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Abstract— Secondary electron emission is a critical 

contributor to the charge particle current balance in spacecraft 
charging. Spacecraft charging simulation codes use a 
parameterized expression for the secondary electron yield δ(Eo) 
as a function of incident electron energy Eo.  Simple three-step 
physics models of the electron penetration, transport and 
emission from a solid are typically expressed in terms of the 
incident electron penetration depth at normal incidence R(Eo), 
and the mean free path of the secondary electron, λ.  We recall 
classical models for the range R(Eo): a power law expression of 
the form b1Eo

n1, and a more general empirical double power law 
R(Eo) = b1Eo

n1+b2Eo
n2. In most models, the yield is the result of an 

integral along the path length of incident electrons. An improved 
fourth-order numerical method to compute this integral is 
presented and compared to the standard second-order method. A 
critical step in accurately characterizing a particular spacecraft 
material is the determination of the model parameters in terms of 
the measured electron yield data. The fitting procedures and 
range models are applied to several measured data sets to 
compare their effectiveness in modeling the function δ(Eo) over 
the full range of energy of incident particles. 
 

Index Terms—Electron emission, Secondary Electron Yield, 
Surface charging 

I. INTRODUCTION 
econdary electron emission (SEE) is often the largest 
contributor in the charged particle current balance driving 

spacecraft charging in space plasma. Most spacecraft surfaces 
are generally covered with low yield materials (metals, 
graphite), which leads to large negative absolute potential 
during charging events. On the other hand, some dielectric 
materials such as glass have a high secondary emission yield 
and build up large positive differential potentials. This can 
result in an inverse gradient situation, a major source of 
electrostatic discharges. Another important aspect of 
secondary emission is its strong variation with the incident 
energy, which leads to threshold effects (see [1]). As noted in 
[2], an accurate modeling of SEE is therefore crucial to the 
simulation of spacecraft charging. It is particularly critical to 
get the correct behavior at high incident energy, since the flux 
of electrons in the plasmasheet during charging events is 
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peaked at some tens of keV.  
Standard convention distinguishes between secondary 

electrons as those with energy below 50 eV, and back-
scattered electrons as those with higher energies, up to the 
incident energy. The back-scattering current is generally 
smaller than the true secondary emission current by one order 
of magnitude in typical space environments. For this reason, 
we will concentrate on true SEE in this paper. 

Measuring SEE properties of materials is a particularly 
difficult task [3]. It is especially true for dielectric materials, 
because the implanted charges and the resulting internal 
electric field modify the trajectories of the incident and 
secondary electrons [4], [5]. This point is however outside the 
scope of the present study. 

Modeling SEE is also a difficult and important point. 
Spacecraft charging simulation codes require that measured 
SEE yield curves be fit to parametric models. Although all the 
models of the literature correctly predict a SEE maximum 
around 100-700 eV, they differ greatly in their predictions of 
the asymptotic dependence at high incident energy. A 
fundamental source of difference is the way the incident 
electron penetration and energy dissipation inside the material 
is described. The models may also differ in the way they 
account for the propagation of secondary electrons (SE).  

After a brief review of SEE models, we concentrate on 
numerical approximation issues and show their influence on 
the computation of the SEE yield curve and parameter-fitting 
procedures. We will propose some simple fitting strategies and 
apply them to different types of materials. 

II. THREE-STEP MODELS FOR SEE 

A. Introduction 
In standard theories SEE is modeled as a three-step process: 

first is the production of secondary electrons (SEs) at a depth z 
by incident penetrating electrons, followed by the transport of 
these SE towards the surface; and finally the emission of SE 
across the surface barrier.  

B. SE production 
The production of SE is the result of the energy loss of 

incident particles. The number of created secondary electrons 
per unit volume per second can be expressed as 

 
                     ,/)( IjEdivdtdN −=                               (1) 
      
where jE is the energy flux and I is the effective energy 
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necessary to create one SE. Next, we suppose that the current 
density of incident particles j is constant up to the range of 
incident particles. The local rate of SE production is therefore 
proportional to the incident current density (or number flux) j, 

                          





−=

dz
dE

I
j

dt
dN 1

.                       (2) 

At this point, a model for the energy deposition profile 
dE(z)/dz for a given incident energy E0 is needed. This is 
where theoretical models differ most. We detail these 
differences in section III. 

C. Transport and emission 
Only a fraction of the SEs will actually reach the surface 

and be emitted, while the remaining part will either recombine 
with holes, get trapped or contribute to the conduction. It is 
generally sufficient to use a single model of SE transport and 
emission for the whole SE population, regardless of the 
modulus or direction of their velocity.  

Let τ(z) be the probability for a given SE created at a depth 
z to reach the surface and be emitted. Summing the 
contribution of SE created at any depth, one gets the following 
expression for the SEE yield: 
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Bookmark not defined.                     (3) 
The escape potential τ(z) has to be a decreasing function of the 
depth vanishing at infinity. The most common choice is a 
decreasing exponential  
 
                                 τ (z) = C exp(-z/λ),                             (4) 
 
where λ is related to the SE mean free path [9, 12-14]. 
Another possible choice for τ(z) is a rational fraction [6]. 

Alternatively, Jonker (see e.g. [7,8]) assumes that the 
probability density function of SE decreases with the path 
length instead of the depth. When the emission depth z 
increases, only the electrons with a velocity directed toward 
the surface will be able to reach it. The Jonker escape potential 
decreases therefore faster than an exponential. This potential 
involves an additional integration over velocity angles which 
must be computed numerically. 

 A more complete model could also include energy effects, 
particularly the influence of the potential barrier which SEs 
must overcome to be emitted. 

III. ENERGY DEPOSITION PROFILE 

A. The Continuous Slowing Down Approximation 
 In the Continuous Slowing Down Approximation (CSDA), 

the effect of inelastic collisions on the incident particle is 
modeled as a continuous braking force which depends only on 
the current value of the energy. In other words, there is no 
history effect. In paragraph II.B, we have assumed that the 
current of incident particles is constant up to the range, and 
then drops to zero: this is also a consequence of the CSDA. 

If the variation of the range with the incident energy R(E) is 
known, then the stopping power S can be expressed from its 

derivative as S(E) = 1/R’(E), and the energy is related to the 
depth through z = R(E0) – R(E).  

B. The CSDA stopping power and the Bragg curve 
For all types of particles and scatterers, the curve of S(E) 

presents a maximum, decreases and reaches a plateau at high 
energy when radiation becomes the principal mode of energy 
dissipation. The stopping power maximum corresponds to a 
maximum efficiency of energy transfer between the incident 
particle and the scatterers. It occurs at lower energy for low 
density materials and low mass particles. On Fig. 1, we depict 
the stopping power profile for three metals, as given in the 
NIST interactive database [9]. For materials used on 
spacecraft, the stopping power maximum occurs at energies 
lower than 1 keV. Experiments as well as Monte Carlo 
simulations are difficult to perform at such a low energy level, 
but we can assume that such a peak exists nevertheless. 

However the CSDA range is usually approximated by a 
monotonic power law R(E) = bEn [10],  most often with n ≈ 

1.35 (see e.g. [6], [11], [12], [13]). With n > 1, the stopping 
power is infinite at zero incident energy and decreases 
continuously. The upper limit on n is 2 [14]. 

On the other hand, Mandell et al. [15] propose an empirical 
double power law for the range which can be adjusted to fit 
the value of the stopping power maximum. Taking  
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with n1 < 1 and n2  > 1, we get 
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The stopping power reaches its maximum at the following 
energy 
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From the expression for S(E), one can derive the CSDA 

 
Figure 1.  Continuous Slowing Down Approximation (CSDA). Stopping 
power (in eV m3 /kg) versus incident energy for some metals, in log-log 
scale. NIST model [9]. 
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energy deposition profile −dE/dz = S(E(z)) (see Fig. 2.) This 
curve is known as the Bragg curve, and it is characterized by a 
strong peak near the maximum penetration depth of the 
trajectory, when the incident particle reaches the energy of the 
stopping power maximum, E = EBragg. 

C. Other effects 
Several effects tend to modify the energy deposition profile. 

They are all the more important for light incident particles 
such as electrons, and result in the smoothing of the Bragg 
peak.  

The first of these is straggling, which is due to the statistical 
dispersion of collisions. The CSDA range is the average value 
of the range, but the stopping power 1/R’(E) deduced from this 
law is not exactly the average value of the energy deposition. 
The statistical effect is obviously more important for 
trajectories with multiple collisions, i.e. at higher incident 
energy.  

A second and probably more important shortcoming of the 
CSDA comes from the angular scattering of incident particles. 
In fact, Monte Carlo simulations show that the average 
volume where the energy deposition of a particle occurs 
resembles an ellipsoid, whereas the CSDA assumes that 
everything occurs along a straight line. Because angular 
scattering is less important at high velocity, the ellipsoid is 
more elongated at high incident energy.  

Finally, the SEs themselves can create free electrons in a 
cascading process, further spreading the affected volume of 
the incident particle [12]. 

Whereas the CSDA presents a situation where most of the 
energy is deposited near the end of the trajectory, these 
additional effects tend to spread the energy deposition more 
evenly inside an affected volume of a more complicated 
shape. Another consequence is the fact that the energy 
deposition profile at higher incident energy is no longer a 
translation of the profile at lower incident energy because of 
memory effects in the trajectory.   

D. Models of affected volume shape 
Schwarz [12] and Cazaux [13] both consider an affected 

volume of ellipsoidal shape where the energy of the incident 
particle is deposed evenly. After a two-dimensional 
integration, the energy deposition profile becomes 
                        ,/)()/( 0 VzEdzdE σ≈                           (8) 

where σ is the section of the affected volume at depth z, and V 
is the total affected volume. Assuming an ellipsoidal shape for 
the affected volume yields a quadratic function for σ. The 
integral (3) in the definition of δ can therefore be computed 
analytically. 

The Schwarz and Cazaux models differ in the geometry of 
the ellipsoid for a given material and incident energy. If zc is 
the distance of the center of the ellipsoid (most probable 
energy dissipation depth) and zmax the position of the deepest 
tip of the ellipsoid, then the ratio k = zc/zmax is a material-
dependent constant in Cazaux’ model, whereas it increases 
with the incident energy in Schwarz’ model. A less significant 
difference lies in the power used for the range law: 1.35 for 
Cazaux, 4/3 for Schwarz. 

E. Conclusion 
The CSDA and the affected volume approaches concentrate 

on different aspect of the energy deposition process. Both 
approaches lead to the existence of a maximum of the energy 
dissipation at a certain depth below the surface, although this 
aspect disappears in the first approach if a low-order 
computational method is used. Finally, the crucial point is to 
model the relative position of this maximum with respect to 
the maximum penetration depth. 

 At this point, it seems desirable to devise an empirical 
model including both the maximum stopping power (Bragg 
peak) and statistical effects, but this task is outside the scope 
of this paper. 

In the rest of this paper, we concentrate on the numerical 
approximation of the CSDA approach. We will show that a 
higher-order approximation dramatically modifies the shape of 
the SEE yield curve and improves the correlation with 
experimental results.  

IV. NUMERICAL COMPUTATION OF  NASCAP’S SEE MODEL 

A. Properties of NASCAP’s SEE model 
In this section we consider NASCAP’s SEE model, which 

uses the CSDA approach and a double power law for the range 
[15]. The SEE yield is given by 

      ( ) ( ) ( )( )
,/exp,0

0 00 ∫ −=
ER

dzzzESAE λδ            (9) 

where  
  
    ( ) ( ) ( ) ( ) zERERzERzES =−−= 00 ,)('/1,      (10) 
 
and A and λ are free parameters which will be adjusted to fit 
experimental data. The range R(E) is given by (5). 

We first remark that the SEE yield δ satisfies the following 
Ordinary Differential Equation: 

 
Figure 2: The Bragg curve (Stopping power versus depth). Dashed lines: 
zeroth order approximation or constant loss model (CLM) and linear 
approximation (NASCAP). 
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                       ( ) λδδ /' ERAdEd −= .                     (11) 

This equation is derived from equation (9) by performing a 
change of variables z = z(E) in the integral, followed by a 
differentiation with respect to E0 . 

Applying equation (11) at the energy Emax of the 

maximum yield where dδ/dE = 0 gives an interesting relation 
between A and λ: 

                          ( ) ./' maxmax λδ ERA =                      (12) 

Then, letting E → ∞ in equation (11), we get the high 
energy asymptotic behavior: 

 
  ( ) ( ) ( ) ( ).'' maxmaxmaxmax ESESERER δδδ =→    (13) 

 
Note that this is also the λ → 0 limit of δ. As will be seen 

subsequently, it is crucial for numerical approximations of the 
SEE yield (3) to be consistent with this asymptotic behavior. 

B. Computation of the integral 
Computing an approximation of integral (3) is a difficult 

task, similar to that of computing special functions. It requires 
high order approximation methods.  

Moreover, as S(E0,z) is known only implicitly, usual 
quadrature formulas are not practical. For this reason, low 
order approximations of S(E0,z) are often used. The simplest 
one is to use the following approximation: S(E0,z) ≈ S(E0) for 
all z < R(E0). This gives a first order approximation of δ, 
similar to the Constant Loss Model (CLM): 

            ( ) ( )( )
( )ER

ERAE
'

/exp1 λλδ −−
=                       (14) 

Such a model is used, e.g. by [6].  
The spacecraft charging code NASCAP [15] makes use of 

2nd order approximation based on a linearization of S(z) at z = 
0: 
                      ( ) ( ) .00 =∂+≈ zz zSzESS                       (15) 

In view of Fig. 2, it is clear that a linear approximation of 
S(z) does not reproduce the Bragg peak, and therefore 
underestimates the total stopping power. 

The impact on the computed SEE yield will depend on the 
ratio of the range at maximum stopping power over the escape 
length, R(EBragg)/λ. A large ratio corresponds to an SEE 
dominated by surface phenomena. The maximum of the SEE 
yield is directly related to the maximum stopping power. If the 
ratio is small on the other hand, the SEs created relatively 
deeply inside the material will be able to reach the surface. 
The energy of the SEE maximum in this case is larger than the 
energy of the Bragg peak. A high order approximation of the 
integral (4) is necessary. 

Looking at Figure 2 again, it is clear that a higher order 
approximation is needed to reproduce the shape of the Bragg 
curve. However, a fourth order expansion at z = 0 would be 
cumbersome. Instead, we integrate (11) between E = 0 and E 
= E0 with a fourth order Backward Differencing Formula with 
four intermediate steps: 
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       (16) 

where ∆E = E0 /4. This method gives a 4th order 
approximation of the SEE yield δ which is consistent with the 
high energy asymptotics (13). 

Subsequently, we will call method (16) and the NASCAP 
approximation (15) the 4th order and the 2nd order methods 
respectively. 

C. Determination of microscopic parameters: two strategies 
Model (9) involves two free parameters A and λ. These 

parameters cannot be measured directly and must be related to 
SEE yield values. A first strategy consists in using the energy 
and value of the maximum SEE yield δmax and Emax. This is 
the maximum-fitting strategy.  

An alternate strategy consists in solving for λ such that 
dδ/dE(Emax) = 0, with A given by equation (12). This 
asymptotic fitting strategy ensures that the correct behavior at 
infinity is satisfied. On the other hand δ(Emax) = δmax is not 
strictly enforced. 

In Fig. 3 we have compared the two strategies combined 
with either a 2nd order or 4th order method, for given values of 
δmax and Emax and a given power-law for the range model. 
With the maximum-fitting strategy, only the 4th order 
approximation satisfies the asymptotics of equation (13). A 
direct consequence is the difference in the predicted second 
crossover energy. This energy E2 defined by δ(E2) = 1 is 1410 
eV for the 4th order method and 1740 eV for the 2nd order 
method. The relative error is 15 %. The same level of error 
can be expected for computed equilibrium potentials of 
spacecraft charging simulation. 

With the asymptotic-fitting strategy, the actual maximum 
yield obtained with the 2nd order method is off its real value by 
10 %. With the 4th order method, the computed maximum is 
very close to the correct value δmax (labeled ‘dmax’ in Fig. 3). 
Note that with the asymptotic fitting strategy, the computed 
values of parameters A and λ are similar with the two 
methods. The difference in the second crossover energy 
between the two methods is now smaller than 3%. 

V. EXPERIMENTAL DATA 

A. Experimental conditions 
We have analyzed data for three materials, a conductive Au 

sample and two insulating samples of Teflon and anodized 
aluminum. The high purity microcrystalline bulk Au had an 
estimated RMS surface roughness of less than 10 nm and 
surface contamination was less than 0.4 monolayers [17]. A 
continuous beam method was used to measure the electron 
yield, with a current density of ~2 nA/mm2 at incident 
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energies below ~ 5 keV and ~50 nA/mm2 above ~5 keV [17]. 
The 12 μm thick FEP Teflon fluoropolymer film with a ~100 
nm thick vapor deposited Al coating was manufactured by 
Sheldahl. The anodized aluminum sample was prepared by the 
Environment Effects Branch at NASA Marshall Space Flight 
Center. An Al2219 alloy substrate was anodized using a 
chromic acid etch [18]. The Al2O3 oxide layer was estimated 
to be ~1 μm thick. The FEP and anodized aluminum samples 
were studied as received, after only chemical surface cleaning 
with methanol. 

Data for the Teflon and anodized aluminum samples were 
acquired using a pulsed beam system, designed to minimize 
sample charging during the measurements [5,19]. Yields were 
measured with 5 μs pulses with an ~10 nA beam; between 
each pulse the sample surface was discharged with a higher 
flux, low energy electron flood gun and a deuterium UV flux 
with energy < 6.7 eV. Despite this effort to minimize 
charging, limited charging was observed for these samples, 
particularly above the second crossover energy.  

B. Fitting strategies for experimental data 
For a given material, we can define two characteristic 

lengths: the range at maximum stopping power R(EBragg) and 
the escape length of SEs λ.  

If the former is large compared to the latter, then SEE is 

mostly a surface phenomenon. It is the variation of the 
stopping power with respect to the incident energy which 
determines the shape of the SEE yield curve. The Bragg 
energy corresponds to the energy of the maximum yield. For 
this type of material, it is useful to use the λ → 0 limit of the 
NASCAP model, equation (13). Parameter b2 is determined by 
EBragg = Emax. The SEE yield can be put in the simpler form: 
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We will refer to this model as Model 1 in the figures. It has 

4 parameters that can be easily determined:  
• Emax and δmax from the maximum of SEE yield curve 
• n1−1 and n2−1 are the slopes of the low energy and high 

energy asymptotes of the SEE yield curve on a log-log 
plot. 

If on the other hand λ is larger than R(EBragg), then the SEE 
yield continues to increase significantly for incident energy E 
> EBragg. In this case, the shape of the SEE yield curve does 
depend on the value of λ. In order to reproduce this effect 
correctly, one has to use a higher order approximation of (3). 
To simplify the fitting strategy, we use a single power law: n1 
= 0. We are thus in the situation where R(Ebragg) tends to zero. 
Parameters Emax  and δmax are determined as before, and n2 is 
adjusted to get the correct high energy asymptote. We will 
refer to this three-parameter model as Model 2 in the figures. 

For completeness, we also study Cazaux’ model [13]. Here, 
parameter k is adjusted to get the correct asymptote at high 
energy. 

C. Results 
We present numerical results for the three different 

materials: gold (Fig. 4), Teflon (Fig. 5, top) and anodized 
aluminum (Fig. 5, bottom). For the first two materials, the 
fitting strategy based on Model 1 gives a very good fit to 
experimental data. We were not able to find satisfactory fits 
with the single power law (Model 2) and the Cazaux model. 
For the anodized aluminum on the contrary, these two models 
agree quite well with experimental points, except at low 
energy. The single power law must however be computed with 
enough precision. The curve obtained with the 2nd order 
approximation and the asymptotic fitting (dotted line in Fig. 5) 
noticeably under-estimates the maximum SEE yield (2.5 
predicted instead of 2.7 experimentally). On the other hand, 
Model 1 is characteristically unable to reproduce the change of 
concavity of the curve in log-log scale. 

 
 
Figure 3: SEE yield versus incident energy (eV). The NASCAP model is 
computed with a 2nd order (dashed line) or 4th order (full line) method. 
Top: maximum fitting strategy, bottom: asymptotic fitting.  
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VI. CONCLUSION 
In this paper, we have analyzed the properties of a standard 

model of SEE. We have shown that two cases may occur, 
depending on the ratio between the range at maximum 

stopping power and the escape length. 
If this ratio is large, the model can be approximated with a 

simplified analytic formula. This formula fits experimental 
data rather well for Gold and Teflon.If the ratio is small, the 

integral over the whole path length needs to be computed 
numerically. We have shown that using a low-order method to 
compute this integral can lead to numerical errors as large as 
20% of the SEE yield. We have also shown that experimental 
SEE data obtained with an Anodized Aluminum sample are 
better reproduced by the full SEE model computed with 
enough accuracy. 

In the future, we believe that further modeling and 
experimental efforts will be needed to analyze the influence of 
the angle of incidence as well as electric field effects in 
dielectrics. This is especially important for applications to 
spacecraft charging where nearly isotropic fluxes and large 
electric fields are observed. 

REFERENCES 
[1] J.G. Laframboise, M. Kamitsuma, R. Godard, “Multiple floating 

potentials, ‘Threshold-temperature’ effects and ‘Barrier’ effects”,  in 
Proc. Int. Symp. On Spacecraft Materials in Space Env., Toulouse, 
1982. 

[2] I. Katz, M. Mandell, G. Jongeward and M.S. Gussenhoven, “The 
importance of accurate secondary electron yields in modeling spacecraft 
charging”, J. Geophysical Research,, 91, 1986, pp. 13739-13744. 

[3] J.R. Dennison, C.D. Thomson, J. Kite, V. Zavyalov, J. Corbridge, 
“Materials Characterization at Utah State University”, presented at. 8th 
Int. Conf. On Solid Dielectrics, Toulouse, 2004. 

[4] JR Dennison, C. D. Thomson, and Alec Sim, "The effect of low energy 
electron and UV/VIS radiation aging on the electron emission properties 
and breakdown of thin-film dielectrics,"  in Proceedings of the 8th IEEE 
Dielectrics and Electrical Insulation Society (DEIS) International 
Conference on Solid Dielectrics (ICSD), 967-971, (IEEE, Piscataway, 
NJ, 2004). 

[5] J.R. Dennison, Alec Sim, and Clint Thomson, "Evolution of the Electron 
Yield Curves of Insulators as a Function of Impinging Electron Fluence 
and Energy," submitted to IEEE Trans. on Plasma Science, 2006. 

[6] M.A. Furman, The electron-cloud effect in the arcs of the LHC, CERN-
LHC-Project-Report-180, 1998. 

[7] H. Kimura, I. Mann, “Filtering of the interstellar dust flow near the 
heliopause: the importance of secondary electron emission for the grain 
charging”, Earth, Planets & Space, vol. 51, 1991, pp. 1223-1232. 

[8] M.S. Chung and T.E. Everhart, “Simple Calculation of energy 
distribution of low-energy secondary electrons emitted from metal 
surfaces under electron bombardment,” J. Applied Physics, 45(2), 707-
709 (1974). 

[9] C.J. Powell and A. Jablonski, NIST Electron Inelastic-Mean-Free-Path 
Database – Version 1.1, National Institute of Standards and Technology, 
Gathersburg, MD (2000). 
Available:http://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html 

[10] Reimer, L., Scanning Electron Microscopy.  Physics of Image 
Formation and Microanalysis, (Springer-Verlag, New York, 1985). 

[11] Young, J. R., "Penetration of electrons and ions in aluminium," J. Appl. 
Phys. 27 (1), 1-4 (1956). 

[12] S.A. Schwarz, “Application of a semi-empirical sputtering model to 
SEE”, J. Appl. Phys., 1990.  

[13] J. Cazaux, “A new model of dependence: secondary electron emission 
yield on primary electron energy for application to polymers”, J. Phys. 
D: Appl. Phys., 38, 2005, pp. 2433-2441. 

[14] E. M. Baroody, "A Theory of Secondary Electron Emission from 
Metals", Phys. Rev. 78, 780 (1950). 

[15] M.J. Mandell, P.R. Stannard, I. Katz, NASCAP programmer’s reference 
manual¸1984. 

[16] JR Dennison, J. Abbott, R. Hoffmann, A. Sim, C.D. Thomson, J. 
Corbridge, Final Report Part V: Additional Materials Reports, NASA 
Space Environments and Effects Program Grant, "Electronic Properties 
of Materials with Application to Spacecraft Charging," 2005.  available 
at http://see.msfc.nasa.gov/ee/db_chargecollector.htm 

[17] R. Davies, "An Instrument for Experimental Secondary and 
Backscattered Electron Investigations with Applications to Space Craft 
Charging,” MS Thesis, Utah State University, Logan, UT, USA, 1996.  

[18] T.A. Schneider, private communication, 2003. 

 
Figure 5: SEE yield for Teflon (top) and anodized 
aluminum (bottom). Symbols: experimental values, lines: 
best fit for different models. 

Figure 4: SEE yield curve for gold. Symbols: 
experimental points. Dashed lines: best fits for different 

d l  

http://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html
http://see.msfc.nasa.gov/ee/db_chargecollector.htm


2225                                           IEEE Trans. on Plasma Sci., 34(5) October 2006, 2219-2225. DOI: 10.1109/TPS.2006.883379 

[19] C. Thomson, “Measurements of the Secondary Electron Emission 
Properties of Insulators,” PhD Dissertation; Utah State University, 
Logan, UT, USA, 2004. 

 


	I. INTRODUCTION
	II. Three-step models for SEE
	A. Introduction
	B. SE production
	C. Transport and emission

	III. Energy deposition profile
	A. The Continuous Slowing Down Approximation
	B. The CSDA stopping power and the Bragg curve
	C. Other effects
	D. Models of affected volume shape
	E. Conclusion

	IV. Numerical computation of  Nascap’s SEE model
	A. Properties of NASCAP’s SEE model
	B. Computation of the integral
	C. Determination of microscopic parameters: two strategies

	V. experimental data
	A. Experimental conditions
	B. Fitting strategies for experimental data
	C. Results

	VI.  Conclusion
	References

