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Introduction 

This summary is intended to give a background to, and an exposé of 
the main ideas in the thesis. The problems dealt with concern some of the 
most fundamental properties of metals, like the electrical conductivity 
and the heat capacity. Attempts1 at a theoretical treatment date back 
to the beginning of this century. Drude (1900) suggested that a metal was 
built up of ions surrounded by a gas of conduction electrons. With this 
model one could explain e.g. the Wiedemann-Franz law for the ratio 
between the electrical and the thermal conductivities (although by a wrong 
argument), nevertheless it was still difficult to understand some features 
of conduction phenomena. One of the unsettled problems in physics at 
that time was the deviation of the lattice heat capacity from the classical 
result (Dulong-Petit's rule). Einstein (1907) used Planck's rule of quan­
tization to describe the motion of the atoms as that of independent harmonic 
oscillators with discrete energy levels. Born and von Kårmån (1912) by 
introducing force constants between nearest neighbour atoms obtained 
solutions to the classical equation of motion in the form of propagating 
waves with quantized energy. In the same year Debye published his 
theory for lattice vibrations viewed as elastic waves. With these rather 
crude concepts one could find working models to describe some metallic 
properties. Quite naturally, several severe discrepancies remained as the 
models were based on classical physics with the addition of Planck's rule 
of quantization. 

The basis of modern solid state theory is of course quantum mechanics 
as it was developed around 1930. Many important qualitative results 
could be derived simply from the periodicity of the lattice. Nevertheless 
some phenomena remained unsolved. We can only think of superconduc­
tivity that was discovered in 1911 but not explained until the appearance 
of the BCS theory in 1957. 

For some twenty years, solid state physics has been in a period of very 
rapid progress. Several new physical effects have been discovered and well 
known properties have been measured with a very high accuracy. The 
theory of solids has undergone a similar development. New mathematical 
methods are used for the description of large systems of interacting particles. 
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Many important qualitative results have been obtained and the computer 
technique has enabled calculations on real systems. 

One purpose of the thesis is to show how the modern theory is used 
in accurate calculations of measurable properties for some metals. Before 
we enter into details, it can be interesting to see how well the theory can 
explain experimental results. We must distinguish between calculations at 
different levels of sophistication. In an ab initio calculation we start from 
fundamental parameters like the atomic number, the mass of the particles 
and the lattice spacing in equilibrium. This is, however, not the usual 
approach. We can often get a much better understanding of the physics 
if we set up a model that gives simple relations between many different 
properties. Experimental results for some of these properties can then be 
used to predict the result for others. This is the level of most of our cal­
culations. We can also use ad hoc models with a few adjustable parameters, 
which sometimes do not have any meaningful physical interpretation. 

This thesis is limited to a consideration of so called simple metals, i.e. 
metals with conduction electrons that can be described as an almost free 
electron gas. Typical examples are the alkali metals, lead and aluminium. 
The table below gives some idea about the accuracy one can obtain in 
theoretical calculations for these elements. 

Typical deviation from 
Calculated property experimental results 

Electrical resistivity (room temperature) 20—40% 
Electronic specific heat, cyclotron resonance frequency 5-15 % 
Phonon spectrum, elastic constants 

(ab initio calculation) 20-40% 
(d:o ad hoc model) 5-10% 

Lattice vibrations 

Experiments 

For a long time, accurate experimental values for the phonon frequencies 
o)(q) c ould only be obtained in the limit of long wave lengths (small q), 
where the frequencies are simply related to the elastic constants. More 
detailed information can be obtained from diffuse scattering of X-rays 
and inelastic scattering of electrons or neutrons. With neutron scattering, 
it is often possible to determine o>(q) for arbitrary q-values with a relative 
accuracy better than a few per cent. 
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For elements that are superconductors, there exists quite a different 

method to obtain information about the phonon spectrum, see paper A. 

The tunneling current I of electrons into a superconductor biased with a 

voltage U, depends on the effective interaction between electrons and 

phonons, i.e. on the strength of electron-phonon interaction oc2(a>) times 

the phonon density of states F(a>). The tunneling current I, or better 

d2I/dU2, will show structure at the van Hove singularities in F(U) (see 

fig. 1). 

Fig. 1. The second derivative d2I/dU2 of the 

tunneling current into a superconductor biased 

with a voltage IT shows a characteristic structure 

at the singularities in the phonon density of 

states F(<u). The energy scale in d2I/dU2 is given 

a constant shift to make the comparison easier. 

From measurements of the tunneling current I, 

one can calculate the effective electron-phonon 

interaction a2(ai)F(aj) mediated by phonons of 

energy aj. 

McMillan and Rowell have developed an ingenious method to start 

from measurements of I(U) and its derivatives and by an iteration procedure 

solve a pair of coupled integral equations that describe the superconducting 

state. From such an analysis one obtains the effective electron-phonon 

interaction in the normal state oc2(a>)F(o>), m ediated by phonons of energy 

a>. The shape of a2(a>)F(a>) closely resembles that of the phonon density 

of states F(OJ) a s shown in fig. 1. 

d2I/dU2 

F 

< 1 i i i 
(X2F 

y i i i I 
0 2 U 6 8 10 

GO [meV] 
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Theory 

The calculation of phonon dispersion curves is one of the main problems 
in solid state theory. Generally the neutron scattering experiments are 
carried out only for q in symmetry directions. To find the density of s tates 
F(a>), one must have some model that is capable of r eproducing the results 
in the symmetry directions and hopefully is good also for interpolation 
to an arbitrary q. The standard method, still in use, is that of Born and 
von Kårmån. Force constants are introduced between a few nearest neigh­
bour atoms and they are determined by fitting to the experimental curves. 
Unfortunately this method is unphysical for metals, where the concept 
of force constants does not have much meaning. The interatomic forces 
are very complicated and of quite long range. In a realistic treatment 
for simple metals, with small ion cores and free electron like conduction 
electrons, the total frequency can conveniently be written (for q in sym-

metry directions) (1) 

The term u>comes from the direct ion-ion interaction between point 
charges, and it can easily be calculated. The whole trouble comes from 
a>fe that describes the ion-ion interaction mediated by the conduction 
electrons. The two terms are often of the same order of magnitude, and to 
really make things worse, a>fe is in turn the difference between two large 
terms. In paper A, the lattice dynamics of lea d-thallium alloys is investigated 
theoretically and correlated w ith tunneling experiments (cf. fig. 1). 

In symmetry directions, the atomic displacements are either strictly 
longitudinal or transverse to q. This is usually not the case for q in arbitrary 
directions, not even in the sound wave limit. As a measure of the anisotropy 
one usually takes (for cubic structures) 

S=(C11 C12)l(ßQii) (2) 

Cjj a re the elastic constants. If s=l, then the long wavelength vibrations 
are always strictly longitudinal or transverse. The sound velocity of the 
longitudinal branch is isotropic, as is also that of t he degenerate transverse 
branches (Tx, T2). The anisotropy index s differs widely also for simple 
metals. We have sNa=0.14, sA1=0.82 and sPb=0.25. This fact can be given 
a simple explanation. Using eqs. 1 and 2 we can alternatively write 

s=lim^(110;T2)-wfe(110;Ta)j/^fi(110;T1)-a>fe(110;T1)j (3) 

The ion-ion interaction alone would lead to a strong anisotropy, which 
only depends on the lattice type (fee, bcc). For sodium, with only one 
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conduction electron per atom, tofe is small and it is natural to find aniso-

tropy. For polyvalent metals like lead and aluminium, a>f{ and a>fe are 
of the same order of magnitude and s is therefore very sensitive to details 

in the electron-phonon interaction. We therefore conclude that anisotropy is 
the normal behaviour and the fact aluminium is almost isotropic is only 

accidental. 
In paper B we show that s is in fact not a very good measure of anisotropy. 

Instead we in troduce a new index of anisotropy, A, defined by 

A=Ch/(C12-}-2C44) (4) 

When S— I we have also A=l. Let aL(max) be the maximum angle between 

the direction of atomic displacements êL(q) and the corresponding wave 

vector q for the 'longitudinal' branch. We have calculated aL(max) in 

the limit of small |q| for all cubic elements (paper B). Fig. 2 shows that 

aL(max) is simply related to A but not to s. 

Fig. 2. aL(max) gives the maximum angle between the direction of the atomic dis­

placements êL(q) and the corresponding wave vector q for the 'longitudinal' branch 

in the limit of small q. The circles refer to elements with cubic structure, s is the con­

ventional anisotropy index, s = (cu-c12)/2c14. A is our new index, A=c11/(c12 + 2c14). 

It is evident that A is a better measure of the anisotropy. 

Electrons from a many-body point of view 

In this section we discuss results for the electron self energy and the 

spectral function. This is the central part of the thesis, but we will here 

be rather brief because of the formal nature of the subject. Experimental 

consequencies are considered in the following sections. 

The self energy - Mel_ph 

For a free particle, the total energy is just the kinetic energy e(p)=p2/2m. 

The interaction between electrons and phonons leads to a correction, the 

electron self energy Mel_ph. The kinetic energy is a function only of the 
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momentum p. The self e nergy Mel_ph on the other hand turns out to be 
almost independent of p, but depends strongly on the energy and the 
temperature, Mel_ph=Mel_ph(o>; T). Mel_ph is a non-real function that 
depends in a complicated way on details in the electron-phonon system. 
It was first calculated by Engelsberg and Schrieffer for very simplified 
models. In ypaper G we have made a very detailed calc ulation of the self ener gy 
M,,i—ph for a real metal {sodium). The result for T=0 is given in fig. 3. 

Fig. 3. The real and imaginary parts of the electron self energy Mel_ph(co) caused by 
interactions with phonons. The curves are for sodium at T = 0°K. <uD = 2.1xl013 

rad/sec. The frequency to is counted from the Fermi level. 

These curves are typical in shape for metals. Note that Re MeI_ph is different 
from zero only in a narrow range of a few phonon energies around the 
Fermi level. In the foregoing section it was mentioned that tunneling ex­
periments in superconductors could give very accurate results for the 
effective electron-phonon interaction <%2(co)F(a>) with the phonon energy 
as variable. This information is extremely useful in a calculation of Mel_ph 

at finite temperatures, because energy is the variable that enters the sta­
tistical Bose-Einstein and Fermi-Dirac factors. In paper F, we have used 
data from tunneling experiments to calculate the self energy Mei_vh for lead 
and mercur y. 

1 2 3 

13 
units: 10 rad/sec 
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The spectral function A(p, a>) 

Once we have calculated the self energy M, we can form the spectral 

function A(p, tu) defined by 

A, ^ 1 lImMl A( p ,  w) = (5) 
7 7  [to—e( p ) —Re M]2+[ImM]2 

For a non-interacting system, i.e. with M infinitesimal, A( p ,  to) simply 

becomes the delta function §(a>— e(p)). This corresponds to the fact that 

a free particle with momentum p  is  in an exact eigenstate of energy co= e ( p ) .  

When interactions are included, the sharp peak in A(p, to) broadens (corre­

sponding to a decay of the eigenstate) and also shifts in energy. Typical 

plots of A(p, tu) are given in fig. 4. The area under A(p, u>) is constant 

A(£P,OJ) 

unit for tu:meV 
4a 4b 

Fig. 4. The spectral function A(p, cu) fo r lead at two values of p (or rather two values 

of Cp—ftp) and at T=0°K. In fig. a, there is a sharp peak at coo = 0.8 meV, representing 

a quasi particle. The area under this peak is 40% of the total area under A(p, cu). 

This sharp and well defined peak disappears when the temperature is raised (the 

dotted curve in fig. a is for T = 11 °K) or when ep — ftp becomes comparable with 

typical phonon energies (fig. b). 

( = 1). At low temperatures and in the vicinity of the Fermi level /iF, 

Im Mel_ph is small and Re Mel_ph depends linearly on the energy. It there­

fore follows that A(p, ai) has a peak at an energy a>0 given by 

W0=[«(P)-MFl/U+^el-ph) (6) 

if e( p ) — /xF is small compared to typical phonon energies and the tempera­

ture is much less than the Debye temperature. Ael_ph is the slope of 

—ReMeI_ph at the Fermi level. It is this peak that appears as a sharp 

line in fig. 4 a, and it represents what we call a quasi particle. It is no 

longer well defined when the temperature is raised (fig. 4 a) or e(p 
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is comparable to typical phonon energies (fig. 4 b). It is only at low ex­

citation energies and at low temperatures that it is meaningful to talk 

about a quasi particle. From eq. 6 we see that the quasi particle density 

of energy levels is increased by a factor 1+Ael_ph over the free particle 

density of states. 

The electronic specific heat 

The low temperature electronic specific heat for a non-interacting 

electron gas is proportional to the density of states at the Fermi level. 

It takes the same form when many-body effects are included, but is 

then proportional to the quasi particle density of levels. The result of 

a specific heat measurement is often given in the form of an effective 

electron mass, and we have 

m ef f  =  m b( 1 +^el -ph )  ( 7 )  

mb is the effective mass when band effects and electron-electron inter­

actions are included but no electron-phonon many-body effects. 

As an example we give the results for sodium. Band effects are negligible. 

Hedin(2) has found that electron-electron effects give mb=1.04m0, where 

m0 is the mass of a free electron. In paper C, we find Ael_ph=1.19 and 
thus meff=1.24m0. The experimental result(3) is meff= (1.24^0.02) m0. 

The enhancement factor 1+Àel_ph=1.19 for sodium is typical in magnitude 

for the alkali metals. The strong coupling superconductors lead (Ael_ph=1.5) 

and mercury (Ael_ph=1.6) have unusually large enhancement factors. 

We have already mentioned that we can only talk about a constant 

quasi particle density of levels at very low temperatures with only low 

energy excitations involved. Therefore we expect deviations from the linear 

behaviour of the electronic specific heat Ccl as the temperature increases. A 

formula for Cel valid at arbitrary temperatures has been given by Prange 

and Kadanoff without any really strict proof. In paper F it is shown that 

their result follows rigorously from a Green function formulation of th e thermo­

dynamic potential of the coupled electron-phonon system. Let us write 

Cei=[yo+yi(T)]T (8) 

In the limit of low temperatures we have 7^(0)  =  Ael -ph7o-  In PaPer A 

we calculate yi(ï1)/yi(0) in an Einstein model for the phonons and in paper F 

we give accurate results for lead and mercury. The result for lead is given 

in fig. 5. It is seen that only at very low temperatures and at T^ 0F/3 is 

Cel linear in T. At high temperatures there are, however, no electron-
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0.5 

1.0 

0 

MT)/X(0) 

y,(T)/y,(0) 

0 25 50 75 TTK1 
Fig. 5. The electronic specific heat can be written Cei = [y0+y1(T)]T. The figure shows 

the normalized quantity •y1{T)ly1(0) for lead. y1(0) = 1.5yo. 

A(T)/A(0) is the normalized slope at the Fermi level of the electron self energy Me,_ph. 

At very low temperatures, the cyclotron resonance effective electron mass can be 
written meff=mb[l + A(T)]. The curve is for lead. A(0) = 1.5. 0D = 9O°K. 

phonon renormalization effects left. kB0E is a typical energy transfer in 

the electron-phonon interaction (cf. the quantity a2(aj)F(co)). The tempera­

ture at which yi(T)/y1(0) has its maximum is about 0E/8, no matter which 

metal we consider. The reason why the characteristic feature of Cel has 

not yet been verified is that it is swamped by the lattice specific heat. 

In papers E and F we suggest a possible experiment to verify the non-linear 

temperature dependence of Cel. One can measure the total specific heat in 
the normal and in the superconducting state, i.e. with and without a 

magnetic field. The electronic contribution is very different in the two 

states, but the lattice part is practically unchanged. In this way, the elec­

tronic contribution can be isolated. Nevertheless this experiment lies at 

the limit of what is possible at present. 
At high temperatures Cel has to be distinguished from effects of lattice 

anharmonicity. The latter contribution is also linear in T, but can be 

estimated from measurements of phonon frequency shifts with inelastic 

neutron scattering at different temperatures. Very recent high tempe­

rature specific heat measurements on lead(4) show a much better agree­

ment with neutron scattering data if Cel is linear in T but with no elec­

tron-phonon renormalisation effects. 
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Cyclotron resonance 

We specifically have in mind the Azbel-Kaner cyclotron resonance, 

but the amplitude of the de Haas-van Alphen oscillations is affected in a 

similar way. The cyclotron resonance frequency aic is modified by electron -
phonon many-body effects. We can write 

eH 
"C= (9) 

meffC 

where meff is essentially the band mass enhanced by electron-phonon 
interactions, 

m e f f  =  m b ( 1 + ^ e l - p h )  ( 1 0 )  

In the limit of low temperatures we find the same effective mass enhance­

ment from measurements of the electronic specific heat, the cyclotron 

resonance frequency and the de Haas-van Alphen amplitude. We are 

restricted to low temperatures because of the condition OJcT^> 1. Therefore 

we consider excitations at energies where Re Mel_ph(oj) is still linear in 

at and ImMel_ph is small. However, ReMel_ph is explicitly temperature 

dependent. We have shown that at finite but low temperatures, the resonance 

frequency is approximately given by eqs. 9 and 10 if we let Ael_ph be tem­

perature dependent. A model calculation of À (T) is given in paper D. Accurate 

calculations can be found in the papers D (Na) and E, F (Pb and H g). In 

fig. 5 we give À(T)/À(0) for lead. The temperature dependence of the cyclotron 

resonance mass is a marginal effect but should be detectable with the present 

technique. It must be pointed out that cyclotron resonance experiments 

can be carried out at higher temperatures if we apply a high enough magne­

tic field. However, our calculations are valid only for low magnetic fields 

(a>c-^typical phonon frequencies). Cyclotron resonance in high magnetic 

fields is much more difficult to treat, especially if we want to go beyond 
simple model calculations. 

Transport properties 

The basic mechanism of the phonon limited electrical resistivity is 

thought to be fairly well understood. However, numerical calculations are 

very sensitive to fine details in the electron-phonon system and they often 

give poor results. The resistivity depends on the effective interaction 

between electrons and phonons but also involves a geometrical factor 

1—cos 9 that makes large angle scattering most effective. Now recall that 

the effective electron-phonon interaction in all its details could for some 
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elements be determined from tunneling experiments. In paper O we show 

that the electrical resistivity can be written in the extremely simple form 

« i „„«a lS o\2Nbs47rmfc f a2MF(o>)aj dw 

\~sj J [ , - » ^ l | [ l - e — ( U >  

Nfe and S0 are the free electron values of the density of electron states 

at the Fermi level and the area of the Fermi surface. Nbs and S are corre­

sponding quantities for the real system. The electron number density is 

denoted by n. The price we have to pay to get the simple form of eq. 11 

is that the geometrical factor 1—cos 6 has no counterpart in tunneling 

experiments and must be taken outside the integral in the form of an 

average value. For a polyvalent metal, a clever guess of 1 —cos 6 introduces 

a smaller error than that of a standard resistivity calculation. It is fas­

cinating that data from the superconducting state can be used to calculate 

the room temperature electrical resistivity. 

The validity of t he Wiedemann-Franz law for the ratio between the ther­

mal and electrical conductivities is well established at high temperatures, 

so the thermal conductivity need not be treated separately in this limit. 

Effects of external pressure 

Some experiments are very rich in information. Using cyclotron resonance, 

to take one example, one can map out the Fermi surface in great detail. 

Resistivity measurements on the other hand just give a single number. 

Measurements under pressure, i.e. at different lattice spacings, are impor­

tant as they give an additional degree of freedom. In paper H we consider 

the pressure dependence of a large variety of metallic properties. The main 

emphasis is on the high temperature electrical resistivity of lead. It is shown 

that the volume dependence of the phonon frequencies gives the most 

important contribution the pressure dependence, but there are also other 

effects that are not negligible. The thermal expansion leads to effects 

similar to those of external pressure and is also considered in paper H. 

Multi-phonon scattering processes and Debye-Waller factors are always 

neglected in standard calculations of the electrical resistivity. These two 

effects come in with different signs, and it is still an open question how 

well they cancel. A remaining net effect would give a non-linear temperature 

dependence in the high temperature electrical resistivity. However, the 

measured temperature coefficient of the resistivity for lead is in quantitative 
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agreement with the standard theory if allowance is made for the thermal ex­
pansion and purely anharmonic shifts in the phonon frequencies. 

Concluding remarks on effective electron masses 

We have seen that the standard formulas for the specific heat, and 
the cyclotron resonance frequency can be used at low temperatures if the 
electron mass is enhanced by the factor l+AeI_ph. There are other formulas, 
like that for the electrical resistivity, which also contain the density of 
electron states at the Fermi level or, equivalently, the effective electron 
mass. In this latter case there should be no extra factor 1+Ael_ph and the 
reason is that not only the density of states but also the wave function 
is renormalized and these two effects exactly cancel. Prange and Kadanoff 
and others have considered the effects of electron-phonon interaction in 
some detail. In the table we quote the results for some properties and 
indicate whether the effective mass that occurs in the corresponding 
formulas should be renormalized or not. 

Mass renormalization from 

Effect electron-phonon interaction 

Specific heat yes 

Cyclotron resonance frequency (Azbel-Kaner) yes 

de Haas-van Alphen amplitude yes 

Thermal and d.c. electrical conductivity 110 

Pauli spin paramagnetism no 
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THE ELECTRON-PHONON COUPLING AND 
PHONON SPECTRA IN LEAD-THALLIUM ALLOYS 
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Abstract —Electron tunnelling into superconducting f.c.c. lead-thallium alloys has been carried out 
in the homogeneity range 0-70 at.% T1 in Pb. The half energy gap, A0, decreases from 1-35 meV for Pb 
to 0-5 meV for Ptn>.3Tl0.7. The ratio 2A JkTc is reduced from the strong-coupling value of 4-4 to the 
weak-coupling value 3-5 at about 60 at. %T1. The anisotropy in the energy gap remains up to about 
15% T1 in P b. A diminishing deviation of the experimental dl/dV vs. V curve from the BCS one, a 
lower Tc with higher T1 content, shifts in phonon frequencies, and trends in published neutron diffrac­
tion data show that the electron-phonon coupling decreases with the number of valence electrons per 
atom. The phonon induced s tructure in t he tunnelling curves agrees well with phonon spectra from 
neutron diffraction work by Stedman et al. and Ng and Brockhouse. The longitudinal peak is shifted 
towards higher frequencies as the coupling grows weaker. The frequency band of transverse modes 
broadens as the number of free electrons decreases. A theoretical model was tried to account for the 
changes in t he transverse phonon branches. It was possible to get a qualitative agreement, but the 
result was unreasonably sensitive to small changes in the form of the pseudopotential or the electron 
screening. 

INTRODUCTION 

AN IMAGE of the phonon spectrum of a 
material can often be obtained via tunnelling 
measurements. The method has been par­
ticularly successful for strong-coupling 
superconductors (i.e. where the coupling 
between the phonons, which are to be studied, 
and the electrons, the probe, is strong). Let 
us consider electrons injected into levels well 
above the gap energy in a superconductor. 
By the emission of a phonon, an electron can 
be scattered to a level close to the energy 
gap, where there is a high density of available 
states. As energy is conserved, the transition 
rate must depend on the number of phonon 
states with matching energy as well as on the 
strength of the electron-phonon coupling. 
The injected quasiparticles thus have a finite 
lifetime which results in an imaginary con­
tribution to their self energy. The real part of 
the self energy is also changed. The gap func­
tion becomes complex and energy dependent 
and as the tunnelling current depends on the 

gap function we will obtain structure in a 
recorded tunnelling characteristic. If we 
record not only the current vs. voltage 
behaviour but also its first and second 
derivatives with respect to voltage, the 
deviations from the expected BCS curves are 
magnified considerably. 

Structure from the phonon spectrum has 
been seen in tunnelling characteristics for 
several superconducting metals [1]. Theo­
retically, the situation is well understood[2], 
From recorded dlldV vs. V curves it is even 
possible to obtain the phonon density of states 
(multiplied by an electron-phonon coupling 
strength) with respect to phonon energies [3]. 
Here, we report results from tunnelling into 
superconducting Pb-Tl alloys. Alloys have 
previously been investigated only to a limited 
extent [4, 5], The Pb-Tl system is a very 
favourable one to study, since the coupling 
strength in Pb is particularly large, and it is 
possible to dissolve more than 85 at.% T1 
into Pb and still maintain the f.c.c. Pb struc-
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ture. Hence we can study the energy gap, the 
density of excited states, the electron-phonon 
coupling strength and the phonon spectrum 
and their dependence upon the electron 
density in the range e/a = 3-1-4 just by 
tunnelling into these alloys. An introductory 
study of the superconducting transition 
temperature in the system has been published 
earlier [6]. Preliminary tunnelling results have 
also been reported briefly [7], 

The phonon density of states can also be 
studied in other ways. Neutron diffraction 
gives a good and clearcut result, however a 
complete mapping is time consuming and 
costly. Although the superconducting tun­
nelling method does not give such a clear 
result as the neutron diffraction one, and the 
number of elements to be studied is limited, its 
ease of obtaining information about the 
phonon spectrum makes it very attractive. We 
shall also compare the density of phonon 
states obtained by neutron diffraction with 
our tunnelling curves. 

EXPERIMENTAL TECHNIQUES 

Junctions of the type Al/Al203/Pb-Tl 
(Alloy) were evaporated at a pressure of 
< 10~5' mm H g. A thin Al strip was deposited 
upon a glass substrate and oxidized in dry air 
at normal pressure for about 15 min. Then a 
layer of the alloy investigated was deposited. 
This second film had a thickness of a few 
hundred Å. Three junctions, with different 
areas, were made upon the same glass slide. 
The materials used were originally supposed 
to be 99-999 per cent pure. 

The boiling alloy could be heated resistively 
or by electron bombardment. Pb and T1 
evaporate at similar rates, hence no large 
deviations in the composition of the evaporated 
film from the desired one are expected as long 
as the evaporated lump is not too big. The 
composition of the fabricated alloy strip 
could be checked by comparing its supercon­
ducting transition temperature with that of 
the bulk alloy. (The Tc of Pb films does not 
differ very much from that of bulk material.) 

In this way the amount of T1 in Pb could be 
established within a few per cent. The 
composition of the strip agreed with that of 
the original bulk material within the accuracy 
of the determination. 

Two of the samples (20 and 35 at. % Tl) 
were prepared by a flash-evaporation method. 
About 10-20 Å (4-8 atomic layers) were 
deposited at a time. In order to prevent the 
sample from warming up during this time-
consuming procedure (and hence prevent the 
aluminium oxide from regrouping into islands 
producing short-circuit paths), it could be 
cooled by a heat sink at liquid nitrogen 
temperature. The samples were generally 
annealed at room temperature one day before 
they were investigated. 

Tunnelling characteristics were recorded by 
employing standard techniques [8]. Current 
(/) and d//dK vs. voltage (J/) curves were 
plotted on an x-y recorder when applying a 
constant voltage driving source. The second 
current derivative, d2//dK2, was registered 
by studying the harmonic frequency of an 
appl ied  sens ing s ignal .  d 2 / /dK 2  and dV/dl  
vs. V curves were taken with a constant 
current bias source. 

The temperature during a run was deter­
mined by measuring the vapour pressure of 
liquid helium. The 1958 He4 temperature 
scale [9] was used for the conversion between 
pressure and temperature. The junctions could 
be investigated down to 1-3°K. The super­
conducting critical temperature of a sample 
was  es tab l ished by taking dl /dV vs .  V 
characteristics at different temperatures. 
dl/dV at zero bias voltage was plotted vs. 
T and this curve could then be compared with 
corresponding theoretical BCS one [10]. 
T=TC at [(dl/dV) J (dl/dV) n]v=0 = 1 (s and 
n denote superconducting and normal states 
respectively). 

RESULTS 

The superconducting energy gap could be 
determined by compar ing a  se t  of  dl ldV Vs.  V 
curves taken at several TlTc ratios with cor-
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responding theoretical curves [10], The error 
in the determination is estimated to be less 
than 5 per cent, except for the highest T1 
concentrations, where an unfavourable 
(higher) TlTc ratio gave an error of at least 
10 per cent. The half energy gap at 0°K, A0; 
Tc; and the ratio 2AjkTc are plotted as 
functions of composition in Fig. 1. 

directions when the electrons enjoy long-lived 
states (i.e. in a pure crystal). We will hence 
obtain our anisotropic energy gap. As im­
purities are added we can no longer use well-
defined Bloch states but must use combina­
tions of these with scattering taken into 
account. Due to this averaging one obtains 
isotropic properties. For low T1 concentra-

° 2A /kT 

4-5 

4-0 

O 3-5 ™ 

30 

0 10 20 30 40 50 60 70 80 90 100 

Pb ATOMIC PFRCEN T TH ALLIUM T l  

Fig. 1. The superconducting transition temperature, T c ,  the half energy gap at 0°K, A0, 
and  the  ra t io  2 A 0 l kT c  vs .  c ompos i t ion  in  Pb-Tl  a l l oys .  A 0  decre ases  fas te r  th an  T c  

except in the low concentration impurity range where anisotropy effects dominate. Hence 
is reduced from the strong-coupling value of 4-4 to the weak-coupling BCS ratio 

of 3-5 at about 60 at.% Tl. 

The anisotropy of the energy gap is rather 
well understood [11]. As both the phonon 
distribution and the Fermi surface are aniso­
tropic, different electron-phonon coupling 
strengths will be obtained in different crystal 

tions d//dK showed no singly peaked but a 
doubly peaked structure in the vicinity of the 
gap energy (±AOA1). AS a measure of the aniso­
tropy we can take the difference Ô(A0) obtained 
by determining the energy separation of the 



390 T. CLAESON and G . GRIMVALL 

peaks. In Fig. 2 we have plotted 8(A0) vs. 
at.% Tl, and we see that as scattering centres 
are added, the anisotropy decreases and dis­
appears at about 15 at.% Tl in Pb. 
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Fig. 2. The anisotropy in the half e nergy gap versus Tl 
content. The energy separation of the double peaks in 
dl/dV vs. V plots is used as a measure of the anisotropy 

which disappears at about 15 per cent Tl in Pb. 

Normalized first derivative ( d l / d V  vs. V )  
curves are shown in Fig. 3. Curves for several 
compositions are given. The energy scale is 
counted from the energy gap of the alloy 
(plus the energy gap of Al if the latter is 
superconducting). The ordinate scale is 
magnified and the huge structure from the 
energy gap is deleted. d2//dP/2 curves for 
several Tl concentrations appear in Fig. 4. 
The second derivative is not normalized in 
these curves. Absolute values can be obtained 
b y  m e a s u r i n g  t h e  s l o p e  o f  t h e  d l / d V  v s .  V  
curves. 

DISCUSSION 

Electron-phonon coupling strength 

The superconducting transition temperature 
decreases in the Pb-Tl system as the number 
of valence electrons becomes smaller [7], Up 
to about 50 at.% Tl Tc decreases slowly, but 
then a rapid drop is registered for an increasing 
Tl content. The Tc variation indicates in 
itself the variation of the strength of the 
coupling responsible for superconductivity. 
However we can also compute the Debye 

temperature, 0D, from ultrasonic measure­
ments and apply the BCS formula [12] 
Tc ~ 0De~llNWV to get a measure of the 
effective electron-electron interaction 
Af(0)K. In Fig. 5 we have plotted values of 
0D vs. composition taken from Alers and 
Karbon [13] and also values computed from 
measurements by Shepard and Smith [14] 
utilizing de Launay's tables [15]. The variation 
of N(0)V is also given in Fig. 5. It has been 
pointed out [6], that Tc shows structure which 
can be correlated with the density of electron 
states in Pb calculated by Anderson and 
Gold[16], Also for Af(0)F we notice the 
reminiscence although the sharp peak in t he 
calculated density of states can not be seen. 
However, no careful search was done. 

However, it is also possible to get estimates 
of the coupling strength from other data. The 
ratio 2AJkTc equals 3-5 in the BCS theory. 
Strong-coupling superconductors show larger 
ratios. Figure 1 shows that 2AJkTc decreases 
from the high value for Pb, 4-4, towards the 
weak-coupling BCS ratio of 3-5. 

The magnitude of the structure in the 
tunnelling dl/dV curves is also a measure of 
the electron-phonon coupling. The larger the 
deviations from the smooth BCS curves, the 
stronger the coupling. It is evident from Fig. 3 
that the attractive electron-electron interaction 
decreases with increasing Tl concentration. 

The results from neutron diffraction work 
also show that the electron-phonon interaction 
increases with electron concentration [17]. 
Neglecting core-core interaction we can 
separate the frequencies of the lattice vibra­
tions into two parts —one from the Coulomb 
interaction between the ions and the other 
from the electronic screening* 

a)2 = <-Û£= û&(/«-/<e) (1) 

where subscripts ii and ie denote ion-ion 
and ion-electron interactions respectively. 

*In the discussion of phonon properties we closely 
follow the presentation by Vosko, Taylor and Keech[l 8], 
and use <uB1 as a natural unit. 
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Fig. 3. Normalized dl ldV vs. energy plots for varying T1 content. The 
energy scale is counted from the gap of the alloy pl us the one of Al if the 
latter is superconducting. Note that the structure grows weaker (smaller 
deviations from the smooth BCS curves) as the free electron concentration 

is reduced. 

dpi is the ionic plasma frequency given by 
Wy, = 4v(Ze)2/M[l0, whereZisthe ion charge, 
M its mass and O0 the volume of the unit 
cell. In depends only on the crystal structure 

and lle is a measure of the strength of the 
electron-phonon interaction. For f.c.c. 
structures we can vary the number of 'free' 
electrons per atom el a in the range 3(A1) to 
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Fig. 4. Curves proportional to d2//d(/2 (unnormalized) 
vs. eV. The structure in the interval 2-7 meV is due to 
transverse phonons while longitudinal ones cause the 
dip at about 9meV. Although the TITC ratio and the 
electron-phonon coupling grow small at higher T1 con­

centrations, some structure is still to be seen. 

4-2 (Pb-Bi). In Fig. 6 we plot the unscreened 
ion-ion frequency for the transverse mode in 
the [100]-direction and experimental dis­
persion curves with e/a = 3 (Al)[19], 3-4 
(Pbo.4Tlo.6)[17], and 4 (Pb) [17]. A theoretical 
curve for Na (e/a = 1) in a hypothetical f.c.c. 
structure [20] is also included. For the alloy 
we used an average ion mass and charge to 
define Other transverse modes give 

qualitatively the same results. In Fig. 6 we 
have also included the Tc:s of the metals. 
There is a clear qualitative relationship 
between Tc and w2 but this crude comparison 
does not allow for a quantitative relation. 
However it raises the interesting question 
whether there exists a limiting property of w 2 

which in a simple way corresponds to the 
apparent upper limit of Tc. 

Phonon spectra 

As mentioned, the structure in th e d2//dK2 

vs. V curve is closely related to the phonon 
spectrum [2], Singularities in the d^/dK2 

curves correspond to those in the density of 
states for the phonons. In Fig. 7 we can com­
pare tunnelling data with the phonon density 
of states for lead. The phonon curve is taken 
from Stedman et al. and is based on an 
accurate experimental determination of 
phonon frequencies in several directions in­
cluding points off the symmetry axes. The 
close relationship between the tunnelling 
and neutron scattering data is evident. Cor­
responding curves for Pb0.4Tl0.6 are shown 
in Fig. 8. In this case we used the force con­
stants obtained by Ng and Brockhouse[17] 
out to the 8th order to calculate frequencies 
at the same points in reciprocal space as those 
used for lead. The simple Born-vonKarmån 
analysis is not suitable for lead but should 
rather well reproduce the smooth phonon 
spectrum of the alloy [19]. The computer 
program of Stedman et al. was used to 
obtain the density of phonon states. Also for 
the alloy we note the good agreement between 
the two types of experiments. The transverse 
part of the spectrum has lost the rich details 
of the Pb density of states, and a larger energy 
spread is also registered. 

If one is only interested in the location of 
the singularities in the phonon spectrum, 
tunnelling experiments have clear advantages 
compared to the conventional neutron 
scattering technique. We will de vote the rest 
of this section to an analysis of the location of 
singularities. 
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Fig. 5. The superconducting critical temperature, Tc ,  the Debye temperature, 0D, and the 
effective electron-electron interaction, N(0)V, vs. Tl concentration. d„ was computed from 
elastic constants determined by ultrasonic pulse techniques. N(0)Fis defined by the BCS 

relation Tc  ~ dDe~ lW ) v .  

As mentioned, Figs. 4, 7, and 8 indicate 
that the frequency of the longitudinal phonon 
mode (i.e. the one with highest energy), 
increases with a smaller free electron con­
centration. The structure from this mode has 
been discussed in detail elsewhere [21], so 
we concentrate on the structure caused by 
the transverse modes. The singularity (a) in 
Fig. 9 stems from phonons near the zone 
boundary in t he [11 Indirection. Phonon dis­
persion curves for Pb and Pb0.4Tl0.8 a re given 
for comparison in Fig. 10. These curves are 
taken from measurements by Stedman et 

al.[ 19] and by Ng and Brockhouse[17]. As 
thallium is alloyed into lead (a) first moves 

towards lower energies and then slightly 
towards higher ones. This is c onsistent with 
equation (1) as the decreasing number of 
valence electrons gives a lower ionic plasma 
frequency and thus a lower phonon frequency. 
For higher Tl concentrations this tendency is 
counteracted by the rapidly decreasing 
electron-phonon coupling. The structure at 
(b) in Fig. 9 is caused by the maximum in the 
transverse mode in the [100]-direction. This 
structure gradually disappears with a smaller 
eta, an effect which is clearly displayed in 
both the tunnelling and the diffraction curves. 
A new structure appears at (c) when the dis­
persion curves for the alloy indicate a sharp 
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Fig. 8. Second derivative and phonon spectrum for a 
Pb0.4Tl0.6 alloy. The density of states is calculated using 
the force constants obtained by Ng and Brockhouse 
in [17]. The tunnelling curve was obtained from an 

Al-I-Pbo.4Tl0.6 diode. 

upper limit for the lower transverse mode. 
This cut-off is clearly displayed in the phonon 
density of states curve of Fig. 8. The broad 
structure at (d) comes from the high energy 
part of the 7",-mode. These phonon fre­
quencies correspond to points in reciprocal 
space which lie off the symmetry axes [19], a 
fact which makes an analysis difficult and 
uncertain. 

An interesting composition is Pb0.65Tl0.35 

(the å^IjdV2 vs. V curve is shown in Fig. 9). 
Neutron diffraction data [17] indicates that 
around this composition we should be in an 
intermediate region, where the dispersion 
curves are expected to have flat regions (i.e. 
peaks in the density of states). The tunnelling 
curve also displays sharper structure than 
corresponding curves for alloys with some­
what higher and lower T1 concentrations. 
Unfortunately no neutron diffraction data are 
available for the transverse mode at this 
composition. 

Na(f.ccJ 
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direct 
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Fig. 6. Phonon dispersion curves for the transverse 
[ 100]-mode in the f.c.c. structure. Theoretical frequencies 
for an unscreened ion-ion interaction and for Na in a 
hypothetical f.c.c. structure as well as experimental curves 
for e/a = 3, 3-4, and 4 are shown. The frequency scale is 
normalized to the plasma frequency for the metal. As the 
electron-phonon coupling strength is increased, the 

frequency is reduced. 

Al TC-1'2°K 
Pb04Tl06Tc^7-K 

Fig. 7. d 2 I /dV 2  v s. energy for a Pb-I-Pb junction com­
pared with the phonon density of states vs. energy curve 
computed by Stedman et al. [19] from neutron dilfraction 
data. The energy scales in the two curves are adjusted 

to coincide. 
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Fig. 9. d 2 l /dV 2 vs. V for a Pbo.e5Tlo.35 alloy. The singularity at (a) is caused 
by phonons is the [111] -direction, at (b) by [100] phonons, and at (c) by the 
sharp cut-off frequency for the lower transverse mode appearing at higher 
T1 concentrations. The broad structure at (d) comes from transverse modes 

of high energy. 
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Fig. 10. Phonon dispersion curves for Pb and Pb0.4Tl0.6  

measured by Stedman et al. (full line) and Ng and 
Brockhouse (dashed line) respectively. 

The tunnelling result for a Pb+ 10 at.% Bi 
alloy[5] (e/a = 4-1) gives a good 'extra­
polation' of our Pb-Tl data. The structures 
at (a) and (b) coincide and form a broadened 
dip, which indicates a coincidence between 
the transverse phonon peaks in the [ 111 ]-
and [100]-directions. A preliminary result 
f rom a  Pb 0 . 7 Tl 0 . 1 5 Bi 0 . 1 5  a l loy  (e /a  =  4),  
where the coupling strength has increased, 

gives qualitatively the same behaviour. When 
indium (el a = 3) is alloyed into lead, there is 
a large shift in atomic mass giving rise to a 
localized impurity band [4], But sti ll there are 
qualitative similarities in the structure from 
the transverse modes compared to the case 
of  Pb-Tl .  Tunnel l ing  da ta  by  Adle r  e t  a  I .[5]  
show the same behaviour as our curves. The 
four elements In, Tl, Pb and Bi are close 
together in the periodic table and thus well 
suited for investigations on the effects of 
changing ion mass or charge. 

It remains to give a theoretical explanation 
of the behaviour of the transverse modes when 
lead is alloyed. We will concentrate upon the 
degenerate branches in the [100]- and [1 Ill-
directions, where we noted that the phonon 
peaks  in  th ese  b r anches  c ome c lose r  a s  e l  a  
grows. In the Tl-Pb-Bi system the crystal 
structure remains f.c.c. from approximately 
e/a = 3-1 to 4-2, and the interatomic distance 
is practically constant [22]. If disorder effects 
are important we face a theoretical problem 
which is extremely complicated. Considering 
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the monotonous change with electron density 
around e/a = 4 as displayed in our results 
and in those for bismuth in lead we find it 
much more likely that changing electron 
density rather than disorder is most important. 
This assumption is strongly supported by the 
fact that the phonon lifetime does not decrease 
considerably when going from the pure metal 
to the alloy [17]. Also the change in atomic 
mass and in the electron core is negligible, so 
we can consider a random alloy where the 
difference in valence is the only important 
feature. 

We have tested this hypothesis in a simple 
model following the standard procedure to 
treat lattice vibrations in metals. Let us start 
with a lattice of lead atoms. We then con­
tinuously change the ion charge and the 
number of valence electrons, at the same time 
keeping mass and interatomic distance 
constant. The contributions to the phonon 
frequencies are separated into an ion-ion 
and an ion-electron part as was done in (1). 
As the core-core overlap is small and in our 
model practically constant, we neglect it. 
IH (q) depends only on structure and is thus 
unchanged. For strictly transverse modes Iie 

takes the form [18] 

, , ^,fF(G + <j) Fi G)] ^ 
Iie^ Jjj, I (G + q)2 G2 J ( ) 

where F is the so called form factor and G is a 
reciprocal lattice vector. The form factor F 
contains the electron-phonon interaction in 
the form of a screened pseudopotential. The 
choice of a pseudopotential is not simple. 
Most of the potentials are either very com­
plicated or fitted just to one of the phonon 
branches we want to consider. For reasons 
to be seen later we do not want to use 
potentials fitted to experiments where one 
determines not the pseudopotential but a 
combination of pseudopotential and screening 
functions. Recently, Ashcroft[23] has pro­
posed a potential which in spite of its very 
simple form shows good agreement with the 

potential of Heine and Abarenkov[24], The 
Ashcroft potential is given by —Ze2/r for 
r & ft core and 0 for r < Rcore. The screened 
potential takes the form [23] (in units of 2 EFI3) 

V(JL\ = ~X2 COS (g • Rcore) 

w "  

where / is the usual dielectric function, X2 = 
(iraokp)'1 and a0 the Bohr radius. Thus the 
potential involves a single parameter Rcore  

(except for the ion charge Z). Rcore is a quantity 
we are free to adjust but which is related to 
the core radius (cf. the discussion in [23]). In 
our lattice model with the core unchanged we 
try to take Rcoie = constant. The continuous 
change in the ion charge Z means that we 
change the plasma frequency, the Fermi level 
and the parameters in the dielectric function 
for a free electron gas. Considering the great 
difficulties other authors have met when 
calculating phonon frequencies in lead (cf. 
for example [ 18] and [25]) we did not expect 
a good absolute value for the frequencies but 
the trend as the ion charge was changed might 
very well be rather insensitive to details in 
F{q). This turned out not to be the case. The 
trend was very sensitive to small changes 
(<5 per cent) in Rcore and X and to changes in 
the amplitude of F{q) for high q (i.e. q > 2kF) 
as well as to different ways [ 18] of incorporat­
ing corrections to the RPA dieleatric function. 
It was possible to get results in qualitative 
agreement with the experimental data but 
small and reasonable changes gave completely 
different results. It was also noted that the 
sensitivity to changes could be very different 
for different electron densities. This was 
unexpected and gives another warning against 
an uncritical use of the pseudopotential 
concept. A usual approach when keeping to 
one special element is to start with a simple 
form of the electron screening function and 
then solve for a 'good' bare pseudopotential 
by a fit to some experimental data, e.g. phonon 
curves. In this way deficiencies in the handling 
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of the conduction electrons are hidden in the 
bare pseudopotential. In our analysis such a 
procedure seems to be serious. For comparison 
we made the same calculations starting from 
the properties of aluminium instead of lead. 
The sensitivity to changes in the potential 
was qualitatively the same. Due attention was 
paid to the convergence problems [26] in the 
sum (2). 

Our conclusion is that varying electron 
density is probably responsible for the change 
in the phonon spectrum but a simple and 
reliable theoretical explanation could not 
be established. 
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On the Polarization Vectors of Lattice Vibrations 

By 

G. GBIMVALL 

The polarization vectors of lattice vibrations in anisotropic crystals of cubic structure 
are considered from a quantitative point of view. A new anisotropy index A = cn/(°i2 +2c44) 
is shown to be more adequate as a measure of anisotropy than the conventional s = 
= (eu — C12)/2 C44. The reason for anisotropy is discussed briefly, with special emphasis on 
simple metals. The approximation of assuming the lattice vibrations to be strictly lon­
gitudinal or transverse is discussed for several properties of metals, with sodium taken as an 
example. 

Die Polarisationsvektoren für Gitterschwingungen werden in anisotropen Kristallen mit 
kubischer Symmetrie numerisch untersucht. Es wird gezeigt, daß ein neuer Index der An­
isotropie A = Cn/fCn + 2 c44) besser als s = (cn — c12)/2 c44 die Anisotropie charakterisiert. 
Die Ursache der Anisotropie in Metallen wird kurz behandelt. Als Beispiel wird die theo­
retische Approximation mit der Annahme genau longitudinaler und transversaler Gitter­
schwingungen an Natrium untersucht. 

1. Introduction 

Ä knowledge of the eigenvalues of lattice vibrations in solids is of considerable 
importance and this field has attracted much interest. The purpose of this paper 
is to consider, mainly from a quantitative point of view, the eigenvectors which 
generally do not receive much attention. We also consider in some detail various 
applications where a detailed knowledge of the eigenvectors is essential. Quali­
tative aspects based on group theoretical considerations can be found in two 
comprehensive articles by Maradudin and Vosko [1] and Warren [2]. 

Phonon frequencies can now be measured with a high degree of accuracy and 
can be calculated theoretically from some specific model. The theoretical ap­
proach in general involves much labour if accurate results are desired. The eigen­
vectors (or polarization vectors) on the other hand are difficult to measure with 
precision [3], but instead symmetry requirements are of dominant importance. 
We will mainly consider monoatomic cubic crystals. For lattice vibration with 
small qr-vectors, the dynamical matrix is then obtained from the three elastic 
constants, so in this limit we can easily solve for the eigenvalues and eigen­
vectors. 

As the eigenvectors are to great extent determined by symmetry conditions 
at the zone faces and in general can be expected to vary slowly with jgj at fixed 
direction q, an overall knowledge can be inferred from a solution in the limit of 
small |g|. 
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2. The Long Wave Limit 

2.1 General theory 

We consider monoatomic crystals wit-h cubic symmetry. Eigenvectors 
ê = (ej, e2, e3) and eigenvalues <x> = 2 nv are then obtained from the set of equa­
tions [4] 

[(en - c44) q\ + c44 g2 q v2] e1 + (c12 + c44) q1 g2 e2 + (c12 + c44) g4 g2 e3 = 0, (la) 

(Ci2 + c44) g4 g2 e x + [(cu - c44) q\ + c44 g2 - Q V2] e2 -f (c12 + c44) g2 q 3 e 3 = 0, (lb) 

(ci2 + C44) 9i ?3 ei + (C12 + c44) ?2 fe e2 + [(cn - c44) g^ + c44 g a - Q V2] es = 0. (le) 

Here the wave vector q  is denoted by q  =  (g1; g2, g3), p is the mass density. 
For non-degenerate eigenvalues the eigenvectors are orthogonal and fulfil a 

relation for scalar products with an arbitrary unit vector a. 

Ca, • êjs = <3^, (2) 

V (t'A • o)2 = 1 . (3) 
A 

It is convenient to introduce the dimensionless quantity s, 

C - 11 C-j o * == w 
-S C44 

which is in general called the anisotropy index. From equations (1) one finds 
that there is a simple relation between s and the velocities of transverse sound 
waves in the [100]-direction. We therefore write 

fUT„(110) 
s = lim , (5) 

q-+ 0 COt^HO) 

where T4 is the transverse mode with eTi parallel to the [001]-axes. 
It is easy to find that a necessary and sufficient condition for the eigenvectors 

to be strictly longitudinal and transverse is that s = 1. A simple proof has been 
given by de Launey [4], The branch that has the highest frequency will be called 
"longitudinal" even when s =j= 1, for it can be shown that the eigenvector of this 
mode forms the smallest angle with q. From the proof of de Launey just mention­
ed, it is easy to see that approximate isotropy holds if |cn — c12 — 2 c44|^c12 + 
-f- 2 c44. We therefore introduce a new dimensionless index of anisotropy, 
A, defined by 

• '  • (6) 
«12 "t" ^ C44 

A — 1 when s = 1. From the numerical calculations in the next section it will 
be clear that A and not s gives a good measure of the anisotropy for the eigen­
vectors. However the form s = lim [cot2(I10)/cjx1( 110)] makes s a convenient 

q -*• 0 

measure of the splitting of the lowest eigenvalues. Note that s = I only gives 
degenerate eigenvalues for transverse branches (co| oc c44). The longitudinal 
branch has cu^ oc cu for s = 1. Not even if the Cauchy relation c12 = c44 holds, 
will the three branches have the same frequency when s = 1. 
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2.2 Numerical examples 

We will solve equations (1) numerically and calculate some quantities of 
interest in applications to be discussed later. First we consider the average 

value (eL • q)2 for the longitudinal branch over all directions q. Of interest are 

also the dimensionless averages /,• 

y _ I * (œ>y 

' J IM ' 1 "  ( "  
for i = 1, 2, 4, and 6. For isotropic materials, all It = 1. In the evaluations of 
these averages for cubic elements it is sufficient to consider only 1/48 of the first 
Brillouin zone. To form the averages we have used a modification of Houston's 
method [5] and solved the secular equation for 15 different directions and then 
used proper weighting factors. In Table 1 we give values of the parameters used, 

and the corresponding averages (êL-qr)2 for some elements of cubic structure. 
We also include some two-atomic cubic crystals which are exceptional in their 

values of s or A. For comparison we have also calculated (eL- q)2 for q ranging 
over the surface of the first Brillouin zone, using the fact that eL is then deter­

mined entirely by symmetry. We find for anf.c.c. structure (eL-g)2 = 0.81 and 

for a b.c.c. structure (eL-q)2 = 0.82. In Table 2 we give the averages J1; I2, /4, 

and I6 for some metals. For extremely anisotropic elements even the 15 term 
Houston method may be inaccurate, but still the values can be made a basis for 
the discussion on applications later. It could also be interesting to see, how the 
angle between the eigenvector and the unit vector q changes with s and A. 
The notation aL, (aTi, aTj), will be used for the angle between eÅ and the direc-

Fig. 1. The anisotropy index 
s = (cn - clä)/(2 c44) i s not a good meas­
ure of the maximum angle of deviation 
aL(niax) between a wave vector £ and the 
corresponding eigenvector eL for the 
"longitudinal" mode. The points are for ele­
ments with A < 1. T1 In has aL (max) « 6° 
and 1/s = 29 so this point falls outside the 

range of the plot 

Fig. 2. The anisotropy index 
A = cn/(c12 + 2 C44) gives a quantitative 
measure of the angle ocL(max) (cf. Fig. 1). 
The dashed curve is only a rough fit to 
the points. Note that Tlln falls nicely on 

the curve 1-A 

.0"* 

•Tlln 

25 physica 32/1 
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Table 1 
Elastic constants are taken from [17] except for Rb [18] and Pt and Ir [19]. The values 

refer to room temperatures except for Rb (80 °K) 

C11 C12 c14 
(1011 dyn/cm2) 

s (®L • q)2 

b.c.c. 
chromium 35.0 6.8 10.1 1.29 1.35 0.994 
niobium 24.6 13.4 2.87 1.28 1.95 0.997 
molybdenum 47.0 16.8 10.7 1.23 1.41 0.997 
vanadium 22.8 11.9 4.26 1.11 1.28 0.999 
tungsten 51.5 20.4 15.6 1.00 1.00 1.000 
tantalum 26.1 15.7 8.18 0.81 0.64 0.997 
iron (a) 23.0 13.5 11.4 0.63 0.42 0.983 
rubidium 0.296 0.244 0.160 0.52 0.16 0.970 
potassium 0.457 0.374 0.263 0.52 0.17 0.968 
sodium 0.739 0.622 0.419 0.51 0.14 0.967 
lithium 1.35 1.14 0.88 0.47 0.11 0.957 
coulomb lattice 0.13 
zone faces 0.82 

f.c.c. 
aluminum 10.9 6.3 2.80 0.92 0.82 0.999 
platinum 34.7 25.1 7.65 0.86 0.63 0.999 
gold 18.9 15.9 4.26 0.77 0.35 0.996 
iridium 58.0 24.2 25.6 0.77 0.66 0.994 
palladium 22.7 17.6 7.17 0.71 0.36 0.993 
lead 4.81 4.08 1.46 0.69 0.25 0.992 
silver 12.2 9.2 4.46 0.67 0.34 0.990 
nickel 24.8 15.3 11.6 0.64 0.41 0.985 
copper 16.9 12.2 7.54 0.62 0.31 0.983 
thorium 7.53 4.89 4.78 0.52 0.28 0.964 
coulomb lattice 0.11 
zone faces 0.81 

PbTe 10.7 1.30 0.77 3.8 6.1 0.881 
Rbl 2.56 0.36 0.28 2.8 3.9 0.930 
Tl-In (28% Tl) 4.007 4.949 0.833 0.71 0.03 0.994 
/5-brass (48% Zn) 12.66 11.05 7.97 0.47 0.10 0.959 
Li-Mg (4.3% Mg) 1.429 1.217 0.924 0.47 0.12 0.957 

Table 2 
Some important averages for metals, defined by equation (7) 

Element s A h h h h 

aluminum 0.82 0.92 1.00 1.00 1.01 1.04 
lead 0.25 0.69 1.01 1.05 1.43 4.63 
copper 0.31 0.62 1.02 1.06 1.37 3.02 
"ubidium 0.16 0.52 1.04 1.13 1.91 7.10 
potassium 0.17 0.52 1.04 1.13 1.88 6.56 
sodium 0.14 0.51 1.04 1.14 2.05 8.10 
lithium 0.11 0.47 1.05 1.18 2.30 9.31 
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tion the considered mode would have in an isotropic medium. We have plotted 
the maximum angular deviation aL(max) as a function of the standard aniso-
tropy index s and as a function of A (Figs. 1 and 2). The region s ]> 1 has been 
left out because of the small number of elements with such «-values. It is im­
mediately clear from the figures that A and not s is a relevant measure of aniso-
tropy for the polarization vectors. Note especially the properties of Tlln. What 

has now been said about aL(max) also holds for the related quantity (êL-ç)2. 
See Table 1 for comparison. Typical plots of the directional dependence of aL, 
aTl, and aTj can be found in a previous paper [6] dealing with sodium. There a 
specific model was also used to solve for the eigenvectors at points throughout 
the whole first Brillouin zone. 

3. Reasons for Anisotropy 

This section will be devoted to a discussion of why in general elements are 
anisotropic. For mathematical convenience we consider the index s and use 
relation (4). From the discreteness of the lattice, it follows that in a force con­
stant model with only very short range forces, we should have a high degree of 
anisotropy. As an example we can consider forces between nearest and next 
nearest neighbours with a force ratio ß (ß = force from next nearest neighbour/ 
force from nearest neighbour). Then from the dynamical matrix [4] it is easy 
t o  s h o w  t h a t  f o r  a  f . c . c .  s t r u c t u r e  s  =  ß  - f  0 . 5  a n d  f o r  a  b . c . c .  s t r u c t u r e  s  =  3  ß .  
If the forces are of long range, this does not imply that the substance is elasti-
cally fairly isotropic, as can be seen in a simple example. Let us consider the 
coulomb ion-ion interaction between atoms for example in a metal. The forces 
are of very long range but still s = 0.13 for a b.c.c. structure and s = 0.11 for a 
f.c.c. structure. These values are obtained from a calculation by Jones [7] using 
Ewald's method of summation. 

A comparison between the three metals Na, Al, and Pb gives reason for a 
more detailed investigation. The anisotropy index s differs widely (%a = 0.14, 
«ai = 0.82. and sPb = 0.25). Sodium is b.c.c. and the other two metals are f.c.c. 
To circumvent the influence of crystal structure we can compare with results 
from a theoretical calculation [8] of the lattice vibrations in sodium in a hypo­
thetical f.c.c. structure. This calculation gives an anisotropy for sodium which 
is of the same order of magnitude as that of lead. For all three elements the 
lattice vibrations can be reasonably treated by considering only the direct ion-
ion interaction and the interaction between the atoms mediated by the conduc­
tion electrons, thus neglecting other contributions such as core overlap. Also the 
free electron approximation for the conduction electrons is good for these metals. 
Still the s-values differ very much. We will start from the relation (4) to discuss 
this fact. The eigenvalues of mode (q, A) ca n be written [9] 

o j 2 ( q ,  X )  =  a > i i ( q ,  X )  -  w f e ( q ,  A )  , (8) 

where oifj is the contribution from direct ion-ion interaction (Coulomb inter­
action) and mie comes from the interaction via the conduction electrons. This 
latter term can in some cases be negative [9]. For the index s we now have 

= lim °>fi(ii0; Ti) — o>fe(ii0; t2) 
„-»o <(110; 2\) -«»?„( 110; 1\) ' 

The terms cofj only depend on structure (i.e. are different for f.c.c. and b.c.c.) 
(9). We recall, that considering only the terms coft gives a high anisotropy. For 

25» 
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elements with comparatively weak electron-phonon interaction, s  is essentially 
determined by the anisotropic coulomb part. For elements with stronger elec­
tron-phonon interaction the, terms cofj and wfe can be of the same order of ma­
gnitude. The value of s is therefore very sensitive to details in the electron-
phonon interaction. This is the case for aluminium and lead. It is clear that 
anisotropy is the normal behaviour and that isotropy is only accidental. A more 
accurate determination of s would be equivalent to the calculation of the low 
energy phonon frequencies, a problem which is known to be very difficult even 
for simple metals. 

4. An Application on Sodium 

We will now demonstrate how the results obtained can be used in simple 
estimates. As an example we will investigate some properties of s odium. Our 
main interest will be an estimate of what error is introduced in calculations when 
the phonons are assumed to be strictly longitudinal and transverse (SLT). Let 
us start with consideration of the electron effective mass enhancement factor 
1 -f- Aei-ph due to electron-phonon interaction. We have [10] 

r  [ e - ( K  +  q ) ? ( K  +  q ) h > ( K+ q )  
Ae l - ph  v  Z  J  —  ( t , ( q )  -  d ( K  +  q )  , (10) 

SF 

where phonon frequencies of mode Å and wave vector q  are denoted by m^ (q ) ,  the 
r e c i p ro c a l  w a v e  v e c t o r s  b y  K  a n d  t h e  e l e c t ro n - p ho no n  i n t e r ac t i o n  b y  h  ( K  +  q ) .  
K + q connects two points on the Fermi surface. For sodium 2 kF = 1.24x 
X (2 ii/a) in standard notation. We consider contributions to the integral from 
three regions in «/-space : Normal processes (K = 0) for small «/-values and 
«/-values close to the boundary of the first Brillouin zone, and Umklapp pro­
cesses, where most of the values of q -f- K lie rather close to the faces of the first 
Brillouin zone. The two last regions can be treated together. From Table 1 we 
have (eL• q)2 = 0.82 at the zone faces and thus (e^-q)2 + (CTa*</)2 = 0.18. From 
phonon dispersion curves we can estimate the relative difference between fre­
quencies of the longitudinal and transverse branches close to the zone boundary. 
The low lying transverse modes around the [110]-direction are rather unimpor­
tant because q is normal to the zone face in this direction. As a result one finds 
that SLT underestimates the contribution from «/-values close to the zone face 
by 10 to 15%. (Note that there is some ambiguity in SLT for Umklapp processes, 
as the eigenvectors of the transverse modes can be rotated in their plane.) From 
the value of /2 = 1.14, that gives information about the small «/-region, we 
conclude that the relative underestimation is roughly the same for all regions in 
the integrand of (10) in the case of sodium and amounts to 10 to 15%. 

Next we turn to some low energy phenomena. Let rei denote the average life 
time of an electron at the Fermi level at finite temperatures. The inverse life 
time is proportional to the imaginary part of the electron self energy and one has 
for the contribution from electron-phonon interaction [10] 

—  ( i i )  
*el J  e 4 ( 0 ,  <p )  

where c ( 6 ,  c p)  is a directional dependent sound velocity. At low temperatures no 
Umklapp processes can occur as they involve energy losses k T (recall that 
2 k ¥  = 1.24 (2 T i / a ) ) .  It is therefore sufficient to consider I i  and we see that 
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SLT gives a lifetime which is a factor 2 too long. To this lifetime should of 
course then he added the effect of impurity scattering. 

The very low temperature electrical resistivity Q is closely related to the life 
time rei. Again almost no Umklapp processes enter, but the integral in qr-space 
for Q will contain an extra geometrical factor leading to the form [11] (for normal 
processes) 

l%%dQ' (12) 

As we have /e = 8.10 for sodium, SLT will give almost an order of magnitude 
too low value. In the treatment above we have assumed the validity of the 
standard resistivity formula [12] for simple metals and neglected the possible 
influence of phonon drag. It is however important to note, that although Um­
klapp scattering is rare at low temperatures, it is weighted so strongly that it in 
fact dominates the resistivity down to very low temperatures [13]. In Umklapp 
processes there is always coupling to transverse modes (also with SLT) so the 

discussion above based on /6 exaggerates the failure of SLT. 
Finally we consider the average lifetime rPh of phonons as limited by electron-

phonon interaction. For a phonon {X, q) we have [15] 

< * + « > •  < I 3 )  

where G includes the electron-phonon interaction and the sum goes over all 
\K\ < 2 fcp. For sodium only K = 0 enters. From Fig. 2 we find that the lowest 

value of (eL-q)2 « 0.92 and consequently (eT-</)2 never exceeds 0.08. Except for 
damping due to electron-phonon interaction there is of course also damping due 
to anharmonic effects. Experimental [16] and theoretical [15] investigations of 
the damping of phonons in metals are not very accurate, so it is not feasible at 
present to see any anisotropy in the damping of phonons dite to electron-phonon 
interaction. 

5. Conclusions 

We have first demonstrated that the quantity A = cnl(c12 + 2 c41) is a better 
measure of anisotropy of the polarization vectors than the standard anisotropy 
index s = (cn — c12)/2 c44. In a short digression on the reasons of anisotropy a 
simple argument was given to show that anisotropy and not isotropy is the 
"normal" behaviour of metals. After numerical calculations on most of the 
cubic elements we finally discussed the approximation of assuming the phonons 
to be strictly longitudinal or transverse (SLT), taking sodium as an example. It 
was found that for example the low temperature electrical conductivity is con­
siderably underestimated in SLT while on the other hand the effective mass 
enhancement from electron-phonon interaction is underestimated by only 10 
to 15% (in Na). 
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Numerical results are given for the phonon contribution to the electron self-energy in 
sodium. The importance of including in detail the phonon properties is stressed. Anisotropy 
in the effective mass and in the damping of an electron is investigated. Most of the calculations 
are at zero temperature, but the imaginary part of the self energy is calculated for several 
values of the temperature. 

On présente des calculs numériques de la contribution des phonons â la selfenergie des 
électrons pour le sodium. C'est important de rendre compte des propriétés des phonons en 
detail. L'anisotropie de la masse effective et de l'amortissement d'un électron ont été étudié. 
La plupart des calculs a été faite pour la temperature zero, mais la partie imaginaire de 
l'énergie a été calculée pour plusieurs valeurs de la temperature. 

Numerische Resultate werden fur den Phononenbeitrag EUT Elektronen-Eigenenergie m 
Natrium angegeben. Die Wichtigkeit, Einzelheiten dos Phononenspektrums einzuschließen, 
wird hervorgehoben. Anisotropie der effektiven Masse undder Elektronendämpfung wird 
untersucht. Die meisten Berechnungen werden für 0° K ausgeführt, der imaginäre Teil der 
Elektronenenergie wird jedoch für verschiedene Temperaturen berechnet, 

1, Introduction 

In recent years there has been much interest in electron-phonon interaction. 
ENQKLSBERG an d SCHRIEFKER [2, 2], MIGDAL [3] and ABRIKOSOV et al. [4\ have 
treated the self-energy of electrons due to interaction with phonons in a Green's 
function formalism. Many authors have also taken up the problem of the effective 
mass of an electron on the Fermi surface [5—5]. The purpose of this paper is not 
to give a very accurate numerical result but to investigate numerically in more 
detail the structure of the electron self-energy due to interaction with lattice 
vibrations. Therefore we do not hesitate to be inconsistent in that we use one 
model (SHAM'S [10]) for the electron-phonon interaction matrix element and 
another model (KREBS'S [22]) for the phonon properties. 

The Green's function treatment of the problem, is dealt with in detail in a book 
by SCHRIESEBR [2], so we only give the main formulas. At zero temperature the 
electron self-energy due to interaction with phonons can be written 

-Mel-ph(/»»po )  = ^ j gHp  - k )G (k )D(p  -  k)d*k .  (1 )  

Non-diagonal terms in wavevector space have been completely neglected. The 
three terms in the integrand mean the electron-phonon coupling function, the 
electron Green's function and the phonon Green's function. Here we have 

* The institute serves both. Chalmers Institute of Technology and Göteborg University. 
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taken the vertex function equal to unity according to the well known argument of 
MIG DAL [<?]. The frequencies occuring in the coupling function g are of the order 
of the Debye frequency so it is a good approximation to take a static g. 

Using the fact that the self-energy Mei-pîs depends slowly on the wavevector 
in the vicinity of the Fermi surface and integrating twice we get for Jfoi_pb the 
following two integrals which are equal to those given by SCHRIEEFER [2] apart 
from the angular integration and the sum over the phonon branches. 

2jt 2k? 

E » ,  -  -  1 S - S ,  2 / M  JSB^m j I iq, m 
* 0 0  

2JT < ft* 

I m M =  T O  
A -

Here we have 
o 

mx (q) the phonon frequency of branch Â and properly reduced wave-
vector, 

" q)Hç) the screened matrix element between an ion and an electron. 
<p the angle of rotation round the axis p, 
q the total momentum transfer. In the integration q is always taken 

between p and another point on the Fermi surface, 
m electron mass, 
% — 1. 

We have assumed that the Fermi surface is spherical but we have retained in fall 
the non-isotropic properties of the phonons. From, now on we take the zero point 
of the electron energy at the Fermi surface. 

2, Numerical Results 

Previous calculations [1—4] of Jfei-ph have used simple models, e.g. a Debye 
model for the phonons. We here want to make a more realistic calculation and 
especially see the relative importance of umklapp processes and the effect of not 
assuming the lattice vibrations to be purely longitudinal and transverse. 

To investigate the relative importance of umklapp processes it is essential to 
have a good approximation for the matrix element of the electron-phonon inter­
action at large momentum transfers. We are not going to dwell upon this difficult 
point but instead take the result from the so-called non-local model by SHAM [10], 
being one of the most detailed recent calculations. The numerical difficulties are 
considerable when the lattice vibrations are not assumed to be purely longitudinal 
and transverse. In a previous work [II] the properties of the lattice vibrations have 
been calculated with KREBS [12] model in a network corresponding to 1000 points 
in the first Brillouin gone. These results have been directly used here. In this con­
nection we should mention that the usual method of expanding the phonon 
properties in cubic harmonics by fitting to symmetry directions is not good as the 
effect of the lattice vibrations being non-longitudinal and non-transverse then 
disappears. The direction of the wavevector p in M (p, a>) was taken along the 
[I OOj-axis. 
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In Fig. 1 we give Re Mei-pu resolved into four contributing parts : normal 
processes with "longitudinal" and "transverse" phonons and umklapp processes 
with "longitudinal" and "transverse" phonons. From the derivative of Re Jfei-ph 

-ReM(10) r~0°K 
1 2  3  4  

0 . 3  

O.S 

long, normal 0.1 

Hg. 1, Contributions to the real part of the self-energy at T — 0°K. (ife « 2.1 x 1013 rad/sec} 

at the Fermi surface we can obtain the increase of the electron effective mass 
related to the density of states. We get for this increase 

(£).« = 0.19. 

This value includes a small correction due to the discrepancy between the phonon 
frequencies used and the experimental values given by WOODS et al. [IS]. This 
correction is not made in the curves given. Our value for the increase of the 
effective mass is in good agreement with recent calculations. In the Table we give 

i from some theoretical works. 
m /el-ph 

Table. Theoretical Calculations of the Contribution to the Effective Mass 

author Fkkrbli, ES] Qdisw [61 JTakajiha [7] Darby [S] Animais [.9] this work 
1953 1960 et al, 1963 1996 et al. 1980 1968 

ôm ^ 
~m"U l-ph 0.20 0.45 0.32 0.18 0.15 0.19 

The agreement with experiment is satifactory considering the present uncertainty 
in the experimental data and in the electron-electron contribution. 

As for the real part of the self-energy we get no greater changes compared to 
earlier results. When we consider the damping of the electron the effect of th e Pauli 
principle can however give essential changes. Let us consider an electron close to 
the Fermi surface at zero temperature. This electron can be damped by exciting a 
phonon. According to the "golden rule" of transition probabilities the damping 
rate depends in an essentia! way on the number of available final states. When 
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there are "transverse" phouon branches with frequencies much less than those of 
the "longitudinal" branch we can thus have a large damping due to "transverse" 
phonons in spite of their relatively weak coupling to the electron. In the case of 
electron energies very close to the Fermi surface we get a very simple result, namely 
the third-power law, that Estgelsbebg and Schkijoffsb [I] got for all electron 

-Im M (u>}T=*0!'Y. 
1 <? 3 

c. s 

OA 

53 0.2 

• hng.umkl. 
'' trans, vmft/. 

OJ -

Fig. 2. Contributions to the imaginary part of the self-energy at T — 0 °K 

energies up to the Debye energy. In the limit of small o no umklapp process can 
occur. The matrix element is practically constant and only wavevectors smaller 
than cajc are involved, c is a directional dependent sound velocity. Then we have 
from (2 b) 

<i>ic 

= A ji, j (3) 
0 

where A and B are constants. Our calculations give for the "longitudinal" 
part B i = 9.1 • 10~3 and for the "transverse" part B% — 8.0 • I0~3 (unit 1013 

rad/sec). In Fig. 2 we give Im Mei-ph for the more complicated region where a 
third-power law is not valid. 

We should mention that because of the normalization condition 

2Ä.«'{7)2== 1 (4) 
x 

the approximation of taking only purely longitudinal phonons in the normal 
processes is not always poor. If all the three phonon branches have almost equal 
frequencies we get approximately the same result whether we assume purely 
longitudinal phonons or take into full account the polarization properties. When 
there are transverse branches with frequencies differing much from the corresp-
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onding longitudinal frequency the approximation does not hold and a more 
detailed calculation is required. This is the case in sodium. 

On of the main results in Ehselsbkrg's and Scsirxbbtbb's [I] paper is that 
there exists a region where the electrons are not well-defined quam-particles. To 
investigate this point we have formed the spectral function. J given by 

1 I Im Mel-ph(p, ftî)j 
n 

A (p, ft>) 

— ß . 2m 
• ReMel-ph(p, o>}2 + [Im Ifel-ph(i>, a))]'2 

( 5 )  

The spectral fraction obeys a sum rule 

J A  ( p ,  c o )  d c a  =  1. (8) 

A plot of A is given for three energies sP — — u in the critical region where 

the quasi-particle approximation will not hold (Fig. 3—5). The earlier result that 
the quasi-particle picture is not very good in this region is confirmed. However, 

3 -

Z 
"s 
c 1 -

wr3raå/sec 

xA(ep, a>) 
fbr£p- i5xio~3N.&\yx. 

Fig. 3 

Fig. 8 
The spectra! function for eT » 1.5 x 10" rad/seo 

Fig. 4 
The spectral function for e„ =» 2.5 x 1013 rad/sec 

Fig. 5 
The spectral function for 3.5 x 1013 rad/sec 

xA(ep,-W) 
far Sp"2.SxlB"mijsec 

1 2 3 >/ 
JO^rad/sec 

Fig. 4 

xA(ep,us) 
förena 3âxm73 mi/sec 

2 3 4 
7£Mrad/sec 

Fig. 5 

the parts of the spectral wave function that can not be taken into account by using 
a single Lorentaian curve do not contribute more than about 20% to the sum 
rule (6). One should notice that the strength of the electron-phonon coupling in 
Engelsberq-schbeffer's paper is taken to be much larger than that of sodium. 
This explains why our curves are much more smooth. 
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To evaluate the real part of the self-energy at finite temperatures is complicated 
and we are left with one extra integration in the expression corresponding to (2 a). 

-Im M(W)r^3s"K 

0.5 

fota! 
OM 

t 0.3 

0.2 

I'ig. 8, Contributions to the imaginary part of the self-energy at T «• 38°K 

0.5 

0.1 

Kg. 7. The total value of the imaginary part of the self-energy for different temperatures 

The imaginary part, however, offers no more difficulties than we have in the zero 
temperature case. Instead of (2 b) we have the expression 
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2« 2 Jcr 

***"»<» «> - - ? W41  ̂* 
* 0 0 (,'J 

X{1 — /{a> — ct>x(g)) + /(ft) + ftu(g)) + 2iV{coA(q))}, 

where / is the F. D.-function and N the B. E,-function. 

In Fig, 6 the result is given for T — 38 °K, The Debye temperature of sodium 
is appoximately 160 °K. In Fig. 7 we give the total value of Im Mei -pu (co) for the 
temperatures T — 0 , 19, 38 and 76 *K. At finite temperatures ImJfei~ph(0) is 
different from zero. At temperatures much lower than, the Debye temperature 
Imilfei_pn(o>) follows a T73-) aw [4,14], 

Discussion 

After all these calculations a natural question is whether it is really necessary 
to include all details of the phonon properties. To answer this question we investi­
gate two typical cases, the effective mass and the damping law (3) for electrons 
close to the Fermi surface. Let us first consider the effective mass in the [100]-
direction. By taking coupling to purely longitudinal phonons the contribution from 
the normal processes is underestimated by about 10%. The umklapp part is more 
difficult to discuss since there is ambiguity in the directions of the transverse modes 
if the correct solution is not known. We therefore consider only the longitudinal 
umklapp process. Also in this case we get an under estimation of about 10%. 
A comparison to the calculations of ANIMAUX et al. [.9], where a Debye sphere is 
used for the Briilonin zone and the Jones' approximation for the umklapp part, 
shows significant deviations. Next let us consider the damping law (3). What 
is said here is also relevant for the low temperature limit of (7). With purely 
longitudinal vibrations we get in the [1001-direction for the two constante 
Bi ~ 9.5 • I0~3 and Bt — 0, i. e. an underestimation of the damping by about 
45%. In other directions we also get deviations of about the same magnitude. 

Finally we ha.ve investigated anisotropy in the damping and in the effective 
mass. The total contribution from phonon interactions to the effective mass of an 
electron in the [II Indirection is found to be about 2% less than the corresponding 
value in the [100]-direction, This is also approximately the estimated numerical 
uncertainty from interpolations and integrations, so we conclude that there is 
practically no anisotropy in the effective mass. 

The total damping according to formula (3) is for an electron in. the [111]-
direction 16% lower and for an electron in the [110]-direetion 35% lower than the 
damping in the [100]-direction. There is thus a considerable anisotropy in this 
quantity, and one should observe that it originates from the "transverse" part. 

Acknowledgement. I would like to thank Professor S. LTTNDQVIST for introducing me to 
this subject and for his kind interest and encouragement. 
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Abstract —The temperature dependence of the effective electron mass which appears in the heat 
capacity, cyclotron resonance and amplitude of de Haas-van Alphen effect is discussed. An accurate 
calculation is r eported for sodium at low temperatures. An Einstein model gives the temperature de­
pendence of the thermal mass as a universal function of Tldf:. This function is evaluated and plotted. 

INTRODUCTION 

THE INTERACTION bet ween lattice vibrations 
and conduction electrons in a metal will give 
rise to a self energy Mel.ph for the electrons. 
The self energy is energy and temperature 
dependent, so we will have for example a 
temperature dependent deviation from the lin­
ear specific heat of the electrons. Buckingham 
and Schafroth [1] have given a treatment with 
a constant electron-phonon coupling and a 
Debye model for the phonons. They obtain 
an expression for the free energy in the form 
of integrals which cannot be evaluated in a 
closed form. Krebs [2] has given a plot of a 
numerical calculation of these integrals. The 
region T < dD has also been treated by 
Eliashberg[3], In this paper we give a more 
accurate calculation of the temperature 
dependence of renormalization effects, in 
particular for sodium. 

THE SELF ENERGY AND THE EFFECTIVE MASS 

We calculate the real part of the self energy 
Mei.ph for sodium using Green function 
methods. To lowest order Me,.p/î can be 
written [4] 

A4 , ^ v f d3pg2(q) 
Me,.ph{p,(ti) 2)  J  (27t)3  

I" 1 -/p' + Wx, |  fp' + NXq }  

[to — ep/ + fi — <wx(q) to — ep.+ /i, + tox(q)J 

We want to have a complete knowledge about 

the phonons also off symmetry directions. 
Therefore we must rely on some model to 
calculate the eigenvalues cox(q) and the 
corresponding polarization vectors (which 
are in general not purely longitudinal or trans­
verse). Krebs [5] has proposed a simple model 
which gives good agreement with experiments 
in the symmetry directions. We have used his 
model to calculate eigenvalues and eigen­
vectors at 46 points in an irreducible part of 
the first Brillouin zone[6]. Sodium is highly 
anisotropic so this procedure will probably 
introduce some error (cf a discussion for lead 
in[7]). However we will see later that the 
precise form of the phonon spectrum is not 
very important. The temperature dependence 
of the phonon spectrum is neglected. The 
electron-phonon matrix element g is taken 
from the so called non-local model by Sham 
[8], This is the only important approximation 
or uncertainty in our calculations. It involves 
the question of good pseudo-potentials and is 
an enormous problem in itself. Sham's 
calculation is one of the most detailed, and 
the fact that his m atrix element does not give 
the correct limit (2 eF/3) for q = 0 is of no 
importance here (cf discussion below). Our 
final result is not at all so sensitive to the 
precise form of t he electron-phonon coupling 
as can be the case when one calculates phonon 
frequencies [9] or electrical conductivity [10]. 

Using a computer program we have then 
performed a detailed calculation where we 
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have taken into full account that the lattice 
vibrations are in general not purely longi­
tudinal or transverse. We have also treated 
properly all umklapp-processes, using a 
correct shape of the Brillouin-zones[ 11], 

The increase 8m of the effective mass at 
the Fermi level, due to electron-phonon inter­
action, is plotted in Fig. 1. 8m is d efined as 

8m 

% \ 2-law 

factors out as a universal function F of 
the single variable 
temperature). 

77©b. (0£ = Einstein 

x 2n+ 1 

(2n+\Y 
• m  

(2) 

T K 

Fig. 1. The temperature dependence of the contribution 
(8m)ei-ph to the effective electron mass at the Fermi 
level for Na (normalized to unity for T = 0). Full drawn 
curve = accurate calculation. Dashed line = the universal 
temperature dependence in an Einstein model, cf. equa­
tion (2). For sodium we have taken dE = 130°K. A symp­

totic 7*-2-law is also shown. 

—ôReMei_pft(cû)/ôôj evaluated for co = 0. 
The result is normalized to unity for T = 0. 
In the limit of high temperatures we get a 
T"2-law, which is also shown in the figure. 
For T < 0f l  we have the well-known T2\nT-
law[l,3]. If one uses an Einstein model for 
the phonons, the temperature dependence 

F has been normalized to unity for T —» 0. 
We see from Fig. 1 that an Einstein model 
gives a good description. In Fig. 2 we give 
Re Mel.ph{(o) for T = 0 in an accurate calcula­
tion [7] and also Re Mei_ph(a>) in an Einstein 
model for T = 0[8] and T = 0D. At finite 
temperatures the singularity in Re Mel.ph is 
smeared out and the Einstein model gives a 
good description. In Fig. 3 we have plotted the 
density of states N(cd) = N0[l — (dMel.pn(co)l 

öto)] obtained from the accurate calculation 
for sodium[l 1]. 

It is perhaps astonishing that an Einstein 
model gives such a good result. We can how­
ever understand it in simple terms. The origin 
of the effective mass is virtual processes 
connecting two electron states close to the 
Fermi surface. As in the case of real tran­
sitions (i.e. damping of electrons) the result­
ing effect depends primarily on the strength 
of the interaction and on the available phase-
space for transitions. The density of states 
increases linearly in the momentum transfer 

[w*> 

CO 
2 N 

Fig. 2. Re M f i .,,1, (&>) for Na at T  = 0 in an accurate 
calculation and Re Mel_ph (co ) for T = 0 and T = ft,, in an 

Einstein model (ftt: = 0„). 



TEMPERATURE MASSES OF CONDUCTION ELECTRONS 1223 

N(LU) 

Fig. 3. Density of states N(o>) = /V„|^l _ J 

for Na in the vicinity of the Fermi level. 

q.  The effective electron-phonon coupling is 
zero for <7 = 0 and then shows an oscillatory 
behaviour with the first node at q ~ 2k f. Thus 
there is no dominance of .the long-wavelength 
phonons (as can be the case for the damping 
of electrons close to the Fermi surface, see 
[ 11J), but instead an average mainly over high-
energy phonons. This is the reason for the 
success of the Einstein model. 

By a mere scaling it is possible to get rough 
results also for other simple metals. In Table 
1 we give some relevant parameters for Na, 
Al and Pb. T0 is defin ed a s that t emperature 
at which the electronic contribution to the 
specific heat approximately equals that of the 
lattice vibrations in a non-superconducting 
state. 

Table  1 .  Some parameters  
for the metals Na, AI and Pb 

metal 
/ Sm\ 
\ ¥Yl / el-ph 

e„ 
(°K) 

T0°K<C> 

Na 019"" 150 1-5 
AI 0-49<» 418 7 
Pb 1 -05<M 94-5 1 

<a)  G R1MVALL G., Physik Kondens. Materie 
6, 15(1967). 

""ASHCROFT N. and WILKINS J„ Phys. 
Lett. 14,285 (1965). 

<rtTn is the temperature at which the e lectronic 
and lattice specific heats are approximately 
equal in a normal state. 

EXPERIMENTAL VERIFICATION 

It has been shown[13] that in many cases 
(e.g. spin susceptibility, electrical and thermal 
conductivity) there i s a cancellation effect so 
that no renormalization effects from inter­
action with phonons should be included in the 
electron mass. However one should in 
principle see these effects in the specific heat, 
cyclotron resonance and the amplitude of 
de Haas-van Alphen oscillationsf 13, 14]. We 
first discuss the electronic specific heat. At 
zero temperature the specific heat starts linear 
in temperature and is directly proportional 
to the effective electron mass. At finite 
temperatures we can write 

C v =y 0 T + y i (T)T  (3) 

where y 0 T is the specific h eat in the absence 
of electron-phonon interaction, y, (T) in­
corporates these effects and can be considered 
as proportional to a temperature dependent 
mass correction. From Fig. 2 it is clear that 
bo th  the  a> and  T dependence  of  Re  M e l . p h   

(«; T) is essential. We get the following ex­
pression, in the notation of Prange and 
Kadanof f  [  13] ,  fo r  y ,  (  T )  :  

2 f ,dfl dû' 
y , (T)  =—2 Pj  dEdE '——N 0 (k )N„(k)  

w  df 0 (E)  dfg(E ' )  

dE dE'  
f (E-E 'Y-  ] 

X{ [^ ) ] 2ZHR+y- (4)  

P de notes that the principle value should be 
taken, dfl is solid angle integration over the 
Fermi surface and N0 is a directional de­
pendent d ensity of elect ron states. v{q) is the 
electron-phonon coupling and f0 the usual 
F.D.-factor. An accurate calculation is very 
difficult to perform but again th e temperature 
dependence factors out as a universal function 
of T/6E if we use an Einstein model for the 
phonon spectrum. This is the only approxima­
tion and all the details in coupling strength 
etc. are retained in full. For the function 
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giving the temperature dependence we then 
get from (4) 

1 ~ f a/o(£') 
yl(r)oc—P J d£d£ 7̂-

These integrals do not lead to an expression 
as simple as (2) but for completeness we give 
t h e  r e s u l t  i n  a n  a p p e n d i x .  A  p l o t  o f  y ^ { T ) ,  
normalized to 1 for T = 0, is given in Fig. 4. 
It is evident that a true phonon spectrum will 
considerably decrease the sharp peak of yt  

at low temperatures. 

T  " - l a w  -0.5-

Fig. 4. The function y,(T) giving the correction to the 
t h e rmal effective mass, -y, ( T) is normalized to 1 for T = 0. 

We note that the electron-phonon interac­
tion for T > 0-3 dE leads to a specific heat 
which is lower than the "free" electron value. 
This fact can be elucidated by a simple entropy 
consideration. The entropy S(T) is given by 

T T 

S  ( T )  =  J y r d T '  =  J [ y i  +  y i( T ) l å T  =  

0 0 
T 

=  S0 +  J Y l ( T ' ) d T ' .  ( 6 )  

0 

For high temperatures (i.e. T  <  d K )  
Re Mei_ph is negligible. A s entropy is a state 
function we then must have the same value 

for S { T )  as in a non-interacting electron-
phonon system. Hence the last integral in 
(6) goes to zero as T —> oo and-y^T) must be 
n e g a t i v e  f o r  s o m e  T .  

Now we will c onsider the question of ex­
perimental verification. Because of the lattice 
contribution to the specific heat we can 
normally only measure the electronic part at 
very low temperatures (cf Table 1). At 
temperatures T > 0E anharmonicity in the 
lattice vibrations complicates an analysis. 
The data of Table 1 and inspection of Figs. 
1 and 4 show that for simple metals and with 
present experimental accuracy it is not 
possible to investigate the region of the maxi­
mum in yi{T), and it would be very difficult 
t o  s e e  t h e  t e m p e r a t u r e  d e p e n d e n c e  o f  y  A T )  
at low temperatures. For metals with a com­
plicated electron structure and a large effec­
tive mass (eg. vanadium,[2]) the effect seems 
to be noticable. One can also use the fact that 
the electronic specific h eat in a superconduc­
ting state decreases exponentially with tem­
perature while the lattice vibrations give the 
same contribution as in a normal state. The 
experimental accuracy is however not good 
enough. 

In a magnetic field Mel.vh is essentially 
unaffected [14], but Landau levels are formed 
at intervals coc{coc = cyclotron frequency). 
The amplitude in de Haas-van Alphen oscilla­
tions is heavily damped already at a few 
degrees Kelvin. If we try to compensate the 
decrease by the use of still hig her (presently 
unattainable) magnetic fields we meet with 
new effects when a>c ~ &>n[14, 15]. If we in 
the case of cyclotron frequency measurement 
fulfil the requirements u>c  < cdd and wc t  > 1 
by taking a> c  = 0-1 w„ a nd co ct  = 50, a rough 
estimate gives a maximum temperature of the 
order 10°K. <wc=0-l corresponds to a 
field of about 105 G. In this estimation we have 
supposed that at 10°K d amping comes essen­
tially from electron-phonon interaction which 
is c ubic in T, and we have used results from 
[11]. In conclusion it seems to us that a 
quantitative experimental verification of the 
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temperature effect is very difficult with present 
experimental accuracy. An improvement in 
the experimental accuracy should give at 
least a statistically significant difference in 
the mass for different temperatures. 
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APPENDIX 
With a n Einstein model for the phonon energies, the 

temperature dependence of y, ( T) is completely contained 
in t he expression (5). We now integrate twice using the 

method of resid ues. The last integration requires care in 
the handling of poles a nd integration path an d we m ust 
impose a restriction on one of the resulting sums (equation 
(A2)). The final expression for y,(T), normalized to 
unity for T = 0, is 

r.(^)=i{i(T)/-i}(f)2 (Ai) 

where 

N«M M 4 ( pX _ p~x\ 

n=0 m=o 

2x 4x2(2m + \)2/TT2-3[x2/tt2 + (2n + 1 ):2- (2m +1 )•2]2  

TT {[x2/7T2 + (2n + 1 )2 - (2m + 1 )2]2 + 4x2 (2m + 1 ) 2/-n-2}3 

+ (2m + 1)  x  

4x x2l2+ (2n+ l)2— (2m+ l)2 

V {[x2ln2 + (2n + 1 )2 - (2m + 1 )2]2 + 4x2 (2m + 1 ) 2/tt2}2 

(A2) 

with* = 6eIT; M,N —» <*>,N < M. 

The sum in ( A2) is not divergent in spite of the constant 
exponential term. Starting from some known series [ 16]. It 
is possible to derive the relation 

ex — e~x 

(\~ e~xY(\- exY 

16 ' y3 12 ^ y 
TT3 Z [(2n+ l)2 + y2]3 ir Z [(2h+ l)2 + y2]2 

n-0 n=0 

(A3) 

where yir= x + iv(2m+ 1 ) ; m integer. 
A straight f orward but te dious calculation now gives, 

that the divergent terms in the sum (A2) cancel, but the 
complicated form of (A2) doe s not simplify when (A3) is 
inserted. 
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TEMPERATURE EFFECTS IN CYCLOTRO N RE SONANCE AND SPECIFIC HEAT ELECTRON MASSES 

Göran Grimvall 

Institute of T heoretical Physics, Chalmers University of Te chnology, Göteborg, Sweden 

(Received 18 October 1968) 

The temperature dependence of th e specific heat and cyclotron reso­
nance effective masses is calculated for merc ury. The effect seems 
to be within experimental reach. 

RESULTS from cyclot ron resonance experiments 
and measurements of th e electronic specific heat 
are often given in the form of 'ef fective' electron 
masses. It i s well known that the enhancement 
factor 1 + X of t he effective electron mass, 
coming from electron—phonon interaction, is tem­
perature dependent. In th is note we present 
calculations for mercury showing that it should be 
possible to measure the temperature dependence. 
General estimates have shown that such experi­
ments on metals should not be feasible.1 How­
ever the phonon spectrum of mercury, or ra ther 
the electron—phonon interaction strength times 
the phonon density of s tates, az(cô)F(ùS), has 
such a special shape that experiments are in 
fact possible. The exceptional property of mer­
cury is that the quantity a2{co)F(co) has a strong 
peak at an energy corresponding to only 20°K. 

This is the temperature that should replace the 
Debye temperature or E instein temperature in 
simple estimates. Moreover the enhancement 
factor 1 + À ~ 2.6 is one of th e largest known. 
The enhancement factor 1 + À is at very low 
temperatures t he same for specific heat and cyclo­
tron reso nance and is obtained from X = -dMe l_ph  

(co)/dco taken at the Fermi level (co = 0) and at 

T + 0. Mei_ph is the electron self energy caused 
by electron—phonon int eraction. The self energy 
is an explicit function of temperature, so A. will 
be temperature dependent, \ = A(T). At f inite 
temperatures t here will be thermally excited 
states, and IWei_phmust be considered also for 

energies ^ ^ 0. At fin ite temperatures or 

energies the self energy i s complex. In t his note 
we mean by Mel_ h the real part of th e self energy. 

We sta rt with a discussion of t he effective 
mass determination using cyclotron resonance. 
If one keeps the temperature fixed at a low value 
and changes the frequency of th e electromagnetic 
wave, there will be a change in the effective 
mass2 because Mel_ph(co) increases faster than 
linear in co-, i.e. faster than co\(J =0). Calcula­
tions of th e self energy in mercury ha ve shown 
that this effect will be very d ifficult to observe 
and that very h igh frequencies are necessary. 
We therefore turn to the case of fi xed frequency 
of t he electromagnetic wave and a varying tem­
perature. Let mb be the effective mass in the 
absence of electron—phonon interaction. The 
cyclotron resonance mass is then to good ac curacy 
(cf. the discussion at the end of th is note) given 
by mb (1 + À (T)) for m oderate frequencies and 
all temperatures of in terest in this context. The 
damping of the electrons due to interaction with 
phonons puts an upper limit on T. Information 
concerning the electron—phonon interaction can 
be obtained in the form a (co)F(co) previously 
mentioned, from an a nalysis of t unneling experi­
ments on su perconductors. McMillan and Rowell 
have performed such an analysis for some metals 
and we will use their results in our c alculations. 

The result for th e normalized quantity 
À (T)/ À(T = 0) is given in F ig. 1. Details about 
all calculations in this note will be published 
elsewhere. The experimental difficulites with mer-
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FIG. 1. The temperature dependence of the 
cyclotron resonance effective mass 
mc  = mb  [1 + A(T)] and the electronic speci­
fic heat C e>n  = [y0 + y(T)] T, given in t he 

normal ized forms À (T)/  À(0)  and y ( T ) / y , ( 0 ) .  

cury a re considerable but nevertheless there are 
very good cyc lotron resonance experiments4 on 
this metal (at T = 1.2°K), so the effect seems not 
to be ou t of experimental reach. From F ig. 1 we 
see that for example the increase in effective 
mass from T^0.5°K to T^2°K is about 3 per 
cent. To cover this region requires a frequency 
higher than about 50 GHz in order to fulfil 

Tel-ph »!• 

We next turn to specific heat measurements. 
The electronic specific heat of a metal in a 
normal state can be written 

= 7totT = (% + 7,(T))r, (1) 

where y (T) incorporates all effects from electron— 
phonon i nteraction. We ass ume the validity of an 
expression for the electronic specific heat at finite 
temperatures given by Prange and Kadanoff.5 

They find 

C e > n  = (2 772/3) N 0 T  + 2 \ ^ N 0 E  

r  d M e i - p h  d f 0  d M e l _ p h  d f 0 \  j c ,  m  

dT dE dE dT J 
f 0  is the usual Fermi—Dirac function and N 0  is 
the density of st ates at the Fermi level in the 
absence of electron—phonon in teraction. The 
derivation of (2) is based on the equivalence 
between time derivatives and temperature deriva­
tives in the Green function method. Eliashberg6 

has obtained a related expression valid at low 
temperatures, starting from th e th ermodynamic 
potential of the coupled electron—phonon sys tem. 
It t urns out to be rather easy to generalize 
Eliashberg's result so as to give the formula of 
Prange and Kadanoff. The crucial point in t his 

generalization is that the phonon self energy 
(from interac tion with the electrons) is practically 
temperature  indepe ndent .  We again  use  a \ c o ) F ( c o )  

to calculate (T) from (2). The normalized 
result y (T)/y, (T = 0) is given in Fig. 1. 

Let us now co nsider a measurement of the 
specific heat in both the normal and the super­
conducting state of mercury (Tc = 4.2°K) in t he 
region below ~0.7°K. The lattice contribution, 
which will be assumed to be t he same in th e tw o 
states, is of th e same order of magnitude asCen. 
The specific heat Ce  of th e electrons in the 
superconductor has decreased to an almost negli­
gible value. Taking the difference AC between 
the total specific heat in the two s tates, we are 
therefore  lef t  wi th  the  term C e  n  =  y t o t  T  =  

-  + 7 (T)] T. We could for example plot 
AC/Ty t o t(T = 0) as a function of tempe rature. 
This curve should first show a slight increase 
(the effect we are looking for) before it eventually 
decreases due to t he onset of Ce  s .  Experiments 
by van der Hoeven and Keesom7 on mercury h ave 
an estimated uncertainty just as big as the effect 
considered here. As they did not take very many 
points in t he interesting temperature region, a 
conclusive analysis of the ir data is impossible. 
It would be interesting with a renewed and care­
ful investigation of th e temperature interval 
0.5—1°K. It should be remarked th at a direct 
separation in the normal state of a T3-part 
for th e lattice specific heat is impossible at 

T ~ 0.7°K as the Debye temperature has already 
started to d eviate from i ts limiting value at 
T = 0. The determination of th e specific heat 
difference between the two states from a know­
ledge of the c ritical field HC(T) as a function 
of tem perature is not accurate enough to show the 
increase in y t o t  but the method is excellent to 
obta in  the  l imi t ing  value  y t o t (T = 0) . 8  H *  ( T )  

depends on the free energy so the effect we 
are looking for will be partly cancelled. 

The peaks in t he two curves of A (T) and 
7j(T) in Fig. 1 do not oc cur at the same tempera­
ture. This is because the increases of A(T) and 
y(T) have two separate reasons. In cyclot ron 
resonance experiments w e are interested in elect­
rons within the range ~ kT of the rmal smearing 
at the Fermi level. In the heat capacity however, 
the main contr ibution comes from electr ons excited 
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to energies larger than kT as can easily be seen 
from the st andard derivation of th e specific heat 
of a deg enerate Fermi gas. Therefore the possi­
bility of e xciting electrons to energies where the 
self enegry Me l_p h(co) deviates from the form \co 
is of imp ortance. In fa ct this effect dominates the 
effect from a change in the slope A(T) with tem­
perature. 

We hav e here only considered mercury, which 
is theoretically very favourable. Another metal 

with s imilar properties is lead, for wh ich theo­
retical results will be given elsewhere. The tran­
sition temperature Tc of le ad (7.2°K) is some­
what too low t o make specific heat measurements 
promising, but for the cyclotron resonance case 
lead would be a possible alternative. 

Acknowledgement — I want to thank Prof. 
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Die Temperaturabhängigkeit der Effektivmasse in Quecksilber bei 
Zyklotronresonantzmessungen und Messungen der Spezifische 
Wärme wird be rechnet. Es scheint möglich, dieser Effekt in 
Experiment zu bestätigen. 
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The alectrori-phonon system in lead and mercury 

Abstract 

The paper deals Ulith the influence of the electron-.phonon 

interaction on the properties of the conduction electrons in 

lead and mercury, The.quasi-particle properties are con­

sidered in detail using Green functions. Special attention 

is given to temperature effects in the effective mass as. 

measured in cyclotron resonance or the electronic specific 

heat. It is shoum that such a temperaturs dependence in the 

effective mass for lead and mercury should be possible to 

verify urith the pr esent experimental technique. The electro­

nic specific heat in the normal state is far from linear in 

T at TAJT^, a fact mhich has some consequencies for the 

interpretation of experiments on feha :t"hermodyrsaèics of the, 

superconducting state. 
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Introduction 

The purpose of this paper is to give a detailed quantitative 

presentation of the effects of electron-phonon interaction on 

the conduction electrons in lead and mercury, ÜJe start uiith 

a calculation of the electron Green function, as this function 

in principle contains the information on the electron proper­

ties, After a discussion of the quasi-particis picture Ufa will 

use many-body technique to calculate quantities that are di­

rectly measurable in experiments, e.g. the electronic specific 

heat and the cyclotron resonance frequency, In particular wa 

will investigate in deta.il concepts like the effective electron 

mass and the density of electron states at finite temperatures. 

The input data concerning the electron-phonon interaction will 

be taken from the results of iïlciïlillan and Rowell obtained by 

analysing tunneling data in superconductors. 

The electron self energy 

The method of Green functions in many body theory is now so 

well, knoum, '.that we d o not here repeat all the basic concepts 

that can be found in textbooks (1.2), Let us denote by 

l^gl^ph CbU the contribution from the electron-phonon inter­

action to the self energy of the conduction electrons. The 

general first order formula for ph(j3» Cù) at finite tempe­

ra turs s i s 
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MaI-phC£>u) 
ä'V sc*Cq) I 1 ( 1 )  

(2u)-

w-c *+y.--«̂ (£ m-G # 
P 
+1i+ô â) 

Ills have used f and N for the usual F.D. and B»E„ factors. 

The phonon frequencies da (q) are labelled bv mome ntum • 
A * 

and branch index X t and w is,counted from the Fermi 

energy o, .15- # <&».-. f the energy of an elactron with 

momentura £ in the absence of electron-phonon interaction. 

Finally the electron-phonon interaction strength correspond-

*? 
ing to momentum transfer J3, = £ is denoted by g (g.), 

fis ha® Jaeen shown by ffligdal, ,-,[,(•£> ») 

is only weakly dependent on jj. Sometimes therefore £ will 

be dropped and it is understood that N! ~ Pp# the Fermi 

momentum» 

A dir ect integration in momentum space of eq. 1 is a diffi­

cult task. However if one is interested only in the rasu.lt 

for mel h and accepts a calculation that is not ab initio, 

the integrations can be carried out easily»' The information 

about g(q) is then taken from the inversion of the gap 

equations in an analysis of tunneling data in superconduc-

? 
tors'» Let a~(w )F(« ) be the product of electron-phonon 





4 „> 

2 / 
interaction «*"(» ) (uti t h transferred energy instead o~ 

momentum as variable) and the density of phonan states 

F(w )« more precisely the following relation holds 

gZca) s 
? "TP T? 
a C su ) F ( ® ) = - £ I ( 2 ) 

, 3  f d S  
U n ) '  

VF 

The integrations in eq, (2) go over the Fermi surface. The 

average of p^(ß»0 t •") avsr all directions £ at the 

Fermi surface can then be written (in the following lïlVj  

denotes this average) 

W " » « -  faW ? U )  I  ( 3 )  
|_üj-c+u-ü) * oj»«c+p,+<ä* j 

It is thus possible to circumvent all difficulties with 

the elBctron-phonon interaction strength, phonon frequen­

cies, Umklapp processes, shape of the Fermi surface etc, 

and end up urith more simple integrations. To see thp effect 

of considering'ave'raqed fil over the Fermi surface, we car. 
- el-ph 

(  à  ̂  
make a comparison with an earlier calculation^ ' for ths 

elastically highly anisotropic sodium, for which eq. (l) 

was actually solved in all detail« According to this cal­

culation the value of Q Re Til , as differs very 



' 



little for £ in different symmetry directions. This is 

however not the case for the imaginary part Im SYl . (£, 
01" p ii 

at very low energies «s « For higher values of m f iïî^, ^ 

gets contributions from so many points in q-space ail 

over the Fermi surface, that it should be fairly isotropic 

in £. There remains the anisotropy in from aniso-

tropy in the band structure. Therefore some caution is 

necessary for example in the interpretation of cyclotron 

resonance experiments,, 

2 
The quantity ot (» ) F ( 01 ) has been determined for lead and 

(3) 
mercury Dy fflcmillan arid Rowell , Its shape is,not yery 

different from that of the phonan spectrum, indicating 

2 
that a~(ci) ) is not very strongly dependent on the 

2 
energy w , In fig. 1 tue give a («)F(») from lïlciïlillan and 

( 5 ) 
Romeli and F( «) from Stedman et» al. for lead. There is 

a small but clear "discrepancy between the upper frequency 

2 > ' 

limits of a (m )F'{.(,> ) and F(# ), which is supposed to he 

C3) 
due to surface effects,. This point will be of no importance 

in our analysis. The results for Re fA _ .aid Im , , 
el-ph el-ph 

when eq. (3) was solved with iïicfflill an S and Rowel 1 's 

2 
a" (» )F ( »•) ars given in figs. 2 and 3 (lead) and fig, A 

(mercury). F or small energuss Re ffl^, (» $T) is linear in 

« , and 1 - Re HI , , (« )/3c« = 1 + %, is what is 
* el-ph 

generally called the enhancement factor due to al-ectron-

phonon interaction in the effective mass or density of 
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states, McMillan arid Ro ujqII give "X, = 1-5 (Pb) and 

X - 1 .6 (Hg) f rom thsir data. Of practical interest is 

the life time ^ = 1/ £ 2 Im lYI (« |T)J of an 
8 — p r J 

9 
electron at low temperatures« As d~{® )F(w ) is not known 

for very low energies, the vary lorn temperature behaviour is 

uncertain, but the values öf t for an electron at the 

Fermi surface, given in fig, 5 could be used in estimates. 

One should not forget that there is a temperature indepen­

dent impurity scattering which in pure materials can cosre-

_ g «.in 
spond to a life time C »n/ 10™ -10"** sec. 

Knowing Pf!^ ^(« ) we can easily form the spectral weight 

function A(pf w ). 

å(p,w)ss 

D" 
-c +ii-Re -M _ , (© 
p • «1-ph 

la 

)jîT 
E» ".iVl* 

(4) 

i hers is a sum rule that ft(p,» ) always obeys, 

få(ptts) d» s 1 (5) 

It may happen that A(P. u } has a narrow Lorentz shape of 

width P at 0 =« superposed on a more or less smooth 
o 

background, UJe than say that we have a well defined quasi-' 

particle of energy « and life time T s 1/(2 H ), whose 





7. 

strength is 1/( 1 » ^ Re PA , . (to )/$« ), the latter 
31 - p h / ' * 

quantity being the contribution to the sum rule, eq„ (5), 

from the peak,, OU i-s the solution of the equation 
Q 

ö oc «• |i + Re M , . (ê .a ) (6 ) 
o p el-ph p* o 

As has been shown by Engelsbarg and Schrieff er^6 ̂ , orts does 

not expect conduction electrons uiith a strong coupling to 

the lattice to show quasi-particle character for energies 

c -p, comparable to phonon energies. Tig, 6 shouis fl(p, a } 
P.-

for lead at.three values of (i.e. three values of p) 

in the most interesting energy region. The interpretation of 

the first of therse figures can simply be stated as follows ; 

A ""bars'" electron with momentum p is inserted into the 

ground state of the metalf and we ask for the time behaviour 

of the system. If there were no interactions between the in­

serted electron and the rest of the system, me would have a 

time dependence given by the frequency (t, -i*)/h and this 

excitation would haue an infinite life time. The sharp peak 

in fig.6 reflects the fact that the slectron-phonon interaction 

causes the system to partly behave as if we bad an electron 

with momentum p but with a new excitation energy (c -$#(1 + /\ ) 
P 

(cf. eq. 6). The peak is not infinitely sharp so thi soex­

citation will have a finite life time. The broad wing,of 

fti,p,G® ) on the upper side of the Fermi level is a- consequence 

of the'fact that a phonon can be emitted when the "bare'"' 
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electron is inserted. The part of A(p, «} for « ̂  0 

givas information about the "extraction" of an electron 

from the ground state. Also in this case can a phonon be 

excited». The sharp peak in fig, 6a contributes l/( 1 **X. ) = 

0,40 to the sum rule, eq, (5), The system can thus be de­

scribed as having a well defined quasi-particle whose 

strength is only 0,40, At higher energies c t fig, 6b, 

the electron peak has moved into the upper phonon peak and 

the system shows no quasi-particle behaviour at all. Finally 

for .still higher energies c , fig, 6c, a large portion of 
P 

the sum rule is filled by the. Lorentz shaped curved cen­

tered at an energy roughly that of the inserted "bare" electron. 

However the damping is now so large that it is not much mean­

ing in adopting a quasi-particle picture. At finite tempera­

tures there is no longer a clear distinction between holes 

( to < 0} and particles \ ( w>0) in the .interpretation of 

ft(p)» but with our definition of ^ the sum rule, 

eq, (5), still holds. In fig. 6 we show (dotted curve) how 

the sharp quasi-particle peak is considerably broadened al­

ready when T =11 °K, The spectral function for mercury would 

be qualitatively the same as that of lead. In conclusion it 

aearns that we nan use the quasi-particle concept only at very 

low energies e «u , In all other cases, whan higher 
-F 

energies are important, the full shape of .A(p,»'-;> mus t be re­

tained when electron properties are calculated. This limita­

tion is after all not serious as in many experiments (e#g» 

low temperature specific heat, cyclotron resonance) only low 
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energy excitations are involved, Moreover Prange and Kada-

(7 ) 
noff hâve argued that far example the electronic specific 

heat at all temperatures can be written in a form that is 

mathematically the same as the standard Landau quasi-particle 

formulation. Therefore, as Prange and Kadanoff have pointed 

out, the break d own of the quasi-particle concept in an 

electron-pbonon system is partly a semantic matter, Uie refer 

to their paper for further details. See also an excellent re-

( B )  
view by Schrieffer , 

The density of states 

After having obtained the spectral function ft (j3 , » ) » uie 

sum over all momenta £, to get the density o f states at 

energy <a close to the Fermi level « The imp ortant c ont 

bution comes from the region p «"^p^. » Die find a relat ion 

similar to the sum rule, 

Â(p,(f>) de s 1 fns 
P. w ) 

and thus this concept of density of states does not contain 

any electron-phonon many-body corrections. This is the den­

sity of states that is measured in a tunneling experiment^''"', 

It is because of the weak momenturo dependence of 
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i\l s» ) that electrân-phonori effects do not enter. 

For the case of electron-electron interaction there is no 

corresponding property of the self energy and the density 

( q ) 
of states does contain many body corrections, However 

it is mail known that for example the electronic specific 

heat and the cyclotron resonance frequency are affected by 

the electron—phonon interaction. The result is often stated 

in the form that the effective mass or the density of states 

at the Fermi level are enhanced by a factor 

1 + "X, = 1 - 'P Re Ff1gl ( m=0}T=0)j/.^(ä . To distinguish 

this concept of density of states from that first introduced 

uts shall call it a level density for quasi-particles'. Let us 

consider the electrons close to the Fermi level in a metal, 

but with no electron-phonon interaction. The electron states 

can be labeled by t he momentum p and have an ensrqv £ , 3 / p 

A(p,« ) is a delta function' at « = c , As the electron-
p' 

phonon interaction is switched on, the peak in fifp* t» ) de­

creases in strength and shifts towards lower energies, but 

still we can label the excitation by the momentum £„ U/h en the 

interne- icn is fully turned or, we have a system where the 

quasi-particle 'spectrum has a level density increased by a 

facto? 1 A « and with a decrease in strength 1/(1 + "X 5 

for eecï level« It is really non-trivial how many-body correc­

tions enter different electronic properties. A the oretical 

treatment of some important cases, e.g. the specific heat, and 

references to other works in the field, can be found in the 

f 7 ) 
paper by Prange and Kadanoff" , It turns out that most 
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electronic properties are unaffected by eisetron-phonon many 

body corrections,, because not only the level density byt also 

the wave function will be modified, and these two effects 

often cancel, quantities that do contain manv-body correction 

are the specific heat,, the cyclotron resonance frequency and 

the amplitude in-the de Haas- van• Alphen effect. They all 

show the same increase by a factor 1 + "X in the effective 

mass (or the density of levels) at low temperatures, Ufhen the 

temperature is increased, high energy excitations become im­

portant, and the complete forrh of the spectral fun ction A(p,w 

must be considered. This means that our concept of density 

levels is no longer well defined. However for the case of the 

specific heat it turns out that 1 - ̂  Re lYi^ „h (ca3>?T)/^m 

can bs given an interpretation, although a formal one, also 

( 7 ) 
for finite temperatures. Prange and Kadanoff h'ave argued th 

the electronic specific heat can be calculated from the usual 

expression (first integral of eq, 16) in Landau's quasi-

particle theory provided that the energy £(]*,) is the solution 

of the equation 

E(k) = £,r ~ ïi + He KÄ? (k»E(k)|T> (a) 

This holds irrespectively of the maanitude of I'm ffl , 
sl-ph 

Again it is the -weak mom entum! dependence of m 
BX^pn 

that leads to this remarkable result. Eq. (8) formally gives 

a density of states in energy space which is enhanced by a 

factor 1 - ^ Re ^ («*> }T)/ # to compared to the 
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non-interacting case» If fig, ? we plot 1 - ^Re ( ss jT= 

as this is a convenient quantity in our subsequent discussion 

on the electronic specific heat» Because our "density of state 

is of a formal nature, ure should not be surprised to find 

that it can become negative for some energies. The total spe­

cific heat is obtained by an integration over all energies, 

and the final result is of course always positive. 

Cyclotron resonance 

In cyclotron resonance experiments results are often given 

in the form of "effective" masses, The elactron-pnonon mass 

enhancement is for low temperatures and frequencies (i.e. 

frequency of the applied electromagnetic fi eld) given by the 

factor 1 » ?Re ïïl , , ( fcO:T,o)®a = 1 + \ (T = 0). Be-
el-ph ' 

cause o f  the temperature and eneroy depend ence of I B  ,  ,  
el-ph 

there will be deviations from this simple result if we raise 

t h e  t e m p e r a t u r e ' ' ' " ' 1  or f r e q u e n c y  ̂  ' (the c a s e  of high mag-

(12) \ 
net. ic fields will not be considered here). .High frequency 

cyclotron resonance has been treated theoretically by Scher 

( 1 -| ) 
and Holstein1' . They find for the surface independence Z 

at T = D 

Z s B + iX = e l / * ( ? )  
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whare 

R at 8/9(w^rcmv fp /ns^c**) 1//̂  Q r 

and 

V-
(öj) = \ %Z~ coth \  *" WrRe ^el«"ph 

)X-\W U Ü 

w+Re M , , (c)-Re M _ , (c-^a) 
^ el-ph 

ü) 

Im M . (c) + Im M , , (c + n«) 
el-üh el-ph 

* %ir 

is the frequency eH/m^c, where na electron-phonr.n 

effects ars included in the electron effective mass m, . 
b 

When the frequency is not too high, it is a good approxi' 

mation to take 

(«)$£côtï|~îs: U -<)Re 3 We>>*0) «(12) 

C % ». 
C 

and me arrive at the standard result ii'ith resonance 

ocuring at frequencies tü , 

it i Hi 
/e H \ 

r.ff'V 1  n  1  integer 
1 T> ) 
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uihere 

Vf - *bt1 + (̂T"0)] (14) 

As long as Re iïl ( üh a» ) is linear in m + » , eq. (12) 
8i"pn c o 

is a good approximation to eq. (11) and the same effective 

mass mill be seen, Nou/. compare uiith figs. 2 and 4 of 

Re e ̂ p h ( «)* For high enough frequencies u/e haue 

Rs ^ei-oh^ w+ feSc' ~Re mel-ph^w ^ and this "'ill 

lead to a shift in the resonance frequency. It is evident 

from figs, 2 and 4 that very high frequencies ara required 

to see his shift (1 msV corresponds to a frequency ro 24QGHz). 

fit tha same time the damping factor in eq. (12) becomes 

large. Consequently this type of experiment mill be very 

difficult, 'die refer to the paper by Scher and Holstein ! ' 

for a detailed model calculation. 

The possibility of seeing a temperature effect in the 

effective mass is more promising. At finite temperatures 

Fermi-Dirac factors must be inserted in the in the 

integrand of eq.(ll) and the integration then goes over 

all c , i.e. me effectively get a thermal smearing of the 

integration limits. This mill be of only minor importance 

for the form of the resonance condition if kT is so small 

that only the region where Rs HI , , (») is linear in 
el-ph 

contributes to the integral. It then follows that the effec­

tive mäss measured in a cyclotron resonance experiment at 
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not too high frequencies is given by 

•Vf" "bC1 Ami <15> 

It remains fco calculate the temperature dependence of 

X(t) — 9 R® l"ej. This problem has been 

f 8 ) 
considered in an earlier paper ' both in an accurate 

calculation for sodium and in an Einstein model* The 

result of the Einstein model is, that (l) first increases 

with T to a maximum -^1,2 X (0) at T «vj 0,3 0_. "X (T) 

then gradually decreases to zero. In figs 8 and 9 use shouj 

"X (T) for lead in an accurate calculation based on 

2 x 
of ( 6ù) F ( oj) from fflcffiillan and Routell. fi corresponding curve 

for mercury is given in fig 10. Experiments are always re­

stricted to low temperatures, where the well known condition 

6>cT 1 can be fulfilled. The results for ^ (T) 

(figs. 8 and 10) and U (fig« 5) show that if the 
b x p n 

frequency of the electromagnetic field is higher than about 

50 GHz it is possible to cover a temperature range where 

shifts by about 3% both for lead and mercury. UJith pre­

sent experimental technique this is however a very high 

frequency. If very high magnetic fields are used, one can 

easily cover a larger temperature range but then our theory 

is not valid«, 
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The electronic specific heat 

The electron-phonon interaction causes the low temperature 

specific heat of the conduction electrons to he enhanced by 

the same factor 1 + À» as the lorn temperature cyclotron 

resonance effective mass. In this section tue investigate the 

deviations from this result as the temperature is increased,. 

An ex pression for the electronic specific heat valid at arbi-

( 7  )  
trary temperatures has been given by Prange and Kadanoff , 

They base their deraivation on the equivalence•between tempera­

ture derivaties and time derivaties. A re lated expression 

valid at lou» temperatures has been given b y Eliashberg ̂  r ̂ J 
f 

who started from the thermodynamic potential for the coupled 

el ec t ron-p h on on system. In appendix 1 sue show how Eliashberg's 

result can be generalized to give the formula or Prange and 

Kadanoff (eq, 16) 

Û 
,(2*)-'- "eTS"" 

C = 21—1- E(k) pf (E(k) ) » 2 [Jilt i dB B X 
"" O f 0 **" \kw 0 J , _ 

(16) 

1- %eH. , , (EiTi Ql (E) * 9He M , . (B«T) (E) 
?ê p hin ° 9l"ph 

This expression can be rewritten in a form that is more 

suitable for us. 

2w 
SN N (E) C f Cf/> (e 

•—0 — — 
_ 35 a2 ( a } F (01} 

E-E +»' 





Finally ise can uurite the specific heat as 

°v 'fro +ViW> (18) 

inhere y^ is the value in the absence of electron-phonon 

interaction and Y^(T) incorporates all these effects.. 

VT) can be calculated from one integral in eq. 17. 
fis T-^>0f (O) Y0>« ^ *s a well know fact 11 ^ ' 

that t1(T) first increases with T and that this increase 

.2 
goes as T InT. It is also known that renorealization effects 

disappear as T «§* OO , and consequently in this 

limit,. The behaviour of y (T) can be characterized by 
i 

two temperatures, that at which Y^T) has its maximum and 

that above which Y^(T) is essentially zero. To get some in» 

sight in the general behaviour of Y^(T) we have in a pre~ 

/ q \ 2 
vious paper investigated an Einstein mod el? i.e. a ( « )F( 

is b delta function at t o = kQ^» In this model Y^ (T) has a 

maximum (** 3/2 of T, (0.) ) at T<—6^/8 and t (T) is zero 

for Tf-^0^/4, y (T} then has a smaller minimum and 

approaches zero from below, From the form of eq. 17 it follows 

that 8„ should be a characteristic temperature not for the 

phonon spectrum but for ö2(« )F <> )/« . For 3 monovalent 

2 
metal like sodium, a  ( m  )F(® )/tö is dominated by the 

coupling to the high energy longitudinal phonon modes and 

the usual Debye temperature 0D should be a good value for 

6 . For polyvalent metals, homever, there is a strong coupling 

via Um!<lapp processes to the transverse modes. The characteri-

tic Einstein temperature 8 to be used in calculations of 
E 



' 

-



Y1 (T) (and also /\(T) } can therefore be cons: drably 

lower than 0^. For lead one finds Sr*w»45 °K and for mer­

cury 8rNi 20 °K, This causes the peak in ^ (T) to appear 

at temperatures that are much lower than seems in general 

to be realized. The effect is very pronounced in mercury, wh 

M3) 
properties have been reported in a previous letter ' . In 

figs. 8 and 9 we show (T)/ Y[{0) for lead calculated 

from eq. 17 with lYlcIïlillan's and Ro w.ell 's ̂  t^(M)F(ö)<, 

The result för mercury is given in fig. 10. The peak in Y^( 

0 
at T <-* 6 K lies b el out the transition temperature to the 

superconducting state (T = 7.2 °K). Already at T»—e 20 °K 

there are practically no renormalization effects .left. For 

mercury the peak appears at a still lower temperature (2 °K) 

to be compared with T^ = 4.2 °K. 

A bri ef argument will bs given why the peak in T.-(T) 

appears at such a low temperature compared to the Debys 

temperature and why it is enough to consider the change in 

slope X (T) in the case of cyclotron resonance but not for 

the specific heat. Let us first discuss the specific heat. 

Consider the term in eq. 16 containing ^ f/2> T=- ( E/T ) *£• r/ 

The function ̂ ffè E has a rather narrow peak "of width kT" 

but after multiplication with we get a function that has 

a broad maximum at 2,4 kT, i.e. already at temperaturr.r 

much lower than the Debye temperature do we begin to pick up 

contributions to the specific heat from regions where 

Re f']gj ^ changes non-linearly with energy (cf. Pige» 2 f  4 





and 7, This is why the peak in (T) can occur at such a 

low temperature as T*»#0.1 0 , The remaining term in the inte­

grand of eq. 16 containing the temperature derivative of the 

self energy is of -little importance and does not invalidate 

our discussion above. For the case of cyclotron resonance 

tue are really restricted to energies mithin a narrow range 

around the Fermi level. There is no factor in the integrand 

of eq„ 11 that makes high energy excitations important, on the 

contrary they ha ve a large damping factor. Therefore me always 

stay within the reqion where Rë iïl _ , (fe) ; T) is linear in 
e 1 - p h 

and it is enough to find the temperature dependence of the 

effective mass from a knowledge of 

An interesting question is, whether it is really possible to 

see the temperature dependence of -y (T) in specific heat 

measurements. Let us here consider a measurement of the 

specific heat of lead in a normal state (i.e. in a magnetic 

field), measurements on the superconducting state will be dealt 

with in the next section. The lattice contribution goss as 

3 
T and the electronic part is linear in T. Let us define a 

temperature st which the lattice and electronic parts 

are approximately equal. For lead T =1,3 °K and for mercury 
# O 

Q 
Tq=0» 6 K„ At .the temperature where y(T) has its maximum, 

the interesting quantity T ̂ (T) - Y. (°) 1 T makes only 0.5Jb 

(IS) 
of the total specific hsat for Xeadv ' (0,4$ for mercury). 

An additional important point is that the lattice part does 

not follow a T"~law at these temperatures (i.e. 0Q can no 





longer be considered as temperature independent)» The high 

high temperature specific heat sbouis a linear increase coming 

from the electronic term and also from enharmonic effects.If m 

could find some estimate of the anharmonic term (e.g. from 

measurements of phonon frequency shifts by neutron scattering) 

it should be possible to verify qualitatively that the linear 

electronic term changes slope from the region of very loa1  

temperatures to the region T^ 6 . 

Specific heat in superconduetors 

The results just obtained have some important consequencies 

for an analysis of the thermodynamic properties of super­

conductors. Of experimental importance is the difference 

in the total specific heat between the normal and the 

superconducting state of a metal. 

The quantity C can either be obtained directly by 

calorimatric methods or calculated from measurements of the 

critical field H as a function of temperature, In the latter 

case, thermodynamics gives 

It is generally assumed that the lattice part can be taken 

to be the same in the normal and in the superconducting 

state, and thus one arrives at an experimentally determined 

( 19 )  

( 20 )  





21 .  

d i f f e r e n c e  

° n , e  ~ C s , e  K  à c  ( 2 1  )  

b e t w e e n  t h e  e l s c t r o n i o  s p e c i f i c  h e a t  o f  t h e  t w o  s t a t e s .  T o  

a  f a i r l y  g o o d  a p p r o x i m a t i o n  C  h a s  a n  e x p o n e n t i a l  b e -
S  i  Q  

h a v i o u r  

- ( c o n s t ,  T / T  )  
C  a s  c o n s t . e  '  ( 2 2  )  

s » ©  

w h e r e  T  i s  t h e  t r a n s i t i o n  t e m p e r a t u r e  u i h e n  n o  m a g n e t i c  

f i e l d s  a r e  p r e s e n t .  A s  &  C - [ Y  o  +  Y  1  ( T )  1  T  =  - C g  0  g o e s  

e x p o n e n t i a l l y  t o  z e r o  w i t h  T  / T ,  t h e  e x p e r i m e n t a l  u n c e r t a i n -
C  

t i e s  i n  a n d  y q  +  Y j ( 0 )  m a k e s  i t  m e a n i n g l e s s  t o  c o n ­

s i d e r  C  a t  t e m p e r a t u r e s  b e l o w  s a y  T  / T = 5 .  B u t  t h e  e x -
S » 8  '  c  

p o n e n t i a l  d e c r e a s e  o f  C  w i t h  t e m p e r a t u r e  o p e n s  u p  a  n e w  
S  f  s  

p o s s i b i l i t y  t o  s e e  t h e  t e m p e r a t u r e  d e p e n d e n c e  o f  Y ^ ( T ) .  

W e  c a n  f o r  e x a m p l e  p l o t  &  C /  £  ̂  ^  +  ^ ( O ^ a s  a  f u n c t i o n  

o f  I .  T h i s  r a t i o  w i l l  s t a r t  w i t h  t h e  v a l u e  1  a t  T = 0  a n d  t h e n  

i n c r e a s e  s l i g h t l y  ( i n  m e r c u r y  a  f e w  p e r c e n t )  b e f o r e  t h e  

e v e n t u a l  d e c r e a s e  d u e  t o  t h e  o n s e t  o f  C  .  T h e  p o s s i b i l i t i e s  
S  j  0  

t o  e x p e r i m e n t a l l y  v e r i f y  t h i  s  e f f e c t  i n  m e r c u r y  h a s  p r e -

( 1  3 )  
v i o u  s l y  b e e n  c o n s i d e r e d  .  

Die next consider what modifications the temperature depen­

d e n c e  o f  Y ] ( " 0  w i l l  g i v e  t o  e a r l i e r  e x p e r i m e n t a l  d e t e r -

n a t i o n  ' o f  C  0 ^ ) ^  y h e  r e ] _ a t i v e  c h a n g e  i n  Y *  ( " O  f o r  l e a d  
S  9  0  
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ii/han T /T = 1 is large but at the sams time C is only 
c n» e ' 

about 1/3 of Sa C and C is only increased by 3§ £, At 
s, e 

lower temperatures the relative influence en is larger, 
S $ G 

for T /T = 1,7 one finds that the earlier values of C 
c s» e 

should be increased by about 10$. Thus the changes in 

C are not unimportant, and the correction is larger 
S f B 

than the given experimental uncertainty. However the devi­

ation of C in lead from the BC5 result is still larqe. 
O f W 

For mercury the situation is qualitxvelv the same as for 

lead, ttie end this section u/ith two rem arks. The first con­

cerns the ration £C J C ) . In a BCS-model this ratio;-
S « 0 il » 0 J, ~~ ! 

' ; C 
is 2,43» Standard analysis of experiments on superconductors 

gives (C^ e/^n =3.7 for lead''w\ and the difference 
0 ? » <" - c 

between this value and the BCS result is some times taken as 

a crude measure of the strong coupling character of lead. A 
* 

proper analysis along the lines of this paper decreases the 

( 1-vN; 
experimental value from 3„7 to 3,3. For mercury '* the 

corresponding change is an increase from 2.D to 3.2. Therefore 

there is not much meaning in a comparison of ratios 

(C /C_. ) . _ for strong coupling superconductors. The 
Q O ! ! g CS I ~ t 

C 

second remark concerns the passible experimental verification 

of a difference in the lattice specific heat batuiean a normal 

and a superconducting state. Such attempts should contain a 

careful analysis of the effects dealt with hsrj in order to 

avoid spurious results. 
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Conclusions 

The electrgn-phonon system of polyvalent metals differ from 

that of for e xample the alkali metals in several respects« 

It is not only that the polyvalent metals have a stronger 

coupling, but also t h o characteristic phonen energy is very 

lou; due to the strong coupling to transverse modes via Km-

klapp processes, u'e have investigated the consequencies of 

these facts on the electronic properties of lead and mer­

cury. 

The electronic excitations can conveniently be described by 

spectral functions. Die have calculated the spectral function 

for several energies and temperatures and as expected u/e do 

in general not have the structure of single particle like 

excitations. The effective electron mass as measured by 

cyclotron resonance has a temperature dependence u/hich can 

in general be neglected5 but for lead and mercury this 

effect is 1srge enough to be seen with the present experi­

mental technique. The normal electronic specific heat shows 

a strong deviation from the usual linear increase with 

temperature. It is difficult to measure this effect directly 

but a study of the metal both in the superconducting state 

and in the normal state (i.e. with and without an applied 

magnetic field) can make it is possible to verify the non­

linear increase. 
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Appendix 

It is uisil known that the specific h g at of a non-magnetic 

metal in the limit of ICUJ temperatures can be divided up 

_ 3 
into, two terms, one proportional to \ " coming from the 

phonons and one linear in T from the electrons. The 

effect of electron-phonon interaction can easliy be 

absorbed in the electronic part by the introduction of an 

enhanced effective electron mass. In the literature there 

are at least tmo attempts to go beyond the limit of low 

( 1 A \ 
temperatures, Elisshberg v ' ' started from an expression 

for the thermodynamic potential in order to find the first 

correction to the linear behaviour of the electronic spaci-

( 7 
fic heat. Prange and Kadanoff ^ 7 made quits a different 

approach and from the similarity between time derivatives 

and temperature derivatives they obtained a formula for the 

specific heat uib ich they claim i s valid at all temperatures« 

Iii B will here-shoui that E liashberg's formula can be general­

ized so as to give the result of Prange and Kadanoff, 





Using a method developed by Luttinger and Ward 

(14) 
Eliasbberg ' > '• 1 finds' the fallowing expression for the 

thermodynamic potential. XI of the coupled electron» 
phonon syst am; 

Jl' • M{F)G(P)^ 

+-f ̂  Ir. Î +1T{Q)D(3)| 

-t22 2 G(P')D(P-P')G(P") (A 1} 

uiith 

M{P) a »T 21 G(P')D(P-P'){Ç̂  „ 
TJ." PW 

(A 2) 

and 

il (Q) a 2g T G(P)G(P>»Q) (A 3) 
1 P 

ïhë summation over P means 

r 
•St. 

P c jtZny5 
n 

(A 4) 

with c a(2n+1)i* T and n integer. The summation over Q 

? 
is analogous with w ~ 2mis T and m intager, g~ is 

m q 

ths electron-phonon coupling. To avoid cumbersome notation 

me shall not include coupling via umklapp processes or 

transverse phonons« Ths electron-electron interaction and 

phonon-phonon interaction is for the moment neglected» . It 

is easy to s ho tu that -A. X s stationery with respect to 

variations in I f )  and / f f"  , Therefore when me calculate the  

entropy S ( 3-fVO T) use only have to differentiate 

w i t h  r e s p e c t  t o  t h e  e x p l i c i t  t e m p e r a t u r e  d e p e n d e n c e  o f  JL 





The electronic term 

life st art with what mill eventually be interpreted as 

the electronic contribution S , 
el 

s ,  > -o-a./P« - 0 = )  
el el 

with 

XL-2T 'S 1b[-G"1(PÖ é> 
p* 

To find. S we make a contour integration and make-us* 
el 

of the analytic properties of G^ and G,, as described 

(1). 
by Abriskosov, Gorkov and Dzyaloshinskii . p» 171 and 

/ S 
we have 

oo 

3 t= 2Îj*B _L_fc f -&fo(c)f nG_(£,ctT)-IxiG. (2te}t1 åc Çâ7) 
6 Å2H)5 Z%±T I & e 

«»OB 

f ( c )  is the Fermi-Dirac -equilibrium distribution function* 
ov / 

G and G. denote, the retarded and advanced electron Green 
H M 

functions» They obey the relation -G^ = G^« Note that we 

have only d.iff eranti&tad with respect to t-he explicit 

temperature dependence but after this derivative has been 

taken we have included the full temperature dependence in 

the Green functions, i,a, in their self energy parts» ffie 

now depart from the method, of Abrikosov et.aj., and first 

integrate with respect to d£, U)e change the integration 

limits for the energy in eq, A 7 to be from 0 to or, One 

part of the integrand can then be written 





2g. 

^djg^lnGH(jo,e;T) -lnGR(jD»-c}T)"3 

UJe havs (flbriskosov et.a j.«) 

( f l  8 )  

1 • 
Gr (jg,c|T) = c -c^ ~Ré ;M ( c i T >ilà uM( c j T ) | (fl g) 

and 

G~1(jj ,~£ $T) = - c -c +Rè M(c iT)-il» M(C|T) (fl 10) 
K p 

We have then made use of the uiell known fact that 

1 /2 
M (j3 f  c) is independent of d_ to the order (m/ff! ) 

(electron mass to ion mass)» The expression A 8 nom becomes 

•rF b 
£ln(c'»epB0-'M(c|T)4.ïm^K(c|T) - (A H) 

ln(-c-c£Rs ;M( c ; T) -41®iM(e 

«here m, i s an effective band mass and p_ t hs Fermi momentum, 
b - F 

The contribution to the integral comes form the imaginary 

part of the logarithm, i.e. from its angular argument,. 

The immediately finds that the integral A 11 equals 

2iJimbpF Q c -Re c ; T (A 12) 

Note that this reslut does not require that I.PL M_ . .is 

small. After an analogous treatment of In G0 in sq, A 7 

uje end up with 

Sel"70 

«o 

mp f c 

2K"'<r ) cosh2(c/2T) 
0 

de (A 13) 
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2.9. 

This is the same as Eliashberg's result with the exception 

that he only wanted the.lowest correction to the linear 

temperature -dependence of and therefore took Bgeff 

to be temperature independent. It new only remains to 

compare with the result of Prange and Kadanoff,."'After..- . 

another derivation with respect to T, which should now also 

include RMeMt some partial integrations lead to 

0 ,« 2[3N VdE E 
el °i V (A 1« 

where N is the band density of electron states at the 
o 

Fermi level. This is exactly the reslut of Prange and 

Kadanoff» 

The phonon term 

UJe next turn to the specific heat of the phonons and 

consider "^-ph 

r (A IS, 

The evaluation of this term is analogous to that of the 

electron part. 

UJe go from a sum over 2mi *T to an integration in an 

imaginary «-plane and deform ths integration contour to 

be partly along the real axes. The imaginary part of D is 
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30, 

very small and the logarithm will therefore have dis~ 

continuities in its angular argument when sue pass the 

singularity points « = * . One finds 

s „* f- S C -1 ̂ £2a<»/w «w {B 16) 

Ph ^ q j Jl)T 

After a partial integration and a change of variables 

S , can be rewritten in the form 
ph 

S . 
ph 2 « 24-7T-1-T  Z j j :  

Î0 T 

which is just the free energy for a system of independent 

harmonic oscillators» It is also the result that Prangs 

and Kadanoff give for the contribution from the lattice 

vibrations. It should be remarked that XL of course is the 
ph 

same as the standard textbook result för bosons using' a grand 

canonical ensemble,J^;»~fcT ln^= kT^ ln^l +exp ( CE«/^/kT A 

(18) k 
mathematical • fcraôsforraation ' leads to- the forrruli^ above, 

fin analogous statement holds forJÖLjfid'damping is neglected. 

Heffiaiaing terms isjGL 

There remain several tefms in -jfL. » When me used the nota­

tion »JCL, and anticipated the fact that the 

remaining terms either cancel, or give a negligible con» 

/ 
tribut ion to the entrfepy and the specific heat,'This is 

certainly true in the limit of low temperatures where 

our results for. C , and C , are. .-known to hold, UJe now 
s x p1 n 

set out to prove it also for elevated temperatures. 

Ilia u ae ..the notation 





3/. 

jx=iia +0^ + nc = (â l8) 

-2tX M(P)G(P) * !~ 21 (Q,)D(^)-. I2??. a(p)a(p')D(p-.p*) 
P Q PP 

In the üsual um y me can go over, from a summation to an 

integration, 

eo 

A. .- Iäc -sf̂ /«)[«BC£.';WIÎ<l.c)-«4C£,00̂ ,̂ (415) 

' -so 

(19) 
lïl (p,c • ) can be expressed as 

®o 

C£,e) 4™ 3 4-£'[i^ tghCe^T^f^îeO-G^C^Î^C^W) 

* T-t)H:̂ Vi"P*> +Ve-V£"»'> eoti(V2'/2T>J 

M 
B 

(à. 20 5 

mA (P# £ ) has • an analogous expression, u/ith instead of 

Gr in the last bracket of eq» 20« Taking into account 

that Gn=C , me can ujrits ©o 
*80 ' a /* 

A- - »»(,(«/«) y^, v£'\äe* wc'/»' 

-"oto 

% la <3L(£,e) Im G (js'e ') D(ji-£*c-c#) 

- V£*|_a"(p'£5(°H(p'-,:+V£-) 

"*3 
- e.e-» i coth(t» #/2T) (fi 21) 

£**£ 



' 



n. 

Because of the scationarity of JX, with respect to Ifi we shall only take 

the temperature derivative of tgh(o/2T) mhen tue form S q= (•QjCX/^T), It 

is easy to see t hat A- = -,(2/2, but inJjL, the tempts rature derivatives 
C 3 C 

are to be taken both for the coth and the two tgh factors, The temDsr.a-

ture derivatives öf tgh mill lead to exactly cancellning terms in Sa 

and S » In S there remain terms containino inteorals of the type (note 
c a . 

; R ~ ° A 

•o 

that G= G„ ) 

^'V£'ĵ 9h(G/2TBte QR(H'C) lm GR(£-''C+Ü£-£')+ 

+ Re GR(p,c) Im GR(o',£ "V^'O (A 22) 

Compare this with an expression for Re»T(k, (flbrikosov e t.al, 

p 179) 

«o 

w \ _—.t_-_ g,/|d£ A de t g h ( c/'2T ) * (fl 2 3) 
(2U)4 ™ 

-o® 

* CRe GR^"-,c"Uo^ Im Gr^£-»c) + Re gr(£> c+wq) Im GR(£-k, eTj 

Rein>, w ) is practically independent of the frequency cc when 
o  o o f  

and we can put it e qual to zero in eqs A 2.3«, Eq, A 22 is of the same 

structure and we can also here put <*> ,=0,. From the solution of eq, 
£-£ 

A 23 (Abrikosov at,ai, p 179) it follows that the self energy parts 

of the electron Green function ara not important and that Re T(k) is 

practically temperature independent. It follows that the remaining 

term in S and the corresponding terms in Sr„ can be rewritten in a 

form containing cjTT/^Jand can thus be neglected, 11/e are finally left 

with Sb and. the term.in Sc that originates from the temperature deriva­

tive of coth (® ,/2T), S. is as usual evaluated with a complex con-
p-p b 

5* 
'R A 

tour integration. Using that (cf Abrikosov et.al.) Drj=DA # Im!/is small 

V? 
of order (m/ffi) and Im D(q»ü>) is sharply peaked at i u we gel 

3 _ 1 S ReTîfa) ••rSoothC« /2T) (A 24) 
b 2 q - £ 
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ZI. 

Recalling that Re 1 K kj as given by eq« A 23 is in­

dependent of u u/e find cancellation between S, and the 
o b 

remaining term in S , In summing up, Eliashberg's thsrmo-
C 

dynamic potential leads to the result of Prange and 

Kadanoff. for the specific heat of the coupled electron-

phonon syste® 

Explicit electron-electron interactions haue been neglected 

as well as band effects» I tle include then afterwards as 

a correction to the effective density of stat es at the 

Fermi level. The neglect of phonon-phonon interactions 

is more serious, With increased temperature, the phonon 

frequencies will shift and also eventually be less well 

defined. However the presentation here is valuable, as it 

enables a separation of enharmonic effects from the measured 

high temperature specific heat* 
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Figure captions 

Fig, 1 The phonon density of states F { w ) and the effective 
2 

electron-phonon interaction a"(®)p(a>) por lead. 

Fig, 2 The real part of the self energy, Re ^e^.n^C ®»T) for 

lead at different temperatures« 

Fig. ."5 The imaginary part of the self energy ®jT), 

for lead at different temperatures. 

Fig, 4 . The real and imaginary parts of the self energy ffl^ ^ 

for mercury at T=0. 

Fig,. 5 The average life time of an electron at the Fermi level 

as a function of temperature. The dashed part of the 

curve is somewhat -uncertain, 

Fig„ 5' The spectral function A(p,.») for lead at T=0 and for 

different energies c , (a: C = 2 meV, b: c = 8 meV, 
p p p * 

c :  6  =1 8  m e V ) ,  I n  c u r v e  a ,  t h e r e  i s  a  s h a r p  d e l t a  
P vv ' • 

function at 0=0.8 meV, This pesk is considerably 

broadened at finite temperatures. The dashed curve is 

for T=11 °K. 

Fig. 7 The density af states in the vicinity of the Fermi level 

for lead at T=0, The density of states is defined form­

ally as 1 - IJ) RB M
B.1_PH(°0)/ . 

Fig. 8 The temperature dependence.in lead for the slope (T) 

of the self energy at «=0, and for the electron-phonon 

enhancement Y-J(t) of the electronic specific heat. 
The curves are normalized to 1 for T=0, T is the trans-

c 
ition temperature to the superconducting state. 

Fig. 9 The temperature dependence in lead of the s-lppe ̂  (T) 

of the self energy at »=0 and of the electron-phonon 

enhancement -y,,(T) of the electronic specific heat, 



• 

' 
. vi : -Î--

. 

. 

• 

• < :  ̂ £ > • -, 

. .' ' • • '; " ' •' \ v' 

-;• O :•;••• ^ •••'•'"•' ' . ^ ., . .•-•.i.-^'.i ' - ' "• : : 

. 

i. - >• ,s-;> :•;••' : . .?• - • " ' ,- af ' : . 

A ,:, •> - - - -o t:v -

•' •Ä-å: .C'J ••••:.' . - ' ,. : : '/f • . . " •• ' ' , : v-!V ' . 

' v ; :. •• •• . ' " ; ... • ." : 1 • .• • ; ^ ,• : * . ' 

' ' ' ' ' 

. , ' •• -- '••• . v 
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Fig. 10 The temperature dependence in mercury of the slope ̂  (T) 

of the self energy at w=0 and of the elactron-phonon 

enhancement Y^(T) of the electronic specific heat. The 

curves are normalized to 1 for TsO. 





Figurs captions 

Fig. 1 The phonon density of states F ( tö ) and the effective 
2 

electron-phonon interaction <* "( » )p( w •) for lead. 

Fig. 2 The real part of the self energy, Re ( oj;T) for 

lead at different temperatures. 

Fig. 3 The imaginary part of the self energy ft!^ w ; T ), 

for lead at different temperatures. 

Fig. 4 The real and imaginary parts of the self energy ^ 

for mercury at T = 0. 

Fig. 5 The average life time of an electron at the Fermi level 

as a function of temperature. The dashed pert of the 

curve is somewhat uncertain. 

Fig. 6 The spectral function A(p, ») for lead at T=0 and for 

different ensraies c . (a: c = 2 meV. b : c = 8 mel/. 
P P P 

c: c = 10 meV), In curve a, there is a sharp delta 

function at e>=0.8 meV. This peak is considerably 

broadened at finite temperatures. The dashed curve is 

for T=11 °K. 

Fig. 7 The density of states in the vicinity of the Fermi level 

for lead at T=0. The density of states is defined form­

ally as 1 -1)Re mel_ph(o>)/9ü5 . 

Fig. 8 The temperature dependence in lead for the slope ^ (T) 

of the self energy at 0=0, and for the electron-phonon 

enhancement Y^(T) of the electronic specific heat. 

The curves are normalized to 1 for T=0. T is the trans-
c 

ition temperature to the superconducting state. 

Fig. 9 The temperature dependence in lead of the slppe \ (J) 

of the self energy at u> — 0 and of the electron-phonon 

enhancement ^he electronic specific heat. 
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Fig. 10 The temperature dependence in mercury of the slope (T) 

of the self energy at W=Q and of the electron-phonon 

enhancement Y-J(T) of the electronic specific heat. The 

curves are normalized to 1 for T=0, 
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A calculation of the high temperature electrical resistivity for lead, indium and tin is 
performed starting from data obtained when the gap equation for tunneling in superconductors 
is inverted. A main result is the average 1 — cos 0 where 0 is the scattering angle. The result 
is discussed in detail. 

On a calculé la résistivité électrique à haute température du plomb, de l'indium et de 
l'étain en partant de l'équation du gap pour l'effet tunnel dans les supraconducteurs. Le 
résultat principal se révèle dans l'expression moyenne 1 — cos© où 0 est l'angle de dispersion. 
Une discussion détaillée de ce résultat termine ce travail. 

Wir berechnen die elektrische Leitfähigkeit bei hohen Temperaturen in Blei, Indium und 
Zinn, ausgehend von Experimenten im supraleitenden Zustand (Inversion der „gap equation"). 
Ein Hauptresultat ist der Mittelwert 1 — cos 0, wo 0 der Streuwinkel bedeutet. Das Ergebnis 
wird im einzelnen diskutiert. 

Introduction 

Electrical conductivity is one of the most fundamental properties of solid 
metals. Although the physics is well u nderstood, calculations are consistently in 
poor quantitative agreement with experiments. The first serious attempt to 
calculate theoretically the conductivity was made some thirty years ago by 
BABDEEN [1], Since then many authors have tried to improve the calculations, 
especially for the alkali metals. These attempts have been very disappointing. 
WISEE [2] has given a discussion of the origin of some of the difficulties met with. 
Calculations for polyvalent metals are less frequent. Lately PYTTE [3] has tried 
two different pseudopotentials for the electron-phonon coupling in aluminum, and 
he got results differing by almost a factor two (at T = 300 °K), the experimental 
value lying in between. CABBOTTE and DYNES [4] have obtained a somewhat better 
agreement, the significance of their results is however doubtful in view of PYTÏE'S 
results. 

Among all more or less uncertain points in a theoretical calculation are : The 
phonon spectrum including its temperature dependence, the electron-phonon 
coupling, the shape of the Fermi surface, the density of electron states on the 
Fermi surface, the thermal expansion of the lattice, and of course approximations 
made in the formal expressions for the resistivity (cf. the discussion below). In this 
paper we show that many of these uncertainties can be overcome, if one uses 
information from the inversion of the gap equation that describes the super­
conducting state. This is of course not a "first principles" calculation, but never­
theless it is a challenging task to find high temperature resistivity from measure-
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ments on a superconducting state. The result demonstrates nicely the consistency 
of the data and provides a check on the key theoretical assumptions. 

General formalism 

We closely follow the approach given by Ziman [5], Using a variational method, 
the resistivity can be written 

9n% f f 
Q = 6Me2NkTI Z J J 

dS dS' 
[e»«o t(q)!kT — l] [1 _ e-fimWIkT] v (1)  

where 

I  =  (12 JR 3 h)< I J vq (Û • q) -g™ clq Kl S2. 
A phonon with wavevector q (always to be reduced to the first Brillouin zone) 

and polarization index A has the frequency au {q) and polarization vector The 
equilibrium Ferrni-Dirac distribution is denoted by /°. The quantities v and v' are 
velocities of an electron on the Fermi surface and n the number of conduction 
electrons per unit volume. Kp is a directional dependent Fermi wavenumber. We 
take k-p as the Fermi wavenumber for a spherical Fermi surface (i. e. a free electron 
model) and So the area of the Fermi surface in this model. S is the true free area 
of the Fermi surface. Further û denotes a unit vector along the applied electric 
field. The Boltzmann constant is denoted by k and m is the mass of a free electron. 
The electron-phonon coupling is  given by v (q). 

The choice of trial functions in the variational procedure that leads to Eq. (1) 
has been investigated by Köhler [6] and Sondheimer [7]. The error introduced 
in Eq. (1) by our specific choice is of no 
importance for our calculation. Phonon 
drag is also completely neglected, i.e. 
the phonon system is assumed to be in 
thermal equilibrium. This is probably a 
very good approximation in the tempera­
ture range we will consider (T >; 6>D/3). 
Except for these limitations, Eq. (1) is a 
very general expression that contains 
in full all details about the electron and 
phonon systems. 

From a numerical inversion [8] of the 
gap equations for a superconductor it is 
possible to find very accurate (~ 1%) values of the quantity a.2 (m) F (co) [9] 

c? [ai) F (ai) 

j 
eu 

Fig. 1. a.2(a))F(w) much resembles the den­
sity of states F(u>). T he curve shown is 

typical in shape for lead and indium 

a2 (co)F(co) = ?// (êA.g • q)2v2(q) ô(co — œ^iq)) dS dS' 
(2  n)32M N hœ^lq) v v' 

f dS (3) 

The denominator in Eq. (3) is related to the total density of electron states -ZVbS(0) 
on the Fermi surface (including bandstructure but not electron-phonon interaction). 

*•»«>> =4I f ë -  M 
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a2 (co) is the energy dependent electron-phonon coupling and F (co) is the density 
of phonon states, a2 (co)F (co) has been obtained by MCMILLAN and ROWELL [8] for 
some superconductors, e.g. lead, indium and tin. We give a typical form of 
a2 (a>) F (co) in Fig. 1. Comparing Eqs. (1) and (3) we find, that apart from the 
factor q2 in the integrand of Eq. (1) the two expressions are very similar. If we had 
a spherical Fermi surface, then 

q2 = 2k%(\ — cos 6), (5) 

where 0 is the angle between the initial and final state of a scattered electron. For 
a non-spherical Fermi surface we get a slight difference that we neglect. We will 
also take K? = kp in Eq. (2). As So = 4nk\ and the density of electron states at 
the Fermi level in a free electron model Nte(0) = 3mn/K2 k \ we find when com­
bining Eqs. (1), (2 ), ( 3), (4 ) and (5) and using k% = 3n2n 

~pj\ ( ®o\2 N*>s{0) 4nm% f a? (<o) F (co) co dm /ox 
e — (*• — cos(y) ) i^(oy J [,^kT — i] [i — e-nm^ > w 

where (1 — cos (9) is an average value for the scattering processes in Eq. (1). The 
quantity a2(m)F(co) was measured at very low temperatures (T < Tc). Before 
we can proceed to a numerical evaluation of Eq. (6) we must analyse that further 
temperature dependence, which does not explicitly he in the exponential terms. 
One consequence of raising the temperature is, that the phonon frequencies change. 
Also there will be a thermal expansion of the lattice. 

As the complete temperature dependence of u.2(co)F(co) is very difficult to 
discuss we instead consider the so called Bloch model (cf. ZIMAN [5] Eq. 9.7.1) for 
electrical resistivity. At high temperatures (T > 0D) it can be written 

Q 4meZknz&l • (' a) 
The general form is 

©B IT 
n3h3lcF ( T \5 j" z6dz 

- = TOe2I»a@R I Hk ) J [ez-l][l-e-z] • (7 b) 
0 

Here wa i s the number of conduction electrons per atom and ©r a Debye temper­
ature to be used in resistivity calculations, ©R is of the same order of magnitude as 
0D used in heat capacity formulae. In this model we see, that apart from the 
explicit dependence on 6>R, q is proportional to kp, i.e. the inverse of the lattice 
parameter. The thermal expansion is in our case alway less than 1%, so the change 
in kjf ca n be neglected. On the other hand ©r will change appreciably. This term 
can easily be taken into account if we use temperature dependent phonon fre­
quencies in Eqs. (1), (3) and (6). The average shift in co^(q) am ounts to 10% or 
even more in the range of temperatures we consider and can thus not be neglected. 

The temperature dependence of the phonon frequencies coj,(q) is treated in an 
approximation where we assume that we always have a system of harmonic 
oscillators but with a frequency changing with the temperature. We make the 
crude approximation that all phonon frequencies change in the same way, i.e. 

coa(?; T) = cax(q\T = 0)-A(T), (8) 

where A  ( T )  is a function of temperature. (We note that this approximation does 
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not refer to any special shape of the dispersion curves.) Let us consider some region 
in the wave vector space in Eq. (3). Let us also assume all quantities in Eq. (3) 
except o>i (q) as independent of temperature. At T — 0 the considered set of 
q-values for a specific branch A will give contributions to a2{co)F(<x>) in an interval 
A(o around au (q). For finite temperatures the same scattering processes contribute 
to <x.2(m)F(co) in a frequency interval whose width and position have both been 
shifted by A (T). The strength of the interaction is only changed by 1 jA ( T) coming 
from the term l/ou(<y) in the double integral in Eq. (3). It is thus not difficult to 
take into account the temperature dependence due to shifts in the phonon fre­
quencies. 

For A ( T ) we must find a proper average over all phonons. We assume that 

A ( T )  =  1 —  y  T  (9) 

where y is a constant. The shift at low temperatures (T 0D) is then probably 
overestimated, but these temperatures lie outside the region we treat. 

Results 

We have used data from the inverted gap equations for lead, indium and tin [8] 
to integrate Eq. (6). The constant y in Eq. (9) was determined so as give the 
experimentally measured value of (dg/dl^/g at T = 273 °K. For lead we can 
compare the value of y with a measurement of frequency shifts between 80 °K and 
300 °K made by STEDMAN et al. [10] using neutron scattering technique. Their 
measurements show that the shift differs very much for different phonons. The 
shift is largest in the sound wave limit and can even be positive near the boundaries 
of the first Brillouin zone. Thus it can be very misleading to use e.g. ultrasonic 
data to find y. Also the average A ( T) is not the same for different properties such 
as heat capacity, Debye-Waller factors or resistivity because of different weighting 
factors. We have estimated y from STEDMAN'S c urves and found agreement with 
that obtained from (dg/dT)^ at T = 273 °K. 

For T  @D th e low energy part of c / ß  ( o > )  F  ( o i )  becomes important. In this 
region the relative uncertainty in a2(a>)F(co) is large, and also the behaviour of 

1 — cos 0 is not known so we have not found it justified to go to lower temperatures 
than T & @D/3. This is of course regrettable, as it leaves out an interesting 
temperature region. 

To get an absolute value for q  we must know S o / S ,  Art,s (0)/iV£c (0) and 1 — cos (9. 
If we however consider q (T)Iq(T = 273 °K), then the first two terms related to the 

Fermi surface have no influence. Moreover 1 — cos© is not expected to vary much 
in the temperature region we are interested in (T > 0D/3). The reason for this is 
that the metals we investigate are polyvalent metals where umklapp processes are 
very important. As the temperature is lowered the exponential terms will decrease 
the relative importance of the high frequency phonons. This will however affect 

so many regions over the Fermi surface, that the average 1 — cos© should stay 
practically constant. With these assumptions q(T)/q (T = 273 °K) is readily 
evaluated from Eqs. (6), (8) and (9). We give the results for lead and indium in 
Figs. 2 and 3 together with experimental values. The agreement is very good, but 
not a very significant check on the accuracy of the theory. In fact the temperature 
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variation depends so strongly on the exponential terms that even a crude model 
for the phonons (e.g. a Debye model) will give a good description irrespective of 
the form of the electron-phonon interaction and other details. This has been 
known for a long time; indeed the famous Bloch formula (Eq. (7) for electrical 
resistivity is surprisingly good for interpolation between high and low tempera­
tures. In Fig. 2 we also plot q{T)Iq(T = 273 °K) from Bloch's formula, using 
0R = 86 °K. MAC DONALD [11] found this value of @r to give a good fit with 
experiments. Actually we have used 0R = 86 °K at T = 273 °K and then made 
the same correction as above, i.e. 0R = 86 [1 — y (T — 273)]. 
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0 100 200 300 400 500 0 100 200 300 
[°K] [°K] 

Fig. 2 Fig. 3 

Fig. 2. q(T)Iq(T = 273 °K) for lead. this work. + Bloch's formula. Experimental 
values (o) from HO LBOBN [21] 

Fig. 3. q{T)Iq(T = 273 °K) for indium. this work with co;,(q) shi fted with tem­
perature. no shift in cox{q). Experimental valu es (o) from SWENSON [23] 

An absolute value of q  ( T )  could be obtained only if weknew$/$o, AbS(0)/iVfe(0) 

and 1 — cos 0. From experiments on anomalous skin effect CHAMBERS [12] has 
determined S/S o for several metals. He gives SjSo = 0.46 for lead and S/S o = 0.43 
for tin. These values are not very accurate and CHAMBERS estimates the value for 
lead to be too low. AUBREY [13] also measured the anomalous skin effect and found 
SjSo = 0.55 ± 0.05 for lead. ANDERSSON and GOLD [14] made de Haas-van 
Alphen experiments and OPW calculations for lead. Their result is S/Sq = 0.59. 
ASHCROFT [15] has discovered an error in the calculations of ANDERSSON and 
GOLD. A corrected value is S/So = 0.69 ± 0.05. STEDMAN et al. [16] have made 
accurate studies of the Fermi surface of lead based on the observation of Kohn 
anomalies in the phonon dispersion curves. From the results of these measure­
ments they built a model of the Fermi surface. The measured [17] free area is 
0.70 I 0.01. MINA and KHAIKIN [18] studied the Fermi surface of indium in 
cyclotron resonance experiments and OPW calculations. Their result is 81 So = 0.85 
while DHEER [19] found S/S o = 0.93 from measurements of the anomalous skin 
effect. ASHCROFT and LAWRENCE [20] got S/So = 0.81 in a calculation for indium. 
The quantity Nx>s(0)INte(0) has been estimated by MCMILLAN [9] from a knowl­
edge of Debye temperatures, superconducting transition temperatures and the 

- s(T)ys(273) 
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electron effective mass enhancement due to electron-phonon interaction. The 
values of S/Sq and iVbS(0)/iVfe(0) used in this paper are given in the Table. 

We have compared Eq. (6) with experimental values for the resistivity at 
T = 273 °K to find a value for 1 — cos 0. The result is given in the Table. 
Experimental values are taken from HOLBOEN [21] (Pb), GOLOVASHKIN and 
MOTULEVICH [22] (Pb), SWENSON [23] (In) and GUETHS et al. [24] (Sn). For 
indium and tin the values used here are averages, as these metals are anisotropic. 
CHAMBEKS considered his value of SjSo for lead to be too low. We suspect that the 

value for tin is also too low, so we give an alternative value of 1 — cos 0 based 

on SI So = 0.5. It is very satisfying that 1 — cos 0 then comes out with a reason­
able value for all three metals. We recall that other calculations of q often are in 
error by a factor two or more. 

Table 

element valence ^bs(0)/^fe(0) s/s 0  y • 104 

°K-i 
(?(r = 273°K)exp. 
[iflcm 

1 — cos 0 

Pb 4 0.87 0.7 2 20.4 1.1 
In 3 0.89 0.85 5 8.0 0.8 
Sn 4 0.82 0.43 2 10.7 0.5 

(0.5) (0.7) 

From the Table we see, that 1 — cos 0 is approximately the same for the 

three metals Pb, In and Sn. (The uncertainty in 1 — cos 0 is rather large, say 
10—20%, mainly because of the uncertainty in S/Sq). That the average scattering 

angle is almost the same is also to be expected, for 1 — cos 0 is the same as an 
average of g2/2A;§, (q2 = 2k\ • (1 — cos 0), see Eq. (5)). Let us assume an Einstein 
model for the phonon frequencies. As all three branches then are degenerate, 
we can choose the polarization vector éA q so that q • é ) q = ] q | for one branch 
and zero for the other branches (also for umklapp processes). The weighting 
function for q2j2k\ then is (q/2kv)3 v2(qj2ky) (cf. Eq. (1) after the surface inte­
grations have been transformed to a volume integration). The electron-phonon 
interaction v(q/2k$) has approximately the same shape for all metals [25]. It 
goes to a constant for small q and has a node just below q/2k^ = 1. As an average 
is taken, it is of course only the shape of v2 (qj2 &F) t hat is important and not the 

magni tude .  For  compar i son  we  used  th i s  approximate  method  to  f ind  1  — cos  0 
for lead. The pseudopotential was taken from ASHCKOFT a nd WILKINS [26] and 

the result was 1 — cos 0 = 0.61. This is expected to be too low as the Einstein 
model gives too much weight to the region q/2k^ J: 0.5 where high energy trans­
verse phonons are most important. It is also interesting to make a comparison 

with the value of 1 — cos 0 corresponding to the onset of umklapp processes. 
For lead this happens when 1 — cos 0 = 0.4. 

The thermal conductivity K could also be calculated in a similar manner. 
At high temperatures, however, the electron-phonon scattering process is essentially 
elastic so we have the Wiedemann-Franz law [5, 27] and there is no need for a 
separate calculation of K. The region of low temperatures is out of our reach 
for the same reason as in the case of electrical conductivity. 
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Conclusion 

Starting with results from tunneling in superconductors (i.e. inverted gap 
equations) we have followed the usual variational approach to calculate the 
electrical resistivity for three polyvalent metals, lead, indium and tin. The results 
are in very good agreement with experiments, contrary to the general findings 
in resistivity calculations. The standard theory therefore seems to be sufficiently 
accurate, at least at not too low temperatures | T , 6>D/3). 
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Abstract 

The volume dependence of the high temperature electrical resistivi­

ty has been treated in detail for lead. Volume changes caused "by exter­

nal pressure as well as thermal expansion have been considered. Experi­

ments on the volume dependence of the effective electron mass have been 

reanaiysed with an inclusion of electron-phonon interaction. Finally, 

we have found no experimental support for a net effect from a Debye-

W'aller factor and multi-phonon processes. 





1 .  

'Introduction. 

The purpose of this paper is threefold. We will try to account 

for the volume (i.e. pressure) dependence of the electrical resistivi­

ty in a detailed calculation based not on models "out on data from 

experiments on other metallic properties. Secondly, it has been con­

jectured that the Debye-Waller factor and multiphonon processes might 

cancel in the electrical, resistivity and we will therefore analyse 

this question with the help of available experimental data. Finally 

we reanalyse experiments on the volume dependence of the effective 

electron mass and take into, account the variation in the electron*-

phonon enhancement factor. We will consider lead, because of lack of 

relevant data for other elements. 

'Theory 

( 1 ̂ 
There are numerous calculations in the literature ; of the vo­

lume dependence of the electrical resistivity in metals. Although some 

of than are very elaborate, they make use of models and assumptions 

that we now know are much too crude. We will base our analysis on 

( P ) 
Ziman's'""'' well known solution of the transport problem obtained with 

a variational method; 

.. a2(ex -g.)%A k| ) 
3ïïfe ff dS dS' . > 

~ 2eW2̂  X JJ * ? } 

3. ~ K ~ kr. The integration dS extends over the Fermi surface, whose 

free area is S. Phonons of branch X and wavev ector £ have frequencies 

fc>x(ä) and polarization vectors j^.The electron-phonon interaction has 

been approximated by the form factorV( ]&\) that only depends on the 

magnitude of the momentun transfer ~ k - K*'. M is the ion mass, I 

the number of unit cells per unit volume and v and vf the velocities 
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2. 

of an electron at the Fermi surface* The rest of the quantities have 

their usual meaning. An earlier calculation of resistivities for some 
{  o )  

polyvalent metals with the use of eq. 1 was in good agreement with 

experiments and the results obtained in this paper are also reasonable, 

so we beleive that eq. (1) is accurate enough in this context. It is 

interesting to note that we could in principle make a self consistent 

treatment, if we knew how the pseudopotential changed with pressure. 

Once we had this information we could calculate échanges in the phonon 

frequencies-, the shape of the Fermi surface and the density of states 

of the conduction electrons'., but such a procedure would not only be 

very difficult but also in practise give inaccurate results. Instead 

we will use all available information to see how different parts in 

aq. 1 contribute to a change in p„ For a discussion of the volume de­

pendence it Is very convenient to consider (d Inp/d In V) and we write 

d k p 2 â ln mb 2 d 111 eR d 1x1 XR 
d In ¥ " d In V d In ¥ + d In ¥ + 1 [2) 

The first term on the right hand side of eq. 2 comes from the volume 

dependence of the band density of states at the Fermi level » i.e. 

essentially from dS/v9 and we have taken an average over the Fermi 

surface in the form of an .effective mass. We will always consider 

the resistivity at high temperatures (i.e. T » 0D) and then the pho~ 

o 
non frequencies come in as 1/üj^(cl) in the integrand of eq. 1, This 

leads to the term ~2(d In 0 /̂d In V). The phonon spectrum is different­

ly weighted in different, properties like e.g. the electrical resistivi­

ty and the vibrational specific heat. The relative frequency shift is 

not the same for all phonons and we must therefore be careful to spe­

cify which experiment we are considering. This is why we use the nota­

tion and it does not imply the use of a Bebye model or any other 

model, (d In IR/d In V) .contains the effect.of a. variation in the form 

factor . Finally there remain some terms that we assume to vary 
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3 .  

linearly with, the lattice dimension and this gives +1 in the 

right hand side of eq,. 2. We will, later consider volume changes caused 

by external pressure and "by the thermal expansion so we do not yet 

specify whether the temperature or the pressure is to be kept constant 

in the derivatives in eq. 2. 

The thermal expansion, coefficient 3 can be written 

(3/KT - (Jf) (3) 

where is the isothermal compressibility and S the entropy. At low 

temperatures the thermal, expansion of a non-magnetic metal consists 

of one contribution from the conduction electrons, which is I xs .Linear in 

T, and one phonon contribution which goes like T°. The entropy of the 

electrons is proportional to the total effective electron mass and it 

is evident from eg. 3 that a measurement of the low temperature ther­

mal expansion can give information about the volume dependence of the 

effective mass. A review of this method has been given by Collins and 

• (M 
White . A measurement .of the pressure dependence of the critical 

field of. a superconductor can in principle give the same information 

about the effective mass. At present this latter typé of experiment 

( 5 ) 
seems to be less accurate than the first method . In both cases the 

change in the total effective mass m ff is obtained. If we neglect the 

influence of electron-electron interaction, we can write 

eff ™ ^b 1 + ^ 

b "1£ 
( 6 )  

ni 

where 1 + X is the factor.by which the band mass m, is increased due 
D 

to electron-phonon interaction. For X we can write 

k2 

X 

C®x a'3) 
1 r rr ' vC'tal) ds as1, f ds t J J o, . — rr-/ j 7" v5) 

(2TT53 MHfi A Åa) v v' ' ' v 
A 

Therefore, in analogy with eq.. 2 

din m _ d Ina 
efi b X d In X 

d In V ~ d In V ' 1 + X d In V { ' 





4. 

where 

.. - , d In a 2d In 8, d In I, 
d in A _ o A 4 A 
d In V = d In V ~ " " d In V ' d In \r { ' ' 

Like in eq. 2 the term -2(d .In O , /cl In V) is the effect of shifts in 

the phonon frequencies hut now they are averaged according to eq.. 5« 

The last term., (d In I? /d In V), is the result of a change in V(q,) in 

eq. 5« The derivatives in eq. 6 are to he taken at constant tempera­

ture (cf. eq. 3). There is no à priori reason why the various hand. 

masses we have introduced should have, the same volume dependence, 

they correspondit© different averages over the Fermi surface. However» 

we do not expect them to behave in a very different way, and moreover 

this point is not crucial for any of the conclusions in this paper. 

Pressure dependence of the resistivity» 

The resistance of various metals under pressure has been measured 

( 7 ) 
by Bridgman . After taking into account that we want resistivity in­

stead of resistance, we have at room temperature end in the limit of 

/ G \ 
small volume changes (d In p/d In V)^ ~ 6,9« Fisher obtained the va­

lue 6.5, but Bridgman considers his experimental method to be somewhat 

uncertain. Throughout this paper we will use the compressibility and 

{9 ) 
thermal expansion coefficient of Gschneider * . to convert from experi­

mentally determined pressure or temperature derivatives to correspon­

ding volume derivatives. 

The phonon term (d In 0^/d In V)̂  could in principle be obtained 

from measurements of phonon frequencies in lead under pressure. The ex­

perimental uncertainties are, however, very large, and we defer a closer 

discussion, of this experiment to the later comparison between effects 

of an external pressure and of thermal expansion, The standard approach 

in the literature has been to take (d In C;L>/d In V}^ equal to the well 

known Grüneisen constant without any further justification. In appen-
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dices 1 and 2 we show that the use of yG is a reasonable approxima­

tion for lead. 

The term (d In I^/d In V) is very difficult to discuss accura­

tely. In order to make any further progress possible, we already in 

eq. 1 made the approximation with a formfactorC^g:) which only depends 

on the magnitude of the momentum transfer. In a.polyvalent metal this 

leads to erroneous results for those scattering processes where k_ and 

k! differ by a reciprocal wave vector1 On the other hand recent 

( 11 ) 
calculations by Carbotte and Dynes ', using the form factor for all 

scattering processes, has given quite good results for both lead and 

aluminium, indicating that this approximation could give a good over 

all description. There are recent measurements of the deHaas-van Alphen 

( 11| ) 
effect m lead under pressure . From this experiment, the two deriva­

tives dV^/dp and dV^^/dp of the form factor can be deduced. It turns 

out that a simple model, like Harrison's pseudopotential, gives a value 

for these derivatives which is correct in sign but too small by a fac­

tor five. The Fermi level shifts in opposite direction to what is ex­

pected from the free electron case. One must therefore be very careful 

to draw conclusions from simple models. There are several complications 

in a calculation of (d In Ip/d la V) from the de Haas-van Alphen data. 

The volume dependence of the resistivity is even, more sensitive than 

the resistivity itself to the location of the node of the form factor, 

for there is a cancellation effect from the contributions from either 

side of the node. The Fermi surface is not spherical so we are not 

strictly limited to scattering processes with (q/2kp) i 1. Experimental 

errors in the de Haas-van Alphen data and the breakdown of the form fac­

tor description at reciprocal wavevectors add to the difficulties. There­

fore we do not find a detailed numerical calculation very significant. 

Instead we use the deHaas-van Alphen data for and V?00 and their 

pressure derivatives to estimate (d In IR/d In V), as it comes from eq«1. 
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With allowance for the uncertainties mentioned we find 0.5 ~ 

S (d In Ip/d In V) ~ 3. 

Some quantities {the number of unit cells per unit volume, the 

free Fermi surface area and the length of q-vectors) were assumed to scale 

with the lattice spacing. One can have some doubt about this point, for 

the de Haas-van Alphen measurements mentioned gave a net change in the 

cross sectional area for some orbits that was twice that which would re­

sult from a pure scaling. However, we do not believe that the considered 

orbits are typical for the average behaviour of the Fermi surface. Remem­

ber that the number of electrons per unit cell.is constant, so the Fermi 

surface encloses a constant volume in the reciprocal space. 

For the remaining term (d .In rn^/d In V) we have no.reliable in­

formation, We will therefore assign to it a value which makes eq. 2 hold. 

The result is summarized in.the table. The errors given are somewhat ar­

bitrary. They only serve the purpose of indicating which terms are best 

known, and the order of magnitude of the uncertainties. We will comment 

on the results in the next section. 

Pressure dependence of the .effective mass. 

The value of (d In mp^/d In V.)^ obtained from measurements of 

(il) , , 
the low temperature thermal expansion ofr lead is 5.0 - 0.5. The va~ 

( 6 )  
lue of X for lead has been obtained by McMillan and Rowell from tun­

neling experiments in superconductors. They find X = 1.5« The term 

(d In /d In V)̂ , will be set equal to ~fn . See the appendices for a jus­

tification. Finally we make an estimate of {d In X^/d In V) analogous to 

that used for the resistivity. In fact the only difference is an addi-

2 . tional factor q m the integral for p as compared to the integral for X ,  

Proceeding in the same way as for the resistivity we have estimated 

1 ~ (d In I^/d In V) 5 3. 

Several interesting conclusions can now be drawn. Although 
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(d In i/d In V) Is very uncertain, it is so doubt that it is positive 

and can toe quite large. ïhe experimental results for (d In p/d In V) ,̂ 

and (d In m ̂ /ct In .V) then both require that (d In m^/d In V) is ne­

gative and not very small in magnitude. The band mass is closely rela­

ted to the form factor so it is natural that a strong volume dependen­

ce in one of thera also leads to a strong volume dependence in the other. 

For a long time it has been thought.that shifts in the phonon frequen­

cies give the essential, contribution to (d In p/d In V) in simple me­

tals, Our analysis shows that there are other Important contributions 

in lead but that they come in with opposite signs and almost cancel, 

lonlinear temperature dependence of the resistivity. 

As the temperature is increased, the resistivity will increase 

due to the explicit temperature dependence as it appears in eq. 1 » but 

there will also be an additional effect coming from changes in the other 

quantities in the same relation. This additional variation will be very 

similar to the volume effect at constant temperature discussed above. 

At high temperatures the explicit temperature dependence gives a linear 

increase in the resistivity. For lead at room temperature there still 

remains a.small correction to this linear behaviour from the exponen­

tial terms, but this correction can easily be estimated if the phonon 

spectrum is approximated by two Einstein peaks that are given the weights 

found in appendix 2, The so evaluated explicit temperature dependence is 

subtracted from the measured temperature coefficient for the resistivi­

ty. The rest can conveniantly be expressed in the same form as eq. 2 if 

we only remember that the experiment is performed under constant pressure 

instead of constant temperature, i.e. we consider (d lnp/d In V}p and 

therefore (d In 0̂ /d In .V) should,contain both a volume effect and an 

additional purely anharmonic effect (cf appendix 1). The rest of the 

terms In eq. 2 come only from the thermal expansion of the lattice. There 
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are, however, some other differences as compared to the pressure effect 

at constant temperature. In our starting formula , eq. 1, we have not 

included any Debye-Waller factor or multiphonon scattering processes. 

These two effects come in with opposite signs.and it is still an open 

( 13 3 question, whether they cancel exactly or not '. If they do not cancel, 

we can tentatively include them with an additional multiplicative factor 

exp (~aT) in eq,. 1, leading to a term -al(d in T/d In V)p in eg.. 2. Simple 

(13) 
estimates show " that any of the two effects considered separately gives 

a contribution to (d In p/d In V)p which can be even larger than that 

coming from the thermal expansion, so it is not a small correction we are 

discussing. As the temperature is raiseds there will also be an increase 

in the resistivity due to thermally created lattivë imperfections. It has 

( 1 k ) 
been.shown experimentally ' for lead that such effects are negligible 

at room temperature. 

From resistivity measurements we have calculated (d In p/d In V)p 

( 35) 
at room temperature and find k.-5 (Holborn ),. U.7 (Leadbetter, lewsham 

( il;) ( -jg) 
and Picton ' ) and 5.0 Poehapsky " j. As. an average we take 

(d In p/'d In V)p - it. 7 - 0.3. It should be remarked that this .value stays 

constant within 10 % up to.about 500°K. There is a significant difference 

(d la p/d In V}rp - (d In p/d In V)p = 2.2 Î 0,6 which can come from the 

fact that (d In 0p/d In V)r̂  and (d In ©p/d In V)p are not equal, but also 

from a Debye-Waller factor and multiphonon processes. We first consider 

phoxion shifts. The electrical resistivity is a scattering phenomenoaLTher©-

fore data from inelastic neutron scattering at different temperatures 

could give us the correct shifts , to be used in (d In 8 ,̂/d In V)p, Such 

(IT) 
experiments have been performed by Stedman, Almqvist and lilsson , 

{ n Q \ 

and also by Brockhouse et, al. . The two sets of data agree within 

experimental uncertainties. There is also a general agreement with spe™ 

. . (19) 
cific heat measurements on lead by Leadbetter . 

In fig. 1 we summarize som experimentally determined 



. 
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Y se (i in as /à Is. V)_ for the longitudinal and transverse branches in 
4 i 

the f) 00] -direction. Other 'branches and directions show a similar "beha­

viour.. In the same figure we include the corresponding values 

(2o) 
Y ~ t'd In w /d In V obtained by Quittner and Lechner * ' from neutron 
Ql S 'x 

scattering experiments under pressure. We also give points from tunneling 

experiments in superconductors under pressure by Zavaritskii, Istkevich 

, . - ( 2 1 ) .  (  ' " > 2 .  )  
and "Foronovskxi " and Frank and Keel.er ' , la tunneling experiments 

one can measure the location in energy of the mn Hove singularities in 

the phonon spectrum. The resolution in the tunneling experiments is not 

very good, and the points in fig. 1 represent some average of the shifts 

in the van Hove singularities for the .longitudinal branch. Therefore this 

method is not useful for our purposes, although it is an experiment that 

is much easier .to perform than, inelastic neutron scattering under pressure. 

Even though the experimental uncertainties are large, it is evident that 

the relative frequency shift varies considerably with the wave vector 

and it would be very misleading to base an analysis on shifts in the elas­

tic constants. The shifts in the pressure experiments (i.e. a pure volume 

effect) are in general larger than the shifts obtained when the lattice 

expands under constant pressure. Theoretical calculations confirm these 

{22 ) f ! 7 
conclusions *" . From Stedman et al." \ 1 ve estimate (d In 8-,/d In V)p ": 

= 1.H ± 0.-5 - We have then given ail modes equal weight, just as for the 

high temperature .y This leads to a difference 2{d In 0^/d.In ¥),,, -

2(d In 0R/d In V)p « 2.7 | 1 while (d In p/d In V)T - (d In p/d In V) » 

= 2.2 ± 0,6» The non-linear temperature dependence of the high tesapera-

ture resistivity in lead can thus be naturally explained as the effect 

of thermal expansion and a shift in the phonon frequencies of purely an-

harmonic origin without any net effect from a Pebye-Waller factor and 

multiphonon processes, 
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Conclusions« 

We have treated the temperature and volume (pressure) dependence 

of the high temperature electrical resistivity of a simple metal (lead) 

in considerably more detail than has been done 'before. We have 'been for­

ced to make a lot of approximations5 and the quantitative results should 

not be taken too seriously. However, the following qualitative results 

hold « 

(i) It is veil know that the volume dependence of the resistivity, 

(d In p/d In V)m is in quantitative agreement with 2tg* Y Q "being the 

standard Grüneisen parameter which describes the volume dependence of 

the phonon.frequencies. This approximate agreement holds also for lead, 

and it has therefore been.thought that the volume dependence of the resi­

stivity in this metal is essentially due to shifts in the phonon frequen­

cies. We have found that there might be considerable contributions from 

shifts in the electron.density of states at the Fermi surface and in the 

electron-phonoa interaction described "by the form, factor, but these two 

effects come in with opposite signs and happen to almost cancel,. 

(IS) 
(ii) Sham and Ziman l£~ have suggested that one should look for a non li­

nearity in the high temperature electrical resistivity to see if there 

is any net effect from a Debye-Waller factor and. the opposing multiphonon 

processes. In addition to the effect of thermal expansion we find a non-

linearity whichs however s agrees both in sign and magnitude with the 

effect of purely anharmonic shifts in the phonon frequencies, 

(i ii) Finally we have reanalysed experiments on the volume dependence of 

the effective electron mass. In the literature on this subject it has not 

been recognized how large the electron-phonon enhancement of the mass is 

for lead. When we take this fact into account, we find that the band mass 

decreases when the lattice expands, instead of a supposed increase. 





11. 

Acknowledgement. 

Grants from Statens Råd för Atomforskning (G.G.) and Natur­

vetenskapliga forskningsrådet (C.L.) are gratefully acknowledged. 





12 ,  

Appendix 1. 

{ 2h ) 
We follow Cowley and Cowley and write for the phonon frequen­

cy tu as measured e.g. with inelastic neutron' scattering 

<o(a,A) - a)o(£,A) + A^jgt.X) + Å^X) + „ (AI ) 

The three last terms represent enharmonic corrections. å.. takes into 

account the effect of thermal expansion. àn and å-, represent purely anharr 

mohic effects» they originate from the third and fourth order å«riv»tives 

of the effective interatomic potential. At high temperatures A0 and âQ are 

linear in T and they aie also .volume dependent. The standard Grüneisen 

Y(j can he expressed in the isothermal .compressibility and the thermal 

expansion coefficient g» but .also as a derivative of the entropy 

V c ^  : =  c r  ^ 3 v " % ?  -

Cowley.and Cowley find for the volume dependent part AS of the entropy 

48- - S r. Jç 
3k*X 

(_g_)/kT 
e -1 i 

rA1(a,X)+A2{a,X)+A3(£,X)] (A3) 

Therefore the high temperature %'Q measures the average of the relative 

volume dependence of the phonon frequencies 

.j 3N 
Yg « ~ Z (d In t /̂d In V)T (Ah) 

i~l 

The result above is valid when T 2 e "but it only-represents the lowest 

correction and must not be used at higher temperatures where the frequen­

cy shifts are more complicated and the frequencies less well defined be-

( 19) 
cause of damping effects, Experiments on lead by Leadbetter suggest 

that the range of validity for lead is ©D S I - 39p (0ß » 90°K). From the 

measurements of Leadbetter we find Yq(2T0°K) = 2.7 -and we use this value 

for (d In 6g/d In V) .̂ (cf. appendix 2) (d In S /̂d In V)̂ , refers to very 

low temperat lures but the weighting of different modes is the same as for 

the high temperature ŷ . At low temperatures' Ap and A^ .are small (although 

not zero). This fact leads us to consider calculated without the terms 





A2 and â3> and at crystal volume VQ ~ V(T » Q). Leadljstter gives the 

value 2,7 for this quantity said we thus have (d la Ô,/à la V) » 2.T 

(cf appendix 2)» 
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Appendix 2. 

From tunneling experiments in superconductors one can obtain a 

quantity a (w)F(w) 5 giving the product of the strength of electron-

2, 
phonon interaction a"(u) as a function of energy,and the phonon density 

of states F(w). Using this function, it is possible to rewrite eq. 1 

. . . (3I 
for the electrical resistivity in the form ~ 

P ÎÎ ( Ö ) - , p 
. _ /S v" bs W ( 1- cos 0) t a!"(w) F ( ù>'). uidcu , 

~  K ^ A s  < a 6 )  

where S/Sq is the ratio between the true free area of the Fermi surface 

and the area in the free electron case. Nts(o)/Nf (O) is the corresponding 

ratio for the density of electron states at the Fermi level. 1-cos 0 de­

notes the average of the usual factor 1-cos 9 that enters expressions for 

the resistivity. This factor has been rewritten in eq. 1, using 

q = 2kp (1-cos 0 ) .  Let us now make the assumption that 1-cos 0 is approxi­

mately the same if it is considered separately for transverse phonons and 

for longitudinal phonons. In a polyvalent metal, where the resistivity 

is totally dominated by Umklapp scattering, this should be a reasonable 

approximation. We then take the high tempenature limit of eq. A1 and find 

that the relative importance of phonons of energy oj in the resistivity 

2 is given by a (<u ) f ( w ) / w .  

In the high temperature Grüneisen y , all individual y (<3.,  A) are 

equally weighted 

yG = / F{m) y(ai) dw » -| yT + ~ yL (A?) 

where y(10) is an average over all individual phonon modes with energy in 

Qo, w+ dwj. y^ and y^ are averages for the transverse and longitudinal 

branches. For yR = (d In 0R/d In V) we could write 

2/ 
LJ 

'R ~ 1 u 

r, , , ( 6 )  

r a (w)F{oj) -, N -, , 
v _ j —y-i.— Y(u) (a.8) 

The function a (u)F(oj) . has been obtained by McMillan and Rowell . It 

2 
turns out that a (u>)/tu does not vary very much with u> in the region of 



. 



15* 

typical phone® energies. From a study of the experimentally determined 

2 
a "(a>)F(«)/w we hare found it reasonable to take 

Yr 55 f Vy + I vL 
(A9) 

The individual y(^,X) can vary very much vi t h c[, "but the general behaviour 

is the same for the transverse and the longitudinal "branches (fig, l). 

Therefore Yq should not be too had as an approximation for y-^« 

If we make a series expansion in the denominator of eq. 1, the 

first non-vanishing term gives a linear temperature dependence for the 

resistivity at high temperatures. The small correction for lead at room 

temperature from higher order terms can easily he estimated if we approxi-

mate a (w)F(<a>)/u> by two sharp peaks at characteristic transverse and longi­

tudinal frequencies and give them weights in the ratio 3:1 (cf eq. A9). 

(6) 
We.finally turn to (d In 0^/d In V)p. One has rigorously J> 

X = 2 / slSSMSÏ to (A10) 

We therefore have approximately the same weighting of different frequencies 

as in the high temperature electrical resistivity. 
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Figure caption. 

Experimentally determined microscopic Grüneisen parameters 

Y(ÇL,X) for the longitudinal and transverse branch in the (l00} -direction. 

Unfillled symbols are from inelastic neutron scattering measurements by 

Stedman et al.^^ (O) and Brockhouse^^ ( ]_| ). at different temperatures 

and constant pressure. 

Inelastic neutron scattering under hydrostatic pressure by 

Lechner and Quittner 2̂0̂  (#) and tunneling experiments on superconductors 

under pressure by Zavaritskii (is) et al. 2̂̂  and Prank and Keeler^ ' (A) 

give shifts that do not contain any explicit anharmonic effects. Typical 

experimental errors are indicated by the error bars. 

Table. 

Calculated contributions to the measured values of (d In p/d In V)j, 

and (d In ^ĝ /d In The, value of (d In l/d In V) is very uncertain 

but it is positive and large, (d In m^/d In V) has not been calculated 

but has instead been given a value to make the relations above hold. The 

errors given for the rest of the quantities are somewhat arbitrary and 

serve the purpose of indicating which terms are best known. 
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