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ABSTRACT 

The purpose of this study is to examine how options demand explains move-

ments in implied volatility. The study takes a stock option approach and uses 

Barclays Plc. stock options to determine how stock options demand affects to 

corresponding implied volatility. The Barclays Plc. stock options behaviour can 

be seen as a reflection of stock options markets in the London International Fu-

tures and Options Exchange (LIFFE). The option demands ability to explain 

implied volatility changes is investigated in five different moneyness categories.  

 

The empirical part of this study contains the use of Cox, Ross and Rubinstein 

binomial tree option pricing model and bisection method to calculate option 

implied volatilities. The hypotheses used in the study are based on the option 

pricing theory of flat option supply curves and the effects of option demand 

pressure on implied volatility changes are tested with specified regressions and 

ordinary least squares (OLS) estimation method. The data set of this study con-

tains tick- and end-of-day Barclays Plc. stock options data from 4 January, 2005 

to 30 December, 2005. These options are traded in the London International Fi-

nancial Futures and Options Exchange (LIFFE). 

 

The empirical results show that changes in stock option implied volatility are 

directly related to demand pressure from public order flow and especially 

changes in implied volatility are dominated by call option demand. As a result  

– the demand pressure moves stock option prices. The trading is also partly mo-

tivated by changes in expected future volatility, but price reversals of implied 

volatilities are an average as much as 47 percent. 

KEYWORDS: Options, implied volatility, demand pressure. 
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1. INTRODUCTION 

 

Derivative markets are expanding continuously. The growth of the markets 

started in the 1970s and 1980s, when contracts written on financial contracts 

were introduced and the modern-day option valuation theory was developed. 

The major breakthrough in the theory was the development of the Black-

Scholes option valuation model, derived by Fischer Black and Myron Scholes 

(1973) and expanded by Robert Merton (1973). The key implication of their 

model is that contract valuation in general is possible under the assumption of 

risk-neutrality. (Whaley 2003.) 

 

The Black-Scholes model has the known deficiency of often inconsistently pric-

ing deep in-the-money and deep out-of-the-money options. Option profes-

sionals refer to this well-known phenomenon as a volatility “smile” or “skew”. 

A volatility smile is the pattern that results from calculating implied volatilities 

across the range of exercise prices spanning a given option class. The name 

smile comes from the fact that, prior to the October 1987 market crash, the rela-

tion between the Black-Scholes implied volatility of equity options and exercise 

price gave the appearance of a smile. Since October 1987, however, the implied 

volatility decreases as the exercise price increases and performs a skew. Still, 

under the assumptions of the Black-Scholes model, the smile should be flat and 

constant through time. There are two major strands of studies trying to explain 

the smile pattern. The first strand of literature derives modified versions of op-

tions pricing models using different volatility assumptions (deterministic local 

volatility, stochastic volatility and explicitly model volatility). The second 

strand of the literature emphasizes that the outcomes of implied volatility 

smiles come from the options market microstructure. Throughout the study 

when speaking of volatility smile I refer to the pattern that implied volatilities 

differ across exercise prices. (Bollen & Whaley 2004; Chan, Cheng & Lung 2004: 

1167; Corrado & Su 1997.) 

 

Investigating option market microstructure and particularly supply and de-

mand of options leads to a better understanding of volatility smile phenome-

non. Theoretically speaking, under dynamic replication, the supply curve for 

each option series1 is a horizontal line. No matter how large the demand for 

                                                 
 
1 An option series is defined by three attributes – call or put, exercise price, and expiration date. 
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buying a particular option, its price and implied volatility are unaffected. As 

pointed out later, in reality, prices are affected by supply and demand consid-

erations. (Bollen at al. 2004.) 

 

This study examines how efficiently options supply and demand explains the 

implied volatility smile pattern by assessing the relation between demand pres-

sure and implied volatility movement. The hypotheses of this study are based 

on the demand pressure2 hypothesis described by Bollen et al. (2004) and each 

of them are tested in the empirical part. The hypotheses are defined in more 

detail in Chapter 5.2. Hypotheses are: 

 

H 0 : No relation exists between demand for options and related implied volatil-

ities. 

 

H1 : With supply curves upward sloping, an excess of buyer-motivated trades 

will cause price and implied volatility to rise, and an excess of seller-motivated 

trades will cause implied volatility to fall. 

 

H 2 : A positive relation between demand for options and related implied vola-

tilities would be observed if the order imbalance merely reflects a change in 

investor expectations about future volatility. 

 

The demand pressure hypothesis states that, although there are several possible 

reasons for the implied volatility smile, the demand pressure from supply and 

demand imbalance explains the smile pattern. Next, in Chapter 1.1., the previ-

ous studies of trading pressure effects on implied volatility smile are reviewed. 

The problem statement and the structure of this Thesis will be demonstrated in 

Chapter 1.2. 

  

 

 

 

 

 

                                                 
 
2 Bollen et al. (2004) used ”net buying pressure” phrase as I use more convenient “demand pres-

sure” phrase.  
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1.1. Previous studies 

 

The trading pressure effects on implied volatility smile are previously studied 

by Dennis and Mayhew (2002), Bollen et al. (2004), Chan et al. (2004), and Chan, 

Cheng and Lung (2006). 

 

Dennis et al. (2002) investigated the volatility skew observed in the prices of 

stock options. Their data covers quotes and trades of individual stock options 

listed on Chicago Board Options Exchange (CBOE) from April 1986 through 

December 1996. They tested whether leverage, firm size, beta, trading volume, 

and/or the put/call volume ratio can explain cross-sectional variation in risk-

neutral skew. They find that risk-neutral density implied by individual stock 

option is negatively skewed and notes that skewness is more negative for stocks 

with large betas, in periods of high volatility and times when risk-neutral den-

sity for index options is more negatively skewed. Also firm size and trading 

volume explains the risk-neutral density skewness. They also argued that one 

possible explanation for implied volatility skew is that demand for out-of-the-

money puts drives up the prices of low strike price options. However, they did 

not find a robust cross-sectional relationship between the risk-neutral skew and 

the put/call volume ratio3. In other words they did not find any relation be-

tween trading pressure and implied volatility smile. 

 

Bollen et al. (2004) studied the trading pressure effects on implied volatility 

smile in both index options and individual stock options markets. They find 

that demand pressure is related to the daily changes in the implied volatility. 

They document that particularly out-of-the-money (OTM) put options implied 

volatility is higher because of the demand pressure. 

 

Bollen et al. (2004) also find that average stock option volatility curve differs 

remarkably from the index volatility curve. The index volatility curve is mono-

tonically declining whereas the stock option volatility curve forms a smile. In 

generally index option implied volatilities are higher than stock option implied 

volatilities. Their regression analysis show that there is strong statistical relation 

between the change in implied volatility and demand pressure furthermore its 

evident that for index options the demand pressure for index puts dominates 
                                                 
 
3 Dennis et al. (2002) used put/call volume ratio as a proxy for trading pressure. 
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whereas for stock options the demand pressure for call dominates. Also the 

analysis show that option’s own demand pressure is the dominant trading 

pressure variable in explaining implied volatility changes.  

  

Chan et al. (2004) examined the demand pressure hypothesis of Bollen et al. 

(2004) on rather new Hong Kong Hang Seng Index options. They produced five 

different moneyness categories for options at various time frames and calcu-

lated implied volatilities, options premiums, and options trading profits. Their 

results indicate that the demand pressure hypothesis exists also in the Hang 

Seng index options markets due to a reverse relation between exercise prices 

and options trading profits. They also found that delta neutral strategy involv-

ing trading with out-of-the-money put options can generate abnormal returns. 

In more recent research Chan et al. (2006) investigated demand pressure in the 

Hong Kong Hang Seng index options market during the Asian financial crisis 

from July 1997 to August 1998. They find that over the entire crisis period, the 

changes in market expectations, rather than changes in demand pressure, drive 

changes in option implied volatility.  

 

 

1.2. Problem statement and structure of the Thesis 

 

The purpose of this study is to examine how well the options’ demand and 

supply explains the movements in options’ implied volatilities. As mentioned, 

if the implied volatility change results from demand for options, the option 

demand generates price pressure and implied volatility changes. When the de-

mand affects are studied the stock options’ implied volatilities and demand 

pressure variables need to be characterised and estimated. 

 

In global markets the common commodity prices are formed from supply and 

demand equilibrium. However, option prices are valuated differently; theoreti-

cally options price and implied volatility are unaffected of options supply and 

demand. Therefore it can be hypothesized that no relation exists between de-

mand for options and corresponding implied volatilities. In this study stock 

option implied volatilities are estimated using the binomial option pricing 

model developed by Cox, Ross and Rubinstein (1979). 
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The demand pressure hypothesis of Nicolas Bollen and Robert Whaley (2004) is 

used in the study. The demand pressure is defined as the difference between 

buyer- and seller-motivated contracts traded per day. The study hypotheses are 

investigated by using Barclays Plc. stock options (BBL). The BBL stock options 

are traded in London International Financial Futures and Options Exchange 

(LIFFE) and the sample data includes options traded on LIFFE between January 

2005 and December 2005. Barclays Plc. is a global financial services provider 

and the BBL stock options were the fifth most traded stock option in LIFFE dur-

ing sample period. Thou, Barclays Plc. stock options describe well the stock op-

tion markets in LIFFE. 

 

The thesis is divided into seven chapters. In the first chapter the topic and re-

search problem were introduced and also the previous research, related to this 

study, was covered. The option theory, option pricing and volatility framework 

are discussed in the chapters two, three and four respectively. In chapter five 

the data, hypotheses and methodology are introduced before the regression 

analysis is introduced. Chapter six reveals the empirical results and chapter 

seven summarises and concludes the study.  
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2. OPTION THEORY 

 

In economics the concept of market is understood as a organizational device 

which brings together buyers and sellers. In financial markets different kind of 

financial assets and -instruments are traded (i.e. Deposits, Bills, Bonds, Curren-

cies, Equities, Assurances, Pensions and Derivatives). In the beginning of this 

chapter derivative instruments and -markets are introduced, but later on this 

chapter concentrates on options and their features. (Howells & Bain 2005: 19.) 

 

Derivatives are securities whose prices are determined by the prices of other 

securities. These assets are also called contingent claims because their payoffs 

are contingent on the price of other securities. Derivative securities include fu-

tures, forwards and options as basic instruments. Swaps and some complicated 

instruments are hybrid securities, which can eventually be decomposed into 

sets of basic forwards and options. As derivatives’ underlying asset almost eve-

rything can be used. Traditionally, the variables underlying options and other 

derivatives have been stock prices, stock indices, interest rates, exchange rates, 

and commodity prices. In this study stock options are under consideration and 

they are derivatives whose value is dependent on the price of a stock. Because 

the value of derivatives depends on the value of other securities, they can be 

powerful tools for both hedging and speculation. (Bodie, Kane & Marcus 2005: 

697; Neftci 2000: 2-3; Hull 2003: 15.) 

 

 

2.1. Derivative markets 

 

Although, the origin of derivatives use dates back thousands of years, still in 

the last 35 years derivatives has grown its importance and the most important 

innovations occurred. Not coincidently the most important theoretical devel-

opments in the derivative literature are done in the 1970s and 1980s. Nowadays 

all kinds of derivatives are traded actively on exchanges throughout the world. 

A derivatives exchange is a market where individual’s trade standardized con-

tracts that have been defined by the exchange. Traditionally the trading of de-

rivatives has occurred on the floor of exchanges via shouting and hand signal-

ling between traders. Today most of the trading is completed via electronic 

trading while floor trading is dying. However not all trading is done on ex-

changes. The over-the-counter (OTC) market is an important alternative to ex-
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changes and, measured in terms of the total volume of trading, has become 

much larger than the exchange-traded market. It is a telephone- and computer-

linked network of dealers, who do not physically meet. Trades are done over 

the phone and are usually between two financial institutions or between a fi-

nancial institution and one of its corporate clients. (Hull 2003: 1-2; Whaley 2003: 

1132.) 

 

A forward contract is a particularly simple derivative. It is an agreement to buy 

or sell an asset at a certain future time for a certain price. A forward contract is 

traded in the over-the-counter market—usually between two financial institu-

tions or between a financial institution and one of its clients. One of the parties 

to a forward contract assumes a long position and agrees to buy the underlying 

asset on a certain specified future date for a certain specified price. The other 

party assumes a short position and agrees to sell the asset on the same date for 

the same price. 

 

Like a forward contract, a futures contract is agreement between two parties to 

buy or sell an asset at a certain time in the future for a certain price. Unlike for-

ward contracts, futures contracts are normally traded on an exchange. To make 

trading possible, the exchange specifies certain standardized features of the 

contract. As the two parties to the contract do not necessarily know each other, 

the exchange also provides a mechanism that gives the two parties a guarantee 

that the contract will be honoured. One way in which a futures contract is dif-

ferent from a forward contract is that an exact delivery date is usually not speci-

fied. The contract is referred to by its delivery month, and the exchange speci-

fies the period during the month when delivery must be made. For commodi-

ties, the delivery period is often the entire month. (Hull 2003: 2-6; Kolb 1999: 3.) 

 

It is defined that swap is the simultaneous selling and purchasing of cash flows 

involving various currencies, interest rates, and a number of other financial as-

sets. Usually a swap is an agreement between two companies to exchange cash 

flows in the future. The agreement defines the dates when the cash flows are to 

be paid and the way in which they are to be calculated. Usually the calculation 

of the cash flows involves the future values of one or more market variables. 

(Hull 2003: 125; Neftci 2000: 10.) 
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As the name implies, an option is the right to buy or sell, for a limited time, a 

particular good at a specified price. There are two basic types of options. A call 

option gives the holder right to buy the underlying asset by a certain date for a 

certain price. A put option gives the holder the right to sell the underlying asset 

by a certain date for a certain price. The price in the contract is known as the 

exercise price or strike price; the date in the contract is known as the expiration 

date or maturity. Options are also divided into two groups weather they are 

American or European options. American options can be exercised at any time 

up to the expiration date. European options can be exercised only on the expira-

tion date itself. It should be emphasized that an option gives the holder the 

right to do something. The holder does not have to exercise this right. This is 

what distinguishes options from forwards and futures, where the holder is ob-

ligated to buy or sell the underlying asset. Note that whereas it costs nothing to 

enter into a forward or futures contract, there is a cost to acquiring an option. 

Options are traded both on exchanges and in the over-the-counter market. Prior 

to 1973, options of various kinds were traded over-the-counter. An over-the-

counter market is a market without a centralized exchange or trading floor. In 

1973, Chicago Board Options Exchange (CBOE) began trading options on indi-

vidual stocks. Since that time, the options market has experienced rapid 

growth. (Hull 2003: 6; Kolb 1993: 5-6; Neftci 2000: 7.) 

 

 

2.2. Market participants 

 

The markets are composed from many participants. Market makers are ready to 

sell and purchase financial instruments and provide the traders with two-way 

quotes. They provide liquidity and smoothens market fluctuations. At every 

security at which they are making the market, the market maker must quote a 

bid and an ask price. Market makers vital task is to buy and sell at their quoted 

prices. Since the market maker generally takes a position in the security (if only 

for a short time while waiting for an offsetting order to arrive), the market 

maker also has a dealer function. Dealers quote two-way prices and hold large 

inventories of a particular instrument. They are institutions that act in some 

sense as market makers. Traders buy and sell securities. Trader does not make 

the markets, on the contrary they execute clients´ orders and trade also for the 

company’s behalf. Customers submit orders to buy or sell. These orders may be 

contingent on various outcomes, or they may be direct orders to transact imme-
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diately. Brokers transmit orders for customers. Brokers provide a platform 

where the buyers and sellers can get together. Brokers do not hold inventories, 

but take care of client’s orders but do not trade to his/her own account. There 

are also risk managers who check trades and positions taken by trader and ap-

prove them if they are within the preselected boundaries on various risks. 

(Neftci 2004: 17; O´Hara 1995: 8.) 

 

The main reason, why derivatives markets have been outstandingly successful, 

is that they have attracted many different types of traders and have a great deal 

of liquidity. When an investor wants to take one side of a contract, long position 

(i.e., buy the option) or short position (i.e., sell or write the option), there is usu-

ally no problem in finding someone that is prepared to take the other side. Posi-

tions are usually taken for hedging, arbitrage, and speculation purposes. Hedg-

ers use futures, forwards, and options to reduce the risk that they face from po-

tential future movements in a market variable. Speculators use them to bet on 

the future direction of a market variable. Arbitrageurs take offsetting positions 

in two or more instruments to lock in a profit. Therefore arbitrage involves the 

simultaneous purchase and sale of equivalent securities in order to profit from 

discrepancies in their prices. According to capital market theory the equilibrium 

market prices are rational and they rule out arbitrage opportunities. If security 

prices are misspriced the markets immediately restore the equilibrium of the 

markets. In a sense, arbitrage free prices represent the fair market value of the 

underlying instruments. Gains without taking some risk and without some ini-

tial investment should not exist. In market practice “arbitrage” represents a po-

sition that has risks, a position that may lose money but is still highly likely to 

yield a high profit. (Bodie et al. 2005: 343; Hull 2003: 8-10; Neftci 2004: 27-31.) 

 

The law of one price states that if two assets are equivalent in all economically 

relevant respects, then they should have the same market price. If arbitrageurs 

observe a violation of the law, they will engage in arbitrage activity—

simultaneously buying the asset where it is cheap and selling where it is expen-

sive. In the process, they will bid up the price where it is low and force it down 

where it is high until the arbitrage opportunity is eliminated. All investors will 

want to take an infinite position in arbitrage opportunity and because those 

large positions will quickly force prices up or down until the opportunity van-

ishes, security prices should satisfy a no-arbitrage condition. No-arbitrage con-

dition rules out the existence of arbitrage opportunities. (Bodie et al. 2005: 349.) 
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2.3. Option payoffs 

 

At expiration option value is relatively easy to determine. At expiration the 

owner of the option either exercises the option or allows it to expire as worth-

less. The value of an option at expiration depends only on the stock price and 

the exercise price. To focus on the principle of option pricing, commissions and 

other transaction costs are ignored. As at expiration, the payoff from a call op-

tion is usually given as: 

 

(2.1) 

 

And the function indicates that the call option will be exercised if  KST >  and 

will not be exercised if KST ≤ . The payoff to the holder of a long position in a 

put is 

 

(2.2) 

 

where =TS  Spot price of stock at maturity, and =K  Strike price of an option. 

 

The value of an option is divided into two parts: the intrinsic value; and the 

time value of an option. The intrinsic value of an option is defined as the maxi-

mum of zero and the value the option would have if it were exercised immedi-

ately. In the case of in-the-money American option the value is worth at least as 

much as its intrinsic value because the holder can realize a positive intrinsic 

value by exercising immediately. Often it is optimal for the holder of an in-the-

money American option to wait rather than exercise immediately. Then the op-

tion is said to have time value. The time value of the option reflects the amount 

buyers are willing to pay for the possibility that, at some time prior to expira-

tion, the option may become profitable to exercise. In general, the value of an 

option equals the intrinsic value of the option plus the time value of the option. 

The time value of the option is zero when (a) the option has reached maturity or 

(b) it is optimal to exercise the option immediately. (Das 1997b: 221-225; Hull 

2003.) 

 

 

 

 

).0,(max KST −

),0,(max TSK −
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2.4. Factors affecting option prices 

 

There are six factors affecting the price of a stock option, see for example, Cox 

and Rubinstein (1985: 33-39) and Hull (2003: 167-170): 

 

1. The current stock price, 0S  

2. The strike price, K  

3. The time to expiration, T  

4. The volatility of the stock price, σ  

5. The risk-free interest rate, r  

6. The dividends expected during the life of the option. 

 

In the Table 1, it is shown what happens to option prices when one of these fac-

tors changes with all of the others remaining fixed. Only effects to the American 

option prices are pointed out in this case. Capital C  is a notation for American 

call option and capital P  is a notation for American put option, while c  and 

p are their European counterparts. 

 

 
Table 1. The effect on the price of an American stock option of increasing one variable while 

keeping all others fixed.4  

 Variable American call, C American put, P 

Current stock price + - 

Strike price - + 

Time to expiration + + 

Volatility  + + 

Risk-free rate + - 

Dividends - + 

 

American call options become more valuable as the stock price increases and 

are less valuable as the strike price increases. This is because the payoff from a 

call option will be the amount by which the stock price exceeds the strike price. 

Controversially, American put options become less valuable as the stock price 

increases and are more valuable as the strike price increases. This is because the 

                                                 
 
4 +indicates that an increase in the variable causes the option price to increase; -indicates that an 

increase in the variable causes the option price to decrease. 
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payoff from put option will be the amount by which the strike price exceeds the 

stock price. Cox and Rubinstein (1985: 215-216) pointed out how changes in the 

factors affect option values in extreme level. The extreme changes are as fol-

lows: 

 

Stock price )( 0S : 

as 00 →S , then 0→C  and KP →  

as ∞→0S , then ∞→C  and 0→P  

 

Strike price )(K : 

as 0→K , then 0SC →  and 0→P  

as ∞→K , then 0→C  and ∞→P  

 

In the case of time to expiration, both put and call American options become 

more valuable as the time to expiration increases. This is because the owner of 

the long-life option has more exercise opportunities open than the owner of the 

short-life option. The long-life option must therefore always be worth at least as 

much as the short-life option. 

 

Time to expiration )(t : 

given KS <0 : as 0→t , then 0→C  and 0SKP −→  

given KS >0 : as 0→t , then KSC −→ 0  and 0→P  

as ∞→t , then 0SC →  and KP →  

 

The volatility of a stock price is a measure of how uncertain we are about future 

stock price movements. When volatility increases the extreme price movements 

are more likely. The owner of a call benefits from price increases but as price 

decreases the most the owner can lose is the price of the option. The owner of a 

put benefits from price decreases, but has limited downside risk in the event of 

price increases. The value of both calls and puts therefore increase as volatility 

increases. 

 

Volatility )(σ : 

given tKrS −<0 : as 0→σ , then 0→C  and 0SKP −→  

given tKrS −>0 : as 0→σ , then tKrSC −−→ 0  and 0→P  

as ∞→σ , then 0SC →  and KP →  
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The risk-free rate affects the price of an option in a less clear-cut way. As inter-

est rates in the economy increases, the expected return required by investors 

from the stock tends to increase. Also, the present value of any future cash flow 

received by the holder of the option decreases. The combined impact of these 

two effects is to decrease the value of put options and increase the value of call 

options. The effect on change in risk-free interest rate is as follows: 

 

Risk-free rate )(r : 

as ∞→r , then 0SC →  and 0→P  

 

Dividends have the effect of reducing the stock price on the ex-dividend date. 

Therefore the value of a call option is negatively related to the size of any an-

ticipated dividends, and the value of a put option is positively related to the 

size of any anticipated dividends. (Hull 2003: 167-170.) 

 

2.4.1. Bounds on option prices 

 

Option prices have theoretical boundaries which they can not past. If option 

prices go either above or under these boundaries, there are profitable opportu-

nities for arbitrageurs. 

 

Upper bounds 

 

A call option, which gives the holder the right to buy one share of a stock for a 

certain price, can never be worth more than the stock. Hence, the stock price is 

an upper bound to the option price: 0Sc ≤ and 0SC ≤ . If these relationships 

were not true, an arbitrageur could easily make a riskless profit by buying the 

stock and selling the call option. A put option, which gives the holder the right 

to sell one share of a stock for K , can never be worth more than K . Hence, 

Kp ≤  and KP ≤ . For European options, we know that at maturity the option 

cannot be worth than K . It follows that it cannot be worth more than the pre-

sent value of K  today: 

 

(2.3) 

 

 

 

.rTKep −≤
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Lower bounds 

 

A lower bound for the price of a European call option on a non-dividend –

paying stock is 

 

(2.4) 

 

Because the worst that can happen to a call option is that it expires worthless, 

its value cannot be negative. This means that 0≥c , and therefore that 

 

(2.5) 

 

For a European put option on a non-dividend-paying stock, a lower bound for 

the price is 

 

(2.6) 

 

Because the worst can happen to a put option is that it expires worthless, its 

value cannot be negative. This means that (Hull 2003; Das 1997b.) 

 

(2.7) 

 

A lower bound for the price of an American call option is its exercise value 

 

(2.8) 

 

Again because the worst that can happen to a call option is that it expires 

worthless, its value cannot be negative. This means that 0≥C , and therefore 

that 

 

(2.9) 

 

An American call option can never be worth less than a European call option: cC ≥ . 

Given no dividends on the underlying stock and positive interest rates an 

American call option will never be prematurely exercised, implying that an 

American option will be priced as European option: cC = . If two American call 

options have the same exercise price and are written on the same stock, the op-

.0
rTKeS −−

).0,max( 0
rTKeSc −−≥

.0SKe rT −−

).0,max( 0SKep rT −≥ −

.0 KS −

).0,max( 0 KSC −≥
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tion with the longer maturity date cannot be worth less than the other option: if 

21 TT >  then )()( 21 TCTC ≥ . 

 

The minimum value of an American put option is either zero or 0SK − . This 

means that 

 

(2.10) 

 

An American put option is worth at least as much as a European put option: 

pP ≥ . Unlike the situation for an American call option, even in the absence of 

dividends, it may be optimal to prematurely exercise an American put option. 

This happens when the stock price falls low enough so that any potential bene-

fit received from the likelihood that it falls more is less than the interest gained 

on the cash received from immediately exercising the option. The difference 

 

(2.11) 

 

is called the early-exercise premium. This is the extra amount one pays for an 

American put to have the right to exercise it early. (Elliot & Hoek 2006: 31-32; 

Jarrow & Turnbull 2000: 68-78.) 

 

2.4.2. Early exercise of an American option 

 

American call on a non-dividend-paying stock should never be exercised early. 

For that there are two reasons. One relates to the insurance that it provides. A 

call option, when held instead of stock itself, in effect insures the holder against 

the stock price falling below the exercise price. Once the option has been exer-

cised and the exercise price has been exchanged for the stock price, this insur-

ance vanishes. The other reason concerns the time value of money. From the 

perspective of the option holder, the later the strike price is paid out the better. 

The call option has unlimited upside potential, so there is always some addi-

tional benefit of waiting to exercise, namely, more profits are possible. When 

dividends are expected, we can no longer assert that an American call option 

will not be exercised early. Sometimes it is optimal to exercise an American call 

immediately prior to an ex-dividend date. It is never optimal to exercise a call 

option at other times. 

 

).0,max( 0SKP −≥

0>−≡ ttt pPe
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In the case of American put option on a non-dividend-paying stock, the option 

can be optimal to exercise early. Indeed, at any given time during its life, a put 

option should always be exercised early if it is sufficiently deep in-the-money. 

Like a call option, a put option can be viewed as providing insurance. A put 

option, when held in conjunction with the stock, insures the holder against the 

stock price falling below a certain level. However, a put option is different from 

a call option in that it may be optimal for an investor to forgo this insurance and 

exercise early in order to realize the strike price immediately. In other words 

the upside potential of American put option is limited by the strike price K . 

Hence, if the put option has reached its maximum, it is better to exercise and 

earn interest on the proceeds than to wait. In general, the early exercise of a put 

option becomes more attractive as  0S   decreases, as r  increases, and as the 

volatility decreases. This difference between the premature exercise of an 

American call option versus an American put option exists because of the dif-

ferences in their payoff diagrams. (Hull 2003: 175-179; Jarrow et al. 2000: 79.) 

 

 

2.5. Stock price behaviour 

 

The underlying stock price process is important issue in the valuation of stock 

options. It is usually assumed that the stochastic process behind a stock price is 

geometric Brownian motion. In this section, the basic stochastic price processes 

are introduced. 

 

Any variable whose value changes over time in an uncertain way is said to fol-

low a stochastic process. Stochastic processes can be classified as discrete time 

or continuous time. A discrete-time stochastic process is one where the value of 

the variable can change only at certain fixed points in time, whereas a continu-

ous-time stochastic process is one where changes can take place at any time. 

Stochastic processes can also be classified as continuous variable or discrete 

variable. In a continuous-variable process the underlying variable can take any 

value within a certain range, whereas in a discrete-variable process, only certain 

discrete values are possible. (Hull 2003: 216.) 
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2.5.1. Stochastic processes 

 

The Markov process 

 

A Markov process is a particular type of stochastic process where only the pre-

sent value of a variable is relevant for predicting the future. The past history of 

the variable and the way that the present has emerged from the past are irrele-

vant. In other words, given the history of the process, the past values can be 

ignored as long as you know the present state. Predictions for the future are 

uncertain and must be expressed in terms of probability distributions. The 

Markov property implies that the probability distribution of the price at any 

particular future time is not dependent on the particular path followed by the 

price in the past. The Markov property of stock prices is consistent with the 

weak form of market efficiency.5 It is stated that the present price of a stock im-

pounds all the information contained in a record of past prices. If the weak form 

of market efficiency is not true, technical analysis could make above-average 

returns by interpreting charts of the past history of stock prices. There is very 

little evidence that they are in fact able to do this. It is competition in the mar-

ketplace that tends to ensure that weak-form market efficiency holds. When the 

variable follows a Markov stochastic process, the change in the value of the 

variable during any time period of length T  is ),0( Tφ , ),( σµφ  denotes a 

probability distribution that is normally distributed with mean µ  and standard 

deviation σ . (Hull 2003: 216-217; Pliska 1997: 107.) 

 

The Wiener process 

 

Wiener processes are usually used to describe stock price process. Wiener proc-

ess, also referred to as Brownian motion, is a particular type of Markov stochas-

tic process with a mean change of zero and a variance rate of 1,0 per year. Vari-

able  z  which follows a Wiener process has the following two properties: 

 

1. The change z∆  during a small period of time t∆  is 

 

(2.12) 

 

                                                 
 
5 The efficient market theory is described in Fama (1970, 1991). 

tz ∆=∆ ε
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where ε  is a random drawing from a standardized normal distribution, )1,0(φ . 

 

2. The values of z∆  for any two different short intervals of time t∆  are in-

dependent. 

 

The basic Wiener process, dz (the limit as 0→∆t ), has a drift rate of zero and a 

variance rate of 1,0. The drift rate of zero means that the expected value of z  at 

any future time is equal to its current value. The variance rate of 1,0 means that 

the variance of the change in z  in a time interval of length T  equals T . A gen-

eralized Wiener process for a variable x  is defined in terms of dz  as follows: 

 

(2.13) 

 

The dta term implies that x  has an expected drift rate of a  per unit of time. The 

dzb  term can be regarded as adding noise or variability to the path followed by 

x . In a small time interval t∆ , the change z∆  in the value of x  is given by equa-

tions (2.12) and (2.13) as (Hull 2003: 218-221.) 

 

(2.14) 

 

Itô Process 

 

A further type of stochastic process can be defined. This is known as an Itô 

process. This is a generalized Wiener process in which the parameters a  and b  

are functions of the value of the underlying variable x  and time t . Algebrai-

cally, an Itô process can be written as 

 

(2.15) 

 

2.5.2. The process for stock prices 

 

It is tempting to suggest that a stock price follows a generalized Wiener process. 

However, this model fails to capture the key aspect of stock prices. The key as-

pect is that the expected percentage return required by investors from a stock is 

not dependent of the stock’s price. The constant expected drift-rate assumption 

is inappropriate and needs to be replaced by the assumption that the expected 

return (i.e., expected drift divided by the stock price) is constant. If S  is the 

.dzbdtadx +=

.tbtax ∆+∆=∆ ε

.),(),( dztxbdttxadx +=
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stock price at time t , the expected drift rate in S  should be assumed to be Sµ  

for some constant parameter µ . This means that in short interval of time, t∆ , 

the expected increase in S  is tS ∆µ . The parameter µ  is the expected rate of 

return on the stock, expressed in decimal form. If the volatility of the stock price 

is always zero, this model implies that 

 

(2.16) 

 

In the limit as 0→∆t , 

 

or 

 

 

 

The stock price at time T  is then derived by integrating between time zero and 

time T : 

 

(2.17) 

 

where 0S  and TS  are the stock price at time zero and time T . Equation (2.17) 

shows that, when the variance rate is zero, the stock price grows at a continu-

ously compounded rate of µ  per unit of time. In practice, of course, a stock 

price does exhibit volatility. A reasonable assumption is that the variability of 

the percentage return in a short period of time, t∆ , is the same regardless of the 

stock price. This suggests that the standard deviation of the change in a short 

period of time t∆  should be proportional to the stock price and leads to the 

model 

 

(2.18) 

 

or 

 

(2.19) 

 

Equation (2.19) is the most widely used model of stock price behaviour. The 

variable σ  is the volatility of the stock price. The variable µ  is its expected rate 

of return. (Hull 2003: 222-223.) 

.tSS ∆=∆ µ

dtSdS µ=

.dt
S

dS µ=

T
T eSS µ

0=

dzSdtSdS σµ +=

.dzdt
S

dS σµ +=
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The model of stock price behaviour developed above is known as geometric 

Brownian motion. Based on the model, the change in the stock price during a 

short time period, t∆ , is 

 

(2.20) 

 

or 

 

(2.21) 

 

The variable S∆  is the change in the stock price S  in a small time interval t∆ , 

andε  is a random drawing from normal distribution, )1,0(φ . The parameter µ  

is the expected rate of return per unit of time from the stock, and the parameter 

σ  is the volatility of the stock price. Both of these parameters are assumed con-

stant. The left-hand side of equation (2.20) is the return provided by the stock in 

a short period of time t∆ . The term t∆µ  is the expected value of this return, 

and the term t∆σε  is the stochastic component of the return. The variance of 

the stochastic component (and therefore the whole return) is t∆2σ . This is con-

sistent with the definition of the volatility σ  , so that t∆σ  is the standard de-

viation of the return in a short time period t∆ . Equation (2.20) shows that SS /∆  

is normally distributed with mean t∆µ   and standard deviation t∆σ . In other 

words, (Hull 2003: 223-224.) 

 

(2.22) 

 

Itô’s lemma 

 

The price of a stock option is a function of the underlying stock’s price and 

time. More generally, the price of any derivative is a function of the stochastic 

variables underlying the derivative and time. The behaviour of functions of sto-

chastic variables is very important in the pricing of derivatives. A mathematical 

rule from stochastic calculus called Itô’s lemma is used for computing differen-

tials of functions of stochastic random variables.  

 

 

 

When it is taken that the value of a stock S  follows the Itô process 

tt
S

S ∆+∆=∆ σεµ

.tStSS ∆+∆=∆ εσµ

).,(~ tt
S

S ∆∆∆ σµφ
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(2.23) 

 

where dz  is a Wiener process and a  and b  are the functions of S  and t . The 

stock has a drift rate of a  and a variance rate of 2b . Itô’s lemma shows that a 

derivative f  of S  and t  follows the process 

 

(2.24) 

 

where the dz  is the same Wiener process as in equation (2.23). Thus, f  also 

follows an Itô process. It has a drift rate of 

 

(2.25) 

 

and a variance rate of 

 

(2.26) 

 

The earlier equation (2.18) 

 

(2.27) 

 

with µ  and σ  constant, is a reasonable model of stock price movements. From 

Itô’s lemma, it follows that the process followed by a derivative f  of S  and t  is 

 

(2.28) 

 

Note that the both S  and f  are affected by the same underlying source of un-

certainty, dz . 

 

The lognormal property 

 

Now Itô’s lemma can be used to derive the process followed by Sln . When 

Sf ln=  and after calculations of  
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it follows from equation (2.28) that the process followed by f  is 

 

(2.29) 

 

The equation indicates that f  follows a generalized Wiener process, with con-

stant drift rate 2/2σµ −  and constant variance rate 2σ . Therefore the change in 

f  between time zero and T  is normally distributed with mean 

 

(2.30) 

 

and variance 

 

(2.31) 

 

Therefore 

 

(2.32) 

 

 

where φ  is a normal distribution. The equation above shows that TSln  is nor-

mally distributed. This implies that stock price is log normally distributed, be-

cause a variable has a lognormal distribution if the natural logarithm of the 

variable is normally distributed. A variable that has a lognormal distribution 

can take any value between zero and infinity. (Hull 2003: 226-235; Jarrow et al. 

2000: 213-214; Wilmott, Howison & Dewynne 1995: 42.) 
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3. OPTION PRICING 

 

In this chapter, a useful and very popular binomial tree model, the Cox, Ross 

and Rubinstein (1979) model and Black-Scholes model for pricing stock options 

are introduced. 

 

Binomial tree is a diagram that represents different possible paths that might be 

followed by the stock price over the life of the option. The simple one-step bi-

nomial model can determine the rational price today for a call option. The fol-

lowing approach to a simple discrete-time option pricing formula was intro-

duced in seminar paper by Cox, Ross and Rubinstein in 1979. 

 

 

3.1. The Binomial model for stock options 

 

In binomial tree model it is assumed that the stock price follows a multiplicative 

binomial process over discrete periods. The rate of return on the stock over each 

period can have two possible values: 1−u  with probability q , or 1−d  with 

probability q−1 . Thus, if the current stock price is S , the stock price at the end 

of the period will be either uS  or dS . This movement is represented in the fol-

lowing diagram: 

 

  uS  with probability q  

 

S  

 

  dS  with probability q−1  

 

Figure 1. Binomial movement in stock price. 

 

Next it is assumed that the interest rate is constant. Individuals may borrow or 

lend as much as they wish at this rate. To focus on the basic issues, it is also as-

sumed that there are no taxes, transaction costs, or margin requirements. Hence, 

individuals are allowed to sell short any security and receive full use of the pro-

ceeds. 
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Letting r  denote one plus the riskless interest rate over one period, dru >>  is 

required. If these inequalities do not hold, there would be profitable riskless 

arbitrage opportunities involving only the stock and riskless borrowing and 

lending. 

 

Denote that C  is the current value of the call, uC is its value at the end of the 

period if the stock price goes to uS  and dC  is its value at the end of the period if 

the stock price goes to dS . Since there is only one period remaining in the life of 

the call, the terms of its contract and a rational exercise policy imply that 

],0max[ KuSCu −=  and ],0max[ KdSCd −= . Therefore, 

 

  ],0max[ KuSCu −=  with probability q  

 

C  

 

  ],0max[ KdSCd −=  with probability q−1  

 

Figure 2. Stock price movement in one step binomial model. 

 

Then a portfolio containing ∆  shares of stock and the Euro amount B  in risk-

less bonds is formed. This will cost BS +∆ . At the end of the period, the value 

of this portfolio will be 

 

 

           rBuS +∆  with probability q  

 

BS +∆  

 

           rBdS +∆  with probability q−1  

 

Figure 3. The movement of portfolio value in one step binomial model. 

 

Since the ∆  and B  can be selected in any way, they are selected to equate the 

end-of-period values of the portfolio and the call for each possible outcome. 

This requires that 

 

(3.1) ,uCrBuS =+∆
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(3.2) 

 

From these equations, it is found 

 

(3.3) 

 

and 

 

(3.4) 

 

Portfolio selected with ∆  and B  is called the hedging portfolio. 

 

If there are no riskless arbitrage opportunities, the current value of the call, C , 

cannot be less than the current value of the hedging portfolio, BS +∆ . Thus, if 

there are no riskless arbitrage opportunities, it must be true that 

 

(3.5) 

 

if this value is greater than KS − , and if not, KSC −= . 

 

Equation (3.5) can be simplified by defining 

 

  

 

and  

 

 

 

so the value of call option is 

 

(3.6) 

 

It is easy to see that in the present case, with no dividends, this will always be 

greater than KS −  as long as the interest rate is positive. When assumed that r  

is always greater than one, the equation (3.6) is the exact formula for the value 

of a call one period prior to the expiration in terms of ,,,, duKS  and r . 
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It is observe that )/()( dudrp −−≡  is always greater than zero and less than 

one, so it has the properties of a probability. In fact, p  is the value q  would 

have in equilibrium if investors were risk-neutral6. To see this, the expected rate 

of return on the stock would then be the riskless interest rate, so 

 

(3.7) 

 

and 

 

(3.8) 

 

Hence, the value of the call can be interpreted as the expectation of its dis-

counted future value in a risk-neutral world. The risk-neutral valuation princi-

ple is correct not just in a risk-neutral world but in the real world as well. The 

risk-neutral valuation principle states that an option can be valued under the 

assumption that the world is risk neutral. This means that for valuation pur-

poses the following is assumed: 

 

1. The expected return from all traded securities is the risk free interest 

rate. 

2. Future cash flows can be valued by discounting their expected values 

at the risk-free interest rate. 

 

The pricing formula in equation (3.6) does not involve the probabilities of the 

stock price moving up or down. The key reason, why probabilities are not 

needed, is that the option is not valued in absolute terms.  The options value is 

calculated in terms of the price of the underlying stock. The probabilities of fu-

ture up or down movements are already incorporated into the price of the 

stock. Hence, there is no need to take them into account again when valuing the 

option in terms of stock price. (Hull 2003.) 

 

Next a call with two periods remaining before its expiration date is considered. 

In keeping with the binomial process, the stock can take on three possible val-

ues after two periods, 

                                                 
 
6 In a risk-neutral world all individuals are indifferent to risk. In such a world investors require 

no compensation for risk, and the expected return on all securities is the risk-free interest rate. 

rSdSquSq =−+ ))(1()(

.)/()( pdudrq =−−=
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      Su 2  

                        uS  

                    

 

S         duS  

                 

 

  dS  

      Sd 2  

 

Figure 4. Stock price movement in two step binomial model. 

 

 

Similarly, for the call, 

 

],0max[ 2 KSuCuu −=  

                  uC  

                

 

              C    ],0max[ KduSCdu −=  

                 

 

                  dC  

],0max[ 2 KSdCdd −=  

 

Figure 5. The movement of portfolio value in two step binomial model. 

 

uuC  stands for the value of a call two periods from the current time if the stock 

price moves upward each period; duC  and ddC  have analogous definitions. At 

the end of the current period there will be one period left in the life of the call, 

so the problem is identical to the previously solved one. Thus, the values are 

 

(3.9) 

 

and 

 

rCppCC uduuu /])1([ −+=
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(3.10) 

 

Again, a portfolio is selected with S∆  in the stock and B  in bonds whose end-

of-period value will be uC  if the stock price goes to uS  and dC  if the stock price 

goes to dS . Indeed, the functional form of ∆  and B  remains unchanged. To get 

the new values of ∆  and B , we simply use equations (3.3) and (3.4) with the 

new values of uC  and dC . 

 

Since ∆  and B  have the same functional form in each period, the current value 

of the call in terms of uC  and dC  will again be rCppCC du /])1([ −+=  if this is 

greater than KS − , and KSC −=  otherwise. By substituting from equations 

(3.9)  and (3.10) into the former expression, and noting that uddu CC = , the value 

for a call option is obtained 

 

(3.11) 

 

 

 

For equation (3.11), 2=n . Now the value of a call with any number of periods 

to go can be classified. By starting at the expiration date and working back-

wards, the general valuation formula for any n  is written as: 

 

(3.12) 

 

 

Where 

 

(3.13)  

 

is called the binomial distribution, and 

 

(3.14)   

 

is called a binomial coefficient. 

Binomial tree methods can be used to value derivatives when exact option pric-

ing formulas are not available. Binomial tree method is particularly useful when 

the holder has early exercise decisions to make prior to maturity. One- and two-
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step binomial trees for non-dividend-paying stocks, introduced above are not 

very precise models of reality. A more realistic model is one that assumes stock 

price movements are composed of a much larger number of small binomial 

movements. (Hull 2003: 392-393.) 

 

The binomial tree for a non-dividend paying stock represents the stock price 

movements in a risk-neutral world. The parameters ,,up  and d  must give cor-

rect values for the mean and variance of stock price changes during a time in-

terval of length t∆ . In a risk-neutral world, the expected return from a stock is 

the risk-free interest rate, r . Hence the expected value of the stock price at the 

end of a time interval of length t∆  is trSe ∆ , where S  is the stock price at the 

beginning of the time interval. It follows that 

 

(3.15) 

 

(3.16) 

 

The stochastic process for stock prices implies that the variance of the percent-

age change in the stock price in a small time interval of length t∆  is t∆2σ . Be-

cause the variance of a variable Q   is defined as 22 )]([)( QEQE − , it follows that 

 

(3.17) 

 

Substituting for p  from equation (3.16) reduces this to 

 

(3.18) 

 

equation (3.16) and (3.18) impose two conditions on ,,up  and d . A third condi-

tion used by Cox, Ross, and Rubinstein is 

 

(3.19) 

 

These three conditions imply 

 

(3.20) 
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(3.21) 

 

(3.22) 

 

where 

 

(3.23) 

 

and terms of order higher than t∆  are ignored. The variable a  is sometimes 

referred to as the growth factor. (Hull 2003: 393-394.) 
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Figure 6. Binomial tree used to value a stock option. 

 

Figure 6. illustrates the complete tree of stock prices that is considered when the 

binomial model is used. At time zero, the stock price, 0S , is known. At time t∆ , 

there are two possible stock prices, uS0  and dS0 ; at time t∆2 , there are three 

possible stock prices, 2
0uS , 0S , and 2

0dS ; and so on. In general, at time ti ∆ , 

1+i  stock prices are considered. These are 

 

(3.24) 
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The relationship du /1=  is used in computing the stock price at each node of 

the tree in figure 6. For example, uSduS 0
2

0 = . Also the tree recombines in the 

sense that an up movement followed by a down movement leads to the same 

stock price as a down movement followed by an up movement. Since the tree of 

stock prices is constructed, options are evaluated by starting at the end of the 

tree (time T ) and working backward. The value of the option is known at time 

T . For example, a put option is worth max )0,( TSK −  and a call option is worth 

max )0,( KST − , where TS  is the stock price at time T  and K  is the exercise 

price. Because a risk-neutral world is being assumed, the value at each node at 

time tT ∆−  can be calculated as the expected value at time T  discounted at rate 

r  for a time period t∆ . Similarly, the value at each node at time tT ∆− 2  can be 

calculated as the expected value at time tT ∆−  discounted for a time period t∆  

at rate r , and so on. Eventually, by working back through all the nodes, the 

value of the option at time zero is obtained. Also American options can be val-

ued using a binomial tree model. The procedure is to work back through the 

tree from the end to the beginning, testing at each node to see whether early 

exercise is preferable to holding the option for a further time period t∆ . The 

value of the option at the final nodes is the same as for the European option.  

(Hull 2003.) 

 

More generally, The life of an American put option on a non-dividend-paying 

stock is divided into N  subintervals of length t∆ . It is referred to the j th node 

at time ti ∆  as the ),( ji  node, where Ni ≤≤0  and ij ≤≤0 . The jif ,  is the 

value of the option at the ),( ji  node. The stock price at the ),( ji  is jij duS −
0 . 

Because the value of an American put at its expiration date is max )0,( TSK − , 

we know that 

 

(3.25) 

 

There is a probability p  of moving from the ),( ji  node at time ti ∆  to the 

)1,1( ++ ji  node at time ti ∆+ )1( , and a probability p−1  of moving from the 

),( ji  node at time ti ∆  to the ),1( ji +  node at time ti ∆+ )1( . When there is no 

possibility of early exercise, risk neutral valuation gives 

 

(3.26) 
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for 10 −≤≤ Ni  and ij ≤≤0 . When early exercise is taken into account, this 

value for jif ,  must be compared with the option’s intrinsic value, and obtain 

 

(3.27) 

 

Because the calculations start at time T  and work backward, the value at time 

ti ∆  captures not only the effect of early exercise possibilities at time ti ∆  but 

also the effect of early exercise at subsequent times. In the limit as t∆  tends to 

zero, an exact value for American put is obtained. In practice, 30=N  usually 

gives reasonable results. (Hull 2003: 397.) 

 

 

3.2. The Black-Scholes model 

 

The Black-Scholes model, derived by Black and Scholes (1973) expanded by 

Merton (1973), made a major breakthrough in the pricing of stock options. The 

model has had a huge influence on the way traders price and hedge options. It 

has also been pivotal to the growth and success of financial engineering in the 

1980s and 1990s. (Hull 2003: 234.) 

 

When describing the Black-Scholes model few simplified assumptions are 

made. 

 

1. The stock price follows a lognormal distribution described earlier with µ  

and  σ  constant. 

2. The short selling of securities is permitted. 

3. There are no transactions costs, taxes or bid-ask spreads. All securities 

are perfectly divisible. 

4. There are no dividends, stock splits or other corporate actions during the 

life of the option. 

5. There are no riskless arbitrage opportunities. 

6. Security trading is continuous. 

7. The interest rate is constant and the same for all maturities. 

   

Some of these assumptions can be relaxed and even interest rates can be al-

lowed to be stochastic providing that the stock price distribution at maturity of 

the option is still lognormal. (Hull 2003: 242; Wilmott et al.1995: 41-42.) 
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Black-Scholes model assumes that stock prices behave as lognormal property. It 

assumes that percentage changes in the stock price in a short period of time are 

normally distributed. Define: 

 

 µ  : Expected return on stock 

 σ  : Volatility of the stock price 

 

The mean of the percentage change in time t∆  is t∆µ  and the standard devia-

tion of this percentage change is t∆σ  , so that 

 

(3.28)     

 

where S∆  is the change in the stock price S in time t∆ , and ),( smφ  denotes a 

normal distribution with mean m  and standard deviation s . The expected 

value, )( TSE , of TS  is given by T
T eSSE µ

0)( = . This fits in with the definition of 

µ   as the expected rate of return. The variance, var( TS ), of TS  can be shown to 

be given by )1()var(
222

0 −= TT
T eeSS σµ . (Hull 2003: 234-236; Neftci 2004: 213-214.) 

 

The lognormal property of stock prices can be used to provide information on 

the probability distribution of the continuously compounded rate of return 

earned on a stock between times zero and T . The continuously compounded 

rate of return per annum realized between times zero and T  is defined as η . It 

follows that 

 

(3.29) 

 

so that 

 

(3.30) 

 

It follows from equation (2.32) that 

 

(3.31) 

 

Thus, the continuously compounded rate of return per annum is normally dis-

tributed with mean 2/2σµ −  and standard deviation T/σ . (Hull 2003: 236.) 
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3.2.1. Derivation of the Black-Scholes differential equation 

 

It is assumed that the stock price process follows the geometric Brownian mo-

tion and as derived earlier the change in the stock price during a short time pe-

riod is:  

 

(3.32) 

 

When f  is the price of a call option contingent on S . The variable f  must be 

some function of S  and t . Hence, from equation (2.28), 

 

(3.33) 

 

where S∆ and f∆  are the changes in f  and S  in a small time interval t∆ . 

Based on the discussion of Itô´s lemma the Wiener processes underlying f  and 

S  are the same. Therefore constructing a portfolio of the stock and the deriva-

tive, the Wiener process can be eliminated. The appropriate portfolio is:  one 

derivative short and an amount Sf ∂∂ /  of shares long. Thus, the value of the 

portfolio, Π , is: 

 

(3.34)    

 

and the change in the value of the portfolio in the small time interval t∆   is 

 

(3.35)  

 

Substituting f∆  and S∆  from equations (3.31) and (3.33) into equation (3.35) 

the ∆Π  is: 

 

(3.36)  

 

Because this equation does not involve z∆  , the portfolio must be riskless dur-

ing time t∆ . The assumptions listed earlier imply that the portfolio must instan-

taneously earn the same rate of return as other short-term risk-free securities. If 

it earned more than this return, arbitrageurs could make a riskless profit by 

borrowing money to buy the portfolio; if it earned less, they could make a risk-

less profit by shorting the portfolio and buying risk-free securities. Therefore 
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(3.37)   

 

where r  is the risk-free interest rate. Substituting from equations (3.34) and 

(3.36), it is obtained 

 

(3.38)  

 

so that 

 

(3.39)  

 

This is the Black-Scholes partial differential equation. It has many solutions, 

corresponding to all the different derivatives that can be defined with S  as the 

underlying variable. The particular derivative that is obtained when the equa-

tion is solved depends on the boundary conditions that are used. These specify 

the values of the derivative at the boundaries of possible values of S  and t . 

 

The Black-Scholes differential equation (3.39) does not involve any variable that 

is affected by the risk preferences of investors. The variables that do appear in 

the equation are the current stock price, time, stock price volatility, and the risk-

free rate of interest. Which all are independent of risk preferences. Though, be-

cause risk preferences do not enter the differential equation, they cannot affect 

its solution. Therefore, any set of risk preferences can be used when evaluat-

ing f . However it is noteworthy that the portfolio used in the derivation of 

equation (3.39) is not permanently riskless. It is riskless only an infinitesimally 

short period of time. As S  and t  changes, Sf ∂∂ / 7 also changes. To keep the 

portfolio riskless, it is therefore necessary to frequently change the relative pro-

portions of the derivative and the stock in the portfolio. (Black 1975: 37; Hull 

2003: 242-245; Wilmott et al. 1995: 42-44.) 

 

 

 

 

                                                 
 
7 The delta, Sf ∂∂=∆ / , of an option is the rate of change of its price with respect to a change 

in the underlying asset price and it is the amount of shares respect to derivative needed to 

hedge the portfolio. 
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3.2.2. Black-Scholes pricing formulas 

 

The Black-Scholes formulas are derived by solving the differential equation 

(3.39) subject to the boundary conditions. A boundary condition specifies the 

behaviour of the required solution at some part of the solution domain. The 

Black-Scholes formulas for the prices at time zero of a European call option on a 

non-dividend-paying stock and a European put option on a non-dividend-

paying stock are 

 

(3.40)  

 

and 

 

(3.41) 

 

where 

 

(3.42) 

 

 

(3.43) 

 

 

The function )(xN  denotes the cumulative standard normal probability: 

 

(3.44)  

 

In other words, it is the probability that a variable with a standard normal dis-

tribution, )1,0(φ  will be less than x . (Black et al. 1973: 643-644; Hull 2003: 246; 

Neftci 2004: 213-214; Wilmott et al. 1995: 44-48.) 
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4. VOLATILITY 

 

The concept of volatility of asset prices and returns is central to financial mar-

kets. Volatility provides essential data about the probability of achieving certain 

outcomes in terms of price levels which is intrinsic to key decisions in financial 

markets. In the context of option pricing, an estimate of volatility is essential to 

the valuation of the instrument. Volatility estimation, in the context of option 

pricing, must be considered in the broader context of asset price and return 

volatility generally. The framework for volatility estimation, in reality, must 

recognise the causes of volatility in asset prices and the inter-relationship be-

tween volatility and option pricing models. Price volatility in asset markets is 

caused by a variety of factors, the most important of which is information re-

lease. A second cause of volatility is the process of trading and market-making 

in financial instruments. The study of market micro-structure seeks to isolate 

the impact of trading on volatility. (Das 1997a: 307-308.) 

 

Usually volatility refers to the standard deviation of the change in the value of a 

financial instrument with a specific time horizon. The volatility of a stock, σ  , is 

a measure of our uncertainty about the returns provided by the stock. Stocks 

typically have volatility between 20% and 50%. From equation (3.31), the vola-

tility of a stock price can be defined as the standard deviation of the return pro-

vided by the stock in one year when the return is expressed using continuous 

compounding. When T  is small, equation (3.28) shows that Tσ   is approxi-

mately equal to the standard deviation of the percentage change in the stock 

price in time T . Equation (3.28) shows that our uncertainty about a future stock 

price, as measured by its standard deviation, increases—at least approxi-

mately—with the square root of how far ahead we are looking. For example, the 

standard deviation of the stock price in four weeks is approximately twice the 

standard deviation in one week. (Hull 2003: 238-239.) 

 

 

4.1. Implied volatility 

 

The one parameter in the Black-Scholes pricing formulas that cannot be directly 

observed is the volatility of the stock price. The volatility plugged in to the op-

tion pricing formula to obtain the market value of the option is called the im-

plied volatility. Implied volatilities are important because they are embedded in 
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option prices, and the prices of options reflect future expectations of market 

participants. This means that implied volatilities constitute a forward-looking 

estimate of the volatility of the underlying asset. In practice, implied volatilities 

are used to monitor the markets opinion about the volatility of a particular 

stock. Traders like to calculate implied volatilities from actively traded options 

on a certain asset and interpolate between them to calculate the appropriate 

volatility for pricing a less actively traded option on the same stock. It is impor-

tant to note that the prices of deep-in-the-money and deep-out-of-the-money 

options are relatively insensitive to volatility. Implied volatilities calculated 

from these options tend, therefore, to be unreliable. (Hull 2003: 250-251; Neftci 

2004: 432; Rouah & Vainberg 2007: 304-305.) 

 

Option pricing formulas usually cannot be inverted analytically, so implied 

volatility must be calculated numerically. Usually implied volatilities are calcu-

lated using either the Black-Scholes formula or the Cox-Ross-Rubinstein bino-

mial model. Based on the assumptions of the Black-Scholes model, implied 

volatility is interpreted as the market’s estimate of the constant volatility pa-

rameter. If the underlying asset’s volatility is allowed to vary deterministically 

over time, implied volatility is interpreted to be the market’s assessment of the 

average volatility over the remaining life of the option. Implied volatility calcu-

lation is accomplished by feeding the value-price difference, 

 

(4.1) 

 

into a root-finding program, where )(C  is an option pricing formula, σ  is the 

volatility parameter, and MC  is the observed market price of the option. Vari-

ous algorithms can be used to find the value of σ  that makes this expression 

equal to zero. Methods like bisection method and Newton-Raphson algorithm 

are used to calculate implied volatilities. (Mayhew 1995: 8-9.) 

 

The binomial search algorithm; bisection method, also used in this research, is 

well suited to problems for which the function is continuous on an interval 

],[ ba  and for which the function is known to take a positive value on one end-

point and a negative value on the other endpoint. By the Intermediate Value 

Theorem, the interval will necessarily contain a root. A first guess for the root is 

the midpoint of the interval. The bisection algorithm proceeds by repeatedly 

,)( MCC −σ
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dividing the subintervals of ],[ ba  in two, and at each step locating the half that 

contains the root. (Rouah et al. 2007: 9.) 

 

It is known that a closed-form solution for an implied volatility is not possible. 

Although few approximation formulas for implied volatility have been pro-

posed, see for example, Brenner and Subrahmanyam (1988), Chance (1996), and 

Chambers & Nawalkha (2001). (Li 2005.) 

 

 

4.2. Implied volatility research 

 

It is argued that option’s implied volatility is a good measure when forecasting 

the underlying assets future volatility. Academic literature has researched the 

information content and effectiveness of implied volatility in numerous studies. 

The lion’s share of the studies claims that implied volatility is far better predic-

tor of future volatility than other forecasting models. 

 

Already Latané and Rendleman (1976), in their early study, found that the im-

plied volatility contained relevant information regarding future volatility. 

Jorion (1995) studied the information content and predictive power of volatility 

implied in options on foreign currencies and found that implied volatility out-

performed the statistical time-series models. However, implied volatility also 

appeared to be biased volatility forecast. Christensen and Prabhala (1998), find 

that implied volatility outperforms past volatility in forecasting future volatility 

and even subsumes the information content of past volatility. They also pointed 

out that implied volatility is interpreted as an efficient volatility forecast in a 

wide range of settings (e.g., Day and Lewis, 1988; Harvey and Whaley, 1992; 

Poterba and Summers, 1986; Sheikh, 1989). 

 

However Canina and Figlewski (1993), find that for S&P 100 index options im-

plied volatility to be a poor forecast of subsequent realized volatility. In aggre-

gate and across subsamples separated by maturity and exercise price, implied 

volatility has virtually no correlation with future volatility, and it does not in-

corporate the information contained in recent observed volatility. Also Fleming 

(1998) found that implied volatility is a biased forecast which significantly over-

states future volatility. However, he found that the implied volatility’s forecast 

power dominates that of the historical volatility rate.  
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Poon and Granger (2003) summarized the research area and surveyed 52 stud-

ies and report that in 43 studies implied volatility yields better forecast of future 

volatility than forecasts based on past volatility while only 9 find the reverse. By 

expanding the earlier research Poon and Granger (2005) surveyed 93 studies 

that conducted tests of volatility-forecasting methods on a wide range of finan-

cial asset returns. They found that option-implied volatility provides more ac-

curate forecasts than time-series models. 

 

 

4.3. The implied volatility smile 

 

In reality, options that are identical in every respect, expect for their exercise 

price, have different implied volatilities. The implied volatility curve, a plot of 

implied volatilities versus exercise price, gives shape to this phenomenon. 

Overall, the more out-of-the-money a call (put) option is, the higher is the corre-

sponding implied volatility. This well-established empirical fact is known as the 

volatility smile, or volatility skew, and has major implications for trading, hedg-

ing, and pricing financial instruments. (Neftci 2004: 435; Rouah et al. 2007: 304-

305.) 

 

The volatility smile reflects a variety of factors, including: 

 

1. adjustments for the distributional assumptions underlying standard op-

tion pricing models; 

2. directional assumptions regarding the movement in the underlying asset 

prices which are incorporated into the option volatility and price; 

3. clientele effects and the demand for out-of-the-money options; 

4. the management of option hedging risks by traders; and 

5. liquidity effects. 

 

The volatility smile is capable of explaining the deviation of observed asset 

price movements from the assumed log normal distribution. In practice, asset 

price movements seem to be characterised by the following: 

 

• The market distribution of the changes of asset prices appears to demon-

strate fat tails (statistically described as the kurtosis of the distribution). 
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This type of distribution is characterised by larger changes of value price 

than is consistent with a normal distribution.  

 

• The fat tails are consistent with the presence of “jump” risk, that is, non-

stochastic (or discontinuous) changes or movements in the price of the 

asset which cause deviation from the assumption of a normal distribu-

tion. 

 

The actual observed pattern of price changes would systematically underesti-

mate the value of deep in and out-of-the-money options because of the above 

characteristics. This reflects the fact that the log normal distribution systemati-

cally underestimates the expected values that the option may take at maturity 

in either tail of the distribution. The volatility smile is consistent with trader 

behaviour which seeks to adjust the option premium for these deficiencies in an 

option pricing model such as Black-Scholes. This adjustment is effected through 

an increase in the volatility for both deep in and out-of-the-money options to 

equate the premium received to the expected payouts under the option incor-

porating the true asset price change distribution. (Das 1997a: 328-329.) 

 

The volatility smile, particularly the skew in the structure of the smile, may re-

flect expectations regarding the expected direction of price movements which 

are incorporated in the option price and by implication the implied volatility. 

Directional view may be reflected in option price which will be higher or lower 

than in the absence of new expectations and reflected in the implied volatilities. 

(Das 1997a: 329; Hull 2003: 335.) 

 

The market for options with different strike prices appears to exhibit significant 

biases in demand and supply (a clientele effect). Out-of-the-money options are 

attractive vehicles for speculative investment demand, reflecting the following 

factors: 

 

1. the gearing or leverage of the out-of-the-money options (expressed as the 

asset price divided by the option premium) is higher; and 

2. the low absolute cash investment entailed in the purchase of the option. 

 

The presence of these factors dictates significant demand for these options. The 

option traders are reluctant to supply out-of-the-money options because of the 
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difficulty of hedging or replicating these options in the event of a jump in the 

asset price. In contrast, the position for in-the-money options is influenced by 

different factors. The dominating characteristic of these types of options is that 

they have a high delta and move closely with movements with the underlying 

asset price. This allows in-the-money options to be used as a direct substitute 

for the asset itself. 

 

The supply of these options is limited. This reflects the reluctance to write a 

deep in-the-money option because in the absence of a large or extreme price 

movement the option will be exercised, requiring the seller to buy or sell the 

asset at a price which is disadvantageous to them. In addition, such options do 

not have significant time or volatility value, further reducing their attractive-

ness to the seller. The interaction of supply and demand for these deep in-the-

money options results in the option price and implied volatilities being bid up 

above comparable volatilities for at-the-money options of the same maturity. 

Also the volatility smile appears to incorporate the impact of traders seeking to 

manage the risk of option transactions. 

 

The combination of the above factors results in differential liquidity of options 

with different exercise prices for a given maturity. The volatility of at-the-

money options is lower reflecting the higher liquidity of these options from the 

greater balance between supply and demand for these options. In and out-of-

the-money options are less frequently traded and the imbalance of demand 

relative to supply is reflected in the higher implied volatility compared to the 

at-the-money options. (Das 1997a: 329-331.) 
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5. DATA, HYPOTHESIS AND METHODOLOGY 

 

In the previous chapters, the introduction and the theoretical basics to option 

theory and the most common option pricing methods were discussed. The pur-

pose of this chapter is to describe the data, study hypothesis and methods used 

to generate implied volatilities. 

 

At the beginning of the empirical part of this study, the used data is presented 

in Chapter 5.1. Also the data description and the screening criteria will be in-

troduced. Chapter 5.2 will introduce the hypotheses and Chapter 5.3 introduces 

the analysis methods used in this study. 

 

 

5.1. Description of the data 

 

To test the demand pressure effects on implied volatility the tick- and end-of-

day data on Barclays Plc. stock options (BBL) are used. The data used in the 

study is gathered from the time period 4 January, 2005 to 30 December, 2005. 

The underlying instrument is the Barclays Plc. stock, traded in the London 

Stock Exchange.  Barclays Plc. is a global financial services provider operating 

around the world (Barclays 2007). Data availability issues and the fact that the 

underlying stock and the option are liquid mostly motivated the choice of this 

specific stock option. In the sample period 2005; 304067 BBL options were 

traded and they were fifth most traded stock options in the London Interna-

tional Financial Futures and Options Exchange (LIFFE). Overall, BBL options 

should describe the behaviour of LIFFE stock options markets rather well. 

 

The options are American style, i.e. an option can be exercised any time during 

option’s maturity. The expiration months for these options are the three nearest 

calendar months, and the three following months within the quarterly cycle 

March, June, September and December. The detailed contract specifications for 

BBL stock option are reviewed in the Table 2. 
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Table 2. The contract specifications for Barclays Plc. stock option (American-Style Exercise). 

(Euronext 2007.) 

Ticker BBL 

Exercise type American 

Unit of trading One option equals rights over 1000 shares 

Quotation Pence per share 

Minimum price movement 

(tick size and value) 

0,5 pence per share / £5,00 

Exercise day Exercise by 17:20 on any business day, extended 

to 18:30 for all series on a Last Trading Day 

Last trading day Third Friday in expiry month 

Settlement day Settlement Day is four business days following 

the day of exercise / Last Trading Day 

Trading hours 08:00 – 16:30 

 

 

5.1.1. Data availability 

 

The data used is from the London International Financial Futures and Options 

Exchange’s Market Data System and it was obtained from the database of the 

University of Vaasa. The end-of-day data used reports timestamp, the charac-

teristics of the option (call or put, expiration date, strike price, open and close 

prices, high and low prices), number of contracts traded, open interest, volatil-

ity, ATM volatility, and the price of the underlying stock at its last trade. The 

options tick data contained trading time (year, month, hour, minute, and sec-

ond), expiration date, call or put, strike price, price and trading volume. 

 

For implied volatility calculations the estimate risk-free interest rate has to be 

defined. The risk-free rate ( r ) is in theory the rate at which money is borrowed 

or lent in a default free market. Usually studies done in the United States use 

Treasury Bill –interest and this Treasury rate is the rate at which a national gov-

ernment borrows in its own currency. However banks and other large financial 

institutions usually set r  equal to the London Interbank Offer Rate (LIBOR) 

instead of Treasury rate when they evaluate derivatives transactions. LIBOR is a 

rate at which a financial institution is willing to lend its surplus funds to other 

financial institutions in the interbank markets. LIBOR is published by the Brit-

ish Bankers Association (BBA). Theoretically the accurate interest would be ex-
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actly the interest, which equals to the option maturity. Since there is not that 

kind of interest available in UK from the observed years, the three-months 

LIBOR is chosen as the risk-free rate. When calculating the implied volatility, 

the logarithmic adjustment for the interest rate is done by using the formula: 

)1ln( 3r+ . Following figure illustrates the changes in the three-month LIBOR 

from 4 January, 2005 to 30 December, 2005. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7. The three-month LIBOR from 4 January to 30 December, 2005. 

 

5.1.2. Descriptive statistics 

 

To construct the sample of the study, several exclusion filters were used to 

make sure that the data would be as accurate and reliable as possible. First, op-

tions with more than 111 days and less than 22 days until expiration were ex-

cluded. These options were excluded because of possible liquidity biases. Sec-

ond, options with dividend payments during the maturity were also excluded. 

For some contracts it is not possible to obtain an implied volatility, and also 

these contracts are, therefore, removed from the sample data. The options with 

less than 22 trading days left are ignored because options markets are very 

volatile during this period, which could lead to unreliable estimates of implied 

volatility. 22 days equals approximately the number of trading days in one 

moth. On the other hand, options with more than 111 trading days left are ig-

nored because of thin trading. For example Ederington and Guan (2005) used 

options with at least 20 trading days to expiration to avoid unstable implied 

volatilities, Fleming (1998) used options with at least 15 days, to expiration, and 
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Canina and Figlewski (1993) used options with more than 7 and fever than 127 

days to expiration to calculate implied volatilities. 

 

The Cox et al. (1979) binomial tree model with 100 time steps and bisection 

method is used to calculate individual stock options implied volatilities for both 

put and call options in five different moneyness categories. One implied volatil-

ity is computed for each option series each day and the volatility is based on the 

midpoint of the high/low prices of trading day. Option maturities are between 

22 to 111 days and dividends are not allowed during option’s life. Since any 

dividends are allowed during the option maturity, the calls should not opti-

mally be exercised early and their prices should not include an early exercise 

premium. 

 

To characterize the shape of implied volatility, the options are divided into five 

different moneyness categories and then the average implied volatility for each 

of the categories is computed. The moneyness is derived approximately as in 

Bollen and Whaley (2004) and it reflects the option’s likelihood of being in the 

money at expiration. Moneyness for put and call options are measured using 

the option’s delta: 

 

(5.2) 

 

 

(5.3)  

 

The notations are as follows: C∆  and P∆  are the deltas for call and put options 

respectively, S  is the current stock price, X  is the option’s strike price, T  is the 

option’s time to expiration, r  is the risk-free rate of interest, σ  is the stock re-

turn volatility, and N (.) is the normal cumulative density function. Deltas are 

computed for each option series each day during the sample period. The esti-

mate for the volatility rate is the realized return volatility of the underlying 

stock in year 2005 multiplied by the square root of options maturity. Based on 

the deltas, options are divided into five moneyness categories. The upper and 

lower bounds of the categories are listed in Table 3. Listed are category num-

bers, labels, and corresponding delta ranges of options used in the study. Op-

tions with absolute deltas below 0,02 or above 0,98 are excluded due to the dis-

tortions caused by price discreteness. 
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Table 3. Moneyness category definitions. 

Categories  Labels              Range 

1 Deep in-the-money (DITM) call 0,875 < C∆  ≤  0,98 

 Deep out-of-the-money (DOTM) put -0,125 < P∆  ≤  -0,02 

2 In-the-money (ITM) call 0,625 < C∆  ≤  0,875 

 Out-of-the-money (OTM) put -0,375 < P∆  ≤  -0,125 

3 At-the-money (ATM) call 0,375 < C∆  ≤  0,625 

 At-the-money (ATM) put  -0,625 < P∆  ≤  -0,375 

4 Out-of-the-money (OTM) call 0,125 < C∆  ≤  0,375 

 In-the-money (ITM) put  -0,875 < P∆  ≤  -0,625 

5 Deep out-of-the-money (DOTM) call 0,02 < C∆  ≤  0,125 

 Deep in-the-money (DITM) put -0,98 < P∆  ≤  -0,875 

 

The trading activity of included BBL stock options over the 2005 sample period 

used in the study is summarized. The total numbers of contracts traded in each 

moneyness category are reported in Table 4. First, the summary shows that call 

option volume is greater than put option volume, 73,8 percent of all contracts 

traded were call options, with only 27,2 percent being puts. Second, comparing 

across moneyness categories, trading volume for calls is heaviest for OTM op-

tions. On the other hand, for puts, ITM options have the heaviest trading vol-

ume. 

 
Table 4. Summary of qualified Barclays Plc. options traded on the London International Finan-

cial Futures and Options Exchange during the sample period 2005. 

The delta value of each option series is computed using the closing stock price, the three month 

LIBOR, and the realized volatility in sample period matching the options maturity. 

    Stock Options    

  Calls    Puts  

Delta Value 

Category 

No. of 

Contracts 

 Prop. of 

Total 

 No. of 

Contracts 

 Prop. of 

Total 

1 139  0,0018  28  0,0004 

2 2240  0,0286  1518  0,0194 

3 20762  0,2647  5147  0,0656 

4 28565  0,3642  12635  0,1611 

5 

Total 

5358 

57064 

 0,0683 

0,7276 

 2040 

21368 

 0,0260 

0,2724 
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Figure 8 illustrates the BBL option’s implied volatility and Barclays Plc. stock 

level. Implied volatility is defined as the average implied volatility of ATM or 

category 3 options. The implied volatility and stock level are plotted over the 

full sample. The stock level has its highest peak around 614,5 and lowest 

around 519,5. The implied volatility is highest at 27,4% (31.10.2005) and lowest 

at 8,8% (19.5.2005). Figure 9 depicts Barclays Plc. daily returns, which are rather 

stable moving approximately between minus four percent to plus three percent. 

Table 5 contains the average implied volatilities of the BBL stock options over 

the period January 2005 to December 2005. The average BBL option implied 

volatility plotted versus moneyness categories performs a smile, as is shown in 

figure 10. The implied volatility of the ATM options is lowest and increasing 

with movement in either direction. Implied volatility is highest in moneyness 

category 1, 29,35 percent. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8. BBL implied volatility level and Barclays Plc. level from January 2005 through Decem-

ber 2005. 

The Implied volatility is the average implied volatility of ATM options and Stock level is the 

closing Barclays Plc. stock level on the dates the implied volatilities are estimated. 

 

 
Table 5. Average implied volatilities by option delta for Barclays Plc. stock options traded on 

the London International Financial Futures and Options Exchange during the period January 

2005 through December 2005.                    

 Average implied volatility 

Category 1 2 3 4 5 

BBL 0,2935 0,2068 0,1916 0,2015 0,2190 
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Figure 9. Barclays Plc. daily return. The daily return is calculated as log(stock level t /stock 

level 1−t ). 

 

 

 
Figure 10. Estimated implied volatility smile of Barclays Plc. stock option from January 2005 to 

December 2005. 
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5.2. Hypotheses 

 

In empirical studies the main aim is to study the relation between the implied 

volatility movement and demand pressure by regression analysis. As pointed 

out by Bollen and Whaley (2004), under the assumption of frictionless markets, 

suppliers of option market liquidity can perfectly and costlessly hedge their 

inventories, so supply curves will be flat. Also neither time variation in the de-

mands to buy or sell options nor public imbalances for particular option series 

will affect option price and, hence, implied volatility. The null hypothesis, 

therefore, is: 

 

H 0 : No relation exists between demand for options and related implied volatil-

ities. 

 

Two alternative hypotheses support a positive relation between demand for 

options and related implied volatilities. The first alternative hypothesis is based 

on the reality that, when suppliers of liquidity are required to take larger posi-

tions in particular options series, their hedging costs and/or desired compensa-

tion for risk increase. This leads to a position where option price and implied 

volatility increase as well. The hypothesis is:  

 

H1 : With supply curves upward sloping, an excess of buyer-motivated trades 

will cause price and implied volatility to rise, and an excess of seller-motivated 

trades will cause implied volatility to fall. 

 

The second alternative hypothesis is based on the view that the trading activity 

of investors provides information to the market maker, who continually learns 

about the underlying asset dynamics and updates prices as a result. 

 

H 2 : A positive relation between demand for options and related implied vola-

tilities would be observed if the order imbalance merely reflects a change in 

investor expectations about future volatility. 

 

The regression model (5.3) includes the lagged change in implied volatility as 

an independent and explanatory variable to assess the relation between changes 

in implied volatility and option demand. The null hypothesis predicts that its 

coefficient is not different from zero. 
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Based on Bollen et al. (2004) the hypothesis one and two generates different 

predictions. Hypothesis one predicts that coefficient of the lagged change in 

implied volatility is negative and significant. Though, if the implied volatility 

change results from the demand for options, the option demand changes 

should generate price pressure, which causes option prices and implied volatil-

ities to change. However, the changes in implied volatility will reverse; at least 

in part, as the market maker has the opportunity to rebalance his portfolio. 

Also, the hypothesis predicts that implied volatilities of different option series 

do not need to move together as they are primarily affected by option series’ 

own demand.  

 

Based on hypothesis two, if changes in implied volatility are driven by shifts in 

investor expectations regarding volatility, changes in implied volatility should 

be permanent and uncorrelated through time; hence it also predicts an insig-

nificant coefficient on the lagged change in implied volatility. Also, demand for 

ATM options should be the dominant factor determining the implied volatility 

of all options, since ATM options are most informative about future volatility. 

Thus, the implied volatility of all option series in a class should move in con-

cert. 

 

 

5.3. Methodology 

 

The empirical methodology is designed to uncover the role demand pressure 

plays in determining changes in the level of implied volatility for options with 

different exercise prices. To analyze the time-series dynamics of implied volatil-

ity, the levels of implied volatility in the five different moneyness categories are 

considered separately. To asses the relation between implied volatility and de-

mand pressure, the daily change in the average implied volatility of options in a 

particular moneyness category on contemporaneous measure of security return, 

security trading volume, and demand pressure is regressed. Based on earlier 

studies, the security return and trading volume are known determinants of 

volatility. Though, the contemporaneous return of the underlying security and 

its trading volume are included as control variables for holding constant the 

leverage and information flow effects. The lagged chance in implied volatility is 

included as an independent variable in a regression that assesses the relation 

between changes in implied volatility and option demand. The null hypothesis 
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predicts that its coefficient is not different from zero. Also the learning hypothe-

sis (H 2 ) predicts an insignificant coefficient on the lagged change in implied 

volatility. In contrast to the null hypothesis and learning hypothesis, the limits 

to arbitrage hypothesis (H1) predict that the coefficient of the lagged change in 

implied volatility is negative. 

 

The regression model specification, defined by Bollen et al. (2004), is 

 

(5.3) 

 

where tIV∆  is the change in the average implied volatility in a moneyness cate-

gory from the day 1−t  to the day t , tRS  is the underlying security return from 

the close on day 1−t  to the close on day t , tVS  is the trading volume of the un-

derlying security on day t , and tD ,1  and tD ,2  are the demand pressure variables 

(whose definitions vary in the regression tests that follow). 1−∆ tIV  is the lagged 

change in implied volatility. 

 

Daily demand pressures in the first six regressions are estimated based on the 

difference between the volume of buyer motivated option contracts and the 

volume of seller motivated option contracts within a trading day. Based on the 

tick data, a traded option contract is a buyer motivated (seller motivated) op-

tion contract if the option is traded higher (lower) price than the high/low mid-

point of option series traded within a trading day. Demand pressure variables 

used in the first six regressions are computed as 

 

 

(5.4) 

 

 

where iB  is the contract size of buyer motivated trade,  iS  is the contract size of 

seller motivated trade, i∆  is the options delta and n  is the number of specific 

trades done at day t . In the last two regressions demand pressure variables tD ,1  

and tD ,2  are replaced by CallPut /  volume ratio and it is computed as 

 

 

(5.5) 
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where iP  is the volume of a put option contract traded in a specified moneyness 

group of a particular option series, and iC  is the volume of a call option con-

tract traded in a specified moneyness group of a particular option series. Dennis 

et al. (2002) used the put/call volume ratio as a proxy for demand pressure.  
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6. EMPIRICAL RESULTS 

 

This chapter presents and discusses the empirical results. The hypotheses are 

tested based on the equation (5.3) presented earlier. The regression results are 

obtained by using EViews5 econometric software programme. The estimated 

beta ( iβ ) coefficients show the magnitude and direction of different variables 

effectiveness on implied volatility changes. A positive beta coefficient indicates 

that the increase of a factor increases the implied volatility changes and a nega-

tive beta coefficient indicates that the increase of a factor decreases implied 

volatility changes. The regression results are estimated based on ordinary least 

squares (OLS) method, and if there has been autocorrelation or heteroscedastic-

ity, they are removed with EViews. Basic starting point was to do the regression 

with OLS settings when ever possible.  

 

If the demand pressure does explain the change in implied volatility, the coeffi-

cients: 3β , 4β , or both should be significantly greater than zero. On the other 

hand if options’ trading is driven by market expectations about volatility 

change, 3β  and 4β  should not be significantly different from each other be-

cause overall call options and put options should respond similarly to the 

change of volatilities. The hypothesis that 3β = 4β is tested with Wald coefficient 

test. If the demand pressure is related to market expectations about future vola-

tility, then the volatility should be more heavily affected by the demand pres-

sure in the same moneyness category. In all equations, the lagged change of 

implied volatility, 1−∆ tIV , is used to investigate whether the impact of demand 

pressure on change in implied volatility is caused by limits to arbitrage. For 

market makers who steadily rebalance their options positions, the options im-

plied volatility changes should move towards their previous levels. A negative 

estimated coefficient 5β  would suggest a transitory impact of options demand 

pressure and the impact due to limits to arbitrage. On the other hand, if 5β  is 

not different from zero, it would suggest that implied volatility changes are af-

fected by the changes of market expectations about volatility. Because the mar-

ket makers are informed by options trading activities they adjust option posi-

tions continuously. In addition, in all equations RS  and VS  are used to control 

for leverage and information flow effects. Volatility changes may be negatively 

related to price changes, because of a firm’s leverage effect, and positively re-

lated to information flow. The asterisks (***,**,*)  after coefficients denotes that 
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the particular coefficient is significantly different from zero at the 1, 5, or 10 

percent probability level.  

 

 

6.1. Changes in ATM implied volatility 

 

In all, four pairs of regression tests are performed. In the first pair, the degree to 

which the variables in (5.3) explain changes in the volatility of ATM options 

(category 3) is assessed. The regression is estimated for calls and puts sepa-

rately, and its specification is 

 

(6.1)  

 

where )( tt ATMPATMC  is the demand pressure for ATM calls (puts). The coeffi-

cients 3β  and 4β  should be informative regarding investor trading motivation. 

If trading is motivated by changes in expected future volatility, the coefficient 

values should be indistinguishable from one another. ATM calls and ATM puts 

are equally responsive to shifts in volatility, so there is no reason for traders to 

prefer one type of option over the other. On the other hand, if the demand pres-

sure moves prices as a result, the coefficients will differ. 

 

Table 6 contains a summary of the regression results of the (6.1) for Barclays Plc. 

options (BBL). Panel A shows the results for changes in the implied volatility of 

call options. The coefficients of ATMC  and ATMP  demand pressure variables 

are negative and insignificant. In addition, tested with Wald coefficient test, the 

3β  and 4β  are not significantly different. Panel B shows the results for changes 

in the implied volatility of ATM put options. The coefficients on ATMP  is in-

significantly positive and ATMC  is positively significant at less than 10% level. 

Again, the 3β  and 4β  are not significantly different. 

 

The results regarding the lagged implied volatility variable in Table 6 are inter-

esting. Under the null hypothesis and the learning hypothesis, the coefficient 

should not be different from zero.  Although, the coefficient for ATM call is ap-

proximately -0,40 and the coefficient for ATM put is approximately -0,48. Ap-

parently, prices reverse. Thus, about 44 percent of the BBL option-implied vola-

tility change observed today gets reversed tomorrow. 

 

,1543210 ttttttt IVATMPATMCVSRSIV εββββββ +∆+++++=∆ −
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The results in Table 6 indicate that demand pressure moves prices as a result 

but trading is also motivated by changes in expected future volatility. In addi-

tion, the results in panel B indicates that demand pressure influences implied 

volatility changes, and that the demand pressure of call options has a stronger 

effect on the implied volatility changes than put options demand pressure. 

 
Table 6. Summary of regression results of change in at-the-money implied volatility for Barclays Plc. stock 

options traded on the London International Financial Futures and Options Exchange during the period 

January 2005 through December 2005. 

 

Panel A. Change in ATM Call Volatility as a function of ATMC  and ATMP  

 Parameter Estimates 

Ticker No. of 

Obs. 

2R  Adj. 

2R  

0β  1β  2β  3β  4β  5β  

BBL 179 0,2048 0,1818 0,0011 -0,5640*** -4,05·10
6−

 -0,010 -0,0073 -0,3993*** 

 

Panel B. Change in ATM Put Volatility as a function of ATMC  and ATMP  

 Parameter Estimates 

Ticker No. of 

Obs. 

2R  Adj. 

2R  

0β  1β  2β  3β  4β  5β  

BBL 153 0,2504 0,2249 0,0025 0,4863* -2,21·10
5−

 0,0214* 0,0049 -0,4807*** 

 

 

6.2. Changes in OTM call implied volatility 

 

The second test pair examines changes in implied volatility of OTM calls. The 

regression specification is 

 

(6.2)  

 

for the results reported in panel C of Table 7. For panel D, the demand pressure 

ATMP  replaces ATMC  in (6.2). The regression attempts to asses whether de-

mand pressure of OTM calls affects the implied volatility of OTM calls after 

controlling for the effects of demand pressure of ATM options. If the learning 

story is correct and demand pressure arises from a revision to investor expecta-

tions regarding future volatility, the demand pressure of ATM options is more 

likely to drive changes in OTM implied volatility than OTM demand pressure. 

The reason for this is that ATM options have the highest sensitivity to volatility, 

ttttttt IVATMCOTMCVSRSIV εββββββ +∆+++++=∆ −1543210
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hence they are the natural vehicle to exploit new information. On the other 

hand, if the limit to arbitrage story is correct, the OTM demand pressure should 

be more important to that of other series. Thus, if learning hypothesis is correct, 

the coefficients for ATMC  and ATMP  should be greater that of OTMC . If the 

limits to arbitrage hypothesis is correct and volatility changes are primarily af-

fected by options’ own demand, the coefficient for OTMC  should be greater 

that of ATMC  and ATMP . 

 

The regression results are viewed in panels C and D of Table 7. In panel C the 

coefficient on OTMC  is insignificantly positive and coefficient on ATMC  is in-

significantly negative. In panel D, the coefficient on ATMP  is insignificantly 

positive. It shows that ATM trading does not carry much information about 

implied volatility changes of OTM call options. Although, in both panels the 3β  

and 4β  not significantly different. 

 
Table 7. Summary of regression results of change in out-of-the-money Call implied volatility for Barclays 

Plc. stock options traded on the London International Financial Futures and Options Exchange during the 

period January 2005 through December 2005. 

 

Panel C. Change in OTM Call Volatility as a function of OTMC  and ATMC  

 Parameter Estimates 

Ticker No. of 

Obs. 

2R  Adj. 

2R  

0β  1β  2β  3β  4β  5β  

BBL 119 0,3154 0,2851 0,0033 -0,5029** -2,12·10
5−

 0,0262 -0,0078 -0,5009*** 

 

Panel D. Change in OTM Call Volatility as a function of OTMC  and ATMP  

 Parameter Estimates 

Ticker No. of 

Obs. 

2R  Adj. 

2R  

0β  1β  2β  3β  4β  5β  

BBL 119 0,3186 0,2885 0,0025 -0,5473** -1,85·10
5−

 0,0304 0,0107 -0,4957*** 

 

Finally, the coefficient of the lagged implied volatility variable in the results of 

Table 7 is again consistently negative and significant and about the same order 

of magnitude as in Table 6. It suggests that market makers rebalance their op-

tion positions gradually and these rebalancing activities cause the implied vola-

tilities to revert partly back to their previous levels. Approximately 50 percent 

of the change in the OTM call option volatility gets reversed on the following 
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day. These evidences suggest that the changes of implied volatility are not 

merely caused by market expectations. 

 

 

6.3. Changes in ITM put implied volatility 

 

Table 8 shows the results for changes in the implied volatility of ITM put op-

tions. In panel E, the regression specification is 

 

(6.3)  

 

If buying pressure is mainly caused by market expectations about future volatil-

ity change, the coefficients for ATMC  and ATMP  should be greater that of 

ITMP . ATM options have the highest sensitivity to volatility change, and there-

fore they are more likely to be used if market expectations for future volatility 

changes are the major reason for trading options. Thus, the demand pressure 

based on ATM options should have a stronger effect on the implied volatility 

change. On the other hand, if the volatility changes are primarily affected by 

option demand in a specific category, 3β  should be greater than 4β . 

 

Table 8 shows the results for changes in the implied volatility of ITM put op-

tions. The coefficients of ITMP  and ATMP  demand pressure variables, in panel 

E, are negative and insignificant. In panel F, where ATMC  replaces ATMP  in 

the regression, the coefficient on ITMP  is insignificantly positive while the coef-

ficient on ATMC  is positively significant at less than 5% level. Again, in both 

cases, the 3β  and 4β  are not significantly different. 

 

The results indicate that the demand pressure has influence on implied volatil-

ity changes. Also it indicates that, unlike the demand pressure of ATM calls, the 

demand pressure of ITM puts does not affect changes in the implied volatility 

of ITM puts. Therefore, market expectations may affect the changes of implied 

volatility. This result indicates that demand pressure of call options has a 

stronger effect on the implied volatility changes than that of put options.  

 

It is also worth noting that the coefficients on lagged change in volatility are 

again significantly negative, indicating price reversals. Again, this evidence 

.1543210 ttttttt IVATMPITMPVSRSIV εββββββ +∆+++++=∆ −
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suggests that implied volatility changes are not caused merely by market expec-

tations. 

 
Table 8. Summary of regression results of change in in-the-money Put implied volatility for Barclays Plc. 

stock options traded on the London International Financial Futures and Options Exchange during the 

period January 2005 through December 2005. 

 

Panel E. Change in ITM Put Volatility as a function of ITMP  and ATMP  

 Parameter Estimates 

Ticker No. of 

Obs. 

2R  Adj. 

2R  

0β  1β  2β  3β  4β  5β  

BBL 164 0,2416 0,2176 -0,0001 0,2484 6,48·10
6−

 -0,0060 -0,0047 -0,4653*** 

 

Panel F. Change in ITM Put Volatility as a function of ITMP  and ATMC  

 Parameter Estimates 

Ticker No. of 

Obs. 

2R  Adj. 

2R  

0β  1β  2β  3β  4β  5β  

BBL 97 0,3497 0,3140 0,0028 0,2976 -1,54·10
5−

 0,0096 0,0161** -0,5866*** 

 

 

6.4. The affect of put/call volume ratio on ATM implied volatility changes 

 

Table 9 shows the results for changes in the implied volatility of ATM options, 

when CallPut /  volume ratio is the demand pressure variable. In both panels G 

and H, the regression specification is 

 

(6.4) 

 

where tCallPut /  is the approximated demand pressure of ATM options. In 

panel G the coefficient on CallPut /  is insignificantly positive while the coeffi-

cient in panel H on CallPut /  is insignificantly negative. Based on these results 

it is undoubtedly clear that CallPut /  volume ratio do not have remarkable af-

fect on implied volatility changes. 

 

Again the coefficients on lagged change in volatility are significantly negative, 

indicating price reversals. Again, this evidence suggests that implied volatility 

changes are not caused merely by market expectations.  

 

,/ 153210 tttttt IVCallPutVSRSIV εβββββ +∆++++=∆ −
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According to Tables 6, 7, 8, and 9, the 1β  (stock return) estimates are signifi-

cantly negative in four cases out of eight, significantly positive in two cases and, 

insignificantly positive in the rest of the cases. The coefficient of 2β  (stock vol-

ume) is insignificantly negative in six cases out of eight and insignificantly posi-

tive in two cases. The results of 1β  estimates are partly consistent with previous 

literature that documents an inverse relation between volatility changes and 

return. On the other hand the results of 2β  estimates indicate, unlike the previ-

ous literature, that there is no relation between volatility and information flow. 

 
Table 9. Summary of regression results of change in at-the-money implied volatility relative to put/call 

volume ratio for Barclays Plc. stock options traded on the London International Financial Futures and 

Options Exchange during the period January 2005 through December 2005. 

 

Panel G. Change in ATM Call Volatility as a function of category 3 Put/Call volume ratio 

 Parameter Estimates 

Ticker No. of Obs. 
2R  Adj. 

2R  0β  1β  2β  3β  5β   

BBL 179 0,2054 0,1871 0,0019 -0,5243*** 4,50·10
6−

 0,0046 -0,4006***  

 

Panel H. Change in ATM Put Volatility as a function of category 3 Put/Call volume ratio 

 Parameter Estimates 

Ticker No. of Obs. 
2R  Adj. 

2R  0β  1β  2β  3β  5β   

BBL 153 0,2353 0,2147 0,0045 0,4704* -3,15·10
5−

 -0,0015 -0,4706***  

 

In all equations the coefficient of variable 1−∆ tIV  is significantly negative in 1 

percent level. This result shows that market makers rebalance their option posi-

tions gradually and that implied volatilities are partially correlated to their pre-

vious levels. Therefore, the impact of options demand pressure is transitory and 

the impact can be caused by limits to arbitrage. The evidence supports the hy-

pothesis that limits to arbitrage permit a relation between the demand for op-

tions and corresponding implied volatility. The price reversals of implied vola-

tilities are an average about 47 percent. Overall, this evidence suggests that the 

implied volatilities changes are better explained by demand pressure than by 

market expectations. According to the results, the implied volatility change in 

the Barclays Plc. options market shows a clear reversion pattern. These findings 

support the demand pressure hypothesis in that option demand affects implied 

volatilities. 
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7. SUMMARY AND CONCLUSIONS 

 

The first purpose of this study was to examine how well the trading pressure 

explains the shape of option implied volatility smile. The second purpose was 

to estimate how option demand affects to option prices and associated implied 

volatilities. Based on the tick-by-tick Barclays Plc. stock options, the call and put 

options were analyzed across five different moneyness categories. The regres-

sion equations were tested using ordinary least squares method. 

 

Chapter 1 introduced a brief review of earlier research done in the area of ex-

plaining the shape of implied volatility smile with option demand and the pur-

pose of the study were presented. In the theoretical part of this study (i.e. Chap-

ters 2., 3. and 4.), first the derivative markets and then the options particularly 

were introduced. After this, stock price behaviour and stochastic price proc-

esses were introduced. The famous option pricing models, binomial tree model 

and Black-Scholes model were presented in Chapter 3. Then, in Chapter 4, an 

important factor in the option pricing, volatility, were comprehensively intro-

duced. Also this chapter took a close look on implied volatility. The empirical 

part of this study (i.e. Chapter 5. and 6.) contained first the introduction and 

description of the data. After that, the study hypothesis and analysis methods 

were presented. Finally the Chapter 6 presented the empirical test results. 

 

To investigate the relation between demand pressure and implied volatility, the 

study examines the null hypothesis and two alternative hypotheses. The null 

hypothesis predicts that there is no relation between demand for options and 

corresponding implied volatilities. The two alternative hypotheses support a 

positive relation between demand for options and related implied volatilities.  

 

To test the hypotheses the tick- and end-of-day data on Barclays Plc. stock op-

tions are used. These options are traded in the London International Financial 

Futures and Options Exchange (LIFFE) and the data is gathered from the time 

period 4 January, 2005 to 30 December, 2005. The Barclays Plc. stock options 

were the fifth most traded options in LIFFE during the sample period and they 

can be seen as generalized example of all stock options traded in LIFFE. 

 

The empirical results of the study are somewhat in accordance with the theo-

retical hypothesis. The results document a relation between the change in im-
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plied volatility and demand pressure, holding constant the effects of known 

determinants of volatility. For Barclays Plc. stock options, demand pressure for 

calls has a more dominant role than puts. Based on the results, volatility 

changes are not permanent and the demand pressure on stock call options ap-

pears to drive shape of the stock options implied volatility smile. As a result –

demand pressure moves stock option prices. Also, implied volatility changes on 

day one are shown to revert in part on the following day, as market makers are 

gradually able to rebalance their portfolios. The empirical results are consistent 

with the limits to arbitrage hypothesis. 

 

The results show that there exists relation between option demand and related 

implied volatility. It is clear that trading is partly motivated by changes in ex-

pected future volatility, but price reversals of implied volatilities are an average 

as much as 47 percent. Also, it seems that call demand and especially ATM call 

demand dominates explaining implied volatility movement. This is in line with 

earlier studies that changes in implied volatility of stock options are most af-

fected by demand pressure for calls.  
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APPENDIX 1. The Microsoft Visual Basic Codes for calculating the binomial 

option price and the implied volatility. 

 
This calculates the binomial option price. 

 

Public Function OptionValue( _ 

OptType As String, _ 

AmEur As String, _ 

StockPrice As Double, _ 

Strike As Double, _ 

Volatility As Double, _ 

IntRate As Double, _ 

EndDate, _ 

StartDate, _ 

NoSteps As Double _ 

) 

ReDim V(0 To NoSteps) 

'Calculate parameters used in binomial tree 

TimeStep = Years(EndDate, StartDate) / NoSteps 

DiscountFactor = Exp(-IntRate * TimeStep) 

u = Exp(Volatility * Sqr(TimeStep)) 

d = 1 / u 

p = (Exp(IntRate * TimeStep) - d) / (u - d) 

 

'Binary variables to identify the type of option 

b = BinCP(OptType) 

BAE = BinAE(AmEur) 

 

'Calculate option value at maturity 

For j = 0 To NoSteps 

s = AssetPrice(StockPrice, u, NoSteps, j) 

V(j) = IntVal(s, Strike, b) 

Next j 

 

'Move back down the tree 

For n = (NoSteps - 1) To 0 Step -1 

For j = 0 To n 

V(j) = (p * V(j) + (1 - p) * V(j + 1)) * DiscountFactor 

s = AssetPrice(StockPrice, u, n, j) 

IntValue = IntVal(s, Strike, b) 

If IntValue * BAE > V(j) Then 

V(j) = IntValue 

End If 

Next j 

Next n 

OptionValue = V(0) 

End Function 
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'Calculate maturity in years 

Function Years(EndDate, StartDate) 

NumDays = (EndDate - StartDate) 

FullWeeks = Int(NumDays / 7) 

RemainderDays = ((NumDays / 7) - FullWeeks) * 7 

WeekendDays = (2 * FullWeeks) + Application.WorksheetFunction.Max(0, Application. Work-

sheetFunction.Min((Weekday(StartDate) + RemainderDays - 6), IIf(Weekday(StartDate) = 7, 1, 

2))) 

Years = Application.WorksheetFunction.Max(0, (NumDays - WeekendDays)) / 252 

End Function 

 

'Calculate the intrinsic value 

Function IntVal(s, Strike, b) 

IntVal = b * (s - Strike) 

If IntVal < 0 Then 

IntVal = 0 

End If 

End Function 

 

'Calculate asset price at period n after nd downs 

Function AssetPrice(S0, u, n, nd) 

d = 1 / u    'd is the down factor 

nu = n – nd   'nu is the number of ups 

AssetPrice = S0 * u ^ nu * d ^ nd 

End Function 

 

'Check whether the option is a call or a put 

'Check first letter to determine the type of option 

Function BinCP(OptType As String) 

If Left(OptType, 1) = "C" Or Left(OptType, 1) = "c" Then BinCP = 1 

If Left(OptType, 1) = "P" Or Left(OptType, 1) = "p" Then BinCP = -1 

End Function 

 

'Check whether the option is American or European 

'Check first letter to determine the type of option 

Function BinAE(AmEur As String) 

If Left(AmEur, 1) = "E" Or Left(AmEur, 1) = "e" Then BinAE = 0 

If Left(AmEur, 1) = "A" Or Left(AmEur, 1) = "a" Then BinAE = 1 

End Function 

 

Public Function OptMat01( _ 

OptType As String, _ 

StockPrice, _ 

Strike, _ 

Volatility, _ 

EndDate, _ 

StartDate, _ 

NoSteps, _ 

nd _ 
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) 

TimeStep = Years(EndDate, StartDate) / NoSteps 'Calculate time step 

u = Exp(Volatility * Sqr(TimeStep))  'Calculate up factor 

s = AssetPrice(StockPrice, u, NoSteps, nd) 'Calculate stock price at maturity 

b = BinCP(OptType)   'Determine type of option 

OptMat01 = IntVal(s, Strike, b)  'Calculate value at maturity 

End Function 

 

Function OptMat02( _ 

OptType As String, _ 

StockPrice, _ 

Strike, _ 

Volatility, _ 

EndDate, _ 

StartDate, _ 

NoSteps, _ 

nd _ 

) 

ReDim V(0 To NoSteps) 

'Specify size of vector V 

TimeStep = Years(EndDate, StartDate) / NoSteps 'Calculate time step 

u = Exp(Volatility * Sqr(TimeStep))  'Calculate up factor 

b = BinCP(OptType)   'Determine type of option 

For j = 0 To NoSteps 

'Start loop 

s = AssetPrice(StockPrice, u, NoSteps, j) 'Calculate stock price at maturity 

V(j) = IntVal(s, Strike, b)  'Calculate option value 

Next j 

'End loop 

OptMat02 = V(nd)   'Return element asked in argument 

End Function 

 

This calculates the implied volatility with bisection method. 

 

Public Function ImpliedVolatility( _ 

StockPrice As Double, _ 

Strike As Double, _ 

IntRate As Double, _ 

EndDate, _ 

StartDate, _ 

OptionPrice As Double, _ 

OptType As String, _ 

AmEur As String, _ 

NoSteps As Double _ 

) As Double 

'Check for arbitrage violations: if price at almost zero volatility greater than price, return 0. 

Dim sigma_low As Double 

Dim Price As Double 

Dim IV As Double 



 
 

81 

sigma_low = 0.0001 

IV = -1 

'Calculate the price of the volatility was almost zero, to see what would be the minimum 

Price. 

 

Price = OptionValue(OptType, AmEur, StockPrice, Strike, sigma_low, IntRate, EndDate, 

StartDate, NoSteps) 

 

 

If Price > OptionPrice Then 

IV = 0 

Else 

'Simple binomial search for the implied volatility. Relies on the value of the option in-

creasing in volatility. 

Const ACCURACY = 0.00001 

Const MAX_ITERATIONS = 100 

Const HIGH_VALUE = 10000000000# 

Const ERROR = -1E+40 

'Want to bracket sigma. First find a maximum sigma by finding a sigma with a estimated 

price higher than the actual price. 

Dim sigma_high As Double 

sigma_high = 0.3 

 

Price = OptionValue(OptType, AmEur, StockPrice, Strike, sigma_high, IntRate, EndDate, 

StartDate, NoSteps) 

 

Do While (Price < OptionPrice) 

sigma_high = 2# * sigma_high 'keep doubling. 

 

Price = OptionValue(OptType, AmEur, StockPrice, Strike, sigma_high, IntRate, EndDate, 

StartDate, NoSteps) 

 

If (sigma_high > HIGH_VALUE) Then 

GoTo ReturnValue  'return ERROR; // something is wrong. 

End If 

Loop 

Dim i As Integer 

For i = 0 To MAX_ITERATIONS 

Dim sigma As Double 

sigma = (sigma_low + sigma_high) * 0.5 

 

Price = OptionValue(OptType, AmEur, StockPrice, Strike, sigma, IntRate, EndDate, 

StartDate, NoSteps) 

 

Dim test As Double 

test = (Price - OptionPrice) 

If (Abs(test) < ACCURACY) Then 

IV = sigma 

Exit For 
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ElseIf test < 0# Then 

sigma_low = sigma 

Else 

sigma_high = sigma 

End If 

Next i 

End If 

ReturnValue: 

If IV >= 0 Then 

ImpliedVolatility = IV 

Else 

'return ERROR; 

'Err.Raise 702 

ImpliedVolatility = -1 

End If 

End Function 


