

Supervisory Control Applied to Automata

Extended with Variables - Revised

M. SKÖLDSTAM, K. ÅKESSON, M. FABIAN

Automation

Department of Signals and Systems

Chalmers University of Technology

Göteborg, Sweden, 2008 R001/2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Chalmers Research

https://core.ac.uk/display/197955386?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Technical Report, Chalmers University of Technology, R001/2008

Supervisory Control Applied to Automata Extended with Variables - Revised
Markus Sköldstam, Knut Åkesson, Martin Fabian

Abstract— To get industrial acceptance of supervisory con-
trol theory, there is a need to bridge the gap between the
signal-based industrial reality and the event-based supervisory
control framework. This report tries to shorten this gap by
introducing a modeling formalism with automata extended
with variables, guard expressions and action functions. The
formalism is suitable for modeling plants and specifications in
the supervisory control framework. No restrictions are made on
the sharing of variables between concurrent automata and don’t
care updating of shared variables is allowed. This leads to frame
problems since unreachable states of subsystems can become
reachable in the entire system. To define supervisory control
problems in this general setting we introduce the concept of
controllable languages with respect to the entire system which
is a generalization of the classical definition of controllability.
An algorithm that transforms supervisory control problems
modeled by automata with shared variables into equivalent
ordinary automata supervisory control problems, is presented.
This allows the user to model complex behaviors with a compact
representation, and at the same time use existing algorithms
for synthesis and verification. The proposed approach has been
implemented in the supervisory control tool, Supremica.

Index Terms— Automata, Modeling, Supervisory control,
System analysis and design, State space methods, Software
verification and validation

I. INTRODUCTION

Discrete event systems (DES) are models of systems that
at each time instant occupy a discrete state, and perform
state-changes on the occurrence of events. Examples of
such systems are manufacturing systems, communication
networks and embedded systems. The behavior of a DES
is described by the sequences of events that may occur, and
the sequences of states that may be visited.

Supervisory control theory [1] is a general approach to
synthesize control systems for DES. A supervisor may be
generated using models of the plant and the specification,
such that it is minimally restrictive with respect to the plant
behavior, while still guaranteeing that the specification is up-
held. Traditionally, regular languages and finite automata [2]
have been used both for modeling and analysis of discrete
event systems in the supervisory control community.

Though a large amount of promising research results have
been achieved in academia, industrial acceptance of the su-
pervisory control theory is scarce. Only a few examples have
been reported [3]. A number of issues that hinder industrial
use have been identified by various researchers [3], [4], [5].
Two main issues are the discrepancy between the signal-
based reality and the event-based automata framework, and
the lack of a compact representation of large models.

M. Sköldstam, K. Åkesson and M. Fabian are with the Department
of Signals and Systems, Chalmers University of Technology, SE-412 96
Gothenburg, Sweden

In many industrial applications, parts of a system, such
as sensors, actuators and buffers, are conveniently modeled
using variables. Guard expressions are used to restrict the
behavior of the system and action functions are used to
update variables. Physical signals that are stored in memories
or sent between controllers are naturally modeled as global
variables in DES models. Using variables, guards and actions
help us to compactly represent large and complicated DES.

A number of frameworks have been introduced that al-
low compact representations of discrete event systems with
complex behavior and large state-spaces. Many of these are
inspired by Statecharts [6], which extends automata with
hierarchy, concurrency, and communication using variables,
guards and actions. While most of the concepts introduced in
Statecharts are useful for modeling supervisory control prob-
lems, Statecharts is not in its original formulation suitable for
supervisory control. In the supervisory control framework it
is essential to model what may occur instead of what should
occur, this has large consequences for how the interaction
between subsystems are modeled. In Statecharts there is
a causality between subsystems, this is not desired in the
supervisory control framework.

Modeling frameworks based on automata extended with
variables, suitable for supervisory control, are presented
in [7], [8], [9], [10]. In [7] it is assumed that a variable
can be updated by at the most one extended automaton and
in order to do synthesis the state-space needs to be extended
by additional states. In [8] automata with variables are used
to implement a supervisor. The authors encode the states
of a given supervisor using boolean variables. The variables
are used in guards and actions attached to the events of the
model. In [9] supervisory control is applied to a number
of automata with variables. To ensure a least restrictive
supervisor it is assumed that all variables are local i.e. not
shared between automata. This is a quite strong restriction
because variables cannot be used to model any interaction
between subsystems. In [10] a state transition structure with
a data collection used for parameterized and non-regular
discrete event systems is introduced.

Though extended frameworks allow compact representa-
tions of huge state-spaces, and hence simplify the modeling
of systems of industrially interesting sizes, the states do
not disappear and hence potentially pose a problem when it
comes to analysis. The main problem is the state-space ex-
plosion that typically occurs when the behavior of interacting
sub-systems is studied. For ordinary automata, especially in
the context of supervisory control, there exists a large body
of work for fighting this state-space explosion. For extended
frameworks, less has been done. An attractive approach is to
develop algorithms that benefit from the structure given by

1

Technical Report, Chalmers University of Technology, R001/2008

extended modeling frameworks, see [11] and its references.

Without doubts, developing effective synthesis algorithms
for automata that share variables needs to be explored further.
However, it is equally important to be able to use existing
algorithms that have been tested and have been proven to
handle systems with large state-spaces. In this report we
present no new algorithms for analysis of extended automata
models. Our approach is to transform extended models into
ordinary automata models with the same behavior. This way
we can use extended automata for modeling and regular au-
tomata for analysis. In order to fully understand the relation
between regular finite automata and extended finite automata,
we feel that a new and very detailed definition of extended
automata is needed. Since we only model physical systems
with finite state-spaces and the current variable values are
part of the system state, we only consider variables that have
finite domains of definition.

We present a modeling formalism with automata extended
with variables, guard expressions and action functions. We
attach guards and actions functions to transitions since this
admits local design techniques of systems consisting of many
different parts. In comparison to previous work we do not
put any restrictions on how variables are shared between
extended automata, thus all extended automata are allowed
to update all variables as long as the composition is well
defined. The presented framework has been implemented in
the supervisory control tool Supremica [12], [13]. In [14] it is
argued that the extended finite automata (EFA) introduced in
this report may be used as a basis for efficiently representing
control problems that consists of mixed logic and supervisory
control problems.

We start with a motivating example of an EFA model of a
system with a complex specification (section II). Section III
provides the formal notations and definitions used for regular
languages and finite automata (FA). Section IV introduces
extended finite automata (EFA), deterministic EFA, full
synchronous composition between EFA and action consistent
EFA. In section V we present and prove a basic algorithm
that transforms a single EFA to an isomorphic FA. It is
explained how the algorithm is extended to handle an arbi-
trary number of interacting EFA and how it is to be used to
effectively perform analysis. Controllability of arbitrary EFA
specifications that share variables with a plant EFA is defined
in Section VI. We also define the controllable language of
an EFA model and show how the standard definition of
controllability can be deduced if all EFA in the model have
distinct variables. The approach that is suggested in this
report is to use existing algorithms developed for ordinary
automata for synthesis and verification of EFA models.
Section VII presents a transformation algorithm that makes
this approach feasible. The algorithm transforms supervisory
control problems modeled by EFA into equivalent FA control
problems. The procedure is illustrated with an example that
contains a number of difficulties that needs to be solved. Step
by step the complete transformation algorithm is developed.
It is proven that the generated FA model can be used both
for verification and synthesis of the original EFA model.

II. MODELING A DOSING TANK

This section illustrates some of the advantages of using
EFA as a modeling tool compared with FA. We have chosen
to model a unit in a chemical batch plant. The system consists
of a tank and a user. The tank has an inlet valve, an outlet
valve and two sensors to check the filling of the tank, S1 at
the bottom and S2 at the top of the tank. Filling the tank
or emptying the tank, can be requested to start or stop by
the user. To meet the user requests, a supervisor/controller
is designed that closes and opens the valves appropriately.

The plant and the supervisor are modeled in figures 1
and 2, respectively. State changes are modeled by the regular
events s1 on, s1 off, s2 on, s2 off, req stop, req start,
close in, open in, close out and open out. Sensor signals
are modeled by the variables vs1 and vs2, request signals
from the user by the variable vreq and control signals to
the valves are modeled by the variables vin and vout. All
variables have domain {0, 1} and zero as initial value.

PSfrag replacementsUser

req start
vreq := 1

req stop
vreq := 0

S2

s2 on
vin = 1 ∧ vs1 = 1

vs2 := 1

s2 off
vout = 1
vs2 := 0

S1

s1 on
vin = 1
vs1 := 1

s1 off
vout = 1 ∧ vs2 = 0

vs1 := 0

Fig. 1. A plant model of the dosing tank.

The plant model consists of the extended automata User,
S1 and S2. A sensor signal can go high if the inlet valve is
open (vin = 1) and sensor signal can go low if the outlet
valve is open (vout = 1). The supervisor’s task is to enable
or disable the opening/closing of the valves such that the
following conditions are satisfied:

a. the inlet and outlet valves are never open at the same
time;

b. discharging or filling can only start when a request is
present, vreq = 1;

c. discharging can only start when the tank is completely
filled, vs2 = 1;

d. filling can only start when the tank is empty, vs1 = 0;

2

Technical Report, Chalmers University of Technology, R001/2008
PSfrag replacements

Inlet Valve

open in
vout = 0 ∧ vs1 = 0 ∧ vreq = 1

vin := 1

close in
vs2 = 1
vin := 0

Outlet Valve

open out
vin = 0 ∧ vs2 = 1 ∧ vreq = 1

vout := 1

close out
vs1 = 0
vout := 0

Fig. 2. A supervisor for the dosing tank.

e. for the inlet valve to close the tank must be full, vs2 =
1;

f. for the outlet valve to close the tank must be empty,
vs1 = 0.

In figure 2 all these requirements are expressed using guard
formulas over the variables. The presented EFA model of
the dosing tank may be compared to the FA model in [15]
where the same process is modeled without variables. It is
clear that the use of EFA facilitates the modeling of many
systems and it is reasonable to expect that the benefits of
using EFA for modeling increase when the complexity of
the modeled system increases. The model above does not
illustrate all features of EFA or fully explain how EFA can be
used to model supervisory control problems. Since we have
not distinguished between controllable and uncontrollable
events it is quite easy to generate an equivalent ordinary
automata model. The equivalent ordinary automata model of
the EFA model above, obtained from a basic transformation
algorithm, is presented in figure 3.

III. PRELIMINARIES

A. Events and Languages

The event set of a DES is called an alphabet and is
denoted by Σ. For the purpose of supervisory control, the
alphabet is divided into the disjoint set of the controllable
events and the set Σu of uncontrollable events. To denote that
an event is uncontrollable it is prefixed by an exclamation
mark (!). Σ∗ denotes the set of all finite strings of the form
σ1σ2 . . . σk of events from Σ, including the empty string ε.
A subset of L ⊆ Σ∗ is called a language. Languages are
used to describe the behavior of DES. Besides the usual
set operations, the key operation involved when building
languages is concatenation. The concatenation of two strings
s, t ∈ L is written st. Languages and alphabets can also be
concatenated, LΣ = {sσ | s ∈ L, σ ∈ Σ}. The prefix closure
of a language L ⊆ Σ∗, denoted L, is L = {s ∈ Σ∗ | ∃t ∈
Σ∗, st ∈ L}.

B. Automata

Typically, DES are modeled using deterministic finite-state
automata. In what follows the word ”ordinary” will be used
synonymously with ”deterministic finite-state”.

Definition 1 (Automaton):
A deterministic finite-state automaton A is a 4-tuple

A = 〈Q,Σ,→, q0〉,

where Q is a finite set of states; Σ (the alphabet) is a
nonempty finite set of events; →⊆ Q × Σ × Q is the state
transition function mapping elements of Q×Σ into singletons
of Q and q0 ∈ Q is the initial state.
The transition function is written in infix notation p

σ
→ q. In

particular, p
σ
→ denotes that there exists a state q such that

p
σ
→ q, and p

σ
9 denotes that it does not exist such a state.

This notation is extended to strings in Σ∗ in the natural way
by letting

p
ε
→ p for all p ∈ Q;

p
sσ
→ q if p

s
→ r and r

σ
→ q for some r ∈ Q.

For convenience, the notation A
s
→ q is introduced as a short

hand for q0
s
→ q, where q0 is the initial state of A.

The behavior of an ordinary automaton is described by
its language. Let A = 〈Q,Σ,→, q0〉 be an ordinary au-
tomaton. The language of A denoted L(A) is defined as
L(A) = {s ∈ Σ∗ | q0

s
→}.

To deal with interacting automata we use full synchronous
composition (FSC) [16]. This composition operator models
that an event can occur in the synchronized system if and
only if it can occur in all automata that share the event.

Definition 2 (FSC, Automata):
Let Aj = 〈Qj ,Σj ,→j , q

j
0〉, j = 1, 2 be two automata. The

full synchronous composition (FSC) of A1 and A2 is

A1||A2 = 〈Q1 × Q2,Σ1 ∪ Σ2,→, (q1
0 , q2

0)〉,

where
(p1, p2)

σ
→ (q1, q2), σ ∈ Σ1 ∩ Σ2 if

pi
σ
→i qi, i = 1, 2;

(p1, p2)
σ
→ (q1, q2), σ ∈ Σ1 \ Σ2 if

p1
σ
→1 q1 and p2 = q2;

(p1, p2)
σ
→ (q1, q2), σ ∈ Σ2 \ Σ1 if

p2
σ
→2 q2 and p1 = q1.
The composition operator is easily extended to simultane-

ous composition of multiple automata.

IV. EXTENDED AUTOMATA

An Extended Finite Automaton (EFA) is an augmentation
of the ordinary automaton with guard formulas and action
functions. We associate the guards and actions to the tran-
sitions in the automaton. The transitions in the EFA are
enabled if and only if the guard formula is true and when a
transition is taken, updating actions of a set of variables may
follow. To define guard predicates we use the characteristic
function χW of a set W . χW is defined by

χW (v) =

{

1 if v ∈ W
0 if v /∈ W

,

3

Technical Report, Chalmers University of Technology, R001/2008

and is sometimes called the indicator function of W . If
χW (v) = 1 the predicate ”v ∈ W ” is true, and if χW (v) = 0
the predicate is false.

Definition 3 (Extended Automaton):
An extended finite-state automaton E is a 6-tuple

E = 〈Q × V,Σ,G,A,→, (q0, v0)〉,

where:
(i) Q × V is the extended finite set of states, where Q is

a finite set of locations and V is the finite domain of
definition of the variables;

(ii) Σ is a nonempty finite set of events (the alphabet);
(iii) G = {χW | W ∈ 2V } is the set of guard predicates

over V .
(iv) A = {a | a is a function from V to V } is a collection

of action functions.
(v) →⊆ Q×Σ×G×A×Q is the state transition relation.

(vi) (q0, v0) ∈ Q × V is the initial state.
We have extended the states of the ordinary automaton
to Q × V , where V = V 1 × ... × V n. The finite set V
is the domain of definition of an n-tuple of variables
v = (v1, . . . , vn) with initial values v0 = (v1

0 , . . . , vn
0) ∈ V .

Formally speaking, the inclusion of G and A in the
definition of E are superfluous since they only depend on V .
In what follows, we therefore omit explicitly writing G and A
when specifying an EFA. The guards are predicates over the
variables that relate each element of V , to either 1 (true) or 0
(false). We are interested in deterministic EFA, and therefore
the actions are functions. Action functions a ∈ A maps the
variable values of the present state to the variable values of
the next state. Guards and actions are written as

w = g(v), where w ∈ {0, 1};

w := a(v) = (a1(v), . . . , an(v)),

where w ∈ V.

For convenience we use the symbol Ξ to denote implicit
actions that update variables to their current value. Unlike
explicit actions Ξ can be overridden when EFA are synchro-
nized, see [17]. If ai = Ξ, we say that ai is a don’t care
updating of the variable vi.

The transition relation is written as p
σ
→g/a q, where

p, q ∈ Q, σ ∈ Σ, g ∈ G and a ∈ A . If g is absent, it is
assumed that g always evaluates to true and the transition
takes place when σ occurs. If a is absent, it is assumed that
a = (Ξ,Ξ, . . . ,Ξ) and no variable is updated during the
transition 1. Note that, the state transition relation is well
defined when the guard always evaluates to false and no
transition can take place. One reason for using actions and
guards is that they can be used to hide variable values in
system transitions. It is sometimes convenient to write out
the states (locations and variable values) explicitly in system
transitions.

Definition 4 (Explicit State Transition Relation): Let
E = 〈Q × V,Σ,→, (q0, v0)〉 be an EFA. The explicit state

1We consider event driven transitions. Dynamic transitions that take place
when the guard becomes true are not considered here.

transition relation of E is defined as

7→ := {(p, v, σ, q, w) ∈ Q × V × Σ × Q × V |

∃p
σ
→g/a q such that

g(v) = 1 and a(v) =: w or
g(v) = 1, v = w and a = Ξ}.

The explicit state transition relation is written (p, v)
σ
7→

(q, v′) and it is extended to strings in Σ∗ in the usual
recursive way

(p, v)
ε
7→ (p, v) for all (p, v) ∈ Q × V,

(p, v)
sσ
7→ (q, v′) if (p, v)

s
7→ (r, y) and

(r, y)
σ
7→ (q, v′) for some (r, y) ∈ Q × V.

The language L(E) of an EFA E is
L(E) = {s ∈ Σ∗ | (q0, v0)

s
7→}. In section VII, we will

need the notion of deterministic EFA.
Definition 5 (Deterministic EFA):

An EFA E = 〈Q × V,Σ,→, (q0, v0)〉 is deterministic if
(p, v)

σ
7→ (q, v′) and (p, v)

σ
7→ (q′, v′′) always implies

(q, v′) = (q′, v′′).
Note that for an EFA to be deterministic all explicit tran-
sitions (not just the reachable) must have this property.
This seemingly strong condition is needed to ensure that
the synchronized product of two deterministic EFA also is
deterministic. Observe that if the guards are distinct, we
support the possibility of having multiple transitions from
the same location triggered by the same event. Verifying if
a given EFA fulfills Definition 5 might be non-trivial for
certain EFA with large state-spaces. However, sufficient con-
ditions that guarantee deterministic EFA are straightforward
to formulate.

A. Full Synchronous Composition, EFA

To simplify the notation when defining the full synchro-
nous product of EFA, we assume that the EFA share all
variables. This is no restriction since it is always possible
to add don’t care variables that are never updated. For the
synchronous product to exist, a necessary and sufficient
condition is that shared variables must have the same initial
values. As for ordinary automata, the composition operator
models that an event can occur in the synchronized system
if and only if it can occur in all EFA that share the event.

Definition 6 (FSC, EFA):
Let Ek = 〈Qk × V,Σk,→k, (qk

0 , v0)〉, k = 1, 2, be two
EFA using the shared variables v = (v1, . . . , vn). The Full
Synchronous Composition (FSC) of E1 and E2 is

E1‖E2 = 〈Q1 × Q2 × V,Σ1 ∪ Σ2,

→, (q1
0 , q2

0 , v0)〉,

where the state transition relation → is defined as
∗ (p1, p2)

σ
→g/a (q1, q2), σ ∈ Σ1 ∩ Σ2 if

∃(p1, σ, g1, a1, q1) ∈→1,∃(p2, σ, g2, a2, q2) ∈→2 such
that:
(i) g = g1 ∧ g2,

4

Technical Report, Chalmers University of Technology, R001/2008

(ii) For i = 1, . . . , n and ∀v ∈ V :

ai(v) =

ai
1(v) if ai

1(v) = ai
2(v)

ai
1(v) if ai

2(v) = Ξ
ai
2(v) if ai

1(v) = Ξ
vi otherwise

;

∗ (p1, p2)
σ
→g/a (q1, q2), σ ∈ Σ1 \ Σ2 if

(p1, σ, g, a, q1) ∈→1 and p2 = q2;
∗ (p1, p2)

σ
→g/a (q1, q2), σ ∈ Σ2 \ Σ1 if

(p2, σ, g, a, q2) ∈→2 and p1 = q1.
Note that if the action functions of E1 and E2 explicitly
tries to update a shared variable to different values, the
variable is, by default, not updated. This implies that the
synchronized EFA may not have the intended behavior. A
sufficient condition that can be used to avoid this possibility
is:

Definition 7 (Action Consistent EFA):
Let Ek = 〈Qk × V,Σk,→k, (qk

0 , v0)〉, k = 1, 2, be two
extended automata with shared variables v = (v1, . . . , vn).
E1 and E2 are action consistent if ∀(p1, σ, g1, a1, q1) ∈→1

and ∀(p2, σ, g2, a2, q2) ∈→2 it is true that:
∗ ∀v ∈ V such that g1(v) ∧ g2(v) is true then ai

1(v) =
ai
2(v) or one of ai

1(v) and ai
2(v) is a don’t care

updating of vi, i = 1 . . . n.
Similar to Definition 5, the action consistency condition is
a global requirement and it may be computational expensive
to check.

V. TRANSFORMING EFA TO FA
Much research has been put into developing efficient

algorithms and data structures for solving supervisory control
problems formulated with ordinary automata. It has therefore
been an important goal of our research to show how a set of
EFA may be transformed into another set of FA having the
same properties.

In this section a basic algorithm for transforming EFA
into an isomorphic FA is presented. The transformation is
inspired by a translation from UML Statecharts to Finite-
State Machines discussed in [18]. The algorithm relies on
variables with finite domain of definition. It collects the
information stored in the guards and actions and builds two
kinds of automata, variable automata and location automata,
both with relabeled event sets. The variable automata model
the updating of the variables, and the location automata has
the same structure as the original extended automata. From
a practical point of view it is important to point out that
the transformation does not destroy modular structure, this
is important because the modular structure may be exploited
by efficient verification and synthesis algorithms.

Definition 8: (Isomorphic FA)
Let E = 〈Q × V,ΣE ,→E , (q0, v0)〉 be an EFA and A =
〈R,ΣA,→A, r0〉 be a FA. Let 7→E be the explicit state
transition relation of E. E and A are isomorphic if the
following conditions hold.

(i) ΣE=ΣA

(ii) There exists a bijective function F from Q× V to R,
such that F (q0, v0) = r0 and
(q, v)

s
7→E (q′, v′) ⇔ F (q, v)

s
→A F (q′, v′).

We place no restriction on the naming of the states in
automata and therefore we call all ordinary automata that are
isomorphic with the extended automaton E, the isomorphic
FA of E. Note that, the isomorphic FA of a given EFA is
obtained by replacing the state transitions relation → with
the explicit state transition relation 7→.

A benefit of using EFA as a modeling tool is that the
values of the variables in state transitions can be hidden.
Usually, the explicit state transition relation 7→ is not known.
Instead the notation p

σ
→g/a q is used to describe system

transitions in models. Here, we present an algorithm that
flattens out EFA models into FA models by extracting
the information in the guard and action functions. This is
done by building location automata and variable automata,
introducing relabeled events, composing the system using the
full synchronous composition and in the last step, changing
back to the original event names.

Algorithm 1 presents in detail how a single EFA is
transformed to its isomorphic FA. It is assumed that the
guards have been parsed and written in disjunctive normal
form

g = g1 ∨ . . . ∨ gj ,

where each and-clause

gi(v) = gi,1(v1) ∧ . . . ∧ gi,n(vn), i = 1 . . . j,

compares the variables with a constant in
V = V 1 × · · · × V n. We also assume that all actions
are written as a(v) = (a1(v1), . . . , an(vn)) where the
new value of vi only depends on its previous value. Any
transition p

σ
→g/a q can be decomposed into multiple

transitions p
σ
→gk/ak q, k = 1 . . . m of this form. It can be

achieved by stepping through the domain of definition of
all variables and creating multiple assignment functions ak

and new updated guards gk.
Example: The transition p

σ
→x:=y q where y ∈ {0, 1} can

be decomposed into: p
σ
→y=0/x:=0 q and p

σ
→y=1/x:=1 q.

In Algorithm 1 |g| denotes the number of and-clauses of a
guard written in disjunctive normal form and if ak(vk) = Ξ,
it is understood that vk σi→ ak(vk) means a self loop at vk.

Algorithm 1 (Basic Transformation Algorithm): Let
E = 〈Q × V,Σ,→, (q0, v0)〉 be an extended finite
automaton where V = (V 1, . . . , V n) is the domain of
definition for the variables v = (v1, . . . , vn). The following
steps build the isomorphic finite ordinary automaton A and
define a renaming function Ψ(·):

1 For each transition p
σ
→g/a q in E, introduce |g| new

events, all with unique names. Create a one to one
mapping between each renamed event and an and-
clause gi in the guard g.

2 Collect all relabeled events in the alphabet Σ′.
3 Build a location automaton

Aloc = 〈Q,Σ′,→, q0〉 representing the location
changes of E. Each transition p

σ
→g/a q is divided

into regular transitions in Aloc using the relabeled
events in Σ′. The number of and-clauses |g| of the
guard determine the number of transitions obtained
from p

σ
→g/a q.

5

Technical Report, Chalmers University of Technology, R001/2008

4 Build variable automata
Ak

v = 〈V k,Σ′,→, vk
0 〉 k = 1 . . . n, representing the

updating of the variables. For each event σi in Σ′,
create transitions vk σi→ ak(vk) in Ak

v if gi,k(vk) is
true.

5 Implement the guard by synchronizing all ordinary
automata

Aloc‖A
1
v‖ · · · ‖A

n
v .

6 Let Ψ(·) be the mapping that maps each relabeled
event in Σ′ to its original event in Σ. The finite
automaton A is obtained by applying Ψ(·) to all events
in Aloc‖A

1
v‖ · · · ‖A

n
v .

Proposition 1: Algorithm 1 transforms an extended au-
tomaton E = 〈Q × V,Σ,→, (q0, v0)〉 into its isomorphic or-
dinary automaton A.

Proof: It follows immediately that A has the same
alphabet as E. The states of A are Q × V 1 × · · · × V n

so we have a trivial bijective mapping between the states
of A and the states of E. It remains to prove that the
transition relation of A equals the explicit transition relation
7→ of E. According to Definition 4, we need to show
that the transitions in A obtained from p

σ
→g/a q are all

transitions (p, v)
σ
7→ (q, a(v)), such that g(v) is true. Let

Vi = V 1
i × . . . × V n

i ⊆ V be the set where the and-clause
gi evaluates to true. The set of all v such that g(v) is true
can then be written as V1∪ . . .∪Vj , where j = |g|. For each
transition p

σ
→g/a q in E, Algorithm 1 can be described as

follows.
For i = 1, . . . , |g|:

(i) Create α ∈ Σ′ and p
α
→ q in Aloc, where α is unique.

(ii) For k = 1, . . . n, create vk α
→ ak(vk) for all vk ∈ V k

i

in Ak
v .

(iii) Synchronizing all transitions in the ordinary automata
triggered by α gives:
(p, v)

α
→ (q, a(v)), ∀v ∈ Vi in Aloc‖A1

v‖ · · · ‖A
n
v .

(iv) Replacing all transitions in the synchronized system
triggered by α with transitions triggered by σ gives:
(p, v)

σ
→ (q, a(v)) ∀v ∈ Vi in A.

Hence, p
σ
→g/a q in E is mapped to (p, v)

σ
7→ (q, a(v)) in

A, if g(v) is true.
Algorithm 1 transforms an EFA into a single monolithic
ordinary automaton. We are interested in synthesis and verifi-
cation of DES and we want to avoid the state-space explosion
problem when all components are synchronized. Therefore
we only implement the first four steps of the algorithm.
Before the monolithic automaton is computed in step five, we
have a model consisting of a number of ordinary automata
Aloc, A

1
v, . . . , An

v , whose alphabet Σ′, consists of relabeled
events from the original alphabet Σ. We can relate L(E)
to L(Aloc‖A1

v‖ · · · ‖A
n
v) by extending the mapping Ψ(·) to

strings. This is done in the usual way by letting Ψ(ε) = ε,
and Ψ(sσ) = t if Ψ(s) = r and rΨ(σ) = t for some r ∈ Σ∗.
Since Ψ(·) projects relabeled events to their original events,
it follows that Ψ(L(Aloc‖A

1
v‖ · · · ‖A

n
v)) = L(E).

Typically, models are built using a number of interacting
EFA. EFA that share variables and interact via the FSC can

through their guard-action pairs exchange information during
the synchronization process. In order to build ordinary au-
tomata that represent the synchronized behavior of multiple
EFA, access to all guards and updating actions is needed for
each transition in the synchronized system. If we transform
interacting EFA separately to FA information is lost. The
transformation must consider all components simultaneously.
This fact implies that Algorithm 1 must be applied to all
combinations of transitions in the synchronized system.

Let Ek = 〈Qk × V,Σk,→k, (qk
0 , v0)〉, k = 1, . . . ,m be

interacting EFA whose shared variables v = (v1, . . . , vn)
have domain V = (V 1, . . . , V n). The overall behavior of
the system is described by the composition of all components
using the FSC

E = E1‖ · · · ‖Em.

To obtain an isomorphic ordinary automaton A of the EFA
E, we apply Algorithm 1 to all transitions p

σ
→g/a q of E,

where p = (p1, . . . , pm) and q = (q1, . . . , qm) are locations
in E1‖ · · · ‖Em. The difference is that the number of location
automata in step 3 increase to m, i.e. instead of only one
location automaton we have Ak

loc = 〈Qk,Σ′,→, qk
0 〉, k =

1, . . . ,m. By building the location automata and variable
automata transition by transition, the modular ordinary au-
tomata model (in step 4 of Algorithm 1) can be implemented
using an algorithm that only consumes a polynomial amount
of space.

For each transition p
σ
→g/a q in E:

1 Introduce |g| new events, all with unique names. Create
a one to one mapping between each renamed event σi

and an and-clause gi in the guard g.
2 Add the relabeled events to Σ′.
3 For i = 1 . . . |g|:

a for k = 1, . . . ,m, create pk
σi→ qk in Ak

loc;
b for k = 1, . . . , n, create vk σi→ ak(vk) in Ak

v if
gi,k(vk) is true.

In the dosing tank example in section II, each event is
associated to a single transition whose guard expression
consists of a single and-clause. This implies that Ψ(·) will be
a bijective mapping between Σ′ and Σ, and that a renaming
of events is unnecessary. A FA model of the dosing tank,
without relabeled events, is given figure 3.

VI. CONTROLLABILITY

The goal of this section is to define controllability for the
EFA defined in section IV and to relate the new definition
to the classical one. Since we allow don’t care updating of
shared variables, properties of subsystems are not necessarily
true for the entire system. For instance, if E1 and E2 are
EFA, it is possible that a state (p1, p2, v) in E1‖E2 is
reachable even though neither of the states (p1, v) in E1, or
(p2, v) in E2, are reachable. In particular, it makes no sense
to speak of the language of individual extended automata.
The language of the components of a model can both be
larger than or smaller than the language of the synchronized
system. An example of a system consisting of two EFA
where the languages of the components are smaller than the

6

Technical Report, Chalmers University of Technology, R001/2008

PSfrag replacements

S2

S1

User

vin

vout

vs2

vs1

vreq

Outlet Valve

Inlet Valve

open in

open out

req start

req start

req stop

req stop

s1 on

s2 on

close out

open in

s1 off
s1 off

s1 on

s1 off

s2 off

close in

open out

s2 on
s2 off

s2 on

open in

close in

close in

open out

open in

s1 on

s2 on

close out

open out

close out

open in

open out

s1 off

s2 off

req start

req stop

s2 on

s2 off

s1 on

s1 off

open in

close in

open out

close out

Fig. 3. A model of the dosing tank example consisting of ordinary
automata. It has been generated using the first four steps of Algorithm 1.

PSfrag replacements

v1 := 1

v2 := 1 v1 > 0

v2 > 0
β

β

α

α
E1

E2

Fig. 4. Two EFA E1 and E2 sharing variables (v1, v2) with initial value
(0, 0). The event α can occur in E1‖E1 but neither in E1 nor in E2.

language of the synchronized system, is given in figure 4.
In general, the only meaningful language is the generated
language of the synchronous product of all EFA in the
model. However, the language of the synchronized system
is not a suitable reference language for supervisory control
purposes. Because of this, we will not speak of languages
being controllable with respect to other languages, instead
we shall talk about controllable languages with respect to
entire systems.

The traditional definition of controllability from [1], for-
mulated using ordinary automata is as follows.

Definition 9 (Controllability Automata):
Let G and K be deterministic finite state automata over the
same alphabet and Σu be the set of uncontrollable events.

K is controllable with respect to G if

L(K)Σu ∩ L(G) ⊆ L(K).
If K and G where EFA with shared variables the languages
L(K) and L(G) would, in general, be meaningless. A
definition that neither depends on the language of subsystems
nor the language of the entire system is required. For this,
we make use the active event function and the concept of
controllable/uncontrollable states.

Definition 10 (Active Event Function):
Let G = 〈Q×V,Σ,→, (qi, v0)〉 be an EFA with explicit state
transition relation 7→. The active event function Γ : Q×V →
2Σ of G is defined as

Γ(p, v) = {σ ∈ Σ | (p, v)
σ
7→}.

Definition 11 (Controllable State):
Let G and K be two EFA using shared variables with domain
V . Let Σu be the set of uncontrollable events and ΣK be
the alphabet of K. A state (pG, pK , v) ∈ QG × QK × V
in the synchronized automaton G‖K, is controllable if the
following statement holds:

ΣK ∩ Σu ∩ Γ(pG, v) ⊆ Γ(pK , v).
Uncontrollable states, are states of G‖K where G allows an
uncontrollable event but K disables the same event, via the
FSC.

Definition 12 (Controllability EFA):
Let G be a plant, K be a specification and Σu be the set
of uncontrollable events. K is controllable with respect to
G and Σu, if and only if all reachable states of G‖K, are
controllable.
The above definition is a straightforward generalization of
Definition 9 that is feasible for non-deterministic automata.
For deterministic finite state automata over the same alphabet
they coincide. We are interested in synthesizing languages
and therefore we want a language definition of controllability.

Definition 13 (Controllable Language EFA):
Let G and K be two EFA using shared variables with domain
V . Let Σu be the set of uncontrollable events and 7→ be the
explicit state transition relation of G‖K. A language L is
controllable with respect to the system G, K, Σu if for all
s ∈ L and states (pG, pK , v) in G‖K such that G‖K

s
7→

(pG, pK , v), it holds that:

s
(

Σu ∩ Γ(pG, v)
)

⊆ L.

Hence, a controllable language must always be able to
follow uncontrollable events generated by the plant. Note
that controllability with respect to systems is, as in the
usual definition of controllability, a property of the prefix-
closure of a language, i.e. L is controllable if and only
if L is controllable. A couple of important observations
regarding Definition 13 are worth formulating into separate
propositions.

Proposition 2: If K is controllable with respect to G and
Σu then the language of the closed loop L(G‖K) is a
controllable language with respect to the system itself.

Proof: Assume that K is controllable with respect to
G and Σu. For any s ∈ L(G‖K) there exists (pG, pK , v)

7

Technical Report, Chalmers University of Technology, R001/2008

such that G‖K
s
7→ (pG, pK , v). Since, K is controllable

with respect to G and Σu, the reachable state (pG, pK , v)
is controllable. This implies that for all σ ∈ Σu ∩ Γ(pG, v),
it holds that sσ ∈ L(G‖K).

Proposition 3: If L ⊆ L(G‖K) and L is controllable with
respect to the system G, K, Σu then L can never reach any
uncontrollable states of G‖K.

Proof: Assume that L ⊆ L(G‖K) is controllable
with respect to the system G, K, Σu and that L can
reach uncontrollable states of G‖K. This means that ∃s ∈
L and an uncontrollable state (pG, pK , v) in G‖K such
that G‖K

s
7→ (pG, pK , v). Since the state (pG, pK , v) is

uncontrollable there exists an uncontrollable event σ in
ΣK ∩ Σu ∩ Γ(pG, v) that does not belong to Γ(pK , v).
This implies that sσ /∈ L(G‖K). By assumption L was
controllable so sσ ∈ L ⊆ L(G‖K). Hence, the assumption
was wrong and the statement follows.
If L(G‖K) is not controllable with respect to the system,
we want to find the ”largest” sub-language of L(G‖K)
that is controllable. We let L(G‖K)↑C denote the supremal
controllable sub-language of L(G‖K). A model where the
EFA share variables does not have any natural reference
language. As explained previously, none of the languages
L(G) or L(K) makes any sense, and L(G‖K) is just a
test language that we hope is controllable with respect to
the system. In the special case when G and K do not
share variables and have the same alphabet, L(G‖K) =
L(G)∩L(K) and Definition 13 breaks down to the classical
controllability definition.

Proposition 4: Let G and K be two EFA using the same
alphabet and having distinct variables with domains VG and
VK , respectively. Let Σu be the set of uncontrollable events.
A language L is controllable with respect to the system G,
K, Σu if and only if

LΣu ∩ L(G) ⊆ L.
Proof: ⇒) Assume that L is controllable with respect

to the system G, K, Σu. Let s ∈ L such that G‖K
s
7→,

be given. Let ΓG(s) denote the union of all active events in
states (pG, vG) in G such that G‖K

s
7→ (pG, pK , vG, vK)

for some state (pK , vK) in K. Since L is controllable with
respect to the system G, K, Σu we have:

s
(

Σu ∩ ΓG(s)

)

⊆ L.

G and K have distinct variables and the same alphabet so
sΓG(s) ⊆ L(G). In particular, the language sΓG(s) contains
precisely all concatenations of s with events σ such that
sσ ∈ L(G). This implies that

sΣu ∩ L(G) ⊆ s
(

Σu ∩ ΓG(s)

)

⊆ L.

⇐) Assume that LΣu ∩ L(G) ⊆ L. Given any s ∈ L
and a state (pG, pK , vG, vK) in G‖K such that G‖K

s
7→

(pG, pK , vG, vK), we have:

sΣu ∩ L(G) ⊆ L.

Again s ∈ L(G) and since s
(

Σu ∩ Γ(pG, vG)
)

⊆ sΣu and
s
(

Σu ∩ Γ(pG, vG)
)

⊆ L(G), it follows that

s
(

Σu ∩ Γ(pG, vG)
)

⊆ sΣu ∩ L(G) ⊆ L.

In the standard definition of controllability it is possible
to compare languages with a reference language generated
by the automata model. We have introduced the notion of
a controllable language with respect to an entire system
modeled by EFA. As we have seen, it is a generalization
of the classical definition of controllability for ordinary au-
tomata. In what follows, when we speak about a controllable
language, it will always be with respect to the entire system,
i.e. Definition 13.

VII. TRANSFORMING SUPERVISORY CONTROL
PROBLEMS

The approach that is suggested in this report is to use
existing algorithms developed for ordinary automata for syn-
thesis and verification of EFA models. This section presents
a transformation algorithm that makes this possible. The al-
gorithm transforms supervisory control problems modeled by
EFA into equivalent FA control problems. The transformation
algorithm is the key result of this report. The modularity
and structure of the EFA model is preserved making the FA
model feasible for analysis. The procedure is illustrated with
an example that contains a number of difficulties and the
presented algorithm is proven to be sound. We start out by
explaining supervisory control and synthesis.

A. Supervisory Control and Synthesis

Supervisors are used to restrict the behaviors of plants
represented by automata in accordance to some given control
objective. A supervisor observes the sequence of events
occurring in the plant and enables or disables events. A
subset of the plant events are uncontrollable and not sub-
ject to disablement. Classical supervisory control theory [1]
concerns a single plant automaton G and a single specifi-
cation automaton K. The plant G models the system to be
controlled the specification K models the control objective
and the composition G‖K models the desired behavior or
the closed loop. Uncontrollable states, with respect to G, of
the synchronous product G‖K are states where G allows
an uncontrollable event but K disables the same event,
via the FSC. States that are not uncontrollable are called
controllable. If all reachable states of G‖K are controllable
with respect to G, then the desired closed loop can be
achieved, and K is a supervisor that implements the desired
behavior L(G‖K). When the desired behavior L(G‖K) can
not be obtained, it is known that for any finite regular
plant and specification, a unique controllable least restrictive
(or maximally permissive) supervisor exists. The language
that a maximally permissive supervisor admits is called the
supremal controllable sub-language of L(G‖K), denoted
L(G‖K)↑C .

The synthesis task is to find L(G‖K)↑C when the desired
closed loop can not be obtained. The standard monolithic
synthesis algorithm takes a specification K and a plant
G, computes G‖K and searches the state-space. A known
problem with this approach is the state space explosion
problem when the product of all components is built. In [19]

8

Technical Report, Chalmers University of Technology, R001/2008

different approaches to fight the state-space explosion is
described and divided into six main categorizes: modular
approaches, hierarchical approaches, symbolic representa-
tion, partial order techniques, compositional approaches and
exploiting symmetry. All of these strategies are directly
applicable to ordinary automata models.

B. Transformation Setup and Requirements

The setup for the transformation algorithm is a mod-
ular supervisory control problem consisting of a num-
ber of plant EFA G = G1‖ · · · ‖Gk and specification EFA
K = K1‖ · · · ‖Km. It is assumed that all EFA are de-
terministic. The algorithm then transforms the supervisory
control problem into a modular supervisory control problem
consisting of only ordinary plant automata

G̃ = G̃1‖ · · · ‖G̃i

and ordinary specification automata

K̃ = K̃1‖ · · · ‖K̃j .

To be able to verify if L(G‖K) is controllable or to find
L(G‖K)↑C from analysis of the FA model the transfor-
mation must have a number of properties. Obviously, a
relation between the alphabets and languages of the two
models is needed. We also require that reachable states of
EFA model are mapped to reachable states of the FA model
and that controllable/uncontrollable states of the EFA model
are mapped to controllable/uncontrollable states of the FA
model. The algorithm begins with the first four steps of
Algorithm 1 giving us a modular supervisory control problem
with a plant

G1
loc‖ · · · ‖G

k
loc‖G

1
v‖ · · · ‖G

n
v

and a specification

K1
loc‖ · · · ‖K

m
loc.

G1
loc, . . . , G

k
loc and K1

loc, . . . ,K
m
loc are location automata,

and G1
v, . . . , Gn

v are variable automata. There are two main
problems with the above model. It may contain fictional
uncontrollable states caused by the renaming of events, and
since all variable automata have been chosen to be plants,
it is possible that uncontrollable states have been removed.
To illustrate the required modifications of ordinary automata
models generated from the first four steps of Algorithm 1,
we use the example depicted in figure 5 and figure 6.

Figure 5 shows a plant G and specification K sharing the
variable v with domain V = {0, 1, 2} and initial value v0 =
0. If the controllable event c occurs then the specification
forbids the uncontrollable event a. Hence, the specification
is not controllable and a supervisor needs to be synthesized.

Figure 6 shows the corresponding ordinary automata
model generated from the first four steps of Algorithm 1.
The relation between the languages of the two models is
Ψ(L(Gloc‖Kloc‖Gv)) = L(G‖K), where Ψ(·) is the re-
naming function defined in section V. It is quite clear
that reachable states are mapped to reachable states in the

PSfrag replacements

!a
v := 1

!b
v = 0

!a

c

v := 2

!a
v ≤ 1

G K

Fig. 5. G is a plant and K is a specification sharing the variable v with
domain V = {0, 1, 2} and initial value v0 = 0. If the controllable event c

occurs then the specification forbids the uncontrollable event a.

PSfrag replacements !a1

!a2

!b
!b

!a1

!a2

!a1

!a2

c

c

c

!a1

!a1

c

!a2

Gloc Gv

Kloc

Fig. 6. Gloc and Kloc are location automata and Gv is a variable
automaton. The automata are obtained by transforming the EFA model in
figure 5 using the first four steps of Algorithm 1. The renaming function
Ψ(·) is defined as Ψ(b) = b, Ψ(c) = c and Ψ(ai) = a, i = 1, 2.

two models. However, the last requirement that control-
lable/uncontrollable states of the EFA model are mapped
to controllable/uncontrollable states of the FA model is not
fulfilled.

C. Uncontrollable States Caused by Renaming

Consider figures 5 and 6. The renaming of the uncontrol-
lable event a into a1 and a2 causes fictional uncontrollable
states in the model in figure 6. The uncontrollable states of
the synchronized system caused by renaming in figure 6 are
of two kinds:

1) states where Kloc disables a1/a2 and enables a2/a1,
and the plant enables both a1 and a2,

2) the state where Kloc disables a1 and enables a2, and
the plant enables a1.

The renaming of events was designed to implement the
guard expressions in the EFA model. To avoid fictional
uncontrollable states caused by the renaming in Algorithm 1
we shall add ”plantified” specifications to the plant.

There are many ways of transforming specifications into
the plants. In [20], the complete plant automaton was
introduced. It is the plant automaton replacing a specifi-
cation, where uncontrollable states have been transformed

9

Technical Report, Chalmers University of Technology, R001/2008

into blocking states. Here, we want to transform fictional
uncontrollable states, caused by the renaming of events, into
controllable states. To do this we define the function PΨ(·)
that transforms specification automata into plant automata in
a special way.

Definition 14: Let K = 〈Q,Σ,→, q0〉 be a specification,
Σu a set of uncontrollable events and Ψ be a function with
domain of definition Σ. The function PΨ(K) is defined as

PΨ(K) = 〈Q,Σ,→Ψ, q0〉,

where

→Ψ = → ∪{(q, σ, q) | q ∈ Q, σ ∈ Σu ∩ Σ

and ∀σ′ ∈ Ψ−1(Ψ(σ)), q
σ′

9}.
The plant PΨ(K) is obtained from the specification K by
adding self loops in special way: if no relabeled uncontrol-
lable event in Ψ−1(Ψ(σ)) is enabled in the state q then all
uncontrollable events in Ψ−1(Ψ(σ)) are self looped at q.
Note that PΨ(K)‖K and K are isomorphic, and since we
pay no attention to the naming of the states in automata
we write PΨ(K)‖K = K. In order to avoid fictional
uncontrollable states caused by renaming we extend the plant
model to

G1
loc‖ · · · ‖G

k
loc‖G

1
v‖ · · · ‖G

n
v‖PΨ(Kloc)

where

PΨ(Kloc) = PΨ(K1
loc)‖ · · · ‖PΨ(Km

loc).

In states where the specification Kloc enables uncontrollable
relabeled events the plant automata PΨ(Kloc) enables the
same uncontrollable relabeled events. A consequence is that
no fictional uncontrollable states caused by the renaming of
events exits in the extended plant model. This is exemplified
in figure 7, which shows the extended plant model of our
running example problem.

PSfrag replacements

!a1

!a2

!b
!b

!a1

!a2

!a1

!a2

c

c

c

!a1

!a1

c

!a1

c

!a2

!a2

Gloc

PΨ(Kloc)

Gv

Kloc

Fig. 7. In order to avoid that fictional uncontrollable events are introduced
in the ordinary automata model the plant has been extended with PΨ(Kloc).
However, since the Algorithm 1 does not distinguish between guards from
plants and guards from specifications the uncontrollable state reached after
the event c is transformed into a controllable state.

D. Uncontrollable States Caused by Guards

Algorithm 1 removes transitions triggered by uncontrol-
lable events in the plant that do not fulfil the guards without
checking if they were removed by the plant guard or the
specification guard. To avoid erroneous uncontrollable states
in the FA model when a plant guard blocks uncontrollable
transitions, we want the variable automata to be plants. On
the other hand, to introduce uncontrollable states correctly
when a specification guard blocks uncontrollable transitions,
we want the variable automata to be specifications. The
choice can become ambiguous when guards on the same
variable occur both in specification transitions and in plant
transitions. Consider the extended ordinary automata model
in figure 7. In the variable automaton Gv , a plant guard
(v = 0) have disabled the uncontrollable event b at the states
corresponding to v = 1 and v = 2 and a specification guard
(v ≤ 1) have disabled the relabeled uncontrollable event a2

at the state corresponding to v = 2. If Gv is a plant then all
states are controllable and if Gv is a specification then we get
an additional uncontrollable state at the initial state. Clearly,
we can not solve this ambiguity by choosing the appropriate
status, plant or specification, of the variable automaton Gv .

We solve this issue in three steps. First only the plant
guards are considered in the algorithm that builds the variable
automata and all variable automata are given a plant status.
Then the uncontrollable states caused by specification guards
are identified. These illegal states are made uncontrollable in
the ordinary automata model in the last step.

Collecting Uncontrollable States: We have chosen to give
all variable automata a plant status in the ordinary automata
model. We have also extended the plant model by adding
”plantified” specifications. This implies that all uncontrol-
lable states caused by specification guards that blocks uncon-
trollable transitions have been transformed into controllable
states. To find these ”illegal” states, we distinguish between
plant guards gG and specification guards gK , and build a
new guard expression. Let p = (pG, pK) and q = (qG, qK)
be locations in G‖K, σ be an uncontrollable event and
p

σ
→g/a q be a transition in G‖K, where g = gG ∧ gK .

Consider the guard expression

ĝ = gG ∧ ¬gK .

We assume that ĝ have been parsed and written in disjunctive
normal form

ĝ = ĝ1 ∨ · · · ∨ ĝl.

A state p = (pG, pK , v) in G‖K where ĝ(v) is true, is uncon-
trollable in the EFA model since at that state a specification
guard blocks a transition triggered by an uncontrollable
event. However, the corresponding state in the FA model
Gloc‖Gv‖PΨ(K)‖Kloc is controllable. Each and-clause ĝi

defines a set of uncontrollable states in G‖K

F i = {(pG, pK , v) ∈ QG × QK × V | ĝi(v) = 1}.

Each set of states in the EFA model corresponds to a set of
states in the FA model, where locations corresponds to states
in the location automata and variables values corresponds to

10

Technical Report, Chalmers University of Technology, R001/2008

states in the variable automata. Therefore, we also let F i

denote the corresponding set of illegal states in the FA model.
Since we have extended the plant model with PΨ(Kloc) it
suffices to consider the plant states of the FA model.

Proposition 5: Let G, PΨ(K) be plant automata, K and
K̂ be a specification automata. Let (p, q, r) be a state
in G‖K‖K̂ and (p, q′, r) be the corresponding state in
G‖PΨ(K)‖K̂. Then the following implication holds:

(p, q′, r) is uncontrollable in G‖PΨ(K)‖K̂
⇒

(p, q, r) is uncontrollable in G‖K‖K̂.
Proof: Since G‖K‖K̂ = G‖PΨ(K)‖K‖K̂, and K‖K̂

disables more events than K̂ alone the statement follows.
According to Proposition 5, we can create uncontrollable
states in Gloc‖Gv‖PΨ(K) and thereby obtain uncontrollable
states in Gloc‖Gv‖PΨ(K)‖Kloc. Benefitting from the struc-
ture the FA model, we represent all illegal states obtained
from specification guards as

F =

L
⋃

i=1

F i =

L
⋃

i=1

F i
1 × · · · × F i

k+n+m,

where F i
1 × · · · × F i

k is a subset of the states in Gloc,
F i

k+1 × · · · × F i
k+n is a subset of the states in Gv and

F i
k+n+1 × · · · × F i

k+n+m is a subset of the states in
PΨ(Kloc).

Making States Uncontrollable: In this section we present
a general way of rewriting static specifications that identifies
illegal states in ordinary automata models, into dynamic
automata specifications. This is done such that illegal states
become uncontrollable. The method can be fully automated
and preserves the modularity of the model.

We start with a modular plant model consisting of a
number of ordinary automata G = G1‖ . . . ‖Gm and a set
that explicitly specifies the illegal states of the plant. We
assume that the bad states are given as Cartesian product
sets

F =
n
⋃

j=1

F j =
n
⋃

j=1

F j
1 × · · · × F j

m,

where each F j
k is a subset of the states of the plant automaton

Gk. It is assumed that all F j’s are proper subsets of the
plant states. The following algorithm replaces the static
specification F with automata specifications and modify the
plant model in such a way that the illegal plant states are
transformed into uncontrollable states.

Algorithm 2: Let Gk = 〈Qk,Σk,→k, qk
0 〉 k = 1, . . . ,m,

be plant automata and F =
⋃n

j=1 F j be illegal states of
G = G1‖ · · · ‖Gm. The following algorithm transforms the
illegal states of G into uncontrollable states of G�‖K̂, where
G� is a modified plant automaton and K̂ = K̂1‖ · · · ‖K̂n is
a specification automaton.

1) ∀F j ∈ F :

a) create a new unique uncontrollable event uj ,
b) create a specification automaton

K̂j = 〈{q}, {uj}, ∅, q, 〉, that forbids uj ,
c) ∀F j

k ∈ F j such that F j
k 6= Qk:

i) add uj to Σk,
ii) ∀q ∈ F j

k add self loops q
uj

→k q to →k.
2) Update all plant automata Gk that has modified alpha-

bets Σk and transition relations →k and denote the
modified plant with G�.

Proof: The constructed specifications K̂j are single
state automata that forbids the corresponding uncontrollable
events uj . Hence, all states where uj are active, are uncon-
trollable. Let q = (q1, . . . , qm) be a state in the plant G� that
belongs to the set F of illegal states. Then q must belong to
at least one of the product sets of F , say F j = F j

1 ×· · ·×F j
m.

For the local-state qk ∈ Qk, there are two possibilities,
either uj /∈ Σk or there is a self loop at qk triggered by
the uncontrollable event uj . Since we assumed that not all
F j

k equals Qk, at least one local-state of q = (q1, . . . , qm)
must have self loops triggered by uj . Thus, it follows from
the FSC that uj can indeed occur in q and therefore the state
is uncontrollable.
Algorithm 2 adds uncontrollable self loops in all illegal plant
states and forbids the corresponding events. The subscript �

is used to denote the modified plants i.e. the transformed
supervisory control problem is given by the plant automaton
G� and the specification automaton K̂.

E. A Supervisory Transformation Algorithm

We believe that EFA will help to bridge the gap between
industry logic control programs and the classical supervisory
theory. It is therefore of great importance to develop effective
synthesis algorithms for EFA. However, since action func-
tions may change when EFA are composed with other EFA,
properties that are true for a subsystem are not necessarily
true for the entire synchronized system. Unreachable states of
single EFA can become reachable after synchronization. It is
therefore unfeasible to reason in a modular way about EFA
and it is difficult to develop effective synthesis algorithms
for EFA. Our approach is to transform EFA models into
isomorphic FA models. This way we can rely on existing
algorithms developed for FA that have been tested and
have been proven to handle systems with large state-spaces.
Here, we present a transformation algorithm that transforms
a modular supervisory control problem modeled by EFA
into an equivalent FA supervisory control problem. The
transformation preserves the structure of the EFA model.
The equivalent FA model can be used both for synthesis
and verification of the EFA model.

Let G = G1‖ · · · ‖Gk be plant EFA and K =
K1‖ · · · ‖Km be specification EFA and assume that all
EFA are action consistent. The product G‖K is a model
of the desired closed loop. In order to verify if L(G‖K)
is controllable or to calculate L(G‖K)↑C , we transform
the system into a modular supervisory control problem
consisting of ordinary automata. The event set of the ordinary
supervisory control problem is obtained by renaming events
in the original alphabets of G and K. Ψ(·) is the function
defined in Algorithm 1 that maps relabeled events to their
original events.

11

Technical Report, Chalmers University of Technology, R001/2008

Algorithm 3 (Transforming Control Problems): Let G =
G1‖ · · · ‖Gk be plant EFA and K = K1‖ · · · ‖Km be spec-
ification EFA using the shared variables v = (v1, . . . , vn).
Assume that the EFA are deterministic. The modular super-
visory control problem consisting of ordinary automata given
by the plant

G̃ =
(

Gloc‖Gv‖PΨ(Kloc)
)

�
,

and the specification

K̃ = Kloc‖K̂,

is generated from the EFA model in three steps:
(i) For each transition p

σ
→gG∧gK/a q in G‖K:

a) If σ is controllable, apply the first 4 steps of
Algorithm 1 to p

σ
→gG∧gK/a q.

b) If σ is uncontrollable, apply the first 4 steps of
Algorithm 1 to p

σ
→gG/a q, and collect all states

(p, v) such that gG ∧ ¬gK is true into the set F .
(ii) Use the function PΨ(·) in Definition 14 to extend the

plant with PΨ(Kloc).
(iii) Transform the collected states F into uncontrollable

states using Algorithm 2, where F is interpreted as
states in Gloc‖Gv‖PΨ(Kloc).

G̃‖K̃ is the isomorphic FA of the EFA G‖K (up to renaming
of events) so we do not need to distinguish between the
states of G̃‖K̃ and the states of G‖K. By construction the
algorithm maps controllable/uncontrollable states of G‖K
to controllable/uncontrollable states of G̃‖K̃. Because of
this can use the ordinary automata model to verify the
controllability of the EFA model.

Proposition 6 (Verification): Let G = G1‖ · · · ‖Gk be
plant EFA and K = K1‖ · · · ‖Km be specification EFA
that are deterministic. Let G̃ and K̃ be the plant and
specification obtained by applying Algorithm 3 to G and
K. Then the following two statements are equivalent.

(i) L(G‖K) is controllable with respect to G and K.
(ii) L(G̃‖K̃) is controllable with respect to G̃ and K̃.

Proof: From Proposition 1 it follows that if we rename
the events in G̃‖K̃ with Ψ(·) then G̃‖K̃ is the isomorphic
FA of G‖K. Hence, reachable states of G‖K are mapped
to reachable states of G̃‖K̃. Since PΨ(Kloc) is included in
G̃ there exits no fictional uncontrollable states caused by the
renaming of events. Uncontrollable states of G‖K caused by
specification guards are collected in the set F . From the proof
of Algorithm 2, it follows that these states are transformed
correctly into uncontrollable states of G̃‖K̃. Hence, con-
trollable/uncontrollable states of G‖K are transformed into
controllable/uncontrollable states of G̃‖K̃ and the statement
follows.
Let ∼ be the equivalence relation on strings s, t in L(G̃‖K̃),
where s ∼ t if Ψ(s) = Ψ(t). Let L ⊆ L(G‖K) and L̃ ⊆
L(G̃‖K̃) be such that Ψ(L̃) = L. The fact that G‖K is
deterministic implies that strings in s, t ∈ L(G̃‖K̃), where
s ∼ t visit exactly the same states in G̃‖K̃. An important
consequence is that the sub-languages L and L̃ also must
visit the same states. The following lemma formalizes the
fact that, the set of uncontrollable active events of a plant

state in the FA model, are surjectively mapped to the set of
uncontrollable active events of the corresponding plant state
of the EFA model.

Lemma 1: Let G be a plant EFA and K be a specification
EFA using the shared variables v = (v1, . . . , vn). Assume
that the EFA are deterministic. Let G̃ and K̃ be the plant
and specification obtained by applying Algorithm 3 to G and
K. Let (pG, v) be a state in G and pG̃ be the corresponding
state in G̃. Then Ψ(Γ(pG̃) ∩ Ψ−1(Σu)) = Γ(pG, v) ∩ Σu.

Proof: Let σ ∈ Γ(pG, v) ∩ Σu be given. Then there
must exist a transition p

σ
→gG∧gK/a q of G‖K where the

plant guard gG(v) = 1. If gK(v) = 1 then relabeled events
in Ψ−1(σ) are added to Γ(pG̃) ∩ Ψ−1(Σu) in step 3 and 4
of Algorithm 1. If gK(v) = 0 then pG̃ is collected to the set
of uncontrollable states and relabeled events in Ψ−1(σ) are
added to Γ(pG̃) ∩ Ψ−1(Σu) as uncontrollable self loops.
Now its possible to prove that the ordinary automata control
problem can be used for synthesis.

Proposition 7 (Synthesis): Let G = G1‖ · · · ‖Gk be plant
EFA and K = K1‖ · · · ‖Km be specification EFA using the
shared variables v = (v1, . . . , vn). Assume that all EFA are
deterministic. Let G̃ and K̃ be the plant and specification
obtained by applying Algorithm 3 to G and K. Let L ⊆
L(G‖K) and L̃ = sup{N ⊆ L(G̃‖K̃) | Ψ(N) = L}. Then
the following two statements are equivalent.

(i) L is controllable with respect to G and K.
(ii) L̃ is controllable with respect to G̃ and K̃.

Proof: (i) ⇒ (ii). Assume that (i) is true and (ii)

is false. Let s̃ ∈ L̃ and (pG̃, pK̃) ∈ G̃‖K̃ be such that
G̃‖K̃

s̃
→ (pG̃, pK̃), and σ̃ ∈ Ψ−1(Σu) ∩ Γ(pG̃), where

s̃σ̃ /∈ L̃. Let (pG, v) be the corresponding state in G‖K i.e.

G‖K
Ψ(s̃)
7→ (pG, pK , v). By assumption L is controllable so

by Definition 13, we have Ψ(s̃)
(

Σu ∩ Γ(pG, v)
)

⊆ L. From
Lemma 1 it follows that:

Ψ(s̃
(

Ψ−1(Σu) ∩ Γ(pG̃

)

) ⊆ L.

This implies that Ψ(L̃∪{s̃σ}) = L which is a contradiction
since L̃ ∪ {s̃σ} is larger than L̃.
(ii) ⇒ (i). Assume that (ii) holds. Let s ∈ L and
(pG, pK , v) in G‖K be such that G‖K

s
7→ (pG, pK , v). Let

(pG̃, pK̃) be the corresponding state in G̃‖K̃. Since L̃ is
controllable with respect to G̃ and K̃ there exists s̃ ∈ L̃
such that Ψ(s̃) = s and

s̃
(

Ψ−1(Σu) ∩ Γ(pG̃)
)

⊆ L̃.

By Lemma 1 applying Ψ(·) to both sides of the above
equation gives us s

(

Σu ∩ Γ(pG, v)
)

⊆ L and the statement
follows.
A consequence of Proposition 7 is that

Ψ(L(G̃‖K̃)↑C) = Ψ(L(G̃‖K̃))↑C = L(G‖K)↑C ,

and therefore we can use the ordinary automata model to
do both synthesis and verification. An FA model that can be
used to synthesize a supervisor for the EFA model presented
in figure 5 is depict in figure 8. It has been generated by
Algorithm 3.

12

Technical Report, Chalmers University of Technology, R001/2008PSfrag replacements

!a1

!a2

!b
!a3

!b

!a1

!a2
!a1

!a2

c

c

c

!a3

!a1

!a1, c

!a1, c

!a2

!a2

!a3

(Gloc)�

(PΨ(Kloc))�

(Gv)�

Kloc

{!a3}

K̂

Fig. 8. The above model is an equivalent ordinary automata control problem
of the EFA control problem given in figure 5. It has been generated by
Algorithm 3. The renaming function Ψ(·) is defined as Ψ(b) = b, Ψ(c) = c

and Ψ(ai) = a, i = 1, 2, 3.

VIII. CONCLUSIONS

The proposed modeling framework of extended finite
automata (EFA) can be used to design supervisors for com-
plex systems where ordinary finite automata (FA) modeling
requires complicated and possibly non-intuitive solutions.
Due to the use of variables, guard expressions and action
functions, the EFA formalism can hide information and
represent systems more compact than FA.

We have considered a general setting where no restrictions
are made on the sharing of variables between concurrent
EFA and don’t care updating of shared variables is allowed.
The don’t care assumption states that everything that is not
mentioned explicitly in an action does not change. Since
action functions may change when EFA are composed with
other EFA, properties that are true for a subsystem are
not necessarily true for the entire synchronized system.
Unreachable states of single EFA can become reachable after
synchronization. It is therefore unfeasible to reason in a
modular way about EFA.

In order to formulate supervisory control problems mod-
eled by EFA, we have generalized the standard definition
of controllability. However, developing effective synthesis
algorithms for EFA is not an easy task. To overcome this
difficulty we provide an algorithm that transforms super-
visory control problems modeled by automata with shared
variables into equivalent ordinary automata control problems.
By examining the information exchange between all com-
ponents of the model, we avoid building the product of the
extended model and instead, we obtain an equivalent modular
FA model. The algorithm is feasible for any finite modular
system whose EFA share variables with finite domain.

The transformation algorithm is applied to all combi-
nations of transitions in the synchronized system. Since
the algorithm builds the ordinary automata transition by

transition, it only consumes a polynomial amount of space.
However, for each transition in the synchronized EFA model,
transitions with relabeled events are created in the FA model.
This can lead to an explosion of events and transitions in the
ordinary automata model. One possible way of dealing with
this problem is to minimize the relabelling of events and to
remove unnecessary transitions.

The presented algorithms and the EFA framework have
been implemented in the supervisory control tool Supremica.
Since Supremica also implements state-of-the-art algorithms
and data structures for dealing with large scale problems,
we hope that this work will facilitate the adaptation of the
supervisory control ideas into industrial applications. Since
a synthesized supervisor can be implemented by adding
additional guards to the original EFA model, see [8], we
believe that, unlike FA, the EFA framework can be used to
close the loop of the logic development i.e. provide feedback
to the model designers.

The authors would like to compare the performance of
algorithms on automata generated from EFA models with
their performance on equivalent handwritten automata mod-
els. It is also of interest to develop effective synthesis and
verification algorithms directly on EFA models.

ACKNOWLEDGEMENT

The authors would like to thank Robi Malik at University
of Waikato, New Zealand, for helpful discussions about the
EFA concept and for guidance with the implementation.

REFERENCES

[1] P. J. Ramadge and W. M. Wonham, “The control of discrete event
systems,” IEEE, vol. 77, no. 1, pp. 81–98, Jan. 1989.

[2] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to
Automata Theory, Languages, and Computation, 2nd ed., ser. Series
in Computer Science. Addison-Wesley, 2003.

[3] S. Balemi, G. J. Hoffmann, P. Gyugyi, H. Wong-Toi, and G. F.
Franklin, “Supervisory control of a rapid thermal multiprocessor,”
IEEE, vol. 38, no. 7, pp. 1040–1059, 1993.

[4] M. Fabian and A. Hellgren, “PLC-based implementation of supervi-
sory control for discrete event systems,” in 37th Decision and Control,
Tampa, FL, USA, 1998.

[5] X.-R. Cao, G. Cohen, A. Giua, W. M. Wonham, and J. H. van
Schuppen, “Unity in diversity, diversity in unity: Retrospective and
prospective views on control of discrete event systems,” Discrete Event
Dynamic Systems, vol. 12, pp. 253–264, 2002.

[6] D. Harel, “Statecharts: A visual formalism for complex systems,”
Science of Computer Programming, vol. 8, pp. 231–274, 1987.

[7] Y.-L. Chen and F. Lin, “Modeling of discrete event systems using
finite state machines with parameters,” in CCA00, Anchorage, Alaska,
Sept. 2000.

[8] Y. Yang and P. Gohari, “Embedded supervisory control of discrete-
event systems,” in 2005, Edmonton, Canada, August 2005, pp. 410–
415.

[9] B. Gaudin and P. H. Deussen, “Supervisory control on
concurrent discrete event systems with variables (extended version),”
Technical University, Berlin, Tech. Rep., 2006. [Online]. Available:
http://www.benoit.gaudin1.free.fr

[10] C. de Oliveira, J. Cury, and C. Kaestner, “Synthesis of supervisors
for parameterized and infinity non-regular discrete event systems,”
in Proceedings of the 1st IFAC Workshop on Dependable Control of
Discrete Systems (DCDS’07), June 2007, pp. 77–82.

[11] C. Ma and W. Wonham, “Nonblocking supervisory control of state
tree structures,” IEEE, vol. 51, no. 5, pp. 782–793, May 2006.

[12] Supremica, “www.supremica.org. The official website for the
Supremica project,” 2007.

13

Technical Report, Chalmers University of Technology, R001/2008

[13] K. Åkesson, M. Fabian, H. Flordal, and R. Malik, “Supremica—an
integrated environment for verification, synthesis and simulation of
discrete event systems,” in 8th Discrete Event Systems, WODES ’06,
Ann Arbor, MI, USA, July 2006, pp. 384–385.

[14] K. Åkesson and M. Sköldstam, “Towards a framework for integrated
supervisory and logic control,” in 1st Dependable Control of Discrete
Event Systems’07, Paris, France, 2007, pp. 83–88.

[15] P. Malik and R. Malik, “Modular control-loop detection,” in 8th
Discrete Event Systems, WODES ’06, Ann Arbor, MI, USA, July 2006,
pp. 119–124.

[16] C. A. R. Hoare, Communicating sequential processes, ser. Series in
Computer Science. Prentice-Hall, 1985.

[17] J. M. Spivey, The Z Notation: A Reference Manual, 2nd ed. Prentice-
Hall, 1992.

[18] R. Malik and R. Mühlfeld, “A case study in verification of uml stat-
echarts: the profisafe protocol,” Universal Computer Science, vol. 9,
no. 2, pp. 138–151, Feb. 2003.

[19] H. Flordal, “Compositional approaches in supervisory control—with
application to automatic generation of robot interlocking policies,”
Ph.D. dissertation, Signals and Systems, Chalmers, Göteborg, Sweden,
Oct. 2006.

[20] H. Flordal and R. Malik, “Supervision equivalence,” in 8th Discrete
Event Systems, WODES ’06, Ann Arbor, MI, USA, July 2006, pp.
155–160.

14

	FörsättsbladTekniskRapport.pdf
	EFA_Report_R001_2008.pdf

