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Control of water and air in the root zone of plants remains a challenge in the microgravity environment of
space. Due to limited flight opportunities, research aimed at resolving microgravity porous media fluid
dynamics must often be conducted on Earth. The NASA KC-135 reduced gravity flight program offers
an opportunity for Earth-based researchers to study physical processes in a variable gravity environment.
The objectives of this study were to obtain measurements of water content and matric potential during the
parabolic profile flown by the KC-135 aircraft. The flight profile provided 20-25 s of microgravity at the
top of the parabola, while pulling 1.8 g at the bottom. The soil moisture sensors (Temperature and Mois-
ture Acquisition System: Orbital Technologies, Madison, WI) used a heat-pulse method to indirectly
estimate water content from heat dissipation. Tensiometers were constructed using a stainless steel po-
rous cup with a pressure transducer and were used to measure the matric potential of the medium. The
two types of sensors were placed at different depths in a substrate compartment filled with 1-2 mm
Turface (calcined clay). The ability of the heat-pulse sensors to monitor overall changes in water content
in the substrate compartment decreased with water content. Differences in measured water content data
recorded at 0, 1, and 1.8 g were not significant. Tensiometer readings tracked pressure differences due to
the hydrostatic force changes with variable gravity. The readings may have been affected by changes in
cabin air pressure that occurred during each parabola. Tensiometer porous membrane conductivity (func-
tion of pore size) and fluid volume both influence response time. Porous media sample height and water
content influence time-to-equilibrium, where shorter samples and higher water content achieve faster
equilibrium. Further testing is needed to develop these sensors for space flight applications.
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INTRODUCTION

The key to successful plant research or crop produc-
tion in space is to understand the effect of microgravity
on plant physiological functions. Problems controlling
the plant environment have made it impossible to iso-
late microgravity as a variable of study (6). In particu-

lar, control of water and air in the root zone of plants
has been one of the most complex issues to address (8).
Difficulty controlling water and air in the root zone have
been inferred from soil and plant measurements
(2,3,16,17). This is also a topic under investigation in
the Water Offset Nutrient Delivery Experiment (WON-
DER) spaceflight experiment (5,9,10).
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Despite nearly 20 years of plant research in
microgravity, little attention has been paid to gain-
ing a fundamental understanding of the flow and dis-
tribution of water and air in porous media in
microgravity (22). The work by Podolsky and
Mashinsky (15) and Jones and Or (8) represents the
first attempts to put transporting air and water on a
sound theoretical basis. However, the current under-
standing of the nature of water and air transport in
microgravity is still not sufficiently developed to al-
low unambiguous interpretation of microgravity re-
sults.

The key to addressing the dual issues of under-
standing and controlling the distribution of water and
air in the root zone is the ability to measure the water
status of the media in microgravity. Sensors must be
compatible with the limited mass, volume, and power
constraints common to space flight. Use of electro-
magnetic sensors is restricted in space flight due to
possible interference with navigational and commu-
nications equipment (22). The objective of this study
was to test tensiometers and heat-pulse sensors for
measurement of matric potential and water content
in porous media during space flight. The tests were
conducted during parabolic flight (KC-135), which
provides g-force ranging from 1.8 to O g. Current
understanding of how these sensors perform in vari-
able gravity or how water configures and redistrib-
utes itself in a microgravity environment is an ongo-
ing area of research.

MATERIALS AND METHODS

KC-135 Microgravity Flight Profile

The KC-135 flight was initiated from Ellington
Field as part of the Reduced Gravity Program through
the National Aeronautics and Space Administration
(NASA) at the Lyndon B. Johnson Space Center
(JSCO) in Houston, TX (12). The flights were con-
ducted daily from September 17 to 20, 2002. The
KC-135 is a four-engine turbojet aircraft similar to
the commercial Boeing 707. The aircraft flies a pro-
file where it descends at a 45° angle down to 24,000
ft (experiencing elevated gravity for 40—60 s), then
pulls up at a 45° angle to 32,000 ft. At the top, the
aircraft is nosed over and 20-25 s of microgravity

are experienced. Typically, 10 microgravity parabo-
las are completed in succession followed by a break
as the plane turns around for another run in the op-
posite direction. The aircraft can also fly profiles to
induce lunar gravity (one sixth g) and Martian grav-
ity (one third g) conditions (12).

During flight pressure regulators on the plane
maintain cabin pressure at the equivalent of 5000 ft
altitude. In reality, cabin pressure is known to vary
by about 3 kPa (30 cm H,O) during the parabolas.
Cabin pressure was not measured during the experi-
ment.

Substrate Compartment

The basic container was a clear polycarbonate
(Lexan) plastic compartment (25.8 cm L X 4.4 cm
W x7.0cmH X% 0.5 cm thick) with a 1.3-cm OD plas-
tic porous tube (20-30 pm pore size; Porex Corp.,
Fairburn, GA USA) running the length of the com-
partment. The center of the plastic tube was mounted
2.0 cm from the exterior bottom of the compartment.
The porous tube was equipped with fittings that al-
lowed water to be added to the compartment using a
syringe. The configuration was representative of the
flight configuration for the WONDER space flight
experiment (5,9,10). The cover was also made of clear
polycarbonate plastic and had four 9-mm-diameter
tapped holes drilled at an on-center spacing of 5 cm.
The holes were used to mount the tensiometers.

Before the particulate medium was added, eight
heat-pulse water content sensors were mounted at 5.0-
cm spacing along each side of the substrate compart-
ment (Fig. 1). Two sensors were placed at depths of
2.0,3.0,4.0, and 6.0 cm from the top edge. The com-
partment was then completely filled with 312.05 g
of oven-dried Turface Pro League® sieved to a par-
ticle size of 1-2 mm (Profile Products LLC, Buffalo
Grove, IL). Turface was compacted to a bulk density
of 0.644 using a narrow blunt object. When Turface
was added attention was paid to ensure the sensors
were surrounded by the medium and not pressed up
against the plastic sides. The medium was naturally
saturated (allowing air entrapment) over a period of
several hours by injecting 60 ml of water every 30
min until the medium surface was covered with a
water film. The saturated volumetric water content
(VWC) was 0.67.
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Figure 1. Positioning of the heat-pulse sensors in the substrate
compartment prior to the addition of 1-2 mm particle size Turface
medium. Water inflow and outflow from the medium was through
the microporous plastic tube located at the bottom of the com-
partment.

A set of four presaturated and water-filled
minitensiometers were vertically mounted through
the cover of the substrate compartment and slowly
positioned into the wetted media. Once the tensiom-
eters were in place, the cover was screwed into the
body of the compartment. Tests revealed the cover’s
seal was not air tight. The wetted substrate compart-
ment was placed in a clear plastic glovebox inside
the KC-135 for containment of water and media (Fig.
2).

The medium had a VWC of 0.67 for the first flight.
Thereafter water was removed from the medium
through the porous tube (Fig. 1) at the end of each
flight so that water content equilibration within the
medium could occur before the next flight on the
following day. During the course of the week the
spectrum of water contents from saturated to nearly
complete macropore drainage was covered (Table 1).
Average volumetric water contents of the bulk me-
dium in the compartment were calculated from daily
changes in mass. Also shown in Table 1 are the typi-
cal preflight matric potentials measured by the ten-
siometers.

Substrate-Water Characteristic

The fundamental physical relationship for porous
media describing water content and matric potential

Figure 2. Test set-up during flight. The four tensiometers are
mounted on top of the substrate compartment (background). Four
of the eight TMAS sensor leads are connected through the top of
the sensor control box (foreground). The apparatus was contained
in a clear plastic glovebox.

forms the foundation for many other physical phe-
nomena. An effective and commonly used paramet-
ric model for relating 0 to the matric suction, &, was
proposed by van Genuchten (25), given as

0-0 1 !
@: L =
0,-0, L+(a|h|)"} M

where © is the relative water content or saturation, 6,
and O_are the residual and saturated water contents,

Table 1. Preflight Volumetric Water Contents and Matric Po-
tentials for 1 g, Ground Conditions

Average Vol. Average Matric ~ Corrected Matric  Flight
Water Content*  Potential (cm)® Potential (cm)® Day
0.67 -1.3 0 1
0.60 -5.2 -39 2
0.49 -7.9 —6.6 3
0.41 -11.2 -9.9 4

*Average volumetric water content of medium in the compart-
ment was calculated from the daily removal of water.

®Average matric potential measured by the four tensiometers using
preflight calibration.

cAverage matric potential of the four tensiometers adjusted to
read 0 in saturated medium.
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respectively, and o, n, and m are parameters directly
dependent on the shape of the 0(h) curve, and the
assumption that m = 1 — 1/n is often used. Parameters
for the van Genuchten (25) retention model are listed
in Table 2.

For aggregated porous media, it may be sufficient
to characterize water retention only within the
macropore domain shown in Figure 3, because little
water held within the internal aggregate pores
(micropores) is available to plants (e.g., in this case
a two order of magnitude decrease in matric poten-
tial before release of water from the micropores).
Macropore water held between millimeter-sized ag-
gregates may be removed using modest suction (e.g.,
5-15 cm H,0). Steinberg and Henninger (23) docu-
mented plant wilting occurred when the macropores
of 0.25-1 mm aggregate (Profile Products LLC, Buf-
falo Grove, IL) were drained (volumetric water con-
tent of ~40%; suction —20 cm H,O). Plant water use
measurements showed that 75% of plant extractable
water had been exhausted at this point. Both the 1-
2-mm and 0.25-1-mm aggregates are made from the
same material; thus, internal aggregate pore space
(micropore) is the same for both particle size distri-
butions. Figure 3 illustrates measured and modeled
wetting and draining water retention curves for the
1-2-mm aggregated calcined clay used in this study,
revealing the low range of matric suction at which
water is drained. Note the large water content change
that occurs over a relatively small matric suction
range. Included in the figure is the preflight volu-
metric water content plotted against the average ten-

Table 2. Substrate Parameters Described by the van Genuchten
(25) Water Retention Model and Measured Physical Character-
istics

Turface 1-2 mm Turface 1-2 mm

Parameter Drying Curve Wetting Curve
o (m™) 40.7 204

n 3.98 6.39

m 0.749 0.843

0, 0.35 0.35

0 0.68 0.68

s

Saturated hydraulic conductivity (cm s™): 1.26-2

Bulk density (g cm™): 0.64

Particle density (g cm™): 2.5 (provided by the manufacturer)
Total porosity: 0.74
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Figure 3. Substrate—water characteristic (SWC) curves fitted to
1-2 mm Turface measurements for both wetting and drying pro-
cesses. Lines were fitted using Equation (1). Preflight average
represents container volumetric water content and the average
matric potential measured at all four depths corrected to O at
saturation.

siometer reading based on the four sensors. The satu-
rated matric potential reading that occurred on flight
1 was used to provide a common offset for each daily
matric potential value where each succeeding flight
contained less water than the previous day (Table 1).
In this “draining mode,” the averaged data in Figure
3 correspond most closely with the draining curve
model as expected. Differences in the sample height
between the flight cell (~6 cm) and the sample (~1
cm) whose measured data were fit using Equation
(1) may account partially for differences shown in
Figure 3.

Heat Pulse Sensors

The single-probe sensors contain both heating and
temperature-sensing elements in the head. The two
components are contained in a resin bead that has
the dimensions of 2.5 X 2.5 x 7.6 mm (Fig. 4). The
sampling volume of the sensors is 0.5 cm® (11). The
design of the heat-pulse sensors was based on soil
moisture sensors that were used in previous space
flight experiments (19).

The thermal characteristics of water content in
porous media has been used as a means of inferring
water content in soils and other porous media. The
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Figure 4. Three heat-pulse sensors (1-cm grids).

theory describing the relationship between soil char-
acteristics and the time-dependent temperature rise
due to a heat-pulse from a line source has been well
developed (4,7,20). The development of the heat-
pulse sensors used in this study was based on this
theory. Soil moisture measurements are made by first
taking a temperature reading, initiating the heat-pulse,
then recording the temperature change at the end of
the heat-pulse. The temperature change can be cor-
related to the soil moisture content in the media sur-
rounding the sensors (4,7,11,14,20). The sensors have
been modified to give a simplified output, where the
temperature increase due to the heat pulse could be
correlated to the soil water content (11).

A computer program was developed to allow on-
demand heat-pulse measurements. The factory soft-
ware could only be set to take measurements at regu-
lar intervals. This would be inadequate during the
KC-135 microgravity flight. Measurements were
taken under varying gravity conditions. Data were
collected using the custom program that allowed the
on-demand activation of the heat-pulse sensors. The
program was run on a laptop computer with a hand
track mouse (4-D USB; 3G Green Green Globe Co.,
Ltd., Taipei, Taiwan) during the flight.

The heat-pulse sensors were calibrated preflight
in the laboratory. Two temperature baths were used
for temperature calibration: one for temperatures

below ambient (Circulating Bath, Forma Scientific)
and the other for above ambient temperatures
(ISOTEMP 215, Fisher Scientific). The sensors had
very linear calibration curves for temperature with
R? values from 0.9979 to 0.9982 over temperatures
ranging from 10°C to 35°C (data not shown).

For the soil moisture calibration, 100 ml of
packed, oven-dried Turface was placed in a container
and 25 ml of water was added to the medium for
the 25% volumetric water content data point. The
well-mixed medium was then quickly packed around
the sensors in a 7.5 X 7.5 X 12.0-cm plastic con-
tainer. A set of five heat-pulse sensor data points
was collected at each water content level. The pro-
tocol was repeated adding 50 and 75 ml of water
for the 0.50 and 0.75 volumetric water content data
points. Data for dry media were also recorded. Four
typical heat-pulse soil moisture sensor calibration
curves are shown in Figure 5. The soil moisture cali-
bration equations for the set of eight heat-pulse sen-
sors used in the experiment had R* values ranging
from 0.9356 to 0.9964.

Tensiometers

Operation of the tensiometer was as per the ASTM
standard for tensiometers (1). The energy components
in centimeter of water head of a tensiometer mea-
surement include the pressure transducer (gage type
referencing the cabin atmosphere), 4 , and the eleva-
tion head of the water-filled tube, %, giving the sub-
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Figure 5. Typical calibration curves for four TMAS sensors.
@ : sensor 0, B: sensor 1, A: sensor 2, and O: sensor 3. Average
values + SDs (N = 5).
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strate matric potential relative to atmospheric pres-
sure as measured by the tensiometer, hl, as

h=h +h 2)

The conversion between pressure, P, in units of
kPa and pressure head, /4, in units of cm HZO 1s made
using the density of water p (g cm™) and the ac-
celeration of gravity on Earth, g(1)(m s2), where
P=p_ -g(1) h. In the varying gravity environment
produced in the KC-135 flight, the gravitational
component, 2, is multiplied by the ratio of gravita-
tional forces, g(¢)/g(1), giving

h, =hp—hz-& (3)
g()

where g(¢) is the instantaneous g force at time (¢) as

measured by accelerometers in flight.

The tensiometers were constructed of a 4.8-mm-
diameter stainless steel cup (pore size 5 or 10 pm)
epoxied to a stainless steel tube (3.2 mm ID). The
pore sizes were chosen to obtain equilibrium quickly
during the microgravity portion of the flight. A pres-
sure transducer (Fig. 6) was attached to the tube via
a machined plastic fixture (Delran body). A bidirec-
tional gauge pressure transducer with a range of =70
cm H O, aresponse time of 1 ms, and an accuracy of
0.4% full span was used to sense vacuum within the

Electronic
pressure
transducer

-

Priming
port

Porous

stesl cup

Figure 6. Tensiometer comprised of a pressure transducer mea-
suring the pressure head, hp, and porous membrane where the
tensiometer measured matric head, hr, is determined from the
elevation difference, /.

tensiometer (PX40, Omega Engineering, Stamford,
CN). The pressure sensors were connected to a
datalogger (23X; Campbell Scientific, Logan, UT)
and the tensiometer pressure at the transducer and
aircraft accelerometer data were recorded at 1-s in-
tervals. Both the tensiometers and medium were ref-
erenced to ambient cabin pressure.

RESULTS AND DISCUSSION

Heat-Pulse Sensors

The heat-pulse sensors performed for each flight.
High-g measurements were not made during the first
flight due to a hardware problem with the laptop com-
puter. No further problems with laptop operations
were experience for the remaining flights. The
datalogger used with the tensiometers did not expe-
rience any problems during the testing period.

Figures 7 and 8 show that variable gravity had no
significant effects on the soil moisture measurements.
Figure 7 also shows that the heat-pulse sensor aver-
ages overestimated the VWC of the substrate com-
partment, especially as the substrate became drier.
For example, on day 4 the bulk volumetric water con-
tent was 0.41, whereas the heat-pulse sensors re-
corded 0.60.

There are several reasons for the poor perfor-
mance of the heat-pulse sensors in drying medium.
Firstly, overestimation of soil moisture has been
previously attributed to the small sampling volume
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Figure 7. Effects of variable gravity on the volumetric water
content levels measure by heat-pulse. High-g> 1.1 g, 1.1
g>0ne-G>0.1 g, zero g <0.1 g. The values plotted are the
average of all eight sensors + SD.
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and positioning of the sensors (13). Secondly, sen-
sors were calibrated in the laboratory, not in situ.
Output of the heat-pulse sensor is determined pri-
marily by the thermal conductivity of the medium,
and thermal conductivity is known to be strongly
influenced by particle arrangement (geometry of
particle to particle contact). Rearrangement of par-
ticles due to repacking of sensors or plane vibra-
tion and changing g-forces during KC-135 flight
could alter the conductivity and thus change sensor
calibration (Kluitenberg, personal communication,
2003). A comparison of known preflight data points
using previously derived calibration curves showed
deviations of 10% or more between the known val-
ues and the calibration curve outputs (data not
shown). The discrepancy was presumably due to the
repacking of the medium around the sensors.
Ground versus flight calibration of thermal conduc-
tivity sensors for media water content measurement
is an area of future study.

Figure 8 shows that at the different depths in the
soil profile the effects of variable gravity were not
significant. There was no consistent trend in the heat-
pulse data to suggest zero- or high-g influenced the
measurements.

Tensiometers

Figure 9 shows the effect of rapidly changing grav-
ity on the tensiometer operation and the matric po-
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Figure 8. Effects of variable gravity on the volumetric water
content levels at different depths measured by heat-pulse. High-
g>1.1g,1.1 g>O0ne-G>0.1g,zerog < 0.1 g. The values plot-
ted are the averages of two sensors at the same depth. The heavy
line represents the actual volumetric water content (0.41) on the
final day.

tential of the medium. The tension in the pressure
transducer port (Tp) decreases during 1.8-g period
and gradually increased during O g. A correction for
the gravitational pressure head induced by the water
column within the vertically oriented tensiometer was
calculated from Equation (3) and is simply a scaled
reflection of the gravity force. The correction was
added to the measured tension, yielding the corrected
matric potential as seen by the porous cup (see Fig.
9.). The potential of the water column increases dur-
ing the 1.8-g period and decreases to O during the 0-
g period in direct relation to the measured g force
[g(®)/g(1)]. The water tension at the porous cup, as-
sumed to be in equilibrium with the porous medium
water, showed several interesting phenomenon.
Firstly, in the saturated medium (Fig. 9A) the matric
potential showed an increase of about 4 cm during
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Figure 9. Effect of variable g () on measured tension in the
pressure transducer port (®), calculated internal water column
potential (7.5 cm) (¥), and corrected tension in the porous cup
(matric potential) (l) for saturated (volumetric water con-
tent = 0.68) (A) and dry (volumetric water content = 0.41) (B)
1-2 mm Turface. Tensiometer cup was at a depth of 4 cm. Data
show first two parabolas out of the set of 10.
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the 0-g to 1.8-g transition. This increase was due to
the water pressure head within the porous medium
arising from a 4-cm depth of satiated porous medium.
In addition, during the transition from 1.8 g to 0 g
and visa versa a transient spike appears in the matric
potential data. This was due to the lag between the
rate of water movement within the porous medium
(and possibly through the cup), which decreases with
decreasing water content, the instantaneous effect of
g on the pressure head of the water column within
the tensiometer, and the tensiometer response mea-
sured by the pressure transducer. The magnitude of
the transient spikes is greater in drier medium than
saturated medium, supporting the rate of change lag
between the calculated internal water column poten-
tial and measured tension at the pressure transducer
(Fig. 9B). On the fourth flight, in the driest medium
tested, the change in matric potential from 0 g to 1.8
g is a0to -1 cm decrease, indicating little or no wa-
ter movement. Smaller changes in g force also affect
matric potential. The quality of g force (noise) dur-
ing the parabola has a nearly instantaneous effect on
matric potential within the medium as can be seen
during a momentary deviation from 1.8 g during the
second parabola of Figure 9B.

The effect of the porous medium unsaturated hy-
draulic conductivity can be seen in Figure 10,

Maric Potential [cm)

7 L0
1] a 10 13 20 23 1]

Tirme [=5]

Figure 10. Equilibration of matric potential during O g for 1-2
mm Turface of different water contents. Measurements were made
at a depth of 4 cm; the total depth of Turface in the root module
was 6 cm. Volumetric water contents: ll =0.68, @ =0.61,
A =049, and € = 0.41. Acceleration of gravity [g(t)/g(1)] = V.
Arrows represent the beginning and ending of 0 g for each pa-
rabola.

which illustrates the transition toward an equili-
bration matric potential during O g for four differ-
ent water contents. As volumtetric water content
was reduced from 0.67 to 0.41, the commensurate
reduction in unsaturated hydraulic conductivity
was nearly four orders of magnitude, which causes
a slower transition toward equilibration during 0 g
(24). For saturated media the total matric poten-
tial change is about 0.5—-1 cm, indicating that there
is little air space to be displaced by water move-
ment in response to the changing gravity force. For
the driest media the change during O g is about 10
cm.

CONCLUSION

Microgravity testing of soil moisture sensors and
tensiometers was completed on a KC-135 aircraft
flying a parabolic profile. The test conditions were
vigorous due to varying gravity levels that cycled (or
alternated) from 1.8 to 0 g over 40 parabolas per
flight. The microgravity environment occurring at the
top of the parabola lasted for 20-25 s. The heat-pulse
sensor measurements consistently overestimated
water content of Turface under all gravity conditions.
The heat-pulse sensors have a small sampling vol-
ume (0.5 cm?®), which makes moisture changes
throughout the entire substrate compartment difficult
to determine. The tensiometers were able to track
apparent changes in matric potential, but these mea-
surements may have been influenced by the vertical
orientation and ambient cabin air pressure changes,
which may not have been readily translated into the
partially sealed porous medium container. Future
improvements in matric potential measurement dur-
ing variable g should address minimization of inter-
nal water volume to improve response time, horizon-
tal orientation to minimize the effect of g on
gravitational water head within the tensiometer, and
either independent cabin pressure measurements and
a well-sealed medium container or both pressure
transducer and medium adequately referenced to
cabin air pressure.
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