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Abstract. The mathematical statement of the problem of energy-optimal control for a
bipedal locomotion system is given. The proposed statement of the problem is characterized
by broad utilization of experimental data of normal human locomotion. It is done mainly by
means of the mathematical formulation of the constraints imposed both on the phase
coordinates and on the controlling stimuli of a system. A numerical method for the solution
of the optimal control problems for highly nonlinear and complex bipedal locomotion systems
is proposed. The method is based on a special procedure of converting the initial optimal
control problem into a standard nonlinear programming problem. This is made by an
approximation of the independent variable functions using smoothing cubic splines and by the
solution of an inverse dynamics problem. The key features of the method are its high
numerical effectiveness and the possibility to satisfy a lot of restrictions imposed on the phase
coordinates of the system automatically and accurately. The proposed method is illustrated
by computer simulation of the energy-optimal anthropomorphic motion of the bipedal
walking robot over a horizontal surface.

1 INTRODUCTION

The problems of dynamics and control of bipedal locomotion systems (BLS) have been
studied by many investigators. A major trend in the study of BLS is the creation of better
mathematical models and their use in combination with more effective kinematic and
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dynamic analysis techniques to provide a more precise description of the system1.
Traditionally, studies of the BLS have been concentrated on providing basic information that
can be used in synthesis of artificial bipedal gait in order to design active exoskeleton2-6,
orthoses or prostheses7-9. This could help handicapped persons to restore their locomotor
activity, and gives insight into building legged vehicles that can travel on unconventional
terrain that is unsuitable for conventionally wheeled or crawler vehicles10-14.

Many different models of BLS were proposed in the last years1-19. Among them the 3-D
human musculoskeletal models15, 16 look interesting but they are extremely complicated. The
biomechanical model of the human body that is suitable for crashworthiness applications is
described in papers17, 18. The simplest walking models19 are also very important in helping to
understand stability and control problems of the BLS.

Most researchers investigate the dynamical behavior and control laws of the BLS using the
inverse, semi-inverse or direct dynamics approach. In recent years the interest in optimal
processes of the BLS has increased remarkably3, 6, 8, 9, 15, 20 - 27. Probably one of the first attempts
to formulate a principle of optimality for muscle-driven systems was the postulation of "a
minimal principle"20. The authors assumed that an individual will always determine his motion
so as to minimize the total "muscula effort", which is defined as the product of a constant and
the square of the joint moment, and the time interval over which the minimization is to be
carried out. It is, however, questionable whether muscular effort as defined above relates to
any biological performance criterion at all23.

One of the important contributions made to the optimization of BLS is a study presented in
paper22. The authors employ a five-degree-of freedom model to describe the motion of the
trunk, the thighs, and the shanks. Certain additional constraints are imposed on the model, and
the total walking cycle is broken down into three phases: the stance phase, deploy phase and
swing phase. The constrained optimization is then carried out and the optimal profiles of the
joint torques as well as the optimal angular displacements of the system are obtained.
Unfortunately, the paper22 displays only the time functions of the limb angles as predicted by
the model, and do not show the corresponding experimental curves. For this reason it is not
possible to say how closely the model solution approximates the solution as observed from the
living system.

A mathematical model that contains two control parameters for each of the five muscle
groups involved simulates the dynamical behavior of the right leg of a human subject23. A time-
optimal problem in which the right-hand end point of the state trajectory is variable is
formulated and an optimization performed. The computation procedure is based on an
algorithm of differential dynamic programming. It would appear from the study of the paper23

that mathematical optimization of the motions of the complex locomotion systems is indeed
possible.

The present paper is an extension of the research into optimization of bipedal locomotion
that was undertaken in the articles8, 9, 24 -26. In contrast to the papers21-25 a plane nonlinear
model of the BLS comprising nine rigid bodies interconnected by eight kinematic joints is
considered. The mathematical statement of the energy-optimal control problem of the
anthropomorphic motion of the BLS is given. A key feature of the proposed optimal control
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problem is a high level of utilization of experimental data of normal human locomotion7. This is
done mainly by means of the mathematical formulation of the constraints and the restrictions
imposed both on the phase coordinates and on the controlling stimuli of the BLS. The
performance index, i.e. the objective function of the optimization, in contrast to the papers20, 22,
is the time integral over a double step of the sum of the absolute values of the mechanical
power of all controlling torques acting at the joints of the BLS. The approach proposed in this
paper draws our attention upon the power of nonlinear programming to determine optimal
trajectories of high order, nonlinear BLS. Central to the idea of the proposed algorithm is the
approximation of the minimal-necessarily amount of generalized coordinates of the BLS by the
smoothing cubic splines in time. In this way, it is possible to formulate the considered optimal
control problem of the BLS as an algebraic nonlinear programming problem. This problem is
solved by using of technique of external penalties and minimization of the objective function in
the orthogonal directions.

By means of the developed algorithm the problem of designing the energy-optimal
anthropomorphic law of motion of the BLS has been solved. We display graphically the time
functions of the hip, the knee and the ankle angles, and the controlling torques at the joints and
the ground reaction forces as predicted by the model. For comparison we give the
corresponding experimental curves of human gait. Therefore it is possible to show how closely
the model solution approximates the solution as observed from the living system. The
comparison of the results demonstrates the effectiveness of the proposed numerical approach
for synthesizing the optimal control laws of the BLS.

2 MATHEMATICAL MODEL

Consider a plane nine-element model of the BLS (Figure 1). This system comprises a
trunk (bodyG) and two legs. Each leg consists of four elements. Two elements with mass
and inertia model the thigh and shank. The elements iii MAH and iiTM that model the feet

of the BLS are assumed to be without inertia. The total massm
fi

of the foot is located at the

ankle joint of thei -th leg.
In addition to the weights of the trunk, thighs, shanks and feet the ground reaction

forces and the control moments at the joints of the legs act on the system.
Let O1XYZ be a fixed rectangular Cartesian coordinate system. It is assumed that the

BLS moves in the O1XY plane along the O1X axis over a horizontal surface (the X-Z plane).
We will employ the following notations: (x ,y ,ψ , iα , iβ , iγ , iε , i =1 2, ) is the set of

generalized coordinates (Figure 1);m is the mass of the trunk;r is the distance from the
suspension point O of the legs to the center of mass of the trunk;J is the moment of inertia of
the trunk relative to theZ axis at pointO ; aim , air , ia , aiJ are the mass, the distance fromO

to the center of mass, the length and the moment of inertia of the thigh relative to theZ axis at
point O , respectively; bim , bir , ib , biJ are the mass, the distance fromiK to the center of

mass, the length and the moment of inertia of the shank relative to theZ axis at point iK ,
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respectively.
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Figure 1. Model of the BLS.

The equations of motion of the system, derived using the technique of the Lagrange
equations of the second kind, are as follows:
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0)()( =−+−+− iyimiixmiiii RxxRyywp ,

0)()( =−+−+ iymiRiixRimii RxxRyyw , i=1, 2.

Here qi ,ui , pi ,wi are the control moments that act at the hip (pointO), the knee (point iK ),

the ankle (point iA ) and the metatarsal (point iM ) joints, respectively; ixR , iyR are the

horizontal and vertical component of the reaction forces; (ix , iy ), ( mix , miy ), ( Rix , Riy ) are

the Cartesian coordinates of the ankle and the metatarsal joints, and of the point of application
of the vector of the reaction forces iR of the i -th leg, respectively;g is the acceleration due

to gravity; "& " is a derivation with respect to time. In equations (1) we have also used:M = m
+ ma1 + mb1 + mf1 + ma2 + mb2 + mf 2 , =mrKr , )( fibiiaiaiai mmarmK ++= ,

fiibibibi mbrmK += , )(2
fibiiaii mmaJJ ++= , fiibici mbJJ 2+= , i=1, 2.

It should be noted that in contrast to the papers22, 24, 25 the considered model of the BLS
comprises the two-link feet with both ankle and metatarsal joints. In what follows we shall
show that our model of the foot makes it possible to synthesize the motion of the BLS more
precisely both from kinematic and dynamic points of view.

3 STATEMENT OF THE PROBLEM

The mechanical system under consideration has eleven degrees of freedom. Based on the
analysis of kinematic and dynamic characteristics of human gait7 let us set up the constraints
and the restrictions needed for the mathematical statement of the optimization problem of
anthropomorphic motions of the BLS.

The human motion is periodic. It leads to the following boundary conditions imposed on the
phase coordinates:

f f( ) ( )0 = T , &( ) &( )f f0 = T , & ( ) & ( )x x T0 = , f = ( y, ψ, ,1α ,2α ,1β ,2β ,1γ ,2γ ,1ε 2ε ), (2)

whereT is the duration of the double step. We shall also assume that all functions determined
by the displacements and velocities of the points of the BLS are continuous in time.
Discontinuities in the accelerations are admissible5, 6.

Human gait is characterized by a stable sequence of the phases of the leg's action during a
double step. We shall assume that there are the following five phases of thei -th leg action:

rotation over the heel during the period of time ),0[ h
it τ∈ ; support phase on both heel and

metatarsal joint for ),[ m
i

h
it ττ∈ ; motion on the phalangs for ),[ t

i
m
it ττ∈ ; rotation over the

ends of the toes for ),[ s
i

t
it ττ∈ , and the swing phase of the foot over the surface during the

period of time ],[ Tt s
iτ∈ . For human gait the rhythm parameters s

i
t
i

m
i

h
i ττττ ,,, should satisfy

the following inequalities:
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2,1,, 33 =≤≤≤ −− im
i

s
i

t
i

m
i

h
i τττττ . (3)

Below we shall assume that the motion of one leg of the BLS completely mimics that of the
other with the time delay 2/T=τ .

Let ( hix , hiy ), ( tix , tiy ) be the Cartesian coordinates of the pointsiH and iT of the i -th

leg of the BLS. Taking into account the above mentioned sequence of the leg action during the
time of the double step the kinematically anthropomorphic cyclogram of the BLS can be
described by the following constraints:

,)( 0
hihi xtx ≡ 0)( ≡tyhi , 0)()( >> tyty miti , )),1([ h

iit ττ −∈ , (4)

,)( 0
hihi xtx ≡ 0)()( ≡≡≡ tytyy timihi , ),[ m

i
h
it ττ∈ ,

,)( 0
mimi xtx ≡ 0)( >tyhi , 0)( ≡tymi , 0)( ≡tyti , ),[ t

i
m
it ττ∈ ,

,)( 0
titi xtx ≡ 0)()( >> tyty mihi , 0)( ≡tyti , ),[ s

i
t
it ττ∈ ,

0)( ≥tyhi , 0)( >tymi 0)( >tyti , )]1(,[ −−∈ iTt s
i ττ .

Here 0
hix , 0

mix , 0
tix are abscissas of the pointsiH , iM , iT of the i -th leg during its support

phase, respectively; Lxx hh += 0
1

0
2 , hihimi lxx += 00 , mimiti lxx += 00 , iihi MHl = ,

iimi TMl = ; L is the length of single step of the gait.

Without any restriction of the generality the following additional conditions fort = 0 and
t T= are given by:

,00
1 =hx 0)0(2 =ty , ,)0( 2

0
12 hhm lLxx +−= 0)0(2 =my , (5)

LxTx hh 2)( 0
11 += , 0)(1 =Tyh , ,)( 1

0
12 hhm lLxTx ++= 0)(2 =Tym .

We shall restrict the angular displacements of the considered BLS during the double step
( t T∈[ , ]0 ) by the following set of constraints:

)()()( ttt o
i

o
i

o
i Θ≤≤ µθ , )()()( ttt k

i
k
i

k
i Θ≤≤ µθ , )()()( ttt a

i
a
i

a
i Θ≤≤ µθ . (6)

Here )()()( ttt i
o
i ψαµ −≡ , )()()( ttt ii

k
i βαµ −≡ , 2/)()()( πϕβγµ −+−≡ mii

a
i ttt ,

2,1=i . The functions ),(to
iθ ),(to

iΘ ),(tk
iθ ),(tk

iΘ ),(ta
iθ )(ta

iΘ are given in advance by

experimental data of human gait7, iiim HMA∠=ϕ .

Additionally we shall require that the laws of motion of the feet of the BLS should satisfy
the conditions:
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The laws of motion of the BLS should be such that the specific constraints on the forces
acting from the surface on the feet are observed. We shall assume that all forces acting from
the surface on the foot of the support leg satisfy the "non-suction-cup" conditions:

],0[,2,1,0)( TtitRiy ∈=≥ . (8)

Moreover, the following restrictions imposed on the abscissa of the point at which the
resultant of the reaction forces of the support intersects the surface should be observed for the
i -th leg of the BLS:

0)( hiRi xtx ≡ , ]),1([ h
iit ττ −∈ , (9)

00 )( miRihi xtxx ≤≤ , ),[ m
i

h
it ττ∈ ,

00 )( tiRimi xtxx ≤≤ , ),[ s
i

m
it ττ∈ ,

Obviously, the above requirements (2)-(9) do not uniquely specify the law of motion of the
BLS. To estimate the quality of the controlled motion of the BLS we shall use the objective
function

[ ] dtwpuq
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1 εγγββααψ &&&
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In a number of cases the performance index (10) estimates the energy expenditures in
bipedal locomotion4-6, 9, 21, 24-26.

Let Z t( ) ={ x , &x , y , &y , ψ , &ψ ,αi , &αi ,βi , &βi , γ i , &γ i ,εi , &εi , 2,1=i } be a vector of the phase

state andU t( ) ={ qi ,ui , pi ,wi , i =1 2, } be a vector of the control stimuli of the BLS. The
following problem can be stated.

Problem A. Assume that we are given the step length 0LL = and the duration of the

double step 0TT = . It is required to determine the control process {Z t( ) , U t( ) }, t T∈[ , ]0 ,
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and the parametersh
iτ , m

iτ , s
iτ which satisfy the equations (1), the boundary conditions (2),

the given restrictions on the rhythm parameters and the phase coordinates (3)-(6), the given
constraints on the controlling stimuli (8), (9) and which minimize the functional (10).

From a mathematical point of view problem A is a nonlinear nondifferentiable optimal
control problem with restrictions imposed both on the phase coordinates and the controlling
stimuli in which the left and the right-hand end points of the state trajectories are variable.

4 METHODOLOGY AND ALGORITHM

Central to the proposed approach for solving problem A is the idea that any optimal
control problem can be converted into a standard nonlinear programming problem by
parameterizing each of the free variable functions.

Analysis of the equations of motion (1), the boundary conditions (2) and the constraints
(3)-(9) shows that the following functions can be chosen as free variable functions in
problem A:

],0[),(),(),(),( 21 Tttxtxtt g
kk ∈µµ , (11)

]2/,0[),(),( 12 Tttt ∈γα ,

],2/[),(),( 21 TTttt ∈γα .

Here )(txg is the abscissa of some point located on the axesOG of the trunk of the BLS.

Using the constraints (2)-(9) it is possible to demonstrate that the laws of motion of the
considered BLS can be determined in the final formulas if the free variable functions (11)
are given. Note that because the feet are without inertia, we shall not concern ourselves
with their motion during the swing phase of the leg of the BLS.

Obviously, if the law of motion of the BLS is completely specified the inverse dynamics
problem can be solved using the equations (1). The only question arises for the double
support phase of the BLS (phase of support on both legs simultaneously). To determine
the unknown control stimuli we don't have enough equations, i.e. there is indeterminacy. It
is necessary to give supplementary information for the unknown variables. This can be
done in various ways5, 6. In what follows we shall specify the horizontal components of the
support reaction )(tRix and the abscissa of the point of its application )(txRi of the

extremity that is preparing itself to become a shifted leg in the next single step.
We shall supplement the quantities in question as follows:

( ) ( ) ( )2/)2(
2/)2(

2/)2()(
2/)2()( Tit

Ti

TiRR
TiRtR

s
i

ix
s
iix

ixix −−
−−

−−
+−=

τ
τ

, (12)



____Viktor E. Berbyuk, Anders E. Boström, Bogdan A. Lytwyn, and Bo Å. Peterson.______

721

( ) 2,1,2/)2(
2/)2(

)(
)(

0
0 =−−

−−
−

+= iTit
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s
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Riti
RiRi τ

.

To approximate the free variable functions (11) we use the solution of the following
auxiliary variation problem.

Problems B. It is required to determine the function ],[)( 2 baCtS ∈ which minimize the
objective functional

( ) ( ) ( )∫ ∑
=

− −+=
b

a

n

j
jjj ztSdttSSJ

0

212
)()( ρ&& (13)

with given boundary conditions either

aSaS && =)( , bSbS && =)( , (14)

or

)()(),()( bSaSbSaS &&&&&& == . (15)

Here 0≥jρ , jz , jt , bttta n =<<<= ...10 , nj ,...,1,0= are given numbers.

If the values jρ and jt are given then the solution of the problems (13)-(14) or (13), (15)

exists and is determined by the smoothing cubic spline( )ztS , , where ),...,,( 10 nzzzz = is a

vector of variable parameters28.
Every free variable function (11) has been approximated by the smoothing spline

),,,,,,,(),,( 212121 γγααµµ xxfztSf g
kkf

f == .

To approximate the functions 2,1),(),( =itt ii γα we have used the solution of the

problem (13), (14). The functions 2,1),(),(),( =itxtxt g
k
iµ have been approximated by the

solution of the problem (13), (15).

The variable parametersf
jz have been represented by the following expression

f
f
j

f
j

f
j njCzz ,...,1,0, =+= . (16)

Here f
jz are some initial values of the variable functionf at the knots jtt = which are

calculated using the equality constraints, i.e. equality (4), (5), (7);fjC are new

optimization parameters.
The weighting coefficientsρ

j
in the problem B have been chosen as follows:

1,...,1,,00 −==== f
ff

j
f

n
f nj

f
ρρρρ , ),,,,,,,( 212121 γγααµµ xxf g

kk= . (17)
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The boundary conditions in the problem B have been given taking into account the experi-
mental data of the functionf and the imposed constraints (4)-(7).

Based on the free variable functions (11) and the described methodology (13)-(17) of their
approximation the controlling process )}(),({ tUtZ of the BLS can be calculated. Henceforth,
the problem A is converted into the following nonlinear programming problem:

.0)(,min)( ≤→ CHCQ
C

(18)

Here functionsQ and H are determined by means of equations (1), constraints (3)-(9),

functional (10) and expressions (12)-(17); ,1,...,2,1,,{ 0 −== f
f
j njCC ψ ,, 1

1

1

0
γγ

γnCC

,, 2

2

2

0
γγ

γnCC ,1

0

k

Cµ }2

0

k

Cµ is a vector of variable parameters.

Using the penalty function approach29 the problem (18) is reduced to the following problem
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where 0>lλ are given numbers.

Henceforth, the optimal control problem (problem A) has been converted into the
unconstrained optimization problem (19). To solve the problem (19) the Rozenbrock's method
has been used29.

5 NUMERICAL RESULTS AND DISCUSSION

The methodology and algorithm described above have been used to solve a number of
optimal control problems for the BLS. Below numerical results are presented for the following
anthropomorphic values of the linear and mass-inertia parameters of the BLS:m=46.7kg,
r=0.39m, J=7.096Nm2, aim =8.49kg, ia =0.47m, air =0.258m, aiJ =0.57Nm2, bim =3.51kg,

ib =0.53m, bir =0.214m, biJ =0.16Nm2, fim =1.24kg, =ii AH 0.12m, =ii MA 0.17m,

mil =0.1m, =∠ iii MAH 82°, 2,1=i . The used parameter values of the BLS correspond to the

respective parameters of a human body with a total massM=73kg and height of 1.76m8, 26.
Here we describe in detail the resultant energetically optimal law of motion of the BLS

which has been obtained by the solution of Problem A for the step length ofL=0.76m and
duration of the double stepT =1.14s (for so called human gait with natural cadence7).

Figure 2 shows a cyclogram of resultant energetically optimal motion for the BLS during
the time period for the double step. The obtained optimal law of motion of the BLS is

characterized by the following energy and rhythm parameters:E=127J/m, h
1τ =0.1T,

m
1τ =0.23T, t

1τ =0.5T, s
1τ =0.58T, h

2τ =0.6T, m
2τ = 0.73T, s

2τ =0.08T.

X, m

Y, m

0.00

0.50

1.00

1.50

-0.75 -0.25 0.25 0.75 1.25 1.75

Figure 2. Cyclogram of energetically optimal motion of the BLS.
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Figures 3-5 show the ways in which the hip, the knee and the ankle angles of the leg change
in time over a double step for the obtained energetically optimal law of motion for the BLS
(solid curves). In these figures the domains of the values of the respective angular
characteristics obtained by experiments for normal human gait7 are also depicted (the domains

are bounded by thin curves corresponding to the functions ),(to
iθ ),(to

iΘ ),(tk
iθ ),(tk

iΘ

),(ta
iθ )(ta

iΘ ).
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Figure 3. Hip angle )(1 tοµ , in degrees. Figure 4. Knee angle )(1 tkµ , in degrees.
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Figure 5. Ankle angle )(1 taµ , in degrees. Figure 6. Force MtR x /)(1 , in N/kg.

The analysis of these data and the cyclogram depicted in Figure 2 indicates that the
kinematic characteristics of the obtained energetically optimal law of motion for the BLS are
within reasonable proximity to the corresponding characteristics of human gait7.

The way in which the specific horizontal component MtR x /)(1 of the support reaction

varies (Figure 6, solid curve) indicates that in each single step the support leg successively
executes two tasks: deceleration of the BLS (time interval in which MtRix /)( <0) and
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separation (time interval in which MtRix /)( >0). The vertical component of the support

reaction MtR y /)(1 is depicted in Figure 7 (solid curve).
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Figure 7. Force MtR y /)(1 , in N/kg. Figure 8. Hip torque Mtq /)(1 , in Nm/kg.

Figures 8-10 show the specific control torques Mtq /)(1 , Mtu /)(1 , Mtp /)(1 (solid
curves) acting at the joints of the leg during the obtained energetically optimal law of motion
for the BLS. For comparison purposes in Figures 6-10 the domains of the values of the
respective dynamic characteristics obtained by experiments for normal human gait are shown
(the domains are bounded by the thin curves). The analysis of Figures 6-10 indicates that the
dynamic characteristics (forces and torques) of the obtained energetically optimal law of
motion for the BLS are also within reasonable proximity to the corresponding characteristics
of human gait7.
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Figure 9. Knee torque Mtu /)(1 , in Nm/kg. Figure 10. Ankle torque Mtp /)(1 , in Nm/kg.
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6 CONCLUSIONS

The dynamics, control and optimization problems for the BLS are interesting and important
for many applications. For instance, to design the optimal legged mobile robots for difficult
terrain, to recognize the neuro-system's laws governing the goal-directed motion of human
locomotor apparatus, to design the optimal prostheses and orthoses of lower limbs. All the
above mentioned are examples of a broad variety of applications of multibody system
dynamics30.

In this paper the problem of optimization of the controlled motion of BLS has been
investigated. From a mathematical point of view the considered object is a nonlinear
multidimensional controlled system with a lot of constraints and restrictions imposed both on
the phase coordinates and the controlling stimuli. The design of optimal control laws for these
kinds of systems is a challenging research task that has attracted an increasing interest in recent
decades.

A numerical method for the solution of optimal control problems of highly nonlinear and
complex BLS has been proposed. The method is based on a special procedure of converting
the initial optimal control problem into a standard nonlinear programming problem. This is
made by the approximation of the independent variable functions using smoothing cubic splines
and by the solution of inverse dynamics problems for the BLS. The key features of the method
are its high numerical effectiveness and the possibility to satisfy a lot of restrictions imposed on
the phase coordinates of the BLS automatically and accurately.

An important benefit of recasting the optimal control problem for the BLS (Problem A) as a
nonlinear programming problem is that it eliminates the requirement of solving a two-point
boundary-value problem that must be solved to determine an explicit expression for the
optimal control. In contrast to dynamic programming, the proposed method does not require
massive computer storage. It thereby offers a streamlined approach for solving different
optimal control problems for the BLS. The reader who is interested in more details concerning
the algorithm described in this work should consult the papper26.

This work has demonstrated the effectiveness of the proposed approach for the optimization
of anthropomorphic laws of motion for the BLS. The kinematic and dynamic characteristics of
the obtained solution closely approximate the respective characteristics as observed from the
living system. It is an evidence of the fruitfullness of the utilization of existing data from the
behavior of biological systems for synthesizing the optimal control laws and structure of legged
locomotion robots31.

At last but not least we want to emphasize that very little is known about a criterion used by
a human body for "optimizing" its motion. Nevertheless it looks reasonable that a human body
minimizes energy expenditure during locomotion with natural cadence.
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