

UNIVERSITY OF VAASA

FACULTY OF TECHNOLOGY

INDUSTRIAL MANAGEMENT

Marek Kwitek

A FEASIBILITY STUDY OF AZURE MACHINE LEARNING FOR

SHEET METAL FABRICATION

Master’s thesis in

Industrial Management

VAASA 2016

1

TABLE OF CONTENTS

ABBREVIATIONS 5

LIST OF FIGURES 8

LIST OF TABLES 11

1. Introduction 13

1.1. Background Information 16

1.2. Case Company Introduction 19

2. Literature Review 21

2.1. Predictive Maintenance 24

2.2. Total cost and availability consideration 27

2.3. CRISP-DM 32

2.3.1. Business Understanding 34

2.3.1.1. Determine the Business Objectives 34

2.3.1.2. Assess the Situation 35

2.3.1.3. Determine Data Mining Goals 35

2.3.1.4. Produce Project Plan 35

2.3.2. Data Understanding 36

2.3.2.1. Collect Initial Data 36

2.3.2.2. Describe Data 36

2.3.2.3. Explore Data 37

2.3.2.4. Verify Data Quality 37

2.3.3. Data Preparation 37

2.3.3.1. Select Data 38

2.3.3.2. Clean Data 38

2.3.3.3. Construct Data 39

2.3.3.4. Integrate Data 39

2.3.3.5. Format Data 39

2.3.4. Modelling 39

2.3.4.1. Select Modelling Technique 40

2

2.3.4.2. Generate Test Design 41

2.3.4.3. Build Model 42

2.3.4.4. Asses Model 42

2.3.5. Evaluation 42

2.3.5.1. Evaluate Results 42

2.3.5.2. Review Process 43

2.3.5.3. Determine Next Steps 43

2.3.6. Deployment 43

2.3.6.1. Plan Deployment 44

2.3.6.2. Plan Monitoring and Maintenance 44

2.3.6.3. Produce Final Report 44

2.3.6.4. Review Project 45

2.3.7. CRISP-DM vs. SEMMA vs. KDD 45

2.3.7.1. KDD 45

2.3.7.2. SEMMA 47

2.3.7.3. Comparison of methodologies 47

2.4. Machine Learning Topics 48

2.4.1. Number of hyperparameters 49

2.4.2. Imbalanced Class Distribution 49

2.4.3. Bayesian Statistics 51

2.4.4. Ensemble 52

2.4.4.1. Boosting 52

2.4.4.2. Decision Forest 53

2.4.4.3. Decision Jungle 54

2.4.5. Artificial Neural Network 55

2.4.6. Support Vector Machine 56

2.5. Evaluating Model Performance 57

2.5.1. Accuracy 58

2.5.2. Confusion Matrix 59

2.5.3. Unbalanced Class 61

3

2.5.4. Unequal Costs and Benefits 62

2.5.5. Expected Value 62

2.5.6. RMSE & MAE 65

2.5.7. Coefficient of Determination – R2 67

2.5.8. Overfitting 70

2.5.9. Training and Consultation Times 71

2.5.10. Linearity 73

2.5.11. Profit Curves 74

2.5.12. ROC Curves 75

The Area under the ROC Curve (AUROC) 78

2.5.13. Precision-Recall (PR) Curve 79

2.5.14. Cumulative Response and Lift Curves 81

3. Methodology 85

3.1. Business Understanding 85

3.2. Data Understanding and Preparation 86

3.3. Modelling 86

3.4. Evaluation 87

3.5. Deployment 88

4. Formulation and Discussions 89

4.1. Data Preparation and Feature Engineering 90

4.1.1. Source Data 92

4.1.2. Feature Engineering 97

4.1.3. Data Labelling 98

4.1.4. Prepare the Testing Data 100

4.2. Train and Evaluate Model 101

4.2.1. Regression Models 102

4.2.2. Binary Classification Models 105

4.2.3. Multiclass Classification Models 108

4.3. Deployment as a Web Service 111

4.4. Alternative Solutions Consideration 116

4

5. Results 119

5.1. Regression Models 119

5.2. Binary Classification Models 122

5.3. Multiclass Classification Models 128

6. Conclusions 135

LIST OF REFERENCES 139

APPENDIX 1. 146

APPENDIX 2. 147

APPENDIX 3. 148

APPENDIX 4. 149

APPENDIX 5. 150

APPENDIX 6. 185

APPENDIX 7. 186

5

ABBREVIATIONS

 ACC: Accuracy

ANN: Artificial Neural Network

AUC: Area under a Curve

AUROC: Area under Receiver Operating Characteristics

BI: Business Intelligence

CBM: Condition Based Maintenance

CRISP-DM: Cross-Industry Standard Process for Data

Mining

DAG: Directed Acyclic Graph

DDD: Data Driven Decision Making

DIKW: Data Information Knowledge Wisdom

ERP: Enterprise Resource Planning

EV: Expected Value

FN: False Negative

FNcost: False Negative Cost

FNR: False Negative Rate

FP: False Positive

FPcost: False Positive Cost

FPR: False Positive Rate

6

HDFS: Hadoop Distributed File System

KDD: Knowledge Discovery in Databases

MAE: Mean Absolute Error

MES: Manufacturing Execution System

ML: Machine Learning

MLaaS: Machine Learning as a Service

MMH: Maximum Margin Hyperplane

MTBF: Mean Time between Failures

MTTF: Mean Time to Failure

NN: Neural Network

PdM: Predictive Maintenance

PP: Prima Power (Company)

PR: Precision-Recall

R2: Coefficient of Determination

RMSE: Root Mean Square Error

ROC Curves: Receiver Operating Characteristics Curves

RUL: Remaining Useful Life

SEMMA: Sample Explore Modify Model Asses

SMF: Sheet Metal Forming

7

SMOTE: Synthetic Minority Oversampling Technique

SPC: Specificity

SSE: Sum of Squared Errors

SSR: Sum of Squares for Regression

SST: Total Sum of Squares

SVM: Support Vector Machine

TN: True Negative

TNR: True Negative Rate

TP: True Positive

TPR: True Positive Rate

TTF: Time to Failure

8

LIST OF FIGURES

Figure 1. Modified DIKW model (Swindoll 2011) .. 16

Figure 2. Total cost as a function of a reliability (O’Brien 2014) 27

Figure 3. Maintenance Curve Shift (O’Brien 2014) ... 29

Figure 4. Life cycle cost as a function of the quality based on Deming's

quality vs. cost model (O’Connor & Kleyner 2012) .. 31

Figure 5. Life cycle cost as a function of the quality in practical

applications (O’Connor & Kleyner 2012) ... 32

Figure 6. Phases of the CRISP-DM Reference Model (Provost & Fawcett

2013) ... 33

Figure 7. Tasks and Outputs of the CRISP-DM Reference Model (Shearer

2000) ... 34

Figure 8. Machine Learning Algorithms (Brownlee 2013) 41

Figure 9. Steps of the KDD Process (Fayyad et al. 1996).. 46

Figure 10. Learning Process – Boosting (Mishina et al. 2014) 53

Figure 11. Decision Forest (Nguyen et al. 2013) .. 54

Figure 12. Decision Jungle (Pohlen 2015) ... 55

Figure 13. Artificial Neural Network (Dolhansky 2013) .. 56

Figure 14. Support Vector Machine (Lantz 2015) ... 57

Figure 15. Confusion Matrix (Provost & Fawcett 2013) ... 59

Figure 16. Calculation of the aggregated expected value (Provost &

Fawcett 2013) .. 65

Figure 17. Residuals .. 66

Figure 18. Value of the Coefficient of Determination in Different

Regressions (Aczel et al. 2008) ... 68

Figure 19. Residuals - Random (Aczel et al. 2008) .. 69

Figure 20. Residuals - Linear Trend (Aczel et al. 2008) .. 69

Figure 21. Residuals - Curved Pattern (Aczel et al. 2008) 70

Figure 22. Model Complexity vs. Prediction Error (Hastie et al. 2009) 71

Figure 23. Linear Classification for Non-Linear Problem (Rohrer 2016) 73

Figure 24. Data with Non-Linear Trend (Rohrer 2016) .. 74

Figure 25. Profit curves of three classifiers (Provost & Fawcett 2013) 75

Figure 26. R Script: ROC Space .. 77

Figure 27. ROC Space .. 77

Figure 28. R Script: ROC Curve ... 78

Figure 29. ROC Curve ... 78

Figure 30. R Script: Area under the ROC Curve ... 79

9

Figure 31. Area under the ROC Curve ... 79

Figure 32. Precision and Recall – By Walber – Own work, CC BY-SA 4.0 80

Figure 33. R Script: Precision-Recall Curve ... 81

Figure 34. Precision-Recall Curve ... 81

Figure 35. R Script: Cumulative Response Curve ... 82

Figure 36. Cumulative Response Curve ... 83

Figure 37. R Script: Lift Curve ... 84

Figure 38. Lift Curve ... 84

Figure 39. Azure ML Experiment: Prepare Data .. 91

Figure 40. Wear stages for wear volume and coefficient (Ersoy-Nürnberg

et al. 2008) ... 93

Figure 41. R code to calculate and plot the wear coefficient K 93

Figure 42. Wear coefficient plotted in R ... 93

Figure 43. R code to calculate and plot cumulative wear volume 94

Figure 44. Cumulative wear volume W plotted in R ... 94

Figure 45. R Script used to split input data into training and testing data

sets .. 100

Figure 46. Azure ML Experiment: Regression .. 104

Figure 47. Azure ML Experiment: Binary Classification 107

Figure 48. R Script: Oversampling and Downsampling 109

Figure 49. Azure ML Experiment: Multiclass Classification 110

Figure 50. Azure ML Studio: Set Up Web Service .. 111

Figure 51. Azure ML Studio: Deploy Web Service ... 112

Figure 52. Azure ML Studio: Web Service Dashboard .. 113

Figure 53. Azure ML Studio: Build-in Service Test Form 113

Figure 54. Microsoft Excel: Testing Deployed Predictive Web Service 114

Figure 55. Web App Deployed on Azure ... 114

Figure 56. Custom .NET App: Data Input ... 115

Figure 57. Custom .NET App: Results .. 115

Figure 58. Cloudera Enterprise Architecture (Cloudera n.d.) 117

Figure 59. Microsoft R Server Architecture (Microsoft 2016) 118

Figure 60. Linear Regression Results (RUL_wear) ... 121

Figure 61. Linear Regression Results (RUL_cycle) ... 121

Figure 62. Linear Regression Results (RUL_distance) ... 122

Figure 63. Binary Classification Results with SMOTE ... 124

Figure 64. Binary Classification Results without SMOTE 125

Figure 65. Confusion Matrix: Two-Class Logistic Regression 126

Figure 66. ROC Curve: Two-Class Logistic Regression 126

Figure 67. Precision / Recall Curve: Two-Class Logistic Regression 127

10

Figure 68. Lift Curve: Two-Class Logistic Regression ... 127

Figure 69. Metric Selection Guideline Table (De Ruiter 2015) 128

Figure 70. Evaluation Results for Multiclass Decision Forest and

Multiclass Decision Jungle ... 130

Figure 71. Evaluation Results for Multiclass Logistic Regression and

Multiclass Neural Network .. 130

Figure 72. Confusion Matrix, Precision and Recall for Evaluated

Multiclass Algorithms ... 131

Figure 73. Evaluation Results for Multiclass Decision Forest and

Multiclass Decision Jungle without over- and downsampling 132

Figure 74. Evaluation Results for Multiclass Logistic Regression and

Multiclass Neural Network without over- and downsampling 132

Figure 75. Confusion Matrix, Precision and Recall for Evaluated

Multiclass Algorithms without over- and downsampling 133

Figure 76. Evaluation Results for Ordinal Regressions module using

Two-Class Logistic Regression and Two-Class Neural Network. 134

11

LIST OF TABLES

Table 1. Summary of the correspondences between KDD, SEMMA and

CRISP-DM (Azevedo et al. 2008) ... 48

Table 2. Data schema .. 95

Table 3. Sample Data – Original Features.. 96

Table 4. Sample Data – Constructed Features... 98

Table 5. Sample Data - Labelling .. 99

12

UNIVERSITY OF VAASA

Faculty of Technology

Author:

Topic of the Master’s Thesis:

Instructor:

Degree:

Major Subject:

Year of Entering the University:

Year of Completing the Master’s

Thesis:

Marek Kwitek

A Feasibility Study of Azure Machine

Learning for Sheet Metal Fabrication

Petri Helo

Master of Science in Economics and

Business Administration

Industrial Management

2009

2016 Pages: 186

ABSTRACT:

The research demonstrated that sheet metal fabrication machines can utilize

machine learning to gain competitive advantage. With various possible

applications of machine learning, it was decided to focus on the topic of

predictive maintenance. Implementation of the predictive service is

accomplished with Microsoft Azure Machine Learning. The aim was to

demonstrate to the stakeholders at the case company potential laying in

machine learning. It was found that besides machine learning technologies

being founded on sophisticated algorithms and mathematics it can still be

utilized and bring benefits with moderate effort required. Significance of this

study is in it demonstrating potentials of the machine learning to be used in

improving operations management and especially for sheet metal fabrication

machines.

KEYWORDS: Predictive Maintenance (PdM), Machine Learning (ML),

Microsoft Azure Machine Learning

13

1. Introduction

Research presented in this document builds upon winning and innovative

ideas that were presented by the author during the competition organized by

the case company. Suggestions for improving competitive advantage of the case

company were based on utilization of the machine learning technology and

techniques. Scope of the ideas presented during the competition was very

broad. Therefore, in order to make it feasible for the single authored thesis it

needed to be narrowed. Following research question is stated:

How can the sheet metal industry use machine learning for improving its

operations management?

Potential was noticed, but many questions were left open simply due to time

limitation of the competition. Therefore, to further widen the acceptance of the

idea and its understanding among various stakeholders at the case company

following thesis purposes are identified:

- Explain proposed technology benefits from the business perspective.

- Provide better introduction and description of the technology aiming at

less technical stakeholders.

- Empirically demonstrate that machine learning implementation can be

achieved relatively easily with the Microsoft Azure Machine Learning.

Before mentioned thesis purposes are achieved by the realization of the thesis

objectives listed below:

- Thesis document containing:

14

o Introduction into Machine Learning topic for less technical

stakeholders.

o Description of the business benefits arising from the usage of the

Machine Learning technology.

- Demo experiments with the Microsoft Azure Machine Learning Studio

o Experiments implemented and deployed.

- Demo application

o Application demonstrating in a very simple manner possible

usage of the predictive service created with the Microsoft Azure

ML Studio.

As with any kind of endeavour, resources are usually limited. Naturally this is

also the case with the research presented here. The thesis scope is defined as

following:

- Data collection is not in the scope. Objectives can be realized without real

data. Additionally, data collection would require additional financial

commitment from the case company. The goal of this thesis is to

demonstrate that such commitment will pay back.

- The use of the Microsoft Azure Machine Learning came as a requirement

from the case company. Some other functionalities of the Azure are

utilized.

- Basic application example. Implementing anything more sophisticated

would require too much of the constrained time resource and would not

bring much of the benefit considering the lack of the real data.

15

The goal of the following two paragraphs is to give brief reasoning for the need

to collect and act based on data. It relates to what can be achieved with the

machine learning. Predictive maintenance is given as an example of the

machine learning application for the case company. However, in the broader

perspective this thesis aim at promoting the values that can be extracted from

the data.

Companies that base its decisions on data (“data driven decision making” or

DDD) prove to outperform ones that does not. Research shows that DDD is

correlated with higher productivity and market value. Evidence also exists on

its association with measures of profitability such as ROE or asset utilization.

Therefore, DDD can be seen as intangible asset, which increases company

profitability and is recognized by investors. (Brynjolfsson et al. 2011)

Similarly, the importance of data can be seen from modified version of the well-

known DIKW (data-information-knowledge-wisdom) model. Good decisions

build on data. As we move up through the pyramid from the data to the

decision, the value that it represents to the business increases.

16

Figure 1. Modified DIKW model (Swindoll 2011)

1.1. Background Information

In order to distinguish itself on the market, companies need to gain advantage

over their competitors. Data and data science capability should be seen as

company’s key strategic assets. Recognizing it and properly exploiting both can

give a competitive advantage. It is important to do consideration of potential

benefits, which can be derived from the data in the context of the applied

strategy. Meaning that the value of those mentioned strategic assets depends on

the company’s strategy. (Provost & Fawcett 2013)

Looking at it from other perspective. Unrealized potential competitive

advantage can become competitive disadvantage, once competitor gain it first.

17

In this paper we will look at the Machine Learning and Predictive

Maintenance (PdM) implemented with it as a one option which can provide

that kind of competitive advantage for the case company.

Predictive Maintenance implemented using Machine Learning techniques uses

readings from machines’ sensors over the time to learn relationships between

changes of those sensors’ values and historical failures. With the assumption

that monitored asset has degradation pattern which could be observed from the

sensors available. If assumption holds then Predictive Maintenance can do

following; depending on implementation (Microsoft 2015a):

- Predict the failure. It could be further divided into prediction of:

o Remaining Useful Life (RUL) or Time to Failure (TTF) for a

given component of the machine or machine as the whole using

regression.

o Likelihood that error will occur during given time frame in case

binary classification is used.

o Asset failing in different time windows, e.g. probability of asset

failing this week, next week or two weeks from now. It can be

achieved when multi-class classification is used.

- Predict type of failure

- Diagnose the failure – root cause analysis

- Detect and classify failure

- Provide failure mitigation prior to its occurrence or maintenance

actions once failure already happened

18

The advantage of the predictive maintenances is to reduce the maintenance

cost. It is achieved by minimizing of the maintenance time and parts needed,

and at the same time maximizing machine availability.

We can split maintenance costs into following groups:

- Cost occurring from the replacement materials.

- Maintenance labour cost.

- Machine not being operational, machine being idle, not used.

- Bad quality product being produced by malfunctioning machine.

With the time based maintenance, when we want to make sure that machine is

always operational. Maintenance needs to be done more frequently than it is

actually needed, meaning resources are wasted for non-value adding activity.

Predictive Maintenance monitor condition of the machine and predicts right

time for the maintenance. Those should be less frequent, therefore resulting in

saved resources, meaning more profit can be made. It can also detect when

something abnormal happens and therefore reduce down time, further

increasing return on investment into the machine which provides predictive

maintenance functionality.

The usage of the Predictive Maintenance has number of benefits, following is

list of few of those:

- Cost effectively decreases asset failures. (Gulati 2012)

- Minimizes maintenance overtime and generally maintenance hours.

(Gulati 2012)

- Minimizes spare parts inventory. (Gulati 2012)

19

- Provides more insights into the machine performance. (Maintenance

Assistant 2014)

- Minimizes production hours lost. (Maintenance Assistant 2014)

Predictive Maintenance is one the applications of the machine learning. To

provide that functionality machine needs to collect, store and analyse

significant amount of information. As the information storage costs continues to

decrease and are already very low it brings additional potential benefits that

could be generated sooner or later from mining of this data.

1.2. Case Company Introduction

Prima Power operates in the Sheet Metal Forming (SMF) industry as the

manufacturer of the sophisticated sheet metal forming machines. In its line of

products it has machines/solutions with various level of automation available.

The most sophisticated ones are fully automated and require little human

interaction. Following are product lines provided by the Prima Power (Prima

Power 2016):

- TheBEND – sheet metal bending.

- TheCOMBI – multifunctional systems, e.g. punching and laser cutting.

- TheLASER – sheet metal cutting with the laser with some products

providing also welding and drilling capabilities.

- ThePUNCH – sheet metal punching.

- TheSYSTEM – versatile range of solutions which combines

functionalities of the Prima Power machines into one automated

production line. With additional functionalities such as automatic

storage.

20

- TheSOFTWARE – number of additional software solutions, which

further optimize machines operations. With Tulus® software family

capable to:

o Parts order and inventory handling

o Work scheduling and machine capacity monitoring

o Control and monitor machines’ tasks

o Control material storage

o Production reports

o Integrate with the ERP (enterprise resource planning) and act as

MES (manufacturing execution system).

Prima Power products are used in many industries, listing just few as

aerospace, agricultural, automotive, domestic appliances, elevators, HVAC,

hospital and lab equipment, etc.

Prima Power is an innovative company, which always searches and is open for

new ideas. It can be also clearly seen thru its close cooperation with the

University at different levels.

21

2. Literature Review

In this section we focus on the current work related to the maintenance with

special emphasize on the Predictive Maintenance with machine learning (ML).

There are other ways in which predictive maintenance can be achieved than

with ML. However, machine learning automates the process and transfers the

knowledge regarding maintenance from the human to the machine. Thanks to

that knowledge can be easily stored and shared between machines.

Rules and failure prediction models can be learn using several analytical

approaches, listing few as correlation analysis, casual analysis, time series

analysis and machine learning. Additionally to failure prediction, same

techniques can be used for detecting root cause and wear rate of components

which could be further used to balance between machine’s maintenance time,

costs and availability (Li et al. 2014). However, here we are focusing solely on

the machine learning approach to the problem.

Machine learning techniques are widely used in various interdisciplinary

contexts. Therefore, similar techniques and methods are labelled with different

names. It is not easy to draw clear boundary between terms such as machine

learning, statistical learning, predictive analytics, data mining and data science.

Those all are closely related and we will not focus on differences between those

but instead we will draw from all of them.

Similarly when it comes to the term Predictive Maintenance (PdM) which is

closely related to the Condition Based Maintenance (CBM). Both are in oppose

to the preventive maintenance or otherwise saying time based maintenance.

First two, PdM and CBM, monitor equipment and trigger need for the

22

maintenance when condition of some component requires so. Later two terms,

preventive maintenance and time based maintenance, refers to regularly

performed maintenances which are done at specific intervals, regardless to the

condition. We can also have Corrective Maintenance approach in which

maintenance activities are performed once failure occurs. (Coraddu et al. 2015)

Predictive maintenance approach described in this thesis uses before mentioned

machine learning techniques to build models which can predict expected

lifetime of the component. It finds patterns and relationships between various

attributes in historical data which contributes to the known defects. It then uses

those models to make predictions based on real-time data.

Other industries already recognized the benefits of the predictive maintenance

with aerospace industry as an example. Airbus A380 which first flew in 2005

collects information on over 200 000 aspects of its every single flight. This vast

amount of information let to implement predictive maintenance with machine

learning. And there is much to gain, as maintenance accounts for approximately

10 percent of an airlines’ operating costs and is a root cause for nearly half of

accounted delays (Hollinger 2015). Those delays caused by unscheduled

maintenance besides being inconvenient for the travellers, cost the air carriers

estimated $10,000 for every hour of maintenance, repair and overhaul. Not to

mention the significant safety hazards arising from inefficient maintenance

works (Koch 2012).

There are number of identified challenges for implementation of the predictive

maintenance with the machine learning which need to be addressed (Li et al.

2014).

23

- Measurement errors of the sensors cause some problems especially when

collecting information from different machines which are not co-located.

In those cases measurements can be impacted by the environmental

variables.

- Big data which brings opportunities but challenges as well. Number of

data that can be collected from the sensors monitoring machines can be

enormous. There is much to learn and benefit from it but it also presents

its own challenges on storing and processing. Taking as an example the

modern aircraft which can generate data in the range of terabytes per

single flight (Hollinger 2015).

- Interpretability of the rules by the human operators. Models created by

the machine learning algorithms are not always easily interpretable by

humans, sometimes it is even impossible. However, same techniques can

be used to create simplified models which maybe sometimes will not

perform as well as complex counterparts but which are easy to

understand by humans. Therefore, accuracy needs to be sometimes

sacrificed over interpretability. We can refer to it as interpretability-

accuracy trade-off.

Microsoft has provided template for building predictive maintenance with the

Microsoft Azure Machine Learning (Microsoft 2015a). It will serve as the base of

the solution that is going to be developed for the Prima Power in the scope of

this thesis.

Predictive maintenance is recognized also by other major players such as:

- SAP – with its “SAP® Predictive Maintenance and Service” solution

available either on premise or in the cloud (SAP 2015 & Langlouis 2014).

24

- IBM – has its own “IBM Predictive Maintenance and Quality 2.0”

solution (Negandhi 2015).

- Cisco – advocating for and providing support for interconnectivity

between sensors and other elements of the system (Bellin 2014).

- Bosch – own predictive maintenance solution build on top the Bosh IoT

Suite (Bosch 2014)

- Software AG (Software AG 2015)

2.1. Predictive Maintenance

Maintenance is defined here as an actions taken to assure asset productive

capacity at a target level, which is not more than designed level. It includes

both upkeep and repairs. It is also concern with retaining functional

capabilities. (Gulati 2012)

Maintenance of the asset should be seen as an important part of the operations

management. Well maintained assets should result in improved production

capacity while reducing maintenance costs. It is achieved through (Gulati 2012):

- Reduced production downtime

- Increased life expectancy of the asset

- Reduced overtime cots occurring from unplanned maintenance

- Reduced cost of repairs. Often small cause creates severe damage to the

asset if let alone and not fixed.

- Reduced costs occurring from poor product quality due to product

rejects, reworks, scrap, etc.

- Reduced costs due to missed orders

25

- Identifying assets with excessive maintenance cost. Identifying the cause

and taking corrective actions such as operator training, replacement or

corrective maintenance of the asset.

- Improved safety and quality conditions

Several approaches to the maintenance can be identified, below are the most

commonly used ones (Gulati 2012):

- Predictive Maintenance (also known as Condition Based Maintenance) –

aims at assessing of the asset condition. It is achieved through periodic or

continues monitoring of various asset’s characteristics. The goal is to

schedule proactive maintenance activities on the asset at the most

optimal time. In doing so it needs to predict asset condition in the future

based on what could be learn from the past. Some techniques used

involve measurement of vibration, temperature, oil, noise, etc.

- Preventive Maintenance – commonly applied strategy, which schedules

maintenance base on calendar or asset runtime. Given parts or

components are replaced regarding to theirs condition and for some it

base on theirs state. Most commonly, this kind of maintenance means

changing some parts even so those could possibly last longer.

- Corrective Maintenance – sometimes called run-to-failure. Asset runs

until it fails. Maintenance starts after failure is detected, equipment is

then restored to the operational state or replaced with the new one. It

may be sometimes correct approach. Especially for inexpensive and not

critical assets.

Predictive vs. preventive maintenance. Question can arise on differences

between those two approaches. However, answer is not simple. Different

experts presents sometimes contradictory opinions. Following differentiation is

26

author’s own opinion based on topic study from various sources over the time.

Predictive maintenance monitoring in contrast to preventive inspection is not

causing machine to be offline. Some predictive maintenance techniques require

on site visit, but measurements are done without process interruption. Unlike

in the case of the preventive maintenance. We would refer to preventive

maintenance also when parts are replaced at a given time without regards to

theirs condition. E.g. routine change of the oil.

Predictive maintenance presented in this research is achieved with machine

learning technology and techniques. It should be noted that it is not the only

approach available. However, utilizing machine learning techniques in the

author’s own opinion seems to be the most natural evolution. Most commonly

used technologies till now rely on the human inspector physical presence in

close proximity to the machine. Expected step forward would be to equip

machines with sensors. Then collect data and do basic data manipulation

locally before sending it to the cloud where it could be further analyse. Curious

reader should check also on the topic of the Industrial Internet of Things (IIoT).

Benefits of the Predictive Maintenance:

- Cost effectively decreases asset failures. (Gulati 2012)

- Minimizes maintenance overtime and generally maintenance hours.

(Gulati 2012)

- Minimizes spare parts inventory. (Gulati 2012)

- Provides more insights into the machine performance. (Maintenance

Assistant 2014)

- Minimizes production hours lost. (Maintenance Assistant 2014)

27

According to Gulati (2012), predictive maintenance can result in:

- Reduction in maintenance cost: 15-30%

- Reduction in downtime: 20-40%

- Increase in production: 15-25%

2.2. Total cost and availability consideration

Amount of effort put into maintenance activities and which aim at

reaching high reliability of the asset should be considered from the

perspective of the total cost.

Figure 2. Total cost as a function of a reliability (O’Brien 2014)

28

Reliability costs relates to costs that occur due to unreliable systems. Poorly

maintained machines will likely produce poor quality or defective products.

Throughput is likely to be affected due to increase in cycle time and unplanned

machine downtime. That in turn could mean lost important orders. Poor

quality and missed orders will negatively effect on customer satisfaction what

could lead to lost customers. Unreliable systems can additionally cause costs

related to negative environmental impact or even occupational health and

safety. (O’Brien 2014)

Maintenance costs are any costs which relate to machine maintenance. That

includes maintenance work hours, direct cost of spare parts, cost of

maintenance tools and cost of holding spare parts in the inventory. (O’Brien

2014)

The goal is to find the optimum reliability. It is not always necessary for the

asset to have very high availability at the very high maintenance expense.

Organization must find what is the optimal for them so that money are not

wasted on reaching ill-stated goals. (O’Brien 2014)

One natural solution is to aim at doing maintenance more effectively. Doing so

shifts the maintenance curve to the right. This shift also moves the optimum

reliability point. More effective maintenance can be achieved e.g. by switching

from reactive or proactive maintenances to the predictive one. The figure below

shows how optimum is affected by the maintenance curve shift. (O’Brien 2014)

29

Figure 3. Maintenance Curve Shift (O’Brien 2014)

Reliability can be defined using following (O’Connor & Kleyner 2012):

- Failure Rate – the mean number of failures in a given time

- MTBF – mean time between failures, for repairable items

- MTTF – mean time to failure, for non-repairable items

Our main concern would be asset availability, which is affected by failure rate

and by maintenance time. From the equation below we can see the relation

between reliability expressed by the mean time between failure (MTBF) and

maintainability given by the mean time to repair (MTTR). In order to increase

availability of the asset one should improve either MTBF or MTTR. (O’Connor

& Kleyner 2012)

30

 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑀𝑇𝐵𝐹

𝑀𝑇𝐵𝐹 + 𝑀𝑇𝑇𝑅

(1)

Predictive maintenance should have positive impact on both measures, MTBF

and MTTR. With its predictive power it should eliminate unnecessary

maintenance work while not allowing for errors to happened. Therefore,

increasing MTBF. Additionally it provides insights and allow to plan better so

that maintenance work can be done faster. That in turn means reduced MTTR.

We can therefore conclude that correctly implemented predictive maintenance

increases asset availability.

Unsurprisingly the high availability is expensive. Availability is directly related

to reliability (MTBF). Therefore, as we know from previous discussion,

optimum availability is less than 100% when total cost point of view is

considered. (O’Connor & Kleyner 2012)

Contradictory relation between reliability and total cost is shown on the figure

below. It based on Deming manufacturing teaching. According to him costs of

preventing or correcting causes are lower than doing nothing. Therefore,

according to him, total cost continues to decrease as quality/reliability is

reaching perfection. His teaching are base of kaizen (continuous improvement)

and founded post-war quality revolution in Japan. (O’Connor & Kleyner 2012)

31

Figure 4. Life cycle cost as a function of the quality based on Deming's quality

vs. cost model (O’Connor & Kleyner 2012)

In practice, Deming argumentation is hard to sell. Possibly reaching for

perfection can bring benefits in the long run, but cost are occurring now and

there is always time and money limitation. Research on reliability modelling by

Kleyner (2010) concluded that total cost curve is highly skewed to the right,

Figure 5. According to his research further reliability improvements needs to be

done at increasing costs while returns are diminishing. (O’Connor & Kleyner

2012)

32

Figure 5. Life cycle cost as a function of the quality in practical applications

(O’Connor & Kleyner 2012)

2.3. CRISP-DM

The CRISP-DM (Cross-Industry Standard Process for Data Mining) was used

during the thesis. It is non-proprietary, neutral and freely available data mining

model. It is composes from six phases: business understanding, data

understanding, data preparation, modelling, evaluation and deployment. The

purpose of the model is to provide industry standard that brings better

understanding of the data mining process for different stakeholders involved

33

into the project. Clear road map helps to structure otherwise unstructured data

mining process which is full of exploratory approach. (Shearer 2000)

Figure 6. Phases of the CRISP-DM Reference Model (Provost & Fawcett 2013)

34

Figure 7. Tasks and Outputs of the CRISP-DM Reference Model (Shearer 2000)

2.3.1. Business Understanding

Crucial step for any data mining project to succeed. It is important to

understand the problem from the business perspective and then define it as a

data mining problem. It then follow with preliminary project plan. Business

understanding is further decompose into determining business objectives,

assessing the situation, determining the data mining goals and producing the

project plan. (Shearer 2000)

2.3.1.1. Determine the Business Objectives

Sometimes customers may not know or really understand what they want to

achieve. Therefore, understanding true business problem to be solved is so

Business
Understanding

•Determine
Business
Objectives

•Background

•Business
Objectives

•Business
Success Criteria

•Asses Situation

• Inventory of
Resources

•Requirements,
Assumptions
and Constraints

•Risks and
Contingencies

•Terminology

•Costs and
Benefits

•Determine Data
Mining Goals

•Data Mining
Goals

•Data Mining
Success Criteria

•Produce Project
Plan

•Project Plan

• Initial
Assesment of
Tools and
Techniques

Data
Understanding

•Collect Initial
Data

• Initial Data
Collection
Report

•Describe Data

•Data Description
Report

• Explore Data

•Data Exploration
Report

•Verify Data
Quality

•Data Quality
Report

Data Preparation

•Data Set

•Data Set
Description

• Select Data

•Rationale for
Inclusion /
Exclusion

•Clean Data

•Data Cleaning
Report

•Construct Data

•Derived
Attributes

•Generated
Records

• Integrate Data

•Merged Data

• Format Data

•Reformated
Data

Modeling

• Select Modeling
Technique

•Modeling
Technique

•Modeling
Assumptions

•Generate Test
Design

•Test Design

•Build Model

•Parameter
Settings

•Models

•Model
Description

•Asses Model

•Model
Assesment

•Revised
Parameter
Settings

Evalutation

• Evaluate Results

•Assesment of
Data Mining
Results w.r.t.
Business
Success Criteria

•Approved
Models

•Review Process

•Review of
Process

•Determine Next
Steps

• List of Possible
Actions

•Decision

Deployment

•Plan Deployment

•Deployment
Plan

•Plan Monitoring
and Maintenance

•Monitoring and
Maintenance
Plan

•Produce Final
Report

•Final Report

• Final
Presentation

•Review Project

•Experience
Documentation

35

crucial. Failing at that phase may result with the solution for the wrong

problem. It could be paraphrased with the famous quota:

“An approximate answer to the right question is worth a great deal more than a

precise answer to the wrong question” John Tukey

Also at that moment measurable success goal(s) should be set. It should be

achievable and related to the business objective(s). (Shearer 2000)

2.3.1.2. Assess the Situation

All project related resources are defined with special emphasize on data

available. Additionally any assumptions made should be listed. Risks are

identified, prioritized and actions are planned based on it. At the end cost-

benefit analysis of the undertaken project is done. (Shearer 2000)

2.3.1.3. Determine Data Mining Goals

The data mining goals are stated from business perspective. If those goals

cannot be easily translated into data mining ones then it should indicate that

problem is maybe not well defined and may require reconsideration. (Shearer

2000)

2.3.1.4. Produce Project Plan

Finally at this last task of the first step project plan is created. It includes details

on how data mining goals are planned to be achieved, also with the respect to

the timeline. Identified risks are listed along with actions planned, to emphasize

on probability of positive risks and to reduce probability or impact of negative

ones. Likewise potential tools and techniques intended to address issues of the

36

project should be listed here. The rule of thumb generally accepted in the

industry expects that (Shearer 2000):

- Data Preparation Phase takes lion share of the time, between 50 to 70

percent of time allocated to the whole project.

- Data Understanding Phase takes between 20 to 30 percent of the time

- Modelling, Evaluation and Business Understanding Phases take in the

range 10 to 20 percent

- Deployment Planning Phase is expected to take the smallest share of just

5 to 10 percent

2.3.2. Data Understanding

The main focus of this phase is to retrieve data available and to asses on its

quality. Following subtasks are executed: collection of initial data, description

of the data, exploration of the data and verification of the data quality. Each of

those tasks is described bit more below. (Shearer 2000)

2.3.2.1. Collect Initial Data

Data is possibly collected from many sources. Process should be documented to

ease replication in the future if needed. Meaning any issues encountered and

related solutions should be written down. (Shearer 2000)

2.3.2.2. Describe Data

In the course of this task basic characteristics of the collected data are described.

Basic properties of the data such as the format, quantity of the data, the

identities of the fields, etc. are reported. The main issue to be addressed is if

collected data satisfy requirements. (Shearer 2000)

37

2.3.2.3. Explore Data

This step builds on the previous one. Using exploratory approach data scientist

should use querying, visualizations and reporting to uncover insights of the

data at hand. Data exploration report is created as the outcome of this task. This

report should contains details on all findings with its possible impact on the

rest of the project. Initial hypothesis can be also drawn based on the findings.

(Shearer 2000)

2.3.2.4. Verify Data Quality

Quality of the data is examined. Most commonly it means checking on missing

values, verifying that all possible values are represented sufficiently, checking

for outliers which may indicate for erroneous data but not necessary,

misspellings, or looking for values that don’t make sense, e.g. person height

2000 meters or age -10. (Shearer 2000)

2.3.3. Data Preparation

This is last phase at which main focus is with data. At this point final data

which will serve as an input to the modelling is created based on raw data

gathered. Activities of this phase include (Shearer 2000):

- Table Selection

- Record Selection

- Attribute Selection

- Transformation

- Cleaning

38

The sub task of this phase are data selection, data cleaning, data construction

data integration and the data formatting. (Shearer 2000)

2.3.3.1. Select Data

Selection of data is done based on constraints, quality and relevance of the data

to the project. As the part of the process the reasoning for inclusion and

exclusion should be documented. Usually it also brings good results to reduce

number of attributes and remove ones which are at some level duplicates. We

may want as well reduce the level of detail if it is not relevant for our project.

E.g. we may be interested to have post code but street address may be

unnecessary detail for our problem. Of course all depends on the project’s goals

and requirements. (Shearer 2000)

2.3.3.2. Clean Data

Model need to be provided with the clean data in order to produce meaningful

results. The known concept of Garbage In – Garbage Out applies very well to

the data modelling. The quality of the model output is much dependent on the

quality of the data at its input. Therefore at this stage all issues reported during

“Verify Data Quality” step need to be addressed. Simple solution may be to

drop dirty entries, e.g. ones with missing value for some of the attribute.

However, it may result in modelling being performed on very small part of the

original data available. It most likely will not produce best result possible.

Alternative is to apply more sophisticated approach to the problem. E.g. to

replace missing data with some computed value as average or median. (Shearer

2000)

39

2.3.3.3. Construct Data

At this stage of data preparation, derived attributes or even whole new records

are created. Derived attributes are the ones created based on existing ones. It

could be simple single-attribute transformation, e.g. to transform values in

Fahrenheit to Celsius or age to some age group. It could be as well more

complex mathematical calculation based on several other attributes or data

query of some kind. (Shearer 2000)

2.3.3.4. Integrate Data

Data integration in case of tabular data means different kind of joins operations

on two or more tables. Usually it means gathering pieces of information

regarding same item from different tables into one. It also include aggregation,

which simply refers to creation of new values for entries by the mean of

summary of some kind. It can be in the form of total sum, average, median, etc.

(Shearer 2000)

2.3.3.5. Format Data

Sometimes the change of the data format may be required. It could be dictated

by the specific modelling tool. E.g. need to remove illegal characters or to trim

text fields to maximum length. Sometimes it may involve more severe

restructuring of the information. (Shearer 2000)

2.3.4. Modelling

In this phase, data mining algorithm is chosen. It is then used with data

available and over several iterations optimal algorithm parameters are

determined. Usually given data mining issue can be solved using number of

40

algorithms and it is hard to determine which one will perform better. Therefore,

it is common to try few of them and do selection based on performance and

possibly other factors as e.g. interpretability. Some algorithms may have

specific requirement regarding the input data. Consequently, stepping back to

the “Data Preparation” phase is not unusual. Activities of this phase include

(Shearer 2000):

- Selection of the Modelling Technique

- Test Design Generation

- Model Building

- Model Assessment

2.3.4.1. Select Modelling Technique

One or more modelling algorithm is chosen. It is often hard to say which one of

the possible candidates is the best. Therefore, usual case is to verify few of

them. Also it is common to prefer simple models over complicated ones, as

those are easier to understand and usually generalize better. Vast amount of

algorithms exist, figure below lists some of them to give better grasp on

complexity related to choosing the best one for the given project. (Shearer 2000)

41

Figure 8. Machine Learning Algorithms (Brownlee 2013)

2.3.4.2. Generate Test Design

Testing plays crucial role and need to be designed to verify how model perform

and if it generalize well enough. Predictions done by model should be more

accurate than those done by poor chance. It should also generalize the problem,

so that it perform as well on unseen data as well as on historical data that was

used for learning. (Shearer 2000)

There are various approaches to test design. The least complex one is to

partition data into two, part for learning and part for testing. We refer to that

technique simply as data split. However, especially when dataset is not very

large other more advanced methods are preferred. Listing few most popular

(Brownlee 2014):

42

- Bootstrap

- k-fold Cross Validation

- Repeated k-fold Cross Validation

- Leave One Out Cross Validation

2.3.4.3. Build Model

After test design phase, the part of the data that is meant for learning is used to

build the model by the selected set of machine learning algorithms. (Shearer

2000)

2.3.4.4. Asses Model

Model or rather models are assessed based on domain knowledge and success

criteria established earlier. It should be done from technical perspective as well

as in the business context, usually with the help of the business analyst and

domain experts. This is preliminary assessing as more thorough will follow.

Focus is on accuracy and generality of the models. (Shearer 2000)

2.3.5. Evaluation

Even so models are already assessed in the previous step, it is vital to do it more

exhaustively before final deployment. Model is tested to assure that business

objectives are achieved and that all key business issues are reflected. (Shearer

2000)

2.3.5.1. Evaluate Results

As stated earlier, this is more deep evaluation than what was already done

during the Modelling phase. This is final evaluation which should give an

43

answer to the question if model is ready to be deployed. Focus is on business

aspects and model is checked in order to determine if there are ones not

addressed correctly or against it. If time and budget allow then model is tested

on real data. Beside verification of the model feasibility for the deployment,

evaluation seeks to unveil possible improvement suggestions for the next

iteration of the CRISP-DM cycle. (Shearer 2000)

2.3.5.2. Review Process

In this step, review of the whole data mining process is done in order to verify

that nothing important was forgotten or overlooked. It serves also as the quality

assurance stage. (Shearer 2000)

2.3.5.3. Determine Next Steps

The decision point for the project leader with following possibilities (Shearer

2000):

- Move to deployment

- Initiate further iteration

- Start new data mining project

- Cancel the project – obviously something went wrong if it went

that far to be cancelled.

2.3.6. Deployment

Model built does not benefit the organization much until it is deployed.

Deployment usually means that model is somehow integrated into decision

making process. It could make autonomous decisions or provide supportive

information for decisions made by human. Deployment can be simple or more

44

complex. At its simplest form it would be in the form of the report

summarizing the findings, e.g. simple decision tree printed on paper. In the

more complex form it would be the IT system taking decisions autonomously,

e.g. recommendations done by Netflix or Amazon. (Shearer 2000)

2.3.6.1. Plan Deployment

In order to have smooth deployment it needs to be planned well. During this

phase deployment strategy is created and documented. (Shearer 2000)

2.3.6.2. Plan Monitoring and Maintenance

However well tested before deployment it is crucial to plan and later execute

monitoring and maintenance of the model. Likely new insights to the business

problem which is addressed by the model will come once it is deployed. Also

business environment usually changes over the time. Those and other issues

require for model to be monitored and maintained in order to assure its correct

usage over its life time. (Shearer 2000)

2.3.6.3. Produce Final Report

Final report is created at the end of the data mining project by the project leader

and the data mining team. It content depends a bit on the deployment planned.

It could be in the form of short summary or it could be a comprehensive

document presenting data mining results. All previous deliverable are included

into final report. Usually that phase ends with the customer meeting where

results are presented and discussed. (Shearer 2000)

45

2.3.6.4. Review Project

The project leader should evaluate and document any failures and successes

encountered during the project. Focus of this activity is to improve future

projects so that same pitfalls will not reoccur. Lessons learned during this

project should help with next ones, and it should be seen as an additional value

added of this project. (Shearer 2000)

2.3.7. CRISP-DM vs. SEMMA vs. KDD

It was decided to use CRISP-DM methodology for the empirical part of the

thesis. However, other methodologies exists and aim of this chapter is to give

short comparison between CRISP-DM, SEMMA and KDD.

2.3.7.1. KDD

KDD (Knowledge Discovery in Databases) process states data mining as a one

of its phases. It originates from 1989 and as such was created in a bit different

context than newer models. Nevertheless, it can still be used nowadays with a

bit of adaptation in some cases. KDD is the process of knowledge extraction

from the database. (Azevedo et al. 2008)

KDD consist of five stages listed below and depicted on the figure (Fayyad et al.

1996):

- Selection – creating subset of the original data on which discovery will be

executed.

- Pre-processing – getting data into shape for data mining algorithms to be

run on. E.g. handling of missing data, removing noise.

46

- Transformation – reducing number of variables (dimensionality

reduction) and/or transforming them.

- Data Mining – searching for patterns of interest based on project’s

objectives.

- Interpretation/Evaluation – interpretation and evaluation of the results

produced during the data mining stage.

Figure 9. Steps of the KDD Process (Fayyad et al. 1996)

It is assumed that one has developed sufficient domain knowledge and good

understanding of the customer needs before any of the before mentioned

KDD’s activities starts. Once knowledge is discovered it is also assumed that

one will act based on it by incorporating it into decision making system or

system of some other kind. (Fayyad et al. 1996)

47

2.3.7.2. SEMMA

The SEMMA is yet another methodology for directing a data mining project. It

was developed by the SAS Institute. SEMMA acronym stands for Sample,

Explore, Modify, Model and Asses. (Azevedo et al. 2008)

Phases of the SEMMA are listed and shortly described below (Azevedo et al.

2008):

- Sample – extract the portion of the data from the larger set. Standard

purpose of the sampling is to retain information from the population

inside the sample but at the same time make it smaller and more

manageable to work with.

- Explore – exploring data in various way in order to gain better

understanding of the data at hand.

- Modify – modify data based on domain knowledge and according to

needs of data mining algorithms to be used.

- Model – run selected data mining algorithms on the data provided in

order to find patterns which helps in desired outcome prediction.

- Asses – assessing of the modelling results based on its usefulness and

reliability.

2.3.7.3. Comparison of methodologies

Similarities can be noticed between all three methods. It is very easy to link

corresponding stages of KDD and SEMMA. It may seem that CRISP-DM covers

bit more. It is true when comparing it with SEMMA. However, if we take into

consideration pre and post stages of the KDD it can be noticed that those are

matching to business understanding and deployment stages of the CRISP-DM

methodology. It is not by surprise that SEMMA is missing those two stages

48

when compared to remaining methodologies. It originated at SAS as a logical

organization of the SAS Enterprise Miner toolset (Dean 2014). Table below

summarize comparison between KDD, SEMMA and CRISP-DM methodologies.

(Azevedo et al. 2008)

Table 1. Summary of the correspondences between KDD, SEMMA and CRISP-

DM (Azevedo et al. 2008)

KDD SEMMA CRISP-DM

Pre KDD Business understanding

Selection Sample Data understanding

Pre processing Explore

Transformation Modify Data preparation

Data mining Model Modelling

Interpretation /

Evaluation

Assessment Evaluation

Post KDD Deployment

2.4. Machine Learning Topics

Following presents machine learning topics needed to understand subsequent

chapters. Especially when differences between various machine learning

algorithms are discussed. The purpose is to give short introduction to just few

selected topics. Curious reader may want to find more information from other

literature.

49

2.4.1. Number of hyperparameters

Hyperparameters are the algorithm parameters which are set prior to training

phase. Those parameters of the machine learning algorithm allow to tune it to

specific data and business problem. Greater number of parameters available for

a given algorithm means it can be more adjusted and therefore should be

capable of achieving better results. However, more parameters also means more

time needed to find the sweet spot. The process of parameters fine tuning can

be automated but it still going to take a time as the training time increases

exponentially with the number of parameters to be adjusted. (Rohrer 2016)

Sweep Parameters is used to find optimum set of parameters to be used for

training of the model. Those cannot be determined in advance as they depend

on prediction task and data used. Beside basic approach (integrated train and

sweep), it support also more advance cross validation mode. In that mode data

is divided into number of folds and parameter sweep is executed for each of

them. It usually produces better results but it is also more time consuming.

(Microsoft 2015b)

2.4.2. Imbalanced Class Distribution

In the case of many predictive applications it is common for the class of interest

to be in the significant minority as compared to the whole population. It is

known as a class imbalance problem. Even so distribution is unbalanced it

reflects the true class distribution. It is the case with the predictive maintenance

as one would expect machines failures to occur unfrequently. Additionally, the

whole purpose of the maintenance, including the predictive maintenance, is to

reduce number of those fault events. Of course it has positive impact of the

50

factory operation but at the same time it makes it harder to collect valuable data

as no one wish to run-to-failure for the in-service asset. (Microsoft 2015a)

Other application that suffer from the same problem; just to give as an example;

is in healthcare in detecting disease. Usually, probability of the given disease in

the population is very small. However, consequences of not detecting one are as

high as patient death. With so low probability of occurring, the model which

will always give negative test result would have very high accuracy. It would

never detect any disease, but in case of disease that occurs for 1 person out of

10’000 it would still be 99.99% accurate.

Similarly with the predictive maintenance and machines. Very simple model,

which gives “no fault” prediction would have very high accuracy. Significantly

better than a random guess. (Drummond & Holte 2000)

Traditional cost-insensitive classifiers would made following two assumptions

(Provost 2000):

- The test dataset’s class distribution is same as of the training one

- The classifier’s objective is to maximize the accuracy

Class imbalance problem become meaningful when there are different costs

associated with the different types of errors. In that case, usually it is more

expensive to misclassify representative of the minority class as belonging to the

major class than other way around. If we assume minority class as “positive”,

then we can write that cost of false negative is greater than false positive,

FNcost > FPcost. (Ling & Sheng 2011)

51

Following two are common solutions to the class imbalance problem (Ling &

Sheng 2011):

- Cost sensitive learning – it aims to minimize the total cost while

assigning different costs for false negatives and false positives

classifications.

- Oversampling the minority class and/or undersampling the majority

class in order to reduce degree of imbalance.

With the Microsoft Azure ML problem is addressed either by undersampling

the majority class using custom R script or oversampling with the SMOTE

module. (Microsoft 2015a)

The SMOTE module allows to use Synthetic Minority Oversampling Technique

to increase number of samples and to even proportions between majority and

minority classes. Using this technique increases number of rare cases in the

manner better than simple duplication. It uses features of nearest neighbours

combined with the target class to generate new instances. Module has two

parameters. “SMOTE percentage” let to provide desired percentage increase of

the minority class in a multiply of 100. ”Number of nearest neighbours”

parameter defines number of nearest neighbours which are taken into

consideration while creating a new instance. (Microsoft 2015b)

2.4.3. Bayesian Statistics

Bayesian statistics is often portrayed as an alternative to the classical frequentist

approach. Bayesian provides prior distribution which is argued by some to

violate objective view point. However, it is also the reason for its superiority in

some cases. In summary one may want to use Bayesian statistics when it is

52

intended to combine domain knowledge from experts with the knowledge

discovery. (Lin 2013)

2.4.4. Ensemble

Ensemble can be compared to the board of experts making a decision. Each

expert can vote, but not necessary with the same voting power. Similarly with

ensemble methods in machine learning, many classifiers are created and

prediction is given as a weighted vote of theirs predictions. The aim is to

achieve better predictive power from the group of classifier than what could be

achieved with any single of them.

2.4.4.1. Boosting

Boosting is iterative, meaning that previous models performance affects the

creation of the new ones by specifically resampling the dataset. It does so by

enforcing new model to focus on instances which were misclassified by

previous models. Model confidence for the particular prediction instance,

which base on past performance, effects on its vote weight in the final voting.

(Han et al. 2011)

53

Figure 10. Learning Process – Boosting (Mishina et al. 2014)

2.4.4.2. Decision Forest

Decision forest is constituted from many decision trees. Each tree differ from

each other as split attributes are selected randomly. This difference plays

important role. Intuitively it makes only sense to consult different models if

those are diverse from each other. The idea is that in that case each model will

be specialist in some part of the data and one model will complement

weaknesses of others. Final decision is made in the form of voting. Trees with

the higher prediction confidence get allocated higher weight to theirs votes.

Aggregating decisions in that way gives final decision out of the decision tree.

Decision forests can handle fairly well outliers and are good in generalization as

long as there are enough trees in the forest. (Han et al. 2011)

54

Figure 11. Decision Forest (Nguyen et al. 2013)

2.4.4.3. Decision Jungle

Decision Jungle addresses high memory consumption shortcoming of the

decision trees and forests. Number of decision tree nodes grows exponentially

with the depth. Therefore, some systems may not have enough resource to

grow tree big enough in effort to provide best accuracy possible. Especially in

case of embedded systems it may be required to artificially limit the depth.

Decision jungle is an ensemble of rooted decision directed acyclic graphs

(DAGs). Unlike in case of trees, DAGs allow for multiple paths to each leaf.

Building DAGs takes bit more of the training time at the benefit of significantly

smaller memory footprint and improved model generalization capability.

(Shotton et al. 2013)

55

Figure 12. Decision Jungle (Pohlen 2015)

2.4.5. Artificial Neural Network

Artificial Neural Networks (ANNs) concept comes out of the inspiration with

the biological neural networks of the brain. Brain uses neurons which are

interconnected to solve complex problems. In the similar manner, ANN uses

artificial neurons and creates connections between them in order to model

relationship between input signals and an output signal. This network of

interconnected neurons is the solution to the learning problem. Limitation

comes in the number of neurons, with biological brains far exceeding

possibilities of current state of the art ANN. Typical ANN is constituted out of

few hundreds of neurons. Hard to compare to human brain which is made from

approximately 85 billion neurons. There are number of practical applications of

the ANNs. However, one its major problem is lack of interpretability of models

created by the ANNs. Those models function as black boxes and do not provide

insights into how the problem is solved. Therefore, making it virtually

impossible for the human experts to evaluate. (Lantz 2015)

56

Figure 13. Artificial Neural Network (Dolhansky 2013)

2.4.6. Support Vector Machine

Support Vector Machine (SVM) uses hyperplane boundary with the goal to

create homogenous partitions and maximum margin between partitions

possible. Maximum Margin Hyperplane (MMH) is the one which creates

highest separation amongst classes and likely generalizes best. Support vectors

are the points from each class which are closest to the MMH. Each class needs

to have at least one support vector and it is possible to have many of them, if all

are in the same distance. The advantage of this algorithm lays in those support

vectors. They allow for model to be compact as support vectors on itself are

enough to define the MMH. (Lantz 2015)

57

Figure 14. Support Vector Machine (Lantz 2015)

2.5. Evaluating Model Performance

It is beyond the scope of this document to provide very comprehensive

description of the following concepts. Aim is support the reader with the basic

information required while evaluating the results of machine learning

algorithms provided later on.

First we will introduce basic concepts used in the evaluation of the machine

learning projects. It is important to understand meaning of those concepts and

how do they interrelate to each other. Following subchapters aim to explain

basics of the following terms:

- Classification

o Accuracy

o Confusion Matrix

58

o Unbalanced Class

o Unequal Costs and Benefits

o Expected Value

- Regression

o Root Mean Squared Error (RMSE)

o Coefficient of Determination – R2

- Both

o Overfitting

o Training Time

o Linearity

Additionally to the previous ones, following are often used to visualize the

model performance. Therefore, short description for each is provided. As one

need to learn to read those graphs in order to be able to come with valid

conclusions regarding model’s performance.

- Profit Curve

- ROC Curve and AUROC (AUC)

- Cumulative Response and Lift Curves

2.5.1. Accuracy

Accuracy is commonly used to evaluate classifiers. Its popularity is mostly due

to its simplicity. However, simplicity is also its enemy and usually it cannot be

used alone to give any verdict regarding the performance of the algorithm. It is

defined as the following ratio between number of correct class classification and

total number of classification performed. (Provost & Fawcett 2013)

59

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑐𝑙𝑎𝑠𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑎𝑐𝑎𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠

(2)

We want algorithms to produce accurate results. However, it is not necessary

the ultimate goal. Sometimes less precise results can serve better. There are

number of reasons for it. First, it may be more important to get result on time

than accurate. E.g. we are predicting certain event which is due in few seconds.

Our prediction has no value if it comes after the event is already known.

Secondly, simpler models tend to generalize the population better than

sophisticated ones. Overfitting is an important issue and care need to be taken

to avoid it. (Rohrer 2016)

2.5.2. Confusion Matrix

Confusion matrix let to distinguish between different types of success and

errors made by the classifier. Unlike accuracy which simply puts everything

into single number. The confusion matrix is of n x n dimension, where n is the

number of classes. As the example, let’s present below confusion matrix for the

binary classification.

Figure 15. Confusion Matrix (Provost & Fawcett 2013)

60

Meaning of the confusion matrix cells is as follow:

- TP – True Positive – number of true positive classes which were also

classified so by the classifier.

- TN – True Negative – number of true negative classes which were also

classified so by the classifier.

- FP – False Positive – Type I Error – number of negative classes which

were misclassified as positive by the classifier.

- FN – False Negative – Type II Error – number of positive classes which

were misclassified as negative by the classifier.

Based on the confusion matrix we can calculate following derived quality

indicators:

- True Negative Rate (TNR), Specificity (SPC)

 𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃

(3)

- True Positive Rate (TPR), Sensitivity, Recall

 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

(4)

- Precision

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

(5)

61

- F1 Score

 𝐹1 = 2 ∙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(6)

- FPR (False Positive Rate)

 𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁

(7)

- FNR (False Negative Rate)

 𝐹𝑁𝑅 =
𝐹𝑁

𝐹𝑁 + 𝑇𝑃

(8)

- Accuracy (ACC)

 𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
=

𝑇𝑃 + 𝑇𝑁

𝐴𝐿𝐿

(9)

2.5.3. Unbalanced Class

It is important to consider class distribution while evaluating the model. It is

common task for classifiers to try to predict some rare class representing

abnormality among otherwise normal entities. It is the case while predicting the

fault situations, which normally are expected to occur unfrequently. In that case

class distribution is skewed and we refer to it as unbalanced class. (Provost &

Fawcett 2013)

Due to unbalanced classes, we cannot simply rely on the accuracy measure.

Let’s consider simple classifier which always returns prediction “NO FAULT”

and with actual fault occurring in average every 1000 cycles. Such classifier

62

would achieve accuracy of 99.9%. Doesn’t it look amazing? We would never

predict single fault, but the accuracy of the model is still very high. Therefore,

for some given business problem, model with the low accuracy, e.g. 30% may

do better work than one which is 99.9% accurate. Additionally, difference in

accuracy may come whether it was measure on a representative sample or with

artificially balanced one. It can be simply summarize that accuracy on itself says

nothing about performance of the model. (Provost & Fawcett 2013)

2.5.4. Unequal Costs and Benefits

Worth of considering are the costs associated with the false positive and false

negative errors. Default assumption is that both costs are the same. However, in

many cases it is wrong to assume so. Classical example involves prediction of

cancer. Consequences of false positive are not as big as false negative. False

positive in the example means healthy patient being wrongly classified as

having the cancer which would most likely result in more tests, meaning

additional expense. False negative is opposite, unhealthy patient is classified as

healthy one, implying no treatment and potential death. (Provost & Fawcett

2013)

In the context of the machine fault detection one need to evaluate the costs

associated with early maintenance due to false positive and unexpected

machine breakdown and production stoppage due to false negative.

2.5.5. Expected Value

Expected Value (EV) calculation helps to decide on threshold to be used when

determining on class membership. It is calculated as a weighted average of

possible outcomes, with weights being the probability of occurrence of the

63

given outcome. The general form for the EV is given below (Provost & Fawcett

2013)

 𝐸𝑉 = 𝑝(𝑜1) ∙ 𝑣(𝑜1) + 𝑝(𝑜2) ∙ 𝑣(𝑜2) + 𝑝(𝑜3) ∙ 𝑣(𝑜3) …
(10)

Commonly used class membership threshold is 0.5. Meaning, given instance is

assigned to class1 if its predicted class membership is 0.5 or more. With many

real life applications this default threshold is not the best one. Especially when

probabilities are very low. It may be that virtually no instance reaches

probability high enough to be assigned to class1. (Provost & Fawcett 2013)

Taking machine fault prediction as an example. Let’s calculated expected value

from correctly predicting the fault before it occurs:

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑓𝑟𝑜𝑚 𝑓𝑎𝑢𝑙𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

= 𝑝𝑓(𝑥) ∙ 𝑣𝑓 + [1 − 𝑝𝑓(𝑥)] ∙ 𝑣𝑛𝑓 (11)

Where:

- 𝑝𝑓(𝑥) – Estimated probability of the fault occurrence in the near future

- 𝑣𝑓 – Value we gain from correctly predicting the fault in advance

- 𝑣𝑛𝑓 – Costs associated with incorrect fault prediction. We predicted the

fault but it did not actually occur.

Let’s assume following costs. Production line stoppage we estimate at 10’000€.

Cost of maintenance is 1’000€. Therefore, if we predict correctly fault in advance

we save 10’000 of the potential loss minus 1’000 of the maintenance cost. Giving

us 𝑣𝑓 = 10′000€ − 1′000€ = 9′000€. In case our prediction was wrong we have

had unnecessary maintenance for which we need to pay, 𝑣𝑛𝑓 = −1′000€. With

64

those values given we can calculate probability of the fault at which we break

even as follow:

 𝑝𝑓(𝑥) ∙ 9′000€ − [1 − 𝑝𝑓(𝑥)] ∙ 1′000€ > 0
(12)

 𝑝𝑓(𝑥) > 0.1
(13)

Therefore, according to this simple calculation we should set class1

membership threshold to 0.1, instead of default 0.5

We can now use Expected Value to evaluate models and to determine which

one has potential to bring highest benefit. Naturally there are differences

between instances and we need to look at aggregated expected value in order to

draw conclusions. Simply we calculate expected value based on the model

results and cost/benefit matrix. Figure below illustrates the principle. (Provost

& Fawcett 2013)

65

Figure 16. Calculation of the aggregated expected value (Provost & Fawcett

2013)

Same aggregated expected value represented by the formula below (Provost &

Fawcett 2013):

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑝𝑟𝑜𝑓𝑖𝑡 = 𝑝(𝑌, 𝑝) ∙ 𝑏(𝑌, 𝑝) + 𝑝(𝑁, 𝑝) ∙ 𝑏(𝑁, 𝑝)

+ 𝑝(𝑁, 𝑛) ∙ 𝑏(𝑁, 𝑛) + 𝑝(𝑌, 𝑛) ∙ 𝑏(𝑌, 𝑛) (14)

2.5.6. RMSE & MAE

Both, RMSE (root mean square error) and MAE (mean absolute error), are

commonly used for regression model evaluation. With many more metrics

existing, there is a lack of consensus on the best one to use in the evaluation of

the model errors. They emphasize different aspects of the error and none is

66

perfect as some information is always lost when condensing big amount of data

into single number. RMSE gives more weight to errors with higher absolute

errors. Unlike the MAE which gives same weight to all errors. With both

calculated for the same model, MAE is never bigger than RMSE. Error

distribution is commonly anticipated to be Gaussian, in that case the RMSE has

a leverage over the MAE to correctly represent the error distribution.

Mentioned error metrics are calculated as follow (Chai & Draxler 2014):

 𝑀𝐴𝐸 =
1

𝑛
∑|𝑒𝑖|

𝑛

𝑖=1

(15)

 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ 𝑒𝑖

2

𝑛

𝑖=1

(16)

Figure 17. Residuals

67

2.5.7. Coefficient of Determination – R2

Coefficient of Determination (R2) is one of variety of goodness-of-fit statistics

which describes how well data fits to the model. R2 is a relative measure which

explains how much of the response variable variation is explained by the

model. Its value ranges between 0 and 1. Higher coefficient value means better

is model in approximating the real data. An R2 of 1 indicates that model fits

perfectly. However, before fully trusting into value given by the coefficient of

determination one should check residual plot first. It should be verified that

residuals do not form any kind of pattern, as it would indicate for biased result

then. (Aczel et al. 2008)

Coefficient of determination is given by the following formula:

 𝑅2 =
𝑆𝑆𝑅

𝑆𝑆𝑇
=

∑ (𝑦𝑖̂ − 𝑦)2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦)2𝑛
𝑖=1

(17)

Where:

SSR – Sum of squares for regression

SST – Total sum of squares

𝑦𝑖 – observed value

𝑦 – mean

𝑦𝑖̂ – fitted value

Following figure illustrate few regressions with corresponding coefficients of

determination.

68

Figure 18. Value of the Coefficient of Determination in Different Regressions

(Aczel et al. 2008)

As it was earlier mentioned, it is necessary to verify correctness of the model

thru examination of the residuals plot. First of the following plot shows what

would be expected as there is no any visible pattern. Residuals are randomly

69

distributed. Following that are few examples of residuals plots which indicates

for issues with the model.

Figure 19. Residuals - Random (Aczel et al. 2008)

Figure 20. Residuals - Linear Trend (Aczel et al. 2008)

70

Figure 21. Residuals - Curved Pattern (Aczel et al. 2008)

2.5.8. Overfitting

Overfitting occurs when algorithm becomes to precise regarding sample and

loses its ability to generalize. Such algorithm produces very high accuracy with

given sample but will perform very poorly when deployed. Simple example

could be the algorithm which memorizes all inputs of the sample and related

outcomes. Then it executes perfectly with sample data, but it is not generalizing

population at all. Meaning any input in the future which is not an exact match

is classified with some default result. Of course, given example takes overfitting

to the extreme and can easily be spotted as an obvious wrong doing. However,

it is not so simple to spot in the real life scenario when some particular

algorithm starts to overfit. Therefore, it is important to test model for

overfitting. In the simplest way, one would divide data into training and testing

sets. Nevertheless, it has its disadvantage, especially when data is scare, as

amount of data available for learning is even more limited. Though, there are

more advanced techniques to deal with that problem, such as cross-validation

71

and bootstrapping. Figure below shows that best results are achieved when

complexity is balanced well. Model should not be too simplistic neither too

specific. First would fail to recognize patterns hidden in the data and second

one would fail to generalize well in the population.

Figure 22. Model Complexity vs. Prediction Error (Hastie et al. 2009)

2.5.9. Training and Consultation Times

Two distinct times of the learning system can be identified. First is the training

time. It is defined as the period during which selected algorithm is making

inferences from the training data fed to the system. Second one is the

consultation time. It is time used by the algorithm to come with the inference

for the specific object provided. (Webb 2011)

72

Those two times need to be considered while choosing the best algorithm for

the given data science problem. Most commonly the training time is

significantly more than consultation time. Those kind of algorithms are

classified as eager learning ones. However, with lazy learning it is oppose, with

two common examples being instance-based learning and Lazy Bayesian Rules.

(Webb 2011)

Instance based learning actually does not infer anything from the data prior to

prediction request for the given instance. It produces prediction based on the

similarity of the queried instances to its closest neighbour(s). (Webb 2011)

Instance based algorithms are good for the stream of constant data which is

changing over the time. Inserting new data is very fast because training time is

limited to the time it takes to store new data input.

Eager learning algorithms are good for less dynamic data types. For the

situations in which we can train and retrain algorithms periodically but at not

to frequent base. Data for which inferred rules and patterns remain valid over

the longer period of the time.

Naturally there are also differences between algorithms in those groups.

Usually, we can expect contrary relationship between training time and

accuracy. Priorities and constraints need to be decided and taken into

consideration. Differences between algorithms can be especially noticed with

large data sets. (Rohrer 2016)

73

2.5.10. Linearity

Significant number of machine learning algorithms make linearity assumption.

For classification it means that it is expected for data to be separable by the line

or its higher dimension counterpart (e.g. plane). In the case of regression, same

assumption means that line or higher dimension counterpart are best to

proximate relation between predictor and response variables. In case

mentioned assumption is incorrect it would results in accuracy less than

optimal. (Rohrer 2016)

To illustrate it bit more, two examples are provided below. First is the example

of non-linear classification which is addressed using the linear algorithm.

Figure 23. Linear Classification for Non-Linear Problem (Rohrer 2016)

Second example demonstrate the sub-optimal result of the linear regression

which is fitted to non-linear trend.

74

Figure 24. Data with Non-Linear Trend (Rohrer 2016)

2.5.11. Profit Curves

Profit Curve is a visual extension to the earlier mentioned concept of the

expected value calculation. It is used with ranking classifier which produces list

of instances ordered by the decreasing score. Practically it means taking results

of any classifier and ordering them prior to further steps. Expected value is

calculated and plotted as it moves along the list starting with highest ranked

instances first. (Provost & Fawcett 2013)

75

Figure 25. Profit curves of three classifiers (Provost & Fawcett 2013)

Disadvantage of the profit curve is its dependency on additional information

being available and fairly stable. Specifically following two (Provost & Fawcett

2013):

 Class priors – proportion of the positive class in the population

 Cost-benefit matrix

2.5.12. ROC Curves

The Receiver Operating Characteristics (ROC) curve depicts relation between

TP (true positive) and FP (false positive) rates at different binary classifier's

76

discrimination thresholds. It is universal and does not require any additional

information as it is with the profit curve. (Provost & Fawcett 2013)

The bottom left corner of the ROC space represents point at which positive

classification is never assigned. It means there are no false positive errors (false

alarms), but also not a single true positive (hit). On the contrary, upper right

corner represent the point at which positive classification is always assigned.

Line between those two represents the performance of the model which would

base its prediction on a simple guess. Therefore, upper left point represents

perfect classification and best models would be close to it. Generally, each

model should be above the diagonal line, as otherwise it would indicate for its

performance to be worse than a simple guess. (Provost & Fawcett 2013)

Classifiers which appears on the left are more conservative as those would

classify instance to be positive only when strong evidence exists. More to the

right means that classifiers become more permissive, positive class is assigned

with less and less evidence for it. (Provost & Fawcett 2013)

While interpreting the graph, one should consider class imbalance problem.

Often negative instances are in significant majority and even relatively small

false alarm rate becomes faster intolerable. Therefore, usually left side of the

graph is the most important. (Provost & Fawcett 2013)

Below figure presents ROC space with few different classifiers depicted on it.

Classifier C is the best with the A coming second. Classifier B performs as well

as simple guess, therefore it seems it is incapable of finding any relation in the

data.

77

Figure 26. R Script: ROC Space

Figure 27. ROC Space

ROC curve illustrate the influence of the discrimination threshold on the TP and

FP ratios as shown on the figure below.

78

Figure 28. R Script: ROC Curve

Figure 29. ROC Curve

The Area under the ROC Curve (AUROC)

The AUROC commonly accompanies the ROC curve, as it summarizes the

graphical representation of the ROC into a single number. It does what it names

implies. Calculate the area under the ROC curve. It ranges from zero to one.

Naturally some information is lost, as single number cannot carry same amount

of information as the curve. However, it is useful for comparing predictive

power of different classifiers.

79

Figure 30. R Script: Area under the ROC Curve

Figure 31. Area under the ROC Curve

2.5.13. Precision-Recall (PR) Curve

Precision-Recall curve is especially useful when class imbalance exists.

Precision explains how much model is trustworthy with its predictions of the

positive class. High precision means that almost all instances which are

predicted to be of the positive class are truly positive. (Lantz 2015)

80

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

(18)

Recall on the other hand has bit different meaning. It depicts how well model is

able to identify all positive classes in the population. It is defined as number of

instances which were classified as positive over all positive ones. High recall

means that classifiers is able to identify big proportion of all positive classes in

the population. (Lantz 2015)

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

(19)

Figure below illustrates meaning of the terms used.

Figure 32. Precision and Recall – By Walber – Own work, CC BY-SA 4.0

81

Following illustrates sample Precision-Recall Curve plotted with the R.

Figure 33. R Script: Precision-Recall Curve

Figure 34. Precision-Recall Curve

2.5.14. Cumulative Response and Lift Curves

Cumulative response and lift curves are maybe not perfect as they miss some of

ROC properties. However, they are more intuitive for number of stakeholders

who are not involve into data science activities on daily basis. It should not be

forgotten how important it is to communicate well with all stakeholders in the

82

project. Therefore, cumulative response curve is often used instead of or in

addition to the ROC one. It plots cumulative percentage of correctly classified

positive classes as a function of the population that is targeted. Diagonal line

indicates for random performance. Therefore, any good classifier should be

above that line. (Provost & Fawcett 2013)

Example of the cumulative response curve in R is presented below.

Figure 35. R Script: Cumulative Response Curve

83

Figure 36. Cumulative Response Curve

The lift curve depicts classifier advantage over the random guess. It is used to

show the degree to which it pushes up ability to identify positive classes in the

population. Given the example of the population with the equal amount of the

positive and negative classes. If we would classify it using random guess,

ordered and then go thru half of the classifications we would get also half of the

real positive classes, that gives lift of 0.5/0.5 = 1. However, if we would use

perfect classifier instead, we would get all of them in the first half. Giving the

lift of 1.0/0.5 = 2. (Provost & Fawcett 2013)

84

Figure 37. R Script: Lift Curve

Figure 38. Lift Curve

It should be noted for the both curves that it is assumed that class priors remain

same between test set and the population. (Provost & Fawcett 2013)

85

3. Methodology

CRISP-DM methodology is used during the research. It is constituted from six

stages. Those are:

- Business Understanding

- Data Understanding

- Data Preparation

- Modelling

- Evaluation

- Deployment

It is circular model, meaning it meant to work iteratively and to improve on

previous results achieved. It is the case in this research. However, only first

iteration is the part of the thesis. Following iterations will follow later on.

3.1. Business Understanding

Business understanding started long before the thesis. Author got in touch with

the case company through series of two competitions which were organized in

cooperation between case company and the University.

Knowledge regarding the business of the case company was obtain through:

- Case company self-authored introductions.

- Factory visits.

- Interviews with managers and engineers.

- Study of publicly available materials

86

3.2. Data Understanding and Preparation

Due to the lack of the real data, it needed to be generated. Certainly it would be

preferred to work with true machine data but it was not mandatory to realize

on the research goals. However, following iteration of the project requires

concentrate data to be collected.

Generated data base on modified Archard model, which is presented in more

detail in the following chapter. It includes also random error factor. The

algorithm which is used for data generation was consulted with the case

company so that it reflects what could be measured and expected from the real

machine.

3.3. Modelling

Modelling is accomplished with the Microsoft Azure Machine Learning. It does

not require deep technical understanding of the algorithms and mathematics.

However, one should have good understanding of properties of each algorithm

in order to be able to choose the right one for a given business problem.

It is possible to provide own algorithm or to utilize one available in e.g. R.

However, wide range of the machine learning algorithms is available in the

Microsoft Azure Machine Learning Studio. Therefore, it was decide to limit

selection to those. Ones that were used are listed below:

- Regression

o Linear Regression

o Bayesian Linear Regression

87

o Boosted Decision Tree Regression

o Decision Forest Regression

o Poisson Regression

o Neural Network Regression

- Binary Classification

o Two-Class Averaged Perceptron

o Two-Class Bayes Point Machine

o Two-Class Boosted Decision Tree

o Two-Class Decision Forest

o Two-Class Decision Jungle

o Two-Class Locally-Deep Support Vector Machine

o Two-Class Logistic Regression

o Two-Class Neural Network

o Two-Class Support Vector Machine

- Multiclass Classification

o Multiclass Decision Forest

o Multiclass Decision Jungle

o Multiclass Logistic Regression

o Multiclass Neural Network

3.4. Evaluation

Evaluation of the models is provided in the chapter 5 “Results”. It is done using

standard metrics provided by the Microsoft Azure Machine Learning and in the

context of the business problem. It does not however go very deeply as the real

data is missing. It aims at demonstrating what should be considered while

88

evaluating models in further iterations, especially when modelling can be done

based on genuine data.

3.5. Deployment

Deployment of the selected models is accomplished in Microsoft Azure

Machine Learning. Once more, its objective is to demonstrate the ease of

moving from the experimentation, modelling and evaluation to ready deployed

predictive service. All is accomplished without the need for much technical

skill. Simple demo application is also implemented in .NET utilizing MVVM

pattern. General aim is to demonstrate how easily and fast one can create

predictive service and use it in a custom application.

89

4. Formulation and Discussions

Microsoft Azure Machine Learning is a MLaaS (Machine-Learning-as-a-Service)

solution for variety of data science projects. Its advantage is ease of use,

scalability and extensibility with R and Python. It provides services at every

stage of the project, from raw data to deployment as a consumable web service.

Predictive maintenance implementation with Microsoft Azure ML is presented

in this chapter. It base on predictive maintenance template provided by the

Microsoft and is tailored to the case company needs (Microsoft 2015a). The

advantage of using Microsoft Azure ML is speed and ease of development and

deployment. Graphical representation of the project and data flow make it also

easier to collaborate with business analysts or domain experts. In the following

implementation, similarly to the template, three similar solutions are provided.

They address same issue using following approaches:

- Regression – it is used to predict Remaining Useful Life (RUL), or

otherwise Time to Failure (TTF). Numerical value which indicate for

remaining failure free period of the time in selected units as weeks, days,

hours, etc.

- Binary classification – predicts if machine is going to fail within given

time frame. E.g. will machine fail within next two weeks? Binary,

because the answer is only true or false. It does not predict how much

time is left, just if failure occurs in a given period of time.

- Multi-class classification – it can be simply seen as an expansion of the

binary classification. Instead of using single period of the time we have

multiple periods. Therefore, with this approach we are able to predict

e.g. if machine is going to fail this week, next week, after two weeks, etc.

90

We do prediction for fixed amount of time periods. E.g. four weeks

ahead with one week step. Again we are not doing prediction beyond

that set period of the time.

In the examples above, we have mentioned about time period to simplify

examples and to make clearer on differences between those approaches.

However, it should be mentioned that it is not necessary the best approach.

Probably it is more adequate to use other units. Time can be replaced with the

working hours, cycles, mileage, transactions, etc.

The assumption of this solution that need to be mentioned is that asset

monitored has a progressing degradation pattern which could be measured

with the sensors available. Therefore, machine learning algorithm applied is

able to learn relationship between sensors readings and past failures. It can then

use that knowledge to predict the future failure with some degree of certainty.

(Microsoft 2015a)

4.1. Data Preparation and Feature Engineering

This is the first step to be performed in the Microsoft Azure ML Studio.

Previous activity of business understanding is naturally performed outside the

studio environment. Vast amount of different function blocks are available in

the studio to perform standard machine learning tasks. However, sometimes

some custom activity needs to be implemented. It is done using “Execute R

Script” function block. We use it somehow more extensively within this first

step to implement our custom functionality with R. Following tasks are part of

91

this step: data sourcing, data labelling, feature engineering and test design

preparation.

Figure 39. Azure ML Experiment: Prepare Data

92

4.1.1. Source Data

Due to lack of feasible real data, source data was generated using the R. It still

serves its purpose, as the main goal is to demonstrate possibilities laying in

Predictive Maintenance (PdM) and Microsoft Azure Machine Learning. Once

potential benefits are perceived by stakeholders, effort can be made to acquire

real data for further iterations of this project.

In order for generated data to reassemble closely real one, the tool wear model

was used. It is modified Archard model. Main reasoning for the modification is

due to the fact that level of the tool wear is a nonlinear function over the

loading duration. Basic Archard model assumes it to be on the contrary a linear

as it defines variable K in the equation 20 to be constant. In the case of the

modified Archard model, wear coefficient K changes over the loading duration.

Wear volume W and wear coefficient K in theirs relations to the loading

duration are presented on the Figure 40. (Ersoy-Nürnberg et al. 2008)

 𝑊 = 𝐾
𝑃𝐿

𝐻

(20)

Where:

W is a total wear volume (mm3)

K is a dimensional constant

P is a total normal force (N)

L is a sliding distance (mm)

H is a surface hardness (MPa)

93

Figure 40. Wear stages for wear volume and coefficient (Ersoy-Nürnberg et al.

2008)

Figure 41. R code to calculate and plot the wear coefficient K

Figure 42. Wear coefficient plotted in R

94

Figure 43. R code to calculate and plot cumulative wear volume

Figure 44. Cumulative wear volume W plotted in R

95

The data schema of the generated source data is presented in the table below.

The id field uniquely identifies machine. Cycles are counted for each machine

separately, starting with value of one after tool is changed for the new one.

Punch force and distance are recorded for every cycle along with sheet metal

type used and fault status.

Table 2. Data schema

Index Name Type Description

1 Id Integer Machine identifier

2 Cycle Integer Consecutive cycle number

3 punch_force Double Punch force applied

4 punch_distance Double Punch distance

5 sheetmetal_type Integer Type of the sheet metal

9 fault_type Integer The type of fault occurred.

0 – no fault

1 – fault

The generated data is a collection of the simulated multivariate time series

readings from the case company machines’ sensors. Each machine has its own

unique identification number “id”. Machine progressive usage is measured in

cycles. For each cycle, machine’s sensors readings are recorded along with the

information on the sheet metal type used. With this simple example, there are

only two measurements. Those are force of the punch and distance at which

tool had physical contact with the sheet metal. Each time series in the simulated

data is assumed to start after tool change to the new one and ends when tool is

determined to not to be feasible for further usage. Last cycle for a given tool is

marked with the fault type being set to one. Tool starts to wear from the

beginning. However, tool wear out goes through three stages of initial wear

out, normal operation and end of life time. The level of wear out in each of this

96

stage is determined by the coefficient which when plotted reassemble bath tube

curve.

Table below presents selected entries from the generated data. Every series

starts with cycle one and ends when fault type is set to one.

Table 3. Sample Data – Original Features

id cycle punch_force punch_distance sheetmetal_type fault_type

1 1 1.572853 96 1 0

1 2 1.898390 98 2 0

… …

1 102 1.991099 58 3 0

1 103 1.068447 70 1 0

1 104 1.193310 92 3 0

1 105 1.267212 75 1 1

2 1 1.624714 83 1 0

2 2 1.405690 100 3 0

… …

2 99 1.538794 86 2 0

2 100 1.152788 67 2 0

2 101 1.057373 93 1 0

2 102 1.539462 56 1 1

As stated earlier, training and testing data are derived from the same input

data. The difference is only in the way we use them. Obviously, we do not use

fault type column while testing the model as that information is not available

for prediction in a real time data. Therefore, that information is not available for

prediction but we use it to verify the accuracy of predictions made by the

model.

97

4.1.2. Feature Engineering

It is one of the crucial steps and utilizing domain knowledge at this stage can

bring significant improvement in the prediction results later on. Often data

scientist along with domain expert can select, extract and construct features

which better reflect the problem than just simple raw data. Machine learning

algorithms’ quality of results highly depends on the input data.

In the example we can distinguish two types of features. Ones that are selected

form the collected data and ones that are constructed. Though, it does not limit

types of features to those two, but those are the ones used in the example.

Often the input data will contain too much facts and it is crucial to decide which

ones should be included for further modelling. Feature selection task aims at

removing unrelated features from the data. In the case presented all features are

used.

Second type of features, mentioned earlier to be used in the example are added

during feature construction task. This is the actual core activity of the feature

engineering which makes big difference. It is difficult part of machine learning

because it requires human expertise and usually a lot of manual work.

Following features are constructed in the example used:

- “tool_wear_vol” – tool wear volume estimated based on the modified

Archard model.

- “cum_tool_wear_vol” – cumulative tool wear volume for the lifetime of

the given tool.

- “cum_punch_distance” – cumulative punch distance for the lifetime of

the given tool.

98

Table 4. Sample Data – Constructed Features

id cycle tool_wear_vol cum_tool_wear_vol cum_punch_distance fault_type

1 1 0.0104516 0.0104516 96 0

1 2 0.0064083 0.0168600 194 0

… …

1 102 0.0011296 0.1900954 7600 0

1 103 0.0022575 0.1923529 7670 0

1 104 0.0011377 0.1934906 7762 0

1 105 0.0030474 0.1965380 7837 1

2 1 0.0093342 0.0093342 83 0

2 2 0.0032280 0.0125622 183 0

… …

2 99 0.0017989 0.1910761 7681 0

2 100 0.0010755 0.1921516 7748 0

2 101 0.0028092 0.1949608 7841 0

2 102 0.0025298 0.1974906 7897 1

4.1.3. Data Labelling

Source data provides entries as they would be read from the machine.

However, further work needs to done on this data in order to achieve goals

stated. The main aim is to build the service which is able to predict next failure

events on the real data prior to theirs occurrence. As it was stated earlier.

Within the scope of this research three slightly different approaches to this

problem are taken. It reflects also in data labelling.

Using regression we are estimating remaining useful lifetime (RUL) of the tool.

Therefore, we need to add this information into historical data in order to

support the learning process. We do so by adding three columns, as we further

subdivide the problem into:

- Predict number of remaining cycles – “RUL_cycle”

- Predict remaining contact distance – “RUL_distance”

99

- Predict remaining tool wear volume – “RUL_wear”

In case of the binary classification, angle of approach is bit different to the

regression one. As the name suggest, the resulting model can only provide

binary result of 0 or 1. We will interpret it as it would answer to the question:

Given input data, does tool require change within the given time window?

Column named “label1” is used to mark window of interest for this approach.

Multiclass classification can be seen as an extension of the binary one. The result

in this case can be 0 … n. Where “n” is the number of time windows. E.g. with

two time windows, the results can be in range 0 … 2. Continuing with the

example. We interpret it in the following manner. Zero means that there is no

evidence which would support believe that error is going to occur during any

of defined windows. One or two as a result, in contrary mean that model

predicts fault to arise in first or second time window. Column “label2” is added

with values as follow: zero for entry out of any defined window, one for first

window and two for second window.

Window sizes and ultimately the model used need to be selected based on the

business problem. In the example below w0 = 2 and w1 = 4 were used.

Table 5. Sample Data - Labelling

id cycle … fault_type RUL_cycle RUL_distance RUL_wear label1 label2

1 1 0 104 7741 0.1860864 0 0

1 2 0 103 7643 0.1796781 0 0

1 3 0 102 7590 0.1737695 0 0

… …

1 98 0 7 508 0.0153153 0 0

1 99 0 6 452 0.0136418 0 0

1 100 0 5 368 0.0091285 0 0

100

1 101 0 4 295 0.0075722 1 1

1 102 0 3 237 0.0064426 1 1

1 103 0 2 167 0.0041851 1 2

1 104 0 1 75 0.0030474 1 2

1 105 1 0 0 0.0000000 1 2

4.1.4. Prepare the Testing Data

It is important to test models on data that was not used to train them. Therefore,

training and testing sets are distinguished. Training set is used to find patterns

in the data and model is build based on it. Test set is needed to verify the

performance of the model, one that would be expected when model is deployed

on real data. Various options for dealing with training and testing exist, e.g.

cross validation. One presented here is probably the most intuitive and simple.

Data entries are randomly divided into training and testing data sets. Custom R

script presented below takes as an input generated data that is described earlier

and splits it so 70% of entries are allocated to training set and remaining 30% to

testing set. Split is done based on machine id. Therefore, whole time series are

moved.

Figure 45. R Script used to split input data into training and testing data sets

101

4.2. Train and Evaluate Model

We are going to build three different final models in order to present various

approach paths possible. We will try to answer to the same problem in three

different ways. Usually only one approach would be selected based on business

problem at hand. However, as this serve as an example we will use three of

them at the same time.

Following Azure ML modules are used during this step:

- Project Columns

- Metadata Editor

- Filter Based Feature Selection

- Train Model

Project Columns module is used to create subset of columns to be used in

downstream operations. It does not alter the source dataset. It can be used to

explicitly list columns to either include or exclude. It is used e.g. to remove

unwanted columns based on decisions made during the feature selection stage.

(Microsoft 2015b)

Metadata Editor module is used to alter data which describe columns in a

dataset. However, it does not modify value or data type itself. It is typically

used to set flags on columns, such as IsCategorical or IsFeature. Those are

commonly required by other modules, e.g. some learners. (Microsoft 2015b)

Filter Based Feature Selection is used to guide or even automate feature

selection process. Module determines which of the columns have the greatest

predictive power. It does so by applying selected statistical test. The output

102

columns are ordered according to theirs predictive power determined, with

score available for each of the column. Following feature scoring methods are

available: Pearson Correlation, Mutual information, Kendall Correlation,

Spearman Correlation, Chi Squared, Fisher Score and Count Based. (Microsoft

2015b)

Train Model is one of the core modules used. As it name states, it is used to

train model based on historical data provided as an input. One of the column

need to be marked as a “label”. The label column contains values to be

predicted and is discarded as a predictor of the model. Additionally, one out of

many available classification or regression algorithms is provided as the second

input to the module. Algorithm specify the way in which statistical patterns are

extracted from the historical data to be used later on for predictions. (Microsoft

2015b)

4.2.1. Regression Models

Following regression algorithms were evaluated:

- Linear Regression – model fits the line which best presents relation

between explanatory variables and the output variable. In this case

ordinal least square method was used.

- Bayesian Linear Regression – it uses Bayesian approach and intrinsically

it provides prior probability distribution information in addition to

linear regression. It combines prior information with a likelihood

function to create parameters’ estimates. (Microsoft 2015b)

- Boosted Decision Tree Regression – it uses boosting to create ensemble of

regression trees.

103

- Decision Forest Regression – regression model that utilizes ensemble of

decision trees.

- Poisson Regression – is used to predict numerical values, usually counts

of independent events over a given time frame, assumed that (Microsoft

2015b):

o Response variable follows a Poisson distribution

o Response variable is non-negative integer

- Neural Network Regression – it can model non-linear dependence

between explanatory variables and dependent variable. It also allows for

customization of the network architecture using the Net# language.

Therefore, this model can be considered especially when more

traditional ones are not giving good results. (Microsoft 2015b)

Azure Machine Learning experiment which utilizes before mentioned

algorithms is presented on the figure below.

104

Figure 46. Azure ML Experiment: Regression

105

4.2.2. Binary Classification Models

Binary classification models classify its input entry into one of two classes based

on its classification rule. This kind of classification is very common for many

business problems. It could be that in some cases only resulting class is given.

However, it is very common that along with resulting class its probability is

provided. That gives insights into model confidence regarding particular

classification.

Performance of the following algorithms was evaluated:

- Two-Class Averaged Perceptron – is an online algorithm, meaning it

learns one instance at the time. Therefore, it can learn continuously as

new data arrives. Its updates are driven by the error. It is simpler and

faster version of the neural network and suits for linearly separable

classes. (Microsoft 2015b)

- Two-Class Bayes Point Machine – is a Bayesian linear classification

algorithm that is suggested to be an improvement to the support vector

machine one. It has its roots in Bayesian theory. The main idea behind

the algorithm is to approximate optimal Bayesian average of linear

classifiers. The final single “average” classifier is called Bayes Point,

hence the name of the algorithm. (Microsoft 2015b)

- Two-Class Boosted Decision Tree – is a binary classification algorithm

which uses ensemble of decision trees. Trees are created in such a way

that next one is compensating on weaknesses of the directly preceding

one. (Microsoft 2015b)

- Two-Class Decision Forest – is a binary classification algorithm which

uses random decision forests algorithms during supervised ensemble

106

learning. Advantage of this method is its fast learning time. (Microsoft

2015b)

- Two-Class Decision Jungle – is an algorithm that builds upon the

decision forests algorithm. Its key feature is decision directed acyclic

graphs (DAGs) that allows for lower memory footprint at the cost of

slightly longer training time. (Microsoft 2015b)

- Two-Class Locally-Deep Support Vector Machine – used to create non-

linear support vector machine classifier. It is optimized for training time

with slight impact on its accuracy. It can be used when a linear model

performs poorly and when model size is an important factor. (Microsoft

2015b)

- Two-Class Logistic Regression – it creates well known logit model which

does prediction of the categorical dependent variable by fitting of the

data to a logistic function. (Microsoft 2015b)

- Two-Class Neural Network – it creates neural network module for

binary classification. (Microsoft 2015b)

- Two-Class Support Vector Machine – is creates binary classification

model that uses well known and widely used support vector machine.

For more information refer to paragraph 2.4.6

Due to its size, experiment with all above mentioned algorithms being

evaluated at the same time is not shown. Instead figure below depicts the

experiment with a single binary classification algorithm being used. Worth

noting is SMOTE module.

SMOTE (Synthetic Minority Oversampling Technique) is a module used to

approach imbalanced datasets. Its purpose is to increase number of minority

107

cases so that resulting dataset is more balance. Using this technique should

yield better results than just simple multiplication of minority cases. (Microsoft

2015b)

Figure 47. Azure ML Experiment: Binary Classification

108

4.2.3. Multiclass Classification Models

Following multiclass classifiers were evaluated:

- Multiclass Decision Forest

- Multiclass Decision Jungle

- Multiclass Logistic Regression

- Multiclass Neural Network

All of the above mentioned are closely connected to theirs two-class

counterparts. Therefore, curious reader should refer to related algorithms

description in the previous paragraph.

Additionally, ordinal regression was used as a multiclass classifier. Ordinal

regression is used when dependent variable is ordinal. Such variable can be

ordered and ranked but the distance between given values has no meaning. In

the perspective of the failure prediction, “label2” is an ordinal variable. Its

values are on a scale from 0 to 2, with 0 representing lowest severity and 2

highest one. It is correct to use ordinal regression because order between values

of “label2” can be established. With previous mentioned multiclass classifiers

this order has no meaning and it can be seen as a disadvantage in this case.

(Microsoft 2015a)

Ordinal regression takes as an input binary classification model. Following two

were used:

- Two-Class Logistic Regression

- Two-Class Neural Network

109

Problem with the ordinal regression in the case described is with its evaluation.

Metrics provided by the Azure ML Studio are listed below. Main challenge

with them is that they are hardly interpretable given highly imbalanced dataset.

Baccianella et al. (2009) acknowledged this issue and are suggesting macro

averaged versions of those measures to be used instead.

- Mean Zero One Error

- Mean Absolute Error

- Root Mean Squared Error

The snapshot of the experiment is shown below. With binary classification it

was shown how to use SMOTE module to address unbalanced class. In the case

of this example, custom R script is written to do oversampling of the minority

class and down sampling of the majority class.

Figure 48. R Script: Oversampling and Downsampling

110

Figure 49. Azure ML Experiment: Multiclass Classification

111

4.3. Deployment as a Web Service

Microsoft Azure ML studio deploys an experiment as a RRS (Request-Response

Service) which can be then consumed and used in a various ways. Standard

solutions which are easy to integrate with would include Excel and Power BI

dashboard. However, with a bit of additional effort, service can be used by

websites or custom application. Both either desktop or mobile.

We have worked with three different models: regression, binary classification

and multiclass classification. Therefore, we need to also make three separate

deployments, one for each of the model used.

Deploying an experiment is a fairly easy process from the user perspective.

Studio does virtually all the work required. Deployment can start once user is

satisfied with the results achieved and with one requirement that latest run of

the experiment must produce no errors. Deployment process starts by clicking

“SET UP WEB SERVICE” and then “Predictive Web Service […]”. It will

generate predictive experiment based on training one.

Figure 50. Azure ML Studio: Set Up Web Service

112

The next step is to set web service input(s). Its location effects on data that

needs to be provided to the service in order for it to make a prediction. Two

usual locations are:

- Before the data pre-processing steps, this location of the service input is

usually used with batch scoring.

- After the data pre-processing steps, usually used to score the single row.

Once input is set, newly created prediction experiment needs to be run.

Assuming no errors, all is left is to click “DEPLOY WEB SERVICE”.

Figure 51. Azure ML Studio: Deploy Web Service

After deployment is done, studio switches view to the web service dashboard

(Figure 52). From there one can easily test new service using:

- Build-in service test form available directly from the dashboard through

the “Test” button (Figure 53).

- Download and use available Microsoft Excel files for single and batch

predictions (Figure 54).

Additionally, with bit more of effort one can still relatively easy:

- Create Azure ML Request-Response Service Web App based on template

available in Azure Web App Marketplace (Figure 55).

113

- Create custom application using code templates provided for C#, R and

Python.

Figure 52. Azure ML Studio: Web Service Dashboard

Figure 53. Azure ML Studio: Build-in Service Test Form

114

Figure 54. Microsoft Excel: Testing Deployed Predictive Web Service

Figure 55. Web App Deployed on Azure

115

Figure 56. Custom .NET App: Data Input

Figure 57. Custom .NET App: Results

116

4.4. Alternative Solutions Consideration

Microsoft Azure ML was used in the scope of this thesis. It came as the

requirement at the beginning of the project. It is beyond the scope to make any

thorough evaluation of other possibilities. However, short introduction of

alternative technologies and solutions is provided here for a curious reader.

Microsoft Azure Machine Learning is not the only machine learning product to

be offered as the MLaaS (Machine-Learning-as-a-Service). Some of its major

large scale competitors who are also offering cloud-based machine learning

solutions are:

- Google Prediction API (Google n.d.)

- Amazon Machine Learning (Amazon n.d.)

- IBM Watson Analytics (IBM n.d.)

Few smaller scale and sometimes more specialized providers of the MLaaS are

listed below:

- Algorithms.io – streaming data

- BigML – focus on ease of use

- Datoin – big data text analytics

- Wise.io – customer service

Additionally, there are solutions which can be run both on premises and in the

cloud. Here are mentioned two of them: Cloudera Enterprise and Microsoft R

Server.

117

Cloudera Enterprise built on Apache Hadoop and related technologies. It uses

HDFS file system to store and analyse vast amount of data using commodity

hardware. Fast integration between Hadoop and other systems is achieved with

Apache Sqoop, Apache Flume and Apache Kafka. First for bulk load processing

and latter two for streaming. Data can be accessed and transformed using

Apache Hive, Apache Pig, Map Reduce version 2 (MR2) and Apache Spark.

Analysts can then work on data discovery using Apache Impala and Apache

Solr. Finally machine learning tasks can be performed using Apache Spark

MLlib. Picture below depicts components of the Cloudera Enterprise. (Cloudera

n.d.)

Figure 58. Cloudera Enterprise Architecture (Cloudera n.d.)

R is commonly used by data scientist to perform analytics and modelling tasks.

It has vast amount of packages freely available and community of millions of

users. R is powerful but its open source version is not big data ready as it is

single threaded and memory bounded. Data with which open source R works

118

needs to fit into machine’s RAM. Microsoft R Server is an enterprise ready

solution for the before mentioned shortcomings of the open source version. It

scales and runs much faster. It is available on Windows and various Linux

platforms, including Cloudera CDH. Microsoft R Server brings advanced

analytics next to data, reducing the need for data movement. Microsoft R Server

architecture is presented on the picture below. (Microsoft 2016)

Figure 59. Microsoft R Server Architecture (Microsoft 2016)

Also worth of checking:

- DeployR

- Domino Data Lab

- OpenML

- Oracle R Enterprise

- TensorFlow

- WSO2 Machine Learner

- yhat

119

5. Results

In this chapter we are assessing if the outcome models produce results that are

in line with the business goal of the project. Only in that perspective it can be

said if results are good or not. Simply reporting statistics which are not clearly

associated with the business objective is wrong. (Provost & Fawcett 2013)

Generally speaking, answering to the questions “Am I getting good results?”

and “Which machine learning algorithm I should choose?” is not easy. There

are no simple rules to follow and answer depends on the business objective of

the problem and how one plans to utilize the answer given. We cannot just set

certain accuracy threshold level to distinguish between good and bad results.

Prediction with the accuracy of 99 percent is not always good. And even if the

accuracy is good for the given problem, it can be that we are getting results too

late. Meaning we are getting very accurate result at the moment when it does

not have any value anymore. Therefore, sometimes one may decide to trade

accuracy over the time. Consequently, it is virtually impossible to choose best

algorithm without trial and careful results consideration. (Rohrer 2016)

5.1. Regression Models

Following regressions were evaluated:

- Remaining useful lifetime measured in tool wear

- Remaining useful lifetime measured in cycles

- Remaining useful lifetime measured in distance

120

Figures below provide results for above mentioned regressions. For each

regression six algorithms are evaluated based on theirs coefficient of

determination (R2). Simply stating, algorithm with the coefficient closest to one

does best in this comparison. Acknowledging that other factors should also be

taken into consideration in real life example, e.g. simplicity of the algorithm.

However, we are focusing here solely on the R2.

From the results presented below we can draw following conclusions:

- Performance of the Bayesian Linear and Neural Network regression

algorithms is significantly worse than of remaining ones.

- In all three cases Boosted Decision Tree Regression performed best.

However, difference with next contenders is not very significant. Simple

Linear Regression performed almost as well.

- Neural Network Regression performed very poorly in the case of the

remaining useful lifetime measured in distance. Coefficient of

determination value below 0 is not common but it is correct. It means

that fitted model does fit worse than horizontal straight line at mean (the

null hypothesis).

121

Figure 60. Linear Regression Results (RUL_wear)

Figure 61. Linear Regression Results (RUL_cycle)

122

Figure 62. Linear Regression Results (RUL_distance)

5.2. Binary Classification Models

Precision, recall and F1-score are used here as an evaluation metrics. All are

explained in more depth earlier. Nevertheless, short explanation is provided

below:

- Precision is a ratio of true positive predictions to the total number of

positive predictions made (true positives + false positives). It shows how

trustworthy is model when it identifies instances as a positive one.

High precision means that if model label instance as a positive class then

it is most likely truly is. However, it does not mean that it is good at

picking positive classes from the sample. Stating otherwise, model with

high precision keeps its false positives low.

- Recall is a ratio of true positive predictions to the total number of

positive class instances in a given data set (true positives + false

123

negatives). It shows how well model is capable of picking positive

classes. However, it may be at the cost of many false positives.

- F1-Score is a ratio of the product of precision and recall to the sum of

both of them (𝐹1 = 2 ∙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
). From the above descriptions of

precision and recall it can be noticed that each of them puts emphasize

on some aspect of prediction correctness. However, in both cases good

results can be achieved with not necessary best models. Therefore, F1-

Score provides single value that balance between those two.

Accuracy is intentionally omitted as it doesn’t work well with imbalanced

classes (accuracy paradox). Consequently, relying on above mentioned metrics

we can summarize results presented below (Figure 63) as follow:

- In the terms of precision, examined models give similar results. Except to

Two-Class Neural Network which underperforms. Nevertheless, best

precision is given by the Two-Class Logistic Regression.

- Differences are more noticeable with the recall. Interestingly the model

with worst performance in precision is the best in the terms of the recall

measure. It scored perfectly with the value of 1. Meaning that it was able

to pick all positive instances of the class from the given data set.

- F1-Score suggest that Two-Class Logistic Regression or Two-Class

Support Vector Machine should be selected.

Dependably on the business problem, following can be considered:

- Two-Class Neural Network can be selected if the goal is to identify as

many positive class instances as possible even if it comes at the cost of

significant amount of false positives.

124

- Two-Class Logistic Regression does best if precision and F1-score are

considered. Meaning it balances well between picking as many as

possible of positive class instances from the data set and keeping false

positives reasonable low. Model should be selected if it is decided that

Two-Class Neural Network precision is too low. Meaning costs arising

from false positives are overcoming benefits of true positives.

Figure 63. Binary Classification Results with SMOTE

Previous results are realized with SMOTE module which addresses class

imbalance issue. To demonstrate its impact, below results (Figure 64) are

retrieved from the same experiment with only exception to SMOTE module not

being used this time. Following difference can be noticed:

125

- SMOTE seems to have negative impact on the precision metric. Almost

all algorithm, except to Two-Class Boosted Decision Tree, are having

lower precision with SMOTE.

- It has significant positive impact on recall. It is evident for all algorithms

evaluated.

- Despite its negative impact on precision, usage of SMOTE module

improved F1-score values. Meaning its slight negative impact on

precision is covered by positive impact on recall metric.

Figure 64. Binary Classification Results without SMOTE

Additionally to the metrics presented, it is very useful to evaluate classifier

performance using the confusion matrix. Figure 65 presents confusion matrix of

126

the Two-Class Logistic Regression. Also examining ROC (Figure 66),

Precision/Recall (Figure 67) and Lift (Figure 68) curves can give better insight

into model performance.

Figure 65. Confusion Matrix: Two-Class Logistic Regression

Figure 66. ROC Curve: Two-Class Logistic Regression

127

Figure 67. Precision / Recall Curve: Two-Class Logistic Regression

Figure 68. Lift Curve: Two-Class Logistic Regression

128

Following table reflect on metrics from the business perspective. It provides

guideline on main metric of focus when class distribution and costs of false

negatives and false positives are taken into consideration.

 Class Distribution

Even Uneven

Cost

FN cost more Recall Recall

Same cost Accuracy or F1 Score F1 Score

FP cost more Precision Precision

Figure 69. Metric Selection Guideline Table (De Ruiter 2015)

5.3. Multiclass Classification Models

Evaluating results of the multiclass classifiers is bit more difficult than it was for

binary ones. To evaluate each model following should be checked:

- Confusion matrix

- Class specific as well as macro-averaged precision and recall

 Micro-averaged versions of the precision and recall are calculated by summing

true positives, false positives and false negatives from classes and calculating

precision and recall on those sums.

 𝑀𝑖𝑐𝑟𝑜 − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑑 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃𝑠

(𝑇𝑃𝑠 + 𝐹𝑃𝑠)

(21)

 𝑀𝑖𝑐𝑟𝑜 − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑑 𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃𝑠

(𝑇𝑃𝑠 + 𝐹𝑁𝑠)

(22)

129

Macro-averages versions of the precision and recall are calculated as an average

of precision and recall of individual classes.

𝑀𝑎𝑐𝑟𝑜 − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑑 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

=
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛0 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛1 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛2

3
 (23)

 𝑀𝑎𝑐𝑟𝑜 − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑑 𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑅𝑒𝑐𝑎𝑙𝑙0 + 𝑅𝑒𝑐𝑎𝑙𝑙1 + 𝑅𝑒𝑐𝑎𝑙𝑙2

3

(24)

Micro-average gives equal weights to all classifications. Thus, with this method

big class will over dominate the smaller ones. It is the case with the class “0”.

Micro-averaged values are high even so precision and recall for classes “1” and

“2” are relatively low.

Macro-average in contrary gives equal weight to all classes. Consequently, it is

more appropriate to use with imbalanced class distribution.

From the results we can conclude following:

- All models are quite poor in correctly predicting class “1”. It can be

noticed by examination of the confusion matrixes. In fact, Multiclass

Logistic Regression have not predicted even single instance as belonging

to that class.

- From the business perspective misclassification happening between

classes “1” and “2” is not as serious as misclassifying any of them as

class “0”. Therefore, from that perspective Multiclass Logistic Regression

does best. Only 15% of actual class “1” and 6.7% of actual class “2”

instances are misclassified as class “0”. That is significantly better than

remaining models. It does also best in macro-averaged recall.

130

Figure 70. Evaluation Results for Multiclass Decision Forest and Multiclass

Decision Jungle

Figure 71. Evaluation Results for Multiclass Logistic Regression and Multiclass

Neural Network

131

Figure 72. Confusion Matrix, Precision and Recall for Evaluated Multiclass

Algorithms

For the comparison, results from the same experiment, except to oversampling

and downsampling script not being executed, are shown below. It can be

noticed that using the script contributed to:

- Increased true positives, especially for the class “2”.

- Significantly reduced misclassification of remaining classes as class “0”.

It is evident for all models, but even more in the case of the Multiclass

Logistic Regression.

132

Figure 73. Evaluation Results for Multiclass Decision Forest and Multiclass

Decision Jungle without over- and downsampling

Figure 74. Evaluation Results for Multiclass Logistic Regression and Multiclass

Neural Network without over- and downsampling

133

Figure 75. Confusion Matrix, Precision and Recall for Evaluated Multiclass

Algorithms without over- and downsampling

Additionally to the models presented above, two ordinal regression models

were used as well. Following metrics are produced by the evaluate model:

- Mean Zero One Error

- Mean Absolute Error

- Root Mean Squared Error

Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) are well

known metrics and are already explained in subchapter 2.5.6. However, Mean

Zero One Error may require some additional clarification. It main difference

from remaining two is that it does not measure the distance of the prediction

from the ground truth. It just simply counts misclassified instances and divides

it by total number of instances, according to the formula presented below:

134

 𝑀𝑒𝑎𝑛 𝑍𝑒𝑟𝑜 𝑂𝑛𝑒 𝐸𝑟𝑟𝑜𝑟 =
1

𝑛
∑ 𝑍𝑒𝑟𝑜𝑂𝑛𝑒𝐿𝑜𝑠𝑠(𝑦𝑖̂, 𝑦𝑖)

𝑛

𝑖=1

(25)

Where,

 𝑍𝑒𝑟𝑜𝑂𝑛𝑒𝐿𝑜𝑠𝑠(𝑦𝑖̂, 𝑦𝑖) = {
0 𝑖𝑓 𝑦𝑖̂ = 𝑦𝑖
1 𝑖𝑓 𝑦𝑖̂ ≠ 𝑦𝑖

(26)

From the results of three metrics presented below, it can be concluded that

Ordinal Regression module using the Two-Class Neural Network as the input

performed better than Ordinal Regression with the Two-Class Logistic

Regression being set as the input.

Figure 76. Evaluation Results for Ordinal Regressions module using Two-Class

Logistic Regression and Two-Class Neural Network.

135

6. Conclusions

The potential of machine learning was realized by the case company after initial

technology introduction during the competition. However, many open

questions were left and following research problem was established:

Can that bring any benefits for the sheet metal industry in a moderate time frame

with a reasonable amount of effort needed?

The research presented in this document focused on feasibility of machine

learning in improving the competitive advantage of sheet metal fabrication

machines. Special focus was on Microsoft Azure Machine Learning product. It

was dictated by the case company’s interest into this particular solution.

However, despite empirical part, research was generalized and is not bounded

by any specific machine learning implementation. The main research question

that was driving the study was stated early as follow:

How can the sheet metal industry use machine learning for improving its operations

management?

Research has shown that sheet metal fabrication machines can benefit from the

machine learning technology. It gave a concrete example in the form of the

predictive maintenance implementation. Lack of real data was a slight

drawback but it didn’t prevent the research from reaching its goals.

Data science projects can be vague especially for some business stakeholders.

Utilizing methodology which helped to provide structured approach to data

mining project proved to bring many benefits. It guided research through what

could otherwise become easily a chaotic exploration. Employing CRISP-DM

136

helped also in communicating on project progress and status between

researcher and main stakeholders.

In order to be capably derive valid models and evaluate them correctly, it was

needed to recognize that data is imbalanced. That drove the need to use the

SMOTE module and additionally some custom over- and undersampling

scripts written in R. Without understanding of the issues arising from the

imbalanced data, one could also wrongly evaluate resulting models and e.g.

make his decision based solely on the accuracy. Which in this case is rather

inadequate.

During the research it was also evident that models predictive power increased

due to constructed features. Examination of the filter-based feature selection

module results showed that there were two constructed features in top three

ones. It was the case for both classifications evaluated.

It serves well as evidence to the importance of the data understanding and

feature engineering stages. However, probably the most significant one is

business understanding. It ensured that research wasn’t just doing things right

but more essentially the right thing. Good business understanding allowed also

the author to make judgment calls which proved to be right but which were not

obvious at the first for the case company.

Main limitations of the study were time and lack of real data. There was always

drive to do more. However, time frame was set taking into consideration that

thesis is given 30 ECTS credit points that equals roughly to 800 hours of work or

otherwise to 1 academic semester. Real tool wear out data that would be

collected from machines during operation was not available during the time of

137

the research. This was mostly due to innovative nature of the project which was

introducing new features rather than extending on already existing ones.

Taking those limitations into consideration, scope and goals were set

accordingly.

This research contributes to other research on reliability by examining and

demonstrating how machine learning can be used for Predictive Maintenance in

sheet metal industry. Empirical example gives special focus on the prediction of

the tool wear out. Correct prediction allows to maximize resource utilization

and reduces number of unplanned maintenance breakdowns. It demonstrates

three possible means of addressing the prediction. For first, it shows how

regression can be used to predict remaining useful lifetime. Binary and

multiclass classifications demonstrated second and third approach respectively.

Binary classification used single time frame and model was predicting

probability of the fault at the current one. Multiclass classification showed that

predictions can be also made for multiple time frames into the future.

The aim of the research that was successfully reached was proof of concept.

Work should now continue towards its full productization. At the first, sample

of the real data need to be collected. Research presented here was done based

on generated data due to lack of real one. Full architecture design should follow

it. It involves further feasibility studies for most appropriate data collection,

storing, processing and presentation.

Another prospective research topic can focus on best business model to be used.

Possibly value creation and capture should be reconsidered by the case

company to best utilize on potentials of the Internet of Things and Machine

Learning. Tool wear out prediction should become part of the bigger ecosystem.

138

The scope of this thesis focused on the Microsoft Azure Machine Learning.

Evaluation of other Azure products comes as a natural continuation. Certainly

the highest potential of Azure Machine Learning lies in its conceivable synergy

with other Azure services. To demonstrate the versatility of Azure offerings,

further research should focus on remaining Azure products, to list just few:

Event Hub, Stream Analytics, Storage, Service Bus, Notification Hub, App

Service, and Azure Service Fabric.

139

LIST OF REFERENCES

Aczel, A., Sounderpandian, J. (2008). Complete Business Statistics (7th ed.).

McGraw-Hill Companies. 804 p. ISBN 978−0−39−050192−9

Amazon (n.d.). Amazon Machine Learning [online] Amazon Web Services:

Amazon [cited 28 Mar. 2016]. Available from World Wide Web <URL:

https://aws.amazon.com/machine-learning/>.

Azevedo, A., Santos, M.F. (2008, Jul. 22-27). KDD, SEMMA and CRISP-DM: A

parallel overview. In H. Weghom, A.P. Abraham (Eds.). Proceedings of the

IADIS European Conference on Data Mining. Paper presented at IADIS

European Conference on Data Mining 2008, Amsterdam, The Netherlands.

ISBN 978-972-8924-63-8

Bellin, D. (2014). Predictive Maintenance: The Business Impact of IoE for Mining

Companies [online] Cisco Blogs: Cisco, 2014 [cited 21 Feb. 2016]. Available

from World Wide Web <URL: http://blogs.cisco.com/digital/predictive-

maintenance-the-business-impact-of-ioe-for-mining-companies>.

Bosch (2014). Predictive Maintenance with the Service Portal. The Intelligent Way to

Maximize Machine Availability [online] Software Innovations: Bosch, 2014

[cited 22 Feb. 2016]. Available from World Wide Web <URL:

https://www.bosch-

si.com/media/en/bosch_software_innovations/documents/brochure/predictiv

e_maintenance_1/brochure-predictive-maintenance-service-portal.pdf>.

Brownlee, J. (2013). A Tour of Machine Learning Algorithms [online] Machine

Learning Mastery, 2013 [cited 1 Mar. 2016]. Available from World Wide Web

<URL: http://machinelearningmastery.com/a-tour-of-machine-learning-

algorithms/>

Brownlee, J. (2014). How To Estimate Model Accuracy in R Using The Caret Package

[online] Machine Learning Mastery, 2014 [cited 1 Mar. 2016]. Available from

World Wide Web <URL: http://machinelearningmastery.com/how-to-

estimate-model-accuracy-in-r-using-the-caret-package/>

140

Brynjolfsson, E., Hitt, L. M., & Kim, H. H. (2011). Strength in numbers: How does

data-driven decision making affect firm performance? Tech. rep., available at

SSRN: http://ssrn.com/abstract=1819486

Chai, T., Draxler, R. (2014). Root mean square error (RMSE) or mean absolute

error (MAE)? – Arguments against avoiding RMSE in the literature.

Geoscientific Model Development, 7(3), 1247-1250. DOI: 10.5194/gmd-7-1247-

2014. Available from World Wide Web <URL: http://www.geosci-model-

dev.net/7/1247/2014/>.

Cloudera (n.d.). Cloudera Enterprise [online] Products: Cloudera [cited 28 Mar.

2016]. Available from World Wide Web <URL:

https://www.cloudera.com/products.html>.

Coraddu, A., Oneto, L., Ghio, A., Savio, S., Figari, M., Anguita, D. (2015).

Machine learning for wear forecasting of naval assets for condition-based

maintenance applications. Paper presented at International Conference on

Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles,

Aachen, Germany. DOI: 10.1109/ESARS.2015.7101499

De Ruiter, A. (2015). Performance measures in Azure ML: Accuracy, Precision, Recall

and F1 Score [online] Andreas De Ruiter's BI Blog: Microsoft, 2015 [cited 28

Mar. 2016]. Available from World Wide Web <URL:

https://blogs.msdn.microsoft.com/andreasderuiter/2015/02/09/performance-

measures-in-azure-ml-accuracy-precision-recall-and-f1-score/>.

Dean, J. (2014). Big Data, Data Mining, and Machine Learning: Value Creation for

Business Leaders and Practitioners. John Wiley & Sons. 288 p. ISBN 978-1-118-

61804-2

Dolhansky, B. (2013). Artificial Neural Networks: Mathematics of

Backpropagation: Part 4 [online]. Blog: Brian Dolhansky, 2013 [cited 5 Mar.

2016]. Available from World Wide Web <URL:

http://briandolhansky.com/blog/2013/9/27/artificial-neural-networks-

backpropagation-part-4>.

Drummond, C., & Holte, R. C. (2000). Explicitly representing expected cost: An

alternative to ROC representation. In R. Ramakrishnan, S. Stolfo, R.

141

Bayardo, & I. Parsa (Eds.), Proceedings of the Sixth International Conference

on Knowledge Discovery and Data Mining (pp. 198–207). Boston. New York:

ACM Press.

Ersoy-Nürnberg, K., Nürnberg, G., Golle, M., & Hoffmann, H. (2008).

Simulation of wear on sheet metal forming tools—An energy approach.

Wear, 265(11), 1801-1807.

Fayyad, U., Piatetsky-Shapiro, G., Smyth, P. (1996). From Data Mining to

Knowledge Discovery in Databases. AI Magazine, 17(3), 37-54.

Google (n.d.). Prediction Api: Machine Learning to Analyze Your Data and Make

Predictions [online] Google Cloud Platform: Google [cited 28 Mar. 2016].

Available from World Wide Web <URL:

https://cloud.google.com/prediction/>.

Gulati, R. (2012). Maintenance and Reliability: Best Practices (2nd ed.). Industrial

Press Inc. 400 p. ISBN 978-0831134341

Han, J., Kamber, M., Pei, J. (2011). Data Mining: Concepts and Techniques (3rd

ed.). Morgan Kaufmann. 800 p. ISBN 978-0123814791

Hastie, T., Tibshirani, R., Friedman, J. (2009). The Elements of Statistical Learning:

Data Mining, Inference, and Prediction (2nd ed.). Springer. 763 p. Available

from World Wide Web <URL:

http://statweb.stanford.edu/~tibs/ElemStatLearn/>.

Hollinger, P. (2015). Smarter aircraft create a wealth of data but it remains

underexploited [online] Aerospace: Financial Times, 2015 [cited 21 Feb. 2016].

Available from World Wide Web <URL:

http://www.ft.com/intl/cms/s/2/3f956a92-0943-11e5-b643-

00144feabdc0.html#axzz44UFjM2B8>.

IBM (n.d.) What is Watson Analytics? [online] IBM Watson Analytics: IBM [cited

28 Mar. 2016]. Available from World Wide Web <URL:

http://www.ibm.com/analytics/watson-analytics/us-en/>.

142

Kleyner, A. (2010). Determining Optimal Reliability Targets: Engineering Analysis

and Simulation of Product Validation Costs and Warranty Data. Lambert

Academic Publishing.

Koch, C. (2012). A Real Need for Big Data: Preventing Airline Equipment Failures

[online] ForbesBrandVoice: Forbes, 2012 [cited 21 Feb. 2016]. Available from

World Wide Web <URL: http://www.forbes.com/sites/sap/2012/06/27/a-real-

need-for-big-data-preventing-airline-equipment-failures/#7280fde63627>.

Langlouis, A. (2014). Launch of SAP Predictive Maintenance and Service, cloud

edition [online] SAP Solutions for the Internet of Things: SAP Community

Network, 2014 [cited 21 Feb. 2016]. Available from World Wide Web <URL:

http://scn.sap.com/community/internet-of-things/blog/2014/11/11/launch-of-

sap-predictive-maintenance-and-service>.

Lantz, B. (2015). Meachine Learning with R (2nd ed.). Packt Publishing. 452 p.

ISBN 978-1-78439-390-8

Li, H., Parikh, D., He, Q., Qian, B., Li, Z., Fang, D., Hampapur, A. (2014).

Improving rail network velocity: A machine learning approach to predictive

maintenance. Transportation Research Part C, 45, 17–26.

Lin, M. (2013). Bayesian Statistics [online] Boston University: School of Public

Health, 2013 [cited 5 Mar. 2016]. Available from World Wide Web <URL:

http://www.bu.edu/sph/files/2014/05/Bayesian-

Statistics_final_20140416.pdf>.

Ling, C., Sheng, V. (2011). Class Imbalance Problem. In C. Sammut & G. I. Webb

(Eds.), Encyclopedia of Machine Learning (pp. 167-168). Springer New York.

Maintenance Assistant (2014). Predictive Maintenance (PdM) [online]

Maintenance Assistant, 2014 [cited 20 Mar. 2016]. Available from World

Wide Web <URL: https://www.maintenanceassistant.com/predictive-

maintenance/>.

Microsoft (2015a). Predictive Maintenance: Step 1 of 3, Data Preparation and Feature

Engineering [online] Cortana Intelligence Gallery: Microsoft, 2015 [cited 22

Feb. 2016]. Available from World Wide Web <URL:

143

http://gallery.cortanaintelligence.com/Experiment/Predictive-Maintenance-

Step-1-of-3-data-preparation-and-feature-engineering-2>.

Microsoft (2015b). A-Z List of Machine Learning Studio Modules [online] Microsoft

Azure: Microsoft, 2016 [cited 31 Mar. 2016]. Available from World Wide Web

<URL: https://msdn.microsoft.com/en-us/library/azure/dn906033.aspx>.

Microsoft (2016). Bring advanced analytics to your data: Data science with Microsoft

R Server [online] Microsoft [cited 28 Mar. 2016]. Available from World Wide

Web <URL: http://download.microsoft.com/download/0/9/1/091054C2-A11F-

4A4C-910B-

2AE6C77BE58E/Microsoft_R_Server_Advanced_Analytics_Datasheet_EN-

US.pdf>.

Mishina, Y., Tsuchiya, M., Fujiyoshi, H. (2014). Boosted Random Forest.

International Joint Conference on Computer Vision, Imaging and Computer

Graphics Theory and Applications, 2, 594-598.

Negandhi, V., Sreenivasan, L., Giffen, R., Sewak, M., Rajasekharan, A. (2015).

IBM Predictive Maintenance and Quality 2.0 Technical Overview (2nd ed.).

Redbooks: IBM.

Nguyen, C. , Wang, Y. and Nguyen, H. (2013) Random forest classifier

combined with feature selection for breast cancer diagnosis and prognostic.

Journal of Biomedical Science and Engineering, 6(5), 551-560. DOI:

10.4236/jbise.2013.65070.

O’Brien, J. (2014). Should you focus on asset availability or cost reduction? [online]

Blog: Maintenance Assistant, 2014 [cited 20 Mar. 2016]. Available from World

Wide Web <URL: https://www.maintenanceassistant.com/blog/focus-

availability-cost-reduction/>.

O’Connor, P., Kleyner, A. (2012). Practical Reliability Engineering (5th ed.). Wiley-

Blackwell. 512 p. ISBN 978-0470979815

Pohlen, T. (2015). Geek Stack [online]. Geek Stack, 2015 [cited 5 Mar. 2016].

Available from World Wide Web <URL: http://geekstack.net/>.

144

Prima Power (2016). Products [online] Prima Power, 2016 [cited 26 Feb. 2016].

Available from World Wide Web <URL:

http://www.primapower.com/en/products/>

Provost, F. (2000). Machine Learning from Imbalanced Data Sets 101. In

Proceedings of the AAAI’2000 workshop on imbalanced data.

Provost, F., Fawcett, T. (2013). Data Science for Business: What you need to know

about data mining and data-analytic thinking. O'Reilly Media. 414 p. ISBN 978-

1449361327

Rohrer, B. (2016). How to choose algorithms for Microsoft Azure Machine Learning

[online] Microsoft Azure: Microsoft, 2016 [cited 31 Mar. 2016]. Available

from World Wide Web <URL: https://azure.microsoft.com/en-

us/documentation/articles/machine-learning-algorithm-choice/>.

SAP (2015). Leverage the Internet of Things to Transform Maintenance and Service

Operations [online] SAP Solutions for the Internet of Things: SAP, 2015 [cited

21 Feb. 2016]. Available from World Wide Web <URL:

https://www.sap.com/bin/sapcom/en_us/downloadasset.2015-03-mar-19-

17.leverage-the-internet-of-things-to-transform-maintenance-and-service-

operations-pdf.html>.

Severtson, B. (2016). How to choose parameters to optimize your algorithms in Azure

Machine Learning [online] Microsoft Azure: Microsoft, 2016 [cited 31 Mar.

2016]. Available from World Wide Web <URL:

https://azure.microsoft.com/en-us/documentation/articles/machine-learning-

algorithm-parameters-optimize/>.

Shearer, C. (2000). The CRISP-DM Model: The New Blueprint for Data Mining.

Journal of Data Warehousing, 5(4), 13-22.

Shotton, J., Sharp, T., Kohli, P., Nowozin, S., Winn, J., Criminisi, A. (2013).

Decision Jungles: Compact and Rich Models for Classification. In C. J. C.

Burges & L. Bottou & M. Welling & Z. Ghahramani & K. Q. Weinberger

(Eds.), Advances in Neural Information Processing Systems 26 (pp. 234-242).

Curran Associates, Inc.

145

Software AG (2015). Predictive Maintenance. Capitalize on a new revenue stream

while ensuring higher service quality [online] Solution Series: Software AG, 2015

[cited 22 Feb. 2016]. Available from World Wide Web <URL:

https://www.softwareag.com/corporate/images/SAG_Predictive_Maintenanc

e_SB_Oct15-Web_tcm16-127571.pdf>.

Swindoll, C. (2011). Redefining Fundraising – Data [online] Blog: Pursuant, 2011

[cited 03 Apr. 2016]. Available from World Wide Web <URL:

https://www.pursuant.com/blog/redefining-fundraising-data/>.

Webb, G. I. (2011). Lazy Learning. In C. Sammut & G. I. Webb (Eds.),

Encyclopedia of Machine Learning (pp. 571-572). Springer New York.

146

APPENDIX 1.

Prepare Data

147

APPENDIX 2.

Regression

148

APPENDIX 3.

Binary Classification

149

APPENDIX 4.

Multiclass Classification

150

APPENDIX 5.

Sample Application Code

Solution Explorer View

151

BinaryClassifcationModel.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using ToolWearOutPrediction.Services;

namespace ToolWearOutPrediction.Model
{
 public class BinaryClassificationModel
 {
 public BinaryClassificationModel()
 {
 }

 public Tuple<int, double> GetPredictedToolWearOut(
 int cycle,
 double cumPunchDistance,
 double cumToolWearVol)
 {
 return PredictionService.GetBinaryClassificationPrediction(
 cycle, cumPunchDistance, cumToolWearVol);
 }
 }
}

DataStatisticsModel.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using ToolWearOutPrediction.Services;

namespace ToolWearOutPrediction.Model
{
 public class DataStatisticsModel
 {
 private static DataStatisticsModel instance;

 public event EventHandler ModelUpdated;

 #region Basic Data Statistics

 public int MeanLastCycle
 {
 get;
 set;
 }

 public int MinLastCycle
 {
 get;
 set;
 }

 public int MaxLastCycle
 {
 get;
 set;
 }

 public double MeanPunchDistance
 {

152

 get;
 set;
 }

 public double MinPunchDistance
 {
 get;
 set;
 }

 public double MaxPunchDistance
 {
 get;
 set;
 }

 public double MeanCumPunchDistanceAtFault
 {
 get;
 set;
 }

 public double MinCumPunchDistanceAtFault
 {
 get;
 set;
 }

 public double MaxCumPunchDistanceAtFault
 {
 get;
 set;
 }

 public double MeanPunchForce
 {
 get;
 set;
 }

 public double MinPunchForce
 {
 get;
 set;
 }

 public double MaxPunchForce
 {
 get;
 set;
 }

 public double MeanCumToolWearVolAtFault
 {
 get;
 set;
 }

 public double MinCumToolWearVolAtFault
 {
 get;
 set;
 }

 public double MaxCumToolWearVolAtFault
 {
 get;
 set;
 }
 #endregion

153

 private DataStatisticsModel()
 {
 //PredictionService.GetDataStatistics();
 Task.Run(() => GetData());
 }

 void GetData()
 {
 Dictionary<string, double> dataStatistics = PredictionService.GetDataStatistics();
 foreach (KeyValuePair<string, double> entry in dataStatistics)
 {
 switch (entry.Key)
 {
 case "mean_last_cycle":
 MeanLastCycle = Convert.ToInt32(entry.Value);
 break;
 case "min_last_cycle":
 MinLastCycle = Convert.ToInt32(entry.Value);
 break;
 case "max_last_cycle":
 MaxLastCycle = Convert.ToInt32(entry.Value);
 break;
 case "mean_punch_force":
 MeanPunchForce = entry.Value;
 break;
 case "min_punch_force":
 MinPunchForce = entry.Value;
 break;
 case "max_punch_force":
 MaxPunchForce = entry.Value;
 break;
 case "mean_punch_distance":
 MeanPunchDistance = entry.Value;
 break;
 case "min_punch_distance":
 MinPunchDistance = entry.Value;
 break;
 case "max_punch_distance":
 MaxPunchDistance = entry.Value;
 break;
 case "mean_last_cum_punch_distance":
 MeanCumPunchDistanceAtFault = entry.Value;
 break;
 case "min_last_cum_punch_distance":
 MinCumPunchDistanceAtFault = entry.Value;
 break;
 case "max_last_cum_punch_distance":
 MaxCumPunchDistanceAtFault = entry.Value;
 break;
 case "mean_last_cum_tool_wear":
 MeanCumToolWearVolAtFault = entry.Value;
 break;
 case "min_last_cum_tool_wear":
 MinCumToolWearVolAtFault = entry.Value;
 break;
 case "max_last_cum_tool_wear":
 MaxCumToolWearVolAtFault = entry.Value;
 break;
 }
 }

 OnModelUpdated(EventArgs.Empty);
 }

 protected virtual void OnModelUpdated(EventArgs e)
 {
 EventHandler handler = ModelUpdated;
 if (handler != null)

154

 {
 handler(this, e);
 }
 }

 public static DataStatisticsModel Instance
 {
 get
 {
 if (instance == null)
 {
 instance = new DataStatisticsModel();
 }
 return instance;
 }
 }
 }
}

MultiClassClassifcationModel.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using ToolWearOutPrediction.Services;

namespace ToolWearOutPrediction.Model
{
 public class MultiClassClassificationModel
 {
 public MultiClassClassificationModel()
 {
 }

 public List<double> GetPredictedToolWearOut(
 int cycle,
 double cumPunchDistance,
 double cumToolWearVol)
 {
 return PredictionService.GetMultiClassClassificationPrediction(
 cycle, cumPunchDistance, cumToolWearVol);
 }
 }
}

RegressionModel.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using ToolWearOutPrediction.Services;

namespace ToolWearOutPrediction.Model
{
 public class RegressionModel
 {
 public RegressionModel()
 {
 }

 public Tuple<double, double> GetPredictedToolWearOut(
 int cycle,

155

 double punchForce,
 double punchDistance,
 double cumPunchDistance,
 int sheetMetalType,
 double cumToolWearVol)
 {
 return PredictionService.GetRegressionPrediction(
 cycle, punchForce, punchDistance, cumPunchDistance, sheetMetalType, cumToolWearVol);
 }
 }
}

PredictionService.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

using System.IO;
using System.Net.Http;
using System.Net.Http.Formatting;
using System.Net.Http.Headers;

using System.Runtime.Serialization.Json;
using Newtonsoft.Json;

namespace ToolWearOutPrediction.Services
{
 public class ResultRootObject
 {
 public Results Results { get; set; }
 public Error error { get; set; }
 }

 public class Results
 {
 public Output1 output1 { get; set; }
 }

 public class Output1
 {
 public string type { get; set; }
 public Value value { get; set; }
 }

 public class Value
 {
 public List<string> ColumnNames { get; set; }
 public List<string> ColumnTypes { get; set; }
 public List<List<string>> Values { get; set; }
 }

 public class Error
 {
 public string code { get; set; }
 public string message { get; set; }
 public List<ErrorDetail> details { get; set; }
 }

 public class ErrorDetail
 {
 public string code { get; set; }
 public string message { get; set; }
 }

156

 public class StringTable
 {
 public string[] ColumnNames { get; set; }
 public string[,] Values { get; set; }
 }

 public class RequestContent
 {
 public Dictionary<string, StringTable> Inputs;
 public Dictionary<string, string> GlobalParameters;

 public RequestContent()
 {
 Inputs = new Dictionary<string, StringTable>() { };
 GlobalParameters = new Dictionary<string, string>() { };
 }

 public void AddInput(string inputName, StringTable namesAndValues)
 {
 Inputs.Add(inputName, namesAndValues);
 }
 }

 public static class PredictionService
 {
 public static Dictionary<string, double> GetDataStatistics()
 {
 const string apiKey = "...";
 Uri baseAddress = new Uri("https://...");

 RequestContent requestContent = new RequestContent();
 var reqResponseService =
 InvokeRequestResponseService(apiKey, baseAddress, requestContent);
 reqResponseService.Wait();
 string response = reqResponseService.Result;
 if (String.IsNullOrEmpty(response))
 return new Dictionary<string, double>();

 var outObject =
 JsonConvert.DeserializeObject<ResultRootObject>(response);
 if (IsErrorPresent(outObject))
 return new Dictionary<string, double>();

 Dictionary<string, double> dataStatistics =
 new Dictionary<string, double>();
 List<string> variablesNames = new List<string>() {
 "mean_last_cycle",
 "min_last_cycle",
 "max_last_cycle",
 "mean_punch_force",
 "min_punch_force",
 "max_punch_force",
 "mean_punch_distance",
 "min_punch_distance",
 "max_punch_distance",
 "mean_last_cum_punch_distance",
 "min_last_cum_punch_distance",
 "max_last_cum_punch_distance",
 "mean_last_cum_tool_wear",
 "min_last_cum_tool_wear",
 "max_last_cum_tool_wear" };
 foreach (var variableName in variablesNames)
 {
 int index =
 outObject.Results.output1.value.ColumnNames.IndexOf(variableName);
 double value =
 double.Parse(outObject.Results.output1.value.Values[0][index]);
 dataStatistics.Add(variableName, value);
 }

157

 return dataStatistics;
 }

 public static Tuple<double, double> GetRegressionPrediction(
 int cycle,
 double punchForce,
 double punchDistance,
 double cumPunchDistance,
 int sheetMetalType,
 double cumToolWearVol)
 {
 const string apiKey = "...";
 Uri baseAddress = new Uri("https://...");

 RequestContent requestContent = new RequestContent();
 requestContent.AddInput(
 "input1",
 new StringTable()
 {
 ColumnNames = new string[] {
 "cycle", "punch_force", "punch_distance", "sheetmetal_type",
 "tool_wear_vol", "cum_tool_wear_vol", "cum_punch_distance" },
 Values = new string[,] { {
 cycle.ToString(),
 punchForce.ToString(),
 punchDistance.ToString(),
 sheetMetalType.ToString(),
 "0",
 cumToolWearVol.ToString(),
 cumPunchDistance.ToString() }, }
 });
 var reqResponseService =
 InvokeRequestResponseService(apiKey, baseAddress, requestContent);
 reqResponseService.Wait();
 string response = reqResponseService.Result;
 if (String.IsNullOrEmpty(response))
 return Tuple.Create<double, double>(-1, -1);

 var outObject = JsonConvert.DeserializeObject<ResultRootObject>(response);
 if (IsErrorPresent(outObject))
 return Tuple.Create<double, double>(-1, -1);

 int scoredLabelIndex =
 outObject.Results.output1.value.ColumnNames.IndexOf("Scored Label Mean");
 double scoredLabelValue =
 double.Parse(outObject.Results.output1.value.Values[0][scoredLabelIndex]);
 int scoredLabelSDIndex =
 outObject.Results.output1.value.ColumnNames.IndexOf("Scored Label Standard Deviation");
 double scoredLabelSDValue =
 double.Parse(outObject.Results.output1.value.Values[0][scoredLabelSDIndex]);

 return Tuple.Create<double, double>(scoredLabelValue, scoredLabelSDValue);
 }

 public static Tuple<int, double> GetBinaryClassificationPrediction(
 int cycle,
 double cumPunchDistance,
 double cumToolWearVol)
 {
 const string apiKey = "...";
 Uri baseAddress = new Uri("https://...");

 RequestContent requestContent = new RequestContent();
 requestContent.AddInput(
 "input1",
 new StringTable()
 {
 ColumnNames = new string[] {
 "cycle", "cum_tool_wear_vol",

158

 "cum_punch_distance" },
 Values = new string[,] { {
 cycle.ToString(),
 cumToolWearVol.ToString(),
 cumPunchDistance.ToString() }, }
 });
 var reqResponseService =
 InvokeRequestResponseService(apiKey, baseAddress, requestContent);
 reqResponseService.Wait();
 string response = reqResponseService.Result;
 if (String.IsNullOrEmpty(response))
 return Tuple.Create<int, double>(-1, -1);

 var outObject =
 JsonConvert.DeserializeObject<ResultRootObject>(response);
 if (IsErrorPresent(outObject))
 return Tuple.Create<int, double>(-1, -1);

 int scoredLabelsIndex =
 outObject.Results.output1.value.ColumnNames.IndexOf("Scored Labels");
 int scoredLabelsValue =
 Int32.Parse(outObject.Results.output1.value.Values[0][scoredLabelsIndex]);
 int scoredProbabilitiesIndex =
 outObject.Results.output1.value.ColumnNames.IndexOf("Scored Probabilities");
 double scoredProbabilitiesValue =
 double.Parse(outObject.Results.output1.value.Values[0][scoredProbabilitiesIndex]);

 return Tuple.Create<int, double>(scoredLabelsValue, scoredProbabilitiesValue);
 }

 public static List<double> GetMultiClassClassificationPrediction(
 int cycle,
 double cumPunchDistance,
 double cumToolWearVol)
 {
 const string apiKey = "...";
 Uri baseAddress = new Uri("https://.....");

 RequestContent requestContent = new RequestContent();
 requestContent.AddInput(
 "input1",
 new StringTable()
 {
 ColumnNames = new string[] {
 "cycle", "cum_tool_wear_vol",
 "cum_punch_distance" },
 Values = new string[,] { {
 cycle.ToString(),
 cumToolWearVol.ToString(),
 cumPunchDistance.ToString() }, }
 });
 var reqResponseService =
 InvokeRequestResponseService(apiKey, baseAddress, requestContent);
 reqResponseService.Wait();
 string response = reqResponseService.Result;
 if (String.IsNullOrEmpty(response))
 return new List<double>() { -1, -1, -1, -1 };

 var outObject =
 JsonConvert.DeserializeObject<ResultRootObject>(response);
 if (IsErrorPresent(outObject))
 return new List<double>() { -1, -1, -1, -1 };

 int scoredLabelsIndex =
 outObject.Results.output1.value.ColumnNames.IndexOf("Scored Labels");
 double scoredLabelsValue =
 double.Parse(outObject.Results.output1.value.Values[0][scoredLabelsIndex]);
 int scoredProbabilitiesClass0Index =
 outObject.Results.output1.value.ColumnNames.IndexOf(
 "Scored Probabilities for Class \"0\"");

159

 double scoredProbabilitiesClass0Value =
 double.Parse(outObject.Results.output1.value.Values[0][scoredProbabilitiesClass0Index]);
 int scoredProbabilitiesClass1Index =
 outObject.Results.output1.value.ColumnNames.IndexOf(
 "Scored Probabilities for Class \"1\"");
 double scoredProbabilitiesClass1Value =
 double.Parse(outObject.Results.output1.value.Values[0][scoredProbabilitiesClass1Index]);
 int scoredProbabilitiesClass2Index =
 outObject.Results.output1.value.ColumnNames.IndexOf(
 "Scored Probabilities for Class \"2\"");
 double scoredProbabilitiesClass2Value =
 double.Parse(outObject.Results.output1.value.Values[0][scoredProbabilitiesClass2Index]);

 return new List<double>() {
 scoredLabelsValue, scoredProbabilitiesClass0Value,
 scoredProbabilitiesClass1Value, scoredProbabilitiesClass2Value
 };
 }

 static async Task<string> InvokeRequestResponseService(
 string apiKey, Uri baseAddress, RequestContent requestContent)
 {
 try
 {
 using (var client = new HttpClient())
 {
 client.DefaultRequestHeaders.Authorization =
 new AuthenticationHeaderValue("Bearer", apiKey);
 client.BaseAddress = baseAddress;

 HttpResponseMessage response =
 await client.PostAsJsonAsync("", requestContent).ConfigureAwait(false);

 if (!response.IsSuccessStatusCode)
 {
 // Request Failed
 Console.WriteLine(string.Format("The request failed with status code: {0}",
 response.StatusCode));
 Console.WriteLine(response.Headers.ToString());
 string responseContent = await response.Content.ReadAsStringAsync();
 Console.WriteLine(responseContent);
 }

 return await response.Content.ReadAsStringAsync();

 }
 }
 catch (HttpRequestException e)
 {
 System.Windows.MessageBox.Show(e.Message, "Error",
 System.Windows.MessageBoxButton.OK, System.Windows.MessageBoxImage.Error
);
 return string.Empty;
 }
 }

 private static bool IsErrorPresent(ResultRootObject result)
 {
 if (result.error == null)
 return false;

 System.Windows.MessageBox.Show(
 result.error.code + "\n" + result.error.message, "Service Responded With Error",
 System.Windows.MessageBoxButton.OK, System.Windows.MessageBoxImage.Error
);
 return true;
 }
 }
}

160

BinaryClassificationViewModel.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Collections.ObjectModel;
using System.Windows.Input;
using ToolWearOutPrediction.Model;
using System.ComponentModel;

namespace ToolWearOutPrediction.ViewModel
{
 public class BinaryClassificationPrediction
 {
 public int Cycle { get; set; }
 public double CumPunchDistance { get; set; }
 public double CumToolWearVol { get; set; }

 public int PredictedLabel { get; set; }
 public double PredictedLabelProbability { get; set; }
 }

 public class BinaryClassificationViewModel : ObservableObject, INotifyDataErrorInfo
 {
 private readonly BinaryClassificationModel _binaryClassificationModel =
 new BinaryClassificationModel();

 private readonly List<BinaryClassificationPrediction> _predictionHistory =
 new List<BinaryClassificationPrediction>();

 private readonly Dictionary<string, ICollection<string>>
 _validationErrors = new Dictionary<string, ICollection<string>>();

 private int _cycle;
 private double _cumPunchDistance;
 private double _cumToolWearVol;

 private int _predictedLabel;
 private double _predictedLabelProbability;

 public BinaryClassificationViewModel()
 {
 ErrorsChanged += RegressionViewModel_ErrorsChanged;
 }

 void RegressionViewModel_ErrorsChanged(object sender, DataErrorsChangedEventArgs e)
 {
 RaisePropertyChangedEvent("IsFormValid");
 RaisePropertyChangedEvent("HasErrors");
 }

 public int Cycle
 {
 get { return _cycle; }
 set
 {
 if (value < 0 || value > 10000)
 {
 _validationErrors["Cycle"] = new List<string>(
 new string[] { "Value out of range." });
 RaiseErrorsChanged("Cycle");
 }
 else
 {
 _validationErrors.Remove("Cycle");
 RaiseErrorsChanged("Cycle");
 }

161

 _cycle = value;
 RaisePropertyChangedEvent("Cycle");
 }
 }

 public double CumulativePunchDistance
 {
 get { return _cumPunchDistance; }
 set
 {
 _cumPunchDistance = value;
 RaisePropertyChangedEvent("CumulativePunchDistance");
 }
 }

 public double CumulativeToolWearVolume
 {
 get { return _cumToolWearVol; }
 set
 {
 _cumToolWearVol = value;
 RaisePropertyChangedEvent("CumulativeToolWearVolume");
 }
 }

 public List<BinaryClassificationPrediction> History
 {
 get { return _predictionHistory; }
 }

 public int PredictedLabel
 {
 get { return _predictedLabel; }
 set
 {
 _predictedLabel = value;
 RaisePropertyChangedEvent("PredictedLabel");
 }
 }

 public double PredictedLabelProbability
 {
 get { return _predictedLabelProbability; }
 set
 {
 _predictedLabelProbability = value;
 RaisePropertyChangedEvent("PredictedLabelProbability");
 }
 }

 public ICommand PredictCommand
 {
 get { return new DelegateCommand(Predict); }
 }

 private void Predict()
 {
 if (HasErrors)
 return;

 Tuple<int, double> predictionTuple = _binaryClassificationModel.GetPredictedToolWearOut(
 _cycle, _cumPunchDistance, _cumToolWearVol);
 PredictedLabel = predictionTuple.Item1;
 PredictedLabelProbability = predictionTuple.Item2;

 _predictionHistory.Add(new BinaryClassificationPrediction
 {
 Cycle = Cycle,
 CumPunchDistance = CumulativePunchDistance,

162

 CumToolWearVol = CumulativeToolWearVolume,
 PredictedLabel = PredictedLabel,
 PredictedLabelProbability = PredictedLabelProbability
 });
 }

 public bool IsFormValid
 {
 get { return !HasErrors; }
 }

 #region INotifyDataErrorInfo members
 public event EventHandler<DataErrorsChangedEventArgs> ErrorsChanged;
 private void RaiseErrorsChanged(string propertyName)
 {
 if (ErrorsChanged != null)
 ErrorsChanged(this, new DataErrorsChangedEventArgs(propertyName));
 }

 public System.Collections.IEnumerable GetErrors(string propertyName)
 {
 if (string.IsNullOrEmpty(propertyName)
 || !_validationErrors.ContainsKey(propertyName))
 return null;

 return _validationErrors[propertyName];
 }

 public bool HasErrors
 {
 get { return _validationErrors.Count > 0; }
 }
 #endregion
 }
}

DataStatisticsViewModel.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using ToolWearOutPrediction.Model;
using System.ComponentModel;

namespace ToolWearOutPrediction.ViewModel
{
 public class DataStatisticsViewModel : ObservableObject
 {
 private static DataStatisticsViewModel instance;

 private readonly DataStatisticsModel _dataStatisticsModel = DataStatisticsModel.Instance;

 public static DataStatisticsViewModel Instance
 {
 get
 {
 if (instance == null)
 {
 instance = new DataStatisticsViewModel();
 }
 return instance;
 }
 }

 private DataStatisticsViewModel()

163

 {
 _dataStatisticsModel.ModelUpdated += DataStatisticsModelUpdated;
 }

 public DataStatisticsModel DataStatisticModelInstance
 {
 get { return _dataStatisticsModel; }
 }

 void DataStatisticsModelUpdated(object sender, EventArgs e)
 {
 MeanLastCycle = _dataStatisticsModel.MeanLastCycle;
 MinLastCycle = _dataStatisticsModel.MinLastCycle;
 MaxLastCycle = _dataStatisticsModel.MaxLastCycle;
 MeanPunchForce = _dataStatisticsModel.MeanPunchForce;
 MinPunchForce = _dataStatisticsModel.MinPunchForce;
 MaxPunchForce = _dataStatisticsModel.MaxPunchForce;
 MeanPunchDistance = _dataStatisticsModel.MeanPunchDistance;
 MinPunchDistance = _dataStatisticsModel.MinPunchDistance;
 MaxPunchDistance = _dataStatisticsModel.MaxPunchDistance;
 MeanCumPunchDistanceAtFault = _dataStatisticsModel.MeanCumPunchDistanceAtFault;
 MinCumPunchDistanceAtFault = _dataStatisticsModel.MinCumPunchDistanceAtFault;
 MaxCumPunchDistanceAtFault = _dataStatisticsModel.MaxCumPunchDistanceAtFault;
 MeanCumToolWearVolAtFault = _dataStatisticsModel.MeanCumToolWearVolAtFault;
 MinCumToolWearVolAtFault = _dataStatisticsModel.MinCumToolWearVolAtFault;
 MaxCumToolWearVolAtFault = _dataStatisticsModel.MaxCumToolWearVolAtFault;
 }

 #region Basic Data Statistics
 private int _meanLastCycle;
 private int _minLastCycle;
 private int _maxLastCycle;

 private double _meanPunchDistance;
 private double _minPunchDistance;
 private double _maxPunchDistance;

 private double _meanCumPunchDistanceAtFault;
 private double _minCumPunchDistanceAtFault;
 private double _maxCumPunchDistanceAtFault;

 private double _meanPunchForce;
 private double _minPunchForce;
 private double _maxPunchForce;

 private double _meanCumToolWearVolAtFault;
 private double _minCumToolWearVolAtFault;
 private double _maxCumToolWearVolAtFault;

 public int MeanLastCycle
 {
 get { return _meanLastCycle; }
 set
 {
 _meanLastCycle = value;
 RaisePropertyChangedEvent("MeanLastCycle");
 }
 }

 public int MinLastCycle
 {
 get { return _minLastCycle; }
 set
 {
 _minLastCycle = value;
 RaisePropertyChangedEvent("MinLastCycle");
 }
 }

 public int MaxLastCycle

164

 {
 get { return _maxLastCycle; }
 set
 {
 _maxLastCycle = value;
 RaisePropertyChangedEvent("MaxLastCycle");
 }
 }

 public double MeanPunchDistance
 {
 get { return Convert.ToDouble(_meanPunchDistance.ToString("N2")); }
 set
 {
 _meanPunchDistance = value;
 RaisePropertyChangedEvent("MeanPunchDistance");
 }
 }

 public double MinPunchDistance
 {
 get { return Convert.ToDouble(_minPunchDistance.ToString("N2")); }
 set
 {
 _minPunchDistance = value;
 RaisePropertyChangedEvent("MinPunchDistance");
 }
 }

 public double MaxPunchDistance
 {
 get { return Convert.ToDouble(_maxPunchDistance.ToString("N2")); }
 set
 {
 _maxPunchDistance = value;
 RaisePropertyChangedEvent("MaxPunchDistance");
 }
 }

 public double MeanCumPunchDistanceAtFault
 {
 get { return Convert.ToDouble(_meanCumPunchDistanceAtFault.ToString("N2")); }
 set
 {
 _meanCumPunchDistanceAtFault = value;
 RaisePropertyChangedEvent("MeanCumPunchDistanceAtFault");
 }
 }

 public double MinCumPunchDistanceAtFault
 {
 get { return Convert.ToDouble(_minCumPunchDistanceAtFault.ToString("N2")); }
 set
 {
 _minCumPunchDistanceAtFault = value;
 RaisePropertyChangedEvent("MinCumPunchDistanceAtFault");
 }
 }

 public double MaxCumPunchDistanceAtFault
 {
 get { return Convert.ToDouble(_maxCumPunchDistanceAtFault.ToString("N2")); }
 set
 {
 _maxCumPunchDistanceAtFault = value;
 RaisePropertyChangedEvent("MaxCumPunchDistanceAtFault");
 }
 }

 public double MeanPunchForce

165

 {
 get { return Convert.ToDouble(_meanPunchForce.ToString("N2")); }
 set
 {
 _meanPunchForce = value;
 RaisePropertyChangedEvent("MeanPunchForce");
 }
 }

 public double MinPunchForce
 {
 get { return Convert.ToDouble(_minPunchForce.ToString("N2")); }
 set
 {
 _minPunchForce = value;
 RaisePropertyChangedEvent("MinPunchForce");
 }
 }

 public double MaxPunchForce
 {
 get { return Convert.ToDouble(_maxPunchForce.ToString("N2")); }
 set
 {
 _maxPunchForce = value;
 RaisePropertyChangedEvent("MaxPunchForce");
 }
 }

 public double MeanCumToolWearVolAtFault
 {
 get { return Convert.ToDouble(_meanCumToolWearVolAtFault.ToString("N3")); }
 set
 {
 _meanCumToolWearVolAtFault = value;
 RaisePropertyChangedEvent("MeanCumToolWearVolAtFault");
 }
 }

 public double MinCumToolWearVolAtFault
 {
 get { return Convert.ToDouble(_minCumToolWearVolAtFault.ToString("N3")); }
 set
 {
 _minCumToolWearVolAtFault = value;
 RaisePropertyChangedEvent("MinCumToolWearVolAtFault");
 }
 }

 public double MaxCumToolWearVolAtFault
 {
 get { return Convert.ToDouble(_maxCumToolWearVolAtFault.ToString("N3")); }
 set
 {
 _maxCumToolWearVolAtFault = value;
 RaisePropertyChangedEvent("MaxCumToolWearVolAtFault");
 }
 }
 #endregion
 }
}

166

DelegateCommand.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Input;

namespace ToolWearOutPrediction.ViewModel
{
 public class DelegateCommand : ICommand
 {
 private readonly Action _action;
 public event EventHandler CanExecuteChanged = null;

 public DelegateCommand(Action action)
 {
 _action = action;
 }

 public void Execute(object parameter)
 {
 _action();
 }

 public bool CanExecute(object parameter)
 {
 return true;
 }
 }
}

MultiClassClassificationViewModel.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Collections.ObjectModel;
using System.Windows.Input;
using ToolWearOutPrediction.Model;
using System.ComponentModel;

namespace ToolWearOutPrediction.ViewModel
{
 public class MultiClassClassificationPrediction
 {
 public int Cycle { get; set; }
 public double CumPunchDistance { get; set; }
 public double CumToolWearVol { get; set; }

 public int PredictedLabel { get; set; }
 public double PredictedClass0Probability { get; set; }
 public double PredictedClass1Probability { get; set; }
 public double PredictedClass2Probability { get; set; }
 }

 public class MultiClassClassificationViewModel : ObservableObject, INotifyDataErrorInfo
 {
 private readonly MultiClassClassificationModel _multiclassClassificationModel =
 new MultiClassClassificationModel();

 private readonly List<MultiClassClassificationPrediction> _predictionHistory =
 new List<MultiClassClassificationPrediction>();

167

 private readonly Dictionary<string, ICollection<string>>
 _validationErrors = new Dictionary<string, ICollection<string>>();

 private int _cycle;
 private double _cumPunchDistance;
 private double _cumToolWearVol;

 private int _predictedLabel;
 private double _predictedClass0Probability;
 private double _predictedClass1Probability;
 private double _predictedClass2Probability;

 public MultiClassClassificationViewModel()
 {
 ErrorsChanged += RegressionViewModel_ErrorsChanged;
 }

 void RegressionViewModel_ErrorsChanged(object sender, DataErrorsChangedEventArgs e)
 {
 RaisePropertyChangedEvent("IsFormValid");
 RaisePropertyChangedEvent("HasErrors");
 }

 public int Cycle
 {
 get { return _cycle; }
 set
 {
 if (value < 0 || value > 10000)
 {
 _validationErrors["Cycle"] = new List<string>(
 new string[] { "Value out of range." });
 RaiseErrorsChanged("Cycle");
 }
 else
 {
 _validationErrors.Remove("Cycle");
 RaiseErrorsChanged("Cycle");
 }

 _cycle = value;
 RaisePropertyChangedEvent("Cycle");
 }
 }

 public double CumulativePunchDistance
 {
 get { return _cumPunchDistance; }
 set
 {
 _cumPunchDistance = value;
 RaisePropertyChangedEvent("CumulativePunchDistance");
 }
 }

 public double CumulativeToolWearVolume
 {
 get { return _cumToolWearVol; }
 set
 {
 _cumToolWearVol = value;
 RaisePropertyChangedEvent("CumulativeToolWearVolume");
 }
 }

 public List<MultiClassClassificationPrediction> History
 {
 get { return _predictionHistory; }
 }

168

 public int PredictedLabel
 {
 get { return _predictedLabel; }
 set
 {
 _predictedLabel = value;
 RaisePropertyChangedEvent("PredictedLabel");
 }
 }

 public double PredictedClass0Probability
 {
 get { return _predictedClass0Probability; }
 set
 {
 _predictedClass0Probability = value;
 RaisePropertyChangedEvent("PredictedClass0Probability");
 }
 }

 public double PredictedClass1Probability
 {
 get { return _predictedClass1Probability; }
 set
 {
 _predictedClass1Probability = value;
 RaisePropertyChangedEvent("PredictedClass1Probability");
 }
 }

 public double PredictedClass2Probability
 {
 get { return _predictedClass2Probability; }
 set
 {
 _predictedClass2Probability = value;
 RaisePropertyChangedEvent("PredictedClass2Probability");
 }
 }

 public ICommand PredictCommand
 {
 get { return new DelegateCommand(Predict); }
 }

 private void Predict()
 {
 if (HasErrors)
 return;

 List<double> predictionResults =
 _multiclassClassificationModel.GetPredictedToolWearOut(
 _cycle, _cumPunchDistance, _cumToolWearVol);
 PredictedLabel = (int)predictionResults[0];
 PredictedClass0Probability = predictionResults[1];
 PredictedClass1Probability = predictionResults[2];
 PredictedClass2Probability = predictionResults[3];

 _predictionHistory.Add(new MultiClassClassificationPrediction
 {
 Cycle = Cycle,
 CumPunchDistance = CumulativePunchDistance,
 CumToolWearVol = CumulativeToolWearVolume,
 PredictedLabel = PredictedLabel,
 PredictedClass0Probability = PredictedClass0Probability,
 PredictedClass1Probability = PredictedClass1Probability,
 PredictedClass2Probability = PredictedClass2Probability,
 });
 }

169

 public bool IsFormValid
 {
 get { return !HasErrors; }
 }

 #region INotifyDataErrorInfo members
 public event EventHandler<DataErrorsChangedEventArgs> ErrorsChanged;
 private void RaiseErrorsChanged(string propertyName)
 {
 if (ErrorsChanged != null)
 ErrorsChanged(this, new DataErrorsChangedEventArgs(propertyName));
 }

 public System.Collections.IEnumerable GetErrors(string propertyName)
 {
 if (string.IsNullOrEmpty(propertyName)
 || !_validationErrors.ContainsKey(propertyName))
 return null;

 return _validationErrors[propertyName];
 }

 public bool HasErrors
 {
 get { return _validationErrors.Count > 0; }
 }
 #endregion
 }
}

ObservableObject.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.ComponentModel;

namespace ToolWearOutPrediction.ViewModel
{
 public class ObservableObject : INotifyPropertyChanged
 {
 public event PropertyChangedEventHandler PropertyChanged;

 protected virtual void RaisePropertyChangedEvent(string propertyName)
 {
 var handler = PropertyChanged;
 if (handler != null)
 handler(this, new PropertyChangedEventArgs(propertyName));
 }
 }
}

RegressionViewModel.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Collections.ObjectModel;
using System.Windows.Input;
using ToolWearOutPrediction.Model;

170

using System.ComponentModel;

namespace ToolWearOutPrediction.ViewModel
{
 public class RegressionPrediction
 {
 public int Cycle { get; set; }
 public double PunchForce { get; set; }
 public double PunchDistance { get; set; }
 public double CumPunchDistance { get; set; }
 public double CumToolWearVol { get; set; }
 public string SheetMetalType { get; set; }
 public double PredictedToolWearVolume { get; set; }
 public double PredictionStandardDeviation { get; set; }
 }

 public class RegressionViewModel : ObservableObject, INotifyDataErrorInfo
 {
 private readonly RegressionModel _regressionModel = new RegressionModel();

 private readonly Dictionary<string, ICollection<string>>
 _validationErrors = new Dictionary<string, ICollection<string>>();

 private readonly List<RegressionPrediction> _predictionHistory =
 new List<RegressionPrediction>();

 private int _cycle;
 private double _punchForce;
 private double _punchDistance;
 private double _cumPunchDistance;
 private double _cumToolWearVol;

 private string _selectedSheetMetalType;
 private ObservableCollection<string> _sheetMetalTypes;

 private double _predictedToolWearVolume;
 private double _predictionStandardDeviation;

 public RegressionViewModel()
 {
 _sheetMetalTypes = new ObservableCollection<string>();
 _sheetMetalTypes.Add("Sheet Metal 1");
 _sheetMetalTypes.Add("Sheet Metal 2");
 _sheetMetalTypes.Add("Sheet Metal 3");
 SelectedSheetMetalType = "Sheet Metal 1";

 ErrorsChanged += RegressionViewModel_ErrorsChanged;
 }

 void RegressionViewModel_ErrorsChanged(object sender, DataErrorsChangedEventArgs e)
 {
 RaisePropertyChangedEvent("IsFormValid");
 RaisePropertyChangedEvent("HasErrors");
 }

 public int Cycle
 {
 get { return _cycle; }
 set
 {
 if (value < 0 || value > 10000)
 {
 _validationErrors["Cycle"] = new List<string>(
 new string[] { "Value out of range." });
 RaiseErrorsChanged("Cycle");
 }
 else
 {

171

 _validationErrors.Remove("Cycle");
 RaiseErrorsChanged("Cycle");
 }

 _cycle = value;
 RaisePropertyChangedEvent("Cycle");
 }
 }

 public double PunchForce
 {
 get { return _punchForce; }
 set
 {
 _punchForce = value;
 RaisePropertyChangedEvent("PunchForce");
 }
 }

 public double PunchDistance
 {
 get { return _punchDistance; }
 set
 {
 _punchDistance = value;
 RaisePropertyChangedEvent("PunchDistance");
 }
 }

 public double CumulativePunchDistance
 {
 get { return _cumPunchDistance; }
 set
 {
 _cumPunchDistance = value;
 RaisePropertyChangedEvent("CumulativePunchDistance");
 }
 }

 public string SelectedSheetMetalType
 {
 get { return _selectedSheetMetalType; }
 set
 {
 _selectedSheetMetalType = value;
 RaisePropertyChangedEvent("SelectedSheetMetalType");
 }
 }

 public int SelectedSheetMetalTypeIndex
 {
 get
 {
 if (_selectedSheetMetalType == "Sheet Metal 1")
 return 0;
 else if (_selectedSheetMetalType == "Sheet Metal 2")
 return 1;
 else if (_selectedSheetMetalType == "Sheet Metal 3")
 return 2;
 else
 return -1;
 }
 }

 public ObservableCollection<string> SheetMetalTypes
 {
 get { return _sheetMetalTypes; }
 set
 {
 _sheetMetalTypes = value;

172

 RaisePropertyChangedEvent("SheetMetalTypes");
 }
 }

 public double CumulativeToolWearVolume
 {
 get { return _cumToolWearVol; }
 set
 {
 _cumToolWearVol = value;
 RaisePropertyChangedEvent("CumulativeToolWearVolume");
 }
 }

 public List<RegressionPrediction> History
 {
 get { return _predictionHistory; }
 }

 public double PredictedToolWearVolume
 {
 get { return _predictedToolWearVolume; }
 set
 {
 _predictedToolWearVolume = value;
 RaisePropertyChangedEvent("PredictedToolWearVolume");
 }
 }

 public double PredictionStandardDeviation
 {
 get { return _predictionStandardDeviation; }
 set
 {
 _predictionStandardDeviation = value;
 RaisePropertyChangedEvent("PredictionStandardDeviation");
 }
 }

 public ICommand PredictCommand
 {
 get { return new DelegateCommand(Predict); }
 }

 private void Predict()
 {
 if (HasErrors)
 return;

 Tuple<double, double> predictionTuple =
 _regressionModel.GetPredictedToolWearOut(
 _cycle, _punchForce, _punchDistance, _cumPunchDistance,
 SelectedSheetMetalTypeIndex, _cumToolWearVol);
 PredictedToolWearVolume = predictionTuple.Item1;
 PredictionStandardDeviation = predictionTuple.Item2;

 _predictionHistory.Add(new RegressionPrediction
 {
 Cycle = Cycle,
 PunchForce = PunchForce,
 PunchDistance = PunchDistance,
 CumPunchDistance = CumulativePunchDistance,
 CumToolWearVol = CumulativeToolWearVolume,
 SheetMetalType = SelectedSheetMetalType,
 PredictedToolWearVolume = PredictedToolWearVolume,
 PredictionStandardDeviation = PredictionStandardDeviation
 });
 }

 public bool IsFormValid

173

 {
 get { return !HasErrors; }
 }

 #region INotifyDataErrorInfo members
 public event EventHandler<DataErrorsChangedEventArgs> ErrorsChanged;
 private void RaiseErrorsChanged(string propertyName)
 {
 if (ErrorsChanged != null)
 ErrorsChanged(this, new DataErrorsChangedEventArgs(propertyName));
 }

 public System.Collections.IEnumerable GetErrors(string propertyName)
 {
 if (string.IsNullOrEmpty(propertyName)
 || !_validationErrors.ContainsKey(propertyName))
 return null;

 return _validationErrors[propertyName];
 }

 public bool HasErrors
 {
 get { return _validationErrors.Count > 0; }
 }
 #endregion
 }
}

BinaryClassification.xaml

<Page
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:ViewModel="clr-namespace:ToolWearOutPrediction.ViewModel"
 x:Class="ToolWearOutPrediction.BinaryClassification"
 xmlns:View="clr-namespace:ToolWearOutPrediction.View"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="300"
 Title="Binary Classification" Margin="10">

 <Page.DataContext>
 <ViewModel:BinaryClassificationViewModel/>
 </Page.DataContext>

 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="50"/>
 <RowDefinition Height="50"/>
 <RowDefinition Height="50"/>
 <RowDefinition Height="50"/>
 <RowDefinition Height="50"/>
 <RowDefinition Height="Auto"></RowDefinition>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition/>
 <ColumnDefinition Width="100px"/>
 <ColumnDefinition Width="60px"/>
 </Grid.ColumnDefinitions>

 <Grid.Background>
 <ImageBrush ImageSource="../PPlogo.png" Stretch="None"
 AlignmentX="Left" AlignmentY="Top"/>
 </Grid.Background>

174

 <Label Grid.Column="0" Grid.Row="0" Grid.ColumnSpan="2" FontSize="20"
 FontWeight="Medium" HorizontalAlignment="Right"
 Content="Binary Classification"/>

 <TextBlock Grid.Column="0" Grid.Row="1" HorizontalAlignment="Right"
 VerticalAlignment="Center"
 FontWeight="Medium" FontSize="14" TextWrapping="Wrap"
 Width="150px" Text="Cycle:" TextAlignment="Right"/>
 <TextBox x:Name="Cycle" Grid.Column="1" Grid.Row="1"
 Margin="15,0,0,0" Height="25"
 Text="{Binding Cycle}" VerticalContentAlignment="Center"/>
 <Label Grid.Column="2" Grid.Row="1" HorizontalAlignment="Left"
 VerticalAlignment="Center"
 FontWeight="Medium" FontSize="14" Margin="5,0,0,0" Content="cycles"/>

 <TextBlock Grid.Column="0" Grid.Row="2"
 HorizontalAlignment="Right" VerticalAlignment="Center"
 FontWeight="Medium" FontSize="14" TextWrapping="Wrap" Width="150px"
 Text="Cumulative Punch Distance:" TextAlignment="Right"/>
 <TextBox Grid.Column="1" Grid.Row="2" Margin="15,0,0,0" Height="25"
 Text="{Binding CumulativePunchDistance}"
 VerticalContentAlignment="Center"/>
 <Label Grid.Column="2" Grid.Row="2" HorizontalAlignment="Left"
 VerticalAlignment="Center"
 FontWeight="Medium" FontSize="14" Margin="5,0,0,0" Content="mm"/>

 <TextBlock Grid.Column="0" Grid.Row="3" HorizontalAlignment="Right"
 VerticalAlignment="Center"
 FontWeight="Medium" FontSize="14" TextWrapping="Wrap" Width="150px"
 Text="Cumulative Tool Wear Volume:" TextAlignment="Right"/>
 <TextBox Name="txtBoxCumToolWearVol" Grid.Column="1" Grid.Row="3" Margin="15,0,0,0"
 Height="25" Text="{Binding CumulativeToolWearVolume}"
 VerticalContentAlignment="Center"/>
 <Label Grid.Column="2" Grid.Row="3" HorizontalAlignment="Left"
 VerticalAlignment="Center"
 FontWeight="Medium" FontSize="14" Margin="5,0,0,0" Content="mm3"/>

 <Button Name="BtnPredict" Grid.Column="0" Grid.Row="4" Grid.ColumnSpan="2"
 Width="{Binding ElementName=txtBoxCumToolWearVol, Path=ActualWidth}"
 Height="25" HorizontalAlignment="Right"
 Command="{Binding PredictCommand}" Click="Button_Click" Content="Predict"
 IsEnabled="{Binding IsFormValid}" PreviewMouseDown="Button_MouseDown"/>

 <View:ExpanderWithDataStatistics Grid.Column="0" Grid.ColumnSpan="3" Grid.Row="5"/>
 </Grid>
</Page>

BinaryClassificationResult.xaml

<Page x:Class="ToolWearOutPrediction.BinaryClassificationResult"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="600"
 Title="Binary Classification Result">

 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition></ColumnDefinition>
 <ColumnDefinition></ColumnDefinition>
 </Grid.ColumnDefinitions>

 <Grid.RowDefinitions>
 <RowDefinition Height="60"></RowDefinition>
 <RowDefinition Height="30"></RowDefinition>
 <RowDefinition Height="30"></RowDefinition>

175

 <RowDefinition Height="60"></RowDefinition>
 <RowDefinition></RowDefinition>
 </Grid.RowDefinitions>

 <Image Tag="{Binding PredictedLabel}"
 Grid.Column="1" Grid.RowSpan="4"
 HorizontalAlignment="Right">
 <Image.Style>
 <Style TargetType="Image">
 <Style.Triggers>
 <DataTrigger Binding="{Binding PredictedLabel}" Value="0">
 <Setter Property="Source"
 Value="/ToolWEAR;component/2lights_green.png"/>
 </DataTrigger>
 <DataTrigger Binding="{Binding PredictedLabel}" Value="1">
 <Setter Property="Source"
 Value="/ToolWEAR;component/2lights_red.png"/>
 </DataTrigger>
 </Style.Triggers>
 </Style>
 </Image.Style>
 </Image>

 <Label Grid.Column="0" Grid.Row="0" Grid.ColumnSpan="2"
 HorizontalAlignment="Center"
 Content="Binary Classification Prediction Results"
 FontSize="20" FontWeight="Medium" VerticalContentAlignment="Center"/>
 <Label Grid.Column="0" Grid.Row="1"
 Content="Predicted Label:" FontSize="14" FontWeight="Medium"
 HorizontalAlignment="Right" VerticalContentAlignment="Center"/>
 <Label Grid.Column="1" Grid.Row="1"
 Content="{Binding PredictedLabel, Mode=TwoWay, UpdateSourceTrigger=PropertyChanged}"
 HorizontalAlignment="Left" VerticalContentAlignment="Center" />
 <Label Grid.Column="0" Grid.Row="2" Content="Predicted Label Probability:"
 FontSize="14" FontWeight="Medium" HorizontalAlignment="Right"
 VerticalContentAlignment="Center"/>
 <Label Grid.Column="1" Grid.Row="2" Content="{Binding PredictedLabelProbability}"
 HorizontalAlignment="Left" VerticalContentAlignment="Center" />

 <Label Grid.Column="0" Grid.Row="3" Grid.ColumnSpan="2" HorizontalAlignment="Center"
 Content="Prediction History" FontSize="20" FontWeight="Medium"
 VerticalContentAlignment="Center"/>
 <DataGrid MaxHeight="200" MinHeight="200"
 Grid.Column="0" Grid.Row="4" Grid.ColumnSpan="2"
 Width="480" Margin="5,10" RowHeaderWidth="0" ItemsSource="{Binding History}"
 AutoGenerateColumns="False" FontSize="12" VerticalAlignment="Top"
 VerticalContentAlignment="Bottom" Background="White">
 <DataGrid.Columns>
 <DataGridTextColumn Header="Cycle" Binding="{Binding Cycle}" Width="70"/>
 <DataGridTextColumn Header="Cumulative.
Punch Distance"
 Binding="{Binding CumPunchDistance, StringFormat={}{0:n4}}"
 Width="100"/>
 <DataGridTextColumn Header="Cumulative.
Tool Wear Volume"
 Binding="{Binding CumToolWearVol, StringFormat={}{0:n4}}"/>
 <DataGridTextColumn Header="Predicted Label"
 Binding="{Binding PredictedLabel, StringFormat={}{0:n4}}"
 FontWeight="Bold" FontSize="14"/>
 <DataGridTextColumn Header="Predicted Label
Probability"
 Binding="{Binding PredictedLabelProbability, StringFormat={}{0:n4}}"
 Width="*"/>
 </DataGrid.Columns>
 </DataGrid>
 </Grid>
</Page>

176

ExpanderWithDataStatistics.xaml

<UserControl
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:ViewModel="clr-namespace:ToolWearOutPrediction.ViewModel"
 x:Class="ToolWearOutPrediction.View.ExpanderWithDataStatistics"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="500">

 <Expander ExpandDirection="Down">
 <Expander.Header>Basic Data Statistics</Expander.Header>
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="10"/>
 <RowDefinition Height="40"/>
 <RowDefinition Height="40"/>
 <RowDefinition Height="40"/>
 <RowDefinition Height="40"/>
 <RowDefinition Height="40"/>
 <RowDefinition Height="40"/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="170"/>
 <ColumnDefinition Width="90"/>
 <ColumnDefinition Width="85"/>
 <ColumnDefinition Width="88"/>
 </Grid.ColumnDefinitions>

 <Label Grid.Column="1" Grid.Row="1" HorizontalAlignment="Right"
 VerticalAlignment="Center"
 FontWeight="Medium" FontSize="14" Content="Mean"/>
 <Label Grid.Column="2" Grid.Row="1" HorizontalAlignment="Right"
 VerticalAlignment="Center"
 FontWeight="Medium" FontSize="14" Content="Min"/>
 <Label Grid.Column="3" Grid.Row="1" HorizontalAlignment="Right"
 VerticalAlignment="Center"
 FontWeight="Medium" FontSize="14" Content="Max"/>

 <Label Grid.Column="0" Grid.Row="2" HorizontalAlignment="Right"
 VerticalAlignment="Center" FontWeight="Medium" FontSize="14"
 HorizontalContentAlignment="Right" Content="Last Cycle"/>
 <Label Grid.Column="1" Grid.Row="2" HorizontalAlignment="Right"
 VerticalAlignment="Center" Margin="5,0,0,0" FontWeight="Normal"
 FontSize="14" Content="{Binding MeanLastCycle}"/>
 <Label Grid.Column="2" Grid.Row="2" HorizontalAlignment="Right"
 VerticalAlignment="Center" Margin="5,0,0,0" FontWeight="Normal"
 FontSize="14" Content="{Binding MinLastCycle}"/>
 <Label Grid.Column="3" Grid.Row="2" HorizontalAlignment="Right"
 VerticalAlignment="Center" Margin="5,0,0,0" FontWeight="Normal"
 FontSize="14" Content="{Binding MaxLastCycle}"/>

 <Label Grid.Column="0" Grid.Row="3" HorizontalAlignment="Right"
 VerticalAlignment="Center" FontWeight="Medium" FontSize="14"
 HorizontalContentAlignment="Right" Content="Punch Distance"/>
 <Label Grid.Column="1" Grid.Row="3" HorizontalAlignment="Right"
 VerticalAlignment="Center" Margin="5,0,0,0" FontWeight="Normal"
 FontSize="14" Content="{Binding MeanPunchDistance}"/>
 <Label Grid.Column="2" Grid.Row="3" HorizontalAlignment="Right"
 VerticalAlignment="Center" Margin="5,0,0,0" FontWeight="Normal"
 FontSize="14" Content="{Binding MinPunchDistance}"/>
 <Label Grid.Column="3" Grid.Row="3" HorizontalAlignment="Right"
 VerticalAlignment="Center" Margin="5,0,0,0" FontWeight="Normal"
 FontSize="14" Content="{Binding MaxPunchDistance}"/>

177

 <TextBlock Grid.Column="0" Grid.Row="4" HorizontalAlignment="Right"
 VerticalAlignment="Center" FontWeight="Medium" FontSize="14"
 TextWrapping="Wrap" TextAlignment="Right">
 <Run Text="Cumulative Punch Distance at Fault"/>
 </TextBlock>
 <Label Grid.Column="1" Grid.Row="4" HorizontalAlignment="Right"
 VerticalAlignment="Center" Margin="5,0,0,0" FontWeight="Normal"
 FontSize="14" Content="{Binding MeanCumPunchDistanceAtFault}"/>
 <Label Grid.Column="2" Grid.Row="4" HorizontalAlignment="Right"
 VerticalAlignment="Center" Margin="5,0,0,0" FontWeight="Normal"
 FontSize="14" Content="{Binding MinCumPunchDistanceAtFault}"/>
 <Label Grid.Column="3" Grid.Row="4" HorizontalAlignment="Right"
 VerticalAlignment="Center" Margin="5,0,0,0" FontWeight="Normal"
 FontSize="14" Content="{Binding MaxCumPunchDistanceAtFault}"/>

 <Label Grid.Column="0" Grid.Row="5" HorizontalAlignment="Right"
 VerticalAlignment="Center" FontWeight="Medium" FontSize="14"
 HorizontalContentAlignment="Right" Content="Punch Force"/>
 <Label Grid.Column="1" Grid.Row="5" HorizontalAlignment="Right"
 VerticalAlignment="Center" Margin="5,0,0,0" FontWeight="Normal"
 FontSize="14" Content="{Binding MeanPunchForce}"/>
 <Label Grid.Column="2" Grid.Row="5" HorizontalAlignment="Right"
 VerticalAlignment="Center" Margin="5,0,0,0" FontWeight="Normal"
 FontSize="14" Content="{Binding MinPunchForce}"/>
 <Label Grid.Column="3" Grid.Row="5" HorizontalAlignment="Right"
 VerticalAlignment="Center" Margin="5,0,0,0" FontWeight="Normal"
 FontSize="14" Content="{Binding MaxPunchForce}"/>

 <TextBlock Grid.Column="0" Grid.Row="6" HorizontalAlignment="Right"
 VerticalAlignment="Center" FontWeight="Medium" FontSize="14"
 TextWrapping="Wrap" TextAlignment="Right">
 <Run Text="Cumulative Tool Wear Volume at Fault"/>
 </TextBlock>
 <Label Grid.Column="1" Grid.Row="6" HorizontalAlignment="Right"
 VerticalAlignment="Center" Margin="5,0,0,0" FontWeight="Normal"
 FontSize="14" Content="{Binding MeanCumToolWearVolAtFault}"/>
 <Label Grid.Column="2" Grid.Row="6" HorizontalAlignment="Right"
 VerticalAlignment="Center" Margin="5,0,0,0" FontWeight="Normal"
 FontSize="14" Content="{Binding MinCumToolWearVolAtFault}"/>
 <Label Grid.Column="3" Grid.Row="6" HorizontalAlignment="Right"
 VerticalAlignment="Center" Margin="5,0,0,0" FontWeight="Normal"
 FontSize="14" Content="{Binding MaxCumToolWearVolAtFault}"/>

 </Grid>
 </Expander>
</UserControl>

Home.xaml

<Page x:Class="ToolWearOutPrediction.Home"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="500"
 Title="Home">

 <Grid Margin="10">
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="40"/>
 <RowDefinition Height="Auto"/>
 <RowDefinition />
 <RowDefinition Height="Auto"/>

178

 </Grid.RowDefinitions>

 <Grid.Background>
 <ImageBrush ImageSource="../PPlogo.png"
 Stretch="None" AlignmentX="Left" AlignmentY="Top"/>
 </Grid.Background>

 <Label Grid.Column="1" Grid.Row="0"
 FontSize="20" FontWeight="Medium">ToolWEAR</Label>
 <!-- People list -->
 <Border Grid.Column="1" Grid.Row="1"
 Height="35" Padding="5" Background="#4E87D4">
 <Label VerticalAlignment="Center" Foreground="White">Methods</Label>
 </Border>
 <ListBox Name="methodsListBox" Grid.Column="1" Grid.Row="2">
 <ListBoxItem>Regression</ListBoxItem>
 <ListBoxItem>Binary Classification</ListBoxItem>
 <ListBoxItem>Multi-Class Classification</ListBoxItem>
 </ListBox>

 <!-- Select method button -->
 <Button Grid.Column="1" Grid.Row="3" Margin="0,10,0,0"
 Width="125" Height="25" HorizontalAlignment="Right"
 Click="Button_Click">Select</Button>
 </Grid>
</Page>

MainWindow.xaml

<NavigationWindow x:Class="ToolWearOutPrediction.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="{Binding WindowName}" Source="Home.xaml"
 DataContext="{Binding RelativeSource={RelativeSource Self}}"
 MinHeight="350" MinWidth="525"
 SizeToContent="WidthAndHeight" ResizeMode="NoResize">

</NavigationWindow>

MultiClassClassification.xaml

<Page
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:ViewModel="clr-namespace:ToolWearOutPrediction.ViewModel"
 x:Class="ToolWearOutPrediction.MultiClassClassification"
 xmlns:View="clr-namespace:ToolWearOutPrediction.View"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="300"
 Title="Multi-Class Classification" Margin="10">

 <Page.DataContext>
 <ViewModel:MultiClassClassificationViewModel/>
 </Page.DataContext>

 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="50"/>
 <RowDefinition Height="50"/>
 <RowDefinition Height="50"/>
 <RowDefinition Height="50"/>
 <RowDefinition Height="50"/>
 <RowDefinition Height="Auto"></RowDefinition>
 </Grid.RowDefinitions>

179

 <Grid.ColumnDefinitions>
 <ColumnDefinition/>
 <ColumnDefinition Width="100px"/>
 <ColumnDefinition Width="60px"/>
 </Grid.ColumnDefinitions>

 <Grid.Background>
 <ImageBrush ImageSource="../PPlogo.png" Stretch="None"
 AlignmentX="Left" AlignmentY="Top"/>
 </Grid.Background>

 <TextBlock Grid.Column="0" Grid.Row="0" Grid.ColumnSpan="2"
 FontSize="20" FontWeight="Medium" HorizontalAlignment="Right"
 TextWrapping="Wrap" Width="200px"
 Text="Multi-Class Classification"
 TextAlignment="Right"/>

 <TextBlock Grid.Column="0" Grid.Row="1"
 HorizontalAlignment="Right" VerticalAlignment="Center"
 FontWeight="Medium" FontSize="14" TextWrapping="Wrap"
 Width="150px" Text="Cycle:" TextAlignment="Right"/>
 <TextBox x:Name="Cycle" Grid.Column="1" Grid.Row="1" Margin="15,0,0,0"
 Height="25" Text="{Binding Cycle}" VerticalContentAlignment="Center"/>
 <Label Grid.Column="2" Grid.Row="1" HorizontalAlignment="Left"
 VerticalAlignment="Center" FontWeight="Medium"
 FontSize="14" Margin="5,0,0,0" Content="cycles"/>

 <TextBlock Grid.Column="0" Grid.Row="2" HorizontalAlignment="Right"
 VerticalAlignment="Center" FontWeight="Medium" FontSize="14"
 TextWrapping="Wrap" Width="150px"
 Text="Cumulative Punch Distance:" TextAlignment="Right"/>
 <TextBox Grid.Column="1" Grid.Row="2" Margin="15,0,0,0" Height="25"
 Text="{Binding CumulativePunchDistance}"
 VerticalContentAlignment="Center"/>
 <Label Grid.Column="2" Grid.Row="2" HorizontalAlignment="Left"
 VerticalAlignment="Center" FontWeight="Medium"
 FontSize="14" Margin="5,0,0,0" Content="mm"/>

 <TextBlock Grid.Column="0" Grid.Row="3" HorizontalAlignment="Right"
 VerticalAlignment="Center" FontWeight="Medium" FontSize="14"
 TextWrapping="Wrap" Width="150px"
 Text="Cumulative Tool Wear Volume:" TextAlignment="Right"/>
 <TextBox Name="txtBoxCumToolWearVol" Grid.Column="1" Grid.Row="3"
 Margin="15,0,0,0" Height="25"
 Text="{Binding CumulativeToolWearVolume}"
 VerticalContentAlignment="Center"/>
 <Label Grid.Column="2" Grid.Row="3" HorizontalAlignment="Left"
 VerticalAlignment="Center" FontWeight="Medium"
 FontSize="14" Margin="5,0,0,0" Content="mm3"/>

 <Button Name="BtnPredict" Grid.Column="0" Grid.Row="4" Grid.ColumnSpan="2"
 Width="{Binding ElementName=txtBoxCumToolWearVol, Path=ActualWidth}"
 Height="25" HorizontalAlignment="Right"
 Command="{Binding PredictCommand}" Click="Button_Click"
 Content="Predict" IsEnabled="{Binding IsFormValid}"
 PreviewMouseDown="Button_MouseDown"/>

 <View:ExpanderWithDataStatistics Grid.Column="0" Grid.ColumnSpan="3" Grid.Row="5"/>
 </Grid>
</Page>

180

MultiClassClassificationResult.xaml

<Page x:Class="ToolWearOutPrediction.MultiClassClassificationResult"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="600"
 Title="Multi-Class Classification Result">

 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition></ColumnDefinition>
 <ColumnDefinition></ColumnDefinition>
 </Grid.ColumnDefinitions>

 <Grid.RowDefinitions>
 <RowDefinition Height="60"></RowDefinition>
 <RowDefinition Height="30"></RowDefinition>
 <RowDefinition Height="30"></RowDefinition>
 <RowDefinition Height="30"></RowDefinition>
 <RowDefinition Height="30"></RowDefinition>
 <RowDefinition Height="60"></RowDefinition>
 <RowDefinition></RowDefinition>
 </Grid.RowDefinitions>

 <Image Tag="{Binding PredictedLabel}" Grid.Column="1" Grid.Row="1"
 Grid.RowSpan="5" HorizontalAlignment="Right" VerticalAlignment="Bottom">
 <Image.Style>
 <Style TargetType="Image">
 <Style.Triggers>
 <DataTrigger Binding="{Binding PredictedLabel}" Value="0">
 <Setter Property="Source" Value="/ToolWEAR;component/3lights_green.png"/>
 </DataTrigger>
 <DataTrigger Binding="{Binding PredictedLabel}" Value="1">
 <Setter Property="Source" Value="/ToolWEAR;component/3lights_yellow.png"/>
 </DataTrigger>
 <DataTrigger Binding="{Binding PredictedLabel}" Value="2">
 <Setter Property="Source" Value="/ToolWEAR;component/3lights_red.png"/>
 </DataTrigger>
 </Style.Triggers>
 </Style>
 </Image.Style>
 </Image>

 <Label Grid.Column="0" Grid.Row="0" Grid.ColumnSpan="2"
 HorizontalAlignment="Center"
 Content="Multi-Class Classification Prediction Results"
 FontSize="20" FontWeight="Medium" VerticalContentAlignment="Center"/>
 <Label Grid.Column="0" Grid.Row="1" Content="Predicted Label:"
 FontSize="14" FontWeight="Medium" HorizontalAlignment="Right"
 VerticalContentAlignment="Center"/>
 <Label Grid.Column="1" Grid.Row="1" Content="{Binding PredictedLabel}"
 HorizontalAlignment="Left" VerticalContentAlignment="Center" />
 <Label Grid.Column="0" Grid.Row="2" Content="Class 0 Probability:"
 FontSize="14" FontWeight="Medium" HorizontalAlignment="Right"
 VerticalContentAlignment="Center"/>
 <Label Grid.Column="1" Grid.Row="2" Content="{Binding PredictedClass0Probability}"
 HorizontalAlignment="Left" VerticalContentAlignment="Center" />
 <Label Grid.Column="0" Grid.Row="3" Content="Class 1 Probability:" FontSize="14"
 FontWeight="Medium" HorizontalAlignment="Right"
 VerticalContentAlignment="Center"/>
 <Label Grid.Column="1" Grid.Row="3" Content="{Binding PredictedClass1Probability}"
 HorizontalAlignment="Left" VerticalContentAlignment="Center" />
 <Label Grid.Column="0" Grid.Row="4" Content="Class 2 Probability:" FontSize="14"
 FontWeight="Medium" HorizontalAlignment="Right"
 VerticalContentAlignment="Center"/>
 <Label Grid.Column="1" Grid.Row="4" Content="{Binding PredictedClass2Probability}"

181

 HorizontalAlignment="Left" VerticalContentAlignment="Center" />

 <Label Grid.Column="0" Grid.Row="5" Grid.ColumnSpan="2"
 HorizontalAlignment="Center" Content="Prediction History"
 FontSize="20" FontWeight="Medium" VerticalContentAlignment="Center"/>
 <DataGrid MaxHeight="200" MinHeight="200" Grid.Column="0" Grid.Row="6"
 Grid.ColumnSpan="2" Width="480" Margin="5,10" RowHeaderWidth="0"
 ItemsSource="{Binding History}"
 AutoGenerateColumns="False" FontSize="12"
 VerticalAlignment="Top" VerticalContentAlignment="Bottom"
 Background="White">
 <DataGrid.Columns>
 <DataGridTextColumn
 Header="Cycle" Binding="{Binding Cycle}" Width="50"/>
 <DataGridTextColumn
 Header="Cumulative
Punch Distance"
 Binding="{Binding CumPunchDistance, StringFormat={}{0:n4}}"/>
 <DataGridTextColumn
 Header="Cumulative
Tool Wear
Volume"
 Binding="{Binding CumToolWearVol, StringFormat={}{0:n4}}"
 Width="100"/>
 <DataGridTextColumn
 Header="Predicted
Label"
 Binding="{Binding PredictedLabel, StringFormat={}{0:n4}}"
 FontWeight="Bold" FontSize="14"/>
 <DataGridTextColumn
 Header="Predicted
Class0
Prob."
 Binding="{Binding PredictedClass0Probability, StringFormat={}{0:n4}}"/>
 <DataGridTextColumn
 Header="Predicted
Class1
Prob."
 Binding="{Binding PredictedClass1Probability, StringFormat={}{0:n4}}"/>
 <DataGridTextColumn
 Header="Predicted
Class2
Prob."
 Binding="{Binding PredictedClass2Probability, StringFormat={}{0:n4}}"
 Width="*"/>
 </DataGrid.Columns>
 </DataGrid>
 </Grid>
</Page>

Regression.xaml

<Page
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:ViewModel="clr-namespace:ToolWearOutPrediction.ViewModel"
 x:Class="ToolWearOutPrediction.Regression"
 xmlns:View="clr-namespace:ToolWearOutPrediction.View"
 mc:Ignorable="d"
 d:DesignHeight="800" d:DesignWidth="600"
 Title="Regression" Margin="10"
 >

 <Page.DataContext>
 <ViewModel:RegressionViewModel/>
 </Page.DataContext>

 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="40"></RowDefinition>
 <RowDefinition></RowDefinition>
 <RowDefinition></RowDefinition>
 <RowDefinition></RowDefinition>
 <RowDefinition></RowDefinition>
 <RowDefinition></RowDefinition>

182

 <RowDefinition></RowDefinition>
 <RowDefinition></RowDefinition>
 <RowDefinition Height="Auto"></RowDefinition>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Name="FirstColumn" Width="310"></ColumnDefinition>
 <ColumnDefinition Name="SecondColumn" Width="120"></ColumnDefinition>
 <ColumnDefinition Width="58"/>
 </Grid.ColumnDefinitions>

 <Grid.Background>
 <ImageBrush ImageSource="../PPlogo.png" Stretch="None"
 AlignmentX="Left" AlignmentY="Top"/>
 </Grid.Background>

 <Label Grid.Column="0" Grid.Row="0" Grid.ColumnSpan="2"
 FontSize="20" FontWeight="Medium"
 HorizontalAlignment="Right">Regression</Label>

 <Label Grid.Column="0" Grid.Row="1" HorizontalAlignment="Right"
 VerticalAlignment="Center" FontWeight="Medium" FontSize="14">Cycle:</Label>
 <TextBox Name="Cycle" Grid.Column="1" Grid.Row="1"
 Margin="15,0,0,0" Height="25"
 Text="{Binding Cycle}" VerticalContentAlignment="Center"/>
 <Label Grid.Column="2" Grid.Row="1" HorizontalAlignment="Left"
 VerticalAlignment="Center" FontWeight="Medium"
 FontSize="14" Margin="5,0,0,0" Content="cycles"/>

 <Label Grid.Column="0" Grid.Row="2" HorizontalAlignment="Right"
 VerticalAlignment="Center" FontWeight="Medium"
 FontSize="14">Punch Force:</Label>
 <TextBox Grid.Column="1" Grid.Row="2" Margin="15,0,0,0"
 Height="25" Text="{Binding PunchForce}"
 VerticalContentAlignment="Center"/>
 <Label Grid.Column="2" Grid.Row="2" HorizontalAlignment="Left"
 VerticalAlignment="Center" FontWeight="Medium"
 FontSize="14" Margin="5,0,0,0" Content="N"/>

 <Label Grid.Column="0" Grid.Row="3" HorizontalAlignment="Right"
 VerticalAlignment="Center" FontWeight="Medium"
 FontSize="14">Punch Distance:</Label>
 <TextBox Grid.Column="1" Grid.Row="3" Margin="15,0,0,0"
 Height="25" Text="{Binding PunchDistance}"
 VerticalContentAlignment="Center"/>
 <Label Grid.Column="2" Grid.Row="3" HorizontalAlignment="Left"
 VerticalAlignment="Center" FontWeight="Medium"
 FontSize="14" Margin="5,0,0,0" Content="mm"/>

 <Label Grid.Column="0" Grid.Row="4" HorizontalAlignment="Right"
 VerticalAlignment="Center" FontWeight="Medium"
 FontSize="14">Cumulative Punch Distance:</Label>
 <TextBox Grid.Column="1" Grid.Row="4" Margin="15,0,0,0"
 Height="25" Text="{Binding CumulativePunchDistance}"
 VerticalContentAlignment="Center"/>
 <Label Grid.Column="2" Grid.Row="4" HorizontalAlignment="Left"
 VerticalAlignment="Center" FontWeight="Medium"
 FontSize="14" Margin="5,0,0,0" Content="mm"/>

 <Label Grid.Column="0" Grid.Row="5" HorizontalAlignment="Right"
 VerticalAlignment="Center" FontWeight="Medium"
 FontSize="14">Sheet Metal Type:</Label>
 <ComboBox Grid.Column="1" Grid.Row="5" Margin="15,0,0,0"
 Height="25" ItemsSource="{Binding SheetMetalTypes}"
 SelectedItem="{Binding Mode=TwoWay, Path=SelectedSheetMetalType}"
 VerticalContentAlignment="Center"/>

 <Label Grid.Column="0" Grid.Row="6" HorizontalAlignment="Right"
 VerticalAlignment="Center" FontWeight="Medium"
 FontSize="14">Cumulative Tool Wear Volume:</Label>
 <TextBox Name="txtBoxCumToolWearVol" Grid.Column="1"

183

 Grid.Row="6" Margin="15,0,0,0" Height="25"
 Text="{Binding CumulativeToolWearVolume}"
 VerticalContentAlignment="Center"/>
 <Label Grid.Column="2" Grid.Row="6" HorizontalAlignment="Left"
 VerticalAlignment="Center" FontWeight="Medium"
 FontSize="14" Margin="5,0,0,0" Content="mm3"/>

 <Button Name="BtnPredict" Grid.Column="0" Grid.Row="7"
 Grid.ColumnSpan="2"
 Width="{Binding ElementName=txtBoxCumToolWearVol, Path=ActualWidth}"
 Height="25" HorizontalAlignment="Right"
 Command="{Binding PredictCommand}"
 Click="Button_Click" Content="Predict"
 IsEnabled="{Binding IsFormValid}"
 Margin="0,10" PreviewMouseDown="Button_MouseDown"/>

 <View:ExpanderWithDataStatistics Grid.Column="0" Grid.ColumnSpan="3" Grid.Row="8"/>
 </Grid>
</Page>

RegressionResult.xaml

<Page
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:ViewModel="clr-namespace:ToolWearOutPrediction.ViewModel"
 x:Class="ToolWearOutPrediction.RegressionResult"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="600"
 Title="Regression - Result">

 <Grid Name="MainGrid">
 <Grid.ColumnDefinitions>
 <ColumnDefinition></ColumnDefinition>
 <ColumnDefinition></ColumnDefinition>
 </Grid.ColumnDefinitions>

 <Grid.RowDefinitions>
 <RowDefinition Height="60"></RowDefinition>
 <RowDefinition Height="30"></RowDefinition>
 <RowDefinition Height="30"></RowDefinition>
 <RowDefinition Height="40"></RowDefinition>
 <RowDefinition></RowDefinition>
 </Grid.RowDefinitions>

 <Label Grid.Column="0" Grid.Row="0" Grid.ColumnSpan="2" HorizontalAlignment="Center"
 Content="Regression Prediction Results" FontSize="20"
 FontWeight="Medium" VerticalContentAlignment="Center"/>
 <Label Grid.Column="0" Grid.Row="1" Content="Predicted Tool Wear Out Volume:"
 FontSize="14" FontWeight="Medium" HorizontalAlignment="Right"
 VerticalContentAlignment="Center"/>
 <Label Grid.Column="1" Grid.Row="1" Content="{Binding PredictedToolWearVolume,
 Mode=TwoWay, UpdateSourceTrigger=PropertyChanged}" HorizontalAlignment="Left"
 VerticalContentAlignment="Center" />
 <Label Grid.Column="0" Grid.Row="2" Content="Prediction Standard Deviation:"
 FontSize="14" FontWeight="Medium" HorizontalAlignment="Right"
 VerticalContentAlignment="Center"/>
 <Label Grid.Column="1" Grid.Row="2" Content="{Binding PredictionStandardDeviation}"
 HorizontalAlignment="Left" VerticalContentAlignment="Center" />

 <Label Grid.Column="0" Grid.Row="3" Grid.ColumnSpan="2" HorizontalAlignment="Center"
 Content="Prediction History" FontSize="20" FontWeight="Medium"
 VerticalContentAlignment="Center"/>
 <DataGrid MaxHeight="200" MinHeight="200" Grid.Column="0" Grid.Row="4" Grid.ColumnSpan="2"
 Width="480" Margin="5,10" RowHeaderWidth="0" ItemsSource="{Binding History}"

184

 AutoGenerateColumns="False" FontSize="12" VerticalAlignment="Top"
 VerticalContentAlignment="Bottom" Background="White">
 <DataGrid.Columns>
 <DataGridTextColumn Header="Cycle" Binding="{Binding Cycle}"/>
 <DataGridTextColumn Header="Punch
Force"
 Binding="{Binding PunchForce, StringFormat={}{0:n4}}"/>
 <DataGridTextColumn Header="Punch
Distance"
 Binding="{Binding PunchDistance, StringFormat={}{0:n4}}"/>
 <DataGridTextColumn Header="Cumul.
Punch
Distance"
 Binding="{Binding CumPunchDistance, StringFormat={}{0:n4}}"/>
 <DataGridTextColumn Header="Cumul.
Tool Wear
Volume"
 Binding="{Binding CumToolWearVol, StringFormat={}{0:n4}}"/>
 <DataGridTextColumn Header="Sheet
Metal
Type"
 Binding="{Binding SheetMetalType}"/>
 <DataGridTextColumn Header="Predicted
Tool Wear
Volume"
 Binding="{Binding PredictedToolWearVolume, StringFormat={}{0:n4}}"
 FontWeight="Bold" FontSize="14"/>
 <DataGridTextColumn Header="Prediction
Standard
Deviation"
 Binding="{Binding PredictionStandardDeviation, StringFormat={}{0:n4}}"
 Width="*"/>
 </DataGrid.Columns>
 </DataGrid>
 </Grid>
</Page>

185

APPENDIX 6.

186

APPENDIX 7.

