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ABSTRACT 

This study investigates the relationship between investors’ attention, which is measured 

by Google search volume index, and the index performance (index return and volatility) 

in Vietnamese stock market. I will test the role of attention in predicting market 

performance. Moreover, past return will be considered when measuring the impact of 

investors’ attention on future return and volatility 

The data is obtained weekly from December, 2006 to November, 2014. Stock indices 

are Vnindex and Hastc. Google Search Volume Index (SVI) is used as a measure for 

investors’ attention. Granger causality test, VAR estimations and OLS method are 

applied in this study in order to test whether investors’ attention is useful in predicting 

future stock performance and the sign of this effect as well as how the effect of investor 

attention is affected by changes in the past return.  

Results show that both index return and volatility of Vnindex are fairly quickly 

influenced by search volume. This impact is not influenced by the sign of past return as 

well as the past return. In case of Hastc, there exists a delay in the impact of past search 

volume on the index return. Moreover, this impact will increase conditional on a unit 

change in the past return of Hastc. In the opposite direction, the results also suggest that 

search volume index is also affected by index return and volatility.  

 

 

KEYWORDS: search volume index, investor attention, index return, index volatility, 

market efficiency. 
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1. INTRODUCTION 

  

As human being, we face with the issue of limited cognitive resources. According to 

Kahneman (1973), attention is a scare cognitive resource. In the massive amount of 

information available, people are only able to pay attention to the information that get 

their attention and ignore the others due to the limitation in the cognitive-processing 

capacity of human brain. 

 

To specify, in financial market, Barber & Odean (2008) stated that when searching 

information about the stock that investors want to buy, they face with the difficulty that 

there are thousands of stocks in the market, which limit the capacity to process 

information of investors. They might pay more attention on some stocks and ignore 

other stocks. As a result, they are likely to buy stocks that have first caught their 

attention even they are not stocks that have the best performance in the stock market.  

 

In addition, the vast amount of online information and services may lead investors to 

become overconfident in their ability to choose stocks, leading to an irrational trading 

decision of investors in the financial stock market (Barber & Odean 2001A). 

Consequently, these irrational investors might drive the market return and volatility and 

push the stock price further their fundamental values. Many researches have provided 

evidence for the relationship between irrational investor and stock market return and 

volatility. (Verma & Verma, 2007, Foucault et al., 2011, Da et al., 2011a, 2011b) 

 

Google Search Volume Index is now considered as a good proxy for investors’ 

attention. In the financial market, professional investors tend to use data gathered on 

Bloomberg or other data base to predict and trading, but retail investors do not. They 

tend to use internet via Google to search for information. If they pay attention to 

something, they will search information about that thing on Internet. As a results, search 

volume index (SVI) derived from Google Trend is a good proxy for investors’ attention. 

(Da et al., 2011b). Many researchers are successfully using SVI to measure retail 

investors’ attention in their studies such as Bank et al. (2011), Vlastakis & Markellos 

(2012).  
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The relationship between investors’ attention and stock market performance has been 

observed recently. Da et al. (2011b) first propose the use of SVI as direct measure for 

investor attention. They examine the effect of SVI on the stock price through the case of 

IPO stocks. Their results show that a growth in Search Volume Index can predict higher 

stock prices in the next two weeks. Furthermore, the relationship between investors’ 

attention and stock market volatility is observed by Aouadi et al. (2013). Their research 

was conducted in the French stock market. They find that Google Search Volume has 

significant effect on the stock market volatility even controlling for other determinants 

of stock volatility. Using indexes as search terms, Vozlyublennaia (2014) also observed 

the impact of Google search probability on index performance. Results show that 

investors’ attention has significant impact on index return and volatility but the impact 

last in short term. The past return affects the impact of attention on the future return and 

volatility. Moreover, the increasing of investors’ attention will lead to the decrease in 

predictability of returns. 

 

Based on the work of Vozlyublennaia (2014), this study is also conducted to find the 

relationship between investors’ attention and Vietnamese stock market return and 

volatility. The role of attention in predicting market performance is examined and past 

return will be considered when measuring the impact of investors’ attention on future 

return and volatility. Three hypothesis are tested following Vozlyublennaia (2014). The 

first hypothesis which is tested in this study can be written as follow 

H1: Investors’ attention which measured by SVI is useful in forecasting index return 

and volatility.  

This hypothesis indicates that the past value of search volume index can be used to 

predict future market return and market volatility. If the use of SVI can help forecasting 

stock market performance, the next issue is that if the effect can last for long time. Thus, 

the second hypothesis is proposed as 

H2: Investors’ attention has contemporaneous impact on index return and volatility. 
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Besides, there are evidences that past returns will have impact on investors’ attention, 

then in turns, attention will affect future return. In this study, this effect will be test also 

with the third hypothesis: 

H3: The increase or decrease on impact of attention depends on the past return. 

 

1.1. Intended contribution 

 

Many previous researches have been conducted to investigate this relationship in 

developed countries such as French (Aouadi et al., 2013), the United State 

(Vozlyublennaia, 2014), etc. However, little attention is paid to developing country with 

undeveloped financial stock market like Vietnam. The contribution of this study is to 

provide the evidence of this relationship between investors’ attention and stock market 

return and volatility in Vietnamese Stock Market. It helps drawing a comprehensive 

picture of this relationship in both developed and developing countries. The study’s 

results can be very helpful for investors in forming the more accuracy model to predict 

future volatility of stock by taking into consideration the impact of individual investors’ 

attention.  

 

1.2. Structure of the study 

 

After the introduction part, the remainder of the thesis is divided into chapter. Chapter 2 

provides the literature review of previous studies related to investors’ attention as well 

as the effect of investors’ attention on stock market performance. In the next chapter, 

Chapter 3, the theory of market efficiency, investors’ attention and stock market 

performance (return and volatility) are proposed. Chapter 4 will present the overall view 

of the data and method which is used in testing the effect of investors’ attention on 

stock index performance.  Chapter 5 provides data descriptive statistics as well as 

econometric analysis results. Finally, conclusion is shown in Chapter 6. 
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2. LITERATURE REVIEW 

 

Internet is playing a more and more important role in all sides of people life from 

education, economics, culture and medical. Recently, in financial market, there is a 

trend among investors to use internet to seek for information that they need to make 

decision, especially individual investors. Barber & Odean (2001A) found that with the 

emerging of online brokerage firms and the availability of data on Internet, investors 

have more accesses and tools to approach information and make decision. Furthermore, 

some other researchers also study the Internet using habit of investors such as Antweiler 

& Frank (2004), Rubin & Rubin (2010). However, the vast amount of online 

information and services may lead investors to become overconfident in their ability to 

choose stocks and make them to become irrational investors (Barber & Odean 2001A).  

 

The effect of individual investors on volatility has been investigated in many researches. 

For instant, Verma, R. & Verma, P. (2007) found a significant effect of irrational 

sentiment on volatility, i.e. investor error is a significant determinant of stock volatility. 

It is also shown in the research of Foucault et al. (2011) that retail trading has positive 

impact on the volatility of stock returns and individual investors behave as noise traders. 

They find that retail investors trade for non-information reasons.  

 

According to Barber & Odean (2008), facing with thousands or more than that of 

common stocks to choose when trading in the financial market, investors as human 

beings are unable to rank that huge amount of stocks because of the cognitive and 

temporal bounds to how much information we can process. Instead of choosing among 

thousands of stocks, it is easier for them to manage the problem by constraining their 

choice set (Odean, 1999). Interestingly, stocks that have recently caught their attention 

will be chosen. However, only individual investors are likely to be net buyers on high 

attention days and attention affect their buying behavior more than selling behavior. In 

contrast, the buying behavior of professionals is least influenced by attention and the 

search set for buy and sell of these investors is the same. Barber & Odean (2008) 

proposed two reasons for differences between individual investors and institutions, i.e. 

professional investors such as hedge funds. Firstly, institutions face more choices than 
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individuals when selling their stocks due to their routine sell-short activities and larger 

amount of stocks they own than most individuals. Secondly, attention si a scare resource 

for individuals, not for institutions.  

 

Furthermore, according to Da et al. (2011), retail investors are likely to buy stocks that 

get their attention especially in the event of IPOs. An increase in investors’ attention 

will result in the price pressure and affect volatility. Interestingly, the effect of 

investors’ attention is proved through the China-name stocks effect (Bae & Wang, 

2012). It is shown that during the China market boom in 2007, the China-name stocks, 

i.e. the Chinese companies that have the word “China” included in their company name, 

appeared to significantly outperform the non-China-name stocks. Bae & Wang (2012) 

found that both the differences in risk and firm size between China-name stocks and 

non-China-name stocks cannot explain this outperformance. However, their results 

shown that the temporary price pressure caused by an increase in investors’ attention on 

China-name stocks is the reason for the drive up in stock price of China-name 

companies. Four measures of investor attention including news coverage, abnormal 

turnover, extreme past return and the Google search volume frequency are considered in 

this study. 

 

In the market, professional investors tend to use data gathered on Bloomberg or other 

data base to predict and trading, but retail investors do not. They tend to use internet via 

Google to search for information. If they pay attention to something, they will search 

information about that thing on Internet. As a results, search volume index (SVI) 

derived from Google Trend is a good proxy for investors’ attention. (Da et al., 2011). 

Many researchers are successfully using SVI to measure retail investors’ attention in 

their studies such as Bank et al. (2011), and Vlastakis & Markellos (2012). Connecting 

the issue that Search Volume Index reflects the noise trader behavior in accordance with 

the “noise trader” model of DeLong et al. (1990), one question is raised whether SVI 

which is proxy for investor attention can predict the stock market volatility. 

 

Da et al. (2011b) first propose the use of SVI as direct measure for investor attention. 

They examine the effect of SVI on the stock price, especially the case of IPO stocks. 
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They suggest that a growth in Search Volume Index can forecast higher stock prices in 

the next two week. Furthermore, SVI is related to IPO first - day returns. They also find 

that during the IPO week, the IPO stocks are getting more attention of investors which 

can be proved by the increase in SVI. The IPO stocks that get higher attention will 

outperform stocks that get lower attention. 

 

The relationship between investor attention and stock market volatility is observed in 

the research of Aouadi et al. (2013). Their research was conducted in the French stock 

market. The results show that Google Search Volume has significant effect on the stock 

market volatility even controlling for other determinants of stock volatility. In addition, 

they investigate the different of the effect of two kinds of Google search volume (GSV), 

i.e. stock-specific GSV and market-related GSV. Stock-specific GSV is obtained by 

using firm name as the search terms while market-related GSV reflects market-related 

investor attention by using market index as search term. The results show that the effect 

of market-related investor attention is stronger than that of the stock-specific attention. 

 

Using indexes as search terms, Vozlyublennaia (2014) also observed the impact of 

Google search probability on index performance. Researcher found that investors are 

not likely to use stock ticker symbol to search information on Internet but they might 

concentrate on broad stock market. As a result, she conducted her study using index 

data. The research results show that investors’ attention has significant impact on index 

return and volatility but the impact last in short term. The past return affects the impact 

of attention on the future return and volatility. Moreover, the increasing of investors’ 

attention will lead to the decrease in predictability of returns. 

 

In line with these existent researches, this study also examines the effect of investors’ 

attention on index return and volatility in Vietnamese stock market. Vietnamese stock 

market is chosen to conduct the research because this emerging market has just 

established for fourteen years and individual investors still play an important role in the 

market. Individual investors account for nearly half of all traders in the market and they 

have enough power to drive the market. Thus, the Google search index which measures 
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the individual attention might have effect on Vietnamese stock market return and can 

predict market volatility. 

 

Previous studies provide evidence that investors’ attention can affect and predict stock 

market returns and volatility. However, little research attention pay to the small and 

emerging countries like Vietnam. Thus, in this study, I will test the ability of investors’ 

attention in predicting return and volatility in Vietnamese stock market.  
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3. THEORETICAL PART 

 

In this chapter, I will focus on main theories including investors’ attention, the market 

performance, i.e. volatility, the market efficiency and behavioral finance. 

 

3.1. Investors’ attention 

3.1.1. What is attention? 

 

According to Anderson (2004), attention is defined as following: 

“Attention is the behavioral and cognitive process of selectively concentrating on one 

aspect of the environment while ignoring other things. Attention has also been referred 

to as the allocation of limited processing resources.”  

 

In 1953, Cherry first introduced the phenomenon of attention, i.e. cocktail party effect. 

It is shown that partygoers are able to concentrate on one conservation in a noisy room 

and do not notice the surrounding noise but still easily notice their name from other 

ignored conservations.  Through Cherry’s attention experiment, he found that people 

can detect their name from the unattended ear which was not shadowing.  

 

Many researches are conducted to give the explanation for this effect. Treisman (1969) 

proposes the selective aspect of attention by developing the attenuation model. He 

suggests that brain can easily recognize words that have a low threshold value like 

someone’s name. Selection attention is also studied by many other researchers such as 

Deutsch & Deutsch (1963), Norman (1968), etc. In 1973, attention was also described 

by Kahneman but in terms of capacity instead of selection like previous studies. 

According to him, attention is a scare cognitive resource. In the massive amount of 

information available, people are only able to pay attention to the information that get 

their attention and ignore the others due to the limitation in the cognitive-processing 

capacity of human brain. As a results, attention remains a major area of investigation 

within many fields such as education, psychology and economic.  
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3.1.2. Investor attention in financial market 

 

A numerous amount of studies related to the investor attention in financial market has 

been conducted by many researchers recently. Barber & Odean (2008) are the early 

researchers who did study on investors’ attention. They stated that when searching 

information about the stock that investors want to buy, they face with the difficulty that 

there are thousands of stocks in the market, which limit the capacity to process 

information of investors. They might pay more attention on some stocks and ignore 

other stocks. As the result, they are likely to buy stocks that have first caught their 

attention even they are not stocks that have the best performance in the stock market. 

 

Following that, Shane & Jay (2008) also do research in limited attention of investor in 

securities trading. They found that limited attention has an important effect on liquidity 

provision in security market. Besides, the effects of investor inattention on stock price 

dynamics have been studied for many years. (Huberman & Regev, 2001, Hou & 

Moskowitz, 2005, Cohen & Frazzini, 2008, Hirshleifer, Lim & Teoh, 2009, etc.) In 

addition, investor attention has an impact on the stock market volatility. Aouadi et al. 

(2013) show that investor attention is significantly correlated to stock illiquidity and 

volatility. 

 

Peng & Xiong (2006) investigated the role of investors’ attention in category-learning 

behavior, which is the tendency of investors to process more market and sector-wide 

information than the firm-specific information. Their results show that limited attention 

creates an endogenous structure of information. In some cases, investors even allocate 

all their attention to market and wide information and ignore all firm-specific data. This 

can be an explanation for the significant increase in abnormal returns of firms who 

changed to dot.com names without changes in fundamental strategies during the 

Internet bubble period (Cooper et al., 2001). 

 

Motivated by limited investor attention and anchoring, Li & Yu (2012) highlight the 

role of Dow 52-week high anchor and the Dow historical high anchor in predicting 

future returns. Limited attention investors tend to pay more attention to market and wide 
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information than the firm-specific data (Peng & Xiong, 2006). Moreover, Dow index 

reflects wide market information. Therefore, investors are likely to use Dow index when 

evaluating market information and making investment decision. As a result, both Dow 

52-week high and Dow historical high should be able to forecast future returns. 

 

Based on attention allocation, a financial model of asset prices, in which investors can 

collect information about combinations of assets, was proposed by Mondria (2010). Due 

to the information capacity constraints and the restriction in collecting individual assets’ 

information but available information about combinations of assets, investors tend to 

process signal of a linear combination of asset payoffs and use it as a private signal. 

Therefore, change in one asset price can have effect in other asset price, leading to asset 

price co-movement even the two assets are uncorrelated.  

 

Assuming that investors have limited attention and processing power, Hirshleifer & 

Teoh (2003) found the impact of different information presentation on market price and 

also offer a new approach of choosing firms among different means of presenting 

information.  Ordinarily, it is stated that investors are rational and all information in the 

financial market are fully reflected in the stock price. Therefore, the effect of the choice 

between recognition and disclosure, and between alternative forms of disclosure is 

identical for investors. However, due to the limited attention, the information that is 

only implied in the public information set, i.e. less salient information, is likely to be 

neglected by investors, while salient information is getting more attention. Interestingly, 

Hirshleifer & Teoh (2003) found that pro forma earning disclosure, which can exclude 

anything that a company believes obscures the accuracy of its financial view, increases 

investors’ perceptions. In terms of aggregation in financial reporting, they see a 

diversified firm being under valuated during the high foreseen general earnings growth. 

One explanation is that investors focusing on the recent growth rate of aggregate 

earnings are likely to overweight low growth segments. 

   

The role of investors’ attention is also examined in the FX market using the search 

volume index. Goddard et al. (2015) find a positive and significant association between 

investors’ attention and volatility of seven currencies pairs’ foreign exchange rates. 
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Moreover, investors’ attention is able to forecast the future volatility of the currency 

returns and becomes a priced risk factor in forex market.  

 

3.1.3. Measure of investor attention 

 

When doing researches in investor attention, one challenge is that what the direct 

measure for attention is. Many earlier studies have been proposed some indirect proxies 

for investor attention.  

 

In 2004, advertising expenditures are offered as a measurement of attention in stock 

market by Grullon et al. (2004). They found that if the expenditures for product market 

advertising of a firm increase, the number of investors will also increase, which leads to 

better liquidity of that stock in the market. Similarly, Chemmanur &Yan (2009) also 

conducted study the impact of advertising on stock return. They state that advertising 

can help companies attract more investor attention, which in turn lead to a higher 

contemporary stock return.    

 

Barber & Odean (2008) used three proxies, i.e. whether firms appeared in that day‘s 

news, stock one day extreme return and stock abnormal daily trading volume to 

measure the investor attention. They argued that if many investors pay attention to a 

firm or news about a firm reaches many investors, trading volume of firm’s stock is 

likely to be greater than usual. As a result, firm trading volume can be used as proxy for 

investors’ attention. There can be the case that news which is irrelevant to the firm’s 

future earning possibly cannot affect rational investors and they will not trade, which 

leads to the trading volume remain unchanged. Moreover, trading volume can be 

affected by liquidity and trades of some larger investors. However, normally, significant 

news can have impacts on investors’ beliefs, leading to an increase in trading volume 

and a stronger results are seen in the case of large capitalization stocks which trading 

volume is unlikely to be affected by a few large investors. The trading volume was also 

taken into consideration in examining the effect of investors’ attention by Gervais et al. 

(2001), Hou et al. (2008). Besides, the significant movement of a stock price can attract 

attention of investors even the extreme returns are not related to firm specific 
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information (Barber & Odean, 2008). They state that whatever caused the big 

movement in stock price, even it is responding to private and non-public information, it 

is able to attract investors’ attention.  

 

The impact of news on investor attention is also suggested in articles of other 

researchers such as Dellavigna & Pollet (2009), Fang & Peress (2009). Dellavigna & 

Pollet (2009) examine the difference between effects of Friday announcements with 

other weekday announcements. Normally, on Friday, investors are distracted from work 

related activities and they are likely to underestimate the Friday earning announcement. 

Their results show an 8% lower trading volume around Friday announcements 

compared to non-Friday announcements caused by limited attention. In the same year, 

Fang & Peress (2009) investigate the relationship between media coverage of stocks 

with the performance of mutual funds. They propose mass media coverage as a good 

proxy for the amount of attention investors pay to an event. Through media reporting, 

investors can pay more attention with some certain stocks featured in the media and 

tend to put them into their portfolio. Their findings show that stocks that receive more 

media coverage are likely to be bought more by mutual funds with size and other 

stocks’ characteristics being controlled. However, the sell activities of funds are not 

significantly affected by media. Another result indicates the underperformance of 

mutual funds that display a high tendency to buy media stocks. These evidences also 

support the limited attention hypothesis. 

 

Price limit events which are suggested by Seasholes & Wu (2007) are the measure of 

attention. In their research, they choose to study the effect of one attention-grabbing 

event, i.e. upper price limit events. The results show that a higher number of a given 

stock is traded by investors who have not used it before after this event than during a 

usual trading day. 

 

Recently, one direct measure that is considered to be the best proxy for investor 

attention are proposed by many empiricist, i.e. Search Volume Index (SVI) that can be 

obtained from webpage http://www.google.com/trends/. Google Trend is a public web-

service of Google. It helps user compare the results of searching all over the world from 

http://www.google.com/trends/
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the year of 2004. Trends will perform the data in the form of graphs over time so that 

we know the level of attentiveness toward a search terms. This chart is very useful when 

you are researching on the popularity of a particular problem because you can put the 

data into context of a certain time, which makes the information obtained will be more 

meaningful. Figures on the graphs are normalized and ranged from 0 to 100. They 

reflect how many searches have been done for a search term relative to the total number 

of searches done on Google over time. They are not the absolute amount of searches at 

that time. Because the numbers on the graph are normalized, a decrease in this number 

does not mean that the search volume related to that search term decrease. It can be 

indicated that the popularity of that search term is decrease, which mean that people are 

not searching that term as much as before. For example, as can be seen in Figure 1, the 

Search Volume Index with the search term “vnindex” experienced a soar in 2007 – 

2008, followed by a slightly decrease in the following years. The highest point in the 

graph has the index equal to 100 in 2007, which means that at that time the key word 

“vnindex” are search most popularly. In the next years, this search term is less popular 

than the year 2007, so the index is around 60, 50 (equal to 60%, 50% compare to the 

period 2007-2008). 

 

 

Figure 1. Example of graph on Google Trends. Search term: “vnindex” 
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3.2. Volatility 

 

3.2.1. Volatility and properties of volatility 

 

Volatility are getting more and more attention of investors because of its value in risk 

management, option pricing, asset allocation, hedging. In economics, volatility is 

defined as the rate of change in the price over a period of time.  Generally, volatility can 

be interpreted as the standard deviation σ or variance σ2 which measures the amount of 

dispersion from the average. If the standard deviation of stock price is low, it means that 

the price of stock is quite close to the mean value, i.e. expected value. In contrast, high 

standard deviation means that the price of stock is spread out over a large ranges of 

values. In terms of mathematics, the annualized volatility is calculated as the standard 

deviation of the annual logarithmic return of asset  Where σT is the 

generalized volatility, T is the time horizon.  

In finance, there are some volatility terminologies used such as historical volatility, 

realized volatility, implied volatility, etc. Historical volatility reflects the past price 

change of financial instrument. Historical volatility is also referred as realized volatility 

of assets. In contrast, implied volatility reflects the investor’s expectation of the future 

volatility, which can be derived from the Black-Scholes formula. 

The properties of stock market volatility are observed by a larger amount of literature 

for many years. The first characteristic of stock return volatility is the asymmetric 

responses of volatility which is also known as leverage effect. The positive return and 

negative return do not have the same effect on volatility. Positive returns have a smaller 

impact on future volatility than do negative returns of the same absolute amount. (Braun 

et al 1995, Engle & Patton 2001, Andersen et al. 2001). The second one is volatility 

clustering which describes the tendency of large changes in asset prices to follow large 

changes and small changes to follow small changes (Bentes et al. 2008). Otherwise, 

mean reversion (volatility will return to its mean value), long memory which reflects 

long run dependencies between stock market returns and volatility, and fat tail 

distribution are also reported as properties of volatility. (Engle & Patton 2001, Poon 

2005, Fama 1965). 
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3.2.2. Volatility forecasting 

 

Volatility has an important role in risk management, option pricing and portfolio 

hedging. However, in order to calculate the option price or form a hedging strategy, the 

future volatility is required. As a results, forming model to estimate future value of 

volatility is getting attention of investors in the financial market. Numerous models are 

conducted to estimate volatility such as simple historical model consisting random 

walk, historical mean, moving average; ARCH family model, i.e. EGARCH, IGARCH, 

GJR-GARCH, etc.; RiskMetrics EWMA model. Due to the simplicities of simple 

historical model, they fail to explain some properties of volatility process. GARCH 

family models and EWMA model are used more popularly in the market. Besides, the 

volatility estimates are influenced by economic news (Engle & Ng 1993), investor 

sentiment (Da et al. 2010), expected market risk premium (French et al. 1987), etc. 

 

Table 1. Formula summary of some volatility forecasting model 

Model Formula 

RiskMetrics 

EWMA 

 
GARCH 

 
EGARCH 

 
GJR-

GARCH 

 
I-GARCH 

 
FI-GARCH 
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APARCH 

 
 

The issue of the effective of each model in forecasting volatility is controversial. 

Cumby et al. (1993) find that the explanatory power of historical volatility model is 

equal GARCH model while GARCH models seem to be more complicated. On the 

other hand, in many other studies, GARCH type model are proposed to be the most 

accurate volatility forecast models (Andersen & Bollerslev 1998, McMillan & Speight 

2004). Besides, some researchers conclude that there are no model that outperforms all 

other in all markets. The forecast results depends on the choice of error statistic and the 

market they use to observe. (Brailsford & Faff, 1996, McMillan & Kambouroudis, 

2009). 

 

 

3.3. Market efficiency 

 

3.3.1. Definition 

 

An efficient financial market was defined by Fama (1970) as the market “in which 

prices always “fully reflect” all available information”. Fama (1970) also stated three 

sufficient conditions for financial market efficiency, i.e. no transaction costs in trading 

securities, freely available information to all market participants and agreement of all 

investors on the implications of given information and distribution of future prices of 

securities. These conditions are sufficient for market efficiency but are not necessary. 

 

3.3.2. Market efficiency levels 

 

Fama (1970) identified three levels of market efficiency, i.e. weak-form, semi-strong 

form and strong- form efficiency. 
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(i) Weak-form efficiency 

 

In a weak-form efficient financial market, all available information of the past prices is 

fully reflected in the current prices of securities (Fama, 1970). As a result, past prices 

are useless in predicting future prices. Simply, in this kind of market, the buy and hold 

strategy is preferred. Technical analysis method has no use in this kind of efficient 

market. Technical analysts or chartists study the records of past prices to exploit price 

patterns that provide them profits if stock price response slowly enough to changes in 

fundamental factors. However, in weak-form efficient market, all past stock prices are 

available and costless to all investors. If there is a buy signal, a mass of investors will 

try to exploit it, which results in an immediate price increase and the signal loses its 

value. (Bodie et al. 2014:354) 

 

(ii) Semi-strong efficiency 

 

In semi-strong efficient financial market, all public information regarding the prospects 

of a firm is fully reflected in asset prices. The public information is included the 

available information of the past prices, past trading volume and other public 

information such as earning announcement, IPO events, quality of management, 

accounting practices. Asset prices adjust to new public information very quickly, which 

means that there will be no abnormal returns by trading on that public new information. 

In this case, neither technical analysis nor fundamental analysis has any usefulness in 

investors’ trading strategy. (Bodie et al. 2014:354). 

 

(iii) Strong-form efficiency 

 

In strong-form efficiency, stock prices reflect all public and private information related 

to the firm. Even company insiders cannot earn excess return. However, this level of 

market efficiency is still on debate. Since, corporate officers, directors, substantial 

owners, their relatives and associates might have inside information in advance. They 

still have enough time to make profit before inside information being published. There 
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exists a law, i.e. rule 10b-5 of the Security Exchange Act of 1934, which limits insider 

trading. However, preventing insider trading is not that easy. (Bodie et al. 2014:354) 

 

3.3.3. The efficient market hypothesis  

 

Efficient market hypothesis (EMH) states that “stocks already reflect all available 

information” (Bodie et al. 2014:351). According to the efficient market hypothesis, 

stocks are traded at their fair value on the stock exchange market. As a result, it is 

impossible for investors to outperform the overall market or “beat the market” by 

purchasing undervalued stocks. 

 

There are three versions of Efficient Market Hypothesis: the weak, semi-strong and 

strong forms of the hypothesis. The weak form hypothesis states that stock prices 

already reflect all historical information such as the history of past prices, trading 

volume, or short interest (Bodie et al. 2014:353). This form of EMH can be tested by 

measuring the serial correlation of stock market returns. A positive serial correlation 

indicates that a positive return tends to be followed by a positive return and vice versa, a 

negative serial correlation means a negative return following a positive return. The 

semi-strong form hypothesis says that stock prices already reflect all public available 

information. Some market anomalies such as the small-firm-in-January effect, the 

neglected-firm effect, liquidity effect, book-to-market ratios and post-earning-

announcement price drift are utilized to examine semi-strong form of EMH. Based on 

fundamental analysis, if one can earn abnormal returns, the semi-strong hypothesis is 

violated. Finally, the strong form hypothesis states that stock prices already reflect all 

available public and inside information. This strong form hypothesis will be rejected if 

it is proved that insiders can make superior profits in their firm’s stock trading using 

their privileged information of the firm’s stock. (Bodie et al. 2014:354). 

 

3.4. Behavioral finance 

3.4.1. Definition 
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Behavioral finance is a new field of finance which provides explanation for most 

financial phenomena using models in which some agents are not fully rational. There 

are two “pillar” of behavioral finance, i.e. limit to arbitrage and psychology. (Kihn, 

2011:10) 

 

According to conventional or modern finance, most financial models are based on some 

assumptions. Firstly, most participants in the financial market are assumed to be rational 

and predictably in most financial models such as the capital asset pricing model 

(CAPM). Secondly, in some cases that there are some irrational traders, it is stated that 

their trades are random and can be canceled each other out without any effect on asset 

price or rational arbitrageurs in the market can help eliminate these influences on prices. 

(Kihn, 2011:28-29). However, there is little empirical reason to believe that irrational 

traders cancel each other out. In some case, they even can push the asset price further 

away from their fundamental value. In terms of rational arbitrageurs helping push the 

price back to the true value, it seem to face some matter in the actual financial market. 

There appear limits to arbitrage that arbitrageurs are likely to face with when trading 

such as transaction costs, capital constraint, liquidity constraints and other behavioral 

limits to arbitrage. (Kihn, 2011: 30). As time flies, there appear some anomalies that 

conventional financial theories fail to explain but could be explain by behavioral 

finance. Thus, behavioral finance become more and more important in the financial 

world although still some supporters of efficient market are critics of behavioral 

finance. 

 

3.4.2. First “pillar” of behavioral finance: The Limits to Arbitrage theory 

 

As mentioned above, with the participation of both irrational and rational traders in the 

efficient financial market, there should be no arbitrage opportunity. If the asset prices 

are mispriced by the irrational traders, the rational investors will help correcting the 

value by trading this mispriced asset through arbitraging. It is stated that arbitrage 

opportunity is riskless and will quickly disappear. However, there come some evidences 

showing that arbitrage opportunities do not quickly disappear even investors know how 
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to exploit them. The limit to arbitrage theory will give the explanation for this 

phenomenon. 

 

The limit to arbitrage is one of the two block buildings of behavioral finance. It is stated 

that arbitrage is limited, risky and costly. Let see an example. After carefully analyzing, 

you see that the fundamental value of stock A is relatively lower than stock B which can 

be considered as a substitute for stock A. So you decide to arbitrage by going long stock 

A and short stock B. However, you may consider some risks, i.e. currency, timing, short 

sales constraints, cost and idiosyncratic risk. Firstly, company A and B are in two 

different countries with two currencies. In order to eliminate the currency risk, you have 

to go long and short currency A and B also. But the hard thing is that how can you 

calculate the amount of money you should trade when one or both countries are likely to 

change their currency during your trading. Secondly, in order to arbitrage, you need to 

trade the two stocks at the same time with the same amount. But you cannot assure that 

you can by the same amount of stock B after you first go short stock A at exactly same 

time. Thirdly, you should consider the short sale constraints. To specify, you may see it 

hard to trade if the government pass a law that against short sales or limits price 

movements for short sales. Fourthly, the transaction costs should be taken into 

consideration because costs can change or government can change the tax on short term 

gains or losses. Finally, you should take account of specific business risks like the 

different company’s structure and other related risks. Taking into consideration all the 

costs and risks you may face with, will you continuously do arbitrage? (Kihn, 2011: 65-

66) 

 

Three main risks and costs are stated by Kihn (2011:65), i.e. fundamental risk, noise 

trader risk and implementation risk. Fundamental risk occurs when the bad new 

information arrives to the market right after you have just purchase the security. 

Theoretically, it is said that this risk can be eliminated if you purchase a perfect 

substitute. However, in reality, it is hard to find a perfect substitute security to hedge the 

fundamental risk. Regarding the noise trader risk, it is introduced by De Long et al. 

(1990) and by Shleifer & Vishny (1997). Noise trader risk occurs when the pessimistic 

trader become even more pessimistic about the future, resulting the mispricing being 
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worsen in the short run. Lastly, the implementation cost refer to transaction costs, price 

impact, short-sale constraints, legal constraints, horizon, information costs, taxes, etc. 

 

There appear some evidences of mispricing and limits to arbitrage. 

 

Firstly, it is the case of twin shares or dual-listed companies. The typical example is the 

case of Royal Dutch and Shell Transport in 1907. They are two independent companies 

listed in two different countries, but they agree to operate their business as one company 

on a 60:40 basis. It means that 60% of the new company is comprised by Royal Dutch 

and 40% by Shell Transport. Theoretically, share of Royal Dutch must be traded at 1.5 

times Shell Transport’s share. However, in reality, Royal Dutch has traded 35% 

underpriced relative to parity and sometimes 15% overpriced. Here comes an arbitrage 

opportunity for investors since in March 11983, Royal Dutch was traded at a price 10% 

undervalued. But in fact, the share value of Royal Dutch decrease even further in the 

following six months. In this case, the two shares are good substitute, the 

implementation costs are low, but the arbitrage was limited because of noise traders. 

(Kihn, 2011:69-71)   

 

Secondly, another evidence of limit to arbitrage is “carve-outs”. An equity carve-out 

refer to the Initial Public Offering (IPO) in which the parent company publicly sells a 

portions of one of its subsidiary companies. According to law of one price, the parent 

company YZ should be worth equal to or at least very close to the sum of its parts, i.e. 

YZ = Y + Z. However, this can be applied in the case of the parent 3Com and its 

subsidiary Palm in 2000 where the sum did not equal to the parts. (Kihn, 2011:72) 

Another evidence calls index inclusion where stock price changes when it is added to or 

drop from an index. Yahoo, for example, jumped further 24% after being added to S&P 

500. Here comes an arbitrage opportunity for investors because stock price changes 

without changing in the fundamental value. Arbitrageurs would be able to push the 

price to its fundamental value by short a good substitute for the stock being added in the 

index. However, in fact, the stock price can continue to increase due to noise trader risk. 

(Kihn, 2011:84-86)      
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3.4.3. Second “pillar” of behavioral finance: Psychology 

 

Psychology part of behavioral finance is considered as a kind of bonus that accompanies 

the limit to arbitrage part (Kihn, 2011:93). Relating to the financial market, six errors 

and bias in human thinking and problem solving are listed including overconfidence, 

optimism and wishful thinking, representativeness, conservatism, belief perseverance 

and confirmation bias, anchoring and availability biases.  

Overconfidence is determined as a psychological bias in which people overestimate 

their knowledge, their ability and their future prospects (Barber & Odean, 2001B). 

People often estimate their ability above the average level. Overconfidence has a 

significant impact on trading behavior of investors. For example, overconfident 

investors are likely to trade more than rational investors (Statman et al., 2006), men 

trade more than women due to their higher overconfidence and men’ performance is 

lower than women (Barber & Odean, 2001B). 

Optimism and wishful thinking indicates that people tend to be overly optimistic about 

positive outcomes and under optimistic about negative outcomes (Kihn, 2011:94). Over 

optimism is one of evidences of wishful thinking. Over optimism is a tendency that 

people is biased about the probability of personally relevant events, overestimating the 

probability of wanted events and underestimating that of unwanted events. To specify, 

in financial market, investors tend to apply high likelihood for positive outcomes while 

apply low likelihood for negative outcomes, leading to normatively problematic for 

investors. 

Representativeness is defined by Tversky & Kahneman (1972) as “the degree to which 

an event is similar in essential characteristics to its parent population, and reflects the 

salient features of the process by which it is generated”. In other words, it can be 

understood that how alike something is to that which is known (Kihn, 2011:95). 

Specifically, for example, in financial market, if one investor knows one stock that is 

outperformed and another stock that seem to be a representative of that outperformed 

stock, investor tend to apply a higher probability for the representative stock to be 

outperformed than it really is.  
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In the case of conservation, if a data sample is old, investors tend to overweight their 

priors. In other words, conservatism is the reluctance of investors to react to new 

information, even this information should require a change in one’s strategy. 

Belief perseverance occurs when people is persistent to their process and strategies even 

their strategies are failing, ignoring the new information that contrast to their beliefs. It 

is stated that to some people, their original evidential bases can be destructed, but the 

belief cannot be abandoned (Kihn, 2011:95). 

Anchoring is a tendency by people to depend too much on one specific information 

when making decision (Kihn, 2011:96). In the financial world, anchoring can be a 

reason of investors’ failure if investors make their decision based on irrelevant 

information. For example, if investors anchor on a high value that one stock achieve 

recently, they might believe that the decrease in that stock price is due to mispricing. As 

a result, they will see this is an opportunity to buy stock at a discount. However, in 

many cases, the reason behind the decrease in value of one stock is changes in 

company’s underlying fundamentals. If this case occurs, investors will lose their money.  

Availability biases is the tendency by people to heavily weigh their decision toward 

more recent and actual experiences and they make any new opinion biased toward these 

experiences. For instance, in the case of loser stocks, investors tend to overreact to bad 

news, driving the stock prices down unreasonably although these losers might be no 

more dangerous than it has ever been. After a few time, investors might realize that their 

judgment is not true, the stocks are underpriced and these losers begin rebounding. The 

opposite is true with the winners. 
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4. DATA AND METHODOLOGY 

 

This chapter will focus on describing the data and method using in this study. In order 

to test the relationship between investors’ attention and market performance, the method 

that was used in the research of Vozlyublennaia (2014) is applied using the Granger 

Causality tests and VAR estimation model. The weekly data is obtained during the 

period from December, 2006 to November, 2014. In line with previous researches 

(Aouadi et al., 2013, Vozlyublennaia, 2014, etc.), Search volume index is used as a 

proxy for investors’ attention with the search terms are market indexes, i.e. vnindex and 

hastc.  

 

4.1. Data 

 

4.1.1. Index return 

 

The weekly return of Vn-index and Hnx-index is obtained during the period from 

December, 2006 to November, 2014. The price indices can be obtained from the 

website of Hanoi stock exchange market and Ho Chi Minh stock exchange market and 

the data base of the University of Vaasa. The data is used here is the weekly data 

because of some reasons. Firstly, the Vietnamese stock market have just operated since 

2000. At the beginning, the stock market only hold three trading days per week on 

Monday, Wednesday and Friday. Moreover, due to Tet holiday and other holidays per 

year, the stock exchange will close, which leads to quite a lot missing value for daily 

stock return. Secondly, the infrequent trading data can badly affect the statistical results, 

which can be improved by using longer period of time. 

Following the method in the study of Phan & Zhou (2014), the weekly return is 

calculated by taking the natural logarithm of the index Friday closing price minus the 

natural logarithm of the previous Friday closing price. The Friday closing price is 

chosen in order to be in line with the data collected from Google Trends. 

 

(1) Rt  = ln (Pt ) – ln( Pt-1) 
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where Pt is the index price at time t, Pt-1 is the index price at time t – 1. 

 

4.1.2. Standard deviation of index return: proxy for market volatility  

 

Following the work of Aouadi et al. (2013), the weekly standard deviations of index 

returns are used as a proxy of market volatility. In a developing country like Vietnam, 

calculating daily volatility based on high frequency data, i.e. intraday data, is quite 

difficult because the historical intraday data is not available. As a result, weekly 

standard deviation, which is proxy for market volatility, is measure using daily return of 

each week from Friday of this week to Friday of the following week. 

 

4.1.3. Search volume index: proxy for investors’ attention 

 

Search volume index has been introduced as a new measure of investors’ attention 

recently by Da et al., 2011, Vlastakis & Markellos, 2012, Schmidt, 2012, Mondria et al., 

2010, etc. In these studies, the stock ticker symbols are used as the search queries. The 

results from Google Trends measure investors’ attention to that specific stock. 

However, in this study, I will use the “Vnindex” and “hastc” as the search terms to 

investigate investor attention instead of a specific stock symbol. The use of indexes as 

search terms is proposed in the researches of Vozlyublennaia (2014) and Aouadi et al. 

(2013) also.  The reasons why the index is used as search term instead of ticker symbol 

of a stock are mentioned in the research of Vozlyublennaia (2014). For professional 

traders, they do not need to search for information on Internet. For individual investors, 

they are likely to use Google to find information. However, Vozlyublennaia (2014) 

figure out that individual investors are not likely to search information of individual 

stock but a broad market index. In addition, facing with a huge amount of stock in the 

market, individual investors have limitation in processing all information and they need 

to find information of index to narrow their information and pay attention to the index 

that performs well. That is the reason why indexes are preferred in this study. 
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There are two stock trading centers in Vietnam, i.e. Hanoi Stock Trading Center and Ho 

Chi Minh Stock Trading Center. Vn-Index reflects the fluctuation of stocks listed in Ho 

Chi Minh Stock Trading Center while HASTC Index reflects the changes of stocks 

listed in Hanoi Stock Trading Center.  The search terms used in this study are “vnindex” 

for VN-Index and “hastc” for HASTC Index. The search volume index can be obtain by 

typing these search terms in the search box of Google Trends. The data can be 

download directly from Google Trends webpage. Besides, I will also check the data by 

follow the news headlines on the result graph and the location to limit the noise in data. 

 

4.2. Methodology 

 

In this study, in order to test the relationship between investors’ attention and index 

performance, i.e. index returns and volatility, the Granger Causality tests and VAR 

estimation model are employed following the method in the research of Vozlyublennaia 

(2014). 

 

4.2.1. Statistical causality between attention and index performance 

 

Granger causality tests and Vector Autoregression model (VAR model) is used to 

examine the possibble causality relationships between investor attention and index 

return and volatility.  

 

Granger Causality tests is used to examine whether investors’ attention is useful in 

forecasting stock market return. The following model formulas with n lags are applied: 

 

(2) Rt   = c + a1 SVIt-1 + a2 SVIt-2 +…+ an SVIt-n + b1 Rt-1 + b2 Rt-2 +…+ bn Rt-n + e 

(3) SVIt   = c + a1 SVIt-1 + a2 SVIt-2 +…+ an SVIt-n + b1 Rt-1 + b2 Rt-2 +…+ bn Rt-n + e 

 

where Rt is index returns at time t, SVIt is the search volume index at time t. If SVI does 

not Granger Cause R, all coefficients of SVI should equal to 0. If one coefficient of SVI 

are different from 0, it can be understand that SVI Granger Cause R or SVI is useful in 
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forecasting index return. Thus, F test is applied for the first model to test the null 

hypothesis H0: a1= a2=…= an=0. Similarly, F test is also used for the second model to 

test if R Granger Cause SVI. 

 

Continuously following the method of Vozlyublennaia (2014), VAR estimation model 

is employed to determine how quickly SVI affects R. VAR model has the following 

specification: 

 

(4) Xt = a0 + a1 Xt-1 + a2 Xt-2 + …. + an Xt-n 

 

where X is a vector that include index return and search volume index. 

VAR model allows us to test whether one variable has contemporaneous impact on 

other variables. This model is very useful when using low frequency data.   

 

In order to test the effect of investors’ attention on volatility, the same method that is 

used to examine relationship of attention and index return is applied using Granger 

Cause test and VAR estimation model. 

For the Granger Cause test, the following model is employed with Vt is the index 

volatility at time t which is measured by standard deviation of daily index return for 

every week. 

 

(5) Vt   = c + a1 SVIt-1 + a2 SVIt-2 +…+ an SVIt-n + b1 Vt-1 + b2 Vt-2 +…+ bn Vt-n + e 

(6) SVIt   = c + a1 SVIt-1 + a2 SVIt-2 +…+ an SVIt-n + b1 Vt-1 + b2 Vt-2 +…+ bn Vt-n + e 

 

In the VAR model, vector X will include index volatility and search volume index. 

 

4.2.2. Investors’ attention and the predictability of market return 

 

If the past attention has impact on future return and volatility and in turn, past return and 

volatility have impact on future attention, it can be interpreted that the impact of 
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attention on index performance depend on the information received by the market 

(Vozlyublennaia, 2014).  

In order to test this hypothesis, these two models will be test following the method of 

Vozlyublennaia (2014) using OLS method to test the model:  

 

(7) Rt = a1 + ∑ at Rt−i
4
i=1  +  ∑ bt SVIt−i

4
i=1  +  ∑ µt SVIt−i

4
i=1 ∗ D(Rt − 1 < 0) + et 

 

where Rt is the index return, SVIt is Google search volume index and D is dummy 

variable that takes the value of 1 if index return is negative and 0 otherwise. The 

coefficient µ indicates the change in the coefficient of SVI if lagged index return is 

negative. In other words, if the past return is negative, the impact of search volume on 

current return will increase or decrease by the value of µ. If the coefficient µ is 

significant, the sign of past return, i.e. past return is positive or negative, will affect 

current index return depending on investors’ attention. 

 

Next, the magnitude of investors’ attention impact on recent index return is examined 

whether it is affected by a unit change in past return, not the sign of past return. 

Following the method of Vozlyublennaia (2014), the model below is tested. 

 

(8) Rt = a1 + ∑ 𝑎𝑡 𝑅𝑡−𝑖
4
𝑖=1  +  ∑ 𝑏𝑡 𝑆𝑉𝐼𝑡−𝑖

4
𝑖=1  +  ∑ µ𝑡 𝑆𝑉𝐼𝑡−𝑖

4
𝑖=1 ∗  𝑅𝑡−𝑖 + et 

 

Where Rt is the index return, SVIt is Google search volume index. The coefficient µ 

measures the increase or decrease in the impact of attention conditional on a unit change 

in the past return. In the opposite direction, this coefficient also measure the change in 

the impact of past index return on recent return conditional on a unit change in the 

investor attention.  

 

When testing the effect of investors’ attention on volatility conditional on a unit change 

in the past return, the following model is estimated: 

 

(9) Vt = a1 + ∑ 𝑎𝑡 𝑉𝑡−𝑖
4
𝑖=1  +  ∑ 𝑏𝑡 𝑆𝑉𝐼𝑡−𝑖

4
𝑖=1  +  ∑ µ𝑡 𝑆𝑉𝐼𝑡−𝑖

4
𝑖=1 ∗  𝑅𝑡−𝑖 + ∑ Ø𝑡 𝑅𝑡−𝑖

4
𝑖=1   + et 
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where Vt is the index return volatility, SVIt is Google search volume index and Rt is the 

index return. The coefficient µ measures the effect of attention on the market volatility 

conditional on a unit change in the past index return. In other words, with a unit change 

in the past index return, the impact level of search volume on recent index volatility 

increase or decrease by µ units. 
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5. EMPIRICAL PART 

 

Before going to the main parts, i.e. the descriptive statistic and results of Granger 

causality test and VAR estimation, I will go through some introduction of the 

Vietnamese stock market.   

 

5.1. Vietnamese stock market 

 

5.1.1. Introduction of the Vietnamese stock market 

 

After a long time for preparation and waiting, in November of 1996, the State Security 

Commission of Vietnam (SSC) was established. SSC is in charge of developing the 

country’s security market. Being supervised by SSC, two stock trading centers, i.e. the 

Ho Chi Minh Stock Trading Center (HOSE) and the Hanoi Stock Trading Center 

(HASTC) were established in 2000 and 2006, respectively. Only big companies that 

have the capital more than VND 80 billion are listed on the HOSE. The medium and 

small companies are listed on HASTC. Until now, there are 305 companies listed on 

HOSE and 368 companies listed on HASTC. So far, 49 fund management companies 

are activating in the stock market; about 1 million trading account of individual 

domestic investors and 20,000 trading account of individual foreign investors. 

Individual investors account for largest portion in the total investors in the Vietnamese 

stock market.  

 

Table 2. Sector summary in 2014 

 Sectors Number of 

companies 

Market capitalization 

(VND billion) 

1 Real estate 58 156,870 

2 Rubber 9 14,872 

3 Security 20 35,272 

4 Telecommunications 24 15,274 

5 Services – Travelling 14 14,649 

6 Pharmaceuticals 21 19,090 

7 Education 23 1,313 

8 Mineral 28 16,069 
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9 Energy 19 121,270 

10 Bank 16 222,693 

11 Steel 14 11,288 

12 Petroleum 31 113,054 

13 Plastics 20 10,011 

14 Manufacturing 38 26,713 

15 Consumer Foods 28 209,105 

16 Trade 21 11,097 

17 Aquatic 19 22,265 

18 Transport 45 36,438 

19 Construction materials 46 20,098 

20 Construction 76 42,844 

Source: http://www.cophieu68.vn/categorylist.php 

 

Table above shows the summary information of sectors in Vietnamese stock market. As 

can be seen from the table, bank sector has the biggest market capitalization, following 

by consumer foods, real estate and energy sectors.  

 

5.1.2. The performance of Vietnamese stock market 

 

 

 Figure 2. VNINDEX line chart  

Source: http://www.cophieu68.vn/snapshot.php?id=^vnindex 

 

 

http://www.cophieu68.vn/categorylist.php
http://www.cophieu68.vn/snapshot.php?id=%5evnindex
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Vn-index officially operates from 2000 with the initial point was 100 and reached the 

peak at 571 points in June of 2001. At that time, the number of companies listed on the 

stock market is just a few. In the end of the year 2001, Vn-index lost 300 points and 

close at 235.4 points. In 2006, this is the time for a hot trend called “stock” for 

investors. Vn-index increased to 600 points in the beginning of April. Many big 

companies such as Vinamilk published the financial statement with a high profit, which 

forced investors buy stock in the market. Many individual investors tried to collect all of 

their money to buy stock at that time. They even were not care about the firm specific 

information. This trend pushed the price of stock. After that, stock price began to reduce 

as some investors’ prediction. However, in 2007, Vietnamese stock market experienced 

a quick recover after Vietnam joined WTO. The year of 2008 is the worst year for stock 

market when stock price continuously decreased. Investors tried to sell their stock to 

keep money. Until now, experiencing the decrease and then recover, Vn-index remain at 

around 500 point and is expected to increase in the future.  

 

5.2. Descriptive statistics 

 

Table 3. Descriptive statistics 

Table 3 shows the descriptive statistics of six variables, i.e. weekly return, weekly 

volatility and weekly search volume index of Vnindex and Hastc during the period from 

December of 2006 to November of 2014. 

 

 

VNINDEX 

 

HASTC 

  Return Volatility SVI 

 

Return Volatility SVI 

Mean -8.6E-05 0.0136 1.3312 

 

-0.0011 0.0175 0.7877 

Median 0.0000 0.0119 1.3802 

 

-0.0004 0.0147 0.7781 

Maximum 0.0724 0.0459 1.9823 

 

0.0821 0.072 1.8751 

Minimum -0.0764 0.0010 0.0000 

 

-0.1030 9.E-05 0.0000 

Std. Dev. 0.0194 0.0077 0.2663 

 

0.0227 0.0113 0.5484 

Skewness -0.1189 1.0561 -1.2938 

 

-0.0224 1.3358 -0.0862 

Kurtosis 5.2817 3.9558 6.6815 

 

5.3741 5.2412 1.6167 

        Jarque-Bera 8.7495 8.9358 3.3665 

 

9.3739 2.0216 3.2306 

Probability 0.0000 0.0000 0.0000 

 

0.0000 0.0000 0.0000 

        Sum -0.0343 5.4491 5.3115 

 

-0.4299 6.9782 3.1429 
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Sum Sq. Dev. 0.1498 0.0239 2.8234 

 

0.2058 0.0504 1.1968 

        Observations 399 399 399 

 

399 399 399 

 

 

As can be seen in the table, the mean return of both Hastc and Vnindex is quite low with 

negative returns of -0.0011 and -8.6x10-5, respectively. Highest return of Hastc equals 

to 8.2% and Vnindex reaches to the maximum value of only 7.2%. Meanwhile, in the 

market downturn period, Hastc and Vnindex decrease to the minimum value of -10.3% 

and -7.6%, respectively. The gap between maximum and minimum value of Hastc 

return is much larger than that of Vnindex. 

 

In terms of return volatility, it is shown that Hastc return volatility is higher than that of 

Vnindex during the period from 12/2006 to 11/2014. Maximum volatilty of Vnindex 

stays at 4.59% while the minimum value is just 0.1%. Similarly, the gap between 

maximum and minimum volatility of Hastc is large. The value ranges from the 

maximum value of 7.2% to the minimum value of about 0%. 

 

Finally, search volume index of both Vnindex and Hastc have the minimum value of 0 

in periods that investors do not pay much attention to these indexes. The mean search 

volume index of Vnindex is higher than that Hastc, which means that Vnindex is  geting 

more attention than Hastc in Vietnamese stock market. 

 

5.3. Statistical causality between attention and index performance 

 

Granger causality tests and Vector Autoregression model (VAR model) is used to 

examine the possible causality relationships between investor attention and index return 

and volatility.  

 

Granger causality test was first introduced by Granger (1969) as a statistical hypothesis 

test in order to determine whether one time series is useful in forecasting another. In this 

test, the null hypothesis is stated that X does not Granger cause Y. If p-value is smaller 

than significant level α, the null hypothesis is rejected. It means that X Granger cause Y 
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or X values provide statistically significant information about future values of Y. 

Besides, VAR estimation model is applied to determine how quickly investors’ 

attention have effect on index return and volatility. 

 

5.3.1. Granger causality test for index performance and search volume index 

 

First of all, Granger causality test is applied for indexes’ performance and investor 

attention which is measured by search volume index. The tables below reports results of 

P-value for the null hypothesis that search volume index does not Granger cause 

indexes’ return and volatility and that indexes’ return and volatility do not Granger 

cause search volume index. The 2 (top panel), 4 (middle panel) and 6 (bottom panel) lag 

specifications are added in the model specification. 

 

Table 4. Pairwise Granger causality test for return and volatility of Vnindex and Google 

search volume index. 

This table reports the p-values for Granger causality test on Google search volume 

index and Vnindex return and volatility. The data is obtained weekly from December of 

2006 to November of 2014. Model specifications include 2 lags, 4 lags and 6 lags. 

Lag Null hypothesis Prob. 

 

SVI vnindex does not Granger Cause Return vnindex 0.0692 

 

Return vnindex does not Granger Cause SVI vnindex 0.5361 

2 

  

 

SVI vnindex does not Granger Cause volatility vnindex 0.0003 

 

Volatility vnindex does not Granger Cause SVI vnindex 0.0021 

   

 

SVI vnindex does not Granger Cause return vnindex 0.2223 

 

Return vnindex does not Granger Cause SVI vnindex 0.8693 

4 

  

 

SVI vnindex does not Granger Cause volatility vnindex 0.0306 

 

Volatility vnindex does not Granger Cause SVI vnindex 0.3901 

   

 

SVI vnindex does not Granger Cause return vnindex 0.1672 

 

Return vnindex does not Granger Cause SVI vnindex 0.6467 

6 

  

 

SVI vnindex does not Granger Cause volatility vnindex 0.0933 

 

Volatility vnindex does not Granger Cause SVI vnindex 0.8746 
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Table 4 shows results for pairwise Granger causality test for Vnindex performance and 

SVI with key word “Vnindex”. Both index return and index volatility are influenced by 

search volume index. Including 2 lags in the model specification reveals the two way 

statistical significant relationship between investors’ attention and index volatility. 

Meanwhile, only index return is affected by search volume index. Search volume index 

seem not to be influenced by the index return. When 4 lags and 6 lags is added in the 

model specification, the significance of impact of Google search volume index on index 

return reduces. It can be explained that the model maybe over-specified in terms of 

number of lags. Moreover, with Vnindex, which captures only large companies’ stock, 

investors can process information of these companies fairly quickly thanks to mass 

media, stock returns, trading volume, etc. As a result, investors can respond to new 

information of large stocks more quickly compare to that of the small and medium 

stocks. When investors pay more attention to large stocks due to new information 

coming out, the stock returns will change quickly thanks to quicker response of investor 

to large stocks compared to small and medium stocks.  This can explain for the results 

showed in table 4, that is only search volume index of two weeks before is useful in 

predicting Vnindex return and volatility while the SVI of four or six weeks before have 

less significant impacts. In terms of index volatility, with 4 lags and 6 lags, it appears 

that index volatility is still influenced by SVI. 

 

Table 5. Pairwise Granger causality tests for return and volatility of Hastc and Google 

search volume index. 

This table reports the p-values for Granger causality test on Google search volume 

index and Hastc return and volatility. The data is obtained weekly from December of 

2006 to November of 2014. Model specifications include 2 lags, 4 lags and 6 lags. 

 

Lag Null hypothesis Prob. 

 

 SVI hastc does not Granger Cause return hastc 0.6082 

 

 Return hastc does not Granger Cause SVI hastc 0.9954 

2 

  

 

 SVI hastc does not Granger Cause volatility hastc 0.0022 

 

 Volatility hastc does not Granger Cause SVI hastc 0.0677 

   

 

 SVI hastc does not Granger Cause return hastc 0.0725 
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 Return hastc does not Granger Cause SVI hastc 0.9580 

4 

  

 

 SVI hastc does not Granger Cause volatility hastc 0.0432 

 

 Volatility hastc does not Granger Cause SVI hastc 0.0300 

   

 

 SVI hastc does not Granger Cause return hastc 0.0181 

 

 Return hastc does not Granger Cause SVI hastc 0.0812 

6 

  

 

 SVI hastc does not Granger Cause volatility hastc 0.0881 

   Volatility hastc does not Granger Cause SVI hastc 0.1495 

 

 

As can be seen in the table, when 2 lags is included in the model specification, Google 

search volume index is of no use in predicting return of Hastc, but is has effect on the 

index volatility.  In addition, search volume index is likely to change following the 

change in index volatility. However, with 4 lags, it appears that Google search volume 

index has effect on both index return and volatility and index volatility also has 

influence on future SVI. The same results are shown in case of 6 lags. SVI has 

statistical significant effect on return and volatility. Specially, with 6 lags, return 

statistically Granger cause Google search volume index with p-value being 0.0812. The 

results for Hastc is quite different from that of Vnindex. SVI has both impact on 

Vnindex performance and Hastc performance but the opposite direction, i.e. index 

performance has influences on SVI is just true in case of Hastc, not Vnindex. It is 

probably be explained due to the effect of companies’ sizes. As mentioned above about 

the Vietnamese stock market, in the Hanoi Stock Trading Center (HASTC), only small 

and medium companies are listed. The big companies are listed on Ho Chi Minh Stock 

Trading Center with the market index is Vnindex. With small and medium stocks, the 

ability of processing information of investors cannot be quick. Stock returns and 

volatility change fairly slow with changes in investors’ attention. So SVI of four or six 

weeks before can have impact on today index performance.  

 

Table 6. Pairwise Granger causality test for cross different indexes returns and volatility 

and Google search volume index. 

This table reports the p-values for Granger causality test on Google search volume 

index and returns and volatility of cross different indexes. The data is obtained weekly 



45 
 

  

from December of 2006 to November of 2014. Model specifications include 2 lags, 4 

lags and 6 lags. 

 

Lags Null hypothesis Prob. 

 

SVI hastc does not Granger Cause return vnindex 0.6494 

 

Return vnindex does not Granger Cause SVI hastc 0.7796 

   

 

SVI hastc does not Granger Cause volatility vnindex 0.0009 

 

Volatility vnindex does not Granger Cause SVI hastc 0.0116 

2 

  

 

Return hastc does not Granger Cause SVI vnindex 0.4227 

 

SVI vnindex does not Granger Cause return hastc 0.2765 

   

 

Volatility hastc does not Granger Cause SVI vnindex 0.0038 

 

SVI vnindex does not Granger Cause volatility hastc 0.0004 

   

 

SVI hastc does not Granger Cause return vnindex 0.4715 

 

Return vnindex does not Granger Cause SVI hastc 0.9553 

   

 

SVI hastc does not Granger Cause volatility vnindex 0.0376 

 

Volatility vnindex does not Granger Cause SVI hastc 0.0002 

4 

  

 

Return hastc does not Granger Cause SVI vnindex 0.6839 

 

SVI vnindex does not Granger Cause return hastc 0.5129 

   

 

Volatility hastc does not Granger Cause SVI vnindex 0.2642 

 

SVI vnindex does not Granger Cause volatility hastc 0.0001 

   

 

SVI hastc does not Granger Cause return vnindex 0.5328 

 

Return vnindex does not Granger Cause SVI hastc 0.3804 

   

 

SVI hastc does not Granger Cause volatility vnindex 0.1942 

 

Volatility vnindex does not Granger Cause SVI hastc 0.0089 

6 

  

 

Return hastc does not Granger Cause SVI vnindex 0.5954 

 

SVI vnindex does not Granger Cause return hastc 0.1819 

   

 

Volatility hastc does not Granger Cause SVI vnindex 0.7168 

 

SVI vnindex does not Granger Cause volatility hastc 0.0067 

  

 

Overall, the table shows that the relationship between Google search volume index and 

index volatility not only appear within the same index but also across different indexes. 

To be specified, with 2 lags being included in the model specification, Vnindex and 
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Hastc volatility are influenced by a change in attention to the Hastc and Vnindex SVI, 

respectively. And the same situation occur when adding 4 and 6 lags in the model. 

Changes in investors’ attention to one index might cause changes in that index 

fluctuation (as can be seen in table 4 and 5). Then, it will has effect on investors’ 

forecast on the total market and cause the change in other index volatility. For example, 

in case of Vnindex, when investors’ attention to this index changes due to some bad 

news revealed, Vnindex’s return will fluctuate more. Investors might lose their belief on 

the total market future, followed by the fluctuation of Hastc also. However, there 

appears no relationship between Google search volume index and return of cross 

different indexes. 

 

5.3.2. Properties of attention effect: VAR estimation results 

 

Besides Granger causality test, VAR estimation and the corresponding impulse response 

functions are applied to determine the sign, timing of the relationship between Google 

search volume index and indexes’ return and volatility. 

 

Table 7. VAR estimation for search volume index and index return 

This table reports results of VAR estimation for Google search volume index (SVIt) and 

indexes’ return (Rt). Data is obtained weekly from December, 2006 to November, 2014. 

The indexes are Vnindex and Hastc. In each index, the first column shows results for 

return equation, and the second column presents results for Google search volume 

index equation. VAR specifications for Vnindex include 4 lags while VAR specifications 

for Hastc includes 6 lags. The optimal number of lags is determined by lag length 

criteria, i.e. LR, AIC, FPE, SC, HQ.  The estimated coefficients is followed by standard 

errors in ( ) and t-statistics in [ ]. *, **, & *** denote significance level at 10%, 5% 

and 1%, respectively. 

 

 

VNINDEX  

 

HASTC 

        Rt    SVIt       Rt   SVIt 

       0.1388*** -0.3596 

 

0.1833*** 0.4412 

Rt-1 (0.0497) (0.5762) 

 

(0.0506) (0.6816) 

 [ 2.7929] [-0.6240] 

 

[ 3.6220] [ 0.6473] 
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      0.0092 0.2185 

 

-0.0229 0.6571 

Rt-2 (0.0501) (0.5814) 

 

(0.0514) (0.6925) 

 [ 0.1829] [ 0.3758] 

 

[-0.4467] [ 0.9489] 

 

      0.0237 0.4771 

 

0.0053 -0.0496 

Rt-3 (0.0495) (0.5747) 

 

(0.0504) (0.6793) 

 [ 0.4779] [ 0.8301] 

 

[ 0.1051] [-0.0731] 

 

      0.0393 -0.1625 

 

0.0865* 0.1632 

Rt-4 (0.0489) (0.5669) 

 

(0.0503) (0.6779) 

 

[ 0.8028] [-0.2866] 

 

[ 1.7181] [ 0.2407] 

         

 

0.0299 1.9348*** 

Rt-5   

 

(0.0503) (0.6776) 

   

 

[ 0.5948] [ 2.8553] 

   

      

 

-0.0432 -0.0712 

Rt-6   

 

(0.0499) (0.6715) 

   

 

[-0.8673] [-0.1060] 

   

   SVIt-1 0.0001 0.2983*** 

 

0.0035 0.1340*** 

 (0.0042) (0.0493) 

 

(0.0038) (0.0510) 

 [ 0.0340] [ 6.0519] 

 

[ 0.9302] [ 2.6273] 

   

   SVIt-2 -0.0093** 0.0494 

 

0.0032 0.2679*** 

 (0.0043) (0.0502) 

 

(0.0037) (0.0499) 

 [-2.1369] [ 0.9834] 

 

[ 0.8660] [ 5.3605] 

      SVIt-3 0.0008 0.2228*** 

 

0.0016 0.1090** 

 (0.0044) (0.0505) 

 

(0.0038) (0.0515) 

 [ 0.1858] [ 4.4154] 

 

[ 0.4090] [ 2.1168] 

   

   SVIt-4 0.0018 0.1750*** 

 

-0.0079** 0.1008** 

 (0.0043) (0.0494) 

 

(0.0038) (0.0514) 

 [ 0.4305] [ 3.5449] 

 

[-2.0732] [ 1.9621] 

   

      

 

0.0052 0.1975*** 

SVIt-5   

 

(0.0038) (0.0506) 

   

 

[ 1.3761] [ 3.9038] 

   

      

 

-0.0093** 0.1474*** 

SVIt-6   

 

(0.0038) (0.0511) 

   

 

[-2.4556] [ 2.8854] 

      C 0.0083 0.3353*** 

 

0.0019 0.0281 

 

(0.0062) (0.0718) 

 

(0.0021) (0.0288) 
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[ 1.3369] [ 4.6703] 

 

[ 0.8803] [ 0.9766] 

       R-squared 0.0385 0.3409 

 

0.0844 0.7188 

 F-statistic 1.998 2.580  2.935 8.138 

 

 

In case of Vnindex, the Google search volume index for Vnindex has rapid negative 

impact on its return with the second lag of SVI being negatively significant at 5% level 

of significance.  As can be seen in the Figure 1, this impact does not last too long 

because it converges to zero after a few periods. In contrast, Google search volume 

index for Hastc has a delayed influence. To specify, SVI of four and six weeks before 

has significant negative impact on today index return at the level of significance of 5%. 

The return of Hastc will decrease after an increase of search four and six week ago. This 

impact disappears more slowly than the impact of SVI on Vnindex return. Overall, an 

increase in SVI has quick negative effect on large index return, i.e. Vnindex return and 

has delayed negative effect on small index return. It can be understood that investors 

process information of large stock return more quickly than small stock. 

 

Table 7 shows that changes in past return of Vnindex do not have significant impact on 

Google search volume index. However, in case of Hastc, an increase in past return of 

last five week results in an increase in today Hastc SVI. In addition, this impact last 

quite long in the market (Figure 1 shows that the impact is slowly converged to zero.) 

Besides, in both case of Vnindex and Hastc, changes in past SVI is followed by changes 

in today SVI. This effect is fairly quick and disappears in time slowly. 

 

 Response of Vnindex Rt to SVIt

 

  Response of Vnindex SVIt to Vnindex Rt
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       Response of Hastc Rt to Hastc SVIt 

 

    Response of Hastc SVIt to Hastc Rt 

 

Figure 3. Impulse response function for VAR estimation of Stock index return and 

Google search volume index. 

This figure reports impulse response to Cholesky one standard deviation innovations ±2 

standard errors. The 4 lags and 6 lags are included in the VAR estimation for Vnindex 

and Hastc, respectively. Indexes are Vnindex and Hastc. The data of index return and 

Google search volume index is obtained weekly from December, 2006 to November, 

2014. 

 

Besides index return, next the relationship between index volatility and search is 

investigated within VAR model. As being analyzed before in Granger causality test, 

index volatility is likely to change following the changes in Google search volume 

index. In addition, search volume is also influenced by a change in index volatility. In 

order to determine how quickly this impact disappear in time, VAR estimation is 

applied for Google search volume index and index volatility. Table 8 reports the results 

of this VAR estimations and also impulse response function for VAR estimation of 

Stock index volatility and Google search volume index is shown in figure 2. 

  

Table 8. VAR estimations for Google search volume index and index volatility. 

This table reports results of VAR estimation for Google search volume index (SVIt) and 

index volatility (Vt). Data is obtained weekly from December, 2006 to November, 2014. 

The indexes are Vnindex and Hastc. In each index, the first column shows results for 

volatility equation, and the second column presents results for Google search volume 

index equation. VAR specifications for both Vnindex and Hastc include 3 lags. The 
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optimal number of lags is determined by lag length criteria, i.e. LR, AIC, FPE, SC, HQ.  

The estimated coefficients is followed by standard errors in ( ) and t-statistics in [ ]. *, 

**, & *** denote significance level at 10%, 5% and 1%, respectively. 

 

 

VNINDEX 

 

HASTC 

  Vt SVIt Vt SVIt 

      Vt-1 0.4051*** 3.6769** 

 

0.3541*** 2.3609 

 

(0.0507) -1.6997 

 

(0.0521) -1.7679 

 

[ 7.9938] [ 2.1632] 

 

[ 6.8027] [ 1.3353] 

      Vt-2 0.1251** -0.6125 

 

0.1827*** -2.7100 

 

(0.0543) -1.8227 

 

(0.0544) -1.8491 

 

[ 2.3013] [-0.3360] 

 

[ 3.3561] [-1.4656] 

      Vt-3 0.1461*** 1.9348 

 

0.0791 5.2694*** 

 

(0.0499) -1.6767 

 

(0.0524) -1.7808 

 

[ 2.9234] [ 1.1539] 

 

[ 1.5085] [ 2.9589] 

      SVIt-1 0.0046*** 0.3394*** 

 

0.0015 0.2489*** 

 

(0.0013) (0.0450) 

 

(0.0015) (0.0502) 

 

[ 3.4529] [ 7.5427] 

 

[ 0.9944] [ 4.9549] 

      SVIt-2 -0.0021 0.0509 

 

0.0006 0.4022*** 

 

(0.0014) (0.0482) 

 

(0.0014) (0.0479) 

 

[-1.4751] [ 1.0565] 

 

[ 0.4565] [ 8.3909] 

      SVIt-3 0.0010 0.2693*** 

 

0.0013 0.2068*** 

 

(0.0014) (0.0455) 

 

(0.0015) (0.0502) 

 

[ 0.7696] [ 5.9207] 

 

[ 0.8614] [ 4.1154] 

      

 

-0.0005 0.3849*** 

 

0.0037*** 0.0159 

C (0.0020) (0.0666) 

 

(0.0010) (0.0350) 

 

[-0.2541] [ 5.7821] 

 

[ 3.6316] [ 0.4531] 

 

     

 R-squared 0.4160 0.3889  0.3943 0.7023 

 F-statistic 4.393 3.925  3.927 1.423 

 

 

Response of Vnindex Vt to Vnindex SVIt   Response of Vnindex SVIt to Vnindex Vt
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       Response of Hastc Vt to Hastc SVIt 

 

         Response of Hastc SVIt to Hastc Vt 

 

Figure 4. Impulse response function for VAR estimation of Stock index volatility and 

Google search volume index. 

This figure reports impulse response to Cholesky one standard deviation innovations ±2 

standard errors. The 3 lags are included in the VAR estimation for both Vnindex and 

Hastc. Indexes are Vnindex and Hastc. The data of index volatility and Google search 

volume index is obtained weekly from December, 2006 to November, 2014. 

 

As can be seen in the table 8, search volume index for Vnindex at time t-1, i.e. one week 

before, has a significant immediate positive impact on the index volatility with the level 

of significance of 1%. Another saying, the Vnindex volatility rises one week after an 

increase in its attention. This impact is remembered by the market for quite a long time 

before converging to zero value. Similarly, Vnindex volatility also has immediate effect 

on its search (the first lag of volatility is significant at 5% level of significance). 

Changes in past volatility of Vnindex also fairly quickly affect the index volatility of 
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today. Moreover, there is a postponed impact of past volatility on today volatility (the 

two and three lags of volatility are significant).  

 

In case of Hastc index, it appears that Hastc volatility and search loose significant with 

all three lags of search is insignificant. However, the third lag of volatility has a positive 

significant impact on search. In other words, there is a delayed influence of Hastc 

volatility on its search volume index. As the impulse response function in figure 2 

suggests, this effect take a long time to dissipate. 

 

5.4. Role of attention and predictability of past index returns 

 

5.4.1. The effect of investor attention on index return conditional on the sign of past 

return and past return. 

 

Table 9. The effect of investor attention on index return conditional on the sign of past 

return. 

This table reports the OLS estimation results for the impact of search volume index 

conditional on the sign of past return on indexes return. The dependent variable is 

indexes return, and independent variables are past returns (Rt), past search volume 

index (SVIt) and search volume index conditional on the sign of past return. Dummy 

variable is equal to 1 if the lagged return is negative and 0 otherwise. The indexes are 

Vnindex and Hastc. Data is obtain weekly from December, 2006 to November, 2014. 

*.**, & *** denote significance levels of 10%, 5% and 1%. 

 

Variable 
VNINDEX   HASTC 

Coeff. Std. E Prob.     Coeff. Std. E Prob.   

        C 0.0082 0.0062 0.1847  0.0022 0.0021 0.2936 

Rt-1 0.1654** 0.0718 0.0218  0.0581 0.0699 0.4068 

Rt-2 0.0395 0.0723 0.5846  -0.0530 0.0701 0.4500 

Rt-3 -0.0021 0.0719 0.9759  -0.0692 0.0699 0.3227 

Rt-4 -0.0059 0.0715 0.9344  0.0897 0.0688 0.1929 

SVIt-1 -0.0005 0.0044 0.8998  0.0061 0.0040 0.1254 

SVIt-2 -0.0100** 0.0045 0.0264  0.0039 0.0040 0.3356 

SVIt-3 0.0015 0.0045 0.7415  0.0037 0.0039 0.3541 
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SVIt-4 0.0030 0.0045 0.5017  -0.0096** 0.0039 0.0149 

SVIt-1*D(Rt-1<0) 0.0011 0.0020 0.5928  -0.0077** 0.0033 0.0181 

SVIt-2 *D(Rt-2<0) 0.0011 0.0020 0.6013  -0.0028 0.0033 0.3968 

SVIt-3*D(Rt-3<0) -0.0011 0.0020 0.5782  -0.0045 0.0033 0.1726 

SVIt-4*D(Rt-4<0) -0.0017 0.0020 0.3980  -0.0017 0.0033 0.5991 

 

 

      R-squared 0.0427 

 

0.0926 

Adjusted R-

squared 0.0136   0.0644 

F-statistic 1.467  3.290 

 

 

The results indicate that Vnindex returns are not influenced by the interaction term 

between lag search volume and dummy variable. All the coefficients of interaction term 

are insignificant in case of Vnindex. In other words, it has not had enough evidence to 

determine that the sign of return in the past, i.e. return in the past is negative or positive, 

can affect level of the impact of investors’ attention on the index return at present. 

However, the coefficient of the second lag of search volume has negative significant 

impact on present return at 5% level of significant. If search volume of Vnindex 

increase by 1%, the value of index return will decrease by 0.01 points after two week. 

 

In terms of Hastc index, it can be seen in the table 9 that the interaction term of the first 

lag has negative impact on Hastc return at present with the level of significance of 5%. 

Another saying, if the return of one week before is negative, an increase in the search 

volume will result in more decrease in the index present return.  In addition, the forth 

lag of search volume also has significant negative effect on return at the present. If the 

search volume increase by 1%, the index return after four week is likely to decrease by 

0.0096 points.   

  

Table 10. The effect of investor attention on index return conditional on past return 

This table reports the OLS estimation results for the impact of search volume index 

conditional on the past return on indexes return. The dependent variable is indexes 

return, and independent variables are past returns (Rt), past search volume index (SVIt) 

and search volume index conditional on the past return. The indexes are Vnindex and 
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Hastc. Data is obtain weekly from December, 2006 to November, 2014. *.**, & *** 

denote significance levels of 10%, 5% and 1%. 

 

Variable 
VNINDEX   HASTC 

Coeff. Std. E Prob.     Coeff. Std. E Prob. 

        C 0.0085 0.0063 0.1791  0.0018 0.0021 0.3928 

Rt-1 -0.1969 0.2957 0.5059  -0.0975 0.1251 0.4360 

Rt-2 -0.0533 0.2963 0.8572  0.1791 0.1244 0.1506 

Rt-3 0.3832 0.2937 0.1927  0.0967 0.1248 0.4389 

Rt-4 -0.0154 0.2921 0.9580  -0.0094 0.1245 0.9396 

SVIt-1 0.0002 0.0043 0.9623  0.0023 0.0036 0.5202 

SVIt-2 0.0095** 0.0044 0.0304  0.0019 0.0036 0.5877 

SVIt-3 0.0002 0.0044 0.9678  0.0022 0.0036 0.5469 

SVIt-4 0.0024 0.0043 0.5707  -0.0099*** 0.0036 0.0067 

SVIt-1*Rt-1 0.2292 0.1982 0.2481  0.2646** 0.1042 0.0115 

SVIt-2*Rt-2 0.0449 0.1984 0.8210  -0.1658 0.1048 0.1143 

SVIt-3*Rt-3 -0.2471 0.1967 0.2097  -0.0827 0.1055 0.4330 

SVIt-4*Rt-4 0.0344 0.1955 0.8606  0.1142 0.1043 0.2743 

    

R-squared 0.0450  0.0961 

Adjusted R-squared 0.0160  0.0680 

F-statistic 1.552  3.427 

 

 

The coefficients of interaction terms SVIt-i*Rt-i in the model in table 10 indicates that 

with a unit increase in the past return, the impact of search volume will increase or 

decrease by an amount that equals to the coefficient value. These coefficients also 

measure the change in the effect of the past returns on the current index return per unit 

rise in investor attention. It is easily to see that in the table, the coefficient of the first 

lag interaction term of Hastc is positively significant at 5% level of significance. In 

other words, if Hastc’s return of one week before rises by 1 point, the impact level of its 

Google search volume on present index return will increase by 0.2646. And it can be 

understood that the impact of return of one week before on current index return will 

increase if investors pay more attention on this index.   

 

Moreover, there appears a postponed effect of past Hastc search volume on its return. 

To specify, the coefficient of the forth lag search volume of Hastc is negatively 
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significant at 1%. It means that 1% increase in search volume four weeks before will 

result in 0.0099 points decrease in Hastc return at the present.   

 

In contrast, in case of Vnindex, all of the coefficients of interaction terms is 

insignificant. There is not enough evidence to show that the magnitude of the impact if 

search volume on Vnindex return depends on a unit change in past index return. 

Vnindex return is only affected by the second lag of search volume. At the 5% level of 

significance, 1% increase in Vnindex search volume is followed by 0.0095 points 

increase in the index return after two weeks.  

  

5.4.2. The effect of investor attention on index volatility conditional on past return 

 

Parallel with index return, the effect of investor attention, which is measured by Google 

search volume index, on index volatility conditional on past return is examined using 

interaction term  SVIt-i*Rt-i in the model specification. The table below shows the results 

for this estimation. 

 

Table 11. The effect of investor attention on index volatility conditional on past return 

 

This table reports the OLS estimation results for the impact of search volume index 

conditional on the past return on indexes volatility. The dependent variable is indexes 

volatility, and independent variables are past returns (Rt), past volatility (Vt), past 

search volume index (SVIt) and search volume index conditional on the past return. The 

indexes are Vnindex and Hastc. Data is obtain weekly from December, 2006 to 

November, 2014. *.**, & *** denote significance levels of 10%, 5% and 1%. 

 

Variable 
VNINDEX   HASTC 

Coeff. Std. E Prob   Coeff. Std. E Prob.   

        C -0.0004 0.0021 0.8525  0.0041*** 0.0010 0.0001 

Vt-1 

0.4021**

* 0.0519 0.0000  0.3393*** 0.0527 0.0000 

Vt-2 0.1093** 0.0552 0.0484  0.1882*** 0.0549 0.0007 

Vt-3 0.1384** 0.0551 0.0125  0.0876 0.0557 0.1163 

Vt-4 0.0344 0.0507 0.4985  -0.0129 0.0524 0.8058 
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Rt-1 -0.0649 0.1123 0.5636  -0.0669 0.0515 0.1950 

Rt-2 -6x10-5 0.1005 0.9995  0.0740 0.0519 0.1552 

Rt-3 0.0273 0.1004 0.7853  

-

0.1438*** 0.0527 0.0066 

Rt-4 0.1299 0.0985 0.1878  -0.0095 0.0520 0.8559 

SVIt-1 0.0039** 0.0016 0.0123  0.0024 0.0015 0.1221 

SVIt-2 -0.0021 0.0015 0.1438  -0.0005 0.0015 0.7583 

SVIt-3 0.0010 0.0015 0.4944  0.0016 0.0015 0.3034 

SVIt-4 0.0005 0.0014 0.7176  -0.0004 0.0015 0.7857 

SVIt-1*Rt-1 0.0408 0.0755 0.5892  0.0467 0.0440 0.2889 

SVIt-2*Rt-2 0.0072 0.0675 0.9152  -0.0316 0.0445 0.4779 

SVIt-3*Rt-3 -0.0029 0.0675 0.9649  0.1430*** 0.0444 0.0014 

SVIt-4*Rt-4 -0.0785 0.0659 0.2346  0.0123 0.0431 0.7762 

 

       

R-squared 0.4263                                              0.4239   

Adjusted R-

squared 0.4001                                              0.3971   

F-statistic 1.630                                                1.578   

 

 

Similarly with the case of estimating effect of search volume on Vnindex return 

conditional on past return, the table above shows that in testing the relationship of SVI 

on Vnindex volatility conditional on past return, all the coefficients of the interaction 

terms in the model of Vnindex are insignificant. It indicates that the impact level of 

search volume on index volatility seem to be not affected by a unit change in Vnindex 

returns. In case of Vnindex, past index return has no use in predicting future return 

volatility. Besides, the coefficient of the first lag of Vnindex search volume is positive 

and significant at 5% level of significance. With more attention is paid to this index, 

index return volatility will increase after just one week. Past index volatility also has 

influence on today volatility. Coefficients of the first, the second and the third lag of 

index volatility are positive and significant. 

 

In terms of Hastc, the effect magnitude of search volume will change if the third lag 

index return change by one unit. In specification, if Hastc return of the last three week 

increase by 1 unit, the impact of search volume on index volatility will increase by 

0.143 unit. It also suggests that the effect of past index return on index volatility will 

increase if investors pay more attention on this index. Besides, past return itself has 
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negative effect on index volatility. The coefficient of the third lag of index return or 

return of three week before is negative and significant at the level of 1%. One unit 

increase in index return of three weeks before is followed by 0.1438 units decrease in 

index volatility. 
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6. CONCLUSION 

 

This study investigates the impact of investors’ attention, which is measured by the 

Google search volume index, on the stock market performance, i.e. stock return and 

volatility in the Vietnamese stock market. Many researchers have conducted their 

studies related to this relationship recently. It is said that investors’ attention might drive 

the market return and volatility and play a role in asset return and the efficiency of 

market (Vozlyublennaia, 2014). Barber & Odean (2008) stated that when searching 

information about the stock that investors want to buy, they face with the difficulty that 

there are thousands of stocks in the market, which limit the capacity to process 

information of investors. They might pay more attention on some stocks and ignore 

other stocks. They are likely to buy stocks that have first caught their attention even 

they are not stocks that have the best performance in the stock market. As a results, the 

stock prices are changes following changes in investors’ attention. In addition, in the 

market, individual investors are traders who most frequently use Google to look for 

information about stocks. Therefore, the investors’ attention is mostly capture for the 

individual investors’ attention. 

 

In the Vietnamese stock market, there are two stock exchange centers including Ho Chi 

Minh and Hanoi Stock Trading Center. Only stocks of big companies are listed on Ho 

Chi Minh Stock Trading Center (HOSE). Small and medium companies are listed on 

Hanoi Trading Center (HASTC). Vnindex represents a basket of typical stocks on 

HOSE and it indicates the fluctuation of stock price listed on HOSE. Besides, Hastc 

represents for stocks on Hanoi Trading Center. These two indices are examined in this 

study. In Vietnames stock market, the number of individual investors is much more than 

the number of mutual fund, hedge, and fund management companies, etc. Unlike 

professional trading companies, individual investors tent to use Internet to find 

information and use that information to trade in the market. Therefore,   in case of 

Vietnamese stock market, individual investors’ attention is likely to have significant 

effect on stock return and volatility. That is the reason while Vietnam is chosen to test 

this effect. 
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Following the method of previous studies, the Granger causality test, VAR estimation 

model and OLS method are applied in order to test whether investors’ attention is useful 

in predicting stock market performance, the sign and timing of this effect as well as the 

magnitude of this effect conditional on the sign of past return and also the past return.  

 

In terms of Vnindex, the results suggest that investors’ attention which is measured by 

Google search volume index Granger cause both index return and volatility when two 

lags are added in the model specification. Moreover, the impact of search volume on 

Vnindex return and volatility is fairly quick and the impact disappears in time in only a 

few period. A change in investors’ attention on the stock will result changes in stock 

performance after only one or two week. However, a unit change in past index return 

does not affect the impact on search volume on index performance as well as change in 

search volume have no effect on impact level of the past return. In other words, the 

predictability of past return is not influenced by investors’ attention. This result is not in 

line with the results of Vozlyblennaia (2014) which suggests that an increase in 

investors’ attention diminishes the predictability of past return.  

 

In terms of Hastc, it appears that there is a delay in the impact of search volume on 

index return and volatility. When four and six lags are included in the model, both index 

return and volatility are affected by investors’ attention. To specify, if there is an 

increase in search volume for Hastc, the index return will decrease after four weeks and 

continuosly decrease after six weeks. This effect takes a long time to dissipate in the 

market. Besides, if the past return of Hastc is negative, the effect of search volume on 

the index return will increase. And with a unit increase in past return, effect of search on 

index volatility also increases.   In the opposite direction, the impact level or 

predictability level of the past return on recent return and volatility will rise if investors 

pay more attention on the index. In case of Vietnamese stock market, investors’ 

attention cannot help improve market efficiency if return predictability is interpreted as 

a form of market inefficiency. 

 

Overall, in Vietnamese stock market, investors’ attention has a role in predicting stock 

performance. The effect of attention on stock large companies (Vnindex) seems to be 
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more rapid than effect on small and medium companies (Hastc). However, this effect is 

remembered by the market longer in case of small and medium companies. Besides, 

while the impact level of search volume on index performance increase conditional on a 

unit increase in return of Hastc, there has not had enough evidence to prove that past 

index return has influences on impact magnitude of  search volume in case of Vnindex. 
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