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SYMBOLS 

α! Complex magnitude of the channel fading coefficient between the 

BS and user k 

θ! Azimuth angle of the plane wave from the kth user 

σ!!  Noise power at the receiver 

ϕ! Azimuth angle of the plane wave from the kth user 

β Phase propagation factor 

ΔΨ! Phase difference between the signal received at base station antenna 

element M and the reference antenna element 

λ Wavelength of a signal 

𝐚! Steering of the kth user 

C! Capacity achieved by the kth user 

d! Distance between the base station and user k 

g!" Average channel gain between the ith receiver and jth transmitter 

h!" Channel impulse response between the ith receiver and jth transmitter 

𝐡! Channel impulse response vector between the base station antenna 

array and the kth user 

𝐧! Additive white Gaussian noise at the kth user 

P! Power received 

𝐬! Payload for the kth user 

𝐰! Zero-forcing beamforming weight of the kth user 

𝐘! Received signal at the base station antenna array, from the kth user 

D Reuse distance 

𝐇 Channel matrix 

𝐇 Channel estimate 

K Number of simultaneously served users 

M Number of antennas at the base station 

N Cluster size 

𝐍 Additive white Gaussian noise at the base station 

P Base station transmit power 
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R Cell radius 

𝐮 Transmit vector from the base station 
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ABBREVIATIONS 

16-QAM 16-ary Quadrature Amplitude Modulation 

3D three-dimensional 

4G 4th generation 

5G 5th generation 

AWGN Additive White Gaussian Noise 

BER Bit Error Rate 

BS Base station 

BT-PCP Beamforming Training and Pilot Contamination Precoding 

CAGR compound annual growth rate 

CDI Channel Distribution Information 

CE Channel Estimation 

CSI Channel state information 

CSIT Channel State Information at the Transmitter 

dB Decibels 

DPC Dirty Paper Coding 

FDD Frequency–Division Duplex 

FSPL Free Space Path Loss 

H-inf H-infinity 

ISI Intersymbol Interference 

LS Least Squares 

LSFP Large-Scale Fading Precoding 

LTE Long Term Evolution 

MATLAB Matrix Laboratory 

MIMO Multiple input multiple output 

MISO Multiple Input Single Output 

MMSE Minimum Mean Squared Error 

mmWave Millimeter wave 

MRC Maximum Ratio Combining 

MU-MIMO Multi-User Multiple Input Multiple Output 
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NMSE Normalized Mean Square Error 

OFDM Orthogonal Frequency Division Multiplexing 

PCEP Pilot Contamination Elimination Precoding 

PCP Pilot Contamination Precoding 

PiC Pilot contamination 

RAT radio access technology 

SDMA Space-Division Multiple Access 

SIMO Single Input Multiple Output 

SINR Signal-to-Interference-plus-Noise Ratio 

SISO Single Input Single Output 

SNR Signal-to-Noise Ratio 

TDD Time–Division Duplex 

UE User equipment 

UHD Ultra-High Definition 

ZF Zero-Forcing 
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1. INTRODUCTION 

As stated by Marzetta (2015), “two timeless truths are evident: first, demand for 

wireless throughput will always grow; second, the quantity of available electromagnetic 

spectrum will never increase.” 

 

In recent years, the amount of traffic carried through mobile networks has been growing 

exponentially. The Cisco visual networking index (2016) indicates an estimated growth 

of 74 percent in global mobile data traffic in the year 2015. Based on a compound 

annual growth rate (CAGR) of 53 percent, the overall mobile data traffic is expected to 

grow to 30.6 Exabyte per month by 2020. This figure is a staggering eightfold increase 

over 2015. 

 

One of the primary contributors to the global mobile traffic growth is an increase in the 

number of mobile devices connected to the wireless communication networks. In the 

year 2014, the number of mobile devices connected was estimated to be 7.3 billion. This 

figure grew to 7.9 billion in the year 2015. That is an increase of 600 million mobile 

devices in just one year. This figure is expected to reach 11.6 billion by the year 2020 at 

a CAGR of 8 percent. (Cisco visual networking index 2016.) 

 

Another primary contributor, as stated by Rodriguez (2015), is the growing demand for 

advanced multimedia applications such as Ultra-High Definition (UHD) and three-

dimensional (3D) video as well as augmented reality and immersive experience. In 

comparison to other content types, video content has relatively higher bit rates. Due to 

this, they are anticipated to generate the largest portion of the mobile traffic growth 

through 2020 (Cisco visual networking index 2016). 

 

Such exponential growth in global mobile traffic has led to the advancement from the 

4th generation (4G) of mobile communications to the 5th generation (5G). 5G mobile 

communications is expected to meet the ever-increasing high data rate and connectivity 

demands. It is expected to pave the way towards the 4th stage of industrial revolution 

where the currently human-dominated wireless communications is extended to an all-
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connected world of humans and objects (Monserrat, Dohler & Osseiran 2016). 

According to Rodriguez (2015), the first wave of 5G networks is expected to be 

operational around 2021 with expected peak data rate of 10Gbps. The high data rates 

will provide extensive connectivity with ‘fiber-like’ experience for the users. 

 

With 5G, there are currently numerous research works on various feasible techniques to 

reliably and uniformly provide the ever-increasing total wireless throughput to all 

designated areas. Marzetta (2015) reports that the proposed solutions seem to fall into 

one of three categories: 

• The exploitation of the high frequency bands (>6GHz) that are currently unused 

or underutilized. 

• The deployment of more access points, each covering a relatively smaller cell. 

• The use of access points and/or terminals with multiple antennas. This is termed 

Multiple Input Multiple Output (MIMO). 

 

The first two solutions will not be discussed due to the fact that massive MIMO is the 

main area of focus in this thesis. Massive MIMO is the latter form of MIMO that is 

emerging as its ultimate and most useful form. 

 

One of the major challenges that arise with the deployment of massive MIMO is pilot 

contamination (PiC). Massive MIMO systems operate in time-division duplex mode 

and use training sequences (also referred to as pilot signals) to estimate the channel. 

Consequently, pilot contamination occurs due to pilot reuse that significantly corrupts 

the channel state information (CSI) and in turn degrades the performance of the 

network. This challenge gives rise to extensive research on techniques to mitigate pilot 

contamination. 

 

There are numerous PiC mitigation schemes that have been evaluated in literature due 

to the importance of accurate CSI and the strong negative impact of PiC on the quality 

of the acquired CSI. These schemes differ in various aspects such as complexity and 

modes of operation i.e. time, frequency or power domain. (Monserrat et al. 2016.) 
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The focus of this thesis is on the precoding schemes proposed with the objective of 

theoretically analyzing them and finally studying the effect PiC has on the performance 

of massive MIMO systems, through MATLAB simulations. A multi-cellular network, 

consisting of multiple users is simulated and analyzed by comparing its performance in 

the presence of PiC with its performance in the absence of PiC. The performance 

metrics used are probability of outage, average achievable sum capacity and bit error 

rate (BER). It should be pointed out that in this work, the terms users and user 

equipment (UE) are used interchangeably. 

 

This work is sectioned into four main chapters. 

• Chapter one highlights the motivation behind the research topic and its 

importance as well as the objective of the thesis. Additionally, a brief 

description of the analysis process is provided. 

• Chapter two explains the major aspects of MIMO systems such as precoding, 

the channel and pilot contamination in order to create an understanding on the 

topic and the research works that are reviewed in the final section of the chapter. 

• Chapter three describes the developed system model and the simulation process. 

• Finally, in chapter four the simulation results are discussed and conclusions 

drawn. Furthermore, recommendations are made for future work. 
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2. LITERATURE REVIEW 

2.1. Massive MIMO (Multiple Input Multiple Output) 

According to Santos, Edwards-Block & Licea (2013) any wireless communication 

system can be categorized into four groups based on antenna configuration: 

1. Single Input Single Output (SISO): single transmit and single receive antenna. 

2. Single Input Multiple Output (SIMO): single transmit antenna and multiple 

receive antennas. 

3. Multiple Input Single Output (MISO): multiple transmit antennas and a single 

receive antenna. 

4. Multiple Input Multiple Output (MIMO): multiple transmit and multiple receive 

antennas. 

 

 

 
Figure 1. Antenna configurations (Santos et al. 2013). 
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Santos et al. (2013) continue to indicate that multiple antenna systems are implemented 

in order to attain the following: 

• Diversity gain: This is the increase in the reliability of the wireless 

communication systems through the transmission or reception of signals via 

independently fading multiple paths. The system becomes more reliable due to 

the fact that the probability of deep fading is reduced with the increasing number 

of independent links. 

• Array/beamforming gain: This is the average increase in the receiver signal-to-

noise ratio (SNR) through coherently combining the signals from multiple 

antennas at the receiver and/or the transmitter. 

• Spatial multiplexing gain: This is the increase in data rate without the need of 

higher transmission power. This can be achieved through, for instance, the 

transmission of multiple data streams that are spatially multiplexed into the 

same frequency-time resource. 

 

The diversity, beamforming, and multiplexing gains achieved by the use of multiple 

antenna systems have been revolutionary to the wireless communications industry. The 

current emerging multiple antenna technology is massive MIMO. It is a scaled up 

version of MIMO by orders of magnitudes hence achieving even higher gains. 

 

Massive MIMO is a form of Multi-User MIMO (MU-MIMO). The term multi-user 

arises from the fact that instead of employing a single transmitter and receiver each with 

multiple antennas, as is with traditional (point-to-point) MIMO, the single receiver with 

multiple antennas is split into multiple receivers each with typically a single antenna as 

shown in Figure 2. Consequently, during the uplink, the system is seen as multiple 

SIMO networks and in the downlink, the system is seen as multiple MISO networks. 
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Figure 2. Multi-User MIMO. 

 

 

Massive MIMO has been defined in a couple of ways. Some groups define it as any 

MIMO configuration that exceeds those implemented in current long term evolution 

(LTE) systems; at present 8x8. On the other hand, other groups simply refer massive 

MIMO to the implementation of a large array of antennas at the base stations. However, 

the best way to define massive MIMO is by relating it to the ratio of serviced users to 

the number of antennas that are serving those users. In order to achieve the benefits of 

multi-antenna systems, the number antennas at the base station should be more than or 

equal to the number of users being simultaneously served by the base station. (Panzner, 

Zirwas, Dierks, Lauridsen, Mogensen, Pajukoski & Miao 2014.) 

 

Larsson, Edfors, Tufvesson & Marzetta (2014) explain that massive MIMO systems 

rely on spatial multiplexing, which in turn rely on the base station acquiring information 

on the channel state in both the uplink and downlink. This information is known as 

channel state information (CSI). CSI at the base station is used to perform precoding on 

the downlink data streams before transmission as shown in figure 3.  
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Figure 3. Downlink operation of a massive MIMO link (Marzetta 2015). 

 

 

Marzetta et al. (2014) continue to explain that on the uplink, the acquisition of the CSI 

can easily be accomplished by having the terminals transmit their assigned pilots to the 

base station where they are used to estimate the channel responses to each of the 

terminals. However, the downlink is more challenging due to the magnitude of antennas 

at the base station. In conventional MIMO systems, pilot sequences are transmitted 

from the base station to the terminals where they are used to estimate the channel 

responses and the results are fed back to the base station. Unfortunately, this is not 

practical in massive MIMO systems for the following reasons: 

• The amount of time-frequency resources required for downlink pilots is directly 

proportional to the number of antennas at the base station due to the fact that 

optimal downlink pilots ought to be mutually orthogonal between the antennas. 

Therefore, in comparison with a conventional MIMO system, a massive MIMO 

system would require much more such resources. 

• The number of channel responses to be estimated by each terminal scales with 

the number of base station antennas. In turn, the uplink resources needed to 

provide CSI feedback to the base station would be much larger than in 

conventional systems. 
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The aforementioned issues can be resolved by operating in the time-division duplex 

(TDD) mode and take advantage of the reciprocity between the uplink and the downlink 

channels during the coherence time interval of the channel. However, frequency-

division duplex (FDD) may be applicable in particular cases where the number of 

terminals and base station antennas is small. (Larsson et al. 2014.) 

 

As stated by Ashikhmin & Marzetta (2012) and shown in figure 4, each coherence 

interval in a TDD scheme comprises of four phases; 

1. The uplink phase: Each terminal transmits data to its assigned base station. 

2. All the terminals synchronously transmit pilot sequences of length 𝜏. 

3. The base stations use the received pilot signals to estimate the channel vectors 

and use these estimates to decode the previously received data signals by the use 

of maximum ratio combining (MRC). 

4. The downlink phase: The channel vector estimates are then used to compute the 

beamforming weights that are used for the directed downlink transmission of 

data to the terminals. 

 

 

 
Figure 4. Coherence interval of TDD scheme (Ashikhmin & Marzetta 2012) 

2.2. Precoding 

The multipath propagation in a radio channel results in the received signal to comprise 

of a superposition of several delayed and scaled replicas of the transmitted signal. When 

the signal bandwidth is larger than the coherence bandwidth, the signal undergoes 

frequency-selective fading. At the receiver, intersymbol interference (ISI) is 

experienced leading to an increase in BER and in turn degrading the performance of the 
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communication system. ISI is a major problem for communication systems with high 

data rates such as with MIMO. One of the solutions to mitigate the detrimental effect of 

ISI is the use of equalizers at the receiver. The equalizer ideally filters the received 

signal to eliminate the channel distortions, namely, ISI and multiuser/multi-antenna 

interference as well as noise. However, the equalization process can be complex. In 

order to simplify its complexity, the transmitter obtains the CSI and uses it to perform 

precoding on the data streams before transmission. These precoded data streams allow 

for a simpler equalizer design at the receiver. (Chellapa & Sergios 2013.) 

 

As described by Chockalingam & Rajan (2013), precoding is the process of encoding 

the information signals using CSI at the transmitter. The transmitter uses the CSI to 

encode the information symbols into transmit vectors. The optimal transmission scheme 

is based on a concept known as dirty paper coding (DPC), where the transmitter 

encodes the information symbols for all users using perfect knowledge of CSI. With this 

perfect knowledge of the CSI for all users, the transmitter can compute the interference 

and deduct it prior to transmission. This leads to the system performing as though the 

interference from other user data streams was not present. However, the DPC based 

transmission scheme is too complex for practical implementation. Therefore, more 

practical precoding techniques are implemented which fall under one of two categories, 

namely, linear precoding and non-linear precoding. 

2.2.1 Linear precoding 

With linear precoding, the information symbols are linearly transformed using a 

precoding matrix. Mathematically, it can be represented as follows: 

 

𝐱 = 𝐓𝐮 (1) 

 

Where 𝐱  is the transmit vector, 𝐮  is the information symbol vector and 𝐓  is the 

precoding matrix. The precoding matrix is chosen based on the available CSI at the 

transmitter (CSIT). 
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2.2.2 Non-linear precoding 

Non-linear precoding techniques are relatively more complex compared to linear 

precoding techniques, which is not desired for large multi-user systems. However, they 

achieve a relatively higher performance, particularly when the number of serviced users 

is small. The increased performance of non-linear precoding techniques is due to the 

additional operations like interference pre-subtraction and optimal user ordering. 

2.3. Multi-antenna wireless channels 

As explained by Chockalingam & Rajan (2013), multi-antenna wireless channels are 

broadly categorized into two groups, point-to-point and multi-user channels. One of the 

defining attributes of a wireless channel is the fluctuation of the channel strength with 

respect to time and frequency. These fluctuations are classified into two: 

 

i. Large scale fading: This arises due to path loss caused by long transmission 

distances and shadowing by large objects like buildings and trees, to mention a 

few. Large scale fading is frequency independent. 

ii. Small scale fading: This arises due to the constructive and destructive 

interferences of the multiple signals that are caused by multipath propagation 

between the transmitter and receiver. Small scale fading is frequency dependent. 

 

Furthermore, small scale fading is further broken down into two categories: 

 

i. Frequency selective channel: This occurs when the signal bandwidth is larger 

than the coherence bandwidth of the channel. This occurrence leads to 

intersymbol interference. 

ii. Frequency-flat (or flat fading) channel: This is the inverse of the frequency 

selective channel. It occurs when the signal bandwidth is much smaller than the 

coherence bandwidth of the channel. A frequency-flat channel does not cause 

severe ISI and hence it is the desired type of channel. Fortunately, there exists a 
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technique that converts a frequency selective channel into multiple parallel 

frequency-flat channels. This technique is known as orthogonal frequency 

division multiplexing (OFDM).  

 

In terms of channel fluctuation with respect to time, the wireless channels are further 

classified as slow fading or fast fading. In a wireless communications system, CSI is 

constantly being estimated due to the channel’s varying nature as well as the mobility of 

the users. The fading rate of the channel in relation to the rate of CSI estimation (or 

signaling rate) determines a slow fading and fast fading channel. A slow fading (or 

time-flat) channel is one in which the signaling rate is faster than the fading rate of the 

channel. Meaning, the channel state is constant during the time interval between one 

CSI estimate and the next. On the other hand, a fast fading (or time-selective) channel is 

one in which the signaling rate is slower than the fading rate of the channel. This means 

that by the time data transmission is carried out using the currently obtained CSI, the 

channel state would have already changed hence leading to signal detection errors at the 

receiver. 

 

Multi-antenna wireless channels with t transmit antennas and r receive antennas are 

modeled as a linear channel with an equivalent baseband r×t	channel matrix, H. 

 

𝐇 =  
h!! ⋯ h!"
⋮ ⋱ ⋮
h!" ⋯ h!"

 (2) 

 

To elaborate the matrix in equation (2), ℎ!" is the channel impulse response (or fading 

coefficient) between the ith receiver and jth transmitter. The average channel gain 

between the ith receiver and jth transmitter is 𝑔!" = 𝐸[|ℎ!"|!]. These channel gains are 

also referred to as CSI. 
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2.4. Pilot Contamination 

In the earlier sub-chapters, the importance of CSI knowledge (or channel gains) has 

been clearly indicated. Chockalingam & Rajan (2013) state, “In practice, these gains are 

estimated at the receiver, either blindly/semi-blindly or through pilot transmissions 

(training).” They continue by elaborating that in FDD systems, channel gains are 

estimated at the receiver and then fed back to the transmitter for precoding purposes. 

This scheme requires relatively more resources due to the feedback process. In TDD 

systems, where channel reciprocity holds, the transmitter can estimate the channel from 

the received pilots from the user equipments, and use it for precoding. This scheme 

requires fewer resources and is suitable for large networks with a large array of base 

station antennas. 

 

As mentioned before, TDD mode is the optimal mode of operation for massive MIMO 

due to the magnitude of transmission links. Hence, in this case, channel state estimation 

is performed through pilot transmissions as describe in the previous paragraph. Prior to 

data transmission, each UE in a massive MIMO system is ideally allocated an 

orthogonal uplink training sequence (also known as pilot signals). However, the 

maximum number of orthogonal training sequences that can exist is limited by the ratio 

of the coherence time of the channel to the channel delay spread. Hence, in multicellular 

systems, the available supply of these orthogonal training sequences is easily exhausted. 

(Larsson et al. 2014.) 

 

In order to simultaneously cater to a large number of UE, pilot reuse policy is 

implemented. UE in the neighboring cells reuse these limited orthogonal training 

sequences at a specific reuse factor as shown in figure 5. The effect and, ultimately, 

negative consequence that arises due to pilot reuse is termed pilot contamination. When 

the base station receives a pilot signal from a UE, it uses the received signal to estimate 

the CSI that turns out to be contaminated by the pilot signals from other terminals that 

share the same training sequence. Hence, using this corrupted CSI for downlink 

transmission of data results in transmission errors. This in turn results in drastic 

degradation of the system by limiting the benefits of massive MIMO and that is why it 



24 

is of great importance to establish techniques to mitigate this effect. (Larsson et al. 

2014.) 

 

 

 
Figure 5. Fractional reuse factor (Taha, Ali & Hassanein 2012). 

 

 

However, it is important to note that non-orthogonal training sequences are not the only 

source of PiC. Practically, other sources of PiC could be hardware impairments (due to 

distortions that interfere with the pilot signals) and non-reciprocal transceivers. (Elijah, 

Leow, Rahman, Nunoo & Iliya 2015a.) 

 

Based on literature, Larsson et al. (2014) state three approaches to mitigate PiC: 

1. Optimizing the allocation of pilot waveforms. One way to achieve this is by 

reducing the frequency reuse factor for the pilots (but not necessarily for the 

actual data i.e. payload). This allows for cells that share the same pilot sequence 

to be further apart hence reduced interference. 

2. The use of smart channel estimation algorithms or even blind techniques that 

eliminate the need for pilots altogether. 

3. The development of new precoding techniques that take the network structure 

into account. 
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Approach number 3 is the main focus of this thesis. The following sub-chapter 

highlights the various works on precoding schemes that mitigate PiC. 

2.5. Research on precoding techniques for mitigation of pilot contamination 

As the number of base station antennas, M, increases with no bound, the effects of 

additive noise at the receiver, intra-cell interference as well as fast fading disappear. The 

sole challenge that remains is the inter-cell interference that causes PiC. In the absence 

of PiC, signal-to-interference-plus-noise ratio (SINR) scales linearly with M and does 

not saturate as M tends to infinity. On the other hand, the presence of PiC results in 

SINR saturation due to the corruption of channel estimates caused by interfering users. 

(Elijah, Leow, Tharek, Nunoo & Iliya 2015b.) 

 

The following reviewed literatures are based on the multi-cell TDD-based massive 

MIMO OFDM systems that implement pilot training for CSI estimation. 

 

One of the precoding techniques to mitigate PiC, which was proposed by Jose, 

Ashikhmin, Marzetta & Vishwanath (2011), is multi-cell MMSE-based precoding. 

MMSE stands for minimum mean squared error. This technique does not require any 

coordination between base stations and it explicitly takes into account the set of training 

sequences allocated to the UE. The authors state that since PiC originates from the use 

of non-orthogonal training sequences, the key point is to account for the allocation of 

the training sequences in the precoding design. This approach is not very common and 

instead, the designed precoding methods take into account the inter-cell interference and 

not the ultimate source itself (the non-orthogonal training sequences). The performance 

of the proposed precoding scheme was compared to the performance of single-cell 

precoding schemes such as zero forcing with the performance metric being sum rate 

(the total system throughput). It was indicated that the presence of PiC leads to the 

saturation of achievable rates by the users when increasing the number of base station 

antennas. Multi-cell MMSE-based precoding outperformed the single-cell precoding 



26 

schemes and it proved suitable for maximizing the minimum of the rates achieved by all 

the users. 

 

Another contribution is pilot contamination precoding (PCP) that was proposed by 

Ashikhmin & Marzetta (2012). Unlike multi-cell MMSE-based precoding, PCP 

employs the use of limited collaboration between base stations in the network by the use 

of a network hub. The network hub is responsible for computing the PCP precoding 

matrices. The results showed that inter-cell interferences as well as noise vanishes as the 

number of base station antennas, M, tends to infinity. Therefore, SINR tends to infinity 

as M tends to infinity. However, practically, massive MIMO systems have base stations 

with a finite number of antennas. In this case, PCP does not work well in resolving the 

issue of inter-cell interferences. Consequently, Ashikhmin, Marzetta & Li (2014) further 

developed and renamed PCP to Large-Scale Fading Precoding (LSFP) due to the fact 

that LSFP better reflects the idea of the PCP protocol. The analysis of the performance 

of PCP on the mitigation of inter-cell interference revealed that, for a finite number of 

base station antennas, there exist some other consequences of inter-cell interference 

other than PiC which LSFP successfully eliminates. For better performance of the 

LSFP, the authors suggested that the system should be designed with a frequency and 

pilot reuse factor higher than one. However, this leads to longer training sequences 

which in turn lead to longer training time and consequently a relatively slower system. 

 

In addition to LSFP, Neumann, Joham & Utschick (2015) proposed the channel 

distribution information (CDI) precoding. CDI precoding was developed as an 

extension of PCP where an additional precoding stage is added that is independent of 

the instantaneous CSI. However, the additional stage depends solely on the channel 

distribution information. Achievable rates are known to only depend on the statistics of 

the channel i.e. CDI. This is the motivation behind the CDI-based linear precoding 

proposed by the authors. For the ease of simulation, the authors focused on a simple 

zero-forcing approach. The results revealed that, similar to PCP, CDI zero-forcing 

needs a very large number of antennas to significantly outperform the alternatives. 

However, CDI zero-forcing produced much higher spectral efficiency per user in 

comparison to PCP zero-forcing. It was proved that CDI precoding completely 
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suppresses the interference that causes PiC leading to a significant gain in spectral 

efficiency in massive MIMO systems affected by PiC. 

 

Another precoding technique named beamforming training and pilot contamination 

precoding (BT-PCP) was proposed by Zuo, Zhang, Yuen, Jiang & Luo (2015). This 

precoding scheme also employs limited collaboration between base stations to share 

transmit signals. Unlike with PCP and LSFP, the performance metric used for BT-PCP 

is spectral efficiency. BT-PCP proved to achieve higher spectral efficiency than PCP in 

the practical scenario in which the number of base station antennas was finitely large. It 

also proved to perform quite close to the perfect CSI scenario where PiC is not a factor. 

As it has been seen mentioned before, CSI at the base station is essential for uplink 

detection and downlink precoding. So far, CSI at the user side has not been highlighted 

in massive MIMO due to the use of TDD scheme where CSI is only known at the base 

station. However, the system performance can be enhanced when the users have 

knowledge of the downlink CSI, which can be achieved through beamforming training. 

This is the key element of BT-PCP. As discussed in the earlier sub-chapters, the 

conventional downlink communication of the TDD protocol consists of the uplink 

training phase and the downlink data transmission phase. With beamforming training 

there exists an additional phase where the effective channel is estimated by the users 

through the downlink pilots from the base stations. Beamforming training is what 

contributes to the high performance of BT-PCP. However, the authors suggested that 

for further improvements the correlation of the channel should be taken into 

consideration since their analysis only focused on uncorrelated channels due the 

mathematical complexities behind channel correlation. 

 

Concurrently, Liu, Cheng & Yuan (2015) proposed a technique that employed a novel 

uplink training scheme in conjunction with a downlink pilot contamination elimination 

precoding (PCEP) scheme. This proposed scheme was motivated by the works of 

Ashikhmin, Marzetta & Li (2014). The novel uplink training scheme proposed confines 

PiC to be within each cell rather than between neighboring cells. This is very different 

from the cases previously discussed. The proposed uplink training scheme is cell-

specific. This means that the users in one cell adopt the same training sequence which is 
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orthogonal to the one adopted by users in the neighboring cells. Hence, within the cells, 

the pilots are non-orthogonal which is contrary to the conventional pilot allocation, 

which is user-specific (meaning the pilots within the cell are orthogonal). Since the 

number of neighboring cells is much smaller than the number of users that can be 

simultaneously served in one cell, the length of training sequences is significantly 

reduced in the proposed cell-specific training scheme. This leads to higher spectral 

efficiency. The PCEP matrices are computed locally at each base station since the 

precoding scheme only deals with intra-cell interference hence no collaboration is 

required between base stations. This reduces signaling overhead. As a result, the 

proposed scheme exhibited a very high performance compared to the user-specific 

schemes (such as LSFP) in terms of average sum rate achieved by the users. 

 

Finally, Xu, Wang & Wang (2015) proposed the joint use of the H-infinity (H-inf) 

criterion on channel estimation (CE) and precoding schemes for mitigation of PiC. The 

authors pointed out that existing research generally address CE and precoding 

separately. However, since CE is a fundamental part of precoding, it is important to 

consider them jointly to mitigate the impact of PiC. In the uplink phase, the idea of the 

H-inf criterion is to find a CE method with which the ratio between the CE error and the 

input noise/interference is less than a prescribed threshold. Whereas in the downlink 

phase, the idea of H-inf precoding is to find the CE based precoding matrix whose ratio 

between the precoding error and the noise/interference from other cells is less than a 

prescribed positive threshold. The performance metric used was the downlink 

achievable rate. Comparison was made between combinations of H-inf precoding 

methods, zero-forcing and MMSE (for the downlink phase) with H-inf CE methods and 

MMSE (for the uplink phase). Numerical results revealed that joint use of the H-inf 

criterion in CE and precoding present significant rate gains compared to many popular 

combinations of CE and precoding. The results also showed that the performance of the 

precoding depends only on the uplink thresholds of the H-inf CE. 
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3. SYSTEM MODEL AND SIMULATION 

3.1. System Model 

The software used to build the system is a MathWorks product known as MATLAB, 

short for Matrix Laboratory. It is a powerful tool used to design and analyze systems 

and products by the use of matrix-based MATLAB language.  

3.1.1 Network Setup 

The implemented system model is a multi-user multi-cellular network with Rayleigh 

fading channels. The system model consists of a center cell (the desired cell) 

surrounded by six co-channel cells in the first tier whose centers are at a distance D 

from the center of the desired cell. D is the reuse distance and is equated as; 

 

D = R 3N (3) 

 

Where, 𝑅 is the cell radius and 𝑁 is the cluster size. Each cell has a single base station 

(BS) consisting of M omnidirectional antennas that are horizontally aligned. All base 

stations are placed at the center of the cell. In each cell, K=8 UE can be served 

simultaneously. The number of UE remains fixed during the system analysis. For 

analysis of the worst case scenario, the UE in the desired cell are randomly placed on 

the cell edges whereas the UE in the co-channel cells are randomly scattered within the 

cell as shown in figure 6. For simplicity, in the simulation process the cells are assumed 

to be circular. 
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Figure 6. Aerial view of the cellular network (cluster size = 3). 

 

 

3.1.2 Channel Model 

As mentioned earlier, the channel is a Rayleigh fading channel. The channel is modeled 

based on the concept of adaptive transmit beamforming. Transmit beamforming is in 

fact the essence of precoding. As stated by Björnson, Bengtsson & Ottersten (2014), 

transmit beamforming increases spectral and energy efficiency since it allows for the 

transmit antenna array to focus the signal energy in the direction of the desired user with 

relatively very low signal energy directed towards the undesired users. The ideal case is 

not to have any signal energy directed towards the undesired users but, practically, this 

is not the case due to limited spatial directivity of finite transmit antennas. With 
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transmit beamforming, K spatially separated users are served simultaneously through 

space-division multiple access (SDMA). Figure 7 illustrates this concept. 

 

 

 
Figure 7. Adaptive transmit beamforming. 

 

 

The channel modeling procedures are as follows: 

 

1. The steering vector for each user, 𝐚! θ!,ϕ! , is given by; 

 

𝐚! θ!,ϕ! = 1 exp −jΔΨ! θ!,ϕ! … exp −jΔΨ! θ!,ϕ!
!
 (4) 

 

Where, θ! and ϕ! are the elevation and azimuth angle of the plane wave from 

the kth user, respectively. ΔΨ!  is the phase difference between the signal 

received at BS antenna element M and the reference antenna element. 

 

ΔΨ! = β x! cos ϕ! sin θ! +  y! sin ϕ! sin θ! +  z!cos (θ!)  (5) 
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Where, β =  2π λ is the phase propagation factor, λ is the wavelength of the 

received signal and (x!, y!, z!) is the Cartesian position of the BS antenna 

element m with respect to the reference antenna element. 

 

2. The channel impulse response vectors for each user, are then computed using 

equation (6) below. 

 

𝐡! =  
α!
d!

!  × 𝐚! θ!,ϕ!  (6) 

 

α! is a complex magnitude of the channel fading coefficient between the BS and 

user k and d!  is the distance between the BS and user k. α!  is Rayleigh 

distributed and each user experiences an independent attenuation coefficient. 

 

3. The collective channel response matrix, 𝐇, between the BS antenna elements 

and the randomly scattered users is a concatenation of the individual channel 

response vectors for each user. 

 

𝐇 =  𝐡! 𝐡! … 𝐡!  (7) 

 

𝐇 is an M x K matrix. 

 

The network simulation is divided into two phases, the uplink phase and the downlink 

phase. 

3.1.3 Uplink phase 

As discussed in the literature review, channel estimation is performed in the uplink 

phase by the use of orthogonal training sequences that are known at the BS. The users in 

the center cell are assigned a set of orthogonal training sequences, of length l = 2^n (n ∈ 

Ζ+), which are re-used by the co-channel cells around it (pilot reuse). This pilot reuse 

leads to PiC during the channel estimation process. For simplicity, the channel 
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estimation technique implemented is based on least squares (LS). The LS channel 

estimator, also known as a zero-forcing estimator, is a simple traditional Gaussian 

assumption channel estimator (Bhatia, Mulgrew & Falconer 2007). 

 

During the uplink phase, each user transmits its assigned pilot which is received by the 

BS antenna array as shown in equation 8 below. 

 

𝐘! =  𝐡!𝐱! +  𝐍 (8) 

 

Where 𝐘! is the M x l received signal from the kth user, 𝐡! is the M x 1 channel impulse 

response between the kth user and the BS antenna array, 𝐱! is the pilot signal from the 

kth user and 𝐍 is the M x l additive white Gaussian noise (AWGN) at the receiver (BS 

antenna array). 

 

The channel is estimated using the equation 9 below. 

 

𝐇 =  𝐘𝐗!𝟏 (9) 

 

Where 𝐇 is the M x T channel estimate, 𝐘 is the M x l sum of received signals at the BS 

antenna array from all the users in the cell i.e. 𝐘 =  𝐘!! . Finally, 𝐗 is the T x l training 

symbol matrix containing the training sequences assigned to all users. 

 

In the presence of inter-cell interference, the BS in the desired cell receives pilot signals 

from all users in the surrounding co-channel cells as 𝐘 =  𝐘!! . Where C is the total 

number of co-channel cells (in this case C = 6) and 𝒀! is the sum of the received signals 

from the nth co-channel cell. This causes PiC. Therefore, the corrupted channel estimate 

equated as; 

 

𝐇𝐜𝐨𝐫𝐫𝐮𝐩𝐭𝐞𝐝 =  𝐘!
!

𝐗!𝟏 (10) 
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3.1.4 Downlink phase 

The precoding process takes place in the downlink phase. The BS uses the estimated 

channels to produce beamforming weights that are used to direct the payload to the 

desired user. As discussed in the literature review, various precoding techniques could 

be implemented that vary in complexity and efficiency. For simplicity, zero-forcing 

(ZF) precoder is employed in this work. 

 

With ZF, the beamforming weights are computed as follows; 

 

𝐖!" =  𝐇!(𝐇𝐇!)!𝟏 (11) 

 

Where, 𝐖!" = [𝐰!,𝐰!, …  𝐰!]; 𝐰! is the ZF beamforming weight of the Kth user. The 

ZF beamforming weights are simply the pseudo-inverse of the channel impulse 

responses. The beamforming weights are such that they eliminate inter-user (also 

known as intra-cell) interference i.e. 𝐡!!𝐰! = 0 for i ≠ k while 𝐡!!𝐰! = 1, in perfect 

CSIT conditions. 

 

The transmitted signal from the BS to the users after beamforming is; 

 

𝐮 =  𝐰!𝐬!
!

 (12) 

   

Where 𝐬! is the payload for the kth user. The signal received by each user in the cell 

then becomes; 

 

𝐲! =  𝐡!!𝐮+ 𝐧! (13) 
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3.2. Simulation 

In this work, Monte Carlo simulations are implemented to estimate the value of a 

parameter. As stated by Kosbar, Tranter, Rappaport & Shanmugan (2003), in Monte 

Carlo simulations, the value of the parameter is estimated by running the underlying 

stochastic experiment multiple times. The number of repetitions should be as large as 

possible for a better estimate.  

 

The simulation is designed in different ways based on the performance metric. Three 

performance metrics are used, namely, probability of outage, average achievable sum 

capacity and bit error rate (BER). Probability of outage is the probability that the SINR 

at the receiver is below a certain threshold, hence leading to outage. The achievable sum 

capacity is the sum of the average capacity achieved by each serviced user in the cell. 

Lastly, BER is the probability of receiving a bit in error. 

 

In order to study the effect of PiC on the mentioned performance metrics, the network is 

analyzed in two scenarios; one in which the CSIT is corrupted by the pilot signals from 

the UE in the co-channel cells and the other in which there is no presence of PiC. 

Furthermore, the effect of PiC is studied in the worst-case scenario where the UE in the 

desired cell are on the edges of the cell. 

 

In the simulation, the probability of outage is given by; 

 

P!"#$%& =  P SINR!"#$%&%' < SINR!"#$%"&'( =  
number of outages

number of repetitions 
(14) 

 

The SINR achieved by each user, k, is given by; 

 

SINR! =
P × 𝐡!!𝐰!

!

P × 𝐡!!𝐰!
! +  σ!!!!!

 (15) 

 

Where, 𝑃 is the BS transmit power and σ!!  is the noise power at the receiver. 
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The capacity achieved by each user, k, is given by; 

 

C! =  log!(1+ SINR!) (16) 

 

Finally, the BER is computed using equation (17) below under the assumption that the 

modulation scheme used is 16-QAM (16-ary quadrature amplitude modulation). 

 

BER! =  3 4Q
SINR!

5  (17) 

 

Figures 8 and 9 illustrate the simulation flowcharts to measure the probability of outage, 

the average achievable sum capacity and the BER. 
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Figure 8. Simulation flowchart for the probability of outage. 
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Figure 9. Simulation flowchart for the average achievable sum capacity and BER. 
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4. DISCUSSION AND CONCLUSIONS 

4.1. Simulation results 

Table 1 consists of the network parameters for the simulation. 

 

 

Table 1. Network parameters. 

Parameter Value 

Height of base station 300m 

Number of users per cell 8 

Length of training sequence 8 

Carrier frequency 3.7GHz 

Normalized antenna separation 3/π 

Noise power at BS -80dBm 

Noise power at user terminal -100dBm 

Base station transmit power per antenna 0dBW 

Cell radius 500m 

 

 

4.1.1 Channel estimation error 

To analyze the effect of PiC on the channel estimation, the normalized mean square 

error  (NMSE) of the estimate is computed. NMSE is a measure of how accurate the 

channel estimation is. It is computed using equation 18 below. 

 

NMSE =
E 𝐇−  𝐇 !

E 𝐇 !  (18) 
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Where, 𝐇 is the actual channel and 𝐇 is the estimated channel. The lower the NMSE 

value, the more accurate the channel estimation is. 

 

 

 
Figure 10. Normalized mean square error of the channel estimation. 

 

 

In figure 10, the cluster size is one. Additionally, the term corrupted CSIT means CSIT 

in the presence of PiC and the term uncorrupted CSIT means CSIT in the absence of 

PiC. From the figure, it is seen that the NMSE values vary between 0.78 and 0.86 with 

corrupted CSIT while with uncorrupted CSIT they vary between 0.01 and 0.015. The 

fluctuations in the NMSE with increasing number of BS antennas are due to the 

randomness of the channel and the random locations of the UE. Conclusively, the 

NMSE values clearly show that PiC leads to significantly larger channel estimation 

errors. 

4.1.2 Probability of outage 

Figure 11 illustrates how PiC affects the probability of outage at varying cluster sizes 

when the number of BS antennas is fixed at 20. In all the subplots, the x-axes represent 
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the SINR threshold in decibels (dB) and the y-axes represent the average probability of 

outage in percentage (%). 

 

 

 
Figure 11. Probability of outage in the presence vs. in the absence of PiC with 
increasing cluster sizes. 

 

 

The probability of the edge users being in outage appears to be higher in the presence of 

PiC. This is justified by the fact that the achieved SINR at the UE is lower under 

corrupted CSIT as shown in figure 12. The reduction in SINR is due to the fact that the 

beamforming weights computed from the corrupted CSIT do not significantly eliminate 

the intra-cell interferences. However, as the cluster size increases, the effect of PiC 

disappears, as expected, since the co-channel cells are further away from the desired 

cell. Due to free space path losses (FSPL), the power of the pilot signals from the co-

channel cells decays in proportion to the fourth power of the distance between the 

transmitter and receiver i.e. P! ∝
!
!!

. Where, P! is power received at distance d from the 

transmitter. 
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Figure 12. SINR achieved in the presence vs. in the absence of PiC. 

 

 

Figure 13 clearly shows how increasing the cluster size alone improves the performance 

of the network (in terms of outage) in the presence of PiC when the number of BS 

antennas is fixed at 20. However, increasing the cluster size requires more orthogonal 

sets of orthogonal pilots, one set for each cell in the cluster. As mentioned in the earlier 

chapters, the number of orthogonal pilots is directly proportional to the length of the 

pilot, which is limited by the coherence time of the channel. Due to this, the number of 

orthogonal pilots and in turn the cluster size is limited. Having seen the effect of the 

cluster size on the strength of the PiC, the simulations to follow will be analyzed only in 

the case where the cluster size is one in order to study its full effect. 
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Figure 13. Probability of outage with increasing cluster size in the presence of PiC. 

 

 

In conjunction with increasing the cluster size, increasing the number of antennas at the 

BS also significantly lowers the probability of a user being in outage as shown in figure 

14. It is observed that as the number of antennas at the BS is tripled, the probability of 

outage decays exponentially. This improvement is due to a concept known as diversity 

order, which is a measure of the diversity gain. The diversity order of a system indicates 

the number of independently fading channels between the transmitter and the receiver 

due to transmit diversity, in this case. If the channel responses between all the users are 

completely uncorrelated, the diversity order is equal to the number of transmit antennas, 

in the case of a MISO system. The higher the diversity order, the lower the chances of a 

user being in outage. This is because it is less likely for all the channels to be in deep 

fade at the same time. 
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Figure 14. Probability of outage in the presence vs. in the absence of PiC with 
increasing BS antennas. 

 

 

It can be further observed in figure 14 that increasing the number of BS antennas, 

improves the performance of the system but does not eliminate the effect of PiC. In fact, 

the effect of PiC is more prominent at the high SINR region as the number of BS 

antennas increases as shown in figure 15. In the figure, the term probability of outage 

ratio is the ratio of the probability of outage (at a particular SINR threshold) under 

corrupted CSIT over the probability of outage (at the same SINR threshold) under 

uncorrupted CSIT. Since the probability of outage under corrupted CSIT is larger, a 

probability of outage ratio greater than one is produced meaning there is an increase in 

the probability of outage. The probability of outage ratio is highest when the BS 

antenna array is large at which a bigger range of SINR threshold levels is affected. For 

instance, when the SINR threshold is 20dB and the number of BS antennas is 72, the 

probability of outage in the presence of PiC is 271.75% of the probability of outage in 

the absence of PiC. Whereas, when the number of BS antennas is increased to 216, the 

probability of outage in the presence of PiC is 1682.99% of the probability of outage in 

the absence of PiC at the same SINR threshold of 20dB. This is a significant difference. 
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Hence, in massive MIMO systems, PiC significantly limits the UE’s performance, in 

terms of probability of outage, as the BS antenna array grows. 

 

 

 
Figure 15. Effect of PiC on the probability of outage. 

 

 

4.1.3 Average achievable sum capacity 

Figure 16 illustrates PiC affects the average sum capacity achieved by the edge users. In 

the presence of PiC, the sum capacity significantly drops. This can be justified by the 

fact that the SINR at the UE is negatively affected by PiC as seen in figure 12. 
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Figure 16. Average sum capacity in the presence vs. in the absence of PiC. 

 

 

As the number of BS antennas linearly increases, the average sum capacity increases 

logarithmically. This effect is known as spatial multiplexing gain. Increasing the 

number of BS antennas/diversity order increases the number of independent channels 

available for transmission of information to a UE. Therefore, the capacity achieved by a 

UE increases since it receives more information per transmission. However, the 

capacity is limited by the degree of freedom of the network, which is the minimum 

between the number of antennas at the BS and the number of antennas at the UE as 

shown in equation 19 below. 

 

C! =  min M,N  × log!(1+ SINR!) (19) 

 

Where, N is the number of antennas at the UE. Since the UE has a single antenna, 

increasing the number of antennas at the BS beyond a certain threshold does not 

significantly increase the multiplexing gain. However, as shown in figure 12, increasing 

the number of BS antennas leads to a logarithmic growth in the SINR, which explains 
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the consequent logarithmic growth of the capacity. Figure 17 illustrates how pilot 

contamination has less of an effect on the sum capacity of the users as the BS antenna 

array grows. In the figure, sum capacity ratio is the ratio of the achievable sum capacity 

in the presence of PiC over the achievable sum capacity in the absence of PiC. For 

instance, when the number of antennas at the BS is 80, the average sum capacity in the 

presence of PiC is 46.25% of the average sum capacity in the absence of PiC. Whereas, 

when the number of BS antennas is increased to 140, the average sum capacity in the 

presence of PiC is 52.5% of the average sum capacity in the absence of PiC. However, 

at this rate of improvement, it would require a very large BS antenna array for the effect 

of PiC to be eliminated i.e. for the average sum capacity in the presence of PiC to be 

100% of the average sum capacity in the absence of PiC. 

 

 

 
Figure 17. Effect of PiC on the average achievable sum capacity. 
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4.1.4 Bit error rate 

Figure 18 illustrates how PiC affects the BER experienced by the edge users. 

 

 

 
Figure 18. BER in the presence vs. in the absence of PiC. 

 

 

Just as with the sum capacity, the BER is significantly affected. As the number of BS 

antennas increases, the BER drops at a much slower rate in the presence of pilot 

contamination. Bit errors are essentially caused by noise, intra-cell as well as inter-cell 

interferences. As the number of BS antennas is increased, the value of BER drops since 

it is inversely proportional to SINR. As discussed earlier, the SINR grows 

logarithmically with the number of BS antennas. Hence, the BER decays 

logarithmically. This means that the intra-cell interferences are reduced as the number 

of BS antennas grows therefore leading to less causes of bit errors. Figure 19 shows 

how PiC increases the ratio of BER achieved in its presence over BER achieved in its 

absence, as the number of BS antenna array grows. For instance, when the number of 

BS antennas is 80, the BER in the presence of PiC is about 1600% of the average BER 
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in the absence of PiC. Whereas, when the number of BS antennas is increased to 140, 

the average BER in the presence of pilot contamination is about 2125% of the average 

BER in the absence of PiC. This means that increasing the number of antennas 

significantly increases the effect of PiC on the BER hence reducing the performance of 

the network in terms of BER. 

 

 

 
Figure 19. Effect of PiC on the bit error rate. 

 

 

Observations made in the analysis of the average sum capacity and the average BER 

interestingly indicate that as the BS antenna array grows, the effect of PiC on the latter 

increases while the effect on the former decreases. Hence, increasing the number of BS 

antennas, in the presence of PiC, will improve the overall performance of the network 

however, the impact of PiC on the sum capacity will be reduced at the cost of increasing 

its impact on the BER. 
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4.2. Conclusion and future work 

The objective of this thesis was to study the effect of pilot contamination on the 

performance of massive MIMO systems and to highlight some of the proposed 

precoding techniques that mitigate pilot contamination. Among the various precoding 

techniques, it has been established that DPC is the optimal transmission scheme. 

However, due to its complexity, because of its non-linear nature, it is not a practical 

scheme. Hence, the theoretical performance of DPC sets the benchmark for the 

proposed linear schemes. 

 

The effect of pilot contamination has been studied through MATLAB simulations. The 

analysis has been carried out in the worst case scenario where the UE in the desired cell 

are on the cell edges. Results showed that as the cluster size increases, inter-cell 

interferences that cause pilot contamination are significantly reduced since the co-

channel cells are further away hence the interferences are weakened. In the scenario 

where the cluster size is one, meaning the co-channel cells are bordering the desired 

cell, the probability of the edge users being in outage is increased by a considerable 

amount. Likewise, the average sum capacity and the BER are significantly lowered. 

Furthermore, as the BS antenna array grows, the effect of pilot contamination on the 

average sum capacity gradually reduces while with the probability of outage and BER it 

increases. Conclusively, novel precoding techniques that mitigate pilot contamination 

are highly important in massive MIMO networks where the number of BS antennas is 

very large. 

 

For future work, it is recommended to compute the output SINR at the receiver for 

better analysis. This is the SINR of the signal after equalization. In this work, only the 

input SINR was computed (SINR before equalization). Additionally, it is recommended 

to compute the BER through Monte Carlo simulations that count the number of bits 

received in error. For simplicity, the BER in this work is computed theoretically. 
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