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ABSTRACT 

 
Online auctions are widely used in sales of collectible items and casual items. This mar-

ket is constantly growing due to the growing number of people with access to the inter-

net. Even in the newly emerged internet auctions, the traditional auction theory is still 

providing useful insights into the bidding strategies in auctions with given properties.  

The question regarding optimal bidding strategy is of interest due to the fact that it pro-

vides bidders an edge in competitive markets.  

 

Previous studies, which have mostly focused on the eBay-auction model, show that the 

optimal bidding strategy is to wait until the ending of an auction. These studies also 

show that there is a tendency to shift towards this strategy while gaining experience as a 

bidder. However, a closer examination reveals that the strategic advantages of late bid-

ding are obsolete in auctions with a soft-close ending rule, such as Huuto.net and Ama-

zon. While this has not been previously tested in Huuto.net, empirical results from Am-

azon have been as hypothesized. Testing these hypotheses is conducted in this study 

using similar statistical tests as the previous studies as the methodological approach. 

The tests are conducted on a data gathered from two product categories in Huuto.net: 

IPhones and Moomin mugs. This thesis provides a comparative insight into bidding 

strategies in online auctions with a soft-close ending rule. 

 

This study shows that late bidding does not occur in Huuto.net, but in fact quite the op-

posite. This study shows also that pure single-bidding occurs when a clearer common 

value component is present, and that the experienced bidders place fewer bids in both 

product categories. 

 

KEYWORDS: Auction, online, bidding, experience 
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1. INTRODUCTION 

 

In 1961 a Canadian-born professor William Vickrey wrote a fundamental paper 

about different auction models used in practice. This was the first time in histo-

ry that auctions were studied with game-theoretic aspect. In his paper he exam-

ined the game-theoretical properties of sealed-bid first price auction, which was 

used by state agencies when putting goods and services out to tender. He found 

that by modifying this common auction in such a way that the winner pays the 

price of the second highest bid, it might be beneficial for both the seller and the 

buyer. This auction type is called second-price sealed bid auction, or Vickrey 

auction. (Vickrey 1961) 

 

Since auctioning as a pricing mechanism is important for its economic proper-

ties, it has been a focus of many studies. Twenty years after the Vickrey’s paper 

Myerson (1981) and Riley & Samuelson (1981) developed further the auction 

theory and discovered the revenue equivalence theorem. After this ground-

breaking discovery the auction theorists went on further with the development 

of optimal auctions (auctions that maximize the seller’s expected revenue). In 

addition to the revenue equivalence theorem, Myerson’s (1981) paper also con-

tributed to the optimal auction design for standard auctions, which was then 

developed further by Milgrom & Weber (1982) who developed the general 

model and McAfee & McMillan (1987) who developed the benchmark model. 

 

It has been shown many times, that from the game theoretic perspective, the 

optimal bidding strategy in second-price sealed bid auctions is to bid the value 

it has to the bidder. (Vickrey 1961: 20-21; Milgrom & Weber 1982: 1091; McAfee 

& McMillan 1987: 710) As simple as this may seem, this value is not always easy 

to determine. Some auctions, such as those selling antique and other collecti-

bles, can be seen as an independent private value auction. If the item auctioned 

has some resale value, such as cars or oil drilling rights, there is a common val-

ue factor involved. The value of this factor, however, might be estimated differ-

ently amongst bidders (Milgrom & Weber 1982: 1094). Thus, the estimates of the 

common value factor influence the bids.  

 

On the other hand, a bid contains information of the common value factor of the 

item. (Milgrom & Weber 1982: 1094) Because of this, the optimal strategy in sec-

ond-price auctions is to bid at the last possible moment without revealing any 
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information to others. This strategy is weakly dominant when all the independ-

ent values are known and strictly dominant when the values are unknown.  

 

Most of the present-day auction sites (with eBay being the biggest) are using a 

so called proxy-bidding auction model. This mechanism can be seen as a varia-

tion of the English auction, since users are aware of the current winning bid and 

can increment it by bidding more. However, the proxy-bidding mechanism of-

fers users also the possibility to leave a secret high bid, according to which the 

software automatically increments the bid when competing bids arrive. Hence, 

the properties of the auction change and it starts to resemble more of a second-

price sealed bid auction (Lucking-Reiley 2000: 191), in which the final price of 

the auction is the amount of the second highest bid (see chapter 2.2 for more 

details). 

 

Even though the dominant strategy for the second-price sealed bid is always to 

bid one’s value, the bidders seem to fail doing so. Kagel & Levin (1993) con-

ducted one of the first laboratory experiments, finding that the theory is not 

aligned with the real-world, since the bidders tend to overbid in second-price 

sealed bid auctions. Garratt, Walker & Wooders (2012) conducted a similar ex-

periment, but with the emphasis on the previous experience in real-world sec-

ond-price sealed bid auctions. With their data, they found that the more experi-

enced bidders were not likely to bid their values, and that they showed no 

greater tendency to overbid or underbid. 

 

 

1.1. Research Problem 

 

The theory for optimal strategy for bidding in second-price sealed bid auction 

outdates the internet and then the modern online auction mechanisms by dec-

ades. In his paper, William Vickrey stated that the second-price mechanism 

would be beneficial for both the seller and the bidder, if the bidders bid their 

own personal valuation of the item. The reason for this is that even if the bidder 

would be intrigued by the increased chances of winning by bidding higher, this 

would result in an unfavorable situation. (Vickrey 1961: 20-21) 

 

This raises the question about what is the best approach for bidding in online 

auctions. There have been recent findings about this indicating that new users 
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learn the ways to win auctions fairly quickly, and that losing experiences make 

bidder’s learn even faster (Wang & Hu 2009: 260). Another study discovers that 

inexperienced users are more likely to place their bids earlier than more experi-

enced ones. One interesting discovery is also that with even after a small 

amount of experience points users start to place bids more rationally (Living-

ston 2010: 250). 

 

Empirical research has however found that bidders fail to bid their values and 

often overbid. Kagel & Levin (1993) conducted laboratory experiments which 

found that the tendency to overbid increased when moved from first-price auc-

tion to second-price and even further in the third-price auction. Andreoni & 

Miller (1995: 48-50) found that the systematic errors in bidding patterns may 

exist because of adaptive learning amongst the bidders. 

 

When applied to the real-world auction mechanism, such as EBay or Huuto.net, 

the optimal bidding strategy may naturally be different than the theoretical 

standard models, which are formed to enable the possibility to examine their 

game-theoretical properties. For example, in a real world setting, the assump-

tions the standard models contain may not be fulfilled. On this basis, it’s natural 

to assume, that the optimal bidding strategy may include some previously ab-

sent properties, or the existing properties may be dissimilar.  

 

To see any form of learning, there must be sequentiality. One important aspect 

of the sequential auctions is the bid’s ability to carry information. Sequential 

auctions have been studied from this informational aspect since the 1980’s. En-

gelbrecht-Wiggans & Weber (1983) concluded that the expected profit of a bid-

der is higher, if he has less information. Hausch’s (1986) study found an inter-

esting phenomenon in sequential auctions: because the bidders are aware that 

their bids reveal information to the following auctions, they have an incentive 

to underbid.  

 

The question of optimal bidding strategy has been under a growing interest of 

studies. A great deal of the research is focused on the EBay-auction site (Wilcox 

2000; Rogers, Davis, Jennings & Schiff 2007; Wang & Hu 2009; Livingston 2010, 

to name a few), while only a few studies have focused on any other platform 

(Ockenfels & Roth 2002; Park & Bradlow 2005). The consensus has been for a 

long time that the optimal bidding strategy is to bid late, or snipe. This is to 
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avoid revealing information (Bajari & Hortacsu 2003: 338) and to protect from 

shilling (Barbaro & Bracht 2004: 11). There is even online software available that 

automate the auction sniping process (ezsniper.com, gixen.com, auctionsnip-

er.com etc.)  

 

The phenomenal work by Ockenfels & Roth (see Ariely, Ockenfels & Roth 2005; 

Ockenfels & Roth 2002, 2006) has had a huge contribution on the knowledge 

about the effects different ending rules have on optimal bidding strategy. The 

ending rules have not been under examination in the previous standard auction 

models, making their approach quite new. Since the EBay-model and the model 

used in Huuto.net are dissimilar only by their ending rules, it is necessary to 

consider what impact it has. Based on their research, it can be stated that auc-

tion sniping is not the dominant strategy in auctions that have a soft-closing 

method. They conducted controlled experiments (Ariely et al. 2005) and used 

the Amazon-auction site (Ockenfels & Roth 2006). Unless the difference be-

tween EBay and Amazon is because some other reason than the ending method, 

the results from Huuto.net should be similar. 

 

On this basis, the aim for this thesis is to find whether the results from 

Huuto.net are similar to those from Amazon, which is that there is no incentive 

to shift towards late bidding and that single-bidding becomes more prevalent 

while the bidders gain experience. 

 

 

1.2. The Structure of the Thesis 

 

Auction theory is discussed in chapter 2. First, some terminology regarding 

auctions is explained in chapter 2.1. After this, the standard auction types in 

auction literature are introduced in chapter 2.2, which are the English, Dutch, 

first-price sealed bid and second-price sealed bid auction. The value models 

(independent private values and common values) are introduced in chapter 2.3. 

These are all needed to understand the revenue equivalence theorem and its 

assumptions, which is then unveiled in chapter 2.4. 

 

After the explanation of the key aspects of the relevant sides of auction theory, 

chapter 2.5 opens up the concept of feedback score and explains how this is re-
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lated to user experience based on previous studies. Finally, in chapter 2.6 the 

two hypotheses are revealed. 

 

The empirical part begins from chapter 3. Chapter 3.1 focuses on describing the 

data. First, in chapter 3.1.1 the methods of gathering the data are presented. The 

data was gathered using the web scraping technology, which is opened in this 

chapter. An overview over the data is given in chapter 3.1.2., where descriptive 

statistics are presented and examined, with some figures to visualize the data.  

 

Finally in chapter 3.2, the two hypotheses are tested with the data. Two linear 

mixed models to test hypothesis 1 are constructed and conducted in chapter 

3.2.1. In chapter 3.2.2. hypothesis 2 is tested first by comparing the means of 

submitted bids on different feedback levels and then using cross tables to see 

the use of single-bids on different feedback levels. The tests and their results are 

described with more detail in the chapters 3.2.1 and 3.2.2. Ultimately, conclu-

sions are made in chapter 4. 
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2. AUCTION THEORY 

 

An auction is a market institution with an explicit set of rules deter-

mining resource allocation and prices on the basis of bids from the mar-

ket participants. (McAfee & McMillan 1987: 701) 

 

This chapter is divided into 6 subchapters. First, some related terminology is 

explained, so that the further chapters are understandable. Second, the standard 

auction types used in auction literature are explained. In chapter 2.3 the differ-

ent valuation models are compared. The revenue equivalence theorem and its 

limitations can then be introduced in chapter 2.4. On this basis, the principles of 

measuring experience via feedback score are presented in chapter 2.5, after 

which the hypotheses are finally revealed in chapter 2.6. 

 

 

2.1. Properties of an Auction 

 

Before further discussion of auction types, it is necessary to go through some 

terminology involving auctions. These will be briefly presented in this chapter. 

As Parsons, Rodriquez-Aguilar & Klein (2011, 10: 3) stated, the terminology has 

not become universal although these properties are widely known in the auc-

tion literacy. These properties are independent as every combination of these is 

fully functional and choice of one property does not exclude other options. 

(Parsons et al. 2011 10: 3) 

 

Single- or multi- dimensional auction  

In single-dimensional auction only the price of a good is considered, while in 

multi-dimensional auction also the quality of the product or other aspects are 

present in the bids.  

 

One-sided and two-sided auction 

In one sided auction bidders are only sellers or buyers, while in two-sided auc-

tions the bidders can be either. 
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Open-cry and sealed-bid auction 

In open cry auctions the bidders know the amount of other bids, while in 

sealed-bid auction only the auctioneer has access to them. 

 

First-price or k-th price 

In first-price auction, the winner will pay the amount of the highest bid, while 

in k-th price auction the winner pays the k-th highest bid.  

 

Single-unit or multi-unit 

It is possible to auction multiple units of the same good simultaneously.  This is 

called multi-unit auction. Single-unit auction has only one unit of the good.  

 

Single-item or multi-item 

Single-item auctions have only one good, while multi-item (or combinational) 

auctions have multiple kinds of goods simultaneously. (Parsons et al. 2011 10: 3-

4) 

 

In addition to these, there are also different ending rules in online auctions, hard 

close and soft close. In hard close auctions, the auction ends strictly at a pre-given 

time, as opposed to soft-close, in which the auction’s ending time is extended if 

bids appear in the last minutes. This has an impact on the optimal bidding 

strategy. (Ockenfels & Roth 2006: 298) There is evidence showing that the soft-

close method results in more revenue (see Ariely et al. 2005: 901-902) 

 

 

2.2. Standard Auction Types 

 

Although all of the combinations of the properties described in chapter 2.1 

would make more or less functional auctions, some of them are examined more 

frequently than others. The four types presented in this chapter are considered 

the standard auctions, because of the wide use and analysis over the years 

(Klemperer 1999: 3). McAfee & McMillan (1987: 702) described the four basic 

types of auctions, which are described in this chapter. Considering the proper-

ties described earlier, these four types differ in terms of open-cry vs. sealed-bid 

and first-price vs. k-th price properties. 
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English Auction 

 

English auction is the most common auction form used in selling goods.  In this 

auction form bids are successively incremented either by an auctioneer or by 

the bidders themselves. This will be continued until no more bids are present-

ed. The winner of the auction is then the bidder who bid highest and he pays 

the amount of his bid, thus being a first price auction. Essential part of the Eng-

lish auction is that on any given time every bidder is aware of the current high-

est bid, making it an open-cry auction. (McAfee & McMillan 1987:  702)  

 

Dutch auction 

 

Dutch auction differs from English auction in that the auctioning mechanism is 

reversed. First the high price is called by the auctioneer, who then continues to 

lower the price until one bidder accepts the price. Properties of the Dutch auc-

tion are the otherwise same as they are in English auction. (McAfee & McMillan 

1987: 702) 

 

First-price sealed bid 

 

When the first-price sealed bid auction is in use, the auctioneer collects bids 

from potential buyers. The bids are then compared and the bidder with the 

highest bid will then collect the item for the price he bid. The difference be-

tween the English auction and the first-price sealed bid auction is that the bid-

ders are not aware of other bids, making it impossible to revise the bids accord-

ing to other bids. (McAfee & McMillan 1987: 702)  

 

Second-price sealed bid 

 

The second- price sealed is similar to the first-price sealed bid, as the bidders 

submit bids to the auctioneer without knowing what other potential buyers 

have bid. The winner of the auction is whoever bid highest, but the selling price 

is not the amount of the highest bid. Instead, the final selling price is the second 

highest bid.  (McAfee & McMillan 1987: 702) 

 

Most previous studies assume that the proxy-bidding model is in fact a second-

price sealed bid auction. Zeithammer & Adams (2010) were the first ones to test 
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this sealed-bid abstraction, finding that that most people using online auction 

sites bid reactively, and that the pressure to adopt the sealed-bid strategy is 

weak, stating that both reactive and rational bidding strategies might coexist in 

all groups regardless of their experience. In response to this, Srinivasan and 

Wang stated in their commentary (2010: 5) that even though not all inexperi-

enced bidders become rational with experience, the previous results clearly 

show that the tendency to become a rational bidder is increased.  

 

 

2.3. Value Models 

 

One of the fundamental issues in auction theory is the two paradigms of prod-

uct valuation. These paradigms are essential in understanding the auction theo-

ry, thus being introduced in this thesis.  

 

The equilibrium of optimal bid/sale is different whether the auction is private 

value or common value, so it is of significant importance to acknowledge which 

one is in use on a given auction. If the bidder knows the auction is held on 

common value setting, it is rational to bid lower to prevent a winner’s curse, 

which means that the winning bid is higher than the true value of the item. The 

concept of common value setting is explained further on in this chapter. (Boat-

wright, Borle & Kadane 2010: 88) 

 

It is not easy to determine which valuation model is dominant on a given auc-

tion, as the distinction between the two categories can’t be done by current eco-

nomic theories (Laffont 1997: 28) and even the experts have strong opposing 

views on which products constitutes the value categories (Boatwright et al. 

2010: 93). To simplify, one distinctive difference is whether you think about the 

resale value (common value) or the value for yourself (private value) when you 

are buying the product (Boatwright et al. 2010: 95). 

 

Independent private values 

 

The independent private value model is in place when there is a single com-

modity being auctioned for multiple bidders. Each one of these bidders then 

valuates how much the commodity is worth to himself, while not knowing how 

the others have valuated. This is called the private values assumption. Regard-
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less to the auction type in use, the dominant strategy for the auction is to bid the 

amount of this estimated private value. (Milgrom & Weber 1982: 1090-1093) 

 

This model assumes that the bidders are risk-neutral and that they know their 

own valuation of the product. The private values assumption notes that these 

values are private; hence the bidders are not aware of other valuations. 

(Milgrom & Weber 1982: 1090) 

 

Milgrom & Weber (1982: 1090–1093) states that at least seven important conclu-

sions emerge from this model: 

 

1. The Dutch and the first price auction are strategically equivalent. 

2. The second-price sealed bid and the English auction are equivalent, alt-

hough in a weaker sense than strategically equivalent. 

3. The winner is the bidder who valued the item the most in the English 

and second-price auctions, and this is Pareto-optimal. 

4. In the independent private values model, all four auction models lead to 

identical expected revenues for the seller. 

5. In equilibrium, when the bidder who values the item most is certain to 

receive it, the expected revenue generated for the seller is exactly the 

second highest evaluation amongst the bidders. 

6. For many common sample distributions, the standard auction forms 

with suitable reserve prices or entry fees are optimal auctions. 

7. If the seller or the buyers are risk averse, the seller will prefer to use the 

Dutch or the first-price auction. 

 

Some of these conclusions link to the Revenue Equivalence Theorem, which 

will be discussed in chapter 2.5 separately because of its significance.  

 

Common value 

 

Traditionally oil drilling rights have been seen as common value auction (also 

called mineral rights model). At first it may seem that the value would be equal 

for all bidders, but the estimate of the common value may vary among bidders 

ex ante. A classic example of this is when a jar full of coins is being auctioned. 

Other factors being equal, the winner will be the bidder with the highest esti-

mate. (Milgrom & Weber 1982: 1093-1094) 
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Suppose then, that the bidder receives information about other bidders’ valua-

tions. In a common value auction, the bidder might benefit from this new in-

formation and adjust his own valuation accordingly. In independent private 

values auction the bidder’s valuation would not change, although he might 

change his bid for tactical reasons. (McAfee & McMillan 1987: 705) 

 

Common value auctions are sometimes called pure common value auctions, to 

distinct it from the term common value. Any item may hold a common value 

component if there is a resale opportunity, or in other words, if the other bidders 

have private information about the value its owner would acquire (Haile 2003: 

80). Wilcox (2000) has stated that a possible common value component may 

cause the bidders to be uncertain about valuating items even on private value 

auctions. 

 

 

2.4. The Revenue Equivalence Theorem 

 

The revenue equivalence theorem is best described in the McAfee & McMillan 

(1987) paper. It is based on four assumptions, which form the so called bench-

mark model: 

 

1. The bidders are risk neutral. 

2. The independent private values assumption applies. 

3. The bidders are symmetric. 

4. Payment is a function of bids alone. 

 

When these assumptions apply, the model is called the benchmark model. 

However, in the real world auctions this is often not the case. Later in chapters 

2.5.1 to 2.5.4 these assumptions are relaxed one at a time to discuss the effects 

they have in designing optimal auctions. 

 

The Revenue Equivalence Theorem answers the question which of the auction 

types the seller should choose in order to maximize profits. The answer is sur-

prising: they all yield the same revenue. But how can it be so? Wouldn’t the 

price be higher if the winner paid the amount of the highest bid rather than sec-
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ond highest? The answer is simple; the bidders use different bidding strategies 

in different types of auctions. (McAfee & McMillan 1987: 706-707) 

 

The proof of the revenue equivalence theorem is quite simple (see e.g. Klempe-

rer (1999: 41-44).  It was first presented by Myerson (1981) and Riley and Samu-

elson (1981), although even Vickrey’s paper (1961) had hints about the equiva-

lence in expected revenues in different auctions. Because the mathematical 

proof of the theorem is outside of this thesis’s scope, it will be left out. Howev-

er, as it is of essential importance in the field of auctions, it will be discussed 

here briefly.  

 

Given that all the bidders with the same valuation bid the same amount (as-

sumption 3).  Then all the bidders draw their valuations from the same proba-

bility distribution    (which is the density function denoted by f). All the bid-

ders are aware of this, but know only their own valuation (making auction a 

Bayesian game).  Suppose that the bids are v1, v2 . . . vn, and the biggest bid is v1 

(first order statistic), the second highest is v2 (second order statistic) and so on. Be-

cause of assumption 2, the winner of the auction is whoever values the item the 

most. (McAfee & McMillan 1987: 707) 

 

Consider the English auction. As the auction process advances, finally only two 

bidders are left in the auction. The auction ends when v2 is reached; there is no 

incentive for the bidder with this valuation to continue bidding. Because the 

winning bid should be lower than   , the winner will gain some economic rent 

for winning the auction.  Hence, the economic rent that the winning bidder gain 

is v1 -v2 and the expected value of this is[   (  )]  (  ). (McAfee & McMillan 

1987: 707-708) 

 

On this basis the equation for the expected payment the seller receives in an 

English auction can be formed as follows 

 

 (  )      
[   (  )]

 (  )
 

 

In the second-price sealed bid auction, the equilibrium strategy for all bidders is 

to bid the amount of their valuation. If the bidder i chooses to use a bid     , 

which is lower than this valuation   , there is a possibility that the winning bid 

(1)

  [   (  ) 
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would be lower than    but higher than     making him lose the auction. On the 

other hand, if he chooses to bid    , maybe attracted by its better chances at 

winning, there might occur a bid that is higher than his valuation    but lower 

than    , causing him a deficit of         . With this reasoning, it is optimal for 

him to bid    and nothing else. Because of this, the expected payment received 

by the seller is also (  ). (McAfee & McMillan 1987: 708) 

 

The first-price sealed bid auction differs from this by that the bidders can only 

guess what the other bidder’s valuations are. Because of this, there is no domi-

nant equilibrium strategy. If the bidder bids his true value    and happened to 

win the auction, he would gain no economic rent. In order to receive it, he must 

place his bid somewhere below  , but still higher than what he believes to be 

the second highest bid. To put this in mathematical form, any other bid is of the 

amount  (  ) when the valuation is   . (McAfee & McMillan 1987: 708 – 709) 

 

When the bidder’s valuation is   , bidding an amount of    results in gaining 

economic rent       . Winning the auction means that    all     bidders have 

valued the item with       , thus (  )     . Given the distribution of valua-

tions   like in equation 1, the probability to win the auction is  [   (  )
   ] 

and the expected surplus the winner gains is as follows: (McAfee & McMillan 

1987: 709) 

 

    (     )( [ 
  (  )] 

    

 

Differentiating this with respect to   , we can form the equation that the optimal 

bid needs to satisfy: 

 
   
   

 ( [   (  )]   ) 

 

In order to fulfill the rational-expectations requirement of Nash equilibrium, it 

must be imposed that all bidders are using the function   consistently and ra-

tionally. Moreover, it must be required that the bidders are symmetrical; hence 

the bidder with valuation    bids  (  ). By substituting this into (3), the equa-

tion for bidder  ’s expected surplus at Nash equilibrium is (McAfee & McMillan 

1987: 709) 

 

(2)

  [   (  ) 

(3)

  [   (  ) 
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The decision rule for all bidders can be obtained by solving this function for   

by integrating it. The lower boundary of the integral is    , which is the lowest 

possible valuation and which gives the bidder zero surplus. The equation for 

the decision rule can then be formed, using the Nash condition and the defini-

tion of   in equation (2): (McAfee & McMillan 1987: 709) 

 

 (  )      
∫ [ ( )]     
  

  

[ (  )]   
 

 

Note that in Nash equilibrium all the bidders          must be maximizing 

their expected surplus simultaneously, so that (4) holds. 

 

The problem that the seller faces is that he is not aware of   , the highest valua-

tion amongst distribution  , although he must decide which auction model to 

use in order to obtain the maximum surplus. For English and second-price 

sealed bid auctions, the price is  (  ) as formed in equation (1) and equals   . 

For Dutch and first-price sealed bid auctions the price is  (  ) as formed in 

equation (5), and is the expectation of    conditional of    . The revenue equiva-

lence theorem states that results for all four auction types are equal on average, 

meaning that on average the values for  (  ) and   (  ) are the same. However, 

by chance when    and     are equal, will the price be same. (McAfee & McMil-

lan 1987: 708-710) 

 

Developing the optimal auction on this basis is just a small step away. In an effort 

to maximize his profits, the seller must design such an auction that gains him 

the highest expected utility. 

 

This theorem is important to introduce in this thesis, because the users of 

Huuto.net auction site can place their bids incrementally (English auction) or 

place one bid, which the system then automatically compares to other bids and 

increments when new bid occur until the limit (second-price sealed bid auc-

tion). Because of the identical outcomes of these two auction types, there should 

be no economic incentive for the bidders to start favouring either one.  

(4)

  [   (  ) 

(5)

  [   (  ) 
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However, it is important to keep in mind, that the real-world situation may not 

have the same outcomes as the benchmark model. From the seller’s point of 

view, Lucking-Reiley (1999) found that the Dutch auction produces 30-percent 

higher revenues than the other standard auction types; and that the English 

auction and the second-price auction have roughly similar outcomes. 

 

2.4.1. Asymmetric Bidders 

 

In a case, where all the bidders do no draw their valuations from the same dis-

tribution , but use more than one distribution, the bidders are called asymmet-

ric or non-homogenous. Asymmetry may be caused by legislation, when state 

contracts are auctioned with different terms between domestic and foreign 

companies, or when the bidders are divided between collectors and dealers, 

resulting in different valuations or signals. (McAfee & McMillan 1987: 714) The 

auction literature has identified three ways to separate the distributions. These 

are differences in private values, almost common value settings, and differences 

caused by dissimilar information. Because of the differences may vary in nu-

merous ways, it is not easy to form a general result. (Klemperer 1999: 17-21) In 

this chapter, assumption 3 is relaxed while assumptions 1, 2 and 3 are main-

tained. 

 

This means that the bidder with the highest value receives the item and the op-

timal bidding strategy is to bid one’s value. The first-price sealed bid yields a 

different outcome, which is because the bidder faces different sets of bidders 

from which to draw his expectation of   . Ultimately this results in the breaking 

of the revenue equivalence theorem (McAfee &McMillan 1987: 714-715). The 

expected revenue of the first-price sealed bid can be higher or lower than the 

English auction when asymmetry of bidders occurs. (Vickrey 1961:21) 

 

When there is two different distributions, equation (1) can be derived to the fol-

lowing form, in which   
  is the bidder  ’s in class   valuation for the item:  

 

  (  
 )     

  
[    (  

 )]

  (  
 )

       

 

(6)

  [   (  ) 
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Because       ,   (  )      (  )  Then again, because    is not a function of  

 ( ), the auction may result in such outcome, that  ( ( )
  )      ( ( )

  ), even if 

 ( )
    ( )

 . The optimal auction should result in such outcome, that the bidder 

with the biggest valuation wins the product, hence it can be shown that when 

asymmetry of bidders occurs, the auction may not be optimal. (Myerson 1981: 

67-68, McAfee & McMillan 1987: 715) 

 

2.4.2. Royalties and Incentive Payments 

 

The fourth assumption of the benchmark model declares that the payment for 

the bidder is a function of bids alone. This type of auction can be in the seller’s 

interest when the value of the item is not known ex ante, but can be known im-

perfect ex post. This occurs when e.g. drilling rights or book publishing rights 

are auctioned. (McAfee & McMillan 1987: 717) Royalties and incentive pay-

ments are not used in EBay or Huuto.net, which makes it trivial to examine in 

this thesis. However, to satisfy the reader’s curiosity and to complete the chap-

ter, it can be discussed here briefly. 

 

Deviating from the single payment to the more complex payment function re-

sults that the payment   depends on some other variable than the bid . Because 

the ex post value of the item can’t be known beforehand, the bidder needs to 

estimate the value  ̃ that it causes after the auction. If the auction mechanism 

chosen so, a certain royalty rate   of this value is paid to the seller. On this basis, 

when the payment includes royalties or incentive payments, the total payment 

to the seller is a linear function as follows: (McAfee & McMillan 1987: 717) 

 

      ̃ 

 

The seller is not aware of the bidder’s valuations, but he would benefit from 

any information about the valuations. 

 

2.4.3. Risk-Averse Bidders 

 

Optimal bidding strategies for the second-price sealed bid or the ascending bid 

auctions do not change whether the bidders are risk-neutral or risk-averse. 

(Klemperer 2000: 14) Therefore, the bidding strategies for EBay or Huuto.net 

remain unchanged. Furthermore, with risk-averse bidders the expected price 

(7)

  [   (  ) 
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for the English auction is at least as much as it is for the second-price sealed bid 

auction. (Milgrom & Weber 1982: 1116) However, with higher risk bidders the 

first-price auction results in higher bids and the resulting price is higher than in 

the second-price sealed bid auction. (Milgrom & Weber 1982: 1114) 

 

Waehrer, Harstad & Rothkopf (1998) provided a full review of the seller’s pre-

ferred choice of the standard auction models, with different risk-levels of the 

bidders. Their conclusion was that when the bidders are risk-averse, it is in the 

seller’s interest to prefer English auction over the first-price auction, and vice 

versa. (Waehrer et al. 1998: 189) 

 

2.4.4. Independent Private Values Assumption 

 

In this chapter assumptions 1, 3 and 4 are maintained, while assumption 2 is 

relaxed. Because of this, the hazard of falling into the winner’s curse is possible. 

To prove this, consider first that the auctioned item is a pure common value 

item. In this case, all the bidders have to estimate this value, and whoever has 

the highest valuation, hence places the highest bid, wins the auction. Because 

the item has no private value to the buyer and the pure common value is the 

same for all bidders, and all the other bidders estimated its value lower, the 

winner of the auction has no way to profit from the resale of the item. (McAfee 

& McMillan 1987: 720-721) 

 

 

2.5. Feedback Score and Experience 

 

Mutual trust between the seller and the bidder partners is crucial on online auc-

tions.  After the auction has ended, the usual procedure is that the seller con-

tacts the winner and sends the product after it has been paid. This practice is 

highly risky as the buyer has to trust that the product is as described and the 

seller will ship it. Regardless to the auction type, there is always a risk of being 

defrauded. This trust was first studied by Resnick & Zeckhauser (2002), who 

found that more than half of  the early users (the data was collected in 1999) left 

feedback in EBay, however this has likely been changed over the years and is 

certainly not comparable to the Huuto.net today. 
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This has led to the development of the feedback systems, in which the users can 

reward each other with positive feedback scores and on the other hand, penal-

ize the users that they advise not to do business with. As users get more in-

volved in online auctions and ultimately win auctions, their feedback score may 

raise. These feedback-scores are used as an indicator of user experience in many 

earlier studies (see for instance Wilcox 2000; Ockenfels & Roth 2006; Wang & 

Hu 2009; Livingston 2010; Srinivasan & Wang 2012).  

 

These points are visible to all users, making it possible for every user to evalu-

ate their trading partner beforehand. Ironically, this invoked a new form of dis-

honesty, as sellers began to give negative feedback in return to those whom 

they had received it. This resulted in 2008 to a change in feedback system, 

which made the sellers able to leave only positive feedback or no feedback at 

all. (EBay, 2008) This should be kept in mind when reading pre-2008 studies, as 

the feedback scores are not perfectly comparable. 

 

Feedback score, however, is not a perfect measurement to see a user’s experi-

ence. Garratt et al. (2011: 47) presented three reasons for this: (i) users don’t al-

ways leave feedback, (ii) feedback is given only to those who win the auction, 

and (iii) feedback can be given only after an auction has ended with sale. Wang 

& Hu (2009: 255) noted that because the learning comes mostly from losing ex-

periences, the use of feedback score do not display the nature of the learning 

process. Thus, experience per se is not the driving reason behind learning.  

 

These reasons were formed on the grounds of the limitations of eBay’s feedback 

system, but they also apply for Huuto.net. In Huuto.net negative feedback can 

be given, which decreases the score and makes the user look less experienced 

than the others. However, it is impossible to receive lots of positive feedback 

without participating at least in an equal amount of auctions, making this 

measurement a valid to use. Another obvious reason to the use of feedback 

score as the estimate of user experience is that there is no way of finding out the 

bidder’s true experience of online auctions. 

 

In addition to the plain experience in online auctions, also the quality of it 

seems to have an impact. Wang & Hu’s (2009) study followed 131 new users for 

over a six-month period, and the results were that those users whose participa-

tion in the auction did not result in a win, were likely to change their bidding 
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behavior towards submitting fewer bids and submitting them closer to the end. 

The winning bidders were not likely to change their pattern. 

 

As Livingston (2010: 249) stated, some of the bidders with less experience may 

actually be other identities of the seller used for shill bidding (bidding with the 

hope of higher end price). This is impossible to identify, but important to keep 

in mind when judging whether or not the feedback score is a reliable measure-

ment for experience. 

 

There are a few reasons to doubt the credibility of the EBay’s reputation system. 

First, because the reports may be fake (e.g. shill bidding), the rational bidder 

will base their judgment on it. Second, there is no incentive in leaving feedback, 

so users may not be using it, hence the reputation displayed by the feedback 

score may not be “correct”.  Third reason is that even the user’s left negative 

feedback, the user may create a new identity without being banned from the 

site (Livingston  2005: 453).  These altogether may be the reason why bidders 

strongly reward (by giving positive feedback) the honest sellers for the first few 

times they have auctioned items, but after that the marginal returns are plum-

meting (Livingston 2005: 463) 

 

The seller’s reputation impacts on the bidders differently between experienced 

and inexperienced bidders. Livingston (2010: 244) studied this effect and found 

that the inexperienced bidders bid more on average than the experienced bid-

ders, and that their bids are the same regardless of the seller’s reputation.  

Sellers with higher reputation also gained higher prices than those with no rep-

utation at all. In other words, bidders were more likely to place higher bids to 

those with an established reputation. However, the marginal gains slowed 

quickly after first positive feedbacks. But then again, one reason for this may 

also be that the seller’s learned how to promote and market their products bet-

ter. 

 

One other interesting finding was when Ockenfels & Roth (2002: 13) found that 

the less inexperienced bidders see other bids by known experts (measured by 

bidding history and reputation) as a free authentication and this leads to a 

greatly higher price in common value settings. 
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2.6. Hypotheses 

 

The auction mechanism used in Huuto.net lets users to place multiple bids dur-

ing an auction. For example, if the user’s bid has been superseded by another 

user, he can bid higher and gain back the winning position.  It also allows the 

user to let the system increment the bids automatically. By these means the 

Huuto.net auction is identical to the EBay auction, making the previous studies 

comparable with this thesis. 

 

The two hypotheses used in this thesis have previously been tested by at least 

Wilcox (2000), Boatwright et al. (2006), Wang & Hu (2009) and Livingston 

(2010). They all found the relationship between experience and the probability 

to bid (i) fewer bids and (ii) submit their bids later. In addition to these, Ocken-

fels & Roth (2002) found that the probability for last-minute bidding is higher 

amongst more experienced bidders even whether the auction had a hard close 

(EBay) or a soft close (Amazon, Huuto.net).  

 

While Wilcox and Livingston used only the feedback score as a measurement of 

a bidder’s experience, Wang & Hu used the actual participation in auctions by 

following the users for a six-month period and found that the relationship is 

prevalent by both measurements, while the actual experience gives a stronger 

correlation. The results of these studies are discussed in more detail during the 

last two chapters. 

 

There is another crucial difference between auctions and the Huuto.net, which 

may affect the bidding behavior. The difference comes from the fact that users 

have to choose to use automatic incrementing in Huuto.net, whereas in EBay 

they have no choice but to use it. It can be speculated whether or not this affects 

the bidding behavior, but as Ockenfels & Roth (2006: 317) stated, placing a sin-

gle bid near the end of the auction is the best response even to incremental bid-

ding and results in a smaller price.  

 

2.6.1. Timing of the Bids 

 

The first hypothesis is based on the assumption that all bids display infor-

mation about the value of the item, thus early bidding gives out information to 

other bidders. Previous studies have mainly based their evidence from data col-
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lected from EBay. The EBay’s proxy bidding model has a hard ending, meaning 

that the auction ends at a previously stated time. This model makes auction snip-

ing (bidding at the last possible moment) the best strategy for winning auctions. 

(Ariely et al., 905-906) Rogers et al. (2007) examined the properties of proxy-

bidding even further, and concluded that the best time to place a bid is indeed 

near the end of the auction, but before the other snipers. 

 

The model used in Huuto.net postpones the ending by five minutes if the win-

ning bid is changed during the last moments of the auction, allowing other bid-

ders to react. This model has similar attributes to the Amazon model studied by 

Ariely et al. (2005). Their conclusion was that when the bidders have time to 

react to the last bid, there is no incentive for learning to bid their values. On the 

other hand, when there was no guarantee that the bid submitted in the last 

stage would be posted, bidders learned over time to value bid. (Ariely et al. 

2005: 902). It should be noted that the Amazon model they used was a simpli-

fied model made for a test environment, in which there was no concern about 

the possibility to miss the ending. In the real world this may not always be the 

case (bidders may not have the access to increment their bids in a five minute 

notice). In their survey, Ockenfels & Roth (2002: 14) found, that indeed 90% of 

the bidders said that they sometimes they have planned to bid late, but some-

thing unexpected has prevented them from submitting the bid. 

 

As stated before, previous studies have found that there is a correlation be-

tween the bidder’s experience and late bidding. (Wilcox 2000; Boatwright et al. 

2006; Wang & Hu 2009; Livingston 2010) and Boatwright et al. (2006) had a dif-

ferent finding: in their data of over 10 000 products they found that the most 

likely time for more experienced bidders to place bids were both at the begin-

ning of the auction and near the closing, when the less experienced bid during 

the whole auction. 

 

Because giving out one’s valuation in an early phase of the auction gives ad-

vantage to the competitors (Milgrom & Weber 1982: 1116), the best approach in 

second-price sealed bid auctions is to place bids at the final moments of the auc-

tion. Indeed the survey by Ockenfels & Roth (2002: 13) showed that highly ex-

perienced bidders are afraid that their bids share valuable information to other 

bidders, hence they had an incentive to place their bids late. 
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Differences in ending rules bring an interesting addition to this question. A 

more recent study on the field of the soft-close versus hard-close can be found 

from Ockenfels & Roth (2006). In their paper, they stated that the presence of 

soft-close ending rule makes it more difficult to achieve the late bidding equi-

libria, but it can’t be stated that there was no possible cases where late bidding 

would be the best response (2006: 307). Their approach is based on the assump-

tion that all bidders would be ready to react when a bid is submitted in the last 

phase (2006: 308).  

 

Further on, their extensive study on the ending rules suggests that the strategic 

gains that late bidding provides in EBay-style auctions are mostly nullified in 

Amazon-style auctions with dependent values; and that with private values, at 

equilibrium, the bidders place their bids whenever they first notice the auction 

(Ockenfels & Roth 2006: 310). Empirical findings also suggest this. In their data 

from October 1999 – January 2000, late bidding was greatly more prevalent in 

EBay, with 68% of auction’s last bids occurring in the last hour, while the same 

number was only 23% in Amazon. The difference was even bigger when only 

last bids submitted in the last 10 seconds were examined: they consisted of 12% 

of bids in auctions, while the number was 0% in Amazon (Ockenfels & Roth 

2006: 313). These results indicate clearly, that sniping did not occur in Amazon. 

 

On this ground, the first hypothesis is: 

  

H1: The bidder’s feedback score does not have a negative effect on the time be-

tween placing the final bid and the end of auction in Huuto.net 

 

2.6.2. Single Bidding 

 

The Revenue Equivalence Theorem states that under certain assumptions every 

auction mechanism gives the same revenue to the seller and ends with the same 

outcome. For the bidder this means that regardless of the auction type, the final 

price will be the same. Under this theorem it can be stated that the dominant 

strategy is to bid one’s own valuation (see chapter 2.5).  In second-price sealed 

bid auctions, this would lead to a single bid.   

 

Previous studies have focused on testing the bidder’s strategies in online auc-

tions. The study by Ockenfels & Roth (2006: 316) found that there is no evidence 
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that the bidder’s feedback score induces late bidding in Amazon, but it reduces 

multiple bidding. Also Wang & Hu (2009) found that whether measured by ac-

tual experience or the feedback score, the bidders with more experience tend to 

place fewer bids.  Wilcox’s (2000) study did not measure the actual number of 

bids submitted by an individual. Instead, he tested this hypothesis by calculat-

ing the mean experience level and comparing it to the amount of bids submit-

ted. By doing so, he found that the mean feedback score was indeed higher in 

those auctions that had fewer bids. 

 

While the different ending rule negated the strategic advantages of late bidding, 

the single-bid hypothesis is still valid. The controlled experiment by Ariely et al. 

(2005: 896) found no difference in the number of submitted bid between the 

soft-close and hard-close ending rules. Instead, they find that the over time, the 

bidders reduced the number of bids submitted in both EBay-like and Amazon-

like auctions (2005: 896) 

 

Bidders using incremental bidding strategy place their bids at any time of the 

auction and then increment their bids if they are superseded. This strategy 

leads to more bids and may even trigger bidding wars. Indeed, in the study by 

Ockenfels & Roth (2006: 316), the average feedback score of a single-bidder was 

higher than that of a multiple bidder. Thus, hypothesis 2 conjectures that more 

experienced bidders are more likely to place a single bid in an auction. 

 

H2: The likelihood that the bidder places a single bid on an auction correlates 

positively with the feedback score.  
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3. LATE AND SINGLE BIDDING ON HUUTO.NET 

 

This chapter consists of two parts. First, the methods of gathering the data and 

the overview of data are discussed in chapter 3.1. Secondly, the statistical tests 

are conducted in chapter 3.2. 

 

In order to get a good picture of the bidding behavior in Huuto.net, several tests 

are used in this thesis. The tests used for hypothesis 1 are similar to those used 

in Livingston’s paper (2010). Because it was possible to gather the data form 

Huuto.net with more details about the bidders, it was possible to test hypothe-

sis 2 with more sophisticated tests than those used by Wilcox (2000), who gath-

ered the data from EBay. The tests are described in chapter 3.3 and conducted 

in chapters 3.3.2 and 3.3.3 with focus on H1 and H2 respectively. 

 

 

3.1. Data 

 

As the web scraping technology may be new to reader, it is considered neces-

sary to explain the methodology of gathering the data in detail. This is done in 

chapter 3.1.1. An overview of the data is done in chapter 3.1.2, where the de-

scriptive statistics of the collected data at auction-level and at bid-level are ex-

amined. 

 

3.1.1. Collecting the Data 

 

Two different types of items auctioned were chosen to represent the different 

valuation models. As Wilcox (2000: 372-373) found, the bidder’s bid differently 

between products from the two valuation categories. As described in chapter 

2.3 items in common value category are such items that have similar values for 

every bidder. Contrary to this, items in the independent private values category 

have different values amongst bidders. Hence, IPhones were chosen to repre-

sent the independent private value category and Moomin mugs were chosen to 

represent the common values category. 

 

In previous studies the items for common-value category have been for exam-

ple ties and pottery (Wilcox 2000: 371), apparel, accessories, collectibles (Wang 

& Hu 2009:254). Items for the private values category have been for example 
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drills and staplers (Wilcox 2000: 371), golf clubs and video games (Livingston 

2010:239), consumer electronics, toys, vacation packages (Wang & Hu 2009:254). 

As was stated previously, any item may hold a common value component, 

which means that is has resale value and which may make the bidder uncertain 

about one’s valuation even in private value-settings (see chapter 2.3). Since the 

cycle of buying a new mobile phones was 6 years in 2010 (Entner 2011: 2), it is 

assumed in this thesis that IPhones are not bought for their resale value – how-

ever it is clear that this assumption does not always hold. Hence, there is defi-

nitely a common value component present in both product categories. 

 

The data was collected with two different keywords: “IPhone” and 

“Muumimuki”. There is a notably active collector’s market for Iittala’s mugs 

with Moomin-characters, which were chosen to represent the common value 

category. The second keyword represents the private value category. Since any 

differences between IPhone-models would not result in any different bidding 

behavior, the data consisted of several IPhone-models with different specifica-

tions. Similarly, all the Moomin mugs were accepted. 

 

The data was extracted from the Huuto.net web page using web scraping tech-

nology. The software used was called scrapinghub.com, which uses software 

named Scrapy Cloud, which is based on the Scrapy project. Web scraping is the 

process of gathering data from a web page. A spider is a program that performs 

the web scraping automatically. Using a spider consists of three phases: 

 

1. Defining the starting URLs 

2. Defining the patterns to follow 

3. Scraping the page 

 

Any search results are opened in Huuto.net in a web page, of which URL con-

tains the information of search queries. Sellstyle H stands for auctions; status C 

stands for closed auctions and words is the search query. Thus the following 

URLs were used as starting URLs: 

 

http://www.huuto.net/hakutulos/sellstyle/H/status/C/words/iphone 

http://www.huuto.net/hakutulos/sellstyle/H//status/C/words/muumimuki 
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The spider was programmed to follow three types of URLs. The first URL di-

rects the spider to the auction site, which are then to be scraped. The next two 

URLs are necessary for the spider to find paginated results, thus the word page 

in the URL. 

 

http://www.huuto.net /kohteet/ 

http://www.huuto.net/hakutulos/sellstyle/H/status/closed/words/iphone/page/ 

http://www.huuto.net/hakutulos/sellstyle/H/status/closed/words/muumimuki/page/ 

 

When the spider encounters a new web page, it tries to scrape the predefined 

items from it. In practice, this is made by creating a template from an auction 

page and showing the spider which information it’s supposed to gather. Should 

the spider not find the required fields on the page, it will move on to the next 

result. If a page with identical URL and identical contents is encountered, it is 

recognized as a duplicate. This is to avoid any pages to be scraped twice. How-

ever, this also resulted in some false duplicates some repeated auctions that did 

not contain any bids, thus they did not affect the results of this thesis in any 

way. 

 

 Following items were scraped from the auction pages: 

 

1. Name of the item 

2. Category of the item 

3. Time open 

4. Time of opening  

5. Time of closing 

6. Total number of unique bidders 

7. Total of bids 

8. Details of bids 

a. Name of the bidder (contains also the current feedback score) 

b. Amount of the bid 

c. Timing of the bid 

 

The date of collection was 25.4.2014. A simple search on the Huuto.net page 

resulted in 13 350 items with search query “IPhone” and 7 825 items with search 

query “muumimuki”, totaling in 21 175 ended auctions. The search feature in 

Huuto.net does not let the user to set a time limit for the search. Instead, old 
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items are removed automatically after a certain period of time. At the time of 

conducting the search, the oldest item in the data was closed in 9.2.2014, which 

was 75 days from the date of collection. Thus, the time interval was 75 days 

from 9.2.2014 to 25.4.2014. 

 

Searching with a keyword brings some unwanted items to the results. For ex-

ample, searching for “IPhone” brings up also phone accessories and other 

phone-related items. To reduce this, only items posted in the category 

/osasto/puhelimet/matkapuhelimet-apple/898 were accepted. In addition to this, 

also items that were not fully functioning were deleted by hand. One auction 

was deleted, as it ended with a bid of 9999999999,99 EUR, which was not con-

sidered as serious bid. Since this thesis focuses on bidding at online auctions, all 

items without bids were obviously left out. 

 

Since the Moomin mugs are not as easy to categorize (they can be seen both as a 

kitchenware and collectible items), reduction to only one category was not pos-

sible. Instead, the items’ names were carefully checked by hand and every auc-

tion with anything else than a single intact Moomin mug were deleted. The 

search query “muumimuki” did not contain many unwanted results, making 

this task quite effortless. 

 

These are examined further in the following chapter.  

 

3.1.2. Overview of the Data 

 

The data consisted of 2258 auctions, from two categories: IPhones and Moomin 

mugs. The descriptive statistics are in table 1, which contains details of the data 

from two perspectives: at auction-level and at bidder-level. The descriptive sta-

tistics are examined with more detail in this chapter. 

 

On the 75 day period, there were 447 auctions in IPhone-category and 1781 auc-

tions in Moomin mug-category, making the trading volume of Moomin mugs 

significantly higher. The highest bid was in the Moomin mug-category, which 

rose up to 3605 €.The mug was from the limited Christmas 2004 collection made 

for Karl Fazer Café. As a curiosity, only 400 were ever made, making it one of 

the rarest Moomin mugs. Highest bid in the IPhone-category was 999€, which 

was placed on a golden color IPhone 5S. 
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Table 1. Descriptive statistics. 

 N Mean Std. deviation Min Median Max 

Number of bids in auction       

-IPhone 483 8,77 10,29 1 4 72 

-Moomin mugs 1781 7,39 8,17 1 5 109 

Number of bidders in auction       

-IPhone 483 4,25 3,56 1 3 21 

-Moomin mugs 1781 4,10 3,24 1 3 23 

Auction duration (days)       

-IPhone 483 5,97 4,13 1 5 15 

-Moomin mugs 1781 8,67 4,14 1 8 15 

Highest bid in auction (EUR)       

-IPhone 483 253,51 165,73 10,00 201,00 999,00 

-Moomin mugs 1781 58,40 101,49 1,00 38,00 3605,00 

Last bid time (minutes)       

-IPhone 483 1179,73 2955,73 0,28 62,47 19781,40 

-Moomin mugs 1781 2074,26 3766,94 0,58 242,33 20378,73 

Bidder’s feedback score       

-IPhone 1046 88,99 228,21 -4 19,50 3629 

-Moomin mugs 1712 145,20 349,36 -2 32 6984 

Auctions participated       

-IPhone 1046 1,96 2,30 1 1 27 

-Moomin mugs 1712 4,26 8,34 1 2 153 

Bids submitted       

-IPhone 1046 2,74 3,40 1 1 38 

-Moomin mugs 1712 5,89 11,89 1 2 180 

Bids submitted per auction       

-IPhone 2053 1,40 0,93 1 1 13 

-Moomin mugs 7297 1,37 0,89 1 1 13 
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The auction durations were a little longer in Moomin mug-category, averaging 

in 8,67 with a median of 8. On the IPhone-category, the mean was 5,96 and the 

median 5.  The almost identical standard deviations show that they are similar-

ly distributed. Differences in the auction durations do not have any impact on 

bidding strategies. 

 

The number of bidders participating in an auction was about the same in both 

categories, averaging in just above 4. In the auctions, the bidders in the IPhone-

category placed on average one bid more (8,40) than in Moomin mug-category 

(7,39), while the median number of bids was one fewer (4 in IPhones, 5 in 

Moomin mugs). This may be an indicator for dissimilar bidding strategies be-

tween the two categories. For more details, see figure 1. 

 

Bidders in Moomin mug-category were considerably more active. Over the 75 

day period, one bidder placed 5,89 bids on 4,26 auctions on average, which was 

twice as much bids on over twice as many auctions than in IPhone-category. 

The standard deviation was also substantially higher, which suggests that while 

the mean was higher, there were still some less active bidders as well. For more 

details about the number of bids submitted in auctions, see appendix 1. 

 

The most active bidder was marklai from the Moomin mug-category, who par-

ticipated in a whopping 153 auctions in the 75-day-period. On average, he par-

ticipated in more than two auctions every day. In the IPhone-category the most 

active bidder participated in only 27 auctions. The mean number of auctions 

participated was 1,96 in IPhones, while the mean was over twice as high in 

Moomin mugs. 

 

By comparing the differences between the observations of auctions versus the 

observations of bidders, it can be seen that there was significantly more unique 

bidders in the Moomin mug-category. The ratios for auctions/unique bidders 

were 25% for IPhones and 57% for Moomin mugs, indicating that the group of 

bidders varies faster in IPhone-category, hinting that the bidders in the Moomin 

mug stay active bidders longer. The cycle of replacing handset phones was over 

6 years in Finland in year 2010, which explains the difference for its part (Entner 

2011:2). 
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The feedback scores were significantly higher in the Moomin mug- category.  

Where the bidders in IPhone-category had the mean feedback of 88,99, it was 

145,20 in the Moomin mug category. The standard deviation of feedback scores 

was significantly higher in Moomin mugs (349,36) than in IPhones (228,21). The 

highest feedback score in the data was user grus grus’s score of 6984. These are 

discussed with more detail later in figure 2. 

 

 

Table 2. All observed bids:  distribution between normal bids and automatic 

bids. 

 Normal Bids Automatic Bids Total 

IPhone 2867 1367 4234 

Moomin mugs 9963 3197 13160 

Total 12830 4564 17394 

 

 

All observed bids in the data are presented in table 2. Because the bids submit-

ted using the automatic bidding mechanism do not possess the information of 

the bidder’s feedback score, they are not examined in this thesis.  

 

As can be seen from table 2, the proportion of automatic bids was significantly 

higher (32,3%) in IPhones than in Moomin mugs (24,3%). This finding also hints 

that the bidding strategies are different in the two categories. This raises an in-

teresting question, which is whether the high amount of automatic bids should 

be taken into consideration when evaluating the results. Clearly, if the group of 

instantly outbid bidders is completely random, the missing data points would 

not cause problems. If they are not, they should be taken into account one way 

or another. 

 

As there are no existing studies about the bidders who get instantly outbid, the 

problem needs to be approached differently. One way to approach this problem 

is to examine what really happens when a bidder gets outbid. First, he sees a 

currently highest bid and compares it to his own valuation of the product. After 

this, he places his bid and instantly sees that he is outbid. He then (1) continues 

to bid until he reaches his own valuation or (2) his bid exceeds the previous 

bidders’ automatic bid. In the first case (1), we will never know his feedback 
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score, but there is a reason to believe that he is relatively less experienced (since 

he is using the incremental bidding strategy, see Ockenfels & Roth 2006: 316-

317; Engelberg & Williams 2009). In the second case (2), his feedback score ulti-

mately becomes visible, making it to the data and eliminating the need to exam-

ine the hidden bids. 

 

On this basis, it can be argued that overall, the automatically outbid bids either 

(1) leave out some of the relatively smaller feedback scores or (2) do not have an 

effect. Ultimately, the hidden bids should not be given too much consideration 

hen examining the results.  

 

Bids submitted per auction was calculated at auction level per bidder, hence the 

bigger number of observations (N of bidders times mean of auctions participat-

ed). The results indicate that there is no significant difference in the number of 

bids submitted between the two product categories. Only non-automatically 

submitted bids are included in this number, as they can be linked to the bidder. 

If they could be identified, the number of bids in auction would be roughly the 

same as mean number of bids submitted per auction times mean number of 

bidders participating in auction, and number of bids in auction divided by 

number of bidders in auction would be the roughly equal to bids submitted per 

auction. In reality, the slightly higher use of automatic bids in IPhone-category 

(see appendix 2) make them submit a bit more bids on average (2,06 compared 

to 1,80) 

Figure 1. Cumulative distributions of numbers of bidders per auction. 
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As can be seen from figure 1, the two categories had almost similar cumulative 

distributions of bidders per auction (Pearson’s R = 0,980, p < 0,01). The biggest 

group in both categories was auctions with 1 bidder. Auctions with 1-3 bidders 

consisted of over half of the data in both categories. From table 1we can see that 

the median number of bidders per auction was 3 in both categories, and the 

mean was slightly over 4. The standard deviation was also roughly the same in 

both categories. From these remarks it can be stated that any differences in bid-

ding strategies between the two categories cannot be explained by the differ-

ences in numbers of bidders in auctions. 

 

Distributions between bidders’ feedback levels are represented in figure 2. As 

can be seen from table 1, the bidders were less experienced in the IPhone-

category, than in Moomin mugs. 12% of all bidders in IPhone-category had zero 

feedback score, while the number was only 7% in the Moomin mug-category. 

On the contrary, 29% of the bidders in Moomin mug.-category had over 100 

feedback score, while the number was only 20% in the IPhone-category. Most 

bidders in both categories had their feedback score between 11 and 100 (40% 

IPhone, 38% Moomin mugs). Bidders with little experience (1-10) represented 

28% in IPhones and 25% in Moomin mugs.  

 

Figure 2. Distributions of bidders by feedback score  
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3.2. Statistical Tests 

 

This chapter consists of the methods used to test the hypotheses. First, in chap-

ter 3.3.1 tests are conducted for hypothesis 1, or the late bidding hypothesis. 

This is done by constructing two linear mixed models, in which the minutes 

until the end of the auction are regressed against the bidder’s feedback score 

and bidders in the auction. The random-effects are clustered at auction-level in 

both models. 

 

 Hypothesis 2 is tested in chapter 3.3.2. First, the mean amount of bids submit-

ted per auction is examined with different feedback levels. This is to test wheth-

er the amount of bids is associated with the feedback score. After this, the actual 

hypothesis is tested, which is whether or not submitting a single bid becomes 

more prevalent with feedback. This is tested by conducting a simple cross table 

of bidders with different feedback levels divided into two groups based on if 

they placed a single bid or not. 

 

All tests were made using the IBM SPSS 22 software. In all tests, every bid in the 

data is treated as a separate observation. Feedback scores are treated as absolute 

values. To take into account the different characteristics (see chapter 3.2) in the 

two product categories, all tests are conducted separately to the two categories. 

 

3.2.1. Late Bidding 

 

In the paper by Wilcox (2000), the last minute bid hypothesis was tested by ex-

amining all the bids submitted in the last minute, which were then divided into 

five different groups by the level of experience. This was possible, since the 

EBay-auction model has a hard-close ending method. As discussed before, the 

Huuto.net auction model uses the soft-closing method, hence determining the 

exact moment of closure is unfeasible and some other approach is needed.  

 

The test by Ockenfels & Roth (2006: 313-316) had a similar approach. Their test 

measured the bids submitted in the last 10 minutes of an auction. Because of the 

hard-close ending in EBay, determining the time of ending was straightfor-

ward. In Amazon, they set the deadline to the original ending time, which was 

to be extended if last-minute bids occurred. As a dependent variable they used 

a dummy variable, which had value 1 if the bid was submitted in the last 10 
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minutes of an auction. However, because of the restrictions in the data, this test 

was not possible to conduct with the data collected from Huuto.net. 

 

A more promising approach can be found in the paper by Livingston (2010).  

Using a linear mixed model, he regressed the number of minutes remaining in 

the auction at the time of submitting the bid against the bidder’s feedback score 

and the amount of bidders participating in the auction. To reduce the correla-

tion between bids in the same auction, the bids were clustered at the auction 

level, using the auction ID as the random effects component. This model is 

more suitable with the Huuto.net-model, as it doesn’t require identifying the 

exact moment of the auction’s close and it eliminates the auction-specific effects. 

  

Similarly to the paper by Livingston (2010), two different models were con-

structed. Both models take into account the effects of other participating bid-

ders. Since the amount of bidders was scraped straight from the auction page, 

in includes every bidder that participated in the auction – even those whose 

bids were superseded by automatic bids. 

 

Model 1 assumes the relationship between FEEDBACK and MINLEFT is linear. 

It regresses the difference of the time of submitting the bid and the actual end of 

the auction (MINLEFTij,) against the level of feedback (FEEDBACKij) and the 

number of bidders in the auction (BIDDERSij). Random-effects component is 

included in the error term (ci + uij). 

 

MINLEFTij = αij  + FEEDBACKijβ1 

   + BIDDERSij β2 

   + (ci + uij), 

 

Model 2 is otherwise identical, but instead of testing the raw feedback score, the 

bids are divided into five categories. This approach takes into account the pos-

sible nonlinearity in learning. The bidders with zero feedback are the omitted 

category, while the remaining bids are divided into four quartiles. The four 

quartiles are indicated by using dummy variables to verify whether or not the 

case belongs to the quartile. Hence, FEEDBACK1ij     … FEEDBACK4ij are the co-

efficients for each quartile. Other variables remain unchanged. On this basis, 

model 2 is as follows: 

  

(8)

  [   (  ) 
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MINLEFTij = αij  + FEEDBACK1ij β1 

   + FEEDBACK2ij β2 

   + FEEDBACK3ij β3 

   + FEEDBACK4ij β4 

   + BIDDERSij β5 

   + (ci + uij) 

 

 

Results from the linear mixed regressions are in table 3. By definition, the con-

stant term shows what the value of the function is when all explanatory varia-

bles are set to zero. Examination of the constant term shows that the bidders 

placed their final bids much earlier in the Moomin mug-category. The constant 

for Moomin mugs was 4104,011 (model 2), while it was 1569,556 in IPhones 

(model 2). In other words, the difference is almost two days (42 hours). This 

indicates that the final bids are not placed similarly in the item categories; in-

stead the bidders in Moomin mugs tend to place their bids much earlier. Most 

probably this is explained by the longer durations of auctions in Moomin mug-

category, which was shown in table 1. 

 

Estimates from model 1 show that when the feedback score rises by 1, the bid-

der places her bid 0,582 minutes earlier (p < 0,10) and in IPhones 0,989 minutes 

earlier (p < 0,005). They both are statistically significant and the effect is seem-

ingly stronger in the IPhone-category. Both of the estimates are positive. Thus, 

bidders shift away from late bidding and this effect is linear. 

 

Model 2 provides similar results. For IPhones, the bidders in quartiles 1-2 do 

not have a statistically significant difference, as the estimates do not have a sig-

nificant difference. Still, the values slightly increase reaching a significant dif-

ference of 588,647 in quartile 3, and finally in quartile 4, they reach the highly 

significant value of 1147,412, meaning that they submit their last bids almost 19 

hours earlier than the bidders with 0 feedbacks. Like the results from model 1, 

this indicates that there is indeed a change in the bidding strategy but this 

change is not towards late bidding. Thus, hypothesis 1 can be accepted in the 

IPhone-category. 

  

(9)

  [   (  ) 
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Table 3. Effect of feedback score on time of submitting bid. 

Dependent 

variable: 

MINLEFT 

IPhone Moomin mugs 

(1) (2) (1) (2) 

Feedback score 0,582 (1,83)*  0,989 (5,34)***  

Score is in:     

Quartile 1  211,898 (0,64)  -828,233 (-2,36) ** 

Quartile 2  257,598 (0,77)  -1193,357(-3,40) *** 

Quartile 3  588,647 (1,76)*  -272,657 (0,78) 

Quartile 4  1147,412(3,42)***  407,640 (1,16) 

No. of Bidders 220,685 (5,68)*** 215,443 (5,57)*** 426,931 (14,57)*** 416,418 (14,23) *** 

Constant 1958,499 (7,67)*** 1569,556(3,98)*** 3420,196 (18,69)*** 4104,011 (11,12)*** 

Observations 2053 2053 7297 7297 

Note: t-score in parentheses 

* Significant at 10%, ** Significant at 5%, *** Significant at 1% 

In the Moomin mug-category, the results are much different. The bidders in the 

first two quartiles (feedback score 1-53) place their bids 13 - 16 hours later than 

the omitted category. The results are significant at 5% in quartile 1 and at 1% in 

quartile 2. These results indicate that there is a tendency to shift towards late 

bidding in the lowest quartiles. After this in quartiles 3 and 4, the estimates rise 

close to the omitted category and have no statistically significant difference. 

Because of the results in the highest 2 quartiles it can be stated, that while gain-

ing feedback, the bidders do not shift towards the late bidding strategy, and the 

hypothesis 2  can be accepted also in the Moomin mug-category. 

 

The values of the estimates show the difference against the omitted category, 

which are the bidders with zero feedback. If we take a closer look at the results 

from model 2 in both categories (figure 3), we can see that the change in bid-

ding behavior is actually towards the same direction. The effect is about the 

same size in groups q2- q4. This implies that the differences in the estimates 

might be explained by the different behavior of the bidders with zero feedback. 
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Figure 3. Estimates from model 2 in both categories 

 

It is worth noticing that some users with zero feedback could be in fact shill 

bidders. One of the characteristics of a shill bid is indeed that it’s placed in the 

early phase of an auction (Trevathan & Read 2009: 13), which would cause the 

results to shift just like in the data. However, there are numerous other charac-

teristics that are also linked to shill bidding (for example number of bids, con-

centration of bids on one seller etc., for more details see Trevathan & Read 2009, 

Dong, Shatz, Xu & Majundar 2012), and testing whether there is actually large 

scale shilling in Moomin mugs, is definitely out of this thesis’ scope. 

 

Overall, these results show that while there is definitely a tendency to change 

the timing of the last bids while gaining experience (measured by feedback), the 

shift is away from late bidding, thus hypothesis 1 is accepted. 

 

3.2.2. Single Bidding 

  

The data used by Wilcox had one disadvantage of testing H2. His data had the 

information of numbers of bids and bidders per auction, and because of the 

EBay’s then policy, information of only the last bid submitted by the bidder. 

Because of this, he tested the multiple bids hypothesis by dividing the auctions 

to two groups by the mean experience of bidders in the auction. After this, he 

compared the average of bids in auctions. His findings were that in auctions 

with common value component the highly experienced bidders were less likely 

-1500

-1000

-500

0

500

1000

1500

q1 q2 q3 q4

Iphones

Moomin mugs



44 

 

to place more bids. However, in the private values category there was no signif-

icant difference. (Wilcox 2000: 372) 

 

Luckily, EBay’s policy was changed on October 2000 and Ockenfels & Roth 

(2006: 316-317) were able to collect more detailed data. Their intention was to 

test what causes incremental bidding and did this by regressing the number of 

submitted bids per bidder with the feedback score, the number of bidders and a 

couple of other variables. They found that the coefficient for feedback was sta-

tistically significant and negative. 

 

The data collected from Huuto.net has the information of unique bidder’s bid-

ding behavior, thus in this thesis it’s possible to test the hypothesis using direct-

ly the information about unique bidders’ behavior. Because of this, it’s possible 

to conduct detailed tests. 

 

 

 Table 4. Comparison of means of submitted bids in all ended auctions by feed-

back score. 

Feedback IPhone Moomin mugs 

 Observations Mean Observations Mean 

0 210 1,543 (1,363) 271 1,365 (0,867) 

1-10 533 1,432 (0,879) 1578 1,423 (0,921) 

11-100 817 1,379 (0,946) 3048 1,391 (0,955) 

> 100 493 1,325 (0,713) 2400 1,295 (0,762) 

Total 2053 1,396 (0,933) 7297 1,365 (0,887) 

Note: Standard deviation in parentheses 

 

From table 4 we can see that on average, bidders place almost as much bids on 

average in both groups. Also the learning curve can be seen in both groups: the 

bidders with less experience placed more bids than the highly experienced bid-

ders. The shift is clearer in the IPhone-category, where the highest number of 

bids is submitted in the lowest group with 0 feedbacks, averaging in 1,543 per 

auction. The average number of bids lowers gradually reaching 1,325 in the 

group of bidders with over 100 positive feedback score. 
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The shift is also visible in the Moomin mug-category, although the bidders with 

zero feedbacks placed less bids (mean 1,365) than those who had 1-10 feedback 

(mean 1,423) and even those with 11-100 (1,391). The most experienced bidders 

placed 1,295 bids on average, which was the lowest point in the whole data. 

 

These results hint about the possible correlation between learning and shifting 

towards the single-bid strategy. They also indicate that the learning curve 

would be linear in the IPhone-category and that this learning effect would be 

more pronounced in the IPhone-category. This result would be in line with the 

results in the study of Wilcox (2000: 372), in which the bidders bidding on pure-

ly private value-auctions were more likely to submit a single bid. 

 

The results of Between Groups- analysis and linearity tests are in tables 5 and 6. 

The differences between group means were significant (p<0,05%) in the Moom-

in mug-category and also significant in the IPhone-category (p<5%). This shows 

that there bidders with different levels of feedback did in fact submit a different 

amount of bids. Next, we have to verify whether this difference was linear from 

group to group.   

 

From table 5 we can see that the test for linearity has a highly significant value, 

thus we can conclude that there is a linear relationship between the number of 

bids submitted and the level of feedback in the Moomin mug-category. Howev-

er, the test for deviation from linearity is also statistically significant; hence a 

nonlinear component is also present.  

 

Results from table 6 also show a highly significant value for test for linearity. 

Therefore, it can be concluded that the relationship is linear also in the IPhone-

category. The test for deviation from linearity is not significant, thus there is not 

a nonlinear component present. The differences in the non-linear component 

could be expected because of the odd results of 0-feedback-bidders in the 

Moomin mug-category. Nevertheless, the explanation for such behavior re-

mains a mystery. 

 

What remains after examining the means and verifying their linearity, is meas-

uring the association. Table 7 shows that the R squared value was close to zero 

in both categories. Simply put, although there were statistically significant dif-
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ferences in both categories and while these differences were linear, the amount 

of variation that the level of feedback explained was small. 

 

 

 Table 5. ANOVA table of Moomin mugs. 

 

 

 

 

Table 6. ANOVA table of IPhones. 

 

 

Table 7. Measures of association. 
 R R Squared Eta Eta Squared 

Moomin mugs 

Number of bids * Level of Feedback 

 

-,048 ,002 ,057 ,003 

IPhone 

 Number of bids * Level of Feedback 

-,065 ,004 ,067 ,004 

 

 

Sum of 

Squares df 

Mean 

Square F Sig. 

Number of 

bids 

Between 

Groups 

(Combined) 18,891 3 6,297 8,036 ,000 

Linearity 13,208 1 13,208 16,855 ,000 

Deviation 

from 

Linearity 

5,683 2 2,842 3,626 ,027 

Within Groups 5715,070 7293 0,784   

Total 5733,962 7296    

 

Sum of 

Squares df 

Mean 

Square F Sig. 

Number of 

bids 

Between 

Groups 

(Combined) 7,942 3 2,647 3,049 ,028 

Linearity 7,582 1 7,582 8,731 ,003 

Deviation 

from 

Linearity 

,361 2 0,180 0,208 ,813 

Within Groups 1779,312 2049 0,868   

Total 1787,255 2052    
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Difference in the number of observations (Count) and their expected values 

(Expected Count) indicate that the two variables are not independent. This dif-

ference is also called residual. For easier interpretation, residuals in tables 3 and 

4 are adjusted so that they have a mean of 0 and standard deviation of 1. Values 

over 1,96 can then be interpreted as significantly different (at 5%), meaning that 

values below -1,96 indicates values significantly lower than the expected value, 

vice versa. 

 

 In addition to this, the Pearson chi-square test for tables 8 and 9 are represented 

below the cross tables. This is needed to interpret the statistical significance of 

any differences in the tables. The Pearson chi-square shows how likely the dif-

ferences have arisen from chance: values close to 1 indicate that the differences 

are completely due to chance while values close to 0 indicate that the differ-

ences are unlikely to occur by mere chance. 
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Table 8. Cross table between single bids and feedback levels in IPhones. 

 Single Bid Total 

False True 

Feedback 0 Count 56 154 210 

Expected Count 49,8 160,2 210 

Adjusted Residual 1,1 -1,1  

1-10 Count 140 393 533 

Expected Count 126,4 406,6 533 

Adjusted Residual 1,6 -1,6  

11-100 Count 181 636 817 

Expected Count 193,8 623,2 817 

Adjusted Residual -1,4 1,4  

>100 Count 110 383 493 

Expected Count 116,9 376,1 493 

Adjusted Residual -0,8 0,8  

Total Count 487 1566 2053 

Expected Count 487 1566 2053 

Notes: * = Count of single bids differs significantly at the 5% level from the expected count 

Chi-Square Tests 

 Value df Asymp. Sig. (2-sided) 

Pearson Chi-Square 4,565a 3 0,207 

N of Valid Cases 2053   

a. 0 cells (0,0%) have expected count less than 5. The minimum expected count is 49,81. 
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Table 9. Cross table between single bids and feedback levels in Moomin mugs. 

 Single Bid Total 

False True 

Feedback 0 Count 58 213 271 

Expected Count 61,4 209,6 271 

Adjusted Residual -0,5 0,5  

1-10 Count 399 1179* 1578 

Expected Count 357,3 1220,7 1578 

Adjusted Residual 2,8 -2,8  

11-100 Count 714 2334 3048 

Expected Count 690,1 2357,9 3048 

Adjusted Residual 1,4 -1,4  

>100 Count 481 1919* 2400 

Expected Count 543,3 1856,7 2400 

Adjusted Residual -3,7 3,7  

Total Count 1652 5645 7297 

Expected Count 1652 5645 7297 

Notes: * = Count of single bids differs significantly at the 5% level from the expected count 

Chi-Square Tests 

 Value df Asymp. Sig. (2-sided) 

Pearson Chi-Square 16,866a 3 0,001 

N of Valid Cases 7297   

a. 0 cells (0,0%) have expected count less than 5. The minimum expected count is 61,35. 
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After analysing the adjusted residuals in table 8, we see that the observations 

are very close to their expected values in the IPhone-category. Rejecting the null 

hypothesis (that there is not a tendency to shift towards single bidding –

strategy while gaining experience) would require at least an association be-

tween the two variables. However, Pearson Chi-Square value of 0,207 indicates 

that there is no association between the variables, nor was there any dependen-

cy in the values in the cross table. Overall, the results do not contain any evi-

dence of any dependency between the variables. Thus, hypothesis 2 must be 

rejected for the IPhone-category. 

 

The Moomin mug– category (table 9) instead offers more promising results. The 

number of observations differs significantly from the expected count in two 

levels of feedback. In the group of bidders with 1-10 feedback, there were fewer 

bidders submitting single bids than expected. This implies that those bidders 

were placing more bids in the auctions than was expected. On the other hand, 

the most experienced bidders placed single bids more frequently than expected, 

implying that they were employing the single bid-strategy.  The Pearson Chi-

square-value (p=0,001) also hint that there is a statistically strong association 

between the variables. The results in the Moomin mug- category are then just as 

hypothesized. The most experienced users were more likely to submit only one 

bid, when the less experienced placed more than one bid.  

 

Thus, hypothesis 2 is accepted in the Moomin mug-category, but not in the IPh-

one-category. Similar results were found in the controlled experiment by Ariely 

et al. (2005: 903), where incremental bidding was reduced, but not eliminated 

with experience measured by feedback score. Other studies have also found 

that the bidding wars induced by other bidders using the incremental bidding 

strategy increase the number of bids (Ariely et al. 2005: 896; Ockenfels & Roth 

2006: 317).  From table 1, we can see that the mean amount of submitted bids 

per auction was slightly higher in IPhones (8,77 ÷ 4,25 = 2,06) than in Moomin 

mugs (7,39 ÷ 4,10 = 1,80). The different behavior of bidders in the IPhone-

category may explain these findings. 
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4. CONCLUSIONS 

 

This thesis consisted of two different parts. In the first part the theoretical ap-

proach to the bidding strategy was introduced. It was found that the optimal 

bidding strategy in EBay was to postpone bidding until the last moments of the 

auction. However, the different ending rule used in Huuto.net made this strate-

gy no longer dominant and it was suggested that the time of placing the last 

bids would be whenever the bidders noticed the auction, which would make 

the timing completely random. The dominant strategy of single-bidding was 

same in both auction-models. 

 

 Previous results have shown that the bidders tend to shift their strategy while 

gaining experience (measured by feedback score). With respect to this, the bid-

ding strategies were tested against the absolute values of the bidders’ feedback 

scores. The theory was tested in the second part using the same approach as the 

previous studies: two regression models for hypothesis 1, and a correlation test 

for hypothesis 2. 

 

Surprisingly, when it comes to timing, the bidders in the Finnish Huuto.net auc-

tion site seem to shit to just the exact opposite strategy than previous results 

from EBay have shown. This was shown in chapter 3.3.1, where two linear 

mixed models were used to test hypothesis 1. In both product categories, the 

experienced bidders had a greater tendency to place their bids earlier than those 

with little experience.  What makes this surprising is that there is no theory 

supporting that early bidding would be the dominant strategy. Nevertheless, 

the different ending rule seemed to shift the bidders away from late bidding, 

which was just as hypothesized. 

 

These results were similar to those of Ockenfels & Roth (2006: 313-316). In their 

paper they tested whether the bids submitted in the last 10 minutes of an auc-

tion were impacted by the bidders’ feedback score, using data from both EBay 

and Amazon. Even while their intention was to examine late bidding, their 

findings showed that feedback scores were negatively correlated with the late 

bids. It is worth noting that their results were based on a data from November 

1999 – January 2000, collected in the other side of the globe, but the results were 

still similar.  

 



52 

 

One other explanation that comes in mind is that the bidders might the shift to 

start using automatic bids and submit an early automatic bid in the earlier 

phase. To rule this explanation out, the use of automatic bids were examined 

and tested against the bidders’ feedback scores. The results show that the high-

ly experienced bidders actually used less automatic bids; hence the use of au-

tomatic bids can’t be the explanation (for more details, see Appendix 2). 

 

The single bid-hypothesis was tested in chapter 3.3.2., where it was found that 

the highly experienced bidders placed in fact less bids in both categories. It was 

found, that the effect was linear and statistically significant. It’s worth noticing 

though, that the sheer number of feedback score explained only a small amount 

of the variability. 

 

In addition to this, a second test was conducted. This was to test whether or not 

the bidders placed only single bid in the auction. This time the results were not 

similar in the two product categories. In the Moomin-mug category, the bidders 

with low feedback score were less likely to place a single bid, while the most 

experienced bidders had a greater tendency to do so. In the IPhone-category, 

there was no such tendency, even when the bidders were more likely to place 

less bids in an auction.  

 

On this basis, hypothesis 1 can be accepted, and hypothesis 2 must be rejected 

in the IPhone-category. The only hypothesis to reject then is hypothesis 2 in the 

IPhone-category. In other words, late bidding behavior is not prevalent in 

Huuto.net, but single-bidding is. It is more pronounced when a clearer common 

value component is present. It also becomes more evident with experience, 

however when the presence of common value component is less clear, there is 

no longer evidence of  pure single bidding strategy. This may also be explained 

by the strategies used by other bidders. Overall, the mean feedback scores of 

single-bidders were higher in both product categories. 

 

For future research, a very interesting finding was that the bidders placed their 

bids in an unexpected way, as no theory suggests “early bidding” even with the 

soft-close ending method. Further research on this topic is needed. Also, it 

would be interesting to see what kind of results the shill-identifying algorithms 

would get from Huuto.net. There were some minor hints that suggested the 

possibility of shill-bidders amongst the bidders with zero feedback in the 
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Moomin mug-category. However, it is too early to draw any conclusions about 

to which extent shill-bidding occurred in the data. 
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APPENDICES 

 

 Appendix 1. Cross tabulations of submitted bids. 

Moomin mug Feedback Total 

0 1-10 11-100 >100 

Submitted Bids 1 213 1179 2334 1919 5645 

2 35 248 466 354 1103 

3 12 88 148 78 326 

4 7 35 50 30 122 

5 2 11 21 5 39 

6 1 11 10 4 26 

7 1 3 5 5 14 

8 0 3 6 1 10 

9 0 0 3 4 7 

10 0 0 3 0 3 

11 0 0 1 0 1 

13 0 0 1 0 1 

Total 271 1578 3048 2400 7297 

 

 
IPhone Feedback Total 

0 1-10 11-100 >100 

Submitted Bids 1 154 393 636 383 1566 

2 32 78 118 76 304 

3 12 47 34 22 115 

4 7 8 12 9 36 

5 0 3 7 2 12 

6 2 3 4 1 10 

7 0 0 4 0 4 

8 1 1 1 0 3 

9 1 0 0 0 1 

10 0 0 1 0 1 

13 1 0 0 0 1 

Total 210 533 817 493 2053 
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Appendix 2.  Percentage of bidders using automatic bids. 

 N %-automatic Standard Deviation 

Feedback IPhone MM IPhone MM IPhone MM 

0 210 271 27 % 20 % 0,443 0,403 

1-10 533 1578 26 % 21 % 0,436 0,410 

11-100 817 3048 22 % 19 % 0,416 0,392 

>100 493 2400 20 % 15 % 0,398 0,358 

Total 2053 7297 23 % 18 % 0,420 0,386 

Notes: MM = Moomin mug 

 
 

 

 

 

 


