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Introduction

This summary is intended to give a background to, and an exposé of
the main ideas in the thesis. The problems dealt with concern some of the
most fundamental properties of metals, like the electrical conductivity
and the heat capacity. Attempts! at a theoretical treatment date back
to the beginning of this century. Drude (1900) suggested that a metal was
built up of ions surrounded by a gas of conduction electrons. With this
model one could explain e.g. the Wiedemann-Franz law for the ratio
between the electrical and the thermal conductivities (although by a wrong
argument), nevertheless it was still difficult to understand some features
of conduction phenomena. One of the unsettled problems in physics at
that time was the deviation of the lattice heat capacity from the classical
result (Dulong-Petit’s rule). Einstein (1907) used Planck’s rule of quan-
tization to describe the motion of the atoms as that of independent harmonic
oscillators with discrete energy levels. Born and von Karméan (1912) by
introducing force constants between nearest meighbour atoms obtained
solutions to the classical equation of motion in the form of propagating
waves with quantized energy. In the same year Debye published his
theory for lattice vibrations viewed as elastic waves. With these rather
crude concepts one could find working models to describe some metallic
properties. Quite naturally, several severe discrepancies remained as the
models were based on classical physics with the addition of Planck’s rule
of quantization.

The basis of modern solid state theory is of course quantum mechanics
as it was developed around 1930. Many important qualitative results
could be derived simply from the periodicity of the lattice. Nevertheless
some phenomena remained unsolved. We can only think of superconduc-
tivity that was discovered in 1911 but not explained until the appearance
of the BCS theory in 1957.

For some twenty years, solid state physics has been in a period of very
rapid progress. Several new physical effects have been discovered and well
known properties have been measured with a very high accuracy. The
theory of solids has undergone a similar development. New mathematical
methods are used for the description of large systems of interacting particles.
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Many important qualitative results have been obtained and the computer
technique has enabled calculations on real systems.

One purpose of the thesis is to show how the modern theory is used
in accurate calculations of measurable properties for some metals. Before
we enter into details, it can be interesting to see how well the theory can
explain experimental results. We must distinguish between calculations at
ditferent levels of sophistication. In an ab initio caleulation we start from
fundamental parameters like the atomic number, the mass of the particles
and the lattice spacing in equilibrium. This is, however, not the usual
approach. We can often get a much better understanding of the physics
if we set up a model that gives simple relations between many different
properties. Experimental results for some of these properties can then be
used to predict the result for others. This is the level of most of our cal-
culations. We can also use ad hoc models with a few adjustable parameters,
which sometimes do not have any meaningful physical interpretation.

This thesis is limited to a consideration of so called simple metals, i.e.
metals with conduction electrons that can be described as an almost free
electron gas. Typical examples are the alkali metals, lead and aluminium.
The table below gives some idea about the accuracy one can obtain in
theoretical calculations for these elements.

Typical deviation from

Caleulated property experimental results
Electrical resistivity (room temperature) 20-409,
Electronie specific heat, cyclotron resonance frequency 5-159,
Phonon spectrum, elastic constants
(ab initio calculation) 20-409,
(d:0 ad hoc model) 5-109,

Lattice vibrations

Experiments

For a long time, accurate experimental values for the phonon frequencies
w(q) could only be obtained in the limit of long wave lengths (small q),
where the frequencies are simply related to the elastic constants. More
detailed information can be obtained from diffuse scattering of X-rays
and inelastic scattering of electrons or neutrons. With neutron scattering,
it is often possible to determine w(q) for arbitrary g-values with a relative
accuracy better than a few per cent.
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For elements that are superconductors, there exists quite a different
method to obtain information about the phonon spectrum, see paper A.
The tunneling current I of electrons into a superconductor biased with a
voltage U, depends on the effective interaction between electrons and
phonons, i.e. on the strength of electron-phonon interaction a%(w) times
the phonon density of states F(w). The tunneling current I, or better
d*I/dU2, will show structure at the van Hove singularities in F(U) (see
fig. 1).

d*I/4du

Fig. 1. The second derivative d®I/dU? of the
tunneling current into a superconductor biased
with a voltage U shows a characteristic structure
at the singularities in the phonon density of
states F(w). The energy scale in d*I/dU? is given
a constant shift to make the comparison easier.
From measurements of the tunneling current I,

1 1 | &
O 2 4 6 8 10 one can calculate the effective electron-phonon

interaction o*(w)F(w) mediated by phonons of

W [me\/] energy w.

McMillan and Rowell have developed an ingenious method to start
from measurements of I(U) and its derivatives and by an iteration procedure
solve a pair of coupled integral equations that describe the superconducting
state. From such an analysis one obtains the effective electron-phonon
interaction in the normal state o®(w)F(w), mediated by phonons of energy
w. The shape of a%(w)F(w) closely resembles that of the phonon density
of states F(w) as shown in fig. 1.



Theory

The calculation of phonon dispersion curves is one of the main problems
in solid state theory. Generally the neutron scattering experiments are
carried out only for q in symmetry directions. To find the density of states
F(w), one must have some model that is capable of reproducing the results
in the symmetry directions and hopefully is good also for interpolation
to an arbitrary q. The standard method, still in use, is that of Born and
von Kérmén. Force constants are introduced between a few nearest neigh-
bour atoms and they are determined by fitting to the experimental curves.
Unfortunately this method is unphysical for metals, where the concept
of force constants does not have much meaning. The interatomic forces
are very complicated and of quite long range. In a realistic treatment
for simple metals, with small ion cores and free electron like conduction
clectrons, the total frequency can conveniently be written (for q in sym-
metry directions) Q)= (@) — o (@) )
The term wj comes from the direct ion-ion interaction between point
charges, and it can easily be calculated. The whole trouble comes from
w;, that describes the ion-ion interaction mediated by the conduction
electrons. The two terms are often of the same order of magnitude, and to
really make things worse, wf, is in turn the difference between two large
terms. In paper A, the lattice dynamics of lead-thallium alloys is investigated
theoretically and correlated with tunneling experiments (cf. fig. 1).

In symmetry directions, the atomic displacements are either strictly
longitudinal or transverse to q. This is usually not the case for q in arbitrary
directions, not even in the sound wave limit. As a measure of the anisotropy
one usually takes (for cubic structures)

8=(C;;—Cya)/(2¢44) (2)

¢;; are the elastic constants. If s=1, then the long wavelength vibrations
are always strictly longitudinal or transverse. The sound velocity of the
longitudinal branch is isotropic, as is also that of the degenerate transverse
branches (T,, T,). The anisotropy index s differs widely also for simple
metals. We have sy,=0.14, s,,—0.82 and s,,=0.25. This fact can be given
a simple explanation. Using eqs. 1 and 2 we can alternatively write

s:lim[w§(11o;'r2)—wﬁ,(110;'1‘,)]/[wﬁ(uo;T,)—wfe(no;T,)] (3)
q=>0

The ion-ion interaction alone would lead to a strong anisotropy, which
only depends on the lattice type (fee, bee). For sodium, with only one
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conduction electron per atom, wj, is small and it is natural to find aniso-
tropy. For polyvalent metals like lead and aluminium, wf and f, are
of the same order of magnitude and s is therefore very sensitive to details
in the electron-phonon interaction. We therefore conclude that anisotropy is
the normal behaviour and the fact aluminium is albmost isotropic is only
accidental.

In paper B we show that s is in fact not a very good measure of anisotropy.
Instead we introduce a new index of anisotropy, A, defined by

A=cyy/(e;a+204,) (4)

When s—1 we have also A=1. Let & (max) be the maximum angle between
the direction of atomic displacements & (q) and the corresponding wave
vector q for the ’longitudinal’ branch. We have calculated & (max) in
the limit of small |q| for all cubic elements (paper B). Fig. 2 shows that
oy (max) is simply related to A but not to s.

O (max)| | Omax) |
2 ° | > /- o L = . J
Y ] B sl _
10 il T 10PN -
O- —e e 3 4 & < Oo R R el IR o ST ot ST O
0O 01 02 03 04 1-A 1 5 10 115

Fig. 2. «; (max) gives the maximum angle between the direction of the atomic dis-

placements & (q) and the corresponding wave vector q for the ‘longitudinal’ branch

in the limit of small q. The circles refer to elements with cubic structure. s is the con-

ventional anisotropy index, 8= (¢;;—C;s)/2¢4;. A is our new index, A=c,;/(cyy+2ey,).
Tt is evident that A is a better measure of the anisotropy.

Electrons from a many-body point of view

In this section we discuss results for the electron self energy and the
spectral function. This is the central part of the thesis, but we will here
be rather brief because of the formal nature of the subject. Experimental
consequencies are considered in the following sections.

The self energy M .y _ .,

For a free particle, the total energy is just the kinetic energy e(p)=p?*2m.
The interaction between electrons and phonons leads to a correction, the
electron self energy M, _,,. The kinetic energy is a function only of the

7



momentum p. The self energy M,,_,, on the other hand turns out to be
almost independent of p, but depends strongly on the energy and the
temperature, Mg,_ =M _,u(w; T). M,;_,, is a non-real function that
depends in a complicated way on details in the electron-phonon system.
It was first calculated by Engelsherg and Schrieffer for very simplified
models. In paper C we have made a very detailed calculation of the self energy
Mo, Jor a real metal (sodiwm). The result for T=0 is given in fig. 3.

LSk Im
O4F
B
0.2} =
O01r

1 1 1

units: 10" rad /sec

Fig. 3. The real and imaginary parts of the electron self energy M,y pp(w) caused by
interactions with phonons. The curves are for sodium at T=0°K. wp=2.1x10%
rad/see. The frequency ¢ is counted from the Fermi level.

These curves are typical in shape for metals. Note that Re M, _ ;, is different
from zero only in a marrow range of a few phonon energies around the
Fermi level. In the foregoing section it was mentioned that tunneling ex-
periments in superconductors could give very accurate results for the
effective electron-phonon interaction a*w)F(w) with the phonon energy
as variable. This information is extremely useful in a calculation of M, _
at finite temperatures, because energy is the variable that enters the sta-
tistical Bose-Einstein and Fermi-Dirac factors. In paper F, we have used
data from tunneling experiments to calewlate the self energy M, _ .y, for lead
and mercury.
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The spectral function A(p, w)
Once we have calculated the self energy M, we can form the spectral

function A(p, w) defined by

1 [TmM|

7 [w—e(p)—Re M- [ImMJ?

(5)

For a non-interacting system, i.e. with M infinitesimal, A(p, w) simply
becomes the delta function §(w— e(p)). This corresponds to the fact that
a free particle with momentum p is in an exact eigenstate of energy w=«¢(p).
When interactions are included, the sharp peak in A(p, w) broadens (corre-
sponding to a decay of the eigenstate) and also shifts in energy. Typical
plots of A(p, w) are given in fig. 4. The area under A(p, w) is constant

Ale,,w)
€ “r=2 €~ }JF=8 i

y e
-10 0 10 w -10 10 w
unit for w:meV
4a 4b

Fig. 4. The spectral function A(p, w) for lead at two values of p (or rather two values

of €M) and at T=0°K. In fig. a, there is a sharp peak at w,=0.8 meV, representing

a quasi particle. The area under this peak is 409, of the total area under A(p, w).

This sharp and well defined peak disappears when the temperature is raised (the

dotted curve in fig. a is for T=11°K) or when e,—pp becomes comparable with
typical phonon energies (fig. b).

(=1). At low temperatures and in the vicinity of the Fermi level uy,
Im M, _, is small and Re M, __, depends linearly on the energy. It there-
fore follows that A(p, w) has a peak at an energy w, given by

woz[G(P)—HF]/(1+/\e|—ph) (6)

if e(p)—py is small compared to typical phonon energies and the tempera-
ture is much less than the Debye temperature. A, _,, is the slope of
—Re M, _,, at the Fermi level. It is this peak that appears as a sharp
line in fig. 4 a, and it represents what we call a quasi particle. It is no
longer well defined when the temperature is raised (fig. 4 a) or e(p)—pup
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is comparable to typical phonon energies (fig. 4 b). It is only at low ex-
citation energies and at low temperatures that it is meaningful to talk
about a quasi particle. From eq. 6 we see that the quasi particle density
of energy levels is increased by a factor 1A, _, over the free particle
density of states.

The electronic specific heat

The low temperature electronic specific heat for a non-interacting
electron gas is proportional to the density of states at the Fermi level.
It takes the same form when many-body effects are included, but is
then proportional to the quasi particle density of levels. The result of
a specific heat measurement is often given in the form of an effective
electron mass, and we have

merrzmb(1+/\e|—ph) (7)

m, is the effective mass when band effects and electron-electron inter-
actions are included but no electron-phonon many-body effects.

As an example we give the results for sodium. Band effects are negligible.
Hedin(?) has found that electron-electron effects give m,=1.04 m,, where
m, is the mass of a free electron. In paper C, we find A ,_,;—1.19 and
thus m,;=1.24 m;. The experimental result(®) is m ;=(1.24--0.02) m,.
The enhancement factor 14-A,,_ ,,—1.19 for sodium is typical in magnitude
for the alkali metals. The strong coupling superconductors lead (A, ,,=1.5)
and mercury (A, _,,=1.6) have unusually large enhancement factors.

We have already mentioned that we can only talk about a constant
quasi particle density of levels at very low temperatures with only low
energy excitations involved. Therefore we expect deviations from the linear
behaviour of the electronic specific heat C_, as the temperature increases. A
formula for C,, valid at arbitrary temperatures has been given by Prange
and Kadanoff without any really strict proof. In paper F it is shown that
their result follows rigorously from a Green function formulation of the thermo-
dynamsic potential of the coupled electron-phonon system. Let us write

Co=[yo+r(DIT (8)

In the limit of low temperatures we have y;(0)=A _ .y, In paper D,
we caleulate y,(T)[y,(0) in an Binstein model for the phonons and in paper F
we give accurate results for lead and mercury. The result for lead is given
in fig. 5. It is seen that only at very low temperatures and at T2 0g/3 is
C,, linear in T. At high temperatures there are, however, no electron-

10



10

05

¥,(T)/¥%,(0)
1 e ———— ,-

1 1

0 25 50 75 TIKI

Fig. 5. The electronic specific heat can be written Cg=[y,+v,(T)]T. The figure shows

the normalized quantity y,(T)/y,(0) for lead. y,(0)= L.5y,.

A(T)[A(0) is the normalized slope at the Fermi level of the electron self energy Mg;_ ;.

At very low temperatures, the cyclotron resonance effective electron mass can be
written m,¢e=m,[1+X(T)]. The curve is for lead. A(0)=1.5. 8,=90"K.

phonon renormalization effects left. ky0p is a typical energy transfer in
the electron-phonon interaction (cf. the quantity a*(w)¥(w)). The tempera-
ture at which y,(T)/y,(0) has its maximum is about 6./8, no matter which
metal we consider. The reason why the characteristic feature of C,, has
not yet been verified is that it is swamped by the lattice specific heat.

In papers E and F we suggest a possible experiment to verify the non-linear
temperature dependence of C,,. One can measure the total specific heat in
the normal and in the superconducting state, i.e. with and without a
magnetic field. The electronic contribution is very different in the two
states, but the lattice part is practically unchanged. In this way, the elec-
tronic contribution can be isolated. Nevertheless this experiment lies at
the limit of what is possible at present.

At high temperatures C,, has to be distinguished from effects of lattice
anharmonicity. The latter contribution is also linear in T, but can be
estimated from measurements of phonon frequency shifts with inelastic
neutron scattering at different temperatures. Very recent high tempe-
rature specific heat measurements on lead(?) show a much better agree-
ment with neutron scattering data if C,, is linear in T but with no elec-
tron-phonon renormalisation effects.
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Cyclotron resonance

We specifically have in mind the Azbel-Kaner cyclotron resonance,
but the amplitude of the de Haas-van Alphen oscillations is affected in a
similar way. The cyclotron resonance frequency w, is modified by electron-
phonon many-body effects. We can write

- eH )

m,¢eC

where m_; is essentially the band mass enhanced by electron-phonon
interactions,

mee=my(1+Ag - pp) (10)

In the limit of low temperatures we find the same effective mass enhance-
ment from measurements of the electronic specific heat, the cyclotron
resonance frequency and the de Haas-van Alphen amplitude. We are
restricted to low temperatures because of the condition w_ 7>1. Therefore
we consider excitations at energies where Re M,,_ ,(w) is still linear in
w and Im M, __, is small. However, Re M_,_; is explicitly temperature
dependent. We have shown that at finite but low temperatures, the resonance
Jrequency is approximalely given by egs. 9 and 10 of we let A,y be tem-
perature dependent. A model calculation of A(1') is given in paper D. Accurate
calculations can be found in the papers D (Na) and E, F (Pb and Hg). In
fig. 5 we give A(T)/A(0) for lead. The temperature dependence of the eyclotron
resonance mass is a marginal effect but should be detectable with the present
technique. Tt must be pointed out that cyclotron resonance experiments
can be carried out at higher temperatures if we apply a high enough magne-
tic field. However, our calculations are valid only for low magnetic fields
(w,<typical phonon frequencies). Cyclotron resonance in high magnetic
fields is much more difficult to treat, especially if we want to go beyond
simple model calculations.

Transport properties

The basic mechanism of the phonon limited electrical resistivity is
thought to be fairly well understood. However, numerical calculations are
very sensitive to fine details in the electron-phonon system and they often
give poor results. The resistivity depends on the effective interaction
between electrons and phonons but also involves a geometrical factor
1—cos # that makes large angle scattering most effective. Now recall that
the effective electron-phonon interaction in all its details could for some
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elements be determined from tunneling experiments. In paper G we show
that the electrical resistivity can be wrilten in the extremely simple form

e 2 i
S—T1—oon 830 So Nbs 47mh fx' ‘(w)l‘ (w)w dw ’ (11)
N, nkTe? | [e"T_1][1—e **KT)

N¢. and 8, are the free electron values of the density of electron states
at the Fermi level and the area of the Fermi surface. Ny, and S are corre-
sponding quantities for the real system. The electron number density is
denoted by n. The price we have to pay to get the simple form of eq. 11

is that the geometrical factor 1—cos € has no counterpart in tunneling
experiments and must be taken outside the integral in the form of an

average value. For a polyvalent metal, a clever guess of 1—cos 6 introduces
a smaller error than that of a standard resistivity calculation. It is fas-
cinating that data from the superconducting state can be used to calculate
the room temperature eleclrical resistivily.

The validity of the Wiedemann-Franz law for the ratio between the ther-
mal and electrical conductivities is well established at high temperatures,
so the thermal conductivity need not be treated separately in this limit.

Effects of external pressure

Some experiments are very rich in information. Using e¢yelotron resonance,
to take one example, one can map out the Fermi surface in great detail.
Resistivity measurements on the other hand just give a single number.
Measurements under pressure, i.e. at different lattice spacings, are impor-
tant as they give an additional degree of freedom. In paper H we consider
the pressure dependence of a large variety of metallic properties. The main
emphasis is on the high temperature electrical resistivity of lead. 1t is shown
that the volume dependence of the phonon frequencies gives the most
important contribution the pressure dependence, but there are also other
effects that are not negligible. The thermal expansion leads to effects
similar to those of external pressure and is also considered in paper H.

Multi-phonon scattering processes and Debye-Waller factors are always
neglected in standard calculations of the electrical resistivity. These two
effects come in with different signs, and it is still an open question how
well they cancel. A remaining net effect would give a non-linear temperature
dependence in the high temperature electrical resistivity., However, the
measured temperature coefficient of the resistivity for lead is in quantilalive
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agreement with the standard theory if allowance is made for the thermal ex-
pansion and purely anharmonic shifts in the phonon frequencies.

Concluding remarks on effective electron masses

We have seen that the standard formulas for the specific heat, and
the cyclotron resonance frequency can be used at low temperatures if the
electron mass is enhanced by the factor 14-A,,_ ;. There are other formulas,
like that for the electrical resistivity, which also contain the density of
electron states at the Fermi level or, equivalently, the effective electron
mass. In this latter case there should be no extra factor 1+4A,;_,, and the
reason is that not only the density of states but also the wave function
is renormalized and these two effects exactly cancel. Prange and Kadanoff
and others have considered the effects of electron-phonon interaction in
some detail. In the table we quote the results for some properties and
indicate whether the effective mass that occurs in the corresponding
formulas should be renormalized or not.

Mass renormalization from

Effect electron-phonon interaction
Specific heat yes
Cyclotron resonance frequency (Azbel-Kaner) yes
de Haas-van Alphen amplitude yes
Thermal and d.c. electrical conductivity no
Pauli spin paramagnetism no
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Abstract — Electron tunnelling into superconducting f.c.c. lead—thallium alloys has been carried out
in the homogeneity range 0-70 at.% Tl in Pb. The half energy gap, A,, decreases tfrom 1:35 meV for Pb
to 0:5meV for Pby.,;Tly.;. The ratio 2A4/kT, is reduced from the strong-coupling value of 4+4 to the
weak-coupling value 3-5 at about 60 at. % Tl. The anisotropy in the energy gap remains up to about
15% Tl in Pb. A diminishing deviation of the experimental d//dV vs. V curve from the BCS one, a
lower T, with higher T1 content, shifts in phonon frequencies, and trends in published neutron diffrac-
tion data show that the electron-phonon coupling decreases with the number of valence electrons per
atom. The phonon induced structure in the tunnelling curves agrees well with phonon spectra from
neutron diffraction work by Stedman er al. and Ng and Brockhouse. The longitudinal peak is shifted
towards higher frequencies as the coupling grows weaker. The frequency band of transverse modes
broadens as the number of free electrons decreases. A theoretical model was tried to account for the
changes in the transverse phonon branches. It was possible to get a qualitative agreement, but the
result was unreasonably sensitive to small changes in the form of the pseudopotential or the electron

screening.

INTRODUCTION
AN IMAGE of the phonon spectrum of a
material can often be obtained via tunnelling
measurements. The method has been par-
ticularly successful for strong-coupling
superconductors (i.e. where the coupling
between the phonons, which are to be studied,
and the electrons, the probe, is strong). Let
us consider electrons injected into levels well
above the gap energy in a superconductor.
By the emission of a phonon, an electron can
be scattered to a level close to the energy
gap, where there is a high density of available
states. As energy is conserved, the transition
rate must depend on the number of phonon
states with matching energy as well as on the
strength of the electron-phonon coupling.
The injected quasiparticles thus have a finite
lifetime which results in an imaginary con-
tribution to their self energy. The real part of
the self energy is also changed. The gap func-
tion becomes complex and energy dependent
and as the tunnelling current depends on the

gap function we will obtain structure in a
recorded tunnelling characteristic. If we
record not only the current vs. voltage
behaviour but also its first and second
derivatives with respect to voltage, the
deviations from the expected BCS curves are
magnified considerably.

Structure from the phonon spectrum has
been seen in tunnelling characteristics for
several superconducting metals[1]. Theo-
retically, the situation is well understood[2].
From recorded d//dV vs. V curves it is even
possible to obtain the phonon density of states
(multiplied by an electron-phonon coupling
strength) with respect to phonon energies[3].
Here, we report results from tunnelling into
superconducting Pb-TI alloys. Alloys have
previously been investigated only to a limited
extent[4,5]. The Pb-TIl system is a very
favourable one to study, since the coupling
strength in Pb is particularly large, and it is
possible to dissolve more than 85 at.% TI
into Pb and still maintain the f.c.c. Pb struc-
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ture. Hence we can study the energy gap, the
density of excited states, the electron—phonon
coupling strength and the phonon spectrum
and their dependence upon the electron
density in the range e/a=3-1-4 just by
tunnelling into these alloys. An introductory
study of the superconducting transition
temperature in the system has been published
earlier[6]. Preliminary tunnelling results have
also been reported briefly [7].

The phonon density of states can also be
studied in other ways. Neutron diffraction
gives a good and clearcut result, however a
complete mapping is time consuming and
costly. Although the superconducting tun-
nelling method does not give such a clear
result as the neutron diffraction one, and the
number of elements to be studied is limited, its
ease of obtaining information about the
phonon spectrum makes it very attractive. We
shall also compare the density of phonon
states obtained by neutron diffraction with
our tunnelling curves.

EXPERIMENTAL TECHNIQUES

Junctions of the type Al/ALO,/Pb-TI
(Alloy) were evaporated at a pressure of
< 107 mm Hg. A thin Al strip was deposited
upon a glass substrate and oxidized in dry air
at normal pressure for about 15 min. Then a
layer of the alloy investigated was deposited.
This second film had a thickness of a few
hundred A. Three junctions, with different
areas, were made upon the same glass slide.
The materials used were originally supposed
to be 99-999 per cent pure.

The boiling alloy could be heated resistively
or by electron bombardment. Pb and TI
evaporate at similar rates, hence no large
deviations inthe composition of the evaporated
film from the desired one are expected as long
as the evaporated lump is not too big. The
composition of the fabricated alloy strip
could be checked by comparing its supercon-
ducting transition temperature with that of
the bulk alloy. (The 7. of Pb films does not
differ very much from that of bulk material.)
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In this way the amount of Tl in Pb could be
established within a few per cent. The
composition of the strip agreed with that of
the original bulk material within the accuracy
of the determination.

Two of the samples (20 and 35 at. % TI)
were prepared by a flash-evaporation method.
About 10-20 A (4-8 atomic layers) were
deposited at a time. In order to prevent the
sample from warming up during this time-
consuming procedure (and hence prevent the
aluminium oxide from regrouping into islands
producing short-circuit paths), it could be
cooled by a heat sink at liquid nitrogen
temperature. The samples were generally
annealed at room temperature one day before
they were investigated.

Tunnelling characteristics were recorded by
employing standard techniques[8]. Current
(/) and di/dV vs. voltage (V) curves were
plotted on an x—y recorder when applying a
constant voltage driving source. The second
current derivative, d*//dV% was registered
by studying the harmonic frequency of an
applied sensing signal. d*//dV*> and dV/dI
vs. V curves were taken with a constant
current bias source.

The temperature during a run was deter-
mined by measuring the vapour pressure of
liqguid helium. The 1958 He* temperature
scale [9] was used for the conversion between
pressure and temperature. The junctions could
be investigated down to 1-3°K. The super-
conducting critical temperature of a sample
was established by taking di/dV vs. V
characteristics at different temperatures.
dI/dV at zero bias voltage was plotted vs.
T and this curve could then be compared with
corresponding theoretical BCS one[10].
1= T(? at [(dl/dV)s/(dl/dV)n] V=0" 1 (S and
n denote superconducting and normal states
respectively).

RESULTS

The superconducting energy gap could be
determined by comparing a set of df/dV vs. V
curves taken at several T/7, ratios with cor-
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responding theoretical curves[10]. The error
in the determination is estimated to be less
than 5 per cent, except for the highest TI
concentrations, where an unfavourable
(higher) T/T,. ratio gave an error of at least
10 per cent. The half energy gap at 0°K, A,;
T.; and the ratio 2A,/kT. are plotted as
functions of composition in Fig. 1.

directions when the electrons enjoy long-lived
states (i.e. in a pure crystal). We will hence
obtain our anisotropic energy gap. As im-
purities are added we can no longer use well-
defined Bloch states but must use combina-
tions of these with scattering taken into
account. Due to this averaging one obtains
isotropic properties. For low Tl concentra-
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Fig. 1. The superconducting transition temperature, 7,, the half energy gap at 0°K, A,

and the ratio 2A,/kT,. vs. composition in Pb-TI alloys. A, decreases faster than T,

except in the low concentration impurity range where anisotropy effects dominate. Hence

2A4/kT. is reduced from the strong-coupling value of 4-4 to the weak-coupling BCS ratio
of 3-5 at about 60 at.% TI.

The anisotropy of the energy gap is rather
well understood[11]. As both the phonon
distribution and the Fermi surface are aniso-
tropic, different electron—phonon coupling
strengths will be obtained in different crystal

tions d//dV showed no singly peaked but a
doubly peaked structure in the vicinity of the
gap energy (=A, 4;). As a measure of the aniso-
tropy we can take the difference 8(A,) obtained
by determining the energy separation of the
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peaks. In Fig. 2 we have plotted 8(A,) vs.
at.% T, and we see that as scattering centres
are added, the anisotropy decreases and dis-
appears at about 15 at.% Tl in Pb.
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e
T
1

) 1 1 I % *
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Fig. 2. The anisotropy in the half energy gap versus Tl

content. The energy separation of the double peaks in

d7/dV vs. V plots is used as a measure of the anisotropy
which disappears at about 15 per cent Tl in Pb.

Normalized first derivative (di/dV vs. V)
curves are shown in Fig. 3. Curves for several
compositions are given. The energy scale is
counted from the energy gap of the alloy
(plus the energy gap of Al if the latter is
superconducting). The ordinate scale is
magnified and the huge structure from the
energy gap is deleted. d*//dV? curves for
several Tl concentrations appear in Fig. 4.
The second derivative is not normalized in
these curves. Absolute values can be obtained
by measuring the slope of the d//dV vs. V
curves.

DISCUSSION
Electron-phonon coupling strength

The superconducting transition temperature
decreases in the Pb-TI system as the number
of valence electrons becomes smaller[7]. Up
to about 50 at.% Tl T. decreases slowly, but
then a rapid dropis registered for an increasing
Tl content. The 7. variation indicates in
itself the variation of the strength of the
coupling responsible for superconductivity.
However we can also compute the Debye
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temperature, 6,, from ultrasonic measure-
ments and apply the BCS formula[12]
T, ~ 6,67VNOV to get a measure of the
effective electron—electron interaction
N(0)V. In Fig. 5 we have plotted values of
6, vs. composition taken from Alers and
Karbon[13] and also values computed from
measurements by Shepard and Smith[14]
utilizing de Launay’s tables[15]. The variation
of N(0)V is also given in Fig. 5. It has been
pointed out[6], that 7. shows structure which
can be correlated with the density of electron
states in Pb calculated by Anderson and
Gold[16]. Also for N(0)V we notice the
reminiscence although the sharp peak in the
calculated density of states can not be seen.
However, no careful search was done.

However, it is also possible to get estimates
of the coupling strength from other data. The
ratio 2A,/kT, equals 3-5 in the BCS theory.
Strong-coupling superconductors show larger
ratios. Figure 1 shows that 2A,/kT . decreases
from the high value for Pb, 4-4, towards the
weak-coupling BCS ratio of 3-5.

The magnitude of the structure in the
tunnelling d7/dV curves is also a measure of
the electron—phonon coupling. The larger the
deviations from the smooth BCS curves, the
stronger the coupling. It is evident from Fig. 3
thattheattractive electron—electron interaction
decreases with increasing Tl concentration.

The results from neutron diffraction work
also show that the electron-phonon interaction
increases with electron concentration[17].
Neglecting core-core interaction we can
separate the frequencies of the lattice vibra-
tions into two parts—one from the Coulomb
interaction between the ions and the other
from the electronic screening*

w2=wf,.— ,izws{(lii_liﬂ) (1)
where subscripts ii and ie denote ion-ion
and ion-electron interactions respectively.

*In the discussion of phonon properties we closely
follow the presentation by Vosko, Taylor and Keech[18],
and use w,,, as a natural unit.
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Fig. 3. Normalized d//dV vs. energy plots for varying Tl content. The

energy scale is counted from the gap of the alloy plus the one of Al if the

latter is superconducting. Note that the structure grows weaker (smaller

deviations from the smooth BCS curves) as the free electron concentration
is reduced.

w, is the ionic plasma frequency given by and [, is a measure of the strength of the
w? = 4 (Ze)?/MA,, where Zis the ion charge, electron—-phonon interaction. For f.c.c.
M its mass and Q, the volume of the unit structures we can vary the number of ‘free’
cell. I,; depends only on the crystal structure electrons per atom e/a in the range 3(Al) to
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electron—-phonon coupling grow small at higher T1 con-
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4-2 (Pb-Bi). In Fig. 6 we plot the unscreened
ion-ion frequency for the transverse mode in
the [100]-direction and experimental dis-
persion curves with e/a=3 (AD[19], 34
(Pby.4Tly.)[17], and 4 (Pb)[17]. A theoretical
curve for Na (e/a = 1) in a hypothetical f.c.c.
structure[20] is also included. For the alloy
we used an average ion mass and charge to
define w,. Other transverse modes give
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qualitatively the same results. In Fig. 6 we
have also included the T.:s of the metals.
There is a clear qualitative relationship
between T, and w* but this crude comparison
does not allow for a quantitative relation.
However it raises the interesting question
whether there exists a limiting property of o?®
which in a simple way corresponds to the
apparent upper limit of 7.

Phonon spectra

As mentioned, the structure in the d*//dV?
vs. V curve is closely related to the phonon
spectrum[2]. Singularities in the d2//dV?
curves correspond to those in the density of
states for the phonons. In Fig. 7 we can com-
pare tunnelling data with the phonon density
of states for lead. The phonon curve is taken
from Stedman ez al. and is based on an
accurate experimental determination of
phonon frequencies in several directions in-
cluding points off the symmetry axes. The
close relationship between the tunnelling
and neutron scattering data is evident. Cor-
responding curves for Pb,.,Tl,; are shown
in Fig. 8. In this case we used the force con-
stants obtained by Ng and Brockhouse[17]
out to the 8th order to calculate frequencies
at the same points in reciprocal space as those
used for lead. The simple Born-vonKarman
analysis is not suitable for lead but should
rather well reproduce the smooth phonon
spectrum of the alloy[19]. The computer
program of Stedman et al. was used to
obtain the density of phonon states. Also for
the alloy we note the good agreement between
the two types of experiments. The transverse
part of the spectrum has lost the rich details
of the Pb density of states, and a larger energy
spread is also registered.

If one is only interested in the location of
the singularities in the phonon spectrum,
tunnelling experiments have clear advantages
compared to the conventional neutron
scattering technique. We will devote the rest
of this section to an analysis of the location of
singularities.
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As mentioned, Figs. 4, 7, and 8 indicate
that the frequency of the longitudinal phonon
mode (i.e. the one with highest energy),
increases with a smaller free electron con-
centration. The structure from this mode has
been discussed in detail elsewhere[21], so
we concentrate on the structure caused by
the transverse modes. The singularity (a) in
Fig. 9 stems from phonons near the zone
boundary in the [111]-direction. Phonon dis-
persion curves for Pb and Pb,.,Tl,. are given
for comparison in Fig. 10. These curves are
taken from measurements by Stedman et
al.[19] and by Ng and Brockhouse[17]. As
thallium is alloyed into lead (a) first moves

towards lower energies and then slightly
towards higher ones. This is consistent with
equation (1) as the decreasing number of
valence electrons gives a lower ionic plasma
frequency and thus a lower phonon frequency.
For higher Tl concentrations this tendency is
counteracted by the rapidly decreasing
electron-phonon coupling. The structure at
(b) in Fig. 9 is caused by the maximum in the
transverse mode in the [100]-direction. This
structure gradually disappears with a smaller
ela, an effect which is clearly displayed in
both the tunnelling and the diffraction curves.
A new structure appears at (c) when the dis-
persion curves for the alloy indicate a sharp
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upper limit for the lower transverse mode.
This cut-off is clearly displayed in the phonon
density of states curve of Fig. 8. The broad
structure at (d) comes from the high energy
part of the 7,-mode. These phonon fre-
quencies correspond to points in reciprocal
space which lie off the symmetry axes[19], a
fact which makes an analysis difficult and
uncertain.

An interesting composition is Pbg.g:Tly.5
(the d*//dV? vs. V curve is shown in Fig. 9).
Neutron diffraction data[l17] indicates that
around this composition we should be in an
intermediate region, where the dispersion
curves are expected to have flat regions (i.e.
peaks in the density of states). The tunnelling
curve also displays sharper structure than
corresponding curves for alloys with some-
what higher and lower Tl concentrations.
Unfortunately no neutron diffraction data are
available for the transverse mode at this
composition.
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The tunnelling result for a Pb+ 10 at.% Bi
alloy[5] (ela=4-1) gives a good ‘extra-
polation’” of our Pb-TI data. The structures
at (a) and (b) coincide and form a broadened
dip, which indicates a coincidence between
the transverse phonon peaks in the [111]-
and [100]-directions. A preliminary result
from a Pby,TlysBig; alloy (e/la=4),
where the coupling strength has increased,

gives qualitatively the same behaviour. When
indium (e/a = 3) is alloyed into lead, there is
a large shift in atomic mass giving rise to a
localized impurity band[4]. But still there are
qualitative similarities in the structure from
the transverse modes compared to the case
of Pb-TI. Tunnelling data by Adler e al.[5]
show the same behaviour as our curves. The
four elements In, Tl, Pb and Bi are close
together in the periodic table and thus well
suited for investigations on the effects of
changing ion mass or charge.

It remains to give a theoretical explanation
of the behaviour of the transverse modes when
lead is alloyed. We will concentrate upon the
degenerate branches in the [100]- and [111]-
directions, where we noted that the phonon
peaks in these branches come closer as e/a
grows. In the TI-Pb-Bi system the crystal
structure remains f.c.c. from approximately
ela=3-1 to 4-2, and the interatomic distance
is practically constant[22]. If disorder effects
are important we face a theoretical problem
which is extremely complicated. Considering
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the monotonous change with electron density
around e/a=4 as displayed in our results
and in those for bismuth in lead we find it
much more likely that changing electron
density rather than disorder is most important.
This assumption is strongly supported by the
fact that the phonon lifetime does not decrease
considerably when going from the pure metal
to the alloy[17]. Also the change in atomic
mass and in the electron core is negligible, so
we can consider a random alloy where the
difference in valence is the only important
feature.

We have tested this hypothesis in a simple
model following the standard procedure to
treat lattice vibrations in metals. Let us start
with a lattice of lead atoms. We then con-
tinuously change the ion charge and the
number of valence electrons, at the same time
keeping mass and interatomic distance
constant. The contributions to the phonon
frequencies are separated into an ion-ion
and an ion-electron part as was done in (1).
As the core—core overlap is small and in our
model practically constant, we neglect it.
I (g) depends only on structure and is thus
unchanged. For strictly transverse modes /;,
takes the form[18]

F(G+q)_F(G)} %

L(@) = 3 r. 6 7 - B

G#0

where F is the so called form factor and G is a
reciprocal lattice vector. The form factor F
contains the electron-phonon interaction in
the form of a screened pseudopotential. The
choice of a pseudopotential is not simple.
Most of the potentials are either very com-
plicated or fitted just to one of the phonon
branches we want to consider. For reasons
to be seen later we do not want to use
potentials fitted to experiments where one
determines not the pseudopotential but a
combination of pseudopotential and screening
functions. Recently, Ashcroft[23] has pro-
posed a potential which in spite of its very
simple form shows good agreement with the
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potential of Heine and Abarenkov[24]. The
Ashcroft potential is given by —Ze?/r for
r = Reye and 0 for r < R... The screened
potential takes the form [23] (in units of 2 £,/3)

q __Az Cos (q ] Rcore)
(66)= B

(2h) G,

where f is the usual dielectric function, A* =
(agky)™* and a, the Bohr radius. Thus the
potential involves a single parameter R g
(except for the ion charge Z). R is a quantity
we are free to adjust but which is related to
the core radius (cf. the discussion in [23]). In
our lattice model with the core unchanged we
try to take R, = constant. The continuous
change in the ion charge Z means that we
change the plasma frequency, the Fermi level
and the parameters in the dielectric function
for a free electron gas. Considering the great
difficulties other authors have met when
calculating phonon frequencies in lead (cf.
for example [18] and [25]) we did not expect
a good absolute value for the frequencies but
the trend as the ion charge was changed might
very well be rather insensitive to details in
F(g). This turned out not to be the case. The
trend was very sensitive to small changes
(=35 per cent) in R, and A and to changes in
the amplitude of F(q) for high g (i.e. g = 2k;)
as well as to different ways[18] of incorporat-
ing corrections to the RPA dieleatric function.
It was possible to get results in qualitative
agreement with the experimental data but
small and reasonable changes gave completely
different results. It was also noted that the
sensitivity to changes could be very different
for different electron densities. This was
unexpected and gives another warning against
an uncritical use of the pseudopotential
concept. A usual approach when keeping to
one special element is to start with a simple
form of the electron screening function and
then solve for a ‘good’ bare pseudopotential
by a fit to some experimental data, e.g. phonon
curves. In this way deficiencies in the handling
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of the conduction electrons are hidden in the
bare pseudopotential. In our analysis such a
procedure seems to be serious. For comparison
we made the same calculations starting from
the properties of aluminium instead of lead.
The sensitivity to changes in the potential
was qualitatively the same. Due attention was
paid to the convergence problems[26] in the
sum (2).

Our conclusion is that varying electron
density is probably responsible for the change
in the phonon spectrum but a simple and
reliable theoretical explanation could not
be established.
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On the Polarization Veetors of Lattice Vibrations

By

G. GRIMVALL

The polarization vectors of lattice vibrations in anisotropic crystals of cubic structure
are considered from a quantitative point of view. A new anisotropy index 4 = e¢y,/(¢;3 +2ey)
is shown to be more adequate as a measure of anisotropy than the conventional s —
= (€43 — €13)/2 €55 The reason for anisotropy is discussed briefly, with special emphasis on
simple metals. The approximation of assuming the lattice vibrations to be strictly lon-
gitudinal or transverse is discussed for several properties of metals, with sodium taken as an
example.

Die Polarisationsvektoren fiir Gitterschwingungen werden in anisotropen Kristallen mit
kubischer Symmetrie numerisch untersucht. Es wird gezeigt, dal} ein neuer Index der An-
isotropie 4 = ¢,,/(¢y; -+ 2 ¢,4) besser als s = (¢;; — €;,)/2 ¢,, die Anisotropie charakterisiert.
Die Ursache der Anisotropie in Metallen wird kurz behandelt. Als Beispiel wird die theo-
retische Approximation mit der Annahme genau longitudinaler und transversaler Gitter-
schwingungen an Natrinm untersucht.

1. Introduetion

A knowledge of the eigenvalues of lattice vibrations in solids is of considerable
importance and this field has attracted much interest. The purpose of this paper
is to consider, mainly from a quantitative point of view, the eigenvectors which
generally do not receive much attention. We also consider in some detail various
applications where a detailed knowledge of the eigenvectors is essential. Quali-
tative aspects based on group theoretical considerations can be found in two
comprehensive articles by Maradudin and Vosko [1] and Warren [2].

Phonon frequencies can now he measured with a high degree of accuracy and
can be calculated theoretically from some specific model. The theoretical ap-
proach in general involves much labourif accurate results are desired. The eigen-
vectors (or polarization vectors) on the other hand are difficult to measure with
precision [3], but instead symmetry requirements are of dominant importance.
We will mainly consider monoatomic cubic erystals. For lattice vibration with
small q-vectors, the dynamical matrix is then obtained from the three elastic
constants, so in this limit we can easily solve for the cigenvalues and eigen-
vectors.

As the eigenvectors are to great extent determined by symmetry conditions
at the zone faces and in general can be expected to vary slowly with |g| at fixed
direction Q, an overall knowledge can be inferred from a solution in the limit of
small |¢g].
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2, The Long Wave Limit

2.1 General theory

We consider monoatomic crystals with cubic symmetry. Eigenvectors
€ = (e, €y, ;) and eigenvalues w — 2 7 y are then obtained from the set of equa-
tions [4]

[(c1r —Caa) 47 + Caa @ —0V*] €4 + (12 + Cag) 1 @a €2+ (Cra+ C44) G G263 = 0, (la)
(Cot+eu) e+ (en—Cu) G+eund®— vl e+ (6 + €) G956 =0, (1b)
(€12 1 Caa) G1 43 €1+ (Cro 1 Caa) o G5 €2+ [(0n — Ca4) G5 + €40 G — 0¥ e = 0. (le)

Here the wave vector q is denoted by ¢ = (q;, ¢,. ¢5). 0 is the mass density.
For non-degenerate eigenvalues the eigenvectors are orthogonal and fulfil a
relation for scalar products with an arbitrary unit vector a.

2)21 3 &’.-s = (S;w’:u‘ (2)

Y(e-ap=1. 3)
A

It is convenient to introduce the dimensionless quantity s,

Gy — ¢
< ll.) 12 (4)
“ Cqa
which is in general called the anisotropy index. From equations (1) one finds
that there is a simple relation between s and the velocities of transverse sound
waves in the [100]-direction. We therefore write

= Tigg 2l (5)
q->0 (t)i'l (110)
where T, is the transverse mode with €, parallel to the [001]-axes.
It is easy to find that a necessary and sufficient condition for the cigenvectors
to be strictly longitudinal and transverse is that s = 1. A simple proof has been
given by de Launey [4]. The branch that has the highest frequency will be called
“longitudinal™ even when s == 1, for it can be shown that the eigenvector of this
mode forms the smallest angle with ¢. From the proof of de Launey just mention-
ed, it is casy to see that approximate isotropy holds if [¢;; — ;5 — 2 ¢,y <€ ¢} +
+ 2¢y. We therefore introduce a new dimensionless index of anisotropy,
A, defined by

4=_2 (6)

Cry 20y

A =1 when s = 1. From the numerical caleulations in the next section it will
be clear that A and not s gives a good measure of the anisotropy for the eigen-
vectors. However the form s = lim [ (110)/wf (110)] makes s a convenient
-0

measure of the splitting of the ]«)&'est eigenvalues. Note that s = 1 only gives
degenerate eigenvalues for transverse branches (wi oc ¢y,). The longitudinal
branch has o}, o ¢, for s = 1. Not even if the Cauchy relation ¢, = ¢,, holds,
will the three branches have the same frequency when s = 1.
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2.2 Numerical examples

We will solve equations (1) numerically and calculate some quantities of
interest in applications to be discussed later. First we consider the average
value (&g, - )* for the longitudinal branch over all directions §. Of interest are
also the dimensionless averages I;

- (e q)°
i (wl)" dn
1\i 4=
()
for i = 1, 2, 4,and 6. For isotropic materials, all I; = 1. In the evaluations of
these averages for cubic elements it is sufficient to consider only 1/48 of the first
Brillouin zone. To form the averages we have used a modification of Houston’s
method [5] and solved the secular equation for 15 different directions and then
used proper weighting factors. In Table 1 we give values of the parameters used,

and the corresponding averages (€y,-q)? for some elements of cubic structure.
We also include some two-atomic ulblc crystals which are exceptional in their

values of s or A. For comparison we have also calculated (€y,- )2 for q ranging

over the surface of the first Brillouin zone, using the fact that ey is then deter-
mined entirely by symmetry. We find for an f.c.c. structure (ey-¢)*> = 0.81 and
for a b.c.c. structure (&, -§)*= 0.82. Tn Table 2 we give the averages I,, I, I,
and I for some metals. For extremely anisotropic elements even the 15 term
Houston method may be inaccurate, but still the values can be made a basis for
the discussion on applications later. It could also be interesting to see. how the
angle between the eigenvector e; and the unit vector ¢ changes with s and A.
The notation ay, (ag,. p,), will be used for the angle between @, and the direc-

(7)

Fig. 1. The anisofropy index
$ = (ey — €2)/(2 €y) Is not o good meas-
s ure of the maximum angle of de\mhou
ar(max) between a wave vcrtor a and the
e ol corrosponding  ecigenvector @ for the
E P % iy “longitudinal” mode. The points are for ele-
=% ° ments with 4 < 1, Tl In has oy, (max) = 67
k-] = and 1/s = 20 so this point falls outside the
- 6 © range of the plot
o °
° o
o °
0‘7 2 i | 1 1 1 |
L ! 1 | |
1 ] 0
=
| E
//
m‘_
g %o/ ¥
AT =
= -
= e
Fig. 2. The anisotropy index P Sl
A= c,,/(r“ e ey) gives a quantitative Y s tin
measure of the angle ar(max) (cf. Fig. 1), Vi ——0"] | \ ) L 1
The dashed curve is only a rough fit to 05 26
the points. Note that Tiln falls nicely on 0 a iz 43 % A
the curve

25 physica 32/1
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Table 1

Elastic constants are taken from [17] except for Rb [18] and Pt and Ir [19]. The values
refer to room temperatures except for Rb (80 °K)

{ ‘n C12 Caq 3 .o
| (10" dyn/em?) - g €L-a)
b.c.c. ‘ ‘
chromium - 35.0 6.8 10.1 1.29 1.35 0.994
niobium 246 13.4 2.87 1.28 1.95 0.997
molybdenum 47.0 16.8 10.7 1.23 1.41 0.997
vanadium 22.8 11.9 4.26 1.11 1.28 0.999
tungsten | 5l.5 20.4 15.6 1.00 1.00 1.000
tantalum ‘ 26.1 15.7 8.18 0.81 0.64 0.997
iron (x) | 23.0 13.5 11.4 0.63 0.42 0.983
rubidium ‘ 0.296 0.244 0.160 0.52 0.16 0.970
potassium L0457 0.374 0.263 | 0.52 0.17 0.968
sodium L 0.739 0.622 0.419 0.51 0.14 0.967
lithium - 13 1.14 0.88 0.47 0.11 0.957
coulomb lattice ‘; 0.13
zone faces 0.82
f.c.c. |
aluminum 10.9 6.3 2.80 0.92 0.82 0.999
platinum 34.7 25.1 7.65 0.86 0.63 0.999
gold 18.9 15.9 4.26 | 0.77 0.35 0.996
iridium 58.0 24.2 256 | 0.7 0.66 0.994
palladium 22.7 17.6 717 | oM | 036 0.993
lead 4.81 4.08 1.46 0.69 0.25 0.992
silver 12.2 9.2 4.46 0.67 0.34 0.990
nickel 24.8 15.3 11.6 0.64 0.41 0.985
copper 16.9 12.2 7.54 0.62 0.31 0.983
thorium 7.53 4.89 4.78 0.52 0.28 0.964
coulomb lattice ‘ 0.11
zone faces 0.81
PbTe 10.7 1.30 0.77 3.8 6.1 0.881
RbI 2.56 0.36 0.28 2.8 3.9 0.930
Tl-In (28% TI) 4.007 4.949 0.833 0.71 0.03 0.994
fB-brass (489, Zn) 12.66 1105 7.07 0.47 0.10 0.959
Li-Mg (4.39, Mg) 1.429 1.217 | 0.924 0.47 0.12 0.957
Table 2
Some important averages for metals, defined by equation (7)

Element | s F £ | I } E I'f%

aluminum 0.82 0.92 1.00 .00 1.01 1.04

lead 0.25 0.69 1.01 105 | 143 4.63

copper 0.31 062 | 1.02 1.06 | 137 3.02

rubidium 0.16 0.52 1.04 1.13 1.91 7.10

potassium 0.17 0.52 1.04 1.13 ‘ 1.88 6.56

sodium 0.14 0.51 1.04 1.14 2.05 8.10

lithium 0.11 0.47 1.05 118 | 230 9.31
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tion the considered mode would have in an isotropic medium. We have plotted
the maximum angular deviation ay(max) as a function of the standard aniso-
tropy index s and as a function of A (Figs. 1 and 2). The region s > 1 has been
left out because of the small number of elements with such s-values. It is im-
mediately clear from the figures that A and not s is a relevant measure of aniso-
tropy for the polarization vectors. Note especially the properties of TITn. What
has now been said about ag(max) also holds for the related quantity (€-4)%.
See Table 1 for comparison. Typical plots of the directional dependence of ay,
ag,, and ag, can be found in a previous paper [6] dealing with sodium. There a
specific model was also used to solve for the eigenvectors at points throughout
the whole first Brillouin zone.

3. Reasons for Anisotropy

This section will be devoted to a discussion of why in general elements are
anisotropic. For mathematical convenience we consider the index s and use
relation (4). From the discreteness of the lattice, it follows that in a force con-
stant model with only very short range forces, we should have a high degree of
anisotropy. As an example we can consider forces between nearest and next
nearest neighbours with a foree ratio § (f = force from next nearest neighbour/
force from nearest neighbour). Then from the dynamical matrix [4] it is easy
to show that for a f.c.c. structure s = § -+ 0.5 and for a b.c.c. structure s = 3 f.
If the forces are of long range, this does not imply that the substance is elasti-
cally fairly isotropic, as can be seen in a simple example. Let us consider the
coulomb ion—ion interaction between atoms for example in a metal. The forces
are of very long range but still s = 0.13 for a b.c.c. structure and s = 0.11 for a
f.c.c. structure. These values are obtained from a caleulation by Jones [7] using
Ewald’s method of summation.

A comparison between the three metals Na, Al, and Pb gives reason for a
more detailed investigation. The anisotropy index s differs widely (sy, = 0.14,
sa1 = 0.82. and sp, = 0.25). Sodium is b.c.c. and the other two metals are f.c.c.
To circumvent the influence of crystal structure we can compare with results
from a theoretical calculation [8] of the lattice vibrations in sodium in a hypo-
thetical f.c.c. structure. This calculation gives an anisotropy for sodium which
is of the same order of magnitude as that of lead. For all three elements the
lattice vibrations can be reasonably treated by considering only the direct ion—
ion interaction and the interaction between the atoms mediated by the conduc-
tion electrons, thus neglecting other contributions such as core overlap. Also the
free electron approximation for the conduction electrons is good for these metals.
Still the s-values differ very much. We will start from the relation (4) to discuss
this fact. The eigenvalues of mode (g, A) can be written [9]

(')z(qr l) = (”iﬂi(q: j') - (”igc(q’ ;‘) s (8)
where @f; is the contribution from direet ion—ion interaction (Coulomb inter-
action) and o], comes from the interaction via the conduction electrons. This
latter term can in some cases be negative [9]. For the index s we now have

. 2(110; T%,) — 110; 7',
s = lim wf,'( ) w?:'( ”') . (9)
g—0 OF(110; Ty) — ofe(110; 7))
The terms f; only depend on structure (i.e. are different for f.c.c. and b.c.c.)
(9). We recall, that considering only the terms w{} gives a high anisotropy. For

25*
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elements with comparatively weak electron-phonon interaction, s is essentially
determined by the anisotropic coulomb part. For elements with stronger elec-
tron-phonon interaction the terms wi; and w{, can be of the same order of ma-
gnitude. The value of s is therefore very sensitive to details in the electron—
phonon interaction. This is the case for aluminium and lead. It is clear that
anisotropy is the normal behaviour and that isotropy is only accidental. A more
accurate determination of s would be equivalent to the calculation of the low
encrgy phonon frequencies, a problem which is known to be very difficult even
for simple metals.

4. An Application on Sodium

We will now demonstrate how the results obtained can be used in simple
estimates. As an example we will investigate some properties of sodium. Our
main interest will be an estimate of what error is introduced in calculations when
the phonons are assumed to be strictly longitudinal and transverse (SLT). Let
us start with consideration of the electron effective mass enhancement factor
1 -+ Zepn due to electron-phonon interaction. We have [10]

e vf[«» (K + )P (K -+ q) B*(K -+
“el-ph e w_(q)

Dk + q). (10)

where phonon frequencies of mode 4 and wave vector ¢ are denoted by @;(q), the
reciprocal wave vectors by K and the electron—phonon interaction by 2 (K + q).
K - q connects two points on the Fermi surface. For sodium 2 ky = 1.24%
% (2 w/a) in standard notation. We consider contributions to the integral from
three regions in ¢-space: Normal processes (K = 0) for small g-values and
g-values close to the boundary of the first Brillouin zone, and Umklapp pro-
cesses, where most of the values of ¢ - K lie rather close to the faces of the first
Brillouin zone. The two last regions can be treated together. From Table 1 we
have (€;,-q)* = 0.82 at the zone faces and thus (€r,-§)* + (€p,-q)* = 0.18. From
phonon dispersion curves we can estimate the relative difference between fre-
quencies of the longitudinal and transverse branches close to the zone boundary.
The low lying transverse modes around the [110]-direction are rather unimpor-
tant because q is normal to the zone face in this direction. As a result one finds
that SLT underestimates the contribution from g-values close to the zone face
by 10 to 15%,. (Note that there is some ambiguity in SL'T for Umklapp processes,
as the eigenvectors of the transverse modes can be rotated in their plane.) From
the value of 7, = 1.14, that gives information about the small g-region, we
conclude that the relative underestimation is roughly the same for all regions in
the integrand of (10) in the case of sodium and amounts to 10 to 159,.

Next we turn to some low energy phenomena. Let 7, denote the average life
time of an electron at the Fermi level at finite temperatures. The inverse life
time is proportional to the imaginary part of the electron self energy and one has
for the contribution from electron—phonon intm'acti(m [10]

—1—-oc’l‘3V‘ (t’;

= Ao tp) l.Q (11)

where ¢(0, @) is a directional dependent sound velocity. At low temperatures no
Umklapp processes can occur as they involve energy losses > kT (recall that

2 kp = 1.24 (27/a)). Tt is therefore sufficient to consider I, and we see that
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SLT gives a lifetime which is a factor 2 too long. To this lifetime should of
course then be added the effect of impurity scattering.

The very low temperature electrical resistivity o is closely related to the life
time 7. Again almost no Umklapp processes enter, but the integral in g-space
for p will contain an extra geometrical factor leading to the form [11] (for normal
processes)

1 (E.a)2 .
5 < 12
ool ;’ fc‘(O,qs)dQ (12)

As we have I; = 8.10 for sodium, SLT will give almost an order of magnitude
too low value. In the treatment above we have assumed the validity of the
standard resistivity formula [12] for simple metals and neglected the possible
influence of phonon drag. It is however important to note, that although Um-
klapp scattering is rare at low temperatures, it is weighted so strongly that it in
fact dominates the resistivity down to very low temperatures [13]. In Umklapp
processes there is always coupling to transverse modes (also with SLT) so the
discussion above based on I exaggerates the failure of SLT.

Finally we consider the average lifetime 7y, of phonons as limited by electron—
phonon interaction. For a phonon (2, g) we have [15]

1 . [€1+ (K4 ) - ”
IR L G (K - q), 13
Tph e f(- (K + (l)z ( - q) ( )

where (7 includes the electron—phonon interaction and the sum goes over all
|K| < 2 kp. For sodium only K = 0 enters. From Fig. 2 we find that the lowest
value of (€g-¢)* ~ 0.92 and consequently (€;-§)* never exceeds 0.08. Except for
damping due to electron—phonon interaction there is of course also damping due
to anharmonic effects. Experimental [16] and theoretical [15] investigations of
the damping of phonons in metals are not very accurate, so it is not feasible at
present to see any anisotropy in the damping of phonons due to electron—phonon
interaction.

5. Conelusions

We have first demonstrated that the quantity 4 = ¢;,/(c;s + 2 ¢44) is a better
measure of anisotropy of the polarization vectors than the standard anisotropy
index s = (53 — ¢55)/2 ¢44. In a short digression on the reasons of anisotropy a
simple argument was given to show that anisotropy and not isotropy is the
“normal” behaviour of metals. After numerical calculations on most of the
cubic elements we finally discussed the approximation of assuming the phonons
to be strietly longitudinal or transverse (SLT), taking sodinm as an example. Tt
was found that for example the low temperature electrical conductivity is con-
siderably underestimated in SL'T' while on the other hand the effective mass
enhancement from electron—phonon interaction is underestimated by only 10
to 159, (in Na).
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Numerical results are given for the phonon contribution to the electron self-energy in
sodinm. The importance of including in detail the phonon properties ia stressed. Anisotropy
in the effective mass and in the damping of an electron is investigated. Most of the caleulations
are ot zero temperature, but the imaginary part of the self cnergy is calculatod for several
values of the temperature.

On présente des calouls numériques de la contribution des phonons 4 la selfenergio des
¢lectrons pour lo sodinm. (Mest impartant de rendre compte des propriétés des phonons en
detail, L'anisotropie de la masse effective et de 'amortissement d'un électron ont &6 étudic.
La plupart des caleuls a ét6 faite pour la temperature zero, mais la partie imaginaire de
U'énergie a &été calculée pour plusicurs valeurs de la temperature.

Numerische Resultate werden fiir den Phononenbeitrag zur  Elektronen-Eigenencrgie in
Natrium angegeben. Die Wichtigkeit, Einzelheiten des Phononenspektrums einzuschlieBen,
wird hervorgehoben. Anisotropie der effvktiven Masse andder Blokironendimpfung wird
untersucht. Die meisten Berechnungen werden fiir 0° K ausgefuibrt, der imaginire Teil der
Elektronenenorgie wird jedoch fitr verschicdene Temperaturen berechnet.

1. Introduction

In recent years there has been much interest in electron-phonon inferaction.
ExcrrsBERG and ScHRIEYFER [1, 2], M16pAL [3] and ABrRIKoOsoV et al. [£] have
treated the seif-energy of electrons due to interaction with phonons in a Green’s
function formalism. Many authors have also taken up the problem of the effective
mass of an electron on the Fermi surface [5§—9]. The purpose of this paper is not
to give a very accurate numerical result but to investigate numerically in more
detail the structure of the electron self-energy due to interaction with lattice
vibrations. Therefore we do not hesitate to be inconsistent in that we use one
model (Suam’s [I0]) for the electron-phonon interaction matrix element and
another model (KnEBs's [12]) for the phonon properties.

The Green's function treatment of the problem is dealt with in detail in a book
by ScHBIEFFER [2], so we only give the main formulas. At zero temperature the
electron self-energy due to interaction with phonons can be written

Mor-pn(p, po) = (3 5 [92(p — DGR D(p — B dok. (1)

Non-diagonal terms in wavevector space have heen completely neglected. The
three terms in the integrand mean the electron-phonon coupling function, the
electron Green’s funetion and the phonon Green’s function. Here we have

* The institute serves both Chalmers Institute of Technology and G:Gteborg University.
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16 G. GRIMVALL:

taken the vertex function equal to unity according to the wellknown argunment of
Miepar [3]. The frequencies occuring in the coupling function g are of the order
of the Debye frequency so it is a good approximation to take a static g.

Using the fact that the self-cnergy Moy depends slowly on the wavevector
in the vicinity of the Fermi surface and integrating twice we get for M y_py the
following two integrals which are equal to those given by ScuriEFFER [2] apart
from the angular integration and the sum over the phonon branches.

22 2k»
2 - ~ {829 - @) A3 | - ;
Be Maa-on(p, ) = — 555 D, [ dp [ LHL LWy | 2425 44, (20)
A9 ¢

: wiq) ‘o - wailg) |
2z lwz(q)lt"fx k2 (g)
" - elqg " a3
Im Mejpn(p, w)= — 16 p ot 2, dy i q""{lz[u?q) i dy . (2h)
o 0

Here we have

w;(q)  the phonon frequency of branch 4 and properly reduced wave-
veelor,
(€14 9)R{g) the screened matrix element between an ion and an electron,
@  the angle of rotation round the axis p,
g the total momentum transfer. In the integration q is always taken
between p and another point on the Fermi surface,
m  electron mass,
h=1.

We have assumed that the Termi surface is spherical but we have retained in full
the non-isotropic properties of the phonons. From now on we take the zero point
of the electron energy at the Fermi surface.

2. Numerical Resulis

Previous caleulations [1—4] of M g—up bave used simple models, e.g. a Debye
model for the phonons. We here want to make a more realistic caleulation and
especially see the relative importance of umklapp processes and the effect of not
assuming the lattice vibrations to be purely longitudinal and transverse.

To investigate the relative importance of umklapp processes it is essential to
have a good approximation for the matrix element of the electron-phonon inter-
action at large momentum transfers. We are not going to dwell upon this difficult
point but instead take the result from the so-called non-local model by Sram [10],
being one of the most detailed recent calculations. The numerical difficulties are
considerable when the lattice vibrations are not assumed to be purely longitudinal
and transverse. In a previous work [77] the properties of the lattice vibrations have
been caleulated with KrEss [72] model in a network corresponding to 1000 points
in the first Brillouin zone. These results have been directly used here. In this con-
nection we should mention that the usual method of expanding the phonon
properties in cubic harmonies by fitting to symmetry directions is not good as the
effect of the lattice vibrations being non-longitudinal and non-transverse then
disappears. The direction of the wavevector p in M (p, ») was taken along the
[100}-axis.
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In Fig. 1 we give ReMqpn resolved into four contributing parts: normal
processes with “longitudinal” and “transverse” phonons and umklapp processes
with “longitudinal” and “transverse’” phonons. From the derivative of Re M a-—pn

~ReM{w) T=0%
2

3
=5 T I T j

2.4

a.3

unit: 107 eadsec
2
o

/0/51 mormal

=
~

long.umh.
Trans.mkl.
trons.numd) |

Fig. 1. Contributions to the real part of the self-energy at T = 0° K. (kfp = 2.1 x 10 rad/sec)

at the Fermi surface we can obtain the increase of the electron effective mass
related to the density of states. We get for this increase
dm
(‘”T‘) el—ph = 0.19 .

This value includes a small correction due to the discrepancy between the phonon
frequencies used and the experimental values given by Woops et al. [73]. This
correction is not made in the curves given. Our value for the increase of the
effective mass is in good agreement with recent calculations. In the Table we give

dm 3
( } from some theoretical works.

m jel-ph

Table. Theoretical Calculations of the Contribuiion to the Ejffective Mass
author FERRELL [3] QUINE (8] NARAJTHA [7]  DARsY [8] ANIMALT (9]  this work
1958 1960 ot al, 1963 1985 et o), 19660 19668

om)
( ™ Jel-ph 0.20 0.45 0.32 0.18 0.15 019

The agreement with experiment is satifactory considering the present uncertainty
in the experimental data and in the electron-electron contribution.

As for the real part of the self-energy we get no greater changes compared to
earlier results. When we consider the damping of the electron the effect of the Pauli
principle can however give essential changes. Let us consider an electron close to
the Fermi surface at zero temperature. This electron can be damped by exciting a
phonon. According to the “golden rule” of transition probabilities the damping
rate depends in an essential way on the number of available final states. When

A
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there are "“transverse’” phonon branches with frequencies much less than those of
the “longitudinal” branch we can thus have a large damping due to “transverse”
phonons in spite of their relatively weak coupling to the electron. In the case of
electron energies very close to the Fermi surface we get a very simple result, namely
the third-power law, that Exerrssere and ScHr1errer [1] got for all elestron

~ImM{w) I=0°K
7 2 7

[ i

b5 fofad

2
ES

it 107 rad f se0
<
<

=
L)

a7

Yig. 2. Coniributions to the imaginary part of (he seffienergy at 7 = 0°K

energies up to the Debye energy. In the limit of small & no umklapp process can
occur. The matrix element is practically constant and only wavevectors smaller
than a/e are involved. ¢ is a directional dependent sound velocity. Then we have
from (2b)

wle
~ (& - a¥en2 3 e . o\2
Im Mepu(p, @) :Aqu,j (éaq 6,'1)}1_ dg = :"..;’?,f,(_e_’-»_:4__9)_ dp= By, (3)
o

where A4 and B are constants. Our caleulations give for the “longitudinal”
part By = 9.1 -10-3 and for the “iransverse” part By = 8.0-10-2 (unit 1013
rad/sec). In Fig. 2 we give Im Ma1py for the more complicated region where a
third-power law is not valid.

We should mention that because of the normalization condition

2lega)2=1 (4)
a

the approximation of taking only purely longitudinal phonons in the normal
processes is not always poor. If all the three phonon branches have almost equal
frequencies we get approximately the same result whether we assume purecly
longitudinal phonons or take into foll account the polarization properties. When
there are transverse branches with frequencies differing much from the corresp-
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onding longitudinal frequency the approximation does not hold and a more
detailed calculation is required. This is the case in sodium.

On of the main results in ENerLsBERG’s and ScimiEwFER’s [I] paper is that
there exists a region where the electrons are not well-defined quasi-particles. To
investigate this point we have formed the spectral funetion 4 given by

Im Merpn(p, o)}

1
A(p,w)=

< -
»—- ;?-;: + gt~ Re Mel-pn(p, m)zl + [Im Mol-ph (p, )]
The spectral function obeys a sum rule
fA(p,o)ydo=1. (6)

2
A plot of A is given for three energies 2, == 3?;”— — uin the oritical region where
the quasi-particle approximation will not hold (Fig. 3-—5). The earlier result that
the quasi-particle picture is not very good in this region is eonfirmed. However,

27rad/sec .
7 & J Y %5 ’
A A (ép, w}
’ J G AR At for Ey=2.5 10t st
i
il
2 n XA, w) | -
Vo Ep= 150" radfsec - #
e
= 7L
3 R a2t
2 7+
‘®
7
| | 1 ry 1
) 7 2 3 4 5
; 707 rad fsec
TFig. 3 Fig. 4
FA( &, w!
2 forép= 3.5x W7 mdfsec
Fig. 8 -
The spectral funcilon for e; == 1.5 % 10 rad/sec i
nﬁ Tige
Fig. ¢ 'R
The spectral function for sp = 2.5 % 103 rad/sec |
Fig. 5 I:
The spectral function for £, = 3.5 X 10?3 rad/sec I f { { | J
2 3 Y«
707 radfsec
Fig. 5

the parts of the spectral wave function that can not be taken into account by using
a single Lorentzian curve do not contribute more than about 20% to the sum
rule (6). One should notice that the strength of the electron-phonon coupling in
ENGELSBERG-SCHREFFER's paper is taken to be much larger than that of sodium.
This explains why our curves are much more smooth.
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"To evaluate the real part of the self-energy at finite temperatures is complicated
and we are left with one extra integration in the expression corresponding to (2a).

—Im M (@) I=38%
7 2

2
i { I
0.5
Tolat
a.4 -
k]
QE 0.3}
R
3 Zong normal
3 :
9.2}
2.7 T umid,
/W”M
prans.oonmal

Fig. 8, Contributions to the imaginary part of the self-energy at 77 = 88°K

—im M (w)
7 2 J
T T T
7=7m%
= 0%
4.5t T=19°
7=32%
a4}
&
Wy
S50.3
=
Q‘—
B
::E
§0.21-
0.7

Fig. 7. The total valie of the imaginary part of the self~energy for different temperatures

The imaginary part, however, offers no more difficulties than we have in the zero
temperature case. Instead of (2b) we have the expression
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on Sky
—.m 5 f d99(21.9°9)* #*(q)
X{1 — f{w — w2(q)) + flw -+ walq)) + 2N (wa(g))},

where f is the F. D.-function and N the B. E.-function.

In Fig. 8 the result iz given for 7' == 38 °K. The Debye temperature of sodiura
is appoximately 160 °K. Tn Fig. 7 we give the total value of Im M¢;_py{w) for the
temperatures 7' = 0, 19, 38 and 76 K, At finite temperatures Im Me-pn(0) is
different from zero. At temperatures much lower than the Debye temperature
Im M e1-pn (w) follows a T3.Jaw [4, 14].

Driscussion

After all these calculations a natural question is whether it is really necessary
to include all details of the phonon properties. To answer this question we investi-
gate two typical cases, the effective mass and the damping law (3) for electrons
close to the Fermi surface. Let us first consider the effective mass in the [100}-
direction. By taking coupling to purely longitudinal phonons the contribution from
the normal processes is underestimated by about 10%,. The umklapp part is more
difficult to discuss since there is arbiguity in the directions of the transverse modes
if the correot solution is not known. We therefore consider only the longitudinal
umklapp process. Also in this case we get an underestimation of about 109,.
A comparison to the calculations of ANIMALU et al. [], where a Debye sphere is
used for the Brillouin zone and the Jones” approximation for the umklapp part,
shows significant deviations. Next let us consider the damping Jaw (3). What
is said here is also relevant for the low temperature limit of (7). With purely
longitudinal vibrations we get in the [100)-direction for the two constants
By =9.5-10-3% and B; = 0, i. e. an underestimation of the damping by about
45%,. In other directions we also get deviations of about the same magnitude.

Finally we have investigated anisotropy in the damping and in the effective
mass, The total contribution from phonon interactions to the effective mass of an
electron in the [111]-direction is found to be about 29, less than the corresponding
value in the [100]-direction. This is also approximately the estimated numerical
uncertainty from interpolations and integrations, so we conclude that there iz
practically no anisotropy in the effective mass.

The total damping according to formula (3) is for an electron in the [111]-
direction 16%, lower and for an electron in the [110]-direction 35%, lower than the
damping in the [100]-direction. There is thus a considerable anisotropy in this
quantity, and one should observe that it originates from the “transverse™ part.

Acknowledgement. I would like to thank Professor 8. LunnQvist for introducing me to
this subject and for his kind interest and encouragement.
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Abstract — The temperature dependence of the effective electron mass which appears in the heat
capacity, cyclotron resonance and amplitude of de Haas—van Alphen effect is discussed. An accurate
calculation is reported for sodium at low temperatures. An Einstein model gives the temperature de-
pendence of the thermal mass as a universal function of 7/6,.. This function is evaluated and plotted.

INTRODUCTION

THE INTERACTION between lattice vibrations
and conduction electrons in a metal will give
rise to a self energy M,,,, for the electrons.
The self energy is energy and temperature
dependent, so we will have for example a
temperature dependent deviation from the lin-
ear specific heat of the electrons. Buckingham
and Schafroth [1] have given a treatment with
a constant electron-phonon coupling and a
Debye model for the phonons. They obtain
an expression for the free energy in the form
of integrals which cannot be evaluated in a
closed form. Krebs[2] has given a plot of a
numerical calculation of these integrals. The
region T < 0, has also been treated by
Eliashberg[3]. In this paper we give a more
accurate calculation of the temperature
dependence of renormalization effects, in
particular for sodium.

THE SELF ENERGY AND THE EFFECTIVE MASS

We calculate the real part of the self energy
M., for sodium using Green function
methods. To lowest order M., can be
written[4]

d2
('lph(p'w)—gf (ng’n_;?

S+ Nag } (1)
w_ep‘+l~"+wA(q) i

We want to have a complete knowledge about

{ | —fr+ Ny
w—ey+p—wylq)
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the phonons also off symmetry directions.
Therefore we must rely on some model to
calculate the eigenvalues w,(q) and the
corresponding polarization vectors (which
are in general not purely longitudinal or trans-
verse). Krebs[5] has proposed a simple model
which gives good agreement with experiments
in the symmetry directions. We have used his
model to calculate eigenvalues and eigen-
vectors at 46 points in an irreducible part of
the first Brillouin zone[6]. Sodium is highly
anisotropic so this procedure will probably
introduce some error (cf a discussion for lead
in[7]). However we will see later that the
precise form of the phonon spectrum is not
very important. The temperature dependence
of the phonon spectrum is neglected. The
electron-phonon matrix element g is taken
from the so called non-local model by Sham
[8]. This is the only important approximation
or uncertainty in our calculations. It involves
the question of good pseudo-potentials and is
an enormous problem in itself. Sham’s
calculation is one of the most detailed, and
the fact that his matrix element does not give
the correct limit (2 €./3) for g =0 is of no
importance here (cf discussion below). Our
final result is not at all so sensitive to the
precise form of the electron-phonon coupling
as can be the case when one calculates phonon
frequencies[9] or electrical conductivity[10].
Using a computer program we have then
performed a detailed calculation where we
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have taken into full account that the lattice
vibrations are in general not purely longi-
tudinal or transverse. We have also treated
properly all umklapp-processes, using a
correct shape of the Brillouin-zones[11].

The increase dm of the effective mass at
the Fermi level, due to electron-phonon inter-
action, is plotted in Fig. 1. 8m is defined as

5m

o P e

5 10 15 A

100 200 T K
Fig. 1. The temperature dependence of the contribution
(8m)o;n to the effective electron mass at the Fermi
level for Na (normalized to unity for 7= 0). Full drawn
curve = accurate calculation. Dashed line = the universal
temperature dependence in an Einstein model, cf. equa-
tion (2). For sodium we have taken 6; = 130°K. Asymp-
totic T-*-law is also shown.

T

—dRe M, ., (w)/dw evaluated for w= 0.
The result is normalized to unity for 7= 0.
In the limit of high temperatures we get a
T—2-law, which is also shown in the figure.
For T < @, we have the well-known T2In7-
law[1, 3]. If one uses an Einstein model for
the phonons, the temperature dependence

T=0 |
ey 88, l
(]
21

)
\
\

\
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factors out as a universal function F of

the single variable 7/®; (O, = Einstein
temperature).
A0
F(TI05) = 5 2) >
+
@ 2n 1l —
[(2n+l)‘+ﬂ2 —j—)] (2)

F has been normalized to unity for T — 0.
We see from Fig. 1 that an Einstein model
gives a good description. In Fig. 2 we give
Re M, (@) for T = 0 in an accurate calcula-
tion[7] and also Re M,,,,(w) in an Einstein
model for T=0[8] and T =46,. At finite
temperatures the singularity in Re M,.,, is
smeared out and the Einstein model gives a
good description. In Fig. 3 we have plotted the
density of states N(w)= Ny[l1—(aM, .(w)/
dw)] obtained from the accurate calculation
for sodium|[11].

It is perhaps astonishing that an Einstein
model gives such a good result. We can how-
ever understand it in simple terms. The origin
of the effective mass is virtual processes
connecting two electron states close to the
Fermi surface. As in the case of real tran-
sitions (i.e. damping of electrons) the result-
ing effect depends primarily on the strength
of the interaction and on the available phase-
space for transitions. The density of states
increases linearly in the momentum transfer

2 o

Fig. 2. Re M., (w) for Na at T =0 in an accurate
calculation and Re M, ,, (w) for T=0and T = 6, in an
Einstein model (6, = 6,).
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Fig. 3. Density of states N(w) =

w
(U
a ’wl ot—mn J

for Na in the vicinity of the Fermi lcvcl

q. The effective electron—-phonon coupling is
zero for ¢ = 0 and then shows an oscillatory
behaviour with the first node at ¢ ~ 2k,. Thus
there is no dominance of the long-wavelength
phonons (as can be the case for the damping
of electrons close to the Fermi surface, see
[11]), but instead an average mainly over high-
energy phonons. This is the reason for the
success of the Einstein model.

By a mere scaling it is possible to get rough
results also for other simple metals. In Table
1 we give some relevant parameters for Na,
Al and Pb. 7, is defined as that temperature
at which the electronic contribution to the
specific heat approximately equals that of the
lattice vibrations in a non-superconducting
state.

Table 1. Some parameters
Sfor the metals Na, Al and Pb
otal ( 521) o T,°K
meta m Jeton (°K)

Na 0-19 150 15
Al 0-49 418 7
Pb 1-05% 94-5 1

@ GRIMVALL G., Physik Kondens. Materie
6.15(1967).

WASHCROFT N. and WILKINS 1.,
Lett. 14,285 (1965).

7T, is the temperature at which the electronic
and lattice specific heats are approximately
equal in a normal state.

Phys.
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EXPERIMENTAL VERIFICATION

It has been shown[13] that in many cases
(e.g. spin susceptibility, electrical and thermal
conductivity) there is a cancellation effect so
that no renormalization effects from inter-
action with phonons should be included in the
electron mass. However one should in
principle see these effects in the specific heat,
cyclotron resonance and the amplitude of
de Haas—-van Alphen oscillations[13, 14]. We
first discuss the electronic specific heat. At
zero temperature the specific heat starts linear
in temperature and is directiy proportionai

to the effective electron mass. At finite
temperatures we can write
Co,=vT+vy(T)T (3)

where y,7T is the specific heat in the absence
of electron-phonon interaction. v,(7) in-
corporates these effects and can be considered
as proportional to a temperature dependent
mass correction. From Fig. 2 it is clear that
both the w and 7 dependence of Re M,
(w; T) is essential. We get the following ex-
pression, in the notation of Prange and
Kadanoff[13], fory,(7):

,d€) dQ

yu(T) =—Pj'dEdF T No(KING ()

% dfu(E) dﬁ)"i
aE  aE’
(E—E)

<{ rp—}
P denotes that the principle value should be
taken. d€ is sclid angle integration over the
Fermi surface and N, is a directional de-
pendent density of electron states. v(g) is the
electron-phonon coupling and f, the usual
F.D.-factor. An accurate calculation is very
difficult to perform but again the temperature
dependence factors out as a universal function
of T/6, if we use an Einstein model for the
phonon spectrum. This is the only approxima-
tion and all the details in coupling strength
etc. are retained in full. For the function

(4)
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giving the temperature dependence we then
get from (4)
,afu(L)afu(L )
(E—E')?
Errat ©

These integrals do not lead to an expression
as simple as (2) but for completeness we give
the result in an appendix. A plot of v,(7),
normalized to | for 7 =0, is given in Fig. 4.
It is evident that a true phonon spectrum will
considerably decrease the sharp peak of 7,
at low temperatures.

¥,(T)
1.5 1
1.0 1
0.5 1
051 \T “law ég
Fig. 4. The function y,(7) giving the correction to the

thermal effective mass. y,(7T') is normalized to | for 7 = 0.

We note that the electron-phonon interac-
tion for 7 > 0-3 8, leads to a specific heat
which is lower than the ““free” electron value.
This fact can be elucidated by a simple entropy
consideration. The entropy S(7) is given by

T

o Cl' r ’
s() = [ Far = [ ny(rlar =
0 0
"
=8¢t J"y,('l")d'l". (6)
]
For high temperatures (i.e. T < 6y)

Re M, 1s negligible. As entropy is a state
function we then must have the same value

for S(7) as in a non-interacting electron-
phonon system. Hence the last integral in
(6) goes to zero as T — « and y,(T) must be
negative for some 7.

Now we will consider the question of ex-
perimental verification. Because of the lattice
contribution to the specific heat we can
normally only measure the electronic part at
very low temperatures (cf Table 1). At
temperatures 7 > 6 anharmonicity in the
lattice vibrations complicates an analysis.
The data of Table 1 and inspection of Figs.
1 and 4 show that for simple metals and with
present experimental accuracy it is not
possible to investigate the region of the maxi-
mum in y,(7), and it would be very difficult
to see the temperature dependence of y,(7)
at low temperatures. For metals with a com-
plicated electron structure and a large effec-
tive mass (eg. vanadium,[2]) the effect seems
to be noticable. One can also use the fact that
the electronic specific heat in a superconduc-
ting state decreases exponentially with tem-
perature while the lattice vibrations give the
same contribution as in a normal state. The
experimental accuracy is however not good
enough.

In a magnetic field M,.,;, is essentially
unaffected[14]. but Landau levels are formed
at intervals .(w.= cyclotron frequency).
The amplitude in de Haas—van Alphen oscilla-
tions is heavily damped already at a few
degrees Kelvin. If we try to compensate the
decrease by the use of still higher (presently
unattainable) magnetic fields we meet with
new effects when w, ~ w,[14, 15]. If we in
the case of cyclotron frequency measurement
fulfil the requirements o, <€ w, and w7 > 1
by taking .= 01 w, and w.s = 50, a rough
estimate gives a maximum temperature of the
order 10°K. .= 01 w; corresponds to a
field of about 10° G. In this estimation we have
supposed that at 10°K damping comes essen-
tially from electron-phonon interaction which
is cubic in 7', and we have used results from
[11]. In conclusion it seems to us that a
quantitative experimental verification of the
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temperature effect is very difficult with present
experimental accuracy. An improvement in
the experimental accuracy should give at
least a statistically significant difference in
the mass for different temperatures.
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APPENDIX
With an Einstein model for the phonon energies, the
temperature dependence of y,(7') is completely contained
in the expression (5). We now integrate twice using the
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method of residues. The last integration requires care in
the handling of poles and integration path and we must
impose a restriction on one of the resulting sums (equation
(A2)). The final expression for y,(7T), normalized to
unity for 7 =10, is

3 (49, 0p\2
y.(T)=2—ﬂ;{?(9—;)l—1](—T€) (A1)
where
—N<<Al M _‘n__-; (e.r_(,—.r)
= Z:u ...z.:n 2 (l—e‘)’(l—f’)’+(2m+” .

é Ax*(2m+ 1) w2 =3[ x¥m*+ (2n+1)2— (2m+1)%]2
7 {[x¥m+ Qn+ 12— Cm+ 1)2]2+ 42 (2m + 1) Y =2}°

+(2m—+1) X

4x X4 (2n+1)2—(2m+1)*
m {[x¥7*+ 2n+1)2— (2m+ 1)*]2+4x2(2m+ 1)2m2)2

(A2)

withx=8;/T: M\N = = N < M.

The sum in (A2) is not divergent in spite of the constant
exponential term. Starting from some known series[16]. It
is possible to derive the relation

= (1 —e)?
_]6 * ¥ _E * y
_773,% [2n+1)2*+)*]® = Ei [(2a+1)2+)?]?

(A3)

where ym = x+im(2m-+ 1); m integer.

A straight forward but tedious calculation now gives,
that the divergent terms in the sum (A2) cancel. but the
complicated form of (A2) does not simplify when (A3) is
inserted.
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The temperature dependence of the specific heat and cyclotron reso-
nance effective masses is calculated for mercury. The effect seems

to be within experimental reach.

RESULTS from cyclotron resonance experiments
and measurements of the electronic specific heat
ate often given in the form of ‘effective’ electron
masses. It is well known that the enhancement
factor 1 + A of the effective electron mass,
coming from electron—phonon interaction, is tem-
perature dependent. In this note we present
calculations for mercury showing that it should be
possible to measure the temperature dependence.
General estimates have shown that such experi-
ments on metals should not be feasible." How-
ever the phonon spectrum of mercury, or rather
the electron—phonon interaction strength times
the phonon density of states, a?(w)F(w), has
such a special shape that experiments are in
fact possible. The exceptional property of mer-
cury is that the quantity o®(w)F(w) has a strong
peak at an energy corresponding to only 20°K.
This is the temperature that should replace the
Debye temperature or Einstein temperature in
simple estimates. Moreover the enhancement

factor 1 + A 2 2.6 is one of the largest known.
The enhancement factor 1 + A is at very low
temperatures the same for specific heat and cyclo-
tron resonance and is obtained from A = —dM,;__,
(w)/dw taken at the Fermi level (w = 0) and at

T + 0. M _, is the electron self energy caused
by electron—phonon interaction. The self energy
is an explicit function of temperature, so A will
be temperature dependent, A = A(T). At finite
temperatures there will be thermally excited
states, and M,,_ , must be considered also for

energies @ # (. At finite temperatures or
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energies the self energy is complex. In this note
we mean by M, the real part of the self energy.

We start with a discussion of the effective
mass determination using cyclotron resonance.
If one keeps the temperature fixed at a low value
and changes the frequency of the electromagnetic
wave, there will be a change in the effective
mass® because My_ n(«) increases faster than
linear in w, i.e. faster than wA(T =0). Calcula-
tions of the self energy in mercury have shown
that this effect will be very difficult to observe
and that very high frequencies are necessary.
We therefore turn to the case of fixed frequency
of the electromagnetic wave and a varying tem-
perature. Let m, be the effective mass in the
absence of electron—phonon interaction. The
cyclotron resonance mass is then to good accuracy
(cf. the discussion at the end of this note) given
by my (1 + A(T)) for moderate frequencies and
all temperatures of interest in this context. The
damping of the electrons due to interaction with
phonons puts an upper limit on T. Information
concerning the electron—phonon interaction can
be obtained in the form o (w)F(w) previously
mentioned, from an analysis of tunneling experi-
ments on superconductors. McMillan and Rowell?
have performed such an analysis for some metals
and we will use their results in our calculations.
The result for the normalized quantity
A(T)/ A(T = 0) is given in Fig.1. Details about
all calculations in this note will be published
elsewhere. The experimental difficulites with mer-
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Fia. 1. The temperature dependence of the
cyclotron resonance effective mass

m, =my [1 + A(T)] and the electronic speci-

fic heat C, , = [% + %(DIT, given in the
normalized forms A(T)/A(0) and 7% (T)/7(0).

cury are considerable but nevertheless there are
very good cyclotron resonance experiments® on
this metal (at T = 1.2°K), so the effect seems not
to be out of experimental reach. From Fig.1 we
see that for example the increase in effective
mass from T~0.5°K to T~2°K is about 3 per
cent. To cover this region requires a frequency
higher than about 50 GHz in order to fulfil
W To1—ph >>1.

We next turn to specific heat measurements.
The electronic specific heat of a metal in a
normal state can be written

Ce,n = XotT = (70 + ')’,(T))T, (¢9)]

where 7, (T) incorporates all effects from electron—

phonon interaction. We assume the validity of an
expression for the electronic specific heat at finite

temperatures given by Prange and Kadanoff.®
They find

— @7Y3)N,T + 2 [‘m N, E

aMel—ph afc_ cl—ph fo] 2
[Py - T Tl iz @

fo is the usual Fermi—Dirac function and N, is
the density of states at the Fermi level in the
absence of electron—phonon interaction. The
derivation of (2) is based on the equivalence
between time derivatives and temperature denva-
tives in the Green function method. Eliashberg®
has obtained a related expression valid at low
temperatures, starting from the thermodynamic
potential of the coupled electron—phonon system.
It turns out to be rather easy to generalize
Eliashberg’s result so as to give the formula of
Prange and Kadanoff. The crucial point in this
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generalization is that the phonon self energy
(from interaction with the electrons) is practically
temperature independent. We again use a*(w)F(w)
to calculate 7, (T) from (2). The normalized
result 7, (T)/7, (T = 0) is given in Fig. 1.

Let us now consider a measurement of the
specific heat in both the normal and the super-
conducting state of mercury (T, = 4.2°K) in the
region below ~0.7°K. The lattice contribution,
which will be assumed to be the same in the two
states, is of the same order of magnitude asC, ,.
The specific heat C, of the electrons in the
superconductor has decreased to an almost negli-
gible value. Taking the difference AC between
the total specific heat in the two states, we are
therefore left with the term C, , = %, 1
= [% + % (D)]T. We could for example plot
AC/T 7Y, (T = 0) as a function of temperature.
This curve should first show a slight increase
(the effect we are looking for) before it eventually
decreases due to the onset of C, .. Experiments
by van der Hoeven and Keesom’ on mercury have
an estimated uncertainty just as big as the effect
considered here. As they did not take very many
points in the interesting temperature region, a
conclusive analysis of their data is impossible.
It would be interesting with a renewed and care-
ful investigation of the temperature interval
0.5—-1°K. It should be remarked that a direct
separation in the normal state of a T?-part
for the lattice specific heat is impossible at
T ~ 0.7°K as the Debye temperature has already
started to deviate from its limiting value at
T =0. The determination of the specific heat
difference between the two states from a know-
ledge of the critical field H.(T) as a function
of temperature is not accurate enough to show the
increase in 7, , but the method is excellent to
obtain the limiting value 7, (T = 0)2 H:(T)
depends on the free energy so the effect we
are looking for will be partly cancelled.

The peaks in the two curves of A(T) and
')’,(T) in Fig. 1 do not occur at the same tempera-
ture. This is because the increases of A(T) and
’):(T) have two separate reasons. In cyclotron
resonance experiments we are interested in elect-
rons within the range ~ kT of thermal smearing
at the Fermi level. In the heat capacity however,
the main contribution comes from electrons excited
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to energies larger than kT as can easily be seen with similar properties is lead, for which theo-
from the standard derivation of the specific heat retical results will be given elsewhere. The tran-
of a degenerate Fermi gas. Therefore the possi- sition temperature T, of lead (7.2°K) is some-
bility of exciting electrons to energies where the what too low to make specific heat measurements
self enegry M,,_, (w) deviates from the form Aw promising, but for the cyclotron resonance case
is of importance. In fact this effect dominates the lead would be a possible alternative.
effect from a change in the slope A(T) with tem-
perature.
Acknowledgement — I want to thank Prof.

We have here only considered mercury, which J.W. Wilkins for several illuminating discussions

is theoretically very favourable. Another metal and comments.
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Die Temperaturabhingigkeit der Effektivmasse in Quecksilber bei
Zyklotronresonantzmessungen und Messungen der Spezifische
Warme wird berechnet. Es scheint méglich, dieser Effekt in
Experiment zu bestitigen.
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The electron-phonon systsm in lsad and msrcury

Abstract

fha paper deals with the influence of the elsctron-phanon
interaction on the ﬁropettias of the conduction aléctrons in
lead and mercury, fheAquasi-particle propertiss are con-
sidered in detail using CGreen functions. Sp;cial attention
is given to temperature effects in the affective mass as
measured in cyclotrén resonance or the electronic specific
heat, It is shown that such a temperaturs dependence in the
effective mass for lead and mercury should be possible to
verify with the present experimental technique, The slectro-
nic specific heat in the normel state is far frem linear in

T at TAJTC, a fact which has soms conseguencies for the

interpretation of experiments on the "thermodynamicg of the

superconducting state,






2.

Introduction

The purpose of this papsr is to give a2 detailed guantitative
presentation of the effects of slsctron~-phonon interéction on
the conduction electrons in lead and mercury. lUe start with

a calculation of the electron Green function, as this function
in principle contains the information on the electron propar-
ties, After B discﬁssion of the quasi-particle picture we will
use many~body technique to calculete guantities that are di-
rectly measureble in experiments, e.g. the elsctronic spscific
heat and the cyclotron resonance frequency. In particular we
will investigats in detail concepts like the sffective slectron
‘mass and the density of electron states at finite temperatirss,
The input data concerning the electron-phonon interaction will
be taken from the results of McMillan and Rowell obtained by

analysing tunneling data in supercenductors.

The electron self energy

The method of Gresn functions in many body theory is now so
well. kneuwny “that we do not here repeat all the basic concepts
that can be found in textbooks (1.2). Let us dencte by -
mel_ph(gjco) the contribution from the electron-phonon inter-
action to the self energy of the conduction electrons. The
general first ordsr formula for mal-ph(ﬂ’ w) at finite tempe-

raturass is






Mel-Ph(E’w),‘Z {m

R e h 3
a 4 St f . +N \ )
p_ g (a) et o 2%y (1.

A ' =0 3
(!)"Cpo’#}l""hk(g) u E.po‘l'u'*'“k(’gi

We have useé f and N for the ususl F.D, and B.E. factors,
The phonen frequencies m,&g) are labelled by momentum g
and beanch index A , and @ is counted from ths Fermi
energy w o - ..t?;iﬁ@wthe energy of an elesctron with |
momentum p in the absence of electron-phonon interaction,
Finally the slectron-phonon interaction strength correspond-
ing to momentum transfer g = p -p” is denoted by gz(g),

As has:seen shown by Micdal, mel-phtg’ ©)

is only WBakly dependent on p, Sometimes thersfore p will

be dropped and it is understocd that lg[ = P the Fermi

F)

momentum,

A direct intsgratien in momentum space of eq, 1 ig a diffi-
cult task, Howeﬁer if one is interested anly in the result
for mel~ph arid accepts a calqulation that is not ab initio,
the integrations can be carried out easily. The information
about gfg) is then taken from the inversion of the gap
aquatiéns in an analysis of tunneling data in superconduc-

tors, Let mz(w JF{w ) ba the product of electron~phonaon






: 2 : ; >
interaction a (w ) (uith transferred energy instead of

momentum as uariabia) and the density of phonon states

F(w )« More precisely the following relation holds 5

2 ;\{%f‘% 82(3) é(m-n;;{g) b

a (0)F(w)= (2}
(21:)3 {éé-
F

The integrations in eq. (2) go over the Fermi surface. The

average of mel-ph(g”w 3T) over ell directions p at the

Fermi surface can then be written (in the following mal-ph

denotes this average)

A
L4 - 1- " F ) € e -
Mel_Ph(p,m;'l‘): gdc gdw aa(m')F(m ) fc) +N(w )+ () +H(e ) (3)
; BCHL= Wee+psn

|38

It is thus possible to circumvent all difficulties with
the electron-phonon interaction strenoth, phonon froquar-
cies, Umklapp processes, shape of the Fermi surfece sto.
anc end up with more simple integrations, To sse the effaci
of considering averaged meL3§$r the Fermi surface, we carn
make a comparison with an sarlier calculatioﬂ(a) for the
elastically highly anisctropic sodium, for which eq. (%)

was actually solved in all detail, According to this zal-

culation the value of ?Re me., pk/";m differs very






little Tor p in differant symmetry dirsctions. This is

however not the case For the imsginary pesri Im f (py &)

al-ph
at very low energies @ . For higher values of @ mel i
wph

nets contributicons from so many points in gespace all

over thes Fermi surface, that it sheould be fairly isotropie
in p. There remains the anisotropy in mel-ph from aniso-
tropy in the band structure, Therefore some caution is

necegsary for example in the interprstation of cyclotron

resonance sxpariments,

The guantity u?(m YF(w ) has been determined for lsad and

(3)

mercury oy MeMillan and Rowell « 1ts shape is.not very
different from that ef the phonon spectrum, indicating
that az(m ) is not very strongly dspendent on the
energy g o In fig, 1 we give ua(m)F(m) From Mefillan and
Rowell and F({ @) From Sfedman et, al;(B) for lsad, There ic
é small but ciear'éiécrapancy batwesn the upper fregusncy
limits of a?(w JFle ) and Fle ), which is supposed to he
due to surface efFectg? ThHis peint will be of Ao importance
in our enalysis, Tﬁe rpsults Tor Re mel”phamfim mal«ph
when eq. (3) was solved with McMillang and Rowell ‘s

mz(w JF( @) are given in figa, 2 and 3 (lead) and fig, 4

(mercuryv). For small snergues RAe L (w 3T} is linear in

=l =ph

@ ., and 1 - BrRem _ph((ﬂ Y/Ow = 1t & N is what is

el

generally called the enhantement feactor due tc alsctron-

phonen interaction in the effective mass or density of
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states, MeMillan and Rowsll ogdive 7\ = 1.5 (Pb) and

A = 1.5 (Hg) from their data, OF prectical intersst is
the life tine ¥ =1/L2tmm, . (o ;T)1 of en
glectron st low temperatures, As a?{m WW{w ) is nu£ known
for very low snergies, the very loﬁ temperature behavigur is
uncertain, but the values &f 4 for an slectron 8t the
Fermi surfasce. given in Fig, 5 could be used in estimsatess,
One should not forget that there is a temperature indepen=
dent impurity scatterino which in pure matsrials csn cosre-

spond to & 1ife time 7 e 07 ayp 0 Sec,

Knowing M . ph(m ) we can easily Torm the specktral weight

function é(p,w Y.

. , in He1~ph(‘°) § (4)
Alp,u)= = tchp-on-Rq ’Mel—ph(w)_]i + E‘-‘" "Hel-ph(m)]g i

Thers is a sum rule that A(p,w ) always obeys,

ja(p,w) da = 4 (8)

It may heppen that A(p,® ) has 2 narrow Lorentz shape of
width ™ at @ o superposed on 2 more or less smooth
background, We than say that we bave a well defined guasi-

particls of energy @, and life time T = 1/(2 ), uwhhse
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strength is 1/( 1 - ia Re m°l-oh(w b/i?m )y the latter
quantity being the centribution to the sum rule, eq. (5},

fram the peak.c4)o is the solution of the equation

- ; (6)
W B W Re Mel_ph(cp,wo)

As has been shown by Crigelsberg and SchrieFFer(é), one doegs
not expect conduction slectrons with a strong coupling to
the lattice to shew guasi-particle charactsr for energies
cp:u comparahle ﬁc nhanon eﬁergias. Fig, 6 shows A{p, ® )
for lead at three values of ‘p_ (i.2. three values of p)
in the most inferesting energy region. The interpretation of
the first of these figures can simply be stated as follows:
A ““bara”’ slectron with momentum p is inserted into the
ground stats of the matal, and we ask for the time behaviour
of the system, If there were no interactions hetwesn the in-
serted alectron and the rest of the system, we would have a
time dependence given by the Fraquancy(bp-v)/h and this
excitation would have en infinite life time, The sharp peak -
in fig.é reflects the fact that ﬁha alactron;phonon interaction
causes the system to partiy bshavé ae if we had an slestran
with momentum p but with a new excitation anergy(cp-ﬂ%1 +A)
(cfe eq. 6). The peak is not infinitely sharp so this:ex<
citation will have a finite life time., The broad wing of
A{p,® ) on the upper side of the Fermi Tevel is a conseguence

of the fact that a2 phonon can be emitted when the *“bars”’’






electron is inserted. The part of A(p, @) for ¢ L0
gives information about the "extraction" of an eleciren

from the ground state. Aleo in this case can a pheonon be
excited. The sharp peak in fig. 62 contributes 1/( 1 «1K, )=
0.40 to the sum rule, eq. (8). The system can thus be de~
scribed as having a yell defined guasi-particle whose

strength is only 0,40, At higher energies €_ o fig. 6b,

®
the electron peak has moved into the upper phenon peak and
the systam shows no quasi-particle behaviour et all, Finally

for still higher ensrgies €_ , fig. 6éc, 2 large portion of

P
the sum rulevis Filied by the Lorentz shspsd curved cen-

tered at an energy roughly that of the inserted "bare®™ elesctran.
Howsver the damping is no@ so large that it is not much mean-
ing in adopting a quasi-perticle pintpre. At finite tempsra-
tures there is no longer a clear distinction betuwsen holes

( o £ 0) end particles -’ ( w» 0) in the interpretation of

A{py™), but with our definition of M the sum rule,

el-ph
8q. (5); still holds. In fig. 6 we show (dotited curve) how
the sherp guasi-particle peak is consideraoly broadened al-
peady when T = 11 %%. The spectral function for mercury would
be gualitatively the same as that of leaa. Tn conclusion it
seems that we can use the guasi-perticle concept only at very
low snergies cp =1t 3 In all other casss, when higher
gnergias are important; the full shapas of ,A(p,g‘) must be re-
tainad when elsctron properties are caloulsted, This limite-

tion is after all not seriocus as in many experiments (e.q.

low temperature specific heet, cyclotron resonanca) ocnly low
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enarcgy excitations are involved, Moreover Prange and Kada-
noff(V)héve argued that for example the electronic spscific
heat at all temperatures can be written in a form that is
mathematically the same as the standard Landau quasi;partiela
formulation, Therefore, as Prange and Kadanoff have pointed
cut, the break doun of the quasi-particle cancept in an
electron-phonon system is partly a semantic matter, lle refer
to their peper for further details. See also an excellent re-

view by Schrieffer(a).

The density of states

After having obtained the spectral function A(p, ® ), we can
sum avef all momenta p, to get the density of states at an
energy ® close to the Fermi levsl. The importent contri-
bution comes from the rsgion p AJDF. e find a relation

similar to the sum rule,

g&(p,w) dcp = 1 | (7)

and thus this concapt of density of states does not contain
any electron-phonon meny-body corrections, This is bths den-

sity of states that is meesured in a tunneling experiment(g).

It i becauss of the weak momsntum dependence of
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L pﬁ(gqu) that slectronephonon effects do not enter,

2 - ‘

For the case of egleciron-gleciron interaclion there is no
corressponding propsrty of the self energy and the density

(9)

of siates does contain many body corrections, Héwevar
it is well known that for example the electrenic specific
heat and the eyclotron resonance freguency are affected by
the electren-phonen interaction, The result is often stated
in the form that the sffective mass or the density of states
at the Fermi level are enhancsd by a factor

i s Vi TP e . 6=0;7=0)/Pw . To distinguish
this concept of density of states frem that first intreduced
we shall cell it a level density for quasi-particlaes. Lst us
consider the slectrans closs to the Fermi level in a metal,
but with no electron-phonon intargcticn. The elsctron states
cen be labeled by the momentum p and have en energy Cp.
Af(p,® ) is @ delia function at o = cp-' As the electron-
phonon interaction is switeched on, the peak in A{p, w ) de-
creases in strénnth and shifts towards lowsr energies, but
still we can label the excitstion by the meomentum p. When the
interecticn is fully turned on we have a system where £he
quasi~ article spectrum has a level density increased by &
facter 1 + A , and with g decreass in strength 1/(1 + N )
for each level. Bt is réally non-trivial how meny~body correc-
timns enfer cifferent elsctropic propertiss. A theoretical
treatment of some important cases, e.g. the speecific heat, and

o B o

referegnces ta oiher waorks in tha field, can be found in the

)

- {
paper by Prange and KadannFF'7 « It turns out that most






electronic properties are unaffected by elactron-phanon many
body corrections, because not only the levsl density byt also
the waves function will be modified, and these two sffects

often cancel. Quantities that do contain many-body corrsctions
are the specific heat, the cyclotren resonsnce fresquency and
the emplitude in.the de Haas- van Alphen effect., Thay all

show the same incresase by a fFactor 1 + )\ in the effective
mass (or the density of levels) at low temperatures, When the
temperature is increased, hioh snergy excitations become im-
portant, and thes complate form of the spectrsl function A(p,» )
must be considered. This means that oUr concept of density of
levels is no longer well defined, Howsver for the case of ths
specific heat it turns out that 1 - @ Re mel_ph(w;T)/Dw

can be given an interpretation, although & formal ons, also

for finite temperatures. Prange and Kadanof?(7)havg arglizd that
the electronic specific heat can be calculated from the usual
expression (First integral of eq. 16) in Landau’s guasi-
particle theory provided that the snergy F(k) is the solution
of the eguation

E(k) = ¢,_ - ¢ + Re Mel”icg,Ecg);T) {(3)

k

This holds irrespectiyely of the megnitude of Im mel DR

Again it is the ‘waak mementum dependencs of mel‘ph

that leads to this remarkable result. Eq. (8) Formally gives
a density of states in ensrgy spsce which is enhancad by a

factor 1 - ’) Re mel_ph(ua;Tb/i?w compared ta the
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non-interacting case, If fig, 7 we plot 1 = ©Re mgl_ph(m‘{hﬂlyém
as this is a conusnient guentity in our subseguent discussion

gn the electronic specific heat, f(ecause our "density of states®

is of a formsl naturs, we should not be surprigsed to Find

that it can become negative for some energies. The total spe-
cific heat is obtained by an integration over all ensrgisgs,

and the final result is of course aluwsys positive,

Cyclotrpon respnance

In cyclotron resnnance experiments results are often glven
in tha form of "effsctive™ masses. The electron-phonon mass
gnkancemsnt is for low temperatures and fraquenciss (i.e.
frequancy of the apolied =lectromagnetic field) given by the

factor 1T - “DRe mal_ph( W:D;T:U)ﬁm s A

cause of the temperaturs and gnergy dependence of m31 o

thare #will he deviations from this simple result if we raige

(1a) A {
the tcmpepature( “ or Ppsguenoy’

: e (the case of high mag-
(12)

netic Piglds will not be considerad here). High frequency

gycletron resonance has been treated thesreticelly by Scher

{(11)

and Holstein o They find fer the surfacge independsnce ¢






whars

R, = 8/9(m2nva vgj/nezch)1/3 G

and
9

!
0 () = *"‘ coth ‘; {‘ uign ¥ l-ph(c)-Re Mel-ph(CJFB)
w Y%

Im Mel—ph(c) + Im Mel-ph(c ;ﬁ&) }f]
: o,

®_is the frequency eH/mbc, wvhare no electron-phoncn
affects ars included in the slactron effective mass e
When the frequsnecy is not too high, it is a good approxi-

mation to take

i
o 28 o he ’b fiae 23
(.)seeotx{ n 1_3 [1 P Re M1 e g (900 g+a Imu o (e=0) {(12)

c %

w
<

and we arrive at the standard rvesult with resonance

osouring at freguencies ®

eH £op o2y
s ey y 1 integer AR
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where
meff = mb[‘l +).(T=O)] (14)

As long as Re mal-ph( w+ mc) is linear in o + @, eq. (12)
is & good approximation to eq. (11) and the same effective
mass will be seen. Now compare with figs, 2 and 4 of

Re mel ph( @w). For high encugh frequencies we have

Re me'-—ph( wt w_) =Re mel-»ph(m ) s Ruc and this will

i c
Iead 1o a shift in the resonance Preguency. It is evident

from figs., 2 and & éhat very high Fraquencies are required

to see Lhis shift (1 meV corresponds to a frequency ~o 240GHz),
At ths same time the damping factor in eq, (12) becomes

large. Consequently this type of experiment will be very

difficult. Ye refer to the paper by Scher and Holstein (11)

for & detasilsd model calculation.

The possibi;ity of geeing e temperature sffect in the
effective mass is more promisihg. At finite temperatures
Fermi-Dirac factors must be inserted in the in the

integrand of eq.{11) and the integration then goes over

all ¢, i.,e, we sffectively get a thermal smearing of the
integration limits, This will be of conly minor importance
for the form of the resonance condition if kT is so small
that only the rsgion where Re mel-ph(m) is linear in
contributes to the integral., It then follows that the affec-

tive mdss measured in a cyclotron resonance experiment at






-
(4]
”

not toe high freguencies is given by

B g :.DL1 +'7\(1‘ﬁ (15)

It remains to calculate the tempsrature dependence of
P

A(T) = - ?R_B mel’-ph( unO;T)/(}w). This problem has been
8

considered in an earlier paper both in an accurate
calculation for sodium and in an Einstein model, The
result of the Einstein model is, that (T) first increases
with T to a maximum =~ 1.2 A(0) at T 0,3 Gc. A (T)
then gradually decreaseé to zero..In figs 8 and 9 we shouw
t>\(T) for lead in an accurate calculation based on
a?(m)F(u) from MchMillan and Rowsll, A corresponding curve
for mercury is given in fig 10, Experiments are sluays re=-
stricted to low temperétureé, where the mell.known conditien
mc't $? 1 can be fulfilled, The results for A(T.) _
(figs. 8 and 10) and z%l-ph

frequency of the electromagnetic field is higher than about

(fig., 5) show that if the

50 GHz it is possible to cover a temperature range where
m_pe shifts by about 3% both for lead and mercury. With pre-
sent experimental technigue this is however a very high
frequency, If very high magnetic fields are ﬁsad, one can
easily cover a larger temperaturs range but then ocur theory

is not valid.
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The electronic specific heat

The electroen-phaonon interaction causes the low temperature
specific heat of the conduction slectrons to be enhanced by

the same factor 1 + 7\ as the low temperature cyclotron
resonance effective mass. In this section wé investigate the
deviations from this result as the temperature is increased,
-An expression for the electronic specific heat valid at arbi-
trary temperatures has been given by Prange and Kadanoff(7).
They base their deraivation on the aquipalenca-between tempera-
ture derivaties and“time derivaties, A related expression

valid at low temperatures has been‘given by Eliashberg(TA),
vho started from the thermodynamic potential for the coupled
electron~phonon system, In appendix 1 we show how Eliashbsrg’s

result can be gensralized to give the forhulaof Prange and

Kadanoff (eq. 16)

E(k) Df (B(K)) = 2 gdﬂ gdn £
“(Zu)B 'a%’ 9

b
; (15}

Re (aE;'rm @ (E) + DRe M (B;1) S (E)}
{\. "'"J -ph r Y q-,r——“el-ph E {‘o

This expression can be rewritten in a form that is more

suitable for us,

: ,
27 - e “9\2

C =% IN, 42 Pgdr. a8’ N Qf () Pr (8)_(E-x05 207 ()

4 - OBE° LT Tl e

(17}






Finally we can write the specific heat as
Y [\'o +Y1(T-)-]T (18)

where Yo is the value in tte absence of electron-phonon
interaction and 71(7) incorporates all these effects.
71(T) can be calculated from ones integral in eg. 17.
Rs T-90, v (PN ¥ . It is a well knav Fact Ky el
that | 71(T) first increases with T and that this increase
goes as TzlnT. It is also known that renormelization effects
disappear as T-)OO“ s and consequently Y (T)=» 0 in this
limit. The behaviour of 71(T) can ba characterized by
two temperaturss, that at which Y1(T) has its maximum and
that above uwhich 71(T) is sssentially zero. To get some in-
sight in the general behavipur of Yq(T) we have in a pre-

(10)

vious paper investigated an Einstein model, i.e. a Z(m (e )

is a delta function at @ = k@_., In this model Yf(T) has a

£
maximum (~3 3/2 of ¥ (D) ) at TmB8./8 and Y, (T) is zero
For'rfﬁoE/d. | 71(T) then has a smaller minimum and
approaches zero from below, From the formof eq. 17 it follouws
that DE'shculd be 2z characteristic temparature not for the
phonon spectrum but for a?(m Yr{®w )/® , For a2 monovalent
metal like sodium, a?(w JF(® )/® is dominated by the
coupling to the high energy longitudinal phonon modes and

ﬁhe usual Debye temperature @_. should be a good vslue for

D
QE. For potyvalent metals, howsver, there is a strong coupling
via Umklapp processes to the transverse modes. The characteri-

tic Einstein temperatdre QE to be used in calculations of






71(T) {and also ?}\(T} ) can therefore be considerzbly

lower than @ For lead one Tinds Q.2 45 O and flox mer-

D
cury  Hcs 20 %. This causes the peak in ‘q(T) to appeer

at temperatures that are much lower than seems in geﬁeral

to be reslized, The effect is very pronounced in mercury, whose
properties have been reported in a previous Iatter(15). In
figs, B and 9 we shouw 13(T)/ 1%(0) Por lead calculated

rfom eg. 17 with McMillan’s and Rom_ell's(j) £ (v JE(©),
The result fior mercury is given in fig. 10. The peak in 71(T)
at Tew 6 °K lies below the transition temperature to the
superconducting state (T_ = 7.2 %). Already at Te 20 %
there are practically no renormalizétion affects left, For
mercury the peak appsars at'a still lower temperature (2 OK)

to be compared with T_ = 4,2 %,

A brief argument will be given why the peak in 71(T)
appears at such 3 low temperature compered te ths Debys
tamperature'and why it is enough to consider the change in
slepe 1)\ (T) in the case of cyclotron resonance but not far
the specific heat, Let us first discuss the specific heat.
Consider the term in eg, 16 containing @ 7/@ T=-(E/T)® /% -
The function Qaﬁ/DI: has a rather narrow pesk "of width kT®,
but after multiplication with EZ we get a function that hes
& broad maximum at Em~ 2,4 kT, i.e. alrsady at temperatures
much lower than the Debye temperature do we begin to pick up
contributions to the specific heat from regions where

Re méltnh changes non-linearly with energy (cf. Fige. 2, 4
T
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and 7. This is why the peak in yﬁ(T) can occur st such s
low temperature as Tee 0,1 QD. The remaining term in the inte-
grand of eq. 16 containiné the tempsrature derivative aof the
self energy is of littie importance and does not invélidata
our discussion above, For the cese of cyclotren resnnance

we are really restricted to snergies within a narrow range
around the Fermi level, There is no feactor in the integrand’
of eq, 11 that makes high energy excitations important, on the ?
contrary they have a large demping factor. Therafﬁra we always

stey within the region where Re m ph(m 3T) is linear in

1
end it is enough to find the temperature dependence of the .

affective mass from a knowledge of 1}‘(T).

fin interesting question is, whether it is really possibls to
see the temperature dependence of ¥ 1(T) in specific heat
measurements, Lat us here consider a measurement of the
specific heat of lead in a normal state (i.e. in & magnetic
field), Measurements on the superconducting state will be dealt
with in the next section. The lattice contribution goes as

T} and the electronic part is linear in T. Let us define a
temperature T0 at .which the lettice and electronic parts

are approximately equal. For lead5T0=1.3 % and for mereury
T0=0.é %%, At the temperature where W(T) has its maximum, ;
the interesting guantity [ ﬁ(T) - 'ﬁ(ﬂ)'l T makes only 0,5%

of the total specific heat for laadas) (0.4% for mercury).

An additional important point is that the lattice part doss

Aot Follow & T ~lew at these temperatures (i.s. 8, can no






longer be considered as temperature independent), The high

high temperature specific heat éhcws a linear increase coming
from the electronic term and also from anharmonic effects,If ws
could find some estimate of the enharmonic term (e.ge from
measuremants ofkphonon Fréquency shifts by neutron scattaring}
it should be possible e verify gualitatively that ths linear
electronic term chandés slops from the rzegion of very low

temperatures to the region T2 9.

Specific heat .in superconductors

The results just obtained have some important consecuencies
for an analysie of the thermodynémic properties of superw
conductors, Of esxperimental importancs is the difference
AC in the total spscific heat between the normal and the

superconducting state of a metal,

Ac=c¢ -C By
Pl a,tot

The quantity AC can either be obtained directly by

calorimatric methods or calculated from measuremsnts of the

critical field HC as a function of temperature, In the latter

case, thermodynamics gives

2 2
TH 4R T(gg. » 5
20
AC’KT";,'.S“ *Rdtf) @
It is genarally assumed(¥agt the lattice pa}t can be taken
to be the same in the normal and in the superconducting

state, and thus ons srrives at an experimentally determined






2%
difference
cn,o -Cs.e g ‘;C (21)

between the eslectronic specific heat of the tuo states. To
a fairly good epproximation Cs - has an exponential hew-

’
haviour

-(const, T/To)

c = const.e
s,0

(22)

where Tc is the transition temperature when no magnetic
fields are present, As AC-[YO + 71(T)] T = "Cs,e goes

exponentially to zero with Tc/T’ the experimental upcartaine

ties in. AC end - ‘q(o) makes it meaningless to con-

sider Cs = at temperatures below say Tc/T=5' But the ex=~

’

ponential decrease of Cs 5 with temperatures opens up a new
s

possibility to see the temperature dependence of 71(T).

le can for example plot A c/ [( %+ 71(0)"3 as a function
of T. This ratio will start with the value 1 at T=0 and then
increasse slightly (in mercury a few percent) before the

aventual decrease due to the onset of C8 g The possibilitiés
1

to experimentally verify this effect in mercury has pre-

(13)

viously been considered

lle next consider what modifications the tempesrature depen=-

dance of ﬁ(T) will give to earlier experimental deter-
(16)

nation of C
]

. The relative change in 71(T) Por lsad
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when TC/T = 1 is large but at the sames tims £, o is ohly
g

about 1/3 of ‘5 C and Cs % is only increased by 3%. At

’

lowsr temperatures the relative influencs on Cs 2 is largsex,
» g

for Tc/T = 1.7 one finds that the earlier values of C 2
+B

should be increased by sbout 10%. Thus the changes in

C8 o 2re not urimportant, and the cprrectiaon is larger
7

than the given experimental uncertainty, Houever the devi-

ation of Es - in lsad from the BLS result is still large.
s

For mercury the situation is qualitively the sams as for
lead, We snd this section with two remarks. The First con-

o L o . 'y
cerns the ratien (“s,a/cn,e?IzTc' In a BCS-model this ratio
is 2,43, Standard analysis of experiments on superconductors

(16)

gives (C =3,7 for lead s and the diffsrence

e,e/cn,e)TzTc
between this value and the BCS result is some times taken as
a crude measurs of the strong coupling character of isad, A

.

proper analysis along the lines of this paper decreases the
experimental value from 3.7 to 3,3. For msrcury(1q) the
corresponding change is an increase from 2.2 to 3.2, Tharefers

thers' is not much meaning in a comparison of ratios

éts,e/én;e>TﬁTc for strong caupling superconductors. The
second remark concerns the possible expsrimental verification
of a difference in the lattice specific heat bstwesn a normal
and & superconducting states., Such attempts should contain a
careful analysis of the effects dealt with hsr2 in order to

avotd spurious results,






The electron-phonan system ef polyvalent metals differ from
that of for exampls the alkali metals in saveral respécts.
Tt is not only that the polyvalent metals have a stronger
coupling, but also the characteristic phonon energy is very
low due to the strong coupling to transverse modes via Um-
klapp processes. ile have investigated the consequencies of
these facts on the electronic properties of lead and mer-

cury.

The electronic excitaticons can conveniently be described by
spectral functions. %ie have caleculated the spectral function
for several energies and temperatures and as expected we do
in general not have the structure of single particle like
gxcitations, The effective electron mass as measured by
cyclotron resonance has a temperature dependence which can
in general be neglected, but for lead and mercury this
effect is large enough to be ssen with the pressent experi-
mental technique. The normal electronic specific heat shous
a strong deviation from the usual lineer increase with
temperature, It is difficult to measure this effect directly
but a study of the metal both in the supsrconducting state
and in tha normal state (i.e, with and without an applied
magnetic field) can make it is possible to verify the non-

linear increass,
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Appendix

It is well known that the specific hsat of a nnn-mégnetic
metsl in the limit of low temperatures can be divided up
into twe terms, one praportionel to T3 goming from tha
phonons and one linear in T from the electrons, The
effect cf elébtronaphbnan interaction can easliy b;
absorbed in the electronic part by the introduction of an
snhanced éf?ective electron mass. In the literaturs there
are at least two ;ttampts to go beyond the limit of low

(14)

temperatures, £liashbarg started from an expression

for the thermodynamic potential in erder to find the first

25.

correction te the linear behaviour of the elsctronic speci-

fic heat, Prange and Kadanoff (7)'made gquite a different

approach and from the similarity betwsen time dsrivatives

and temperature derivaetives they obtained a formula for the

specific heat which they cleim is valid at all temperatures,

We will here show that E£liashberg’s formula can be gensrale

ized so as to give the result of Prange and Kadanoff,



N '.:r'ij. ;_'. 4

Pr=tcis

S
G




Using a method developed by Luttinger and UWard
Eliashberg (14)Finds the following expressiaon for the
thermodynamic potentialejL of the coupled electron-

phonon systsm;:.

= ot 'EXI::Y;—G'?P)-] R IOIEN!
P
‘T Zé{lni-D-fQ)l M@l

e
26n g 2 e s
-0 2. Ey.p’  F(P ID(P-P*)G(P") (n 1)
P P‘ 3
with
. g
M LSl ' 3? *
(P) = -T g‘. a(P")D(P-P" )65, (8 2)
and
TN = 233 T S a(P)a(P-q) (A 3)
P

Tht summation over P means

=" -
=X d 4
% L - s

with ca=(2n+1)iu T and n integer, The summation over Q
is analogous with - @mz 2min T and m integer, 52 is
the slectron-phonon coupling., To avoid cumbersome notation
we shall not includs coupling via umklapp procegses or
transverse phonons, The electron-glectron interaction and
phonon«phonon: interaction is for the moment neglected, .It
is easy fto show that _fl_ ig stationery with respect to
veriations in N andfrﬁh. Therefors when we calculate the

entropy 5 =- ( iaL(l/r:)T) we only have to differentiate

with respect to the sxplicit temperature dependence cﬁ.(%h






AT,

The electronic term

e start with what will eventually be interpreted as

the electronic contribution S

el
s .= =(.0._/97) (A 5)
L el
with
' : . Led : _
Q.= -21'% 1n(-a (®)) (~ 6)
5 . Pl : Y
To find Sel ws makes a contour integration and make'uﬁi
of the analytic properties of GR and Gq as described
by Abriskssov, Gorkov and Dzyaloshinskii(1), p. 171 and
we have
oD

S j(;_;.} g iT( Y’ of (C):Ene (p,c3T)=1nG (g.c;!ﬁu (A?)
n n

f ( ¢) is the Fermi-Dirac equlibrium distribution function.

GR and GA denote. the retardad and advanced glectron Green

R = G':. Note that we

have only diFfarsntzat"d mlth respect to the explicit

functions, They obey the relation G

temperature depandanca'but after this derivative has been
taken we have included the full tempsrature dspéndsnce in
the Green FQﬁﬁtions, i.é. in their self energy parts, Ue
now depart from the mathod:of Abrikosov et.a}l, and first
integrate with respect to dp., We change ﬁhe integration
limits for‘the energy in ege. A 7 to be from O to o dﬁe

part of the integrand can then be written
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Sdg(lnGR(B,c;T) -lnGR(p_,-sv;T)] (A 8)

We have (Abriskosov et,al,)

G;1"(2.c;'r) =€ -cp-Rb—rﬁ(c‘;T)-ixihM(c;T) s (A 9)
and
G;(p_.-!:;T) = =€ -cp+R’c-M(c;T)-iIn.M(c;'r) (A- 10)

Ye have then made use of the well known fact that
; 1/2
M(p, £) is independent of p to the order (m/f ) /

(electron mass tc ion mass), The expression A 8 now becomes

PRy gdcptln(c-c;lie %M(:;THQJH(:;T} - (A 11)

| ln(-c-chan.:M(c $T) ATmM (e ;'1.‘)1
Where m, is an effective band mass and Pr the Fermi momentum,
The cantribution to the integral comes form the imaginary
part of the logeritﬁm, i,e, from its angular ergumants,,

The immediately finds that the integral A 11 equals.

ziumpr[:c—ReaM(c;Ti] : (A 12)

Note that this reslut does not require thatI® M.. .is
small, After an analogous treatment of 1n GA in eges A 7

we end up with

<O

£ e i ;
8 1=ty S . [ €Beni(cim)]) dc (n 13)
2n T < cosh™(g/2T)
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This is the s8me as tliashberg’s result with the excgption
that he anly wanted the lowsst correction to tﬁa linear
temperature dependence of C_, and therafofe took ReeM .

to be temperature independent, It now only remains.tc
compare with the result of Prange and Kadanoff, After.
another derivation with respect to T, which should now also

include RecM, some partial intsgretions lead to

T

N San Et';-?Re M E):\"?f (E) ,Dre M(E) %fo(m (A Th)
| E

where N_ is tha band density of glectron states at the
Fermi level, This is exactly the reslut of Prenge and

Kadanoff,

The phonon term

le next turn to the specific heat of the phonons and

consider Qph

.IZPh.-.-g— zé‘ 1n[-n"?Q)'_l (A‘”‘IS)

The evaluation of this term is analogous to that of the

electron part,

le go from & sum over 2mi ®T to an integration in an
imaginary w-plane and deform the integration cantour to

be partly along the real axes, The imaginary part of D is

29.
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very small and the logerithm will therefore have dige
continuities in its apgular argument when we pass the

singularity points Wam % wd. Gne finds
el

= E'}'— z S S Dcoth(w/ZT) duw (A 16)

After a partial integrapion and a change of variables

A

Sph can be rewrittsn in the form

, ~ T A , = — f' o
Sph“‘é”q@%—l.w»i ,‘E% =

 which is just the free energy for a'system of independent

harmonic oscillators; It is also tﬁe result that Prange

and Kadanoff glva For the contribution ?rom the lattics
vibratlons. 1t should be remarked thatllphof course is the
same as tha standard textbook result for bosong using a grand
canonical ensemble,ﬂn—kT lnE sz lntl +exp((£—'k/kT)1.A

18 .
fethematical- tramsfnrmnt;nn( ) 185d9 to the formfn$h abqva.

An analogous statemsnt holds FurJagiid damping is neglected,

Remaining terms infl

.Thare remaiﬁ several terms in-.§1< o« Uhen we used the nota-
¥ian <£& and'_czbh we. anticipeted the Pact that the
remaining térﬁs qither.cancel,or give @& nagligiblg COMN-
tribution to the entrfpy and the specifit heat, This ie
certainly tfdé in tﬁe limit of low temperatures where

our results Pur‘ﬁel and Cpﬁ are . known to hold, We now

set out to proverit ﬁlso for slevated temperatures,

Ue usse the notation
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= ) +Jlb +12 = (a 18)

2T, M(PIG(P) + - 1. (Q)D(q).52§'§, a(P)G(P*)D(P-P")
P Q -

In the uUsual wey we can go over from 2 summation to an

integration,
: oo
a- 1 {2, | ae centerzm) mppierag(eee)-, e 26y fp.e)] (a15)
s E-I{;zﬁ) ( S: ’ t .
m.(pse ) can be expressed Sa\ 19
: : B |
> " dp’ 2 dc.- o _» Ty o e

4 i e e - '
+ E_{§R(c+m2_2.,p ) +GR(cfw2.2a,P ) OOth(QBfR'/ZT;}'

(& 20)

mA{p,E.) has-an analogous expression. with Gy instead of

GR in the’lastlbracket of egs 20, Taking inte sccount

that GR.-.-GR g Ve can write : )

‘QJ - 2:1 a"u‘ Z»g de tsh(c/zfr)g__%s gdc tgh(c‘/2T) %

% In G p(Rs€) Im G (p5c”) D(p-pie=c”)

dz e - 3 ‘
SE-Z-;—).S B".E & (p,c) G (p .c+w2_2.) +GR(p ,c—mE_E,,_))

- 8ol coth( /27 A 21
, ] othiv, o /2T) ( )
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Because of the stationarity of fLwith respect to Il we sha;l only take
the temperature derivative of toh(8/27) when we form Saz(iaﬂchh). 1t
is easy to see thatiLc= -125/2, but irx,fZ.c the temperature derivatives
are to be taken both for the coth and the two tgh factors. The tempera-
ture derivatives of togh will lead to sxactly cancellning terms in Sa

and SC. In Sq'ghere remain terms containing integrals of the type (note

K
that G.=G, )
-0
2 X
s + c \ o ’ \
gdg. QE‘E’E'QM /ZTaEe GR(E’CI Im GR(E ,c+0)R_E, hs
-0

+ Re G.(p,€) Im G,(p",2 -wE-P_’)] ' (A 22)

Compare this with an expression for Rei‘(k, mo) (Abrikosov est.al.

p 179)
S :
Re”(k, W ) = 2 g? dgﬁg;c toh(e/2T ) (a 23)
b 0 4 K-
{2=%) =
- oes

¥ {Rs GR(E-B_,c-mO) Im GR(P-":}- + Re G(p,evw ) Im G (p-k, CB

RET.(E, wo) is practically independent of the frequency CR wien wo«uF
and we can put if equal to zeroc in eg. A 23, Eq. B 22 is of the same
structure and we can algo here pﬁt wE_E,zo..From the soluticn of egq.

A 23 (Abrikosov st.,al, p 179) it follows that the self energy parts

of the electron Green function are not important and that Re’n-zg) is
practically temperature independent. It follows that the remaining
term in Sa and the corresponding terms in SC can be réwrittan 60 e
Fform containing i§117ﬁ9Tand can thus be neglected., We are finally left
uithk §

b

tive of coth (‘9p p,/Z'T)‘, S, is as usual evaluated with a compl=x con-

and the term in SC that originates from the temperature deriva-

tour integratio;. tising that (cf Abrikosav at;al.)~DR=d:|, Im/iLs small
/2

of order (m/#) and Im D{g,®w) is sharply peaked at w= % wq we geb

5, == -1,— Zqﬂermﬂ) .':QTEzoth(wg/E,T) : (A 24)
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Recalling that Re ﬁ(b w ) as given by eqs A 23 is in-

depaendent of @ we find cancellation between Sb and the

remaining term in Sc' In summing up, Eliashberg’s thermo-
dynamic potential lsads to the result of Pramnge ana

Kadanoff for the specific heat of the couplsd electron-

phonon systeg

Explicit electron~electron interactions have been neglected
as well as band effects, lWe include then afterwards as

a correction to the effective density of states at the

Fermi leuél. The neglect of phénon-phonon interactions

is more serious, With increased temperature, the phonon
freguencies will shift and also eventually be less well
dafined, However the presentation here is valuable, as it
enables a separation of anharmonic effects from the mesasured

high temperature specific heat,
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A calculation of the high temperature electrical resistivity for lead. indium and tin is
performed starting from data obtained when the gap equation for tunneling in superconductors

is inverted. A main result is the average 1 — cos©® where @ is the scattering angle. The result
is discussed in detail.

On a caleulé la résistivité électrique 4 haute température du plomb, de I'indium et de
I'étain en partant de 'équation du gap pour l'effet tunnel dans les supraconducteurs. Le
résultat principal se révéle dans I'expression moyenne 1 — cos @ o @ est I'angle de dispersion.
Une discussion détaillée de ce résultat termine ce travail,

Wir berechnen die elektrische Leitfahigkeit bei hohen Temperaturen in Blei, Indium und
Zinn, ausgehend von Experimenten im supraleitenden Zustand (Inversion der ,,gap equation®).

Ein Hauptresultat ist der Mittelwert 1 — cos ®, wo @ der Streuwinkel bedeutet. Das Ergebnis
wird im einzelnen diskutiert.

Introduction

Electrical conductivity is one of the most fundamental properties of solid
metals. Although the physics is well understood, calculations are consistently in
poor quantitative agreement with experiments. The first serious attempt to
calculate theoretically the conductivity was made some thirty years ago by
Barpeex [1]. Since then many authors have tried to improve the calculations,
especially for the alkali metals. These attempts have been very disappointing.
Wiser [2] has given a discussion of the origin of some of the difficulties met with.
Calculations for polyvalent metals are less frequent. Lately Pyrre [3] has tried
two different pseudopotentials for the electron-phonon coupling in aluminum, and
he got results differing by almost a factor two (at 7' = 300 °K), the experimental
value lying in between. Carsorre and Dy~NEs [4] have obtained a somewhat better
agreement, the significance of their results is however doubtful in view of Pyrrs’s
results.

Among all more or less uncertain points in a theoretical calculation are: The
phonon spectrum including its temperature dependence, the electron-phonon
coupling, the shape of the Fermi surface, the density of electron states on the
Fermi surface, the thermal expansion of the lattice, and of course approximations
made in the formal expressions for the resistivity (cf. the discussion below). In this
paper we show that many of these uncertainties can be overcome, if one uses
information from the inversion of the gap equation that describes the super-
conducting state. This is of course not a “first principles” calculation, but never-
theless it is a challenging task to find high temperature resistivity from measure-
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ments on a superconducting state. The result demonstrates nicely the consistency
of the data and provides a check on the key theoretical assumptions.

General formalism

We closely follow the approach given by Zimax [5]. Using a variational method,
the resistivity can be written

- 9nh Z/f elq 9)2v2(q) ds ds’ 1
= 6MNLTI [hoa(D/ET — 1] [1 — e—hox(q)/kT] v ¥ M

where
I= (127t3h)3‘f1)q(u q) a“ dq —K Sz,

A phonon with wavevector q (always to be reduced to the first Brillouin zone)
and polarization index 4 has the frequency w,(q) and polarization vector &; .. The
equilibrium Fermi-Dirac distribution is denoted by /9. The quantities » and " are
velocities of an electron on the Fermi surface and % the number of conduction
electrons per unit volume. K is a directional dependent Fermi wavenumber. We
take ky as the Fermi wavenumber for a spherical Fermi surface (i. . a free electron
model) and Sy the area of the Fermi surface in this model. S is the true free area
of the Fermi surface. Further % denotes a unit vector along the applied electric
field. The Boltzmann constant is denoted by % and m is the mass of a free electron.
The electron-phonon coupling is given by »(q).

The choice of trial functions in the variational procedure that leads to Tiq. (1)
has been investigated by Konrer [6] and SONDHEIMER [7]. The error introduced
in Tq. (1) by our specific choice is of no 5
importance for our caleulation. Phonon of (wlFlw)
drag is also completely neglected, i.e.
the phonon system is assumed to be in
thermal equilibrium. This is probably a
very good approximation in the tempera-
ture range we will consider (7" = @p/3).
Except for these limitations, Iq. (1) is a
very general expression that contains
in full all details about the electron and Hig. 1. at(@) ” Ty
phonon systems. B L i

From a numerical inversion [8] of the typical in shape for lead and indium
gap equations for a superconductor it is
possible to find very accurate (~ 19%,) values of the quantity o2(w) F () [9]

Zf (&2,9 q)?v2(q) 6(w — w:(q)) dS 4S5’

w

2z "21‘[ Nhuw; {q) v v
a2 (w) F(w) = N S S (3)

as
”
The denominator in lq. (3) is related to the total density of electron states Npg(0)

on the Fermi surface (including bandstructure but not electron-phonon interaction).

1 *dS
Nps(0) = 473 (ﬁv ' (4)
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@?(w) is the energy dependent electron-phonon coupling and F (w) is the density
of phonon states. «? (w) #' (@) has been obtained by McMiLLAN and Rowery [8] for
some superconductors, e.g. lead, indium and tin. We give a typical form of
a?(w) ' (w) in Fig. 1. Comparing Egs. (1) and (3) we find, that apart from the
factor g2 in the integrand of Eq. (1) the two expressions are very similar. If we had
a spherical Fermi surface, then

=2k} — cos0), (5)

where @ is the angle between the initial and final state of a scattered electron. For
a non-spherical Fermi surface we get a slight difference that we neglect. We will
also take Kg — kg in Eq. (2). As 8y = 47k} and the density of electron states at
the Fermi level in a free electron model N¢o(0) = 3mn/h% k} we find when com-
bining Eqgs. (1), (2), (3), (4) and (5) and using k% = 3a2n

(S0 \2 Nps(0) damk a?(w) F(w)wdw
o=l =008 @)( S“) Nre(0) nkTe2 | [ehopr — 17 [T —o-romzy>  (6)

where (1 — cos@) is an average value for the scattering processes in Eq. (1). The
quantity o?(w) F (w) was measured at very low temperatures (7' < T,). Before
we can proceed to a numerical evaluation of Eq. (6) we must analyse that further
temperature dependence, which does not explicitly lie in the exponential terms.
One consequence of raising the temperature is, that the phonon frequencies change.
Also there will be a thermal expansion of the lattice.

As the complete temperature dependence of «2(w) ¥ (w) is very difficult to
discuss we instead consider the so called Bloch model (cf. Zmmax [5] Eq. 9.7.1) for
electrical resistivity. At high temperatures (7' > @p) it can be written

3B kT
e= 477;&'57572%9,’;_' (72)

The general form is
SWky (TS [ 5
b4 ¥ T\ 25dz
0= me2kn, On (@R) f[cijI] M—eq" (7b)
0

Here 7, is the number of conduction electrons per atom and @y a Debye temper-
ature to be used in resistivity calculations. @ is of the same order of magnitude as
Op used in heat capacity formulae. In this model we see, that apart from the
explicit dependence on @y, g is proportional to ky, i.e. the inverse of the lattice
parameter. The thermal expansion is in our case alway less than 19, so the change
in ky can be neglected. On the other hand @ will change appreciably. This term
can easily be taken into account if we use temperature dependent phonon fre-
quencies in Eqgs. (1), (3) and (6). The average shift in w;(g) amounts to 109, or
even more in the range of temperatures we consider and can thus not be neglected.
The temperature dependence of the phonon frequencies w;(q) is treated in an
approximation where we assume that we always have a system of harmonic
oscillators but with a frequency changing with the temperature. We make the
crude approximation that all phonon frequencies change in the same way, i.e.

walg; 1) = ws(q; T'=0)-4(T), (8)

where A (T) is a function of temperature. (We note that this approximation does
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not refer to any special shape of the dispersion curves.) Let us consider some region
in the wave vector space in KEq. (3). Let us also assume all quantities in Eq. (3)
except w,(q) as independent of temperature. At 7' = 0 the considered set of
g-values for a specific branch A will give contributions to 2 (m) F (w) in an interval
Aw around w;(q). For finite temperatures the same scattering processes contribute
to a?(w)F (w) in a frequency interval whose width and position have both been
shifted by A4 (7'). The strength of the interaction is only changed by 1/4 (7') coming
from the term 1/w;(q) in the double integral in Eq. (3). It is thus not difficult to
take into account the temperature dependence due to shifts in the phonon fre-
quencies.

For A(T) we must find a proper average over all phonons. We assume that

A(T)=1—»T (9)

where y is a constant. The shift at low temperatures (7' € @p) is then probably
overestimated, but these temperatures lie outside the region we treat.

Results

We have used data from the inverted gap equations for lead, indium and tin [8]
to integrate Eq. (6). The constant 3 in Eq. (9) was determined so as give the
experimentally measured value of (dp/dT)/o at T = 273°K. For lead we can
compare the value of y with a measurement of frequency shifts between 80 °K and
300 °K made by SteEpMAN et al. [10] using neutron scattering technique. Their
measurements show that the shift differs very much for different phonons. The
shift is largest in the sound wave limit and can even be positive near the boundaries
of the first Brillouin zone. Thus it can be very misleading to use e.g. ultrasonic
data to find y. Also the average A4 (7") is not the same for different properties such
as heat capacity, Debye-Waller factors or resistivity because of different weighting
factors. We have estimated y from STEpMAN’s curves and found agreement with
that obtained from (do/d7")/o at T' = 273 °K.

For T' € @p the low energy part of a2(w)F(w) becomes important. In this
region the relative uncertainty in «2(w) F (w) is large, and also the behaviour of
1 — cos® is not known so we have not found it justified to go to lower temperatures
than 7 ~ @p/3. This is of course regrettable, as it leaves out an interesting
temperature region.

To get an absolute value for p we must know Sp/S, Nps(0)/Nge (0) and 1 — cos @,
If we however consider o (7")/o (7' = 273 °K), then the first two terms related to the
Fermi surface have no influence. Moreover 1 — cos @ is not expected to vary much
in the temperature region we are interested in (7' = @p/3). The reason for this is
that the metals we investigate are polyvalent metals where umklapp processes are
very important. As the temperature is lowered the exponential terms will decrease
the relative importance of the high frequency phonons. This will however affect
so many regions over the Fermi surface, that the average 1 — cos@ should stay
practically constant. With these assumptions p(7)/o (7 = 273 °K) is readily
evaluated from Egs. (6), (8) and (9). We give the results for lead and indium in
Figs. 2 and 3 together with experimental values. The agreement is very good, but
not a very significant check on the accuracy of the theory. In fact the temperature
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variation depends so strongly on the exponential terms that even a crude model
for the phonons (e.g. a Debye model) will give a good description irrespective of
the form of the electron-phonon interaction and other details. This has been
known for a long time; indeed the famous Bloch formula (Eq. (7) for electrical
resistivity is surprisingly good for interpolation between high and low tempera-
tures. In Fig. 2 we also plot g(7)/o (7" = 273°K) from Bloch’s formula, using
Or = 86 °K. Mac Doxarp [11] found this value of @y to give a good fit with
experiments. Actually we have used O = 86°K at 7' = 273 °K and then made
the same correction as above, i.e. @g = 86 [1 — ¢ (7' — 273)].

= e 1.0 - 5(T)c(273)
5§V e (273) [
| i
o I
= 0.5
e " L
X
A
| | 1 | T T
0 100 200 300 400 500 0 100 200 300
[°K] [°k]
Fig. 2 Fig. 3

Fig. 2. o(T)/o(T = 273 °K) for lead. this work. - Bloch’s formula. Experimental
values (o) from HoLsorxy [21]
Pig. 3. o(T)/o(T = 273 °K) for indium. —— this work with @,(q) shifted with tem-
perature. ----mno shift in w;(q). Experimental values (o) from Swexson [23]

An absolute value of p (7') could be obtained only it we knew S8y, Npgs (0)/Nte(0)
and 1 — cos @. From experiments on anomalous skin effect CHaAMBERS [12] has
determined S/8y for several metals. He gives 88y = 0.46 for lead and 8/Sp=0.43
for tin. These values are not very accurate and CitaMBERS estimates the value for
lead to be too low. AuBrEY [13] also measured the anomalous skin effect and found
S/S¢ = 0.55 4+ 0.05 for lead. AxprrssoN and Gorp [14] made de Haas-van
Alphen experiments and OPW caleulations for lead. Their result is S/Sp = 0.59.
Asnorort [15] has discovered an error in the calculations of ANDERssoN and
Gorp. A corrected value is S/So = 0.69 - 0.05. STEDMAN e al. [16] have made
accurate studies of the Fermi surface of lead based on the observation of Kohn
anomalies in the phonon dispersion curves. From the results of these measure-
ments they built a model of the Fermi surface. The measured [17] free area is
0.70 - 0.01. Mixa and KHATRIN [18] studied the Fermi surface of indium in
cyclotron resonance experiments and OPW calculations. Their result is 8/S;=0.85
while Dorgr [19] found S/S¢ = 0.93 from measurements of the anomalous skin
effect. Asucrorr and LawrReNcE [20] got S/Sy = 0.81 in a caleulation for indium.
The quantity Nyg(0)/Nre(0) has been estimated by McMrurax [9] from a knowl-
edge of Debye temperatures, superconducting transition temperatures and the



Conductivities in Normal Metals from Measurements on Superconductors 207

electron effective mass enhancement due to electron-phonon interaction. The
values of S/Sp and Npg(0)/Ne(0) used in this paper are given in the Table.

We have compared Eq. (6) with experimental values for the resistivity at
T = 273°K to find a value for 1 — cos @. The result is given in the Table.
Experimental values are taken from Hovreorn [21] (Pb), GorovasHKIN and
MoruvrevicH [22] (Pb), Swenson [23] (In) and Guerss et al. [24] (Sn). For
indium and tin the values used here are averages, as these metals are anisotropic.
CramBERS considered his value of S/Sy for lead to be too low. We suspect that the
value for tin is also too low, so we give an alternative value of 1 — cos @ based
on 8/8p = 0.5. It is very satisfying that 1 — cos @ then comes out with a reason-
able value for all three metals. We recall that other caleulations of g often are in
error by a factor two or more.

Table
element valence Nps(0)/Nie(0) S/8, p+10% 0(T'=273°K)exp. 1 —cos6
°K-1 rQem
Pb 4 0.87 0.7 2 20.4 1.1
In 3 0.89 0.85 5 8.0 0.8
Sn 4 0.82 0.43 2 10.7 0.5
(0.5) (0.7)

From the Table we see, that 1 — cos @ is approximately the same for the
three metals Pb, In and Sn. (The uncertainty in 1 — cos @ is rather large, say
10—209%,, mainly because of the uncertainty in S/Sp). That the average scattering
angle is almost the same is also to be expected, for 1 — cos @ is the same as an
average of ¢2/2k%, (¢ = 2k} - (1 — cos @), see Eq. (5)). Let us assume an Einstein
model for the phonon frequencies. As all three branches then are degenerate,
we can choose the polarization vector &; , so that q - é, , = | q| for one branch
and zero for the other branches (also for umklapp processes). The weighting
function for ¢2/2k% then is (g/2ky)3 v2(g/2ky) (cf. Eq. (1) after the surface inte-
grations have been transformed to a volume integration). The electron-phonon
interaction v(g/2kr) has approximately the same shape for all metals [25]. It
goes to a constant for small ¢ and has a node just below ¢/2kp = 1. As an average
is taken, it is of course only the shape of v2(q/2ky) that is important and not the
magnitude. For comparison we used this approximate method to find 1 — cos @
for lead. The pseudopotential was taken from Asucrorr and Winkins [26] and
the result was 1 — cos @ = 0.61. This is expected to be too low as the Einstein
model gives too much weight to the region ¢/2ky = 0.5 where high energy trans-
verse phonons are most important. Tt is also interesting to make a comparison
with the value of 1 — cos @ corresponding to the onset of umklapp processes.
For lead this happens when 1 — cos @ = 0.4.

The thermal conductivity K could also be calculated in a similar manner.
At high temperatures, however, the electron-phonon seattering process is essentially
elastic so we have the Wiedemann-Franz law [5, 27] and there is no need for a
separate calculation of K. The region of low temperatures is out of our reach
for the same reason as in the case of electrical conductivity.
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Conelusion

Starting with results from tunneling in superconductors (i.e. inverted gap
equations) we have followed the usual variational approach to caleulate the
electrical resistivity for three polyvalent metals, lead, indium and tin. The results
are in very good agreement with experiments, contrary to the general findings
in resistivity calculations. The standard theory therefore seems to be sufficiently
accurate, at least at not too low temperatures (7' = @p/3).

Acknowledgement. T want to thank Prof. N. Asucrorr and L. ALmqvist for sending me
unpublished data and Prof. J. W. WiLkIns for reading the manuscript.

References

. BARDEEN, J.: Phys. Rev. 52, 688 (1937).
. Wisgr, N.: Phys. Rev. 143, 393 (1966).
Pyrrr, E.: J. Phys. Chem. Solids 28, 93 (1967).
. CARBOTTE, J. P., and R. C. Dy~Ngs: Phys. Letters 25 A, 532 (1967).
. Zmax, J. M.: Electrons and Phonons. Oxford: Clarendon Press 1960.
. Konrer, M.: Z. Phys. 125, 679 (1949).
. SoNnpDEEMMER, E. H.: Proc. Roy. Soc. A 203, 75 (1950).
. McMmpan, W. L., and J. M. RoweLL: A chapter in a treatise on superconductivity
edited by R. D. Parks. To be published.
9. McMirran, W. L.: Phys. Rev. 167, 331 (1968).
10. StEpMAN, R., L. Aumvist, (. NiLssow, and G. Ravxnio: Phys. Rev. 162, 545 (1967).
11. MacDowarp, D. K. C.: Handbuch der Physik, Bd. 14, S. 137. Berlin-Géttingen-Heidel-
berg: Springer 1956.
12. CmamBERS, R. G.: Proc. Roy. Soc. A 215, 481 (1952).
13. Ausrzy, L. E.: Phil. Mag. 8, 1001 (1960).
14. ANDERSSON, J. R., and A. V. GorLp: Phys. Rev. 139, A 1459 (1965).
15. Asnororr, N. W.: Thesis, University of Cambridge (1964).
16. Stepmax, R., L. Aumqvist, G. NiussoN, and G. Raunro: Phys. Rev. 163, 567 (1967).
17. Aumqvist, L.: Private communication.
18. Mixa, R. T., and M. S. Kuaigin: Soviet Physics JETP 24, 42 (1966).
19. Duzer, P. N.: Proc. Roy. Soc. A 260, 333 (1961).
20. Asncrorr, N. W., and W. E. LawreNcE: To be published.
21. Housorn, L.: Ann. Phys. 59, 145 (1919).
22, GorovasHukiIn, A. I, and G. P. MoTvLEvIcH: Soviet Physics JETP 17, 271 (1963).
23. SwENsoN, C. A.: Phys. Rev. 100, 1607 (1955).
24, Guerss, J. E., C. A. Rey~NoLps, and M. A. MircnerL: Phys. Rev. 150, 346 (1966).
25. HarrisoN, W. A.: Psendopotentials in the Theory of Metals. New York: Benjamin 1966.
26. AsucroFT, N. W., and J. WiILKINS: Private communication.
27. CuESTER, G. V., and A. Turrruna: Proc. Phys. Soc. 77, 1005 (1961).

[N B SN O

(GORAN GRIMVALL

Institute of Theoretical Physics
Fack

S-402 20, Goteborg 5



69-6

Msrch 1, 1969

An anaglysis of the temperature

and pressure dependence of the

electrical resistivity in lead.

by

G. Grimvall and C. Lydén

Institute of Theoretical Physics
Fack
s=b02 20 Gdteborg 5

Sweden



taliiig
o %

A

-




Abstract

The volume dependence of the high tempersture electrical resigtivi-—
ty has been treated in detail for lead. Volume changes caused by exter—
nal pressure as well as thermal expansion have been considered. Experi-
ments on the volume dependence of the effective electron mass have been
reanalysed with an inclusion of electron-phonon interaction. Finally,
we have found no experimental support for a net effect from a Deﬁye-

Waller factor and multi-phonon processes.






oduction.

The purpose of this paper is threefﬁld. We will try to account
for the volume (i.e. pressure) dependence of the electrical resistivi-
ty in a detailed calculation based not on models but on data from
experiments on other .metallic properties. Secondly, it hes been con-
Jectured thet the Debye-Waller factor and multiphonon processes might
cancel in the electrical resistivity and we will therefore analys;
this questién with the help of available experimentgl data. Finally
we reanalyse experiments on the volume dependence of the effective
electron mass and tske intc account. the variation in the electron;

phonon enhancement factor. We will consider lead, because of lack of

relevant data for other elements.

‘Theory

There are numerous caiculations in the’literature(j) of the vo-
lume dependence of the electrical resistivity in metals. Although some
of them are very elaborate, they make use of models and assumptions
that we now know are much too crude. We will base our analysis on
(2)

Zimsn's well known solution of the transport problem obtained with

& varistional method:

i & 9 VAR lal)
2" umkrs®iZ ) Pl [E"IA&/E_]_L_E‘E‘” /kT’] ¥ v, (1)

84 =k - k', The integration dS extends over the Fermi surface, whose

o
ki

free aree is S. Phonons of branch A and wavevector g have frequencies
wlﬁg) and .polarization vectors gK.The electron-phonon inkeraction hes
been approximated by the form factor U(|g|) that only depends on the

megnitude of the momentun transfer g = k - gﬁ. M is the ion mass, N

the number of unit cells per unit volume and v and v' the velocities






of an electron at the Fermi surface. The rest of the quantities have
their usual geaning. An earlier celculation of resistivities for szome
polyvalent metals(3) with the use of eqg. 1 was in good agreement with
experiments and the results cbtained in this paper are also reasonable,
B0 we beleive that eg. (1) is accurate enough in this context. It is
interesting to note that we could in principle make a self consistent
treatment, if we knew how the pseudopotential changed with pressure,
Once we had this information we could celeulateichanges in the phonon
frequencies, the shape of.the Fermi surface and the density of states
of the conduction electrons, but such a procedure #oﬁld not only be
very diffictilt but also in practise give inaccurate results. Instead
we will use all available information to see how different parts in
eq. 1 contribute to & change in p. For a discussion of the volume de-

‘pendence it is very convenient to consider (d Inp/d 1n V) and we write
dlnp _ 24 In o, - 24 1n GR y d In IR e (2)
d ln V dInV d In V d InV ?

The first term on the right hand side of eq. 2 comes from‘the volume
dependence of the band densify of states at the Fermi level, i.e.
essentially from dé/v, and we have taken an average over the Fermi
surface in the form of an effective mass. We will always consider

the resistivity at high temperatures (i.e. T >> ) and then the pho-
non freguencies come in as:1/w§(g) in the integr;;d of eq. 1. This
leads to the term -2(d 1ln GR/d ln V). The phonon spectruh is different-
1y weighted in different properties like e.g. the electrical resistivi-
ty and the vibrational specific heat. The relative frequency shift is
not the same for all phonons and'we mast ‘therefore be careful tc spe-
cify which experiment we sre considering. This is why we use the nots—
tion Oz and it does not imply the use of & Debye model or any other
modal. (d 1n I,/d 1n V) contains the effect, of a variation in the form

factor U(g). Finally there remsin some terms that ve sssume to vary






linearly with the lattice dimension and this gives +1 in the
right hand side of eq. 2. We will later consider volume changes caused
by external pressure and by the thermal expansion so we do not yet
epecify whether the temperature or the pressure is to be kept constant
in the derivatives in eq. 2.

The thermal expansion coefficient 8 can be written

8/kp = (32) (2)

i

where KT is the isothermal compressidbility and 8 the entropy. At low
temperatures the thermal expansicn of a non-magnetic metal consists
of one contribution from the conduction electroms, which is linear in
T, and one phonon contribufion which goes like TB. The entropy of the
electrons is propcrtionai to the total effective electron mass and it
is evident from egq. 3 that a measurement of the low temperature ther-
mal expansion can give information about the volume dependence of the
effective mass. A review of thié method has been given by Collins and

(k)

White' "’. A measurement of the pressure dependence of the critical

field of s superconductor cen in principle give the same information
about the effective mass. At present this latter type of experiment
seams to be less aceurate than the first method(S). In both cases the

change in the total effective mass m is obtained. If we neglect the

eff

influence of electron-electron interaction, we can write

meff 5 mb (1 +'A) (h)

where 1 + X is the factor by which the band mass mw, is incressed due

(6)

to electron—phonon interaction. For A we can write
(2 -q)®
v= —d—

v-{{ql) as ds', ¢ as (
: e Rl e 5)
(2v)3 Mys A ¥ f ¥

wf(_q) i

Therefore, in snalogy with eg. 2

d Inm
=

gg G Inm e ) dpe X
e

T BT T ) e P i e (6)






where
P = Q 1o my - 24 In 61 . d in IA o
& dnc Y din V d InV d In V

Like in eg. 2 the term -2(d 1In @x’a In V) is the effect of shifte in
the phorien frequencies but now they are averaged according to eg. 5.
The.last term, (d In IA/d In V), is the result of a change inlf(q) in
eq. 5. The derivatives in eq. 6 are to be taken at constant tempera-
ture (cf. eg. 3). There ig no & priori reason why the various band
masses we have introduced should have the same volume dependence, &8
they correspond-to different averages over the Fermi surface, However,
we do not expect them to behave in a very different way, snd moreover

this point is not crucial for any of the conclusions iy this paper,

Pressure dependence of the resistivity.

The resistance of various metals under pressure has been measured

(1)

by Bridgmen' ' ‘. After taking into account that we want resistivity in-

stead of resistance, we have at room temperasture and in the limit of

(8)

small volume chenges (d In p/d 1In V)T = 6.9, Fisher obtained the va-
lue-6.5, but Bridgman considers his experimental method to be somewhat
uncertain. Throughout this paper we will use the compressibility and

(9}

thermal expansion coefficient of Gschneider to convert from experi-
mentally determined pressure or temperature derivatives to correspon—
ding volume derivatives.

The phonon term (4 ln Op/d In V)T could in principle be obbeined
from measurements of phonon frequencies in lead under pressure. The ex-
perimental uncertainties are, however, very large, &nd we defer & closer
discussion of this experiment to the later comparison between effects
of an external pressure and of thermal expansion. The standard approach

in the literature has been tc take (4 In GR/d 1n V)T equal to the well

known CGrineisen constent Yo» without any further Justification. In appen-






dices 1 and 2 we show that the use of Yo is a'reesonable approxima-
tion for lead.

The term {4 1n IR/d In V) is very difficult to discuss accura-
tely. In order to make any further progress possible, we slready in
eq. 1 made the approximation with a formfactor(fzq) which only depends
on the magnitude of the momentum transfer. In & polyvalent metal this
leads to erronecus results for those scattering proceéses where k and

(10)

k' differ by a reciprocal wave vector + On the other hand recent

calculations by Carbotte and Dynes(11)

, using the form factor for all
scattering processes, has given guite geod results for both lead and
aluminium, indiceting that this approximstion could give a good over
all deScription. There are recent measurements of the deHsas-van Alphen

(14)

effect in lead under pressure . From this experiment, the two deriva-
tives dV111/dp and dVZOO/gp of the form factor can be deduced. It turns
out that a simple model, like Harrison's pseudopotential, gives a value
for these derivatiyes which is correct in sign but too small by a fac-
tor five. The Fermi level shifts in opposite direction to what is ex—
pected from the free electron case. One must therefore be very careful
to draw conclusions from simple models. There are several complications
in a calculation of (d 1n IR/d in V) from the de Haas-van Alphen data.
The volume dependence of the resistivity is even more sensitive than
the resistivity itself to the location of the node of the form factor,
for there is a cancellation effect from the contributions from either
side of the node. The Fermi surface is not spherical so we sre not.
strietly limited to scattering processes vith (q/2kF) £ 1. Experimentel
errors in the de Hams—van Alphen data and the breskdown of the form fac-—
tor description at reciprocal wavevectors add to the difficulties. There-
fore we do not find & detailed numerical calculation very significant.

Instead we use the deHaas-van Alphen data Tor Vi 80d Vo0 and their

pressure derivatives to estimste (4 1n IR/d In V), as it comes from eq.i.






With allowance for the uncertainties mentioned we fimd 0.5 =
*(d in I./a InV) = 3.

Soﬁe quaentities {the number of unit cells per unit volume, the
free Fermi surface area and the lengih of é—vectors) were assumed to scale
with the lattice spacing, One can have some doubt about this point, for
the de Haas-van Alphen measurements mentioned gave & net change in the
cross sectional area fcr some orbits that was twice that which would re-
sult from a pure scaling. However, we do not believe that the considered
orbits arwe typical for the average behaviour of the Fermi surface. Remem~
ber that ‘the number of electrons per unit cell is constant, so the Fgrmi
surface encloées & constant volume in the reciprocal space. '

For the remaining term (d 1n m /4 1n V) we have no .reliable in—
formation., We wii; therefore assign to it a velue which mekes eq. 2 hold.
The ;esult is summarized in, the table., The errors given are somewhat ar—
bitrary. They ohly serve the purpoée of indicating which terms are best
known, and the order of magnitude of the uncertainties. We will comment

on the results in the next section.

Pressure dependence of the effective msss.

The value of (d 1n meff/d 1in V)T obtained from measurements of
the low temperature thermal expansion ofr lead(h) is 1.0 £ 0.5. The va-
(6)

lue of A for lead has been obtained by McMillan and Rowell from tun-—
neling experiments in superconductors. They find X = 1.5, The term

(d 1n ek/d in V)T will be set equal to Yo+ See the appendices for a jus-
tification. Finally we make an estimate of (d 1n IA/d in V) analogous to
that used for the resistivity. In fact the only diffesence is an addi-
tional factor q2 in the integral for p as compared to the integral for A.
Proceeding in the seme way as for the resistivity we have estimated

13 (a4 1n IA/d Tt

Several interesting conclusions can now be drawn. Although
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(@ 1n I/d In V) is very uncertain, it is no doubt that it is positive
and can be quite large. The experimental results for (d In p/d 1n V)T

and (d ln m_co/d 1n V) then both requive that (d 1lan m.b/d in V) is ne-

/
£0%
gative and not very small in masgnitude. The band mass is closely rela-
ted to the form factor so it is natural that a strong volume dependen—
ce in ome of them also leads o a strong volume dependence in the otherx.
For a long time it has been thought that shifts in the phonon freguen—
cies give the essential contribution to (8 In p/d In V) in simple me-

tals., Our analysis shows that there are other important contributions

in lead but that they come in with opposite signs and almost cancel.

Nonlinear temperature dependence of the resistivity.

As theitem@erature is inc&eased, the resistivity will increase
due to the explicit temperature deﬁendence as 1t appesars in eg. 1, but
there will also be an additional effect coming from changes in the other
quantities in the same relation. This additional variestion will be very
similar to the volume effect at constant tempe¥ature discussed sbove.

At high temperatures the explicit temperature dependence gives & linear
increase in the resistivity. For lead st room temperature there still
remains a small correction to this linear behaviour from the exponen-
tial terms, but this correction can easily be estimated if the phoncn
spectrum is epproximated by two Einstein pesks that are given the weights
found in appendix 2, The so evaluated explitit temperature dependence is
subtracted from the measured temperature coefficient for the resistivi-
ty. The rest can conveniantly be expressed in the same form as eq. 2 if
we only remember that the experiment is performed under constant pressure
instead of constant temperature, i.e. we consider (d lmp/d In V)P and
therefore (d 1n @R/d 1ln V)P should.contain both a wolume effect and an
additional purely anharmonic effect (cf appendix 1). The rest of the

terms in €q. 2 come only from the thermel expansion of the lattice. There
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are, however, some other differences as campared to the pressure effect
at constent tempersture. In our starting formule, eq. 1, we have not
included any Debye—Waller factor or multiphonon scattering processes.
These two effects come in with opposite signs and it is still an open

(13)

queétion whether they cancel exactly or not + If they dc not cancel,

we can tentatively include them with an additional multiplieative factor
exp (-aT) in eq. 1, leading to & term —aT{d 1n T/d 1n VJP in eq. 2. Simple

(13) that any of the two effects considered separately gives

estimates show
2 contribution vo (d 1n p/d 1n V)P which can be even larger than that
coming from the thermsal expansion, s0 it is not a emall correction we are
discussing. As the temperature is raised, there will also be an increase
in the resistivity due to thermally created lattive imperfections. It has |

{14)

been shown experimentally for lead that such effects are negligible

at room tempersture.
From resistivity measurements we haveé calculated (d ln p/d 1n V)P
at room tewperature and find h.5 (Hblboxn(]5)), 4.7 (Leadbetter, Newsham

(Th)) and 5.0 Pochapsky(16)). As.an-average‘we take

and Picton
(@ 1n p/d 1n V); = 4.7 £ 0.3. Tt should be remarked .that this value stays
constant within 10 % up to abtout 500°K. There is a gignificant difference
(d 1n p/d 1n V)5 ~ (d 1n p/d 1n v)P = 2,2 * 0.6 which can come from the
fact that (d 1n Op/d Lo V)T and (4 1n GR/d 1In V)P are not equal, but also
from a Debyse—-Waller factor and miltiphonon processes. We first consider
phonon shifts. The electrical resistivity is a scattering phenomenon.There-
fore data from inelastic neutron scattering at different temperatuges
could gng us the correct shifts to be used in (d 1ln GR/d 1n V)P.béuch

experiments have been performed by Stedmsn, Almgvist and Nilsson(‘T),

(18)

and &lso by Brockhcuse et. al. . The two sets of dats agree within

experimental uncertainties, There ig alsoc a general agreement with spe-
(19)

cific heat messurements on lead by Leadbetter Y

In fig. 1 we summarize som expérimentally determined






9.

Yq = (4 lh mq/d In V)P for the longitundinel snd transverse branches in
the [100} -direction. Other branches and directions show & similar beha-
viour. In 'the same figure we include the corrsgponding vslues

A (6 1n mqjd lan)T obtained by Quittner and Lechner(zo)

frem neutron
scattering experiments under pressure., We also give points from tunneling
experiments in superconductors under pressure by Zavaritskii, Istkevich

. o
(21) and Frank snd Keeler(“e)

and Voropovskii . In tumneling experiments

one can measure the locaticn in energy of the wan Hove singularities in
the phonon spectrum, The resolution in the tunneling experiments is not
very good, and the points in fig. 1 represent some average of the shifts
in the van Hove singularities for the longiftudinal branch. Therefore this
method is not usefu; for our purposes, although it is an experiment that
is much easier to perform than ipelsstic neutron scattéring under pressure.
Even though the experimental uncertainties sre large, it is evident that
the relstive frequency sbift varies considerably with the wave vector.g,
and it would be very mislesding to base an analysis on shifts iﬁ the elas-
tic constants., The shif'ts in the pressure expsriments (i.e. a pure volume
effecf) are in general larger than the shifts obtained when the lattice
expands under constant pressure. Theoreticel calenlations confirm these

(22) (17)

conclusions . From Stedman et al. we estimete (& 1n QR/d In V). =

P
= 1.4 ¥ 0.5, We have then given all modes eguél,vﬁighbjust as for tha
high temperature Yoo This leads to a difference 2(& 1n eR/d In V)T -
2(d 1o gp/a in V), = 2.7 ¥ 1 while (@ 1n p/d 1n V) = {d 1n p/d 1n V), =
= 2.2 ¥ 0.6, The non-lineer temperature depsndence of the high tempera-
ture resistivity in lead can thus be neturally explained as the effect
of thermal e#pansion.and g shift in the phonon freguencies of purely an~

harmonic origin without any net effect from a Debye-Waller factor and

mulbiphonon processes.






10,

Conclugions.

| We have treated the temperature and volume (pressure) dependence
of the high temperature electrical resistivity of & simple metal (lead)
in considerably more detsail than hes Leen dére bsfore. We have been for—
ced to make a lot of approximations, and the guantitative results should |
not be taken too #eriously. However, The following guslitative results
hold.
(i) It is well kmowm that the volume dependence of the resistivity,
{(d In p/a ln”V)T is in quantitatvive agreemgnt with'a%g, Y being the
standard Grineisen psrameter which deseribes the voliume dependence of
the phonon frequencies. This approximste agreemsnt holds also for lead,
and it has therefore been thought that the volume dependence of the resi—f
stivity in this metal is essentially due to shifts in the phonen frequen—j
cies, We have found thet there might be considersble contributions from

shifts in the electrof.density of states at the Fermi surfsce and in the |

E5

electron-phonon interaction deseribed by the form factoer, but these two
effects come .in with opposite signs end happen to almost cancel.

{12)

(i1) Sham and Ziman' <’/ have suggested that one should look For & non-li-
nearity in the high temperature electrical vesigtivity to see if there

ils mny net effect from & Debye-Waller factor and the opposing multiphonon
processes. In addition to the effect of thermal expansion we find a non-
Linearity whichgy howEVer,,agrees both in sign and magnitu@e with the
effect of purely anharmonic shifts in the phonon fregquenciesy

(1ii) Finally we have reanalysed experiments on the volume dependence of
the effective electron mass. In the literature on this subject it has not
bean recognized how large the electron-phonon enhencement of the mass is |

for lead. When Ve take this fact into account, we Tind that the band mass

decreases when the lattice expsnds, instead of a supposed incresce,
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Appendix 1.

Ve fOIIOW‘Cowley and Cowley(eh)

and write for the phonon frequep—
cy w(g,A) a& messured e.g. with inelastic neutron scattering

wlgsr) = w {gsd) + 8,(g.2) *+ A (gsn) + As(g_,-l\) : {a1)
The three last terms represent anharmonic corrections. &y takes into
account the effect of thermsl expansion. ﬂ2 and A3 represent purely anhars
monic effects, they originete from the third.and fourth order derivatives
of the effective interatomir potential. At high tempersiures 4, and AS are
linear in T end Lhey aite also volume dependent. The standerd Grineisen ‘

Yo can be expressed in the isothermal compressiBility KT and the thermal |

expansion coefficient By but also as a derivative of the entropy

il Ve = = BN SR AZ
Yo n e c (BV)T : (a2)

Cowley and Cowley find for the volume dependent part AS of the entropy

- 2l 1
i ELZA 9T | H#, (g) /¥T . [aalanmdraylasnrenglannl] (a3)
N a -

Therefore the high temperature #& measures the average of the relative

volume dependence of the phonon frequencies

R (d 1n w:i/d in V)T (%)

The result sbove is valid when T 2 ;s but it only-represents the lowest
correction and must not be used at higher temperatures where the frequen-
cy shifts are more complicated and the frequencies less well defined bhe- |

(19)

cauge of damping effects. Experiments on lead by Leadbetter Suggest

that the range of validity for lesd is 0, S T % 38, (oy = 90°K}. From the
measurements of Leadbetter we find YG(ETOOK) = 2.7 and we use this value 1
for {d@ ln ep/d In V)T. (ef. appendix 2) (d ln Gl/d in V)T refers to very ‘
low vemperatures but the weighting of differenﬁ modes is the same as for

the high temperature Yor At low temperaturesfbg and 43 are small {elthough

not zero). This Pact leads us to comsider Yo caleulated without the terms






13

Aa,and A3, and at crystal volume VD = V(T = 0). Leadbetter gives the
value 2,7 for this quantity end we thus have (d 1ln eA/a InV) = 2{?“

(ef appendix 2).






Appendix 2.

From tunneling experiments in superconductors one can obtain a
quantity a2(m)F(w)(6), giving the product of the strength of electron—
phonon interaction aa(m) as a function of energy,and the phonon dengity
of states F(w). Using this function, it is possible to rewrite eq. 1

(3)

for the electrical resistivity in the form

B D)k T oo ) ¢ L) Pla) bio

o (B
e (so) N..(0) el [éﬁw/kT_;J[j_e-—fuu/ij

(A6)

where S/S° is the ratio between the true free area of the Fermi surface
and the area in the free electron case. Nbs(o)/Nfe(o) is the corresponding
ratio for the‘density of electron states at the Fermi level. 1-cos 0 de~
notes the average of the usual factor T1-cos O that enters expressions for
the resistivity. This factor has been rewritten in eq. 1, using
q? = 2kF2(1-cos ©). Let us now make the assumption that 1-cos © is approxi-
mately the same if it is considered separately for transverse phonons and
for longitudinal phonons. In a polyvalent metal, where the resistivity
is totally dominated by Umklapp scattering, this should be a reasonable
approximation. We then take the high tempemature limit of eq. A1 and find
that the relative importance of phonons of energy w in the resistivity
is given by aa(w)F(w)/w.

In the high temperature Griineisen Yoo 81l individual y{g,2) are

equally weighted
= [ Plo) Y(o) =25 ++7 (87)
Yo Y g 3y

where y(w) is an average over all individual phonon modes with energy in
[p, w+.dd]. ;T and ;L are averages for the transverse and longitudinal

branches. For yp = (& 1n 9p/d 1n V) we could write

2
v = [ EHee) 20 4 (48)

The function ua(&)F(w),has been obtained by McMillan and Rowell(s). It

turns out that aa(w)/w does not very very much with w in the region of






15~

typical phonon energies. From a study of the experimentally determined
ae(m)F(w)/m we have found it reasonable to take

Ya= % Y tE T (a9)

The individual y(g,l)'can vary very much with g, but the general behaviow
is the same for the transverse and the longitudinal brauches (fig. 1).
.Therefore Yo should not be too bad as an approximation for Y-

If we make a series expansion in the denominator of eq. 1, the
first non-vanishing term gives a linear temperature dependence for the
resistivity @% high temperatures. The small correcticn for lead at room
temperature from higher order terms can easily be sstimated if we approxi-
mate az(w)F(w)/m by two sharp peaks at characteristic transverse and longi=
tudinal frequencies and give tﬁém weights in the ratic 3:1 (cf eq. A3).

We finally turn to (4 1n el/d 1n V)P. One has rigorously(s)

2
,A='2{3—(‘—‘%’-‘3§9—) g (210)

We therefore have approximately the same weighting of different frequencies

as in the high temperature electrical resistivity.
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Figure caption.

Bxperimentally determined microscopic Grimeisen perameters
y(g,A) for the longitudinal and transverse branch in the ﬁodl-direction.
Unfillled symbols are from inelastic neutron scattering measurements by
Stedman et al.(17) (©) and Brockhouse(je) (|Z]) at different temperatures
and constent pressure.

Inelastic neutron scaettering under hydrostatic pressure by
Lechner and Quittner(ao) (®) and tunnéling experiments on superconductars
under pressure by Zavaritskii (m) et al.(z.j) and Frank and Keeler(ze) (B

give shifts that ‘do not contain any explicit anharmonic effects. Typical

experimental errors are indicated by the error bars.

Table.

Calculated contributions to the measured values of (d 1n p/d 1n V)T
and (d 1n meff/d In V)T. The value of (d 1n I/d 1n V) is very uncertain
but it is positive and large. (d 1ln mb/d 1n V) has not been calculated
but has instead been given a value to make the relations above hold. The
 errors given for the rest of the quantities are scmewhat arbitrary and

serve the purpose of indicating which terms are best known.
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