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SYMBOLS AND ABBREVIATIONS 

Symbols 

A     AHP pairwise comparison matrix 

Anorm    Normalized AHP pairwise comparison matrix 

eij      AHP pairwise judgements between alternatives i and j in A 

Eij     Normalized AHP pairwise judgements between alternatives i and j 

Lmn    Local AHP priority weight for alternative m in criteria n 

LOGN[a,b]  Lognormal distribution: a= mean, b=standard deviation 

N[a,b]   Normal distribution: a=mean, b=standard deviation 

U[a, b]   Uniform distribution: a=minimum value, b= maximum value 

W     Global AHP priority vector 

w     Local AHP priority vector 

λmax    Maximum matrix eigenvalue  

Abbreviations 

AHP    Analytical Hierarchy Process 

AS    Ancillary Services 

BESS   Battery Energy Storage System 

CAGR   Compound Average Growth Rate 

CI     Consistency Index 

CM    Capacity Market 

CR    Consistency Ratio 

DNO    Distribution Network Operator 

EFR    Enhanced Frequency Response 

ES     Energy Storage 

FCF    Free Cash Flow 

IRR    Internal Rate of Return 

Li-ion   Lithium Ion 

MCS    Monte Carlo Simulation 

NPV    Net Present Value 

OMR    Online Market Research 

PBP    Pay Back Period 

PCR    Primary Control Reserve 

RES    Renewable Energy Source 

TSO    Transmission System Operator 

WACC   Weighted Average Cost of Capital  
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ABSTRACT: 

 

The need for energy storages in future power systems is acknowledged both in literature 

and in industry. Simultaneously battery energy storage technologies, especially Lithium-

ion, are seen technologically relatively mature with favorable cost development. Whereas 

frequency control markets provide exploitable commercial and technical framework for 

battery investment. Nevertheless, true commercial viability is still uncertain in leading 

European markets in Germany and the UK. 

 

The purpose of the study was to provide complete and comparative market analysis and 

demonstrated prospective investment profitability outcomes for grid scale battery energy 

storages in Germany and the UK. In addition, the study aimed to show required conditions 

for desired investment performances. The study explored investment potential in primary 

frequency control market in Germany and enhanced frequency response market in the 

UK by analyzing market attractiveness from multiple aspects. The countries were ranked 

based on the analyzed aspects by Analytical Hierarchy Process. Finally, financial Monte 

Carlo investment simulations with revenue and cost uncertainties were performed. 

Simulations also provided required conditions for profitability. Analyzed data was based 

on historical market data, performed online market research and literature. 

 

Key findings of the study revealed that the chosen markets form suitable commercial 

framework for battery investments, but Germany shows clearly higher potential. 

However, the potential was questionable since both markets face significant challenges 

especially in financial sense. The concerns were confirmed by the simulations which 

suggested around 1–5 % and -3–3 % internal rate of return levels for Germany and the 

UK respectively. In addition, reaching 6 % return was seen very challenging whilst over 

10 % return levels seemed unrealistic in the UK and extremely optimistic for Germany. 

The overall conclusion was that battery energy storage investment in either of the markets 

cannot currently be justified primarily by financial returns but needs strategic support. 

     

  

KEYWORDS:  battery energy storage, frequency control markets, investment potential   



7 

 

 

 

VAASAN YLIOPISTO 

Teknillinen tiedekunta 

Tekijä: Samuli Kivipelto 

Tutkielman nimi: GRID SCALE BATTERY ENERGY STORAGE 

INVESTMENT POPTENTIAL 

Analysis and Simulations of Frequency Control 

markets in Germany and the UK 

Ohjaajan nimi: Jussi Kantola 

Tutkinto: Kauppatieteiden maisteri 

Pääaine: Tuotantotalous 

Opintojen aloitusvuosi: 2013 

Tutkielman valmistumisvuosi: 2017           Sivumäärä: 139 

    

TIIVISTELMÄ: 

 

Energian varastoinnin tarve tulevaisuuden voimajärjestelmissä on tunnustettu sekä 

kirjallisuudessa että teollisuudessa. Samanaikaisesti akkuteknologiat, erityisesti Litium-

ioniakut, ovat kehittyneet kaupallistettaviksi energiavarastoiksi, joilla on lisäksi suotuisa 

kustannuskehitys. Taajuudensäätömarkkinat taas tarjoavat akuille teknisesti ja 

kaupallisesti hyödynnettävät puitteet tarjoten investointimahdollisuuksia. Euroopassa 

akkuinvestointien johtavat markkinat ovat Saksassa ja Britanniassa, mutta investointien 

kaupallinen toteuttamiskelpoisuus näihin maihin on kuitenkin säilynyt epäselvänä. 

 

Tämän tutkimuksen tarkoitus oli tarjota kokonaisvaltainen ja vertaileva markkina-

analyysi ja demonstroida mahdollisia akkuinvestointikannattavuuksia Saksassa ja 

Britanniassa. Tutkimus pyrki lisäksi osoittamaan rajaehdot toivotun kannattavuuden 

saavuttamiseksi. Tutkimus tarkasteli ja analysoi investointipotentiaalia useista 

näkökulmista taajuuden primäärisäätömarkkinoilla Saksassa ja tehostetun vastereaktion 

markkinoilla Britanniassa. Maat myös vertailtiin keskenään analyyttisellä hierarkia 

prosessilla. Lopulta tehtiin taloudelliset simulaatiot Monte Carlo -menetelmällä tulo- ja 

kustannusepävarmuudet huomioiden. Simulaatioita käytettiin myös vaadittujen 

kannattavuusrajaehtojen löytämiseksi. Analysoitu data perustui historialliseen 

markkinadataan, toteutettuun markkinatutkimukseen ja alan kirjallisuuteen. 

 

Tärkeimmät tulokset paljastivat, että valitut markkinat muodostavan sopivan kaupallisen 

perustan akkuinvestoinneille. Maiden joukosta Saksa kuitenkin osoittautui huomattavasti 

potentiaalisemmaksi. Toisaalta potentiaalit olivat myös kyseenalaistettavissa, sillä 

molemmilla markkinoilla osoittautua olevan merkittäviä taloudellisia haasteita. Nämä 

haasteet myös vahvistuivat simulaatioilla, jotka osoittivat Saksassa noin 1–5 % ja 

Britanniassa noin -3–3 % sisäisiä korkokantoja investoinneille. Lisäksi 6 % tavoitteen 

saavuttaminen nähtiin hyvin haasteellisena, kun taas yli 10 % korkokannan saavuttamien 

nähtiin epärealistisena Britanniassa ja erityisen optimistisena Saksassa. Lopullinen 

johtopäätelmä oli, että akkuinvestoinnit valituilla markkinoilla eivät tällä hetkellä ole 

perusteltavissa ensisijaisesti investointituotoilla, vaan ne vaativat lisäksi strategisen tuen. 

 

AVAINSANAT: akkuenergiavarasto, taajuudensäätömarkkinat, investointipotentiaali 
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1 INTRODUCTION 

Energy systems are undergoing fundamental changes. The changes will reshape the 

systems and revolutionize how we generate, distribute and use energy. One of the most 

considerable change is increasing role of renewable energy in power generation. Indeed, 

the electricity generation portfolios are changing rapidly around the world due to emission 

reduction pressures (Luo, Wang, Dooner & Clarke 2015: 511). To meet the emission 

reduction targets, electricity generation will develop towards diminishing reliance on 

fossil fuels with growing role of renewable energy sources (Luo, Wang et al. 2015: 511). 

However, renewables come with challenges. High share of fluctuating renewable energy 

generation increases intermittency of electricity supply disrupting grid stability (Zakeri 

& Syri 2015: 570). Hence, power systems are facing major challenges in terms of 

transmission and distribution in meeting demand with stochastic variation (Luo, Wang et 

al. 2015: 511). Grid scale energy storing is regarded as a promising way to offset the 

challenges to ensure reliable power supply. Traditionally energy storages (ESs) have been 

proposed to perform such large-scale energy management by shifting energy over time 

periods. However, several studies, most recently Zafirakis, Chalvatzis, Baiocchi and 

Daskalakis (2016), have confirmed unprofitability of such business model. In addition, 

matching supply and demand is required also in short term in terms of frequency control. 

Among ES technologies battery energy storage systems (BESSs) are technically suitable 

for frequency control services and have attractive cost development. Indeed, BESSs are 

considered as promising technologies for frequency control (Pan, Xu, Song & Lu 2015: 

1139). In addition, frequency control services generally show high value among ancillary 

services in various market studies (Fitzgerald, Mandel, Morris & Touati 2015: 5). As 

such, frequency control markets have been natural and in many cases the only 

commercially applicable business for BESSs. In fact, this business model has been 

dominating European ES investments in recent years, whilst Germany and the UK have 

been receiving majority of industrial investments. However, commercial BESS 

investment potential and financial performance in the countries has remained unclear. 
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1.1 Literature review 

Increasing market potential and academic, industrial and political interests are raising 

practical energy storage research need. However, in literature economic ES performance 

has been focused on individual technology performance and business models related to 

large scale renewables balancing via energy arbitrage. While Zakeri and Syri (2015) 

discuss variety of technologies in terms of life cycle costs, Pawel (2014) discusses 

levelized cost of stored energy in more technology neutral manner. Meanwhile, financial 

performance and favorable cost and market conditions in energy arbitrage has been 

explored for instance by Bradbury, Pratson and Patiño-Echeverri (2014) for US and by 

Zafirakis et al. (2016) for Europe. In addition, a range of purely technological studies 

have been carried out by providing overview of current technology developments by Luo, 

Wang et al. (2015), Gallo, Simões-Moreira, Costa, Santos and Moutinho dos Santos 

(2016) and Zhao, Wu, Hu, Xu and Rasmussen (2015). 

Literature concerning BESS in frequency control is somewhat limited but recognized. In 

fact, Aditya and Das (2001) showed already in 2001 the technical viability of BESS in 

frequency control. Technical aspects have indeed been in focus also in BESSs research. 

Especially optimal battery sizing together with control logic aspects have been explored 

for instance by Aghamohammadi and Abdolahinia (2014), Zhang (2016) and Lian, Sims, 

Yu, Wang and Dunn (2017). Swierczynski, Stroe, Stan and Teodorescu (2013) have also 

shown, with a case in Denmark, that frequency control with BESS can be profitable. 

Potential profitability for the UK market was very recently supported also by Lian et al. 

(2017). However, neither of the studies take into account holistic business environment 

analysis or related uncertainty factors. 

As such, the research of ESs has been active with wide topic spread. However, valid 

research information is missing especially when evaluating current investment potential 

in terms of business environment and financial performance under market uncertainties 

in frequency control markets in the UK and Germany. The lack of research in financial 

performance of energy storages in balancing services in general has been pointed out also 

earlier by Ferreira, Garde, Fulli, Kling and Lopes (2013).  
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1.2 Scope of the thesis 

The scope of the thesis covers country specific and comparative primary frequency 

control market analysis and respective BESS investment analysis under uncertain market 

conditions. Purpose of the study is to evaluate and compare BESS investment potential 

in Germany and the UK with simulated financial performances. The study utilizes 

multimethod approach while main methods are online market research, Analytical 

Hierarchy Process and Monte Carlo simulation. The methods aim to comprehensively 

answer the three research questions:  

Concerning battery energy storage investments in primary frequency control markets in 

Germany and the United Kingdom: 1) are the markets attractive, 2) which market 

involves the highest investment potential and 3) what are the financial performances for 

grid scale investments in the chosen markets? 

1.3 Structure of the thesis 

The structure of the thesis follows problem arrangement and the chosen methodology. 

The introduction is followed by chapter that forms the background on frequency control 

and defines the target markets. The third chapter discusses technology characteristics and 

limitations together with recognized business models further justifying the position of 

BESSs in ES sector. These literature and background chapters are then followed by a 

chapter explaining the research methodology in greater detail.  

The fifth chapter answers the first and the second part of the research question. It explores 

and compares the markets in depth by showing the results of online market research and 

market comparison with analytical hierarchy process. The sixth chapter then focuses on 

quantitative analysis by showing the results of investment analysis based on market 

operation simulations with Monte Carlo method. The last chapter concludes the study 

with further discussion and summary. 
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2 ELECTRICITY AND FREQUENCY CONTROL MARKETS 

Electricity as a commodity is traded in power exchanges in liberalized power markets. 

However, due to the nature of the product, electricity trading, markets and related energy 

deliveries involve several support activities in order to secure reliable and safe power 

system. Frequency controlling is part of these support activities whilst corresponding 

markets are established to perform the services efficiently and in economic manner. 

2.1 Electricity market structure 

Electricity markets are always tied to certain geographical area, region or country where 

power consumption takes place. In Europe, these price areas are highly interrelated due 

to integrated internal markets with good interconnection capabilities. Hence, the overall 

electricity markets within European Union are relatively similar and can be generally 

divided in three main parts: financial, physical and settlement. The parts are 

complementary, and operated for very different purposes. 

Financial market comprises from future and forward contracts. The contracts are 

commitments between the buyer and the seller and they determine the price at which the 

two parties are willing to trade power in certain area at a predetermined future moment. 

However, usually these contracts do not involve physical power delivery, but the 

payments between the price determined in the contract and realized wholesale price is 

settled and paid between the parties. Hence, the price difference payments guarantee the 

price level the seller receives for selling and the buyer pays for buying actual electricity 

later from physical markets. As such, the contracts are issued for hedging purposes in 

order to mitigate risks related to electricity wholesale price development. Forwards and 

futures are traded in long to medium term – usually a few years ahead. 

Physical markets are the actual power markets where the energy is traded, delivered and 

balanced with consumption. Physical market may be further divided in day-ahead spot 

market, intraday market and balancing and ancillary service markets. Spot market is the 
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main wholesale market where majority of the electricity is traded in most liberalized 

markets. Spot markets are run as closed bid reverse auctions for deliveries during next 

day with hourly resolution. The time gap between trading and delivery allows market 

participants to adjust their generation and consumption schedules based on the auction 

results. Whereas, intraday energy markets are more real time and allow market 

participants to trade energy for coming hours within current (and next) day. Intraday 

market enables additional power trading and market based reactions for generation and 

consumption balancing need both on a system level and internally for market operators. 

However, in order to secure the power system operations, balancing and ancillary service 

markets are needed. They are further discussed in section 2.3 and 2.4. 

Settlement part includes settling all the prevailing contracts and payment obligations. 

Settlements are made after the deliveries or contract maturities. However, due to 

continuous nature and high frequency of transactions, the settlements are made usually 

within days after the closings. General structure of electricity markets is illustrated in 

figure 1. 

 

Figure 1. General structure and main components of free electricity markets. Over the 

counter financial and physical markets also exist in most countries. 
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2.2 Balancing mechanism 

Electricity in any power system must be generated and consumed at the same time 

(ENTSO-E 2017b: 2). However, generation and consumption are naturally varying in real 

time despite day-ahead and intraday contracts. This imbalance may result from changes 

in numerous generation and consumption units, incidents or other grid disturbing events. 

The imbalance must be offset by adjusting power supply and demand accordingly. This 

balancing process is defined as balancing mechanism. 

Imbalance between real time generation and consumption causes frequency deviations 

from grid nominal value in alternative current power systems. Too large system frequency 

deviations may lead e.g. to disconnection of generators and thus endangers the system 

security (Pirbazari 2010: 33). The deviation is managed within issued control limits by 

actively controlling system level power output (or consumption) (Pirbazari 2010: 33). 

This is performed by transmission network operators (TSOs) who control the power 

balance by utilizing measures based on the established balancing mechanism and 

available balancing generation/consumption assets. Balancing mechanism and frequency 

control markets are set to overcome related problems and provide required assets for 

TSO’s use in economic manner. Usually it is achieved by implementing a market 

mechanism for the required services. The role of the mechanism is illustrated in figure 2. 

 

Figure 2. The role of balancing mechanism in power system security. 
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Frequency control services themselves are part of the balancing mechanism and belong 

also to a larger group of ancillary services (AS). Frequency control services here are 

defined as short term balancing services responding to balancing need within few hours. 

Whereas, AS include several individual and interrelated services and are defined as 

services procured by TSOs to maintain power balance, stabilizing the transmission system 

and to maintain power quality (Pirbazari 2010: 32). However, country specific market 

elements and operating arrangements differ widely. As such, the definition of AS is not 

unambiguous. For instance, Pirbazari (2010: 33) elaborates AS in competitive power 

markets to include frequency control, voltage control, spinning reserves, standing reserve, 

black start capability and emergency control actions. All in all, they refer to a group of 

functions TSOs contract in order to ensure system security (ENTSO-E 2017a). Since 

frequency control services show the highest value and BESS business potential among 

ancillary services (Fitzgerald, et al. 2015: 5), the study will focus on them from this point 

forward. 

2.2.1 Frequency control principles 

Frequency controlling is purely driven by a system need i.e. a frequency deviation 

resulting from power surplus or deficit. Power surplus results in high frequency, which 

leads to down control by decreasing power generation or increasing demand. The 

situation is opposite in a power deficit situation with low frequency. High and low 

frequencies are defined respectively as values above and below the grid nominal value, 

which is 50,00 Hz in both studied countries. However, frequency control reserves are 

usually not activated right after frequency deviation, but after defined threshold called 

deadband. Deadband is illustrated in figure 3 as frequency range between the inner dotted 

lines. Deadband may vary for different units based on their reaction speed, but minimum 

requirements are set by TSOs. However, unit specific parameters should be set so that the 

service providing unit can reach 100 % power of committed capacity at latest in 

predefined frequency limit. These cap limits are illustrated by outer dotted lines in figure 

3. Between the deadband and maximum limits, controlling power activation amount is 

determined linearly in dynamic services. In static services the activated amount is fixed. 
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Figure 3. Frequency control principle with frequency deviation and respective power 

output change in power deficit situation. 

Frequency control system and process itself is generally divided in primary, secondary 

and tertiary levels (Pirbazari 2010: 33). The levels may further be divided in different 

service products procured by the TSOs. However, the main principle is that the three 

levels are both substitutive and complementary, activated at different time spans and thus 

enabling the system to react fast while keeping the readiness to react to a new shock every 

time. Frequency control service levels in general are illustrated in figure 4 below. The 

illustration and elaborations below are based on central Europe system, but are 

generalizable in most power systems. 
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Figure 4. Frequency control service levels with interrelations and purposes (based on 

ENTSO-E 2009: 2). 

Primary control aims to maintain the power system balance within the synchronous 

frequency area collectively in cooperation of all TSOs and reserves within the control 

area. It is activated within seconds after frequency deviation shock (disturbance, 

imbalance or incident), but it is not meant to restore the frequency over a long period. 

(ENTSO-E 2009: 4.) Primary control reserves are automatically activated by system 

frequency within the set control limits. Primary controlling is a continuous operation and 

as such control power must be available for delivery until the power need is completely 

replaced by secondary and tertiary control reserves (ENTSO-E 2009: 7).  

If the control need continues, secondary reserves are activated usually automatically by 

TSOs based on the frequency and set to replace and free the primary ones within minutes 

(ENTSO-E 2009: 2). Secondary control reserves aim to maintain the balance within each 

control area within the synchronous area and they are operated in a timespan from seconds 

normally up to 15 minutes from frequency deviation incident (ENTSO-E 2009: 12).  

Finally, tertiary control reserves refer to changes and re-scheduling in power generation 

or demand which may be contractual, regulatory or market based. Tertiary control 
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reserves are control area specific and usually manually activated by TSOs in case of 

expected continuing activation of secondary control reserves. Tertiary reserves are 

primarily activated to free secondary reserves in order to restore the system frequency, 

but they may be used also to complement secondary reserves in a case of major incident. 

Activation timespans for the levels are illustrated in figure 5 for low frequency shock.  

 

Figure 5. Frequency control reserve activation principle in timeline in case of sudden 

power deficit (based on ENTSO-E 2009). 

2.2.2 Frequency control areas 

European power system consists of five larger sub-systems, regional groups, which are 

individually operated in European cooperation. These regional areas have synchronous 

system frequency and thus are also controlled in firm cooperation. The synchronous areas 

put together 5 permanent regional groups of the System Operations Committee of 

European Network of Transmission System Operators for Electricity (ENTSO-E). The 

regional groups (continental Europe, Nordic, Baltic, United Kingdom and Ireland) are to 

ensure integrity between system operations, market solutions and system development. 



18 

 

 

The regional groups are further divided to control areas, which are defined as “a coherent 

part of the interconnected system, operated by a single system operator (TSO) and shall 

include connected physical loads and/or generation units if any” (European Commission 

2013: 543/2013, Article 2(6)). Each TSO and respective control area is responsible in 

implementing and operating in terms defined in frequency control structure of its area 

(ENTSO-E 2013). However, within the defined framework TSOs have a freedom to 

choose how to fulfill the responsibilities in terms of frequency control service definitions 

and markets. This way also the related frequency control markets between and within the 

regional groups are different providing various operating schemes for energy storages.  

2.3 Frequency control market – Germany 

Germany has a central role and location in continental Europe power system. Within 

Continental Europe regional group Germany itself comprises from four control areas 

operated by four individual TSOs: 50Hertz (east), TenneT (north – south), Amprion 

(west), TransnetBW (south – west). Each TSO is responsible for sufficient frequency 

control reserve provision. Nevertheless, the TSOs are operating and procuring control 

services based on national principles within the continental Europe framework.  

2.3.1 Market structure 

German system is based on competitive market. The TSOs answer their control reserve 

need by procuring the capacity via shared online platform Regelleingstun.net 

(Regelleingstun.net 2017a). The TSOs announce shared tendering calls, and prequalified 

service providers deliver their bids for closed bid reverse auction in the market platform 

for all control services. Anonymous auction results are then published, accepted bids 

committed for tendered period and payments paid as bid. The market structure is 

illustrated in figure 6. 
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Figure 6. German market structure for frequency control services. In Germany 

competitive market is operated in online platform. Dotted arrow illustrates service 

delivery whereas green arrows market operations. 

System itself includes three control layers, which form three service products for 

frequency control market. These services are primary, secondary and minute reserves and 

they follow directly the principles introduced earlier in section 2.2.1. The service products 

are reserved capacity, thus the service provider reserves accepted capacity for TSO’s use. 

Depending on the service, TSO pays only for the capacity or both reserved capacity and 

delivered energy. Service details are elaborated in table 1. 

Table 1. Summary of German frequency control service products (Regelleistung.net 

2017b, Belhomme, Trotignon, Cantenot, Dallagi, Cerqueira, Hoffmann, Burger & 

Eberbach 2015: 5, Consentec 2012: 13–15, Hollinger, Diazgranados & Erge. 2015: 1). 

 
Primary Secondary Minute 

Commitment period 1 Week 1 Week 1 Day 

Capacity limits 1 - 150 MW Min 5 MW Min 5 MW 

Control direction Symmetrical ± + and - separately + and - separately 

Activation Automatic Automatic Manual 

Activation start 30 s 5 Min Varies 

Max activation < 15 Min < 15 Min Hours 

Response in frequency Dynamic Dynamic Static 

Payment logic Pay-as-bid Pay-as-bid Pay-as-bid 

Payment based on Capacity Capacity + energy Capacity + energy 

 

From BESS point of view the service characteristics limit business opportunities 

significantly. Firstly, BESSs have limited energy capacity, which means they cannot 
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provide power increase or decrease for long periods. This fact narrows minute reserve 

market out as the duration can be several hours – answering the requirements would result 

in very high investment costs without respective reimbursement potential. In addition, up 

and down control services are bid and operated separately for secondary and minute 

reserve market. This is a problematic issue and narrows also secondary control out as 

participating in unidirectional service would increase unavailability risk due to limited 

energy capacity. In contrast, expectation value for charged and discharged energy in 

symmetrical service is zero. Furthermore, faster responding services are activated more 

frequently and as such have higher value in system sense. Thus, they also have higher 

revenue potential and make primary control reserve (PCR) market the most attractive and 

applicable for BESSs in Germany. PCR market has also been the primary target market 

for BESSs investors to this day and hence will be also in the focus of this study. 

2.3.2 Primary control reserve market characteristics 

German PCR auctions, operated in Regelleingstun.net, apply pay-as-bid principle 

(Hollinger et al. 2015: 5). PCR providers are paid only for capacity (€/MW) and not for 

delivered energy as in the case of secondary and minute reserves (Hollinger, et al. 2015: 

1). Pay-as-bid markets allow applying different bidding strategies which in such a system 

have a critical role in profit making (Hollinger et al. 2015: 5). Indeed, the system gives 

an initiative to bid higher prices as in uniform price systems (Hollinger et al. 2015: 5). In 

pay as bid system, the lowest costs do not always yield in the highest margins as assets 

with higher costs may reach even higher prices. 

Auctions are held weekly (every Tuesday) for a period of one week from Monday to 

Sunday (Consentec 2012: 13; Regelleistung.net 2017c).  The commitment period is 

always a whole week with 100 % availability requirement (Consentec 2012: 13; Hollinger 

et al. 2015: 1). Availability can be ensured via pooling the units i.e. including several 

units to form a controllable entity. Pooling units are allowed within one control area, unit 

assignment to a pool can be changed within the commitment period and units actually 

providing PCR may vary at any time within a pool (Consentec 2012: 13-14). 
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Control direction between positive and negative is not separated in tenders calls and 

bidding suppliers are expected to be able for symmetrical power deliveries in both 

directions. However, unidirectional units (i.e. units capable only to increase or decrease 

power output) can be pooled to fulfill the symmetry requirement (Consentec 2012: 14).  

PCR bids are currently restricted by volume to 1–150 MW (Regelleigstung.net 2017d, 

Hollinger et al. 2015: 1). Bidding volume can be increased with steps of 1 MW 

(Consentec 2012: 14). Full activation of the bid capacity must be reached within 30 

seconds from the frequency shock (Hollinger, et al. 2015: 1). The primary control reserves 

must be capable for at least 15 minutes of power delivery (ENTSO-E 2009: 7). 

Bidding in German PCR markets actually includes bidding in several markets: PCR 

tenders are joint tenders for German, Belgian, Dutch, French, Swiss and Austrian 

markets. Qualified suppliers are thus bidding for cross-border trades at several countries. 

However, despite international tendering, maximum amount for PCR export in joint 

tenderings is set to 30 % of the country’s total PCR need, but no less than 90 MW. France 

joined the joint market in 2017 and it currently has stricter import-export limitations. The 

country will currently export 84 MW and import 169 MW of PCR at maximum. The rest, 

including Germany, do not face import limitations. (Regelleigstung.net 2017b.)  

2.4 Frequency control market – the UK 

The UK belongs to a separate regional group comprising from three TSOs: National Grid 

Electricity Transmission plc, Scottish and Southern Energy plc and Scottish Power 

Transmission plc (ENTSO-E 2015c). However, system level operational responsibility in 

the UK is solely assigned to National Grid (Ofgem 2017a). 

The UK operates the power system currently based on European network codes that are 

European law, and takes priority in case of conflict with national legislation (National 

Grid 2017a). Although the basic system operation guidelines follow the ones in 

continental Europe, the balancing procedures and framework vary greatly with different 

set of frequency control services.  
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2.4.1 Market structure 

The market structure in the UK is bipartite with parallel competitive market and 

mandatory service provision. Frequency response service provision (i.e. control services) 

is mandatory for all large generators with at least 100 MW capacity and generators that 

are connected to the UK’s transmission network (National Grid 2017f). Competitive 

market for frequency response services is run by National Grid through tenderings and is 

open for units that are not part of mandatory provision. The market is a closed bid reverse 

auction with paid-as-bid reimbursements. The results are published afterwards and the 

winning units committed for the services. Market structure is illustrated in figure 7. 

 

Figure 7. Structure for frequency response services markets in the UK. Both the 

competitive market and the mandatory service provision exists. Dotted arrow illustrates 

service delivery whereas green arrows operations by the TSO and service providers. 

The market based balancing service portfolio in the UK is much wider in comparison 

with Germany. The services can be divided in two main categories: response and reserve 

services. Response services are for fast and short term frequency controlling and can be 

seen covering the primary and secondary levels in general balancing structure. Whilst, 

reserve products cover longer balancing need on tertiary level. The commercial response 

services include enhanced, primary, secondary and high frequency responses, whereas 

reserve products are divided in fast, negative and other reserve products (National grid 

2016a). Primary, secondary and high responses are also mandatory for large generators. 

In addition, separate markets for demand side management exists. Features and technical 

requirements for frequency response services are summarized in table 2. 
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Table 2. Characteristics and technical minimum requirements for commercial frequency 

response services in the UK (National Grid 2017b; National Grid 2016f: 10–19).  

 
Enhanced Primary Secondary High 

Commitment period 4 years Min 1 hour Min 1 hour Min 1 hour 

Capacity limits (MW)  1–50 Min 10 Min 10 MW Min 10 MW 

Control direction ± + + - 

Activation Automatic Automatic Automatic Automatic 

Activation start 1 s 10 s 30 s 10 s 

Max activation 15 min 20 s 30 min indefinite 

Response in frequency dynamic static/dynamic static/dynamic static/dynamic 

Payment logic Pay-as-bid Pay-as-bid Pay-as-bid Pay-as-bid 

Payment based on Capacity Capacity + energy Capacity + energy Capacity + energy 
energy 

 

The UK’s response services are automatically activated within seconds by the frequency, 

whereas reserve services are manually activated within minutes by the TSO (National 

Grid 2016a). The activation logic is similar to continental Europe: faster responding units 

are taken over by the next level services as time goes by and if the control need continues. 

However, unidirectional approach makes the market differ substantially from the market 

of Germany: there are different balancing services for up and downward controlling and 

only one symmetrical frequency control service. Response and reserve services with 

control direction and typical activation time spans are illustrated in figure 8 below.  

 

Figure 8. Balancing and frequency control services in the UK with typical activation time 

span and control direction (based on National Grid 2016a). 
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Limited energy capacity of BESS limits the possibility to offer reserve services with long 

duration in the UK. In addition, unidirectional services are less potential for standalone 

BESS as discussed earlier. This is a major disadvantage and limits primary, secondary 

and high response services provision of BESS. For instance, monthly energy imbalance 

between control directions during 12/2016–2/2017 averaged in over 400 000 MWh 

nationally. The imbalance is illustrated in figure 9. Furthermore, as high response may be 

continued indefinitely, performance of standalone BESS becomes a major concern. 

Hence, enhanced frequency response (EFR) is considered to be the primary market for 

BESS in the UK within balancing mechanism. This is also the case for large scale BESSs 

currently available or under construction. 

 

Figure 9. Monthly energy volumes and total directional imbalance between the UK's 

unidirectional frequency response services (data: National Grid 2017e). 

2.4.2 Enhanced frequency response market characteristics 

The first closed bid reverse auction tender for EFR was in 2016. The first units providing 

EFR are expected to start operating during 2017 (National Grid 2016d). EFR is both 

complementary and replacing service for the UK’s traditional frequency response 

services. However, it should be emphasized that the TSO has not published market 

characteristics after the first contracts expire. Thus, the study here is based on 2016 tender 

and announced future anticipations.  
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The TSO procured 200 MW of service capacity in initial tender (National Grid 2017d). 

The accepted bids were contracted with four-year contracts starting in winter 2017/18 

(National Grid 2017d). However, the TSO expects the need for EFR to grow, and is thus 

expecting regular auctions in the future (National Grid 2016f: 14). In 2016 auction the 

TSO held capacity range 1–50 MW for a single provider to prevent concentration. 

However, the limit is likely removed in the future (National Grid 2016f: 10).  

Capacity based pay-as bid payments are corrected with unavailability costs resulting from 

service delivery below required 95 % availability level (National Grid 2016f: 21). 

However, aggregating demand and generation assets is accepted in order to increase 

availability and reach sufficient capacity (National Grid 2016f: 9 –11). Payments are 

made based on performance during each half-hour settlement period. The performance is 

measured by comparing normalized response power against given envelope second by 

second. This gives the percentage rate at which the unit was able to operate noticing the 

service need. The envelope is a target fluctuation limit based on the frequency value (i.e. 

what should have been delivered), whilst normalized response means the percentage 

value of actual response from the operational reported capacity (i.e what was actually 

delivered). Second by second performance values are averaged to half-hourly values 

giving service performance measure. The service performance measure is then turned to 

an availability factor based on the table 3 below. Finally, total payment for each half-hour 

is calculated as in equation 1. In addition, annual performance average is calculated and 

should not be less than the 95 % limit. (National Grid 2016f: 5–6.) 

Table 3. Availability factor determination from performance measure (National Grid 

2016f: 6). 

Service Performance Measure Availability Factor 

< 10 % 0 % 

> 10 %, < 60 % 50 % 

> 60 %, < 95 % 75 % 

> 95 % 100 % 

 

𝐸𝐹𝑅 𝑝𝑎𝑦𝑚𝑒𝑛𝑡 = 𝑝𝑜𝑤𝑒𝑟 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 × ½ ℎ𝑜𝑢𝑟 𝑝𝑟𝑖𝑐𝑒 × 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟        (1). 
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3 ENERGY STORAGES 

Energy storages are devices capable of storing energy in any form. However, ES in the 

scope of this study means grid connected electrical energy storage. Electrical energy 

storages are defined as devices capable of absorbing electrical energy, storing energy in 

any form and delivering the stored energy back in electrical form. Whereas, grid 

connection in the context means possibility to utilize transmission grid for charging and 

discharging. The principal of electrical energy storage is illustrated in figure 10.  

 

Figure 10. High level principal picture of electrical energy storage. 

There are several available ES technologies and their technical characteristics have been 

widely discussed in literature (e.g. Mahlia, Saktisahdan, Jannifar, Hasan & Matseelar 

2014; Cho, Jeong & Kim 2015; Pearre & Swan 2015). In addition, possible revenue 

streams and business models come with variety. Since the technologies are already widely 

discussed, this chapter will cover the topic only briefly by main features with the focus 

on battery energy storages. Technology part is then followed by introduction to potential 

revenue streams for utility scale ES. 

3.1 Battery energy storage system 

BESS is a technology group that covers several technologies, which all store energy in a 

chemical form. Conventional batteries are a sub group that comprise low-voltage battery 

     Losses

ES system

Energy in

Energy out

Energy
conversion system

Electricity in

Electricity out

Energy storage



27 

 

 

cells, which are connected in series or parallel in order to reach desirable electrical 

features (Zhao et al. 2015: 547–548). Electrical energy is converted to chemical form 

within the cells via electrochemical reactions. Respectively these reactions are run 

reversibly during discharge when the energy is converted back to electric current. 

Commonly recognized technology variations for commercial applications include lead 

acid, Nickel Cadmium, Nickel Metal Hybrid, Lithium ion (Li-ion) and Sodium Sulphur 

batteries (Zhao et al. 2015: 548). Such conventional BESS technologies all follow the 

general principle from figure 10, whilst the main differences regard electrochemical 

materials and reactions concerning the storing process. 

The benefits of BESSs are rapid response times (< second), small self-discharge losses, 

high round-trip energy efficiency and large energy and power densities (Zhao et al. 2015: 

548). In addition, the technologies are widely demonstrated and used while many are also 

projected to face significant cost reductions in the future. On the other hand, batteries 

come with relatively limited lifetime, high capital costs, and most of the technologies 

include hazardous materials (Zhao et al. 2015: 548). Nevertheless, BESS technologies, 

especially Li-ion, has faced significant development in recent years from both technical 

and commercial perspectives. The development and increasing deployment are driven 

especially by sharp increase in demand and fall in capital costs. Whereas, these trends are 

driven especially by fast growing electric vehicle market. Such positive twist is self-

stimulating and has assisted Li-ion to take a dominant role also in new BESS investments 

in power industry (data: Sandia National Laboratories 2017). 

3.1.1 Li-ion battery energy storage technology 

Since the dominant role of Li-ion in BESS investments is the case also in Germany and 

the UK, this study will use the technology as a benchmark and basis for analysis and 

calculations. There is a range of technical research available also within Li-ion technology 

itself and the characteristics shown here are represented in general level. Nevertheless, 

quantified values for power and energy capacities, roundtrip efficiency and for lifetimes 

in years and in cycles are summarized in table 4. 
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Table 4. Summary of key features for Li-ion BESS technology. Power and energy 

capacities are typical values since the technology is scalable beyond the indicated values. 

(Data: Zhao et al. 2015: 547; Zakeri & Syri 2015: 592.) 

 
Power capacity Energy capacity Efficiency Lifetime Life cycles 

Li-ion BESS 0.1 – 50 MW 0.1 – 100 MWh 85–95 % 5–15 

years 

2000– 

5000 

 

In practice, power and energy capacities have a wide range while many R&D and 

demonstration units have realized with maximum of 5 MW and 5 MWh, whilst larger 

commercial installations have reached 50–100 MW and 50–150 MWh capacities. Even 

larger several hundred MW and MWh units have been installed globally. As such, Li-ion 

BESS provides great scalability, which has supported its commercialization. It has been 

supported also by the energy efficiency of 85–95 %, which yields in small variable costs. 

Small variable costs are actually vital in order to increase financial performance since 

lifetime of only 5–15 years requires large marginal in such capital-intensive investment. 

Lifetime in cycles means how many computational charging and discharging cycles the 

batteries last and is around 2000–5000 for Li-ion. Consequently, if BESS is applied in 

low intensity operations, the lifetime in years may increase above the indicated lifetime 

in years. 

Li-ion technology itself is regarded as reliable, but limited energy capacity restricts 

charging and discharging in case of high and low state of charge respectively. Thus, the 

battery is required to maintain its state of charge, resulting in potential unavailability and 

respective costs. For instance, German frequency data from 2011 shows that continuous 

one directional frequency control activation was required for up to 140 minutes 

(Consentec 2012: 14). Within such a period it is highly potential that BESS reaches its 

capacity limits. Moreover, Xu (2014: 4029) has shown, with continental Europe 

frequency data, that it is possible to reach 90–99 % availability with active controlling.  

Naturally the ratio between installed power and energy capacities has a critical role in 

BESS availability. This ratio indicator is called C -rate and is simply calculated by 

dividing power capacity by energy capacity. 1C Indicates that the BESS can provide 
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power output at full capacity for 1 hour. 2C indicates output capability of ½ hour and 

0,5C 2 hours etc. The applied rate is often a compromise as e.g. primary frequency control 

services are often paid based on reserved power capacity, but to ensure required service 

level, sufficient energy capacity is required as well. Common C -rates for operational 

BESS Germany is 0,67C and 1.0C in the UK (data: Sandia National Laboratories 2017). 

3.1.2 Li-ion investment costs 

The decreasing price trend for Li-ion BESSs is expected to continue as the technology 

matures, the competition tightens, and the demand increases due to increasing number of 

electric vehicles and large scale ES installations. Nevertheless, most of the cost reduction 

is realized in actual battery cells while the system level investment costs are more 

multifaceted. In fact, most of the cost components are relatively stable or have only minor 

reduction possibilities. These cost components are usually divided in three main 

categories to calculate ES system level total capital requirement: cost of power conversion 

system (€/kW), cost of storage section (€/kWh) and cost of balance of plant (Zakeri & 

Syri 2015: 573). These total capital cost factors are elaborated in table 5. 

Table 5.General total capital cost elements and factors for electric ES investment cost 

calculation (based on Zakeri & Syri 2015: 572; Schoenung 2011: 11). 

Total capital cost element Cost factor Example 

Power conversion system Interconnections Transformers 
 

Power electronics Inverters 

Storage section Storage facility Control system 
 

Storage technology Battery banks 

Balance of plant Project management 
 

 
Grid connection 

 

 
Construction management 

 

 
Land and access 

 

 
Buildings 

 

 
Logistics 

 

 
Isolation and protective devices Switches, fuses 

 Monitoring and control system  
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Zakeri and Syri (2015) represent composed cost analysis from numerous studies and 

report for both components separately and on a system level. The study shows Li-ion 

BESS power conversion system costs ranging from around 250 to 600 €/kW, the average 

being 463 €/kW. In contrast, storage section costs are ranging significantly more between 

450 and 1250 €/kWh, whilst the average is 795 €/kWh. Composed total costs average at 

1160 €/kW, but the range is very large 750 €/kW–2400 €/kW (Zakeri & Syri 2015: 583). 

In the scope of this study, power conversion system costs are assumed to be 450 €/kW, 

which is in line with prevailing numbers. Since the conversion system cost elements 

comprise from mature technology, significant cost reductions aren’t included in the 

estimation. However, storage section costs are adjusted with realized cost reduction and 

estimated to be currently 440 €/kWh. The estimation equivalents to around 25 % annual 

decrease since 2015 and is strongly supported by the prices of BESS manufacturers and 

published Li-ion battery cost estimations (e.g. Nykvist & Nilsson 2015: 329–332). 

Balance of plant costs are estimated to be 120 €/kW. These cost elements result in 1010 

€/kW (/kWh) total cost, which is well in line with the composed estimations by Zakeri 

and Syri (2015: 585), while showing clearly the realized cost reductions also when 

compared to installed projects with published costs. 

3.1.3 Alternative technologies 

The wide range of ES technologies comes with different maturity stages, characteristics, 

functionalities and costs. These issues have a critical impact on desirable business models 

and determine also competition among the technologies. However, the following 

technologies have been most recognized, researched and applied in industry: 

 Pumped hydro ES 

 Compressed air ES 

 Hydrogen ES 

 BESS 

 Flywheels 

 Supercapacitors. 
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Generally ES technologies can be classified based on the form of the stored energy, but 

they also have very differing characteristics within these categories. Indeed, features such 

as response time and power and energy capacities, limit functional applications for 

different technologies. Thus, the technologies can be classified also based on the primary 

function of the storage. By function Chen, Cong, Yang, Tan, Li & Ding. (2009: 294) 

divide the technologies in two categories:  

1. Technologies with high power capacities combined with relatively small energy 

storing capacity  

2. Technologies with large energy capacity.  

The first group is more suitable for power quality services, whereas the latter one is 

applicable for larger energy management. Prevailing technologies are illustrated in figure 

11 with indicative power and energy capacities and stored energy form.  

 

Figure 11. Indicative power and energy capacities for commonly recognized energy 

storage technology groups. Colors indicate the form of stored energy, whilst energy 

capacity focus over power capacity increases upwards y -axis.  (Data: Zhao et al. 2015: 

547; Gallo et al. 2016: 815.) 
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However, technology relevancy and applicability is also affected by technology maturity 

stage and related risks. For mentioned technologies, the stages indeed differ greatly while 

Li-ion BESS has faced the most rapid development in recent years. Maturity stages are 

illustrated in figure 12. In addition, the total capital cost level and the cost reduction 

potential are also strongly related to the maturity level. However, technology 

characteristics set clear boundaries for costs – which are still ranging greatly even within 

a certain technology. Capital cost ranges for the technologies are illustrated in figure 13.  

 

Figure 12.Current maturity stages and product of capital costs and risks for commonly 

recognized ES technology groups. The stages are based on IEA (2014: 16) and are 

adjusted with realized development estimations. 
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Figure 13. Current total investment costs in logarithmic scale for ESs with 1 C -rate for 

common ES technology groups (data: Zakeri and Syri 2015: 590–592; Zhao et al. 2015: 

547; Gallo et al. 2016: 816). 

From frequency control, especially primary level, point of view the technological ES 

requirements are fast response, high power and moderate energy capacity. Figure 11 

illustrates clearly that BESSs meet the energy and power capacity requirements 

effectively. Maturity level and cost estimations are supporting BESSs as well: 

commercial state has been reached while only pumped hydro, as the most developed 

technology, comes with lower upper cap in unit cost range. Compressed air and pumped 

hydro ESs are clearly more energy focused with also much larger power capacity, which 

makes them exaggerated for only frequency control purposes. Likewise, this is the case 

for hydrogen fuel cell systems, but they also face significant disadvantages from maturity, 

cost and inefficiency (30–50 % roundtrip efficiency) perspectives. The rest reach 

efficiency range of 70–99% in which BESSs represent the higher end. Furthermore, very 

limited energy capacity of flywheels and supercapacitors makes them irrelevant since 

meeting service duration requirements appeals very challenging even though some 

applications could be cost competitive with BESSs. Hence, increasing BESS penetration 

and dominance in frequency control applications is technically well justified. 
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3.2 Energy storage business models 

Despite the functional categorization, most of the ES technologies have the necessary 

flexibility and capability to operate in energy markets by trading energy to gain from 

arbitrage and by offering services for power quality, reserves and reliability (Staffell & 

Rustomji 2016: 212). Thus, the potential revenue streams for grid scale ES can be divided 

in two main categories: arbitrage related and ancillary and other services. These 

categories include a wide range of business models that further differ among countries 

due to different market characteristics and regulations. In addition, end consumer based 

revenue streams are recognized, but are not discussed in this study.  

Potential revenue streams for utility scale ESs are illustrated in figure 14 and discussed 

further below. However, it is important to emphasize that all revenue streams have 

technical requirements limiting relevant applications. Divya and Østergaard (2009: 517) 

divide potential ES applications based on their typical activation time and point out that 

commercially relevant applications for BESS are the ones with short duration and thus 

focus on power rather than energy. Such services tend to have also higher value in general. 

 

Figure 14. Potential revenue sources for ESs with typical duration and indication whether 

the business is energy or power focused. Timespan division based is on Divya and 

Østergaard (2009: 517). Primary, secondary and tertiary refer to frequency control levels. 
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3.2.1 Ancillary and other services 

As pointed out in section 2.2, ancillary service markets and potential revenues are highly 

dependent on services the TSO and distribution network operator (DNO) in certain area 

are purchasing. However, flexible ESs and especially BESSs can provide several different 

services within the category. In addition, business models themselves may include one or 

more services simultaneously or separately. Relevant utility scale ancillary and other 

services introduced in figure 14 are summarized in table 6.  

Table 6. Summary of utility scale services applicable for ESs. All of the listed ones are 

applicable in some form in Germany and the UK. Rough revenue estimations are based 

on aggregated research results by Fitzgerald et al. (2015: 5).  

Service Definition Customer Scheme Revenue 

potential 

k€/MW/y 

Frequency 

control 

See section 2.2.1 TSO Market 40 -150 

Spinning / non-

spinning 

reserves  

Spinning ones are operating and non-

spinning ones are offline reserves for back-

up generation in case of large or long 

duration balancing need or incident 

TSO Market / 

Bilateral 

20 - 70 

Voltage support Reactive power to secure grid voltage level DNO 

(TSO) 

Market / 

Bilateral 

20 - 50 

Black start Support power for system restoration in 

case of partial or full shutdown 

TSO/DNO Bilateral < 50 

Transmission 

congestion relief  

Relieving bottlenecks in grid by levelling 

transmission volumes. Applicable also for 

distribution grid 

TSO/DNO Bilateral N/A 

Grid investment 

deferral 

Investment postponement by providing 

transmission or distribution support 

TSO/DNO Bilateral N/A 

Balance 

handling 

Keeping the energy balance between sold, 

bought, generated and consumed energy 

Internal N/A N/A 

 

Frequency control services stand out showing the highest revenue potential. They also 

have clearly defined customer and market based operation scheme. This makes the market 

penetration more attractive and business more predictable. On the other hand, applying 

frequency control strategy usually rules out other simultaneous revenue streams. 

However, also this is market specific and does not hold for instance in the UK. 



36 

 

 

3.2.2 Price arbitrage 

Energy arbitrage as another revenue category is defined by Pearre and Swan (2015: 503) 

as transfer of electricity from low load  (off-peak) periods to high load (peak) periods. 

Nevertheless, this study takes more economic perspective and defines it based on 

Zafirakis et al. (2016: 971) as shifting electricity from low price hours to hours with 

meaningfully higher price. Consequently, the revenues are dependent on both frequency 

and magnitude of the price variations (Steffen 2012: 424). Arbitrage in principle is 

applicable in all energy markets. 

Arbitrage can be linked with both load levelling and peak shaving. Luo et al. (2015: 530) 

define load levelling as a method of balancing the large fluctuations in electricity demand. 

Thus, load levelling is considered as levelling the generation and consumption load 

throughout all or most of the hours while harvesting the value from respective price 

variation. Whereas, peak shaving concerns charging and discharging ES only between 

off-peak and peak hours (Luo et al. 2015: 530). As such, load levelling is a more 

continuous operation while peak shaving exploits only the most potential hours with the 

widest price spreads. Arbitrage principle in peak shaving is illustrated in figure 15. 

 

Figure 15.Arbitrage with peak shaving. Down bars illustrate charging a storage with low 

price whereas up bars illustrate discharging during hours with high spot price. The price 

level generally varies straight with system load level introducing arbitrage possibility. 
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Both load levelling and peak shaving can be further applied in different business models. 

Firstly, they can be performed purely via power exchange by bidding buy and sell bids 

for forecasted low and high price hours respectively. Secondly, arbitrage is a way to 

financially benefit from balancing intermittent renewables generation: high generation 

from renewables increases electricity supply and thus generally pushes price downwards. 

The situation is vice versa in low renewables energy source (RES) generation situation 

resulting in favorable price differences. Such renewables shifting can be performed 

behind meter directly at e.g. wind farm or via power exchange as in previous case. 

Nevertheless, in all conditions the revenue potential equals arbitrage value minus 

operating costs.  

Since, arbitrage is performed for energy, the revenues are depending on the amount of 

shifted energy (MWh). Thus, the business model requires large energy capacity whilst 

large charging and discharging capacities enable exploiting the most potential price 

differences. Because of these requirements, and too low price volatilities in general, 

arbitrage has not become primary business model for BESSs. In addition, despite the 

anticipated need for ES for RES balancing in future, several studies have found (e.g. 

Zafirakis et al. 2016; Connolly, Lund, Finn, Mathiesen & Leahy 2011) that arbitrage alone 

does not provide sufficient revenues to justify investments in ES sector. Arbitrage in the 

scope of this study is treated as a secondary revenue source. 

Notable is also that price arbitrage in electricity markets is market cannibalization. This 

is natural due to its price smoothing effect. Since, the power price in power exchange is 

determined purely based on supply and demand, the smoothing effect fundamentally 

results from decreasing variation in generation and consumption levels over time. Thus, 

large scale storages and increased use of smaller ones smooth the price volatility resulting 

in reduced arbitrage value (Sioshansi 2010: 174). 
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4 RESEARCH METHODOLOGY 

In order to answer the research question, the study is carried out with pragmatic approach 

within relatively complex field including several constantly evolving aspects. To gain 

comprehensive insights and reliable results the assembling and analysis of the 

information is realized with relatively broad scope including both quantitative and 

qualitative data. As such, the research deals with various aspects, details and data types.  

Gathering, analyzing and composing the data in consistent and explicit completeness 

from diffuse information is thus realized with mixed research methods.  

Mixed methods are methods in which both quantitative and qualitative information is 

used. This combination includes data collection, analysis and combination of the two 

datatypes in one research (Hesse-Biber 2010: 3). As such, mixed approach is especially 

suitable for cross-national analysis aiming to identify general patterns and analyze 

country specific issues (Lieberman 2005: 450). Also pragmatism is well in line with the 

usage of mixed methods. Indeed, Feilzer (2010: 6–16) has shown that pragmatism 

supports well the usage of mixed methods in order to provide useful knowledge. Feilzer 

states (2010: 13) that the approach is not linked to certain methods, but aims to explain 

any question and answer with the most suitable method. The complexity, pragmatic and 

comparative approach of our problem, is supporting the decision to use the mixed 

methods: 

1. Online Market Research (OMR) 

OMR is used to gather market information and to explore and analyze the markets 

from various aspects. The analysis cover market functionalities, practices, 

characteristics and their impact on investment potential now and in the future.  

2. Analytical Hierarchy Process (AHP) 

AHP is used to quantify the information obtained in OMR and to compare the 

markets in order to identify the most potential market for investing.  
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While mixed methods aim to study holistic investment and market framework, another 

method, Monte Carlo Simulation (MCS), is applied to complement the study by 

quantitatively verifying and demonstrating investment performances. As such the 

research utilizes multimethod approach, which is seen especially suitable for researches 

dealing with complex and interdependent systems (Sanders & Wagner 2011: 321). This 

is particularly the case in evolving new business environments. In addition, multimethod 

approach incorporated with multidisciplinary perspectives supports complementarity of 

the studied field (Sanders & Wagner 2011: 321). Ahram (2011: 288) has also pointed out 

that multimethod approach allows integrating “qualitatively derived, region-specific 

knowledge with larger cross-national, quantitative analysis in a new form of comparative 

area studies”. Thus, using multiple methods for the study is well supported by literature. 

Methodology framework is shown in figure 16. 

 

Figure 16. Methodological framework structure of the study. 

4.1 Online market research 

Market research in the field is naturally focused around few customers. This makes 

traditional online research techniques, such as target group questionnaires, obsolete. In 

addition, the issues explored and analyzed are rather objective considerations. Thus, the 

OMR is carried out by directly reaching the relevant information concerning seven high 

level aspects: market entry, cash flow generating potential, regulation and support 

policies, market size and competition, additional future aspects and risks. These aspects 

are further divided in ten evaluation criteria, further elaborated in next section. 
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4.1.1 Market evaluation criteria 

The ten evaluation criteria, which are seen affecting investment potential, are all analyzed 

individually in case of both markets. Criteria and their factors are used for analyzing the 

markets and for AHP pairwise comparisons. The criteria definitions aim to avoid overlaps 

while providing holistic view on investment potential individually through OMR and 

relatively through AHP. The following defines the criteria and elaborates their factors.  

1. Market structure suitability 

 

The first criterion includes evaluating the procurement scheme TSOs use for purchasing 

primary frequency regulation: how suitable and supportive the scheme is for the operation 

in the market with BESS? The criterion considers market functionalities, liquidity / 

business frequency, reimbursement logic and other market structure specific issues 

potentially affecting the investment potential now and in future. This criterion also 

considers other relevant market penetration related negative and positive issues identified 

during the OMR. 

2. Price level 

 

The third criterion considers frequency regulation price level among the primary markets: 

PCR prices in Germany and EFR prices in the UK. The price level is evaluated by its 

absolute level and derived annual and discounted total cash flows. In addition, historical 

prices are analyzed in terms of development trend and volatility with expectations on the 

future price development. For currency conversions rate 1 GBP = 1,16 EUR is used. 

3. Revenue stacking possibilities 

 

Potential other simultaneous revenue streams are evaluated in this criterion: are there 

another revenue streams available and what is the cash flow impact of stacking? Also 

potential reasons behind unavailable stacking are discussed in order to understand 

potential stacking opportunity changes in future.  
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4. Regulation suitability 

 

The criterion considers existing regulatory characteristics and their suitability for 

operating with BESS. Especially legislative recognition, treatment policies by authorities 

and possible regulatory unclarity issues are considered. In addition, expected future 

changes are taken into account. 

5. Subsidies and financing 

 

Subsidies and available public financing play a significant role in many energy 

investments. The criterion takes into account available subsidy policies, their significance 

and available public funding programmes. Financial market access or related issues are 

not discussed within the scope. 

6. Tax and payment obligations 

 

Net profit generation is highly related to tax and payment obligations. These issues are 

highly related to treatment policies and legal recognition. However, only their financial 

impact is examined here. In addition, potential exemptions are taken into account. 

7. Size and growth 

 

Ninth criterion analyzes the markets by their size in terms of volume and value. Realized 

growth and developments are also considered together with the future growth potential. 

8. Competitive environment 

 

Within this criterion both direct and indirect competition are considered. The direct 

competition is evaluated by registered existing and known to-be-installed BESS capacity 

together with capacity specifically registered for primary frequency regulation. Indirect 

competition includes assets other than BESS that are available to provide frequency 

regulation services. The capacities are compared to market sizes resulting in estimation 

of competition intensity. 
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9. Risks 

 

Market riskiness is evaluated and compared solely by applying the risk matrices 

introduced later in section 4.1.4. 

10. Additional future aspects 

 

Additional future aspects include other future changes and market developments 

discussed through considerably speculative scenarios. The criterion excludes issues 

already included in previous criteria. 

4.1.2 Information gathering 

One of the major advantage of OMR in this case is its speed. Online sources provide 

possibility to close the time gap that arises with more sequential methods (Hesse-Biber 

& Griffin 2012: 58). Thus, it is possible to access the most recent information 

simultaneously from various sources, which is important due to rapidly evolving markets. 

The method also provides very large information pool to be exploited. 

Market research information for further analysis is collected from various sources. Online 

sources are supported by related literature and direct discussions with relevant 

professionals and authorities.  The main sources for both countries include: 

1. TSO’s web pages, grid codes and straight contacting via email and phone 

2. Online documents published by authorities, governments and the European Union 

3. Separate market studies, reports and related academic papers 

4. Other stakeholders such as national investment agencies and market participants. 

4.1.3 Information reliability 

One of the major concern with OMR method is information reliability. The study aims to 

improve information reliability by comparing alternative sources when possible. The 

confirmations are also sought from authorities and industry professionals via emails, calls 
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and discussions. However, this issue is addressable also as a pitfall: using online tools for 

contacting interviewee might disrupt the information gained when compared to e.g. 

personal visit (Hesse-Biber & Griffin 2012: 58). This disrupting effect is limited by 

preferring objective and fact driven questions.  

In order to improve information reliability even further, available information from 

sources potentially affected by subjective interests are discarded. However, it is relevant 

to underline that the study is dealing with relatively new field involving immature 

legislative and regulatory frameworks, limited references and dynamic market 

development. Thus, in some instances desirable information cannot be confirmed or it 

might not even exist. 

4.1.4 Risk matrices 

The ninth criterion, market riskiness, in OMR is estimated by evaluating the five most 

relevant risks for each country. The evaluation is made with risk matrices. Risk matrix is 

a widely used model to evaluate the occurrence probability and impacts of risks, and rank 

the risks respectively (Fouad & Jabir 2015: 1188). The matrix is two-dimensional 

evaluation framework that is used to assess separately risk occurrence probability and 

impact. The evaluation is usually based on quantitative evaluation. However, the risks 

can be quantified with indicative numerical estimators assigned for each qualitative value. 

Identified risks in this study are quantified like this. Used matrix structure, risk impact 

and probability descriptions with quantification estimators are elaborated in tables 7–9.  
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Table 7. Risk impacts with assigned values and descriptions (based on Fouad & Jabir 

2015: 1189). 

Risk Impact Estimator Description 

Critical 5,0625 Risk results directly to the market potential vanishing 

Serious 3,375 Risk leads to a significant decrease in market potential 

Moderate 2,25 The market moderately affected , but potential partly remains 

Minor 1,5 The market is slightly affected, but could satisfy investment 

evaluation 

Negligible 1 Risk has almost no effect on market potential 

Table 8. Risk probability with assigned values and descriptions (based on Fouad & Jabir 

2015: 1189). 

Risk Probability Estimator Description 

0–10% 0,05 Almost impossible to occur 

11–40 % 0,25 Unlikely occurring 

41–60 % 0,5 Moderate likelihood for occurring 

61–90% 0,75 Likely occurring 

91–100 % 0,95 Almost certainly occurring 

Table 9. Risk matrix with derived risk value indicators calculated as product of estimators 

of occurrence probability and impact shown in tables 7 and 8.  

 
Risk Impact 

Risk Probability Negligible Minor Moderate Serious Critical 

0–10% 0,05 0,08 0,11 0,17 0,25 

11–40 % 0,25 0,38 0,56 0,84 1,27 

41–60 % 0,50 0,75 1,13 1,69 2,53 

61–90% 0,75 1,13 1,69 2,53 3,80 

91–100 % 0,95 1,43 2,14 3,21 4,81 

 

Only market specific risks are concerned in order to provide more consistent approach 

for market comparisons. Thus, for instance technology related risks are not analyzed here. 

Nevertheless, considering five most relevant risks, the overall risk index scale is from 

0,25 (5 X 0,05) to 24,05 (5 X 4,81) based on the values in table 9. 
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4.2 Analytical Hierarchy Process 

In order to compose comparative investment potential among the explored markets 

Analytical Hierarchy Process (AHP) is applied. AHP is a structured tool for dealing with 

complex decision making (Erol & Kılkış 2012: 246). AHP provides systematic approach 

to evaluate alternatives by several quantitative and qualitative criteria. The method does 

not provide straight answers, but results in ranking giving information which is the most 

suitable from available alternatives for the underlying problem (Erol & Kılkış 2012: 246). 

The method was initially modelled in 1980 by Saaty (Saaty 1980).  

AHP allows efficiently considering decision maker’s subjective opinions (Subramanian 

& Ramanathan 2012: 217). The method shows its strengths when several people are 

considering complicated problems based on their human perceptions and judgements 

(Erol & Kılkış 2012: 246). However, it is suitable also for straightforward decision 

making by individual analysts (Erol & Kılkış 2012: 246). In this research AHP is used in 

individual means with consulting contribution from industry professionals. It is used as 

mixed method to compose OMR results in relative investment potential evaluation and 

ultimately provide information regarding relative market potentials in the UK and 

Germany.   

4.2.1 Process phases 

General AHP approach follows three steps: problem structuration, pairwise comparisons 

and global priority composition. The steps are illustrated in figure 17 (Saaty 1990: 14–

18). The steps are elaborated below with simultaneous AHP model structuration for the 

underlying study.  

 

Figure 17. General steps in Analytical Hierarchy Process. 

1. Structure the 
problem as hierarchy

2. Implement pairwise 
comparison 

judgementses

3. Compose global 
priorities
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Step 1: Structuring the problem as hierarchy 

AHP starts from dividing the problem in three hierarchical levels. The first level includes 

an ultimate goal of applying the method. The goal is followed by criteria and sub-criteria 

level which sets the factors contributing to the goal. The third level includes alternative 

candidates which are evaluated against the goal based on the criteria. (Saaty 1990: 14.)  

In the case of this study, the first level goal is to identify the most potential market for 

BESS investment. The second level is divided in criteria and sub-criteria in order to 

consolidate relevant criteria groups together for more consistent analysis. These criteria 

are the ones introduced in section 4.1.1. The hierarchy structure is illustrated in table 10. 

Table 10. AHP Hierarchy structure for investment potential evaluation. Numbering refers 

to ten chosen market evaluation criteria. 

Level 1   

Goal 

Identify the most potential market for BESS investment 

Level 2 

Criteria 

1. Market 

scheme 

suitability 

Cash flow 

generating 

potential 

Regulation 

and policies 

Market size 

and 

competition 

 9. 

Risks 

Future 

outlook 

Sub-criteria 
 

2. Price 

level 

3. Revenue 

stacking 

possibility 

4. Tax and 

payment  

obligations 

5. Regulation 

suitability 

6. Subsidies 

and financing 

7. Size and 

growth 

8. 

Competitive 

environment 

 
10. 

Additio-

nal 

future 

aspects  

Level 3 

Alternatives 

Germany the UK 

 

Step 2: pairwise comparisons 

The second step’s pairwise comparisons concern both criteria and alternative levels from 

the hierarchy structure. At first a matrix (A) for comparing the criteria is created. The 
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matrix is fulfilled by relative criteria importance judgements (eij) based on pairwise 

comparisons. The judgements are answers to a question: which of the two criteria 

compared, is considered more important with respect to the goal (Saaty 1990: 15). A 

standard comparison scale, elaborated in table 11, is used in order to quantify the 

judgements. If criteria i is more important than j, eij > 1, and vice versa. Respectively, 

since A compares the same criteria reversely, it can be defined that eji = 1/eij.  

Table 11. Evaluation scale for pairwise comparisons (Saaty 1990: 15). 

Importance Definition Explanation 

1 Equal importance Two activities contribute equally to the objective 

3 Moderate 

importance 

Experience and judgment moderately favor one 

activity over another 

5 Essential or strong 

importance 

Experience and judgement strongly favor one activity 

over another 

7 Very strong 

importance 

An activity is strongly favored and its dominance 

demonstrated in practice 

9 Extreme 

importance 

The evidence favoring one activity over another is of 

the highest possible  

1,4,6,8 Intermediate values When compromise is needed 

 

After composing the comparison matrix normalized matrix Anorm can be derived. Entry 

values Eij for Anorm are eji values normalized by the column sums in A and can be 

calculated as in equation 2. Anorm gives the normalized relative weights for each criteria. 

𝐸𝑖𝑗 =  
𝑒𝑖𝑗

∑ 𝑒𝑘𝑗
𝑛
𝑘=1

,                                 (2) 

where k is the row number in column in A and n is the number of the criteria. 

Output from the comparison is a priority vector, normalized eigenvector w, giving relative 

weights wi for the criteria. From Anorm normalized eigenvector w is calculated as row 

averages (Al-Harbi 2001: 24). Structure of the matrix A including derived eigenvector w 

is illustrated in table 12. A for the criteria in our problem is illustrated in table 13. 

Numbering refers to criteria numbering in hierarchy structure in table 10. 
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Table 12. General structure of a AHP pairwise comparison matrix A. 

 
Crit. 1 Crit. 2 Crit. j Priority (wn) 

Crit. 1 1 e12 e1j w1 

Crit. 2 1/ e21 1 e2j w2 

Crit. i 1/ ei1 1/ ei2 1 wi 

Sum ∑ e1 ∑ e2 ∑ ej 1 

 Table 13. Pairwise comparison matrix and derived priority vector w used in the study. 

Numbering in x and y -axis refers to investment potential evaluation criteria numbering.  

n 1 2 3 4 5 6 7 8 9 10 Wn 

1 1,00 0,50 5,00 4,00 3,00 5,00 6,00 3,00 5,00 6,00 21,67 % 

2 2,00 1,00 5,00 4,00 3,00 5,00 6,00 3,00 5,00 7,00 25,52 % 

3 0,20 0,20 1,00 0,50 0,33 1,00 1,00 0,17 0,33 2,00 3,63 % 

4 0,25 0,25 2,00 1,00 0,50 2,00 4,00 0,50 3,00 4,00 8,09 % 

5 0,33 0,33 3,00 2,00 1,00 2,00 5,00 0,33 4,00 5,00 10,78 % 

6 0,20 0,20 1,00 0,50 0,50 1,00 3,00 0,25 0,50 1,00 4,25 % 

7 0,17 0,17 1,00 0,25 0,20 0,33 1,00 0,20 1,00 2,00 3,20 % 

8 0,33 0,33 6,00 2,00 3,00 4,00 5,00 1,00 5,00 4,00 15,24 % 

9 0,20 0,20 3,00 0,33 0,25 2,00 1,00 0,20 1,00 2,00 4,91 % 

10 0,17 0,17 0,50 0,25 0,20 1,00 0,50 0,25 0,50 1,00 2,71 % 

 

Identically matrices for the alternative solutions are formed. At this lower level the 

alternatives are evaluated against each underlying criterion. Thus, there are in total 10 

such 2 X 2 matrices in our case. Priorities, i.e. derived eigenvector values (wn), for the 

alternatives in case of each criterion are called local priorities (Lm n). 

Step 3: compose global priorities 

The final step is to compose global priorities for the alternatives based on local priorities 

(Lm n) and the normalized eigenvector values (wn) of the criteria. The local priorities are 

multiplied by the criteria priorities and summarized for each alternative. Global priority 

Wm for alternative m is calculated as in equation 3. The composition matrix is illustrated 

in table 14. Finally the global priority vector W allows ranking the alternatives and giving 

recommendation of the most suitable alternative.  
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𝑊𝑚 = ∑ (𝑤𝑛𝐿𝑚𝑛
𝑛
𝑛=1 ),                        (3). 

Table 14. Composition matrix for deriving global priorities. Lm n represents local priorities 

for alternatives in case of each criterion, wn the weight of each criterion and Wm ultimate 

priority vector showing the composed results. 

 
Crit. 1 Crit. 2 Crit. n Global 

 
w1 w2 wn W 

Alternative 1 L11 L12 L1n W1 

Alternative 2 L21 L22 L2n W2 

Alternative m Lm1 Lm2 Lmn Wm 

4.2.2 Consistency 

Logical relevancy of the pairwise comparison result must be confirmed in order to ensure 

reliable results. The consistency check ensures that there are no unacceptable amount of 

logical errors disrupting the results. Logical error occurs e.g if alternative A is evaluated 

to be more important than B, B more than C and C more than A. Formally, the consistency 

means linearly independent comparison matrices (Franek & Kresta 2014: 167).  

Consistency is measured by consistency ratio. After composing the comparison matrix 

and eigenvector the ratio is obtained in three phases: 

1. Calculate the highest eigenvalue (λmax) 

λmax is obtained from weighted sum vector, calculated as Aw, by dividing each 

element of the vector with respective element from priority vector w. λmax is 

average of these values. Franek and Kresta (2014: 167) represent this as a sum 

function as in equation 4: 

λ𝑚𝑎𝑥 =  ∑
(𝐴∙𝑤)𝑗

𝑚∙𝑤𝑗

𝑚
𝑗=𝑖 ,                         (4) 

where m is the number of rows in matrix A.  

2. Calculate consistency index (CI) 

CI is calculated as in equation 5 (Saaty 1990: 13): 
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𝐶𝐼 =  
λ𝑚𝑎𝑥−𝑛

𝑛−1
,                         (5) 

where n is the number of the criteria (alternatives).  

3. Calculate consistency ratio (CR) 

Finally CR is obtained by dividing CI with ratio index (RI) (Saaty 1990: 13): 

𝐶𝑅 =  
𝐶𝐼

𝑅𝐼
,                           (6). 

The RI -value represents average of CI values derived from random pairwise-comparison 

matrix simulations (Franek & Kresta 2014: 167). CR value over 0,1 is not accepted. This 

is also the suggested inconsistency limit by Saaty (1990: 13). For RI value average (1,48 

for n=10) from various results collected by Franek and Kresta (2014: 168) is used. 

Consistency is applicable when determining the criteria weights. The ratio for matrix in 

table 13 is 0,056 and thus accepted. For pairwise comparison under each criterion 

consistency check is not relevant as 2 X 2 matrix is consistent by nature: there is only one 

subjective comparison to make under each criterion. 

4.3 Monte Carlo simulation 

The third applied method is Monte Carlo simulation. It is a numerical method used for 

solving problems incurring complex uncertainties that are problematic for analytical 

solving. As such, it supports well investment performance research as the target business 

and markets involve significant uncertainties themselves. The foundations of the method 

rely on variation in input parameters that are derived from estimated probability 

distributions by using random sampling. The variation, i.e. uncertainty, in inputs is 

modelled in problem specific model in order to calculate desired output values. The 

calculations are iterated numerous times to turn input distributions to output distribution 

through the model. Thus, the method provides a possibility for exploring and 

demonstrating various scenarios and input uncertainties with respective outputs. The 

method has evolved to a widely used tool in quantitative research across industries and 

applications (Kroese, Brereton, Taimre & Botev 2014: 386). General three phased MCS 

approach is illustrated in figure 18 and further elaborated below.  
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Figure 18. General approach for MCS method (based on: Brandimarte 2014: 254). 

1. Random number generation imitates actual uncertainty involved in underlying 

problem (Brandimarte 2014: 254). These pseudorandom numbers are usually 

uniformly distributed with range of 0–1. The range is sufficient since MCS is 

dealing with probabilities, whilst uniform distribution allows introducing variable 

specific distributions later. The random numbers are used to pick a value from 

determined random variable distributions. These random variables are the model 

inputs and the distribution reflects respective uncertainties and stochasticity.  

2. The second phase includes actual iterative simulations. In this phase the random 

variable values and respective target function values are simulated iteratively in 

order to gain samples for desirable outputs. The simulation model includes 

random numbers, random variable values and possibly various other derived 

variables and constants in order to calculate desired output variable values. 

3. Finally output analysis is performed in order to explore output values, their 

distributions and behaviors. In addition, the analysis is necessary for model 

validation and verification to ensure reliable results (Brandimarte 2014: 325). 

4.3.1 Approach in this study 

In order to illustrate market specific possible BESS investment financial performance and 

to support decision making in an uncertain environment the study utilizes a country 

specific approach. As the markets are differing largely, the approach also allows 

exploring profitability boundary conditions more effectively. In addition, numerous 

simulations capture a range of random input scenarios and thus make the results free from 

objective scenarios. Thus, MCS also provides more complete and coherent information.  

1. Random number and 
random variable value 

generation

2. Domain-specific 
sample generation

3. Output analysis
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MCS in the study aims to explore possible BESS investment profitability, financial 

performance and required profitability boundary conditions and thus validate and 

quantify prevailing market research results. The issues are explored by simulating BESS 

market operations for 15 year investment horizon, determining revenues and costs, 

deriving investment valuations for each iteration and finally analyzing output 

distributions. Applied key outputs for investment performance evaluations are free cash 

flow (FCF), net present value (NPV) and internal rate of return (IRR). NPV is calculated 

as real value without inflation adjustments. The approach is illustrated in figure 19. 

 

Figure 19. MCS approach in the study. 

The models are formulated based on market characteristics. Used random variable 

probability distribution functions for the simulation models are derived by fitting several 

types of commonly used distributions to publicly available historical data in R –program 

and choosing the most relevant one. The fitting is done by maximum likelihood method 

for parameter estimations. The results are validated with histogram method by visually 

checking the fittings of theoretical probability distribution functions in real data. The 

method is rather robust, but is applicable only for random variables with historical 

observations. For variables without available data, the distributions are estimated by the 

researcher to the best of his ability. Actual simulation models are built in VBA -code and 

run in spreadsheet program. 
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4.3.2 Simulation model – Germany 

German MCS model is based on the market scheme discussed in section 2.3. The model 

is built from national perspective and thus import/export limitations for the joint tenders 

are not included. Respectively only national historical PCR prices are taken into account. 

The applied business model involves primarily operating in PCR market and if bid is not 

accepted, secondary revenues stream, spot arbitrage, is applied for “out of PCR” period.  

Model framework is illustrated in figure 20 and further elaborated below in six phases. 

Additional assumptions used in the final model are represented in section 4.3.2.  

 

Figure 20. Monte Carlo Simulation model framework for Germany. The arrows illustrate 

causalities between inputs and outputs.  
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Phase 1: Market selection 

Market selection uncertainty determines probability for operating in overriding PCR 

market. Success rate in PCR tenders is a critical factor in revenue generation and is highly 

dependent on applied bidding strategy. The probabilities for successful bidding with 

different bidding strategies were estimated by taking a base price for bids from the 

previous weekn-1 realization, scaling it by percentual ± changes and checking whether the 

reached price is less than accepted maximum bid price in the next auction for weekn. For 

the base price, realized auction average, median, minimum and maximum values from 

weekn-1 were applied. In addition, strategy with a seasonally adjusted average data was 

applied. Seasonality is illustrated later in figure 46. Furthermore, strategy examination 

with historical values from longer than previous week horizon was applied, but the results 

favored looking only in the previous week’s realization. Bid acceptance probabilities, i.e. 

success rate, for the strategies and percentage scaling are illustrated in figure 21.  

 

Figure 21. Calculated bid acceptance probabilities in German PCR market when 

hypothetically bid with different bidding strategies based on scaled realized weekly 

median, minimum, maximum, seasonally adjusted and arithmetic mean PCR prices. 

Bidding strategies were also examined in terms of weekly average spot prices. In fact, 

statistically significant linear relationship (p-value = 5,8E-06) was identified between 
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spot and PCR prices, but with negligible adjusted R-square of 0,073. In addition, the 

change direction between the prices were same only in 53 % of the weeks. Thus, adjusting 

the bids with spot price forecasts, even with 100 % accuracy, doesn’t provide sufficient 

additional accuracy in PCR bidding.  

Besides the applied bid the spread between minimum and maximum in price realization 

plays another key role in successful operating: priority is to get accepted while not under 

valuating the bid. Thus, the price spread determines effective bidding range. 

Nevertheless, the spread is hard to forecast as it materializes all expectations, consensus 

level among the traders, market participant specific opportunity costs and participation 

willingness. As such it has varied by level significantly over time. In addition, the 

variation range follows only very fuzzy pattern of peaks during the first weeks of the year 

and in summer – as does the average prices. Realized spreads are illustrated in figure 22. 

 

Figure 22. Price differences between realized minimum and maximum accepted PCR bids 

in Germany. Y-axis is limited as one of the peaks reaches over 18 k€. Other peaks outside 

the scale reach around 4000–6000€. (Data: Regelleistung.net 2017f.) 

Naturally, the success rate has a major role in PCR revenue gaining. Nevertheless, the 

tradeoff between high price and low acceptance probability has optimum as decreasing 

price does not provide infinite success increase. Indicative annual average PCR revenues 

with 2012–2016 prices and applied bidding strategies are illustrated in Figure 23. 

0 €

500 €

1 000 €

1 500 €

2 000 €

2 500 €

3 000 €



56 

 

 

 

Figure 23. Annual average PCR revenues with 2012–2016 prices when hypothetically bid 

with different strategies based on scaled realized weekly median, minimum, maximum, 

seasonally adjusted and arithmetic mean prices. (Real data: Regelleistung.net 2017f.) 

The best bidding strategy identified is bidding 95 % of seasonally adjusted average price 

from the previous week realization. The strategy yields in average of 149 k€/year from 

PCR market with 98 % success rate. However, using deseasonalized average prices by 

adjusting the previous week’s value with 0,96 yields in only 0.2% lower revenues with 

95 % success rate. Since MCS values are simulated from distributions instead of time 

series, the method ignores auto-regression between the weekly values. Thus, applying 

seasonal adjustments is problematic in this case and for MCS the average strategy (95 % 

success rate by bidding 96 % of previous weekly average price) is used as base scenario.  

The success rate can be seen high even with purely theoretical examination. Nevertheless, 

the approach ignores trader’s view, dynamic effects of new bids and assumes price taker 

role. The effects from price taker role and dynamic market changes in are invalidated by 

using small BESS as reference investment. Trader’s contribution is ignorable due to only 

5 percentage point improvement potential in success rate.  However, notable is that the 

annual cash flows in figure 23 are very similar to the probability graphs in figure 21. Such 

situation involves clear risk as the best revenues are reached with less than average prices: 

collective rational bidding could decrease the prices significantly in a short time period. 
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Phase 2: PCR prices 

PCR price distributions are estimated from realized German national price data 2012–

2016. Weekly prices in MCSs are simulated through three levels of uncertainty: average 

five year, average half year and weekly average PCR prices. Half-year periods are used 

due to relatively short history of data, i.e. small number of observations, resulting in poor 

distribution estimation reliability otherwise. Half year and weekly variation distributions 

are derived from historical data whilst for five year average prices estimated uniform 

distribution is used (U [2700; 3500]). The distribution estimation is based on realized 

annual variation range 2012–2016. 

Half year average price level distribution is estimated from relative values achieved by 

dividing realized half-year averages with average of the whole five year horizon. This 

makes the results applicable with different five year values generated. Results for gamma, 

lognormal, Weibull and normal distribution fits are illustrated in figure 24. Already after 

a visual check it is clear that the distribution estimations provide only rough estimations 

with questionable fit. The problem is especially the small number of observations. 

However, cumulative density function graph shows acceptable results with the best fit 

achieved by lognormal distribution with parameters LOGN[-0,0110939; 0,1461308].  

  

Figure 24. Distribution fit illustrations on left for relative half-year average PCR prices 

with theoretical fits and realization data. Respective cumulative density function on right. 

(Real data: Regelleistung.net 2017f.) 
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Distribution for weekly fluctuation around the half-year average is similarly estimated 

from relative figures by fitting the theoretical distributions against realized weekly values 

divided by half-year average. The distribution and theoretical fitting results are illustrated 

in figure 25. The distribution fits are relatively good while lognormal distribution with 

mean of 0,002446947 and standard deviation of 0,167208033 provides the best results.  

 

Figure 25. Distribution fit illustration for relative weekly PCR price distribution around 

half-year average PCR prices. (Real data: Regelleistung.net 2017f.) 

Phase 3: PCR price simulation validation 

Relevancy of using the approach of three distributions is confirmed by simulating prices 

with prevailing parameters. The results from 10 random simulations for a five-year 

horizon and realized price data 2012–2016 sorted in descending order are illustrated in 

figure 26. Real and simulated plots follow each other relatively well and the average price 

difference between real and average of the simulated values is 2,0 %. In addition, figure 

27 illustrates annual average price realization fluctuation limits and simulation results for 

one random simulation. The figures confirm that the simulated prices fluctuate at relevant 

level both on weekly and annual level and thus support using the distributions for MCS. 

The illustrated deviation from realization is desirable since the future is unknown. 

gamma 

Weibull 

normal 

lognormal 

D
en

si
ty

 



59 

 

 

 

Figure 26. Real PCR prices 2012–2016 and simulated prices from lognormal distributions 

in descending order. Simulated five year average is set to realized average. (Real data: 

Regelleistung.net 2017f.) 

 

Figure 27. Annual PCR prices for 15 years from one random simulation validated against 

2012 - 2016 realization limits. Simulated five year average is set to realized average. (Real 

data: Regelleistung.net 2017f.) 
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Phase 4: spot price 

Spot price in the model is affecting arbitrage revenues and variable costs. It is modelled 

in two levels: yearly and weekly average level. Annual figures are based on uniform 

distribution (U[26; 39]) and its parameters are based on 2012–2016 realization (min 

29,01, max 42,60) adjusted with realized decreasing spot price trend (data: eex.com 

2017). Weekly price is then simulated from normal distribution (N[0,9955139; 

0,2005347]), that determines the weekly variation around the annual average. Normal 

distribution parameters are estimated similarly in R as earlier.  

Relevancy of the estimations is confirmed visually as illustrated in figure 28. Simulation 

results for weekly spot prices for a whole 15-year horizon are shown with 2012–2016 

realization. Simulated prices have somewhat higher volatility, but this mainly results from 

a lack of time-dependencies in simulations. Nevertheless, the issue is diluted when the 

values are summarized in valuation calculations. All in all, the results show that price 

level and variation range are applicable for MCS with mentioned distributions. 

 

Figure 28. Simulated time-independent weekly spot prices for 15 years validated against 

time-dependent realized prices 2012–2016 (real data: eex.com 2017). 
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Phase 5: Arbitrage revenues 

Simulated spot price determines base level for arbitrage value. However, due to the lack 

of time-dependencies and large weekly resolution, actual arbitrage revenues are not 

calculated from spot prices, but from arbitrage value distribution. Arbitrage value here 

means potential arbitrage profits during a one-week period. The distribution is estimated 

by calculating a weekly arbitrage value for 1 MW / 1 MWh BESS from hourly spot prices 

in 2012–2016. The weekly arbitrage values were calculated by applying an arbitrage 

algorithm from Connolly et al. (2011: 4195) for 24 hours ahead.  

The algorithm is based on determining maximum price hour in given time horizon and 

determining minimum price hour in relevant range around the maximum hour. The 

difference between the prices determine arbitrage value from shifting energy from 

minimum to maximum hour. Based on these price differences and BESS power and 

energy capacities, the algorithm determines charging and discharging hours. Weekly 

arbitrage profits are calculated by summarizing these individual values. The algorithm 

was translated in VBA -script and utilized in spreadsheet program for calculations. The 

algorithm is represented in figure 31. Detailed information is available in the original 

article (Connolly et al. 2011).  The algorithm with day-ahead approach is shown to harvest 

97 % of the optimal arbitrage potential (Connolly et al. 2011: 4190). 

The resulting arbitrage values give absolute arbitrage revenue distribution. However, 

there is a slight linear relationship between weekly spot average and arbitrage revenue. P 

value for linear regression between the two is 0,137 and thus too large for deriving 

arbitrage values straight from simulated spot prices. However, the slight linear 

relationship and arbitrage revenue uncertainties are captured by dividing weekly arbitrage 

values by respective weekly spot average. This arbitrage ratio ties arbitrage level to 

simulated spot prices, but allows modeling the variation around the average. Thus, it 

allows reliably deriving arbitrage revenues with different simulated spot price levels. 

Arbitrage ratio distribution and distribution fits are illustrated in figure 29. The best 

distribution fit is reached with lognormal distribution (LOGN[2,1617867, 0,3572595]). 
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Figure 29. Empirical arbitrage ratio (weekly arbitrage profits / weekly spot average) 

distribution calculated from 2012–2016 German spot prices illustrated with theoretical 

distribution fits (real data: eex.com 2017).  

The approach and applied distribution are validated with random simulations for five-

year horizons as illustrated in figure 30. The model gives slightly higher revenues at the 

higher half of the revenue distribution. However, majority of the simulated values are 

very close to realized values. In addition, with 95 % success rate, arbitrage represents 

insignificant share in total revenues. Thus, the bias has very small effect on overall model 

output and the arbitrage modelling is accepted for MCS. 

 

Figure 30. Simulated five year and realized (2012–2016) arbitrage values in descending 

order for Germany (real data: eex.com 2017). 
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Figure 31. Algorithm for calculating time-shifting arbitrage revenues (Connolly etc. 

2011: 4195). 
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Phase 6: Model validation 

Composed model validation is performed by evaluating cost and revenue structure, levels, 

and variations. Figure 32 shows revenue and cost factors for one random simulation for 

15 years. Whereas, figure 33 shows free cash flows for 15 years from 50 simulations with 

density function. The figures illustrate valid cash flow levels with relevant variation. The 

same applies to cost factors. In addition, revenue/cost ratio is relevant for such capital 

intensive investment while annual free cash flow variation and output distribution is well 

in line with the expectations. Thus, the results confirm the model relevancy. 

 

Figure 32. Simulated cost and revenue structure with respective free cash flow for 15 

years for one random simulation for German PCR market. 

 

Figure 33. Free cash flows from 50 simulations for 15 years with respective density 

function for German PCR market. 
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4.3.3 Simulation model – the UK 

MCS model for the UK is based on an assumption of a yearly EFR market in the future. 

The assumption is made based on TSO’s anticipation of the future developments and will 

be further discussed in chapter 5. The integrated revenue stacking opportunities from the 

capacity market are another major difference to the German model. Otherwise the model 

approaches and applied business models are identical. MCS model framework for the UK 

market is illustrated in figure 34. The parts are discussed below in 6 phases while 

additional assumptions used in the final model are represented in section 4.3.4. 

 

Figure 34. Monte Carlo simulation model framework for the UK. 
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Phase 1: market selection 

Market selection and success rate in the UK is evaluated from the initial 2016 EFR tender 

bids. The lowest accepted price was 7 £/MW/h and by bidding minimum price the success 

rate is regarded as 100 %. On the other hand, the total bidding volume was slightly more 

than 5100 MW with average price of 21,70 £/MW/h. Volume of accepted bids represent 

3,9 % of all bids and this is regarded as low end of success rates. Prices 7–21,70 £/MW/h 

and respective success rates 100–3,9 % are filled linearly and expected total returns are 

calculated for 15 years as product of amount of total hours, success rate and respective 

hourly price. The best result is reached with bidding price 11,41 £/MW/h, which yields 

in 71,2 % success rate. This rate is used as a base rate for MCS. Of course this is a very 

artificial estimation, but gets support from tender realization: the highest accepted price 

was very close to prevailing optimal bidding price. In addition, since the competition is 

fierce among BESSs in EFR, it is relevant to assume that the success rate in future is 

clearly lower than in German auctions. EFR tender realization is discussed more later on.  

Phase 2: EFR price 

EFR prices are simulated on two levels: five-year average and yearly bid. The simulations 

and calculations are carried out in euros. Since there is no available price time series or 

reliable forecasts, five-year average prices are simulated based on optimistic, realistic and 

pessimistic views. The views are combined in probability distribution by using triangular 

distribution, where lower boundary, mode, and upper boundary represent the views 

respectively. For base simulations, lower boundary is set to the lowest accepted price in 

2016 EFR tender (8.12 €/MW/h), mode to the average of accepted bids (10.95 €/MW/h) 

and upper boundary to a five-year realized average in German PCR market (18.56 

€/MW/h). The lower end is set so low due to very intense competitive outlook on market. 

The average is regarded as the most probable outcome in the future and thus it is chosen 

as a mode. On the other hand, it is seen unlike that the prices would increase above 

German level from already low levels and thus the maximum limit. Uniform distribution 

is rejected due to a relatively wide price spread, which is considered to yield in 

unnecessary strong revenue fluctuation in MCSs. Simulated prices with above parameters 

are illustrated in figure 35. 
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Figure 35. Simulation results from 5000 iterations for five year average EFR price with 

cumulative development for the UK. 

Annual prices are derived from lognormal distribution as in Germany. Log normality is 

assumed since short and medium term price driving process is fundamentally expected to 

be comparable to the one in Germany. The estimated lognormal distribution provides a 

scaling factor, but the yearly price is calculated as a product of the five-year average and 

the scaling parameter. Estimated parameters are derived from the ones used in the case of 

German half-year prices with downwards adjustment as the time resolution is longer in 

the UK. Estimated distribution is LOGN [-0,01109; 0,11] and simulated annual prices 

with 2016 EFR average price are illustrated in Figure 36. The figure shows also minimum, 

maximum and average prices of accepted bids in 2016 tender. The simulations fit well in 

realization range with the identical average and thus support the parameter estimations. 

 

Figure 36. Simulated EFR prices from 1000 iterations and respective density function 

validated against 2016 realization (real data: National Grid 2016d). 
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In our MCS the prices are turned to annual revenues by simply multiplying the prices 

with sold hours. There is an assumption that 10 hours is reserved for annual scheduled 

maintenance and thus there are 8750 sold hours annually. In addition, looser availability 

requirements in the UK give some leeway for maintenances. For the same reason, there 

is no consideration on unavailability costs in the UK simulations. 

Phase 3: spot price 

The spot prices for the UK are modelled in yearly and weekly levels. Uniform distribution 

U[46; 56] (€) is applied for yearly spot price. The limits reflect 2013–2016 realization 

minimum (49,12 €/MWh) and maximum (59,05 €/MWh) with slight downwards 

adjustment due to decreasing price trend (data: Nord Pool 2017). Whereas, weekly 

average prices are simulated as in the German model: the distribution of weekly average 

variation around the annual average is explored and theoretical distributions are tested 

against the data. The best fit is reached with lognormal distribution LNORM[-

0.007597563; 0.111931822] and the results are illustrated in figure 37.  

 

Figure 37. Distribution for the UK's weekly spot price variation around yearly spot 

average with fitted theoretical density functions (raw data: Nord Pool 2017). 
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Phase 4: arbitrage revenues 

Arbitrage value distribution is estimated by calculating weekly arbitrage values for 1 MW 

/ 1,5 MWh BESS from the 2013–2016 UK spot market data with the algorithm illustrated 

in figure 31. Similar linear relationship between weekly spot price level and arbitrage 

value was identified as in the case of Germany. However, in the case of the UK p value 

for the estimated regression model is well below 0,05 limit and thus the relationship is 

statistically significant. Nevertheless, the residual spread is relatively large as can be seen 

in figure 38. Thus, the arbitrage values are modelled from arbitrage ratio (weekly 

arbitrage value / weekly spot average) distribution as in the case of Germany. 

 

Figure 38. Linear relationship between arbitrage revenues and weekly spot price in the 

UK. Predicted values as dark dots and observed in green. Large residual spread isy visible 

as observed values are quite far from predicted ones rejecting linear regression modelling. 
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Calculated arbitrage ratio and fitted theoretical distributions are illustrated in figure 39. 

The graph reveal somewhat questionable fit, while lognormal distribution 

LOGN[2.2727675, 0.3310178] provides the best fit. However, validity is confirmed in 

cumulative density graph in figure 40. The graph shows that the fit indeed is best with the 

lognormal distribution and is cumulatively actually relatively good. 

 

Figure 39. Distribution for arbitrage ratio (weekly arbitrage value / weekly spot average) 

in the UK (raw data: Nord Pool 2017). 

 

Figure 40.Cumulative density for simulated weekly arbitrage ratio (weekly arbitrage 

value / weekly spot average) with fitted distributions in the UK (raw data: Nord Pool 

2017) 
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Phase 5: capacity market revenues 

Capacity market (CM) is a revenue stacking opportunity that will be further discussed 

later in section 5.2.2. Nevertheless, it is a valuable opportunity for enhancing financial 

performance through BESS lifetime. The basic principle is that assets accepted in CM 

receive fixed payment for maintaining the generation capacity for the TSO’s possible use 

in extreme situations.  

CM price has been fluctuating between 24.07–27.55 €/kW/year without significant trend 

in 2014–2016 (data: National Grid 2016c). Thus, the price is modelled plainly from 

uniform distribution U[24,07; 27,55] €/kW/year. Probability for getting an agreement in 

any year is estimated to be 25 % since that is the percentage of BESS in 2016 auction that 

was accepted (500 MW / 2000 MW). Potentially achieved CM agreement in any year is 

expected to continue until the end of BESS life time. This is assumed due to realized long 

agreements granted for BESSs. However, since the auctions are held four years before 

the commitment period, the first four years are excluded from CM revenue option.  

Phase 6: Model validation 

Prevailing model is tested and validated with a random simulation output analysis. As 

earlier, the validation is carried out with revenue and cost structure analysis together with 

free cash flow analysis. Cost and revenue structures with respective free cash flows for 

one 15-year horizon are illustrated in figure 41. As visible, on revenue side EFR revenues 

are dominating and show reasonable levels. On the other hand, annual market and 

relatively low success rate are visible during four years when BESS is not successful in 

EFR and is operating in arbitrage. Arbitrage revenues are also realizing in reasonable 

level around 26 k€/MW/year being significantly lower than EFR. In addition, CM 

revenues are visible with appropriate volume. Revenue/cost ratio represent also a relevant 

pattern. As such, random simulation results support the model well. 
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Figure 41. Cost and revenue structure (per MW) for the UK with respective free cash flow 

for 15 years for one random simulation. 

Notable is that the outputs from the UK model vary much more than in German model. 

The variation is visible in figure 42 with 50 free cash flow simulations revealing the three 

revenue levels. The levels are EFR and arbitrage revenues with and without CM revenues. 

However, the variation range reflects the reality, since the UK incurs significantly higher 

uncertainties, and is regarded relevant. As such, the UK model provides sufficient and 

reliable outputs for further analysis. Thus, the model is validated and MCSs are performed 

with introduced parameters.  

 

Figure 42. Annual free cash flows (per MW) with 50 iterations and respective density 

function for the UK. The lowest value peak represents arbitrage without CM, the second 

peak is arbitrage with CM and the last one includes EFR with and without CM revenues. 
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4.3.4 Valuation assumptions 

Investment evaluations are built on assumptions of future by nature. This is the case also 

for applied distributions. In addition, in order to calculate output values, some additional 

assumptions are necessary. They are summarized in table 15 and further commented 

below. Both countries are simulated with identical assumptions if not stated otherwise.  

Table 15. Summary of assumptions used for MCS in case of both Germany and the UK. 

1. NPV Discount rate 6 % 

2. Current BESS investment cost 450 €/kW, 440 €/kWh 

3. Balance of plant costs 120 €/kW 

4. Auxiliary power 75 MWh/year/MWh 

5. Power loss, 90 % round trip efficiency 0.90 MWh/day 

6. Unavailability 3 % 

7. O&M costs 11000 €/year/MWh 

8. Personnel costs 5200 €/year 

9. Corporate tax 30 % DE, 19 % UK 

 

 

1. Relatively low real discount rate of 6 % is used due to current low interest rates, which 

are expected to continue for years, and due to inflation ignorance. In addition, 

questionable financial performance combined to strong willingness to invest in 

BESSs imply that the industry currently in general uses low rates for the technology. 

2. &   3.  Current investment costs are based on cost review in section 3.2.1. 

4. Auxiliary power stands for internal BESS consumption, which is mainly a result of 

operating battery cell cooling, heating and controlling systems. The annual figure is 

estimated based on estimation of average power need around 8.6 kW per MWh 

capacity, which is regarded as a relevant figure based on empirical experience.  

5. Power losses result from energy inefficiencies within BESS. 0,90 MW/day is applied 

when operating in frequency regulation whilst the cost of losses in arbitrage is 

included already in arbitrage revenues. 0,90 MW/day per MW is based on technical 

simulations by Saulny (2017). The cost is assumed due to long term expectation of 

symmetrical regulation volumes, which leads to a need to compensate energy losses. 
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6. Relatively low service unavailability of 3 % is assumed due to available well-

developed controlling systems and allowed asset pooling. In addition, technology 

itself is relatively reliable and maintenances can be scheduled effectively. 

7. O&M costs are high level estimations based on empirical experience. 

8. Personnel costs are estimated based on assumption of two hours of required weekly 

operating and trading personnel time with 50 € / h cost. 

9. Only corporate taxes are taken into account since energy related taxes and levies are 

exposed to uncertain and developing regulation. In addition, cost quantification would 

require technical simulations in order to determine generation/consumption patterns. 

BESS may also be embedded in existing power plants, which potentially frees the unit 

from consumption taxes. As such, the taxation approach here is rather optimistic. 

Auxiliary power, power losses and unavailability costs are valuated based on simulated 

weekly spot prices. Investment cost, O&M and personnel costs have fixed effect on 

outputs whilst discount rate and corporate taxes have a relative effect by nature. Corporate 

taxes are used to calculate free cash flow for profitability calculations. Free cash flows 

(FCF) here are calculated as EBIT*(1-tax rate) + depreciation. Investment depreciation 

is calculated as straight-line depreciation. 

The simulations and valuations are performed for small 1MW BESS. Applied energy 

capacities are 1,5 MWh (DE) and 1 MWh (UK). The small size allows assuming price 

taker role and negligible dynamic price effects on market. These c -rates are based on 

current installed capacity on the markets and thus makes the results comparable in general 

and scalable for larger BESSs with identical c -rates of 0,67 (Germany) and 1 (UK). 

However, it is to be noted here, that the c-rate for actual EFR units in the UK is unknown 

since no figures have been published yet. 
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4.3.5 Simulation limitations 

The most significant limitation in models is linked to fundamental choice of modeling 

market operations rather than BESS operations. In our chosen markets BESSs are 

operating based on system frequency and thus the frequency determines actual BESS 

operations. In our case, this means ignoring technical constraints. For instance, frequency 

determines the charging cycles which determine actual life time of the battery. In addition, 

deterministic simulations from the frequency data would provide information on 

generation/consumption patterns, which would enable evaluating possible energy 

taxation effects and unavailability costs more in depth.  

On the other hand, combining deterministic operational simulations with stochastic 

market simulations would be interesting but also somewhat irrelevant. In fact, the 

deterministic simulations would provide uncertain results anyway as the simulations 

would be carried out under uncertain markets. This allows simulating straight the 

stochastic financial effects of the technical aspects instead of the actual operations.   Thus, 

taking into account the nature of the study the chosen approach is well supported. 

However, the chosen market approach has its limitations as well. By using probability 

distributions for modeling, there is no chronology in the data. In addition, there is no 

information of the future distributions. Indeed, in general, market prices are modelled as 

time series but since our target is to valuate and estimate investment performance through 

the whole 15-year investment horizon, the model includes summarizing weekly values to 

yearly values and further summarizing yearly values to investment case specific 15 year 

values. Composing the information dilutes effectively time-dependencies in data, making 

the case specific results and output distributions mostly dependent on average levels and 

deviations around the average. Furthermore, lack of historical data, especially for the UK, 

forces the researcher to use relatively high level estimations. Hence, modelling complex 

and detailed time-series, e.g. regime switching model for spot price, wouldn’t provide 

sufficient extra value for the research. This supports the researcher’s choice to model the 

uncertainties from static distributions. The approach still does not ignore long term 

average price paths, which are included in the models as five year averages.   
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5 INVESTMENT POTENTIAL EVALUATION 

Market analysis findings and hierarchical market evaluations are represented in this 

section. Each market is discussed and analyzed separately under each investment 

potential criterion. Finally, hierarchical AHP evaluations are derived for each criterion 

and composed to overall AHP evaluation. Evaluated issues and information is made 

available for reader in order to increase the transparency in subjective AHP rankings. To 

put the analysis in context the following provides short country specific background 

information. 

Germany 

German markets have been characterized as the most developed markets in Europe for 

deploying energy storages (German Trade and Invest 2016). The statement gets support 

from the wide range of reference installations and constant development in the industry 

sector. The market has been in focus of ES sector especially due to the country’s 

fundamental energy transition towards renewable energy sources (Energiewende), well-

functioning markets and favorable policies and subsidies.  

Large scale BESS penetration to German market started in 2014. This is when the first 

European commercial battery storage system was launched in the country (German Trade 

& Invest 2016). Since that, numerous commercial and R&D projects have been integrated 

in German grid and started operating in PCR market. The overall increase of ES capacity 

is likely to continue also in the future, whilst business models are still shaping. 

The United Kingdom 

The balancing mechanism and markets in the UK are more complex compared to the ones 

in Germany. The electricity market itself is mature, but is also under significant changes 

while the increase of RES, the security of supply and the energy cost minimization are 

the driving forces. These developments have attracted interests and investments in ESs 

and more specifically BESS sector in the UK.  



77 

 

 

However, the sector is new in the UK as the main revenue source, EFR, for the technology 

is not even operational yet. Thus, the market includes relatively high amount of 

uncertainties reflecting the risk level in the market. A complete wild card is also the UK’s 

approaching EU exit. Despite the challenges, ESs are expected to have an integral role in 

the UK’s power system in a long term (Allan, Wilson, McGregor & Hall 2010: 4105). 

However, the business models in general are evolving also in the UK. Indeed, complexity 

of potential ES revenue streams are underlined as one of the main barrier for deploying 

ESs in the UK (Energy and Climate Change Committee 2016). 

5.1 Market scheme suitability 

The chosen markets are differing a lot structurally and principally and thus naturally 

represent very different business making environment. This framework and its suitability 

for BESS market participation are critical factors in decision making as they determine 

largely how the market participants make business and how cash flows are generated. The 

following market scheme suitability analysis is largely based on the market principles 

discussed in chapter 2. The principles and characteristics are summarized in table 16. 

Table 16. Summary of German PCR and the UK’s EFR market characteristics. 

 
Germany the UK 

Market principle Joint tender Tender 

Period 1 Week 4 Years 

Payment based on Capacity only Capacity only 

Payment amount Pay-as-bid Pay-as-bid 

Bid range 1–150 MW 1–50 MW 

Pooling allowed Yes Yes 

Availability requirement 100 % 95 % 

Unavailability penalty Proportional Proportional 
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5.1.1 Suitability analysis 

Germany 

German joint weekly PCR tenders with neighboring countries offer frequent and thus 

flexible entry interval. The system is well-functioning with its transparent 

Regelleistung.net online market platform. There is already a relatively long history 

providing certainty and predictability for future cash flows. The scheme indeed provides 

simple cash flow generating principle through predetermined pay-as-bid capacity 

payments. Pay-as-bid system also allows applying different bidding strategies enabling 

some leeway around the average prices. This fact indeed gives a change to gain above 

average prices with successful bidding. The prices may be gained with wide range of 

installations due to minimum bidding size of 1 MW and very flexible pooling policies.  

There are still some drawbacks, too. Weekly tender period is still somewhat long in case 

a bid is not accepted: failing in bidding process might result in unacceptably low 

utilization rates especially in case of frequent bid overpricing. Furthermore, availability 

requirement and penalty policies are very strict in Germany compared to the UK. In case 

the unavailability occurs once, the received bidding price is diminished proportionally to 

a time period and the amount of frequency controlling not delivered (Consentec 2012: 

14). Nevertheless, the proportional penalty cannot be used as a buffer: in frequent cases, 

TSO holds privilege to impose penalty of ten times this diminished amount and to 

invalidate pre-qualification required for bidding (Consentec 2012: 14). The policy limits 

standalone installations as ensuring the availability, by controlling state of charge, while 

being in service is problematic. Embedding BESS in existing power portfolio reduces the 

problems by providing back up capacity and flexible charging power. Thus, for new 

market entrants, close collaboration with another utility company might be needed. 

As such, German PCR market is well structured with robust reimbursement logic. As an 

international market, it offers effectively access to large tendering volumes. In addition, 

flexible pooling policies enable market participation with a wide range of assets. 
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Drawback in the German market scheme is the strict availability policies, which increase 

BESS investment costs via relatively large energy capacity preference.  

The UK 

British scheme is more or less comparable to the German one, but it does not have a 

comparable history. However, current EFR scheme in the UK as a tendering for fixed 

period with only capacity payments based on pay-as-bid principle follows the basic 

characteristics of German market. It provides systematic and transparent framework with 

clearly determined payment logic. Availability requirement and unavailability policies 

are more suitable in for BESS in the UK: 95 % service requirement is realistic. In addition, 

there is no strict treatment in frequent unavailability as the proportional penalties are 

applied in any case. The fact helps especially standalone application operations, but may 

reduce also investment costs via smaller needed energy capacity meaning higher c-rate. 

Nonetheless, the TSO does not allow using the policy for offering another services 

affecting actual EFR delivery (National Grid 2016f: 9). 

In contrast to Germany, there are some significant distinctive concerns and entry barriers 

arising from future commercial viability that can be divided in two categories: 

1. Uncertainty on future market scheme 

Currently there is no decided EFR market scheme for the future. However, the 

TSO assumes the market to be tender based (National Grid 2016f: 14). In 

addition, annual tenders for long term contracts and monthly ones for short 

term contracting are anticipated by the TSO (National Grid 2016f: 21). This 

gives positive outlook for future and reduces risk related to the second point. 

2. EFR contracting time span  

The span is long with four year contracting but not long enough to provide 

financial security over BESS lifetime. This also reflects the uncertainty after 

potentially successful bidding: what are the changes to win a contract in future 

tendering and what are the alternative revenues in case of not getting accepted 

in EFR. Thus, the current period incurs significant risks. 
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5.1.2 Hierarchy evaluation 

German market scheme is evaluated to have moderate to strong advantages over the UK. 

Even though the UK has an advantage in terms of availability policy, the issue does not 

change the big picture: the UK lacks a determined future market scheme with 

predictability and revenue certainty. Evaluation quantification is represented in table 17. 

Table 17. AHP Matrix: market scheme suitability. Column w shows the local priorities. 

  DE UK w 

DE 1 4 0,80 

UK 0,25 1 0,20 

 

5.2 Cash flow generating potential 

Cash flow generating potential is analyzed and evaluated through frequency regulation 

price level and revenue stacking possibilities. Annual and discounted cash flows per 1 

MW for both markets are then derived for 15 years period with 6 % discount rate. The 

analysis vary relatively much as the timespan for available data is very different. 

5.2.1 Price level analysis 

Germany 

Although pay-as-bid market allows speculating with different bidding strategies, the 

generated cash flows in long term are naturally highly dependent on average price level. 

Weekly PCR market price in joint tenders averaged around 2500 €/MW in 2016. Long 

term 2008–2016 yearly averages have been fluctuating around average of 3300 €/MW 

with a slight decreasing trend. The trend is concerning as recent 2017 tenders anticipate 

the long term decrease to continue. Annual averages for 2008–2017 are illustrated in 

figure 43. 2017 Numbers include ten first weeks of the year. (Data: Regelleistung.net 

2017f.) 
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Figure 43. Average PCR weekly price (€/MW) in joint auctions with dotted trend line 

(data: Regelleistung.net 2017f). 

However, the annual averages do not reveal realized relatively high volatility of 10,24 %. 

Volatility is defined as magnitude of price variations and calculated as standard deviation 

of logarithmic returns. Volatile auction results are represented as hourly prices in figure 

44. The figure 44 illustrates also trends over long and short term. Long term trend is 

captured by linear approximation, whilst short term trend is calculated as moving average 

for rolling half-year periods. There is also a recurrent price increase during summers and 

spikes in turn of the year. The seasonality effect is illustrated in figure 45. 

 

Figure 44. German joint auction PCR price development 2008–2016 (2017 first ten 

weeks) (raw data: Regelleistung.net 2017f). 
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Figure 45. 2012 - 2016 Average weekly PCR price seasonality during 2012–2016 in 

relation to yearly averages (value 1) (raw data: Regelleistung.net 2017f). 

As such, the market offers somewhat potential price level, but with volatile prices. Price 

fluctuation is not relatively strong only between weeks, but also during half-year periods 

and annual averages. Also the price spread among the weeks has been varying much as 

discussed in section 4.3.2. However, some of the volatility is explained by a strong 

seasonal pattern, which also enables more effective price forecasting. Nevertheless, 

discounted cash flows (15 years, 6 % rate) result in NPV of 1250 €/kW with 2016 prices 

and 1850 €/kW with 2016 prices. Respective annual cash flows are 130 and 190 €/kW. 

As such, the cash flow generating potential in PCR market indicates somewhat sufficient 

levels, but price development and volatility are reflecting some disquieting downside. It 

is well founded to assume that decreasing price trend continues moderately also in future 

as the competition tightens. The competition issue is further discussed in section 5.4.2. 

The UK 

Pay-as-bid system allows relatively large spread also in the UK and thus different 

financial performance among the EFR providers. Indeed, in the first EFR auction in 2016 

the lowest accepted price was over 40 % smaller than the highest one with price spread 

of 8,12–13,89 €/MW/h (7,00–11,97 £/MW/h) (data: National Grid 2016d). Weighted 

average price for the accepted bids was 10,95 €/MW/h (9,44 £/MW/h). As such, the 

hourly prices are significantly lower than the ones in German auctions in general. 
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In fact, in the initial auction most of the investors valuated their BESS projects clearly 

higher than the realized prices. The accepted bids were from the very beginning of the 

price distribution, while the most frequent bidding price and weighted average was 

around 23 €/MW/h (20 £/MW/h). Thus, the distribution does not indicate strong support 

for profit generation potential with the realized price level. Potentially the winning bids 

were significantly riskier positions with a strong willingness to be first in the market. The 

realized bidding price distribution is illustrated in figure 46.  

 

Figure 46. 2016 EFR Tendering price (£) distribution of all bids (data: National Grid 

2016d). 

Actual annual and discounted cash flows for three different price scenarios derived from 

accepted EFR bids are illustrated in figure 47. The scenarios are based on the average 

(10,95 €/MW), highest (13,89 €/MW) and lowest (8,12 €/MW) prices among the accepted 

bids. The annual cash flows with the range of 71–122 €/kW yielding in NPVs of 690–

1200 €/kW. The figures are significantly lower than the ones in Germany and thus signal 

from very challenging financial conditions for the units if operated only with EFR 

revenues. 
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Figure 47. Net present value (15 years, 6 %) of cumulative and annual cash flows from 

EFR market with the average, the highest and the lowest accepted prices in 2016 tender. 

The price level in coming EFR tenders is a concern in the UK. It might be hard to lift the 

price closer to German prices as the competition seems fierce (see section 5.4.2) and the 

initial price is already so low. Thus, it is expected that the prices in the UK remain low at 

least in near and medium term substantially decreasing the investment potential. 

5.2.2 Revenue stacking opportunities 

Currently there are no relevant revenue stacking opportunities simultaneously with PCR 

in the German market. This is especially due to 100 % availability requirement. 

Furthermore, Germany in general pushes power markets towards transparent and 

undisrupted price formation. For instance, capacity reserves are not allowed to operate in 

electricity markets (Federal Ministry for Economic Affairs and Energy 2017c). Such 

attitude and regulation imply that stacking might be difficult in Germany also in future. 

In contrast to Germany, there is a simultaneous revenue stacking opportunity from 

capacity market (CM) in the UK. The CM revenues are stackable with actual revenues 

from energy and ancillary service markets (Department for Business, Energy & Industrial 

Strategy 2016). CM covers both generation and demand side assets procured for back-up 

capacity in order to ensure supply security. The procured capacity is auctioned yearly and 
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payments are paid for maintained capacity. CM auctions have been organized annually 

since 2014 whilst BESSs made their breakthrough in 2016 with 500 MW of new 

contracted capacity for 12–15 years starting in 2020/2021 (data: National Grid 2016c). In 

total, there were around 2000 MW of bid BESS capacity in 2016 (National Grid 2016c).  

In 2016 CM auction (delivery starting 2020/21) BESSs were rewarded with around 500 

MW capacity and with yearly clearing price of 26,1 €/kW (22,5 £/kW) (National Grid 

2016c). Thus, additional yearly gross income would be 26 100 €/MW (22 500 £/MW) 

and give significant increase in cash flows. Indeed, CM revenues result in 18–27 % share 

of total revenues with different EFR prices. NPVs are illustrated in figure 48.  

 

Figure 48. Discounted (15 years, 6 %) total cash flows from the UK’s EFR and CM 

market with the average, the highest and the lowest accepted prices in 2016 EFR tender 

and achieved price in 2016 CM tender. 
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well. Furthermore, the regulatory authority has proposed a removal of the incentive from 

embedded generators (i.e. the status for ES connected to distribution grid) (Ofgem 2016).  

5.2.3 Hierarchy evaluation 

All in all, the cash flow generating potential solely from EFR in the UK is significantly 

less than in Germany’s PCR market. On the other hand, more multifaceted market 

provides valuable revenue stacking opportunity in the UK. However, these additional 

revenues come with great uncertainties, are incremental by nature and thus provide very 

limited revenues exploited solely. Thus, the UK market can be stated relatively 

unattractive and less potential than Germany’s from cash flow point of view. Price level 

and revenue staking AHP comparison matrices are in table 18 and 19 respectively.  

Table 18. AHP Matrix: price level. Column w shows the local priorities. 

 DE UK w 

DE 1 7 0,88 

UK 0,14 1 0,13 

Table 19. AHP Matrix: revenue stacking opportunities. Column w shows the local 

priorities. 

 DE UK w 

DE 1 0,125 0,11 

UK 8,00 1 0,89 

 

5.3 Regulation and support policies 

Regulatory framework plays naturally a significant role in both markets. However, 

despite the attention ESs have gained, regulation is surprisingly immature in general. Not 

only in the chosen countries but also in EU level. The following elaborates the most 

relevant regulation and support policy issues country specifically under three criteria.   
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5.3.1 Regulation suitability 

Germany 

German plays a significant role in EU’s energy policy development and respectively EU 

policies have a significant impact on the German markets. EU’s energy market legislation 

itself is a large regulatory whole. However, EU-level legislation, specifically electricity 

directive 2009/72/EC, does not recognize ESs activities or assets. This usually results in 

treating ESs as generators within EU (Papapetrou, Maidonis, Garde & Garcia 2013: 14). 

There is no national recognition for ESs as their own asset class in German legislation 

either. However, Germany has taken somewhat differing approach from general EU 

approach: ESs are treated both as generation and consumption assets. Within the 

balancing system framework, the treatment is based on every 15 minute balancing period 

based on realized consumption and generation pattern (Bundesnetzagentur 2017).  

As a result, there is applied regulation, but ES business itself is unregulated. Furthermore, 

various ES projects have paved the way as there are established practices and consistent 

policy treatments for ESs in the country. However, treatment as consumer exposes ESs 

to related taxes and payments. Besides consumer side taxes, there are no other 

considerable regulatory challenges (Norton Rose Fulbright 2017). Regulatory 

development and clarification can still be expected in future in Germany. Indeed, it still 

has been pointed out that also in Germany the regulatory framework is somewhat 

immature for ESs and is constantly developed (Norton Rose Fulbright 2017).  

The UK 

There is no specific regulation concerning or identifying ESs currently in the UK either. 

However, in the UK ESs are regulated mainly as a generation asset (Department for 

Energy & Climate Change (DECC) 2016: 11). Generators in general need to hold 

generating license. Nevertheless, small generation units do not need to hold generation 

license if its power output to the grid is  

1. less than 10 MW; or 
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2. less than 50 MW in case of unit with less than 100 MW of declared capacity (The 

Electricity order 2001 No 3270). 

Thus, most BESS applications are exempted from the related costs and obligations. On 

the other hand, the license obligation is limiting large scale ES projects effectively to 50 

MW. It is still notable that there is a lot of regulatory unclarity as the regulation is 

currently being reviewed (DECC 2017: 3). In addition, despite the generator status ESs 

face significant tax disadvantages as further discussed later. In fact, non-existing 

regulation and related unestablished practices are a major disadvantage as the profitability 

predictability faces significant uncertainties and game changing developments may 

penalize early investors unreasonably. However, the regulator and governmental 

Department of Business, Energy and Industrial Strategy are regarded supportive towards 

ESs giving optimistic signals for future regulation (Hassan & Dalton 2016). 

5.3.2 Tax and payment obligations 

Germany 

Since ESs are regarded also as consumers, they are exposed to related taxes and payment 

obligations for charged energy. The problem is recognized by authorities and is taken into 

account by applying exemptions for ESs. Electricity taxation and payments in Germany 

for consumers is high in general. In 2016 the highest taxation for industrial electricity 

consumers in Europe was indeed in Germany, where non-recoverable taxes and levies 

summarized approximately half of total electricity price (Eurostat 2016). According to 

Eurostat (2015: 19–20), the additional taxes and payments for industrial end-users are:  

1. Concession fee (I.e. levy for financing rights to install and operate mains) 

2. Levy for renewables (EEG-Umlage i.e. reallocation fee for financing RES)  

3. Levy for combined heat and power (KWKG-Umlage)  

4. Levy for financing grid fee reductions (§19 StromNEV-Umlage)  

5. Compensation fee for offshore wind farms (Offshore-Haftungsumlage)  

6. Levy for demand side management financing (Umlage f. abschaltbare Lasten)  

7. Electricity tax. 
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Major costs result from levy for renewables, electricity tax and concession levy, which 

account for around 20 %, 8 % and 5 % respectively with slight yearly changes (Zeh, 

Müller, Naumann, Hesse, Jossen & Witzmann 2016: 5). In addition, there is a grid fee 

that accounts for about 20 % of the total electricity price. Nevertheless, under the German 

law (EnWG 2012, Article 118), ESs are freed from the grid fee, including all pegged taxes 

and fees (Zeh et al. 2016: 5). 

There are other exemptions too resulting in reduced obligations. Renewable Energy 

Source Act (EEG, Article 60) ensures that ESs are exempted from levy for renewables 

(Zeh, et al. 2016: 5). Furthermore, if electricity only from RES is charged and discharged 

by grid connected ES, the unit is exempt from electricity tax (StromStG, Article 9 Abs. 1 

Nr.1). This issue is solvable with guarantee of origins for renewables. There is also 

proceeding proposal for including ESs in electricity tax regulation so that they would 

enjoy tax exemption as regular generator (Janzen & Wippich 2017). Thus, ESs are 

exempted from major electricity consumption related taxes and payment obligations 

except the concession fee. However, taking into account the exemptions total tax charges 

yield in around 6,54 € / MWh of consumed electricity in 2017 and fluctuates between 2–

10 €/MWh in general (data: Bundesverband der Energie- und Wasserwirtschaft 2017).  

The UK 

Since, ESs are recognized as generation, electricity tax is not imposed in the UK. 

However, there are several environmental programmes affecting ESs in the UK. 

Furthermore, due to the unclear regulatory situation ESs are currently facing costs from 

both the generation and the consumption sides - even the generator status does not prevent 

the costs (Hassan & Dalton 2016). The relevant issues and effects are compiled below. 

1. Climate Change Levy (CCL) 

 

CCL is a tax charged for energy delivered to non-domestic energy end user. The tax 

amount for electricity in 2017 is 5,68 £/MWh (6.58 €) (Government of the UK 2016). 

Even though ESs are regulated as a generation, they are regarded end users during 

charging. Nevertheless, notice CCL 1/3 (section 10) (Government of the UK 2017b) 
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exempts BESS from main CCL rates for electricity not taken for fuel purposes. Tax 

authorities have also given CCL exemptions for individual projects (Hassan & Dalton 

2016). Thus, eventual CCL cost is uncertain with promising exemptions. 

2. Renewables obligation (RO) 

 

RO scheme supports large scale RES by imposing obligations on electricity suppliers. 

The suppliers are obliged to have certain amount of RO certificates for each delivered 

MWh. The costs of the obligations are collected from electricity consumers. Cost for RO 

certificate has been increasing and in 2017/18 it is substantial 18,64 £/MWh (21,60 €) 

(Ofgem 2017c). However, the actual amount depends on generation portfolio of the 

electricity supplier. In addition, the system will be diminishing as it will eventually be 

replaced by Contracts for Differences. 

3. Contract for Difference (CfD) 

 

CfDs are private contracts between the government owned Low Carbon Contracts 

Company and low carbon electricity generator (Government of the UK 2017a). The CfDs 

are a hedging possibility for the generators to fix their income on price strike level: the 

price difference between realized prices and the strike level is paid by the government’s 

company (Government of the UK 2017a). The CfD costs are paid by consumers and are 

dependent on future price levels. The cost is estimated to be several pounds per MWh. 

4. Feed-in Tariff (FiT) 

 

FiT scheme supports small scale RES production by ensuring reimbursement for 

domestic electricity producers. The payments are made by the licensed electricity 

suppliers and the costs are collected from electricity consumers. The cost was around 3 

£/MWh (~3,5 €) in 2016 (data: Ofgem 2017d).  

In addition to the above ones, confusing treatment as a generator while charged as 

consumer may result in double-charging in network charges (Hassan & Dalton 2016). 

Thus, the taxes and cost obligations are a major concern in the UK for ESs currently. 

They are also considerably higher than in Germany with level around 10–20 €/MWh. 
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5.3.3 Subsidies and financing 

Germany 

There are no straight subsidies for ESs in Germany currently. However, there is a national 

ES funding programme, Energy Storage Funding Initiative, provided by the German 

Federal Government in order to allocate funding for development of ES systems (Federal 

Ministry for Economic Affairs and Energy 2017a). Since 2012, around 200 M€ has been 

allocated to around 250 projects ranging from residential storages to megawatt scale grid 

applications (Federal Ministry for Economic Affairs and Energy 2017a). This explains 

for one’s part the rapid expansion of ES capacity in Germany in recent years. The program 

is full in present, but funding after the initiative is expected to continue under the 

government (Federal Ministry for Economic Affairs and Energy 2017a). Thus, the 

German support policies cover a wide range of ES applications. However, the policy is 

research driven and does not provide funding for ESs without a development focus.  

German government owned development bank KfW has also energy related financing 

programmes covering ES development. Currently, there is an ongoing 30 M€ funding 

programme supporting decentralized battery ES systems integrated with photovoltaic 

installations (Federal Ministry for Economic Affairs and Energy 2017a). Furthermore, 

the bank offers financing for projects supporting German energy transition in general.  

The UK 

There are currently no straight subsidies or financial support policies in the UK either. ES 

specific subsidies in future are also unlike (Hassan & Dalton 2016). This underlines the 

UK’s willingness to develop ES sector purely as a market driven solution.  

However, there has been a significant public funding for innovations and R&D project 

for ESs through Low Carbon Network Fund (Ofgem 2017b). Currently there is no such 

an opportunity in sight. Besides the governmental aid, e.g. the Research Council UK 

(RCUK) has supported ES R&D projects (RCUK 2017). This financing opportunity is 

expected to continue also in future, but solely for research projects.  
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5.3.4 Hierarchy evaluation 

While both countries have more or less confusing generator/consumer -treatment policies, 

the situation is clearer and more determined in Germany. Regulatory development in the 

UK is urgent and the problem is recognized: a new asset class for ESs has been proposed 

by The Energy and Climate Change Committee to solve unclarity issues (2016). In 

Germany there are no major signs that the attitude or developing ES regulation would 

change the role or financial performance significantly in near future. Comparison matrix 

for regulation suitability is in table 20.  

Table 20. AHP Matrix: regulation suitability. Column w shows the local priorities. 

 DE UK w 

DE 1 3 0,75 

UK 0,33 1 0,25 

 

While both countries expose significant tax and payment obligations for ESs, Germany 

has a clear advantage with its more favorable exemptions. Rough estimate shows that 

costs per charged MWh in the UK could be more than double compared to Germany. 

Thus, the UK has clear disadvantage as quantified in table 21. Nevertheless, the situation 

is likely to change in future as it goes hand in hand with regulatory development.  

Table 21. AHP Matrix: tax and payment obligations. Column w shows the local priorities. 

 DE UK w 

DE 1 5 0,83 

UK 0,20 1 0,17 

 

From subsidy and financing opportunity perspectives both markets are pretty much equal: 

there are no straight subsidies and financing aid is applicable only for R&D -projects. 

Nevertheless, Germany is slightly preferred also here as governmental and regulatory 
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attitude towards ES investments can be seen more favorable in Germany due to funding 

programmes. This fact provides some optimism for more generous financing conditions 

for future investments. Comparison matrix for subsidies and financing is in table 22 

Table 22. AHP Matrix: subsidies and financing. 

 DE UK w 

DE 1 2 0,67 

UK 0,50 1 0,33 

 

5.4 Size and Competition 

The chosen markets represent also very different business frameworks in terms of market 

size, its development and competitive environment. These issues have a strong impact on 

the investment potential especially in primary frequency regulation as the customers are 

limited and the deliverable service does not allow diversification.   

5.4.1 Size and growth 

Primary frequency regulation markets in general are fixed by volume. For instance, total 

primary control reserve capacity in continental Europe synchronous area is set to 3000 

MW (ENTSO-E 2009: 6). The amount is dimensioned to cover sudden disconnections of 

roughly two very large power plants. Thus, there is no organic growth potential in general.  

However, both countries are increasing their RES share of generating portfolio. Even 

though most of the RES balancing need falls on secondary and especially on tertiary 

control markets due to longer timescale, increasing intermittent RES generation may also 

have an impact on the future primary balancing need: RES decreases inertia due to 

reducing synchronous rotating masses in the power system. Thus they reduce the natural 

buffer that responds automatically to frequency changes. The volume growth potential 

from inertia development is incremental, but may have impact in otherwise fixed market. 
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Germany 

German proportion of the continental Europe 3000 MW, i.e. PCR market size, in 2016 

was 583 MW. Total market size including joint tendering areas averaged 806 MW in 

2016. After mid-January 2017, the area includes also France and thus the total market 

size jumped to around 1400 MW. As such, the joint tenders represent nearly half of the 

required reserve capacity in continental Europe. (Data: Regelleistung.net 2017f.) 

National German market size has been relatively stable over the past 10 years with minor 

fluctuation around 600 MW. In relation to the volume size, total market value has faced 

somewhat decreasing trend driven by the price development. The value has dropped from 

2008-2010 average of 120 million euros to 75 million in 2016. The market developments 

are illustrated in figure 49. (Data: Regelleistung.net 2017f.) 

 

Figure 49. German PCR market size and total value development based on tendered 

capacities and realized average prices (data: Regelleistung.net 2017f). 

German contribution to the whole continental Europe capacity is expected to remain at 

the same level in future. On the other hand, Denmark is planning to join the joint tendering 

system expanding the market size and increasing liquidity further (Regelleisgtung.net 

2017b). The market coupling would give some space for market and ES capacity growth 

in PCR market. Nevertheless, no other growth is expected in near or mid future.  
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The UK 

Current EFR market size in the UK is 200 MW as this is the procured capacity in the 

2016 tender. With the price realization the market value is around 76 M€ (66 M£) in total 

for four years. As such, total market is rather small and clearly smaller than in Germany.  

In addition to increasing RES, the UK’s coal condense plants will be closed by 2025 

(DECC 2016a). This development reduces system inertia and traditional frequency 

response capacity further resulting in greater “organic” growth potential than in Germany. 

In addition, in 2020–2021 the largest secured generation disconnection is increased to 

1400 MW consequently resulting in increasing fast frequency control capacity 

requirements (National Grid 2016a: 7). In this framework EFR market itself has growth 

potential. This is also supported by successful first tendering from the system perspective. 

The TSO has also expressed that it is expecting to see growing EFR demand (National 

Grid 2016f: 21). Indeed, forecasted EFR volume need is growing over the next 10 years 

(National Grid 2016f: 14). Nevertheless, absolute volume numbers are not available. 

5.4.2 Competitive environment 

In volume fixed market capacity increase may result in sudden competition tightening. 

Such development carries also a risk of critical price impact – especially in case of already 

volatile and sensitive prices. In addition, installed direct and indirect competition are 

threats for tendering success and cash flows from substituting revenue streams. The 

markets represent very different competitive environments as discussed below. 

Germany 

There are currently reported 287,6 MW of operational, contracted, announced and under 

construction BESS (> 1 MW) capacity in the joint tendering area (Sandia National 

Laboratories 2017). From that capacity 179,1 MW is reported to be used for frequency 

regulation. Germany represents clearly the biggest share with 19 reported PCR units. 
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As a result, straight ES competition within the tendering area is quite high. In Germany, 

the reported BESS capacity covers already 26 % of the country’s total PCR need. Within 

the whole tendering the coverage is 13 %. Although ES capacity covers only proportion 

of the market, it is notable that the capacity has penetrated the market within last few 

years. Compound Annual Growth Rate (CAGR) 2013–2016 realized in 130 %! The 

capacities are in table 23 and growth in figure 50. (Data: Regelleistung.net 2017f.) 

Table 23. Reported electro-chemical battery energy storage capacity in joint tendering 

area (data: Sandia National Laboratories 2017). 

Country Reporter 

power (MW) 

Reported 

units (pcs) 

*PCR 

(MW) 

PCR 

(pcs) 

Operational 

^(MW) 

Operational 

(pcs) 

France 14,8 7 6,3 3 12,8 6 

Germany 254,8 22 154,8 19 207,8 19 

Netherlands 17 3 17 3 17 3 

Switzerland 1 1 1 1 1 1 

Total 287,6 33 179,1 26 238,6 29 

*Reported to be used for frequency control. 

^Reported to be operational or contracted to operation. 

 

Figure 50.Reported BESS capacity growth (CAGR 2013–2016 130%) in Germany (data: 

Sandia National Laboratories 2017). (2017 Estimated increase + 50 MW). 

In addition to storage units, PCR capacity can be offered technically from most thermal, 

hydro and pumped hydro stations in Germany (Just 2015: 5). Indeed, all major large 
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2017e). In total, there are currently 22 companies prequalified only in Germany 

(Regelleistung.net 2017e). Thus, new BESS capacity is above all substitutive by nature. 

These issues alongside the fast BESS penetration underlines the tightening competitive 

environment in Germany. The situation may result in significant price slide supported by 

decreasing BESS investment costs and low utilization rates of conventional plants as their 

production is replaced more and more by RES, which drives them to seek other revenues.  

The UK 

The full EFR capacity is covered by BESSs during the first four-year period. This gives 

a very competitive set up for coming tenders as well. Thus, even in case of significant 

EFR market growth, BESSs are likely to play substantial role and face intense 

competitions in the market in future as well. More straight BESS competition might come 

through CM. If new BESS assets are awarded also in coming auctions, units with secured 

CM revenues would have clear competitive advantage in future EFR tendering. Such 

scenario would support continuum of low EFR price level. Notable is that the 500 MW 

of accepted BESS capacity in CM auction equals to 2,5 times current EFR market size!  

There are seven reported at least 1 MW BESSs in the UK with a total capacity of 43,5 

MW (data: Sandia National Laboratories 2017). The reported capacity does not include 

the 200 MW EFR capacity which will lift the growth figure (CAGR 2013–2017 to 160 

%. However, besides the EFR units only three are reported to aim primarily in frequency 

response services with total capacity of 32 MW. Capacities are illustrated in figure 51. 

 
Figure 51. BESS capacity evolution in the UK (data: Sandia National Laboratories 2017). 
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EFR response time requirement is effectively limiting the applicable technologies. Thus, 

indirect competition within EFR is likely to remain low. However, there is a significant 

number of generators available for the primary, secondary and high frequency controlling 

due to the mandatory capability for providing this service for large generators (=>100 

MW). For instance, from all large 167 generators 133 offered their capacity for primary 

frequency response cheaper than average EFR price in march 2017 (data: National Grid 

2017e). Thus, the environment outside EFR looks also very competitive. 

All in all, there is a relatively small number of BESS operators even after the EFR units 

become operational in the UK. This gives a lot of price setting power for even small 

players. Nevertheless, in the context of limited market size, competition flooded by 

BESSs and potential competitors in primary, secondary and high responses the situation 

signals from very unattractive competitive environment in present and in near future. 

5.4.3 Hierarchy evaluation 

German market is clearly preferred by volume as the national market is 65 % larger and 

the joint market seven times larger market by volume than in the UK. Nevertheless, 

German market is facing negligible growth expectations, which is the opposite in the UK. 

Consequently, Germany is seen only slightly superior to the UK as quantified in table 24.  

From the competition point of view both markets are facing a challenging environment 

in terms of both indirect and direct competition. However, the UK is regarded as an 

underdog due to its large potential response capacity resulting from mandatory frequency 

response, 100 % BESS coverage in EFR and additional BESS capacity penetration 

through CM. Comparison matrix for competitive environment is shown in table 25. 

Table 24. AHP Matrix: size and growth. Column w shows the local priorities. 

 DE UK w 

DE 1 2 0,67 

UK 0,50 1 0,33 
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Table 25. AHP Matrix: Competitive environment. Column w shows the local priorities. 

 DE UK w 

DE 1 4 0,80 

UK 0,25 1 0,20 

 

5.5 Risks 

Country specific risk profiles differ fundamentally: Germany as a more mature market is 

exposed more to risks related to the development of the current market, whereas the UK 

faces more fundamental risks related to existence of viable future market. The identified 

five risks are discussed and quantified below separately for both markets. 

5.5.1 Risk analysis 

Germany 

While the market has developed together with increasing ES capacity, related risks are 

becoming more visible. The identified risks are decreasing prices, increasing volatility, 

favorable policy abandonment, increasing competition and undesirable joint tender 

development.  

1. Decreasing PCR price level 

 

Very limited PCR market size, its minimal growth potential, already existing PCR 

providers and growing ES capacity are all significant factors that increase competition in 

the German market. The increasing competition puts pressure on prices and carry a risk 

of actual price war. Furthermore, decreasing ES investment costs push ES breakeven 

price level down, allowing further price slide and making the position of early investors 

very challenging. The risk is estimated to occur with 61–90 % probability with a serious 

impact.  

2. Increasing volatility in PCR prices  
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The spot volatility affects PCR volatility via conventional capacity (Hollinger et al. 2015: 

5). Also the dynamics of rapidly evolving PCR capacity can have surprising effects on 

volatility. The increasing volatility makes price level forecasting, and consequently 

effective bidding, more difficult resulting in more uncertain revenues. Hence, volatility 

pushes PCR providers towards restrained bidding strategies with lower prices as risk of 

not getting accepted grows. The risk is estimated to occur with 41–60 % probability and 

its impact would be moderate. 

3. Discharging favorable policies  

 

Favorable tax and surcharge treatments have been in a big role in developing Germany 

ES sector. Unexpected negative changes would have straight impact on profits. Thus, the 

results would be diminishing business potential across the ES applications. With 

relatively stable German political movements, the occurrence probability is estimated to 

be unlike (11–40 %) with moderate impact.  

4. Increasing competition  

 

It is clear that the competition in PCR market has increased in the recent years with 

increased BESS capacity. The risk of continuum is highly related to a price level risk as 

well, but above all it has a strong impact on bidding success. Fierce competition would 

inevitably push some capacity out of the market and thus endanger revenues of individual 

assets. The risk occurrence probability is estimated to be 61–90 % with a serious impact. 

5. Unfavorable joint tender development  

 

The joint auctions provide a unique framework with increased liquidity, larger market 

and currently less intense competition. Changes in import/export limitations, discharge 

of the joint area or further market expansion may diminish the business potential. 

Especially market opening for eastern European condense capacity could decrease the 

bidding success and impact on prices. Hence, the impact of such development would be 

moderate but the occurrence probability is estimated to be very small (0–10 %). 
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Risk positions in the risk matrix are illustrated in figure 52. Respective summarized 

numerical estimators (introduced in section 4.1.4) result in total riskiness indicator of 6,86 

in German PCR market.  

 

Figure 52. Risk matrix for investing in German. Numbering refers to identified risks. 

The UK 

The UK’s risk profile is labelled with uncertainties. The identified risks are tied strongly 

to major factors affecting profit generation and can be thus characterized as fundamental 

issues. The risks are further elaborated below and summarized in figure 53. 

1. EFR Service not continued with favorable market scheme 

 

The risk is not negligible as there is no operational experience yet and as the future market 

scheme is unknown. Thus, EFR might be scrapped, replaced by other response services 

or the whole frequency control system could be restructured resulting in uncertain 

revenues for BESSs. The risk is estimated to be unlike (11–40 %) with a critical impact. 

2. Stagnating and over competed EFR market 

 

For new investments EFR volume growth is essential not least because of fierce 

competitions with 100 % BESSs market coverage. The competition risk decreases 

investment potential significantly as penetrating would be very hard with proper return 

projections. Taking into account the growth and the capacity expectations, occurrence 

probability is estimated to be moderate (41–60%) with serious impact. 
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3. Undesirable price development 

 

Initial EFR prices give a significant price signal for coming tenders. This combined with 

the competitive environment makes a significant price recovery look unlikely. In 

addition, the price distribution shows that even now there would be plenty of providers 

willing to serve under the German price level. Thus, the risk occurrence is seen likely 

(61–90 %) with a serious impact. 

4. Unfavorable regulatory development 

 

Regulatory ambition currently is to form a solid and a commercially viable operating 

framework for ESs. The development still includes a risk of unfavorable outcome 

especially with EU exit. For instance, the role of the distribution network operators and 

the payment obligation issues are currently uncertain in the UK with a potentially 

significant impact on ES operators.  However, due to positive regulatory ambition the risk 

occurrence is estimated to be unlike (11–40 %) with serious impact. 

5. Vanishing revenue stacking opportunities 

 

The regulatory development might result in decreasing stacking opportunities. This is 

visible already as the triad revenues are advised to be removed. With potential new asset 

class ESs could be also marked off from the CM. As the stacking revenues are incremental 

and already uncertain, the occurrence (41–60 %) and impact are estimated to be moderate. 

 

Figure 53. Risk matrix for investing in the UK. Numbering refers to identified risks. 
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The riskiness indicator for the UK summarizes in 7,75, which is clearly higher than in 

Germany. The positioning between the two is well in line with the related discussions in 

the earlier sections. The differences are also visible in risk matrices, where the UK has 

relatively high concentration in serious and critical risks.  

5.5.2 Hierarchy evaluation 

The difference between the riskiness indices (6,68 / 7,75) is regarded as moderate and 

quantified as in table 26. Due to the nature of the risks, the UK’s overall risk profile 

exposes investors to more discrete revenues as some of the risks may completely ruin 

profit potential by themselves. However, it is still notable that BESS investors especially 

in the UK are willing to take significant risks taking into account the still low price level. 

The same applies to Germany with significant capacity growth and decreasing prices.  

Table 26. AHP Matrix: risks. Column w shows the local priorities. 

 DE UK w 

DE 1 3 0,75 

UK 0,33 1 0,25 

 

5.6 Future development 

In both markets ESs are recognized and expected to play a permanent role in future power 

systems. Whether the main role for BESSs is in primary frequency regulation is currently 

uncertain. For grid scale BESSs this is still expected to be the case at least in Germany in 

short to medium term future (FCBI-Energy 2015). However, additional country specific 

future issues that will potentially affect future market environment are discussed here. 
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5.6.1 Additional future aspects  

Germany 

Overall change of the German power system will have a significant impact also on PCR 

market and especially on its volatility. Hollinger et al. (2015: 5) point out that the cost of 

providing PCR for conventional power plants is highly dependent on the day ahead 

wholesale prices (opportunity cost). If increasing share of intermittent renewables 

influence and increase spot market price volatility, the effect on PCR market is two-sided. 

Firstly, volatility reflects increasing costs for conventional plants increasing their 

likelihood of providing PCR and thus increasing competition further (Hollinger et. al. 

2015:5). This especially results from increase of idling hours in spot market. Idling is 

increasing with volatility as the frequency of too low prices increases respectively. On 

the other hand, capital costs for batteries are declining and installed capacity currently 

increasing. Furthermore, their cost structure will be influenced by spot volatility very little 

(Hollinger et. al. 2015:5). Thus, the competition in German PCR market will most 

probably face significant increase in future also due to these developments. Consequently, 

new market participants can have significant impact on current PCR providers and future 

prices (Hollinger et al. 2015: 1). 

Notable is also that German balancing market settlement principle, pay-as-bid, has been 

argued and proposed to be changed to uniform pricing by several researchers (Müsgens, 

Ockenfels & Peek 2014: 401). Currently there is no formal actions taken to change the 

system. However, if proceeded, it would reduce information asymmetry exploitation 

possibility (Müsgens et al. 2014: 401) and reduce possibility to speculate with bidding 

strategies as the highest profit margin would always yield to the one with least costs. In 

highly competitive conditions, the uniform price could settle below BESS breakeven level 

and diminish the business potential. Hollinger et al (2015: 5) underline that bidding 

strategies play a critical role in profit generation from PCR market. 
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The UK 

The overall power system changes in the UK will have smaller effects on EFR market 

than the respective changes in Germany’s PCR market. This is especially due to strict 

EFR requirements that keep at least most conventional power plants out of the market. 

However, the system development affects indirectly via opportunity costs: emerging 

business models outside EFR may provide attractive choices potentially resulting in 

positive EFR price development. Such opportunities are not in sight for now, but they 

seem somewhat more potential in the UK with older overall energy infrastructure, more 

complex balancing market and more favorable attitude towards revenue stacking. 

Another future aspect in the UK is more related to regulatory framework. Up to present, 

the distribution network operators have been active in the UK’s ES sector with various 

R&D projects. However, whether this will continue is uncertain, as regulatory framework 

is not clearly defining yet if the network operators are facing ES owning and operating 

restrictions or not (Hassan & Dalton 2016). The same issue is under discussion in EU, 

but Britain’s EU exit confuses the situation further. ES deployment and competition is 

still expected to be market based as utilities and independent developers are expected to 

be the primary operators in the UK’s ES sector (Hassan & Dalton 2016).  

5.6.2 Hierarchy evaluation 

Additional future aspects do not provide significant preferences for one market over the 

other. However, as it is expectable that the UK’s system is more robust against overall 

power system changes, the country is slightly preferred in AHP. This is supported also 

by German pay-as-bid removal speculations. The comparison is in table 27. 

Table 27. AHP Matrix: additional future aspects. Column w shows the local priorities. 

 DE UK w 

DE 1 0,33 0,250 

UK 3,00 1 0,750 
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5.7 Composed market ranking 

Prevailing analysis and local priorities are composed to a global priority in table 28. 

Germany has an advantage in 8/10 of the criteria and thus represents relatively strong 

overall dominance over the UK. The UK has notable advantage only in highly speculative 

additional future aspects and revenue stacking opportunities. Meanwhile, Germany is not 

only prioritized with the rest but also represents clear distance to the UK in local priorities. 

As a result, global priority values are 0,77 and 0,23 for Germany and the UK respectively.  

Table 28. Composed AHP results. Germany is ranked clearly better. 

Criteria 1 2 3 4 5 6 7 8 9 10 W 

Weight 0,22 0,26 0,04 0,08 0,11 0,04 0,03 0,15 0,05 0,03 1,00 

DE 0,80 0,88 0,11 0,75 0,83 0,67 0,67 0,80 0,75 0,25 0,77 

UK 0,20 0,13 0,89 0,25 0,17 0,33 0,33 0,20 0,25 0,75 0,23 

 

Potential differences are also represented in figure 54, which illustrates potential as an 

area. The same conclusion is easy to make: the UK is far behind Germany. The results 

give clear preference for German PCR market over the UK’s EFR market while indicating 

much higher BESS investment potential in short and medium term. 

 

Figure 54. Global AHP priority illustration between Germany and the UK.  
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6 INVESTMENT SIMULATION ANALYSIS 

This section illustrates results from the investment analysis with Monte Carlo 

Simulations. Both countries are simulated individually based on the models explained in 

chapter 4, but for comparison purposes the results are composed below. The results 

include two sections. The first one explores current profitability and its components, 

whilst the second part focuses on demonstrating actual profitability boundaries. 

6.1 Base scenario profitability 

Base scenario simulations are performed to demonstrate financial performance of 

hypothetical BESS investment made in near future. The starting points for MCSs are 

current markets with related uncertainties whilst base scenario refers to initial uncertainty 

parameters discussed and illustrated in section 4.3. together with model structures. 

However, it is to be remembered that the UK is simulated based on assumption of yearly 

market. Other applied assumptions are introduced in table 15. Applied total investment 

costs are 1,23 M€ for German 1 MW / 1,5MWh BESS and 1,01 M€ for the UK’s 1 MW 

/ 1 MWh storage as illustrated in figure 55. Results are also scalable for larger units with 

identical 0,67 (Germany) and 1,0 (the UK) c -rates, which are the typical values for 

current installations in the countries. 

 

Figure 55. Applied investment cost components and total cost for BESS systems in 

Germany and the UK. 

UK (1MW / 1MWh)

DE (1MW /1,5MWh)

Total investment €

Power converion Storage section Balance of plant
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Base scenario simulations are run iteratively for 10 000 times. The iteration amount was 

validated by running 10k simulations for 10 times and comparing NPV averages and 

standard deviations from generated samples. The UK model was used for the purpose as 

it includes significantly higher variation and uncertainties. The results show only 0.02–

0.51 % variation in absolute average NPV values, whilst respective standard deviation 

results in 0.06–1.40 % variation. Such variation is regarded very small and outputs stable 

taking into account the complexity of the model and amount of uncertainties involved in 

it. Thus, the iteration amount gives sufficient accuracy and confidence on the results. 

6.1.1 Free cash flow 

Free cash flow distribution represents potential for sufficient financial performance: for 

capital intensive industry, annual FCF should be clearly positive in order to cover initial 

investment cost. Positive FCF indeed is the case for both markets, but the level, 

fluctuation, and structure look very different. Average FCF figures and their components 

for whole investment horizon are illustrated in figure 56 for both countries. 

 

Figure 56. Average free cash flows and its components for 15 year investment horizon. 

Error bars represent standard deviations. Numbers are valid and scalable for BESSs with 

0,67 and 1,0 c -rates in Germany and the UK respectively. 
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Price level analysis in section 5.2.1 indicated clearly higher revenue potential in Germany. 

The indication is confirmed by MCSs, which show around 1,5 M€ total average revenues 

during 15 years in the UK and 2,3 M€ in Germany. Variation in the UK is also a lot higher 

with 21 k€ standard deviation against 12 k€ in Germany. The variation reflects 

significantly higher uncertainty on price level variation in CM revenues in the UK. The 

CM revenues are slightly over 200 k€ with 80 k€ standard deviation. On the other hand, 

German revenues are almost solely generated from PCR -market while arbitrage and 

capacity market revenues count for 22 % share in total revenues in the UK. As such, 

average arbitrage revenues in the UK are 118 k€ while in Germany the figure is only 12 

k€. There are two main factors on that. Firstly, in the UK the arbitrage is performed more 

due to low success rate and yearly market. Secondly, the weekly arbitrage revenues are 

slightly higher in the UK due to greater volatility in prices. 

On cost side the aggregated average costs are around 520 k€ and 760 k€ in the UK and 

DE respectively. They are rather scattered among the cost components as discussed earlier 

in section 4.3.2–4.3.3. However, the higher costs in Germany are explained by higher 

corporate taxes, unavailability costs and higher required energy capacity. Nevertheless, it 

must be noted that excluded energy consumption related taxes are higher in the UK. 

Resulting total FCF is slightly over 1,5 M€ in Germany and 0.97 M€ in the UK with 80k€ 

and 170 k€ standard deviations respectively. The variation is relatively strong especially 

in the UK. The variation is understandable when looking into annual FCFs in figure 57. 

Clearly visible peaks in the UK represent years in arbitrage business with and without 

capacity market revenues. The distribution spread reflects overall uncertainties in 

markets. The resulting average annual FCF in Germany is 58 % larger than in the UK 

with figures of 102 K€ and 64 k€ respectively. Notable is that there are no negative FCFs 

at all and thus operational and maintenance costs are covered every year. As such the FCF 

outcome reflects clearly the differences in market characteristics while indicating 

challenging profitability conditions. 
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Figure 57. Simulated annual free cash flow distributions for Germany and the UK. 

Germany shows higher and more certain free cash flows. 

6.1.2 Net present value 

Valuation results confirm the hypothesis of challenging profitability. With 6 % discount 

rate both countries return unambiguously negative values as illustrate in figure 58. 

Nevertheless, not even in Germany the upper end of the valuation spread  reach zero NPV. 

The distributions reflect again well the uncertainties as valuation spread for Germany is 

clearly narrower. Average NPV values are -400 k€ and -240 k€ with standard deviations 

of 55k€ and 112 k€ for Germany and the UK respectively. It is clear that acceptable NPV 

values would need significant improvements in market conditions and/or decrease in 

investment costs in order to financially justify investments.  
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Figure 58. Net present value distributions with base scenarios assumptions and 

investment costs of 1,23 M€ (1 MW / 1,5 MWh) and 1,01 M€ (1 MW / 1 MWh) for 

Germany and the UK respectively. 

The lifetime assumption in the calculations is 15 years. In contrast, payback period in 

Germany averages in 12,1 years and as such is relatively long: there are only few years 

in which the actual profit for potentially positive IRR is generated. However, FCFs 

discounted after 15 years are getting already relatively low and since the lifetime 

expectations for Li-ion BESSs are ranging from 5–15 years (Zakeri & Syri 2015: 592), 

the figures here are rater optimistic. Thus, increasing BESS lifetime would not change 

the conclusion. For the UK PBP numbers are irrelevant as most of the cases do not pay 

back. 

6.1.3 Internal rate of return 

From IRR perspective the situation looks slightly brighter at least for Germany. In the 

UK the situation still looks very pessimistic as only 40 % of the simulations return 

positive IRR. In contrast, each iteration returns positive figure for Germany.  Average 

IRRs are 2,8 % and -0,6 % with standard deviations of 0,7 and 2,1 in Germany and the 

UK respectively. IRR distributions are illustrated in figure 59. 
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Figure 59. IRR Distributions for both markets with investment costs of 1,23 M€ (1 MW 

/ 1,5 MWh) and 1,01 M€ (1 MW / 1 MWh) for Germany and the UK respectively. 

With positive in German figures, it is to be noted that such low rates are unlike to cover 

even interest costs. Generally minimum return requirement is based on weighted average 

cost of capital (WACC), which has been 8,3 % by median for S&P 500 companies in 

1994-2013 (Zenner, Junek & Chivukula 2014: 77). Zenner et al. (2014: 76) also 

emphasize that current low interest rates have not affected significantly WACC values as 

low rates have been offset by considerably stable equity cost and decreased market-based 

leverage. This seems to be the case also for the European energy companies which are 

currently under restructurings and generally have a strong leverage on balance sheet. 

Nevertheless, reaching WACC or reported discount rates of 9–20 % for non-cyclical 

industries (Zenner et al. 2014: 77) appears to be unrealistic in both countries currently. 

In fact, the distributions in figure 59 reveal that there is no upside as probability to reach 

over 5 % IRR is negligible. The risk of losing money in the UK is obvious as 60 % of the 

cases would not pay back. Furthermore, the price fluctuation limits in the UK model are 

relatively large, thus the spread with, but still the upper tail of the distribution does not 

reach sufficient returns. Not even with stacked CM revenues. On the other hand, even 

though discounted FCFs are covering initial investment in Germany, the simulations 

assume very good bidding success and price level also in future, still resulting in poor 

IRR. As such, the returns for current investors look everything but satisfying and certain. 
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6.1.4 Investment decisions under current situation 

Simulated business models, regarded as dominating in the chosen markets, do not provide 

high enough return potential so that carrying related financial risks would be 

straightforwardly justified. While risks and returns should be highly correlating, the 

business case in base scenario is biased: the risks are high but the returns very 

questionable. Nevertheless, decreasing electricity wholesale prices and structural industry 

transformation drive companies to seek for additional revenues. This drives increasing 

ancillary service markets competition. Thus, it is natural that BESSs as a potential asset 

class are getting their share of the capital allocated for new revenue explorations.  

Looking at the results, the question of valuations behind already invested assets cannot 

be bypassed. Three main questions rise from the contradiction of the base scenario results 

and increasing investments in the field: are the projects justified by over optimistic hubris 

projections, is there strong herd behavior with a strong belief in future or is there really 

something to win that is not regarded in the study? The first question is easy to answer. 

In the light of the underlying research, if the projects are justified by financials, the 

assumptions behind the figures must indeed be filled with exaggerated optimism. The 

second one is more complicated, but when it comes to investment decisions, this issue 

should be narrowed down. Nevertheless, it is clear that current investors are willing to 

take significant risks. The last question is also multifaceted and discussed below. 

Prevailing profitability figures are revealing that expected financial performance is poor 

for now, but still relatively close to profitability. In addition, the role of ES in future power 

system should not be underestimated. The strong expectation on storage need is also one 

of the main reasons behind the attention BESSs and ESs in general get from the power 

industry.  Thus, most of the investing companies are probably not looking for high returns, 

but are willing to be involved in and learn from the development in order to gain from 

long term possibilities in future. Naturally, BESS for frequency regulation as a business 

model is getting the major attention, at least in Europe as the most potential commercial 

option for now. In the end, it still offers an option to penetrate the new industry with a 

relatively small investment (~1 M€) and gain experience and know-how for future profits.  
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6.2 Profitability boundary conditions 

In order to illustrate how far or close the current situation is from fulfilling 6 % return 

target, various what-if scenarios are simulated with multiple price and investment cost 

combinations. Profitability boundaries are examined in terms of total investment cost 

(€/kW) and average PCR/EFR price by changing inputs of these parameters to the MCS 

models. Proportion of positive NPV outcomes out of 5000 simulations is then calculated 

and interpreted as a probability to reach the 6 % target.  The probability is calculated from 

the results for each input combination and the boundary condition is regarded where 50 

% of the simulations yield in positive result. In addition, the scenario analysis is 

performed with several bidding success rates in order to illustrate boundary condition 

sensitivity on biding success.  

These probability figures in NPV approach are still exposed to the 6 % discount rate 

assumption. Hence, actual IRR values are examined with similar what-if simulations with 

base scenario bidding success. IRR sensitivity and values are examined in section 6.2.2. 

6.2.1 Net present value target conditions 

As stated before, the business potential for BESS is approaching profitability conditions 

in the chosen markets. However, surpassing the boundaries may seem easier than it is. 

Probability for positive NPV result in German market is illustrated in figure 60 and for 

the UK in figure 61. The shown probabilities are calculated with base scenario assumption 

of 95 % (Germany) and 71 % (the UK) bidding success rates. Profitability boundary 

conditions with different success rates are illustrated as dotted lines by positioning them 

around 50 % probability when calculated with the alternative rates. 
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Figure 60. Probability to reach positive NPV (1 MW/1,5 MWh BESS) with 95 % bidding 

success in with different investment costs and PCR prices for Germany with 6 % discount 

rate. Profitability boundaries with different bidding success rates are marked as dotted 

lines and positioned in respective 50 % probability. The red box shows current situation. 

The results confirm our previous view of poor changes to make profit for now. 

Nevertheless, it can be stated that the profitability is not that far away as the red box in 

figure 60 is already relatively close to profitability boundary with 95 % success rate and 

as the corner of the box already has some probability for a positive result. Reaching the 

required conditions is possible with the current investment costs, but the price level would 

still need to be relatively high over the next 15 years. The first four months of 2017 has 

realized around 2300 €/MW/week by average (data: regellaistun.net) and reaching 

profitability with such price would require the total cost to basically be half of the current 

level. Taking into account the power conversion system and balance of plant costs 

reaching such 650 €/kW total cost level is rather unrealistic as the storage section, i.e 

battery packs, itself could cost only around 50-100 €/kWh. Even in very aggressive 

scenarios this price level is years or even decades away from the present situation. As 

such, with base scenario’s 95 % bidding success positive NPV result would require good 

above last 5 year’s average price level or slight decrease in current investment cost level.  
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On the other hand, the boundary conditions flee quickly to unrealistically high prices and 

low investment costs also when the bidding success diminishes. For instance, if 

competition increases so that only 70 % of the BESS bids are accepted, PCR price should 

increase by 50 % from average of last 5 years and still investment cost should decrease at 

least 20 % from 2016 level. And this would yield in positive NPV with probability of 50 

% and 6 % discount rate! Thus, even though the cost of BESS itself is decreasing the price 

expectation and confidence in bidding success must be very optimistic in order to justify 

investment decision with financials. In contrast, the boundaries and probabilities in the 

UK are illustrated in figure 61.  

 

Figure 61. Probability to reach positive NPV (1 MW/1 MWh BESS) with base scenario 

(71 %) bidding success in relation to different investment costs and EFR price levels for 

the UK with 6 % discount rate. Profitability boundaries with different bidding success 

rates are marked as dotted lines and positioned in respective 50 % probability. The red 

box illustrates current situation. 
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For the UK the situation is much like in Germany: 100 % success rate, realistic but high 

price and very low current investment cost would barely meet the profitability boundary. 

However, with the base scenario bidding success of 71 %, the current situation is far away 

from favorable conditions: with applied investment cost of 1,01 M€ per 1 MW/1 MWh 

the EFR price level would need to double in order to surpass the profitability boundary. 

Notable is that such price of around 23 €/MW/h was the most frequent and weighted 

average price in 2016 tendering. This validates the results for one’s part as well.   

Sensitivity on bidding success is crucial in both markets, but it plays bigger role in 

Germany. This is especially due to revenue stacking opportunity in the UK. Fortunately, 

the future of bidding success also looks somewhat better in Germany as the market is not 

expected to be that saturated in near future as it is in the UK already now. Nevertheless, 

as increasing competition creates pressure on prices it is unlikely that the investment cost 

reductions would be strong enough to provide financial confidence on future profits. This 

applies to both markets as the profitability boundaries are getting unreachable if the 

market prices slide from current level and / or bidding success is diminishing.  

6.2.2 Internal rate of return values 

IRR values behind the prevailing NPV probabilities are illustrated in figure 62 and 63 

with different investment cost and price level combinations for Germany and the UK 

respectively. IRR range in Germany is -5–30 % whilst in the UK it is -20–50 %. The 

difference is mainly due to percentually larger price spread in the UK calculations.  

IRR values with different investment costs and market prices are well in line with the 

previous results. Within the chosen range of prices and costs 0–10 % in Germany and        

-10–10 % IRRs in the UK are representing clear majority of the simulated return rates. 

These are regarded as the most probable ranges for future investments as well as the 

required costs and prices remain realistic. However, above 10 % IRRs would require 

unrealistic prices simultaneously with significant investment cost decrease. IRR values 

support strongly the view that BESS investments in the chosen markets face considerable 

financial stress and the return rates are likely to remain relatively low in future as well. 
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Figure 62. Internal rate of return level in relation to 1MW/1,5MWh BESS investment cost 

and average PCR price level in Germany. Rates are averages from 5000 simulations with 

95 % bidding success.  

 

Figure 63. Internal rate of return level in relation to 1MW/1MWh BESS investment cost 

and average EFR price level in the UK. Rates are averages from 5000 simulations with 

71 % bidding success. 
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6.2.3 Profitability boundary condition evaluation 

Projections of Li-ion BESS cost reductions are suggesting strong decline to continue in 

future. The cost reductions are typically indicated for battery pack costs, which excludes 

power conversion and balance of plant costs. Nevertheless, the cost is forecasted to 

decrease as low as 100 €/kWh by 2030 (Bloomberg 2016). Similar figures for 2020–2030 

are announced also by BESS manufacturer Tesla (Bloomberg 2017) and in several 

publications aggregated by Nykvist and Nilsson (2015: 329–332). The estimations are for 

battery packs for electric vehicles, but the figures are comparable for BESSs as well. 

Taking into account the power conversion and plant costs, reaching 100 €/kWh costs 

would mean total cost of around 650 000 €/MW for 1 MW / 1 MWh BESS and 700 000 

€ for 1 MW / 1,5 MWh. Such investment wouldn’t reach profitability boundary conditions 

in the UK with current average EFR price and even 100 % success rate. However, in 

Germany it would yield in 10 % IRR with 95 % success rate and long term average price 

3300 €/MW/week. Thus, it is clear that for solid financial performance price increase is 

required in the UK whilst reaching sufficient profitability in Germany seems possible, but 

requires extremely cheap BESS, optimistic future prices and excellent bidding success. 

In order to maintain constant return level, weekly price decrease of 240 €/MW in 

Germany would require 100 €/kW decrease in total investment cost. Consequently, if 

BESS becomes the dominant technology in the market and the price dynamics change to 

reflect new investment cost there are clear reasons for such price slide. This would yield 

in losses for early investors. Also Hollinger et al. (2015: 5) have brought out that BESS 

have the potential to change price structures in the German tenderings. Respectively, in 

the UK 100 €/kW decrease in total cost is equivalent to around 0.17 €/MW/h decrease in 

EFR price. As the competition looks fierce for the UK, the dynamics may be different 

anyway. This is because bids under breakeven level are more probable to succeed and 

thus cover even partially sunk costs involved in early invested units. As there is more 

capacity in construction pipeline than current EFR market size this risk is obvious. In the 

light of these issues, there is a clear risk that the profitability conditions will not be met 

before the expected pressure on prices pushes the market farther away from profitability. 
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7 CONCLUSIONS 

The final chapter further analyses the results from chapters five and six. In addition, 

limitations of the study are discussed. The whole thesis is summarized in chapter 8. 

7.1 Results and discussion 

Initial market analysis brought up two high level points over the others. Firstly, it became 

clear that the frequency control markets, PCR in Germany and EFR in the UK, are well 

suitable for BESSs as the market schemes and earning logics form suitable commercial 

framework for batteries in both countries. Secondly, competitive environments, prices 

and more or less unclear regulation and taxation the cause main concerns for both 

markets. Thus, the results also confirm previous findings from Castillo and Gayme (2014: 

892) that market and regulatory challenges now arise as significant barriers for 

commercial storage deployment. Regulatory issues have been actually well recognized, 

especially in Germany, while exemptions form more or less viable regulatory framework 

for BESSs in both markets. All in all, Germany currently dominates investment potential 

in 8/10 criterion and thus Germany shows clearly higher investment potential than the 

UK. However, neither of the markets really represent attractive investment opportunities.  

Prevailing market analysis and AHP ranking results are confirmed also by market 

simulations, which confirmed challenging financials. Average IRR values are -0,6 % and 

2,8 % for the UK and Germany respectively, whilst profitability boundary conditions 

reveal required very optimistic price and cost development in order to reach even 6 % 

IRR. In Germany it is more realistic and in fact with 2008–2016 average price and current 

investment costs the 6 % IRR target could be justified with 90–100 % bidding success. 

Simulations also show that reaching over 10 % IRR is unrealistic with the current market 

schemes and even remotely similar prices and costs in both countries. Thus, the market 

simulations conclude that BESS investment in Germany or the UK are not be justifiable 

by high financial returns as related risks are substantial without a respective return upside. 

Key findings are concluded and summarized in SCOPE -analysis in tables 29 and 30. 
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Table 29. Conclusion summary as SCOPE -analysis for German PCR market. 

Situation 

Well-functioning capacity based pay as bid market in which BESSs cover 26 % of the capacity. 

Total BESS capacity growth has been 130 % (CAGR) 2013–2016 ending up in over 250 MW.  

 

Core competencies Obstacles 

1) Suitable weekly market scheme and large 

joint auctions with 1400 MW market size. 

2) Price level still acceptable (~18€/MW/h) 

3) Established regulatory treatments with 

favorable taxation exemptions 

 

1) Concerning decreasing and volatile prices  

2) BESS capacity still growing and tightening 

competition 

3) Taxation and regulation still needs 

development 

Prospects Expectations 

1) National power system transformation 

increasing BESS potential in PCR market 

while providing positive outlook for other 

revenue sources too as conventional capacity 

narrows down 

 

1) 1–5 % IRR for new investments 

3) Over 10 % IRR reachable only with 

extremely optimistic price, cost and bidding 

success scenarios 

Table 30. Conclusion summary as SCOPE -analysis for EFR market in the UK. 

Situation 

Primary EFR market opened in 2016 with 200 MW new capacity, which will start operating in 

2017/18. BESS cover the whole market with initial four year contracts through capacity based 

pay-as-bid tendering. Overall investment potential less attractive than in Germany. 

 

Core competencies Obstacles 

1) EFR market excepted to moderately grow 

2) Technical requirements BESS favorable 

3) Favorable service availability requirements 

4) Capacity market revenue stacking  

 

1) No certain information of future market 

scheme or even existence 

2) EFR price level very poor (~11 €/MW/h) 

3) Unclear regulatory situation with potential 

double charging 

4) Large BESS capacity (>500 MW) 

penetration through capacity market at latest 

2020/21 increasing straight competition. 

Prospects Expectations 

1) Potential short term EFR market offers new 

potential if established 

2) Anticipated regulatory development 

supports commercial potential 

 

1) -3–3 % IRR realistic 

3) Over 10 % IRR unreachable without 

fundamental price increase 
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There still is a recognized and anticipated ESs need in presetn and in future in both 

countries while BESS cost and technology development has taken great steps towards 

maturity. Still as seen business opportunities for new investments have been limited. As 

the installed capacity is growing, these limited opportunities incur strong investment 

willingness. This willingness is supported by challenging overall power market 

development pushing companies towards new revenue streams. However, looking at the 

research results, it can be asked if the best investment time already passed by. In Germany 

the prices were clearly higher in the past years with good bidding success whilst initial 

contracts for 15 years in capacity market and for four years in EFR market secured over 

0,8 M€/MW cash flows for some of the UK participants. Thus, the actual profitability 

figures for some existing assets might look better than the ones for future investments. If 

the development is continuing purely market based, questionable is, whether seen prices 

in Germany or long fixed contracts in the UK provide such opportunities in future. 

On the other hand, it is to be noted that the study covers just one business model. In 

Germany PCR is indeed seen as a main market for grid scale BESS currently and in short 

to medium term future (FCBI-Energy 2015). Nevertheless the business models are 

evolving constantly and as flexible BESSs are capable to provide several services it might 

be that within the 15 year investment horizon existing units will generate profits from 

completely different revenue sources than anticipated. In the UK, the business models are 

evolving even more. Although, EFR provides by far the best market for BESSs, it is not 

still the only option. Indeed, Lian et al. (2017) already showed in the UK case that BESSs 

could provide 100 % of primary, secondary and high response need cheaper than market 

prices in an optimal case. This of course does not prove commercial viability for 

individual investors, but confirms that there are other potential markets applicable as well.  

Nevertheless, as reaching sufficient over 10 % IRR levels with BESS in Germany or the 

UK seems a bit unrealistic in current light, the whole ES sector appears indeed quite 

unattractive. In fact, there is a dilemma as strong investment willingness and also system 

need for ESs increase investment pressure but increasing installations make the market 

less attractive by pushing price down in service side and cannibalizing arbitrage value on 

the other side. In addition, decreasing BESS costs give incentive to wait further. 
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Within the framework of increasing BESS capacity and very narrow profit potential one 

additional conclusion can be drawn: at the moment there is something to win and earn 

with BESS investments in Germany and the UK but it is not profit. The BESS investments 

for the markets are not justified primarily by financial rewards. Instead, they provide an 

opportunity to join emerging industry sector with a relatively small investment as a 

strategic step towards anticipated larger future energy storage business. This is the case 

and enough to attract investments even though the future business models are unknown.  

7.2 Future research 

The study has applied novel Monte Carlo simulations valuation framework for ES 

investments. Thus it provides suggestion for Zafirakis et al. (2013: 138) who point out 

that “absence of an integrated valuation framework for services provided by energy 

storage technologies, owed to its limited scope so far, hinders investments in such capital 

intensive systems”. However, further research demand remains when applying and 

simulating uncertainties with investment analysis. Especially actual market success 

effects could be researched more in depth. This should be expanded to cover also whole-

sale energy markets: how much reached revenues differ from optimal asset utilization and 

what would have been the effect on investment valuations if known before. 

Another interesting research topic arises from demand side management. In the UK there 

is a separate market for the service whilst in Germany demand response is included in 

PCR market. Thus, in the UK it would be relevant to study market and price behaviors 

between demand response and other frequency response services. In fact, demand 

response and BESSs are providing similar flexibility in power system and it is reasonable 

to ask whether batteries can compete with large scale demand response in cost sense. 
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7.3 Reliability and limitations 

Market analysis and especially AHP results in section five are exposed to objective 

considerations. However, evaluated information is inaugurated for the reader in order to 

increase transparency. In addition, in most cases the differences between Germany and 

the UK are clearly preferring one over the other keeping the relative distance in local 

priorities somewhat long. Ending up in opposite ranking would need a completely 

different interpretation of objective market information, which is not relevant in this 

study. Hence, the ranking results and conclusions are seen reliable and unbiased as such.  

It has been also pointed out earlier that the results from MCSs are scalable for units with 

identical c-rates in both countries. Nevertheless, also MCS results are somewhat 

subjective. The models indeed include relatively much subjective estimations and 

assumptions especially regarding bidding success rates and prices. These are significant 

result contributing parameters and thus affect the conclusions. On the other hand, this is 

one of the main reasons why MCS was chosen for the study: it allows simulating basically 

whole range of different price scenarios and bidding successes. Thus, the results are not 

exposed to subjective individual scenarios, but show the whole distribution of probable 

outcomes within chosen scenario range. Furthermore, the input parameter ranges (e.g. 

prices) are justified with realizations and expanded with ample margins and thus regarded 

covering the whole range of relevant values. As the univocal MCS results do not leave 

too much room for doubts concerning the financial attractiveness and as the simulations 

are also carried out with different bidding success rates, the results and conclusions here 

are also regarded relevant and reliable. 

Nevertheless, naturally the price distributions, estimated parameters, regulation and 

whole market environments will develop greatly during the next 15 years. This is 

especially the case in power industry with significant ongoing changes. Thus, it must be 

emphasized that the study deals with a relatively new field involving a large degree of 

freedom. 
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8 SUMMARY 

The thesis focuses on exploring, comparing and simulating battery energy storage 

investment potential in primary frequency control market in Germany and in enhanced 

frequency response market in the UK. The study first discusses frequency control 

principles and markets, which is then followed by brief energy storage technology 

discussion and introduction to potential revenue streams. After the prevailing theory and 

background chapters, methodology sections introduce the used research methods: online 

market research, Analytical Hierarchy Process (AHP) and Monte Carlo simulations. 

The study set three research questions. The first question concerns market attractiveness, 

which is evaluated with online market research including ten different aspects. The results 

reveal silent market attractiveness with suitable market schemes and solid cash flow 

generation principle but with limited market size and growth potential, risky competitive 

outlook and concerning prices. These issues hold for both markets but, as an answer to 

the second question of the preferred market, AHP results suggest that Germany has 

clearly higher potential than the UK. Finally, Monte Carlo simulation results with 

investment analysis are shown in order to answer the third question of financial 

performances for hypothetical investments. The simulation results reveal poor average 

internal rate of returns around 2,8 % and -0,6 % for Germany and the UK respectively. 

The return distributions show low profitability (<6%) even with optimistic market price 

development. Whereas, profitability boundary conditions show that 6 % return rate is 

reachable in Germany but the UK requires price increase. It was also shown that over 10 

% returns would require overoptimistic market and cost development in both countries. 

Finally, the study concludes that battery energy storage investments are not justified 

primarily by expected returns but they provide an opportunity to join emerging industry 

sector with a relatively small investment. This can be considered as a strategic step 

towards anticipated future energy storage business by starting learning and development 

process now. The study also confirmed that frequency control markets in Germany and 

the UK provide more commercial potential than earlier studied arbitrage related revenues.  
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Appendix 1: Case Poland 

The study was initially planned to cover also Polish primary frequency control market. 

However, due to unestablished Polish market and escalating scope of the study the 

country was dropped out. Initial analysis for the country is summarized here. 

Technically and by principle primary control in Poland is identical to Germany due to 

shared synchronized frequency control area, in which Poland contributes with around 170 

MW of primary control. The balancing market and related operations are centrally 

operated by Polish TSO (PSE). Nevertheless, Poland utilizes centrally dispatched 

generation system in which all units with over 100 MW capacity are obliged to offer their 

balancing capacity for TSO in all balancing levels. Thus, there are currently no frequency 

control markets suitable for battery energy storages. In addition, reimbursement for the 

primary control service is fixed to 5 % of the variable costs of the potential energy 

generation with the capacity reserved for the service. Delivered energy is paid too, but it 

shows minor role. Thus, the payment logic is not sufficient for batteries for now. 

On the other hand, Polish TSO and ministry of energy are seen supportive towards energy 

storage development. Polish new renewable energy law (2016) also recognizes and 

defines energy storages. Other ES specific legislation concerning batteries is not 

established. In addition, Polish power markets have been pushed for more competitive 

set-up from national and from EU. This pressure includes also balancing and frequency 

control markets. This together with aging power infrastructure and TSOs and ministry’s 

compliance towards system and market development gives good reasons to anticipate 

favorable market development in future from battery energy storage point of view.  

Undeveloped storage sector in Poland has very limited references. There is currently 1,7 

GW of pumped hydro capacity but only one installed battery system with 0,75 MW/1,5 

MWh capacity. It is operating in local renewables shifting. As a conclusion, interest 

towards batteries has increased also in Poland together with positive market expectations 

for a long term. Unfortunately, there is no commercial market potential for now. 


