microcontroller. It also provides high current and voltage

as output in order to operate a motor (Texas Instrument 2002). In other words it acts as an

amplifier for motors (Texas Instrument 2014).

To amplify the voltage and current, the L293D includes four Darlington transistors instead

of switches which accept a small current and provide current of up to 600mA with 1.2A per

channel and voltages from 4.5V to 36V. The L293D has two enable inputs which are

associated with two pairs of drivers. When the enable input 1 (EN1,2) is high, the drivers 1

and 2 are active. On the other hand, when the enable input 2(EN3,4) is high, the drivers 3

and 4 are active. A very important feature of this driver is its internal clamp diodes. (Texas

Instrument 2002). The clamp diodes or fly back diodes protect the driver from high voltage

transients which are produced by the motor (National Instruments 2013). To protect the IC

from overheat, there is a thermal overload protection sensor which stops driving the motor

when the temperature increases above the recommended conditions. (Texas Instrument

2002). The inputs and outputs of L293D IC are illustrated in the Figure 21. Table 5

provides more details about the function of pins.

Figure 21. L293D package (Texas Instrument 2002).

40

Table 5. Pin mapping.

Pin No

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Name

1,2EN

1A

1Y

GND

GND

2Y

2A

VCC2

3,4EN

3A

3Y

GND

GND

4Y

4A

VCC1

Function

Enables the driver 1 when

it is high.

Digital input of driver 1.

Output of driver 1 for

motor.

Ground.

Ground.

Output of driver 1 for

motor.

Digital input of driver 1.

Supply voltage up to 36V

Enables the driver 2 when

it is high.

Digital input of driver 2.

Output of driver 2 for

motor.

Ground

Ground

Output of driver 2 for

motor

Digital input of driver 2.

Supply voltage 4,5-7V

3.4. Design and Implementation of L293D board.

To design a board for L293D motor driver, the Cadsoft design software called Eagle is

used. The freeware version of Eagle allows use able board area of 100 x 80 mm and only

Top and Bottom layers can be used. Those features cover the needs of project. The

schematic design starts following the L293D datasheet guidelines. For that purpose the

requirement components are:

41

 PCB Universal board

 L293D motor driver

 5 row pin header

 two dual row pin header

 cables

The Eagle provides various component libraries making the design process simpler and

faster. The Figure 22 illustrates the schematic design of L293D board. On 5-pin header are

connected the pins that are related with Arduino Uno board such as, EN input, 1A and 2A

inputs, 5Volts VCC1 and the common ground. The M1 and M2 are connected with a DC

motor. Finally the last two pins are connected with external power supply at 10Volts. For

more details, there is in Appendix 1 the full schematic design of system.

Figure 22. Schematic of L293D board.

42

Figure 23 presents the implemented L293D PCB board and the connections between

components.

Figure 23. L293D board.

43

4. SOFTWARE IMPLEMENTATION

4.1. Setting up the Raspberry Pi

Raspberry Pi, according to chapter 2, is a small computer with great capabilities. However,

it does not have a BIOS and as a result it boots only from an SD card. To setup the

Raspberry Pi board, it requires an SD card of 8 GB size, a laptop, a wireless router, ethernet

cables and micro USB power supply. The recommended OS, Raspbian, is available on the

official website and is free for downloading. Once the download has finished, the image file

should be unzipped and the executable file extracted to the SD card using the

Win32DiskImager software (see Figure 24).

Figure 24. Win32DiskImager.

Once Raspbian has written, the SD card is plugged in back to Raspberry Pi. Due to lack of

monitor and keyboard, the access and control of Raspberry Pi are achieved remotely over

local network using the Secure Shell (SSH) protocol. The SSH, according to Ylonen and

Lonrick (2006) is “a protocol for secure remote login and other secure network services

over an insecure network.” One way to connect the Raspberry Pi via SSH is by using an

Ethernet cable. Figure 25 illustrates the network.

44

Figure 25. Raspberry remote connection.

Connecting the Raspberry Pi to the network, the router provides a dynamic IP by default.

The dynamic IP can change when the Raspberry disconnects from the network. This

problem can solve changing the IP from dynamic to static. In order to accomplish that it is

necessary to edit the cmdline.txt file in SD card and add the IP address as well as the

gateway address.

ip = 192.168.0.3::192.168.0.1

The SD card has been plugged in back into Raspberry and the board has been powered on.

In linux-based system, the user has access to Raspberry via SSH, giving the following

command in the terminal.

ssh pi@192.168.03

45

Figure 26. Log in Raspberry Pi.

The Pi specifies the default username and the IP address has already determined in SD card.

The security feature is completed with the default password raspberry.

Once the access to Raspberry has been succeed, it is necessary to collect information about

the router and Pi by using the following command:

ifconfig

The next figure shows the information of Ethernet port 0 connection such as the IP address

of Raspberry (192.168.0.3), the Broadcast address (192.168.0.255) and the Subnet mask

address (255.255.255.0).

Figure 27. Ethernet port 0 configurations.

46

The following command gives more information about the IP routing table.

netstat-nr

Figure 27. IP routing table.

This shows the Gateway address of 192.168.0.1 which connects the outside world with the

local network.

The next step is to edit the network configuration with the following command:

sudo nano /etc/network/interfaces

Figure 28. Network interface configuration information.

47

From the network configuration file the line which enables the DHCP, iface eth0

inet dhcp, should be replaced with iface eth0 inet static. Below this line,

network information should added as following:

address 192.168.0.3

netmask 255.255.255.0

network 192.168.0.0

broadcast 192.168.0.255

gateway 192.168.0.1

 The device should reboot. After logging, the command ifconfig is used again to

confirm the static ip.

Next step is to check if there is a connection with internet by using the ping command

ping google.com –c10

Figure 29. Testing if there is internet connection.

The Figure 29 shows that pinging the google address, all packets has successfully

transmitted and received.

48

Since the Raspberry is connected to internet, the following commands ensure that the

operating system is up to date.

sudo apt-get update && apt-get upgrade

To configure the Raspberry Pi as a web server, it is required to install the Linux Apache

MySQL PHP Perl (LAMPP) server. It is an open source server suitable for dynamic web

pages. This package is suitable for the project’s purpose because it contains an Apache web

server and PHP. In order to install the LAMPP server in Raspberry Pi, it should install the

previous components one by one.

To install the Apache web server it needs to type the following command on terminal

window:

apt-get install apache2

Once the installation has completed, PHP5 installs by using the following command:

apt-get install PHP5

4.2. Software Design of the Raspberry Pi

The following figure shows the flowchart of Python script which runs in the Raspberry Pi.

When the Raspberry Pi turns on, the Python script initiates the communication with

Arduino Uno board.

49

Figure 30. Flowchart of Python script.

Start

Sent a start signal

Receive data

Checksum

received

correctly?

Display data

Write to database

Sent request for

reset

Yes

No

Data

succesfully

written to

DB?

Display data

Display error

message

Yes

No

Display error

mesage

Compute

checksum

50

When Python script sends a request for data, Arduino Uno sends a response signal of

twenty five characters. Without this request from Raspberry Pi, Arduino will not send data.

Once it is completed, Raspberry Pi receives 25-bytes of string with sensor measurements.

The code computes the checksum of data to detect errors during the transmission. In case,

that the data have been received correctly, then measurements such as ID, humidity,

temperature, dew point and checksum are displayed in the terminal window. Otherwise,

Raspberry sends a request for reset and display error message, thus the procedure initiates

again. Once the data have been displayed, the data will be stored in the SQLite database. If

the data are not successfully stored in database, an error message will be displayed,

otherwise display the data correctly. The whole code are included in the timer loop of ten

seconds, thus every ten seconds the database are updated. The full Python script is attached

in Appendix 2.

4.3. Software Design of the Arduino Uno

Figure 32 illustrates the flowchart in the Arduino Uno side. The code as already has

mentioned is written in Processing programming language. The software opens the serial

port and reads the sensor data. When it receives the data request from Raspberry Pi, then

Arduino Uno sends a string with the following format:

Figure 31. Data format.

51

Otherwise it resets the procedure and waits for new request. The sensor DHT11 sends

humidity and temperature measurements to Arduino. When the humidity level is lower than

34% then the motor remains idle. If the humidity increases up to 38%, then the motor runs

clockwise at 50% of maximum speed, replacing the air inside in the greenhouse with fresh.

In case that humidity increases more, the speed increases to 75% of the maximum speed.

More than 45% of humidity, the motor stops for 3 seconds and runs again anticlockwise at

100%, removing the air from inside. The previous procedure occurs only when Arduino

Uno receives a request from Raspberry Pi.

52

Figure 32. Flowchart of Arduino code.

Start

Open the serial port

Read sensor data

Is there any

request for

data?

Send data packet to

Raspberry Pi

If hum < 34%

If hum >34%

and <= 38%

Motor is idle

0% PWM

Motor runs clockwise.

50% PWM

If hum > 38%

and <= 45%

Motor runs clockwise.

75% PWM

If hum>

45%

Motor stops and runs

anticlockwise.

100% PWM

No

Yes

No

Yes

Yes

No

Yes

No
Yes

53

4.4. Developing a Dynamic Website

4.4.1. Understanding the Website Development

The term of web development is referred to designing and maintaining of a website. A web

site can be designed as static or dynamic, depending on the purpose for which it is used.

The difference between a static and dynamic website is that the content of static remains

always constant. The user send request to server, typing a URL on a browser. The server

retrieves the requested page and send it back to user. On the other hand, dynamic web sites

have interactive content. In case of dynamic web site, the web server receives a request for

data contained is a database. The request is processed by scripts which collect the requested

information and send them to user. To build a dynamic website, it is required to use web

scripting which is divided in two categories: client-side scripting and server-side scripting.

(Rouse 2005, Zandbergen 2014, W3C 2014.)

The client side refers to the user’s computer (client) and the displaying content. As the

name implies, the server side refers to server´s actions. Scripting languages such as

Javascript, Action Script, Dart are involved to the client side. Those scripts are often

embedded within html code or in separate files. In contrast, the server side contains scripts

written in PHP, Perl, Python, Ruby, ASP.NET etc. The scripts are executed in server side

before the server response to the user. During the execution the content of scripts is hidden

and only the generated file is visible to the user. (Zandbergen 2014, W3C 2014.)

Figure 33 indicates the process of a dynamic web page. More precisely, the user via

browser, requests a dynamic page over HTTP. The web server receives the HTTP request

and passes it to application server. The request is processed and interpreted by the script

(PHP). The PHP script creates a SQL database connection and retrieves the reference data.

The application server generates a file with the requested data and passed it to web server.

Finally, the file is sent back to user’s browser by the server.

54

Figure 33. The process of a dynamic web page.

4.4.2. Website Design

The website design is needed to access the data from almost every place in the world. The

user is able to monitor the greenhouse condition in real time, through the dynamic website.

To develop a website, a good design is required. The design of this website is illustrated in

Figure 34. The next step is to create and organize the folders and files into LAMPP server

as following:

 Image files

 Css files

o style.css

 index.php

 header.php

 table.php

55

 about.php

 contact.php

 footer.php

Figure 34. The project plan.

Each of these files are connected with each other using references. In general, the website is

designed by using HTML and CSS languages in the client side and PHP with SQL in the

server side. HTML and CSS define the appearance and the layout of the website. The PHP

scripts define which parts are static and which are dynamic. In this case, only the content

can be changed every time where the new page loads. In addition, PHP scripts to create the

connection with the SQLite database and to display the data, accessed from the database.

56

Starting from the top to the bottom, the first block is the header. This area is composed of

the navigation menu and the logo.

Regarding the navigation menu, it is divided in the list of four groups which are linked with

different PHP pages.

 Home (index.php)

 TableData (table.php)

 About (about.php)

 Contact (contact.php)

The most essential group of those is the Table Data. The goal of this page is to retrieve the

data from the SQLite database and to display them on a scrolling table. Figure 35 presents

the flowchart of PHP SQLite code. Once the table is created with HTML code, a script in

PHP is responsible to initiate the communication with the SQLite database. The script

opens the database according to the path of .db file. In case that the database does not exit,

an error message is displayed. Otherwise data from the sensor DHT11 table is retrieved and

displayed on the website. The table is updated as long the database is open.

57

Figure 35. PHP-SQLite3 flowchart.

Start

Open the database

Does the

database

exist?

Select data from table sensor

DHT11

Fetch database

Display data on the website

Error message

End

58

5. SYSTEM TESTING

Once the hardware and software have been implemented, the system is needed to evaluate

and resolve any potential errors. Figure 36 presents the wiring connections between

modules.

Figure 36. Wiring connections.

The system begins the procedure of data collection and display the data on the website (see

Figure 40). To observe the PWM waveform, it requires a digital oscilloscope which is

connected with pin 6 of the Arduino board and the common ground. If the humidity levels

increase over 34%, the motor runs clockwise at 50% of maximum speed. Figure 37

illustrates the waveform of 50% PWM.

59

Figure 37. 50% PWM.

When the humidity levels reach up to 45%, the motor runs faster at 75% of the maximum

speed. Figure 38 indicates the waveform of 75% PWM.

Figure 38. PWM 75%.

Over 45% of relative humidity, the DC motor runs anticlockwise at maximum speed.

Figure 39 presents the waveform of 100% PWM.

60

Figure 39. PWM 100%.

In order to use the graphic environment of Raspberry Pi, the use of Xming server and Putty

SSH client on Windows 7 was required. Working on the graphical user interface (GUI), the

web browser can be used for the connection with the web site.

The Figure 40 illustrates the designed and implemented website that displays the data (

humidity, temperature and dew point) from the SQLite database of the Raspberry PI.

61

Figure 40. The table of data.

62

6. EXPERIMENTS

In this section the power consumption of system has been measured and analyzed. Table 6

presents the measurements that have been taken, using a digital multimeter. Starting from

the DHT11 sensor, in idle state the current consumption has average value at 111µA and

maximum value at 116µA. On the other hand, the DC motor requires more current,

because of variety of speeds. More precisely, the motor is power by external power source

at 7 Volts, consumes 7.6mA when is stopped. The consumption increased as the speed is

increased. Thus, the motor consumes 62.6mA at 50% of maximum speed, 74.8mA at 75%

and 83.5mA at maximum speed.

Table 6. Power consumption measurements.

Component Current (I) Voltage (V) Power (P) Mode

DHT11 sensor 116µA 5V 0.00058W Active

Motor

Arduino UNO

Raspberry Pi

7.6mA

62.6mA

74.8mA

83.5mA

68.4mA

433mA

436mA

7V

7V

7V

7V

7V

5V

5V

0.0532W

0.438W

0.523W

0.584W

0.478W

2.165W

2.18W

Idle

50% PWM

75% PWM

100% PWM

Active

Idle

Active

To measure the consumption of Arduino board, an external power supply is used at 7 Volts.

Arduino Uno consumes 68,4mA providing to peripherals enough power. Raspberry Pi,

Model B can use 1A maximum (Raspberry Pi Foundation 2014d). According to

63

measurements, the Raspberry Pi consumes 433mA when is idle. This value increases at

436mA when the implemented software for temperature and humidity monitoring is

running.

Once the current has been measured, the power can be calculated according to the

following formula:

P is the power measured in watts, I is the current measured in amperes and V is the voltage

measured in volts. (Wikipedia 2014c.)

It can be noticed that the power consumption of the system in this experiment is low,

almost 3 Watts. Having the system low power consumption, efficiency and stability

increase, reducing at the same time the system’s temperature and the cost of maintenance.

64

7. CONCLUSION AND FUTURE WORK

The goal of this thesis was to design and implement an inexpensive and low-powered

monitoring system for greenhouses. In order to achieve that, two of the most popular

electronic boards and a number of programming languages have been used. Using the

SQLite database, the system is capable to store the information received from the sensor. A

web server application provides a link between user and database, allowing the greenhouse

monitoring through a dynamic web site. A DC motor acting as ventilator is used to change

the air flow direction according to humidity levels. To design this system, the knowledge of

software and hardware implementation was required. For the database implementation, a

good skills of Python, Arduino language, SQL and PHP were needed

The system can be implemented in small size greenhouses with specific modifications in

the hardware part, according on the needs of the greenhouse. In order to monitor a large

structure, intermediate electronic parts have to alter to achieve high power supply to the

ventilator.

In the future, the system may be improved with wireless modules and electronic

components capable to provide high current for ventilation system operation. In addition,

the web site can be improved by using responsive web design, giving to user the

opportunity to monitor the greenhouse, through a wide range of access methods.

65

REFERENCES

Arch Linux ARM (2014). Arch Linux [Online]. archlinuxarm.org [cited 21 Mar. 2014].

Available from the World Wide Web:

<URL: http://www.archlinuxarm.org>.

ARM Ltd. ARM11 Processor Family [online].arm.com [cited 20 Mar. 2014]. Available

from the World Wide Web:

<URL:http://www.arm.com/products/processors/classic/arm11/index.php>.

Arduino (2014a). Introduction [Online]. arduino.cc [cited 13 April. 2014]. Available from

the World Wide Web:

< URL:http://www.arduino.cc/en/Guide/Introduction>.

Arduino (2014b). Arduino Uno [Online]. Arduino.cc [cited 12 April 2014]. Available from

the World Wide Web:

<URL: http://arduino.cc/en/Main/arduinoBoardUno>.

Arduino (2014c). What Arduino can do [Online].arduino.cc [cited 13 April.

2014].Available from the World Wide Web:

< URL:http://arduino.cc/>.

Arduino (2014d). Libraries [Online]. arduino.cc [cited 14 April. 2014]. Available from the

World Wide Web :< URL:http://arduino.cc/en/Reference/Libraries>.

Atmel Corporation (2014a). ATmega328P Datasheet [Online]. Atmel.com [cited 14 April

2014]. Available from the World Wide Web:

<URL:http://www.atmel.com/Images/Atmel-8271-8-bit-AVR-

Microcontroller-ATmega48A-48PA-88A-88PA-168A-168PA-328-

328P_datasheet.pdf>.

Atmel Corporation (2014b). picoPower Technology [Online]. Atmel.com [cited 14 April

2014]. Available from the World Wide Web:

<URL:http://www.atmel.com/Technologies/lowpower/picopower.aspx>.

66

Banzi, Massimo (2011). Getting Started with Arduino. 2
nd

 Ed. Sevastopol: O´Reilly

Bowling, Sue Ann (1987). How Do Greenhouses Work? [Online]. USA: University of

Alaska Fairbanks [cited 23 Feb. 2014]. Available from the World Wide

Web: <URL:http://www2.gi.alaska.edu/ScienceForum/ASF8/817.html>.

Both, A.J (2008). Greenhouse Temperature Management [online].New Jersey, USA:

Rutgers University [cited 23 Feb. 2014]. Available from the World Wide

Web:

<URL:http://njveg.rutgers.edu/assets/pdfs/ajb/Temperature%20Manageme

nt.pdf>.

Bernstein, Philip and Eric Newcomer (2009). Principles of Transaction Processing. 2
nd

Ed.

Burlington, USA: Morgan Kaufmann Publishers.

Badgery-Parker, Jeremy (1999). The greenhouse [online].1
rst

 Ed. Gosford, Australia: NSW

Department of Primary Industries [cited 13 Feb. 2014]. Available from the

World Wide Web:

<URL:http://www.dpi.nsw.gov.au/__data/assets/pdf_file/0008/119348/gree

nhouses.pdf>.

Brash, David (2002). The ARM Architecture Version 6 (ARMv6) [online].ARM Ltd [cited

20 Mar. 2014]. Available from the World Wide Web:

<URL:http://itu.dk/courses/ISOM/E2005/ARMv6_Architecture.pdf>.

Broadcom (2014). BCM2835 High Definition 1080p Embedded Multimedia Applications

Processor [online].broadcom.com [cited 29 Mar. 2014]. Available from the

World Wide Web:

 < URL:http://www.broadcom.com/products/BCM2835>.

Bakker, J.C. (2001). Greenhouse Climate Control: An Integrated Approach. Netherlands:

Wageningen Academic Publishers.

67

Cormie, David (2002). The ARM11™ Microarchitecture [online]. ARM Ltd [cited 20 Mar

2014]. Available from the World Wide Web:

<URL:http://www.arm.com/support/White_Papers>.

Castilla, Nicolas (2013). Greenhouse Technology and Management.2
nd

 Ed. Wallingford,

UK: CABI. ISBN: 978178064 1034.

CENELEC (2011). New standard for common mobile chargers. Brussels: European

Committee for Electrotechnical Standardization.

Dennis, Andrew (2013). Raspberry Pi Home Automation with Arduino.UK: Packt

Publishing Ltd. ISBN 978-1-84969-586-2.

Elinux (2014a). RPi Low-level peripherals [online].elinux.org [cited 27 Mar. 2014].

Available from the World Wide Web:

<URL: http://elinux.org/RPi_Low-level_peripherals>.

Elinux (2014b). RPi Hardware [online].elinux.org [cited 27 Mar. 2014]. Available from the

World Wide Web :< URL:http://elinux.org/RPi_Hardware>.

Eshenaur, Brian and Robert Anderson (2004). Managing the Greenhouse Environment to

Control Plant Diseases [online]. USA: University of Kentucky [cited 23

Feb. 2014]. Available from the World Wide Web:

<URL:http://www2.ca.uky.edu/agcollege/plantpathology/ext_files/PPFSht

ml/PPFS-GH-1.pdf>.

Grant, Allen and Mike Owens (2010). The Definitive Guide to SQLite.2
nd

 Ed. New York:

Apress. ISBN-13 978-1-4302-3225-4.

Halfacree, Gareth (2012). Raspberry Pi Interview: Eben Upton reveals all [online].

linuxuser.co.uk [cited 17 Mar.2014]. Available from the World Wide Web:

<URL:http://www.linuxuser.co.uk/features/raspberry-pi-interview-eban-

upton-reveals-all>.

Horan, Brendan (2013). Practical Raspberry Pi. USA: Apress Media.

68

HDMI (2014a). What is the difference between DVI and HDMI? [Online].hdmi.org [cited

20 Mar. 2014].Available from the World Wide Web:

< URL:http://www.hdmi.org/learningcenter/kb.aspx#83>.

HDMI (2014b). What is CEC? [Online].hdmi.org [cited 20 Mar. 2014]. Available from the

World Wide Web:

< URL:http://www.hdmi.org/learningcenter/kb.aspx#83>.

Kreibich, Jay (2010). Using SQLite.1
rst

 Ed. Sebastopol, USA: O’ Reilly. ISBN: 978-0-596-

52118-9.

Linke, Bernhard (2008). Overview of 1-Wire Technology and Its Use [online]. Maxim

Integrated [cited 10 Mar. 2014]. Available from the World Wide Web :

<URL:http://www.maximintegrated.com/app-notes/index.mvp/id/1796>.

Linke, Bernhard (2009). Reading and Writing 1-Wire Devices Through Serial Interfaces

[online]. Maxim Integrated [cited 10 Mar. 2014]. Available from the World

Wide Web:

<URL:http://www.maximintegrated.com/app-notes/index.mvp/id/74>.

Lipovski, Jack (1999). Single-and Multi-Chip Microcontroller Interfacing For the

Motorola 68HC12. California, USA: Academic Press.

Littmark, Fanny (2013). How the Greenhouses Effect Works [Online]. Comsol. Inc.[cited

24 February 2014]. Available from the World Wide Web:

 <URL: http://www.comsol.com/blogs/the-greenhouse-effect/>.

Microchip Technology (2012). USB 2.0 Hub and 10/100 Ethernet Controller

[online].microchip.com [cited 12 Mar.2014]. Available from the World

Wide Web:

< URL:http://ww1.microchip.com/downloads/en/DeviceDoc/9512.pdf>.

69

Maxim Integrated (2014). 1-Wire Tutorial Presentation [online]. maximintegrated.com

[cited 12 Mar. 2014]. Available from the World Wide Web:

<URL:http://www.maximintegrated.com/products/1-

ire/flash/overview/index.cfm>.

McColl, Nicolas (2002). Temperature and Dew Point Tutorial [Online].USA: Lyndon State

College, Department of Atmospheric Sciences. Available from the World

Wide Web:

<URL:http://apollo.lsc.vsc.edu/classes/idm3020/tut_folder/nick_tutorial/>.

McManis, Chuck (2006). H-Bridges: Theory and Practice [Online]. mcmanis.com [cited

15 May. 2014]. Available from the World Wide Web:

<URL: http://www.mcmanis.com/chuck/robotics/tutorial/h-bridge/>.

National Instruments (2013). Protecting NI Switch Modules when Switching Inductive

Loads [Online].ni.com[cited 15 May 2014]. Available from World Wide

Web:

<URL:http://digital.ni.com/public.nsf/allkb/AB895F6C52DD73D3862573

F3007FBB7C>.

Nave, C.R. (2012a). Greenhouse Effect [online].USA: Georgia State University [cited 23

Feb. 2014]. Available from the World Wide Web:

< URL:http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/grnhse.html>.

Nave, C.R. (2012b). Heat Convection [online].USA: Georgia State University [cited 23

Feb. 2014]. Available from the World Wide Web:

<URL:http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/heatra.html#c2>.

Nave, C.R. (2012c). Relative Humidity [online].USA: Georgia State University [cited 23

Feb. 2014]. Available from the World Wide Web:

<URL:http://hyperphysics.phy-astr.gsu.edu/hbase/kinetic/relhum.html#c1>.

Nave, C.R. (2012d). Dew point [online].USA: Georgia State University [cited 23 Feb.

2014]. Available from the World Wide Web:

<URL:http://hyperphysics.phy-astr.gsu.edu/hbase/kinetic/relhum.html#c2>.

70

NSW Government. Ventilation in Greenhouses [online]. Australia: NSW Department of

Primary Industries [cited 23 Feb. 2014]. Available from the Worldwide

Web: < URL:http://www.dpi.nsw.gov.au/agriculture>.

Raspberry Pi Foundation (2014a). The Making of Pi [online].raspberrypi.org [cited 16

Mar.2014].Available from the World Wide Web:

<URL:http://www.raspberrypi.org/about/>.

Raspberry Pi Foundation (2014b). What is the difference between Model A and Model B?

[Online]. raspberrypi.org [cited 16 Mar. 2014]. Available from Web Wide

Web:< URL: http://www.raspberrypi.org/help/faqs/#generalDifference>.

Raspberry Pi Foundation (2014c). What operating system (OS) does it use? [Online].

raspberrypi.org [cited 16 Mar. 2014]. Available from Web Wide Web:

< URL: http://www.raspberrypi.org/help/faqs/#softwareOS>.

Raspberry Pi Foundation (2014d). What are the power requirements? [Online].

raspberrypi.org [cited 11 Jun. 2014]. Available from Web Wide Web:

< URL: http://www.raspberrypi.org/help/faqs/#performanceSpeed>.

Raspbian (2014).What is Raspbian? [Online].raspbian.org [cited 16 Mar. 2014]. Available

from Web Wide Web:

<URL: http://www.raspbian.org/RaspbianFAQ#What_is_Raspbian.3F>.

Red Hat (2014). Pidora [Online]. Fedoraproject.org [cited 3 May 2014]. Available from

Web Wide Web: <URL: http://www.fedoraproject.org/wiki/Remix>.

Richardson, Matt and Shawn Wallace (2013). Getting Started with Raspberry Pi. USA:

O´Reilly Media. ISBN: 978-1-449-34421-4.

Sibsankar, Haldar (2007). Inside SQLite. 1
rst

 Ed. Sebastopol, USA: O’ Reilly. ISBN-13:

978-0-59-655006-6.

71

Rouse, Margaret (2005). Dynamic and static [Online]. Searchingnetworking.techtarget.com

[cited 4 May 2014]. Available from Web Wide Web:

<URL:http://searchnetworking.techtarget.com/definition/dynamic-and-

static>.

SQLite (2014a). About SQLite [online]. Sqlite.org [cited 25 Feb. 2014]. Available from the

World Wide Web: <URL: https:// www.sqlite.org/about.html >.

SQLite (2014b). Size of the SQLite Library [online]. Sqlite.org [cited 25 Feb. 2014].

Available from the World Wide Web:

<URL: https:// www.sqlite.org/footprint.html >.

SQLite (2014c). SQLite Copyright [online]. Sqlite.org [cited 25 Feb. 2014]. Available from

the World Wide Web: <URL: https:// www.sqlite.org/copyright.html >.

SQLite (2014d). Transactional [online]. Sqlite.org [cited 25 Feb. 2014]. Available from the

World Wide Web: <URL: https:// www.sqlite.org/transactional.html >.

SQLite (2014e). Locking [online]. Sqlite.org [cited 25 Feb. 2014]. Available from the

World Wide Web:< URL: https:// www.sqlite.org/locking3.html >.

SQLite (2014f). Atomic Commit [online]. Sqlite.org [cited 25 Feb. 2014]. Available from

the World Wide Web:

<URL: https:// www.sqlite.org/atomiccommit.html >.

Sammons, Philip J.,Tomonari Furukawa and Andrew Bulgin (2005). Autonomous Pesticide

Spraying Robot for use in a Greenhouse [online]. Australia: University of

New South Wales. Available from the World Wide Web:

<URL:http://www.cse.unsw.edu.au/~acra2005/proceedings/papers/sammons

.pdf>

Shibu, Tekijät (2009). Intro to Embedded Systems. 1
rst

 Ed. New Delhi: Tata McGraw-Hill.

72

Silicon Labs (2014). Serial Communications [online].silabs.com [cited 12 Mar.2014].

 Available from the World Wide Web:<URL:

http://www.silabs.com/Support%20Documents/Software/Serial_Communi

cations.pdf>.

Summerville, Douglas (2009). Embedded Systems Interfacing for Engineers using the

Freescale HCS08 Microcontroller I: Assembly Language Programming.1
rst

Ed. Morgan and Claypool Publishers.

SparkFun Electronics (2012). Serial Communication [online]. sparkfun.com [cited 13

Mar.2014]. Available from the World Wide Web:

 <URL:https://learn.sparkfun.com/tutorials/serial-communication>.

Sjogelid, Stefan (2013). Raspberry Pi for Secret Agents.UK: Packt Publishing. ISBN 978-

1-84969-578-7.

Texas Instrument (2002). L293, L293D Quadruple Half-H Drivers Datasheet

[Online].ti.com [cited 15May 2014]. Available from World Wide Web:

<URL: www.ti.com/lit/ds/symlink/l293d.pdf>.

Texas Instrument (2014a). Motor Drive and Control [Online].ti.com [cited 15May 2014].

Available from World Wide Web:

<URL:http://www.ti.com/lsds/ti/apps/motor/products/integrated_motor_driv

ers.page>.

Upton, Eben (2011). Power Supply confirmed as 5V MicroUSB [online]. raspberrypi.org

[cited 25 Mar. 2014]. Available from the World Wide Web:

<URL: http://www.raspberrypi.org/power-supply-confirmed-as-5v-micro-

usb/>.

Wallen, Jack (2010). Easy LAMP Server Installation [Online]. Linux.com [cited 30 May

2014]. Available from the World Wide Web:

<URL:http://www.linux.com/learn/tutorials/288158-easy-lamp-server-

installation>.

73

Willey, Michael (2001). One Cheap network Topology [online]. Embedded.com [cited 14

Mar.2014]. Available from the World Wide Web:

<URL:http://www.embedded.com/design/connectivity/4023295/One-

Cheap-Network-Topology>.

Wheat, Dale (2011). Arduino Internals. 1
rst

 Ed. New York, USA: Apress.

Wikipedia (2014a). Precipitation [Online].wikipedia.org [cited 15 Feb. 2014]. Available

from the World Wide Web:

< URL:http://en.wikipedia.org/wiki/Precipitation>.

Wikipedia (2014b). Water cycle [Online].wikipedia.org [cited 15 Feb. 2014]. Available

from the World Wide Web:

< URL:http://en.wikipedia.org/wiki/Water_cycle>.

Wikipedia (2014c). Power [Online].wikipedia.org [cited 11 June. 2014]. Available from the

World Wide Web:

< URL: http://en.wikipedia.org/wiki/Power_%28physics%29>.

W3C (2014). How does the Internet work [Online]. w3c.com [cited 4 June 2014]. Available

from the World Wide Web:

<URL: http://www.w3.org/wiki/How_does_the_Internet_work>.

Ylonen, T. and Ed. Lonvick (2006). The Secure Shell (SSH) Authentication Protocol.

[Online]. The Internet Engineering Task Force (IETF) [cited 29 May

2014]. Available from the World Wide Web:

<URL:http://tools.ietf.org/html/rfc4252>.

Zandbergen, Paul (2014). Web Scripting: Client-side and Server-side [Online]. Educational

portal.com [cited 4 June 2014]. Available from the World Wide Web:

<URL: http://education-portal.com/academy/lesson/web-scripting-client-

side-and-server-side.html#lesson>.

74

APPENDIXES

APPENDIX 1.

The overall schematic of the system.

Figure 41. System schematic.

75

APPENDIX 2.

#!/usr/bin/python

#Description : The code allows the communication between Raspberry Pi and Arduino.

In addition, the data that are received, they will store to the SQLite

database.

#Place : University of Vaasa

#Created by Antonios Plytas

#!/usr/bin/python

import time,sched

import serial

import sqlite3

from time import localtime, strftime

####################### FUNCTION FOR SENDING ########################

def sendRecv(n):

 port.write(n)

 recv = port.read(25)

 try:

 print recv

 array = recv.split(" ")

 # Display data

 ident = int(array[0])

 humidity = int(array[1])

 temperature = int(array[2])

 dewPoint = int(array[3])

 checkSum = int(array[4])

 st = time.strftime('%Y-%m-%d %H:%M:%S')

 checkSumComp = ident + humidity + temperature + dewPoint

76

 if checkSumComp == checkSum:

 humidity = float(humidity/100)

 temperature = float(temperature/100)

 dewPoint = float(dewPoint/100)

 writeToDatabase(ident, humidity, temperature, dewPoint, st)

 else:

 print "checksum error"

 except:

 print "Data not received correctly"

 port.write('r')

 port.flushInput()

 port.flushOutput()

 time.sleep(1)

########################## WRITE TO DATABASE ########################

def writeToDatabase(sensorID, dbHumidity, dbTemperature, dbDewpoint, dbTimestamp):

 #connect database

 conn = sqlite3.connect('test.db')

 print "Writing to database";

 conn.execute("INSERT INTO DHT11(sensorID, Humidity,

Temperature, Dewpoint, TIMESTAMP) \

 VALUES (?, ?, ?, ?, ?)", (sensorID, dbHumidity, dbTemperature,

dbDewpoint, dbTimestamp));

 #save changes

 conn.commit()

 print "Records created successfully";

 #close database

 conn.close()

################################ TIMER #################################

time scheduler

s = sched.scheduler(time.time, time.sleep)

77

serial port

port = serial.Serial("/dev/ttyACM0", baudrate=2400, timeout=12)

def timer_loop(sc):

 print "Read Sensor Data"

 sendRecv("t")

 sc.enter(15, 1, timer_loop, (sc,))

s.enter(15, 1, timer_loop, (s,))

s.run()

78

APPENDIX 3.

/*

 * Place: University of Vaasa

 * Description: Temperature, humidity and dew point measurements with motor speed

control.

 * Board: Arduino Uno

* Created by Antonios Plytas

 */

//Import libraries

#include <dht.h>

#include <avr/wdt.h>

#include <stdio.h>

//############################ Define constants ##########################

#define dht_dpin 2

dht DHT;

uint8_tstopM = 0;

uint8_tlastHumidity;

//################################# Setup ##############################

void setup(){

wdt_disable();

delay(200);

Serial.begin(2400);

//############################# Define Outputs ##########################

pinMode(7,OUTPUT);

pinMode(8,OUTPUT);

turnMotor(0,'s');

delay(1000);

}

79

//################################ Loop #################################

void loop(){

DHT.read11(dht_dpin); //read the sensor

 //Display measurements

char serialByte;

float humidity = 0, temperature =0, dewPoint = 0;

humidity = (float)(DHT.humidity);

temperature = (float)(DHT.temperature);

dewPoint = DewPoint(temperature,humidity);

if (Serial.available()>0) //read the serial port

 {

serialByte = Serial.read();

if(serialByte == 't')

sendPacket(1, humidity, temperature, dewPoint);

else if(serialByte == 'r')

softwareReboot(); //reset

 }

fanSpeed((uint8_t) humidity);

delay(10000);

}

//############################# Fan Speed #############################

void fanSpeed (uint8_t humidity)

{

if(lastHumidity == humidity)

return;

if(humidity < 34)

 {

analogWrite(6, 0); // pinEn requests a 0% duty cycle

80

 }

else if(humidity > 34 && humidity <= 38)

 {

turnMotor(127, 'r'); // pinEn requests a 50% duty cycle

 //right direction

 }

else if(humidity > 38 && humidity <= 45)

 {

if(stopM == 0)

stopM = 1;

else if (stopM == 2)

 {

turnMotor(0, 's');

delay(3000);

stopM = 1;

 }

turnMotor(191, 'r'); // pinEn requests a 75% duty cycle

 //right direction

 }

else if(humidity > 45)

 {

if(stopM == 1){

turnMotor(0, 's');

delay(3000);

stopM = 2;

 }

turnMotor(255, 'l'); // pinEn requests a 100% duty cycle

 //left direction

 }

81

lastHumidity = humidity;

 }

//####################### Motor Direction Control ###########################

voidturnMotor(const uint8_t dutyCycle, char direct)

 {

analogWrite(6, dutyCycle);

switch(direct)

 {

case 'r': digitalWrite(8,LOW); //right direction

digitalWrite(7,HIGH);

break;

case 'l': digitalWrite(8,HIGH); //left direction

digitalWrite(7,LOW);

break;

case 's': digitalWrite(8,LOW); //stop

digitalWrite(7,LOW);

break;

 }

 }

//############################ String data packet ##########################

void sendPacket(const uint8_t id, const float humidity, const float temperature, const float

dewPoint)

{

uint16_t temp, hum, dewP, checksum;

char buffer[250];

temp = (uint16_t)temperature * 100;

hum = (uint16_t)humidity * 100;

dewP = (uint16_t)dewPoint *100;

checksum = id + hum + temp + dewP;

sprintf(buffer,"%hu %hu %hu %hu %hu", id, hum, temp, dewP, checksum);

82

Serial.println(buffer);

}

//########################## Dew Point measurement ########################

float DewPoint(float temperature, float humidity)

{ //reference: http://en.wikipedia.org/wiki/Dew_point

float b = 17.67;

float c = 243.5;

float g = (b * temperature) / (c + temperature) + log(humidity/100);

floatTdp = (c * g) / (b - g);

returnTdp;

}

//#################################### Reset ##############################

void softwareReboot()

{

wdt_enable(WDTO_15MS);

while(1)

 {

 }

}

83

APPENDIX 4.

The overall system during testing procedure.

Figure 42. Overall system.

	TABLE OF CONTENTS
	ABBREVIATIONS
	1. INTRODUCTION
	2. BACKGROUND AND THEORY
	1.
	2.
	1.
	2.
	1.
	2.
	1.
	2.
	2.1. The Principles of Greenhouse
	1.
	2.
	2.1.

	2.2. Humidity and Temperature
	2.3. SQLite Database
	2.2.
	2.3.
	1.
	2.
	2.1.
	2.2.
	2.3.
	2.3.1. SQLite Features
	2.3.2. Limitations

	2.4. Raspberry PI
	2.4.
	2.4.
	2.4.1. Hardware Specifications
	2.4.2. Raspberry Pi Distributions

	2.5. Arduino Uno
	2.5.
	2.5.
	2.5.1. Hardware
	2.5.2. Software

	2.6. Serial Communication Interfaces
	2.6.
	2.6.
	2.6.1. Universal Asynchronous Receiver/Transmitter (UART)
	2.6.2. Single Wire

	3. HARDWARE IMPLEMENTATION
	3.
	1.
	2.
	3.
	3.1. System Overview
	3.
	3.1.
	4.
	4.1.
	3.2. DHT11 Sensor
	3.
	3.1.
	3.
	3.1.
	3.2.
	3.2.1. Overview
	3.2.2. Communication Process

	3.3. L293D Half-H Motor Driver
	3.2.
	3.3.
	3.3.1. H-Bridge basics
	3.3.2. Introduction to L293D IC

	3.4. Design and Implementation of L293D board.

	1.
	2.
	4. SOFTWARE IMPLEMENTATION
	4.
	5.
	4.
	3.5.
	5.
	4.
	4.1. Setting up the Raspberry Pi
	4.2. Software Design of the Raspberry Pi
	4.3. Software Design of the Arduino Uno
	4.4. Developing a Dynamic Website
	4.
	4.1.
	4.2.
	4.3.
	4.4.
	4.
	4.1.
	4.2.
	4.3.
	4.4.
	4.4.1. Understanding the Website Development
	4.4.2. Website Design

	5. SYSTEM TESTING
	6. EXPERIMENTS
	7. CONCLUSION AND FUTURE WORK
	REFERENCES
	APPENDIXES
	APPENDIX 2.
	APPENDIX 3.
	APPENDIX 4.

