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Abstract 

Understanding the polar ice regimes is fundamental to 
the understanding of global climate and other geophysi­
cal processes. Sea ice characteristics can be grouped into 
a number of .general sea ice classes. Multisensor data 
from NSCAT, ERS-2, and SSM/I is reconstructed into 
enhanced resolution imagery for use in ice type classi­
fication. The resulting 12-di:mensional data set is linearly 
transformed through principal component analysis to re­
duce data dimensionality and noise levels. An iterative 
statistical data segmentation algorithm is developed us­
ing maximum a ~ttenlori techniques. The conditional 
probability distributions of observed vectors given the ice 
type are assumed to be Gaussian. The cluster centroids, 
covariance matrices, and a priori ·distributions are esti­
mated from the classification of a previous temporal im­
age set. An initial classification is produced using cen­
troid training data and a weighted nearest neighbor clas­
sifier. Though validation is limited, the algorithm results 
in an ice classi1ication which is subjectively superior to a 
conventionalk-means approach. 

Introduction 

Because the polar regions of the earth play a critical role 
in the global climate, the remote sensing community has 
had a keen interest in polar sea ice characteristics. Polar 
sea ice influences heat transfer between the warmer ocean 
and cooler atmosphere. In this process, ice thickness and 
density is particularly important. The extent and surface 
characteristics of sea ice affects the global radiation bud­
get by regulating the amount of solar radiation re:O.ected 
back out into space. In addition, these regions influence 
the planetary water exchange cycle as well as local biota 
distributions. Sea ice is also considered a sensitive indi­
cator of long term global climate change [1]. Hence, an 
accurate knowledge of important surface characteristics 
of sea ice is a valuable tool in understanding these geo­
physical processes. 

Microwave remote sensing provides an excellent means 
for monitoring polar sea ice. Both active and passive mi­
crowave signatures are much less sensitive to atmospheric 
distortions than measurements collected at optical fre­
quencies. This is particularly valuable in the Arctic and 
Antarctic where extensive cloud cover is common. Many 
research studies have shown that microwave signatures 
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of sea ice are sensitive to surface parameters. In addi­
tion, microwave senSOIS do not require solar illumination 
to collect measurements of the surface. However, these 
benefits often come at the expense of spatial resolution. 

Fundamental sea ice characteristics can be grouped into 
a numbec of general sea ice classes or types. Several 
studies have been pursued to classify ice type from ob­
served microwave signatures. A single-band classifier 
using 33.6 GHz passive high-resolution aerial measure­
ments was used on Beaufort Sea data [2]. Kwok et aL 
developed a method for classifying high-resolution ERS-
1 SAR imagery using ancillary data from meteorological 
databases [3]. The primary strengths of these approaches 
lie in the high spatial resolution capability of the instru­
ments. Consequently, image pixels are much less likely 
to contain a mixture of ice types. Lower resolution tech­
niques have also been proposed. Wensnahan et aL pro­
posed a classification method using passive radiometer 
data [4] to estimate the concentrations of first-year, multi­
year, and thin ice in the Arctic. In [5], a classifier was 
developed that uses only ERS-1 scatterometer data. Fi­
nally, a neural network classifier for sea ice type is given 
in [6]. These studies are representative of the some of the 
different work that has been done in microwave sea ice 
classification. 

This paper presents a mulitsensor sea ice classifi.cation 
approach which uses multispectral, dual-polarization data 
collected from both active and passive spacebome instru­
ments for the segmentation of Antarctic data. The pro­
posed algorithm uses principal component analysis meth­
ods to reduce the dimensionality of the data set and re­
duce noise effects. An iterative classification scheme is 
introduced using maximum a postetit>r~i techniques. 

Background 

The proposed ice classification scheme uses data from 
several different spacebome instruments. This section 
provides a brief background of each of the data collecting 
instruments and the corresponding ice type signatures. In 
addition, the methods for image reconstruction and ice 
masking are described. 

Spacebome Microwave Sensors 

Data from three different sensors are used in the classi­
fication approach which follows. The sensors are chosen 
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for their temporal simultaneity of measurement collection 
during the target time frame of September-October 1996. 
In addition, all of the selected instruments have large­
scale coverage capability. The first data set comes from 
the NASA scatterometer (NSCAT) that :flew from August 
1996 to June 1997. NSCAT is a dual-polarization, dual­
swath, fan-beam scatterometerthat collects Ku-Band mea­
surements at multiple azimuth and incidence angles. 

The second sensor is the active microwave instrument 
(AMI) aboard the European remote sensing satellite (ERS-
2). One mode of operation of the AMI is scatterometer 
mode which measures the vv-pol normalized radar cross 
section (uu ) at several azimuth and incidence angles. 
Similar to NSCAT, ERS-2 is a fan-beam wind scatterom­
eter but it has only a single side-looking swath. 

Fmally, passive radiometer data is used in concert with 
the active scatterometer data to produce a merged data 
set The special sensor microwave imager (SSM/I) aboard 
the Defense Meteorological Satellite Program series of 
satellites is a seven channel, four frequency radiometer. 
The channels are h- and v-pol at 19.35, 37.0, and 85.5 
GHz and v-pol at 22.235 GHz. Brightness temperature 
(T s) m.easmements are collected from each channel. The 
3 dB antenna footprints range from about 15-70 km in the 
along-track direction and 1343 km in the cross-track di­
rection. 

Image Reconstruction 

While the inherent resolutions of the various instruments 
are sufficient for the study of large-scale phenomena such 
as surface winds or atmospheric parameters, they can be 
too low for use in some studies. In an effort to ameliorate 
this problem and to place the data on compatible grids, 
the scatterometer image reconstruction (SIR) algorithm 
is used to enhance the spatial resolution [7, 8]. SIR is 
an iterative block multiplicative algebraic reconstruction 
technique that increases the resolution of reconstructed 
imagery through the use of multiple passes of the satel­
lite. 

For scatterometeis, 01° (in dB) has a nearly linear inci­
dence angle dependence over a limited range of incidence 
angles, 8 Ei [20a, 55al given by 

01a~l =AI+ B~- 40::~) (1) 

where AI is ~o normalized to 40() incidence and B is the 
incidence angle dependence of rJ1°. SIR creates images 
of both AI and B for scatterometeiS. NSCAT images are 
reconstructed on a 4.45 x 4.45 km grid with an effective 
resolution on the order of 8-10 km. ERS-2 images are 
generated on a 8.9 x 8.9 km grid with an effective resolu­
tion of 20-25 km. 

A univariate version of SIR can be applied to radiome­
ter data such as SSM/I [8]. The lower side lobes of SSM/I 
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make resolution enhancement more difficult However, 
a clear improvement in resolution is observed in the re­
constructed imagery. That is, surface features are more 
clearly defined in SIR imagery than in nonenhanced im­
ages on the same grid. SSM/I brightness temperature 
(Ts) SIR images are reconstructed on a 8.9 x 8.9 km grid 
for all channels except for 85V and 85H which have a 
pixel spacing of 4.45 x 4.45 k:m. 

All images are generated using six days of data with 
three days of overlap in consecutive images. Although 
NSCAT v-pol and SSM/I can achieve full coverage of the 
Antarctic ice pack in much less time, ERS-2 and NSCAT 
h-pol require the full six days. For consistency in pixel 
spacing between the different images, the 8.9 km images 
are intetpalated to the 4.45 km grid. All parameter im­
ages are used in the classification except for the ERS-2 Rl 
images which have relatively high noise levels. The final 
merged data set consists of 12-dimensions with three A, 
two B, and seven T R images. 

Ice Masking 

Open ocean pixels in the reconstructed imagery are mask­
ed out for two reasons. First, the sea ice classification 
algorithm presented below uses statistical preprocessing 
techniques which take advantage of the covariance struc­
ture of the data to reduce the dimensionality of the data 
space. Since ocean pixels have typically high covari­
ance values in all of the active and passive signatures, 
undue weight would be given to ocean pixels in the new 
data space effectively reducing the classification poten­
tial. Second, a significant number of the image pixels are 
open ocean and the removal of these pixels reduces the 
size of the classification data set 

The ice extent mapping algorithm used in this study is 
described in [9]. The technique uses the NSCAT polariza­
tion ratio (Avl AlA) as well as the NSCAT v-pol incidence 
angle dependence of 01° (llu) to discriminate between 
sea ice and ocean pixels. Linear and quadratic segmenta­
tion techniques are applied resulting in an estimate of sea 
ice extent Since wind induced roughness of the sea sur­
face causes ambiguities in the discrimination, a third pa­
rameter, the rT0 estimate error standard deviation, is intro­
duced. This metric is sensitive to temporal and azimuthal 
variations during the imaging period and is consequently 
quite high in regions of high winds. The resulting ice 
extent map, when compared with NASA-Team SSM/1-
derived ice concentration maps, most closely corresponds 
with the 30% ice concentration edge. 

Ice 'IYpe Signatures 

Data collected by NSCAT, ERS-2, and SSM/I are used 
to segment the data into six general ice types or classes. 
While the following discussion is based on the general 
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behavior of scattering and emission from sea ice, in riDu 
measurement averages for the various ice classes can be 
found in [5] for C-Band scatterometer Antarctic data and 
[6] for Arctic SSM/I data. 

The :first ice type to be considered is smooth :first-year 
(SFY) ice. This class is comprised of relatively young ice 
which has not been roughened by the motion of the ice 
pack. Ranging in thickness from 10 em to 1 m, smooth 
first-year ice is highly saline with a high density of brine 
pockets caught within the ice ctystallattice. The high 
salinity causes this ice type to be very lossy and thus dom­
inated by surface scattering and emission at virtually all 
frequencies used in the study. The active signatures ex­
hibit low A and Rl values due to the strong incidence an­
gle of smooth surface scattering. T R measurements are 
expected to be relatively high. 

Like smooth :first-year ice, rough first-year (RFY) ice 
is very saline and lossy. Surface scattering and emis­
sion dominate the signatures. Motion within the ice pack 
causes extensive roughening of this ice type. In general, 
the rough surface scattering cause A values to be higher 
than for smooth ice types and B values to rise (ie, have 
less incidence angle dependence). While passive signa­
tures are less sensitive to the difference in RFY and SFY 
ice classes, T,. values are radiometrically cooler for RFY 
when compared to SFY ice. 

Perennial (PER) ice is another important Antarctic ice 
type. While multi-year ice is common in the Arctic, less 
Antarctic sea ice survives more than one summer's melt 
since the Antarctic continent limits the southern extent 
Regardless, a small amount of perennial ice can be found 
and is included in the classification. Over time, brine 
drainage results in much lower salinity and hence lower 
loss in this ice type. This leads to greater penetration 
depths and volume contribution to scattering and emis­
sion. AI and B values are typically higher than those for 
RFY ice while T B measurements are lower. 

Another sea ice type to be considered in the classifica­
tion is the iceberg class (m) consisting of large fioes of 
fresh water ice that have calved off from an ice she1f. In 
the absence of surface melt, this ice class has very low 
loss resulting in a large contribution from volume scatter­
ing and emission especially at lower microwave frequen­
cies. As a result, AI and B are very high and TB values 
are very low compared to other ice classes. The volumet­
ric contribution also causes a depolarization resulting in 
similar response for both v- and h-pol measurements. 

Pancake ice is also included in the classification effort. 
This ice regime is normally found in the outer portions of 
the ice pack where wave action deforms thin ice into floes 
called pancakes. The high roughness of this type results 
in a signature that is very similar to perennial ice in both 
active and passive signatures. 
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The final ice type is the marginal ice zone (MIZ). This 
dynamic region of the ice pack consists of mixtures of 
ice and open water. The open water contribution drives 
T'R down. Wmd roughening of the ocean surface in these 
regions causes AI and B values to often be confused with 
other ice types. 

1 One of the complicating factors in sea ice classifica­
tion is the seasonal dependence of the ice type microwave 
signatures. The signatures are most distinct during the 
austral winter months when ice types exhibit negligible 
surface melt Hence, the differences due to subsurface 
contributions are strong. When temperatures rise and wa­
ter content increases, the scattering and emission from 
lower ice layers become increasingly masked and surface 
scattering mechanisms begin to dominate. This causes 
ice type clusters to drift in the 12-d.imensional data space 
with some clusters merging together. For this reason, an 
effective classification technique must have the ability to 
adapt to changing signatures in order to maintain a maxi­
mal degree of accuracy. 

Multivariate Analysis 

As previously discussed, the classification data set con­
sists of 12 parameters from which sea ice type is to be 
extracted. Additional preprocessing is performed on the 
data to maximize classification accuracy and minimize 
required computational effort Since the parameters are 
measured in very different units, data fusion techniques 
are used to give equal weighting to all of the data In 
an effort to reduce the computational complexity and the 
noise levels, principal component analysis is implemented. 

Data Fusion 

The 12-dimensional data space consists of three basic 
types of data with differing units. The first data type, AI, 
is measured in dB with a typical range of -30.0 to 0.0 dB. 
The incidence angle dependence of m0

, given by B, con­
tains dB/deg values ranging from -0.4 to -0.1 dB/deg. The 
last data type is Ts measured in degrees Kelvin with sea 
ice values from 150 K to 290 K depending on frequency 
and polarization. Since each data type is quite different 
from the others, standardization is required to ensure that 
each data type is given appropriate weight in the classi­
fication. The standard approach is to shift and scale the 
data so that each parameter has zero mean and unit vari­
ance. However, this may remove some ice class informa­
tion that exists in the mean parameter responses. In an 
effort to preserve the ice class dependent biases that exist 
in each data type, the following standardization technique 
is applied for a particular observation z 

(2) 



where ,.~ and Ut1/Pfl are the mean and standard devi­
ations of all the data of a particular type (e.g., A;, B, 
or TR data) and :a8 is the new standardized parameter 
value. Hence, all standardized A, R, and Tn data have 
zero mean and unit. The resulting data resides in a 12-
dim.ensional unitless space in which each data type has 
similar variance. 

Principal Component Analysis 

The high dimensionality of the classification data set re­
sults in significant computational requirements. To re­
duce the number of required parameters, principal com­
ponent analysis (PCA) is implemented. PCA is a power­
ful data analysis tool that effectively rotates the data space 
by projecting each observation onto a new orthonormal 
basis [10]. The resulting basis vectors are chosen such 
that the first spans the direction of maximum variance in 
the data. Successive vectors are chosen to span the maxi­
mum variance not accounted for by previous vectors. 

For the classification problem at hand, data vectors are 
composed of the 12 standardized values 

f1 = [y1 J/2 • • • Y12)T (3) 

where the !Ai represent the standardized values ofNSCAT, 
ER.S-2, and SSM/I data values. PCA uses an eigenvector­
eigenvalue decomposition of the data to construct the nec­
essary orthonormal basis vectors. The eigen equation is 
given by 

(4) 

where K is the 12 x 12 covariance matrix of the standard­
ized data, r is a matrix containing the eigenvectors of K 
along the columns (which form a basis for the original 
12-dimensional space), and A is a diagonal matrix with 
the eigenvalues of K along the diagonal (which represent 
the variances spanned by each eigenvector). Once these 
are obtained, a 12 x 1 data vector fj containing standard­
ized parameters is transformed through projection onto 
the new basis 

(5) 

The elements of z are called the principal component 
scores [10]. 

The analysis technique is used on land/ice masked im­
agery to produce 12 principal component images com­
posed of a combination of information contained in the 
original parameters. The pixel values in individual PCA 
images represent coefficients of the eigenvector associ­
ated with that principal component score. The size of 
the corresponding eigenvalues determine the variance and 
informational content of each of the images. For exam­
ple, the PCA transformation was performed for the mi­
crowave data set during the imaging interval 1996 JD 
261-266. Figure 1 illustrates the resulting eigenvalue spec­
trum. Clearly, a majority of the data variance is contained 
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Figure 1: Eigenvalue spectrum for the principal compo­
nent data rotation during the imaging interval of 1996 JD 
262-266. A large majority of the data variance is con­
tained in the first few eigenvectors. 

in the top few principal component images implying that 
lower PCA images can be neglected with minimal effect 
on the final classification. Wensnahan et al. suggest keep­
ing only PCA parameters whose variance is much larger 
than measurement uncertainty (converted into principal 
component space) [4]. Such a choice of eigenvectors al­
lows information to be separated from noise. Indeed, the 
lower principal component images used in this study ap­
pear very noisy with image reconstruction artifacts domi­
nating the features. Hence, by ignoring these eigenvec­
tors, we eliminate undesirable noise as well as reduce 
data dimensionality. 

Another method for the choosing of principal com­
ponent images is to keep the top N PCA transformed 
images that account for some predetermined percentage 
of the total variance in the data For this classification 
project, the eigenvectors that span 90% of the variance 
are kept for use in the data segmentation. Only three PCA 
images must be retained in the case of the sample data set 
representing .1996 JD 261-266 Antarctic sea ice data. 

PCA can be used not only to reduce the dimensional­
ity and noise levels of the data, but to quantitatively as­
sess the informational content of multisensor data. By 
observing the relative magnitudes of the elements of the 
first few eigenvectors, one can determine levels of infor­
mational content of the original parameters. For example, 
parameters with low corresponding elements for the top 
several eigenvectors likely have negligible informational 
content. Hence, these parameters can be eliminated with­
out a major impact on the classification. 
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Iterative Algorithm Development 

Several techniques are available for classification of N­
dim.ensional. data sets. A nearest neighbor approach is 
perhaps the simplest when centroids from training sam­
ples or electromagnetic models can be obtained. Iterative 
clustering algorithms such ask-means or ISODATA rep­
resent another methodology and search for natural clus­
ters in the data. The task then remains to label the re­
sulting clusters as different classes. In contrast, the pro­
posed approach is a statisti.cal classification scheme widt 
the goal of maximizing the probability of correctly classi­
fying sea ice type. This section presents the classification 
methodology through a development of an iterative max­
imum a: po.IJ'te.r.iori algorithm 

Statisti.cal Oassification 

The intrinsic value of statistical methods of classification 
stems from the ease of inteipretati.on of results. That is 
statistical classifiers attempt to maximize a probabilicy 
measure given some level of knowledge of class distribu­
tions. 1\vo primary branches have evolved in the field of 
statistical classi1ication and estimation: maximum like­
lihood and Bayesian classification. The proposed algo­
rithm focuses on the latter. 

Bayesian methods represent one class of statistical ap­
proaches. This scheme requires the definition of a loss 
function which assigns a penalty for misclassifications. 
The Bayes solution is the one that minimizes the expected 
loss which is also called the Bayes risk. Under a uniform 
loss function this reduces to a maximum a ~rior11 
(MAP) classifier. The MAP technique treats the ice type 
C as a random variable and maximizes the probability of 
ice type given the observation vector z 

Cu.rP. = ar.gmaz. ~~Cii). = argma:r;. p(~~QC) 
(6) 

where ~(C} is the a w.iooi distribution. Since p( i) is 
fixed for a particular observation, this reduces to 

CulfR = ar.gmaz~p~z'!C)~CC). (7) 

MAP classification has an advantage over maximum. like­
lihood techniques since the probability of each class is in­
cluded in the derivation ensuring that less likely ice types 
appear less frequently in the final classification. However 
the a w.ioo£ disttibution and the conditional distribution~ 
are required. 

Under a Gaussian assumption, the conditional disttibu­
tions are 

11:;1~ 1 I('"" ... )'l" K-1(, .. .... ) 
~~z1' ..... A = e-'! z-ll., " d.:r:-".. (S) 

~27rl,n/2j K:~ [ 11.2 

where ti.:t is the mean vector and K:~ is the covariance 
matrix of ice type c, respectively. Hence, the statisti-
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cal structure of the data for each ice class is completely 
determined by the mean vectors and covariance matri­
ces. Even if the Gaussian assumption is not entirely cor­
rect, it is considered to be an improvement over the sim­
ple isotropic distribution assumption inherent to a near­
est neighbor classifier since the Gaussian model can ac­
count for covariance between separate principal compo­
nent scores. This allows the classifier to use cluster shapes 
in addition to the centroids to segment the data. 

With a Gaussian conditional density function, Eq. (7) 
can be simplified. After taking the natural log (a mono­
tonic function) and a little mathematical manipulation we 
obtain 

CMAJP = argmazc p(Z!C)p(C) (9) 
1 = argmaxc: ~2(logiKc:l + (10) 

~z- P.c)'l'K;;li (z- iia)) + logQp(C))]. 

This expression is used to segment the data. 

Iterative Approach 

In order to fully implement the MAP technique, the mean 
vectors j1.:, and covariance matrices Ke~ of the individual 
ice type clusters are required along widt the a pr.icmi dis­
tribution p.~C). While a rough estimate of the cluster cen­
troids can be generated from small homogeneous training 
regions, it is more difficult to obtain reasonable estimates 
of the K':l matrices. However, estimates can be obtained 
through an iterative procedure, assuming that the statisti­
cal measures converge to the correct values. 

Figure 2 illustrates the complete process for the clas­
sification of a time series of image data. The initial SIR­
derived images are first masked to remove all land and 
ocean pixels using the ice extent mapping procedure de­
fined in an earlier section. The PCA linear transforma­
tion is then performed to rotate the coordinate space into 
ordered maximum variance axes. Next, the resulting 12-
dimensional principal component space is truncated by 
choosing the top N eigenvectors dtat span 90% of the 
data variance. 

After the preprocessing, an iterative maximum a wst­
erioni classifier is implemented. The first iteration uses 
the Pc, K(J, and p( C) statistical measures computed from 
the classification of the previous image set. Thus, the pre­
ceding classification is treated as a training set to obtain 
initial sea ice type cluster centroids, covariance matrices 

' and the Ql priori distribution. Due to the seasonal nature 
of cluster characteristics, these measures are likely erro­
neous. However, these represent a good initial starting 
point for the iterative procedure. After the first iteration, 
the statisti.cal measures are updated using the new clas­
sification. These are then used in a new classification. 
The process iterates until predefined convergence criteria 
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Figure 2: Flowchart depicting the iterative ice classifica· 
tion algorithm. 

are met. The result is a classified image which maps the 
spatial extent of each sea ice type. 

ConvergenceMettics 

Two metrics are used to determine algorithm convergence. 
Since the Gaussian clusters are completely defined by the 
centroid vectors and covariance matrices, the appropriate 
norms are used to obtain scalar m.easmes of individual 
cluster behavior. The Euclidean norm is used to measure 
the behavior of the cluster centroid vectors as a function 
of iteration. The matrix spectral norm of each covari.· 
ance matrix Ka is computed as a measure of the overall 
variance structure of each cluster. The spectral norm is 
equivalent to the square root of the maximum eigenvalue 
of K'f K. Convergence of both m.etrics for a particular 
cluster is a good indication that the cluster remains un­
changed from one iteration to the next 

Algorithm Initialization 

The algorithm described above is a recursive method that 
uses the classification result from the previous imaging 
interval to compute the present sea ice type map. In order 
to obtain an initial classification result to start the pnr 
cess, the following procedure is used. Cluster centroid 
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Figure 3: Maximum a wsteniom1 classification cluster 
convergence metri.cs. (Top) The Euclidean norms of each 
ice type cluster as a function of iteration. (Bottom) The 
spectral norms of the covariance matrices. 

vectors are estimated from small homogeneous training 
regions derived from a basic knowledge of sea ice type 
spatial behavior and expected microwave signatures. For 
the MAP method, the data is segmented with a weighted 
nearest neighbor technique in which the distances to each 
cluster are inversely weighted by an initial estimate of 
p(C). While an accurate estimate of the a ,...-:ioni distri­
bution is difficult to produce, an educated estimate can be 
made through a knowledge of sea ice type population in 
Antarctica. For example, a large majority of the Antarctic 
ice pack consists of various types of first. year ice. Other 
classes are much less prevalent. The nearest neighbor so­
lution is used to compute the necessary statistics for the 
classifier and initiate the iterative algorithm. 

Simulations of the algorithm are performed. The sim­
ulation data consists of four different two-dimensional 
Gaussian distributions with different mean vectors, co­
variance matrices, and cardinalities. The distributions are 
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Figure 4: MAP sea ice classification of 1996 JD 261-266 
Antarctic data. 

chosen to have significant overlap to increase the classifi­
cation difficulty. Simulation results indicate that the iter­
ative algorithm converges to a solution that is very close 
to the actual MAP solution given two conditions: first, 
the individual cluster centroids must be relatively close 
to the actual centroids. In the simulations, this means that 
the centroid estimate merely has to be closer to its actual 
centroid than any of the others. Second, for MAP classi­
fication, the initial distribution estimate of p( C) must be 
a reasonable estimate of the actual a priori distribution. 

Results 

The iterative algorithms are applied to the classification 
of Antarctic data during consecutive imaging periods in 
September and October of 1996. The algorithm is initi­
ated with multisensor data from JD 261-266. As noted in 
the previous section, the nearest neighbor segmentation is 
required for the first image of the time series. Small ho­
mogeneous training regions are defined through a knowl­
edge of sea ice dynamics and microwave signatures. 

Figure 3 shows the convergence metrics as a function 
of iteration for the MAP classifications, respectively. Af­
ter about 25 iterations, all metrics have converged rela­
tively well. Some minimal centroid drift is still evident 
in the centroid norm trends. Only two of the MAP cen­
troid norms move significantly indicating that the original 
centroids are reasonable estimates of the true values. 

Figure 4 depicts the final sea ice type image. The re­
sult exhibits a reasonable spatial distribution of ice types. 
Several known icebergs are classified correctly. The larg­
est concentration of perennial ice is found just off the tip 
of the Antarctic Peninsula The ice here has survived the 
previous melt season by avoiding being swept out to sea 
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Figure 5: K-means clustering classification result of 1996 
JD 261-266 Antarctic data. 

by the Weddell Gyre. Rough first-year ice in the classi­
fication surrounds smooth first-year ice which is located 
primarily in the inner portion of the ice pack. This is con­
sistent with the classification results in [5]. In addition, 
the marginal ice zone exists on the perimeter of the ice 
pack as expected. 

Figure 5 shows classification image generated using 
another method for comparison. It was implemented us­
ing the same training data for initial cluster centroids. 
The image is the classification result of the standard k­
means clustering algorithm. Thek-means approach yields 
a solution that minimizes the within cluster sum of squared 
distances under the Euclidean distance metric. Since no 
regard is given to the probability of ice type, the k-means 
result overclassifies several ice types. For example, large 
extents of ~o rare ice types, icebergs and perennial ice, 
exist in the k-means ice map indicating erroneous results. 

An obvious error in the MAP classification is the RFY 
labeled tongue extending from the Ross Ice Shelf. The 
perimeter of the ice shelf is actually a region of new ice 
formation and divergence. Consequently, we conclude 
that the ice in this regime should have been identified as 
SFY. The source of the discrepancy is likely due to frost 
flower formation on the surface of smooth ice. Drinkwa­
ter and Crocker found that frost flower fonnation can yield 
microwave signatures that are similar to RFY ice [12]. 
The proposed classifier did not include a separate classi­
fication cluster for this ice type. A useful line of future 
research would include a study of the potential of seg­
menting frost flower covered ice from RFY ice. 



Conclusions 

This study has demonstrated the utility of a multisensor, 
iterative maximum a pns!Jeriari sea ice type classifica~ 
tion algorithm for Antarctic sea ice. The use of data col~ 
lected from multispectral, dual-polarization, active, and 
passive instruments increases the level of information that 
can be exploited in segmenting the data. Through the 
use of principal component analysis, not only is the data 
dimensionality minimized, but the effects of noise and 
imaging artifacts are reduced. The resulting· data set is 
classified in an iterative manner that utilizes MAP statis­
tical techniques. 

The iterative classification algorithm yields ice maps 
with spatial ice type distributions that are reasonable when 
general ice dynamics are considered. However, while the 
algorithm appears to function well, a more detailed val­
idation study is needed. Unfortunately, validation data 
in the Antarctic is difficult to obtain. Though SAR data 
exists for continental Antarctica, sea ice SAR imagery 
during the period spanned by our multisensor data set is 
scarce. A useful future line of research would be to apply 
the algorithm to Arctic data where sea ice SAR imagery 
is much more abundant both spatially and temporally. 

Several implications must be considered in a medium­
scale classification such as the method presented in this 
study. FJ.rSt, the six day imaging period may introduce 
blmring in the images due to sea ice motion resulting in 
ambiguous signatures and m.isclassification. The limiting 
factor for this data set are the scatterom.eters which need 
more time to achieve full covexage of the Antarctic ice 
pack. In the future, similar algorithms may be applied 
with insttuments with wider swaths such as the Seawinds 
scatterom.eter. Seawinds will reach full coverage in one to 
two days rather than six days and is scheduled for launch 
in 2000. Also, the relatively low resolution, even in the 
reconstructed imagery, implies that some pixels may con­
tain a mixture of ice types. Thus, the classification result 
for a particular pixel is considered the spatial and tempo­
ral average behavior of sea ice in that region. A promising 
line of future research is the extension of this algorithm 
from a hard to a fuzzy classifier. That is, for each pixel 
the concentration of each ice type may be estimated. It is 
conceivable that the MAP probabilities could be used to 
achieve this. However, a greater understanding of the ef­
fects of within-footprint mixtures on observed microwave 
signatures is needed. 
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