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Abstract 

I 

Presented is a simulation/optimization (S/0) model combining optimization with 

BIOPLUME II simulation for optimizing in-situ bioremediation system design. The 

(S/0) model uses parallel recombinative simulated annealing to search for an optimal 

design and applies the BIOPLUME II model to simulate aquifer hydraulics and 

bioremediation. Parallel recombinative simulated annealing is a general-purpose 

optimization approach that has the good convergence of simulated annealing and the 

efficient parallelization of a genetic algorithm. We propose a two-stage management 

approach. The first stage design goal is to minimize total system cost 

(pumping/treatment, well installation and facility capital costs). The second stage design 

goal is to minimize cost of a time-varying pumping strategy using the optimal system 

chosen by the first stage optimization. Optimization results show that parallel 

recombinative simulated annealing performs better than simulated annealing and genetic 

algorithms for optimizing system design when including installation costs. New explicit 

well installation coding improves algorithm convergence. Threshold accepting reduces 
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computation time 43 % by rejecting expensive system designs. Applying the optimal 

time-varying pumping strategy in the second stage reduces pumping cost by 31%. 

Key Words: in-situ bioremediation, groundwater remediation, aerobic biodegradation, 
optimization, parallel recombinative simulated annealing, simulated annealing, genetic 
algorithm. 

INTRODUCTION 

In-situ bioremediation for contaminated groundwater cleanup has emerged as a 

viable remediation technology because of cost-effectiveness and ability to achieve 

complete destruction of organic contaminants. Many successful applications of in-situ 

bioremediation for cleaning up petroleum hydrocarbons such as benzene, toluene, 

. ethylbenzene, and xylene (BTEX) have been documented (Flathman, 1993; Hinchee et 

al., 1994). Major advantages ofin-situ bioremediation include (1) lower capital cost, (2) 

in-situ operation, (3) permanent elimination of contaminants, and ( 4) cost-effectiveness 

[Cookson, 1995; Sturman et al., 1995]. An in-situ bioremediation system consists of 

subsurface delivery systems (injection wells, infiltration galleries or trenches) and 

recovery wells [Norris et al., 1994]. The recharged water provides sufficient nutrients 

(e.g. Nand P) and electron acceptors (e.g. 0 2, N03-
1
, S04"2

, Fe+3 and C02) to stimulate 

the growth of microorganisms that can transform the contaminants to less harmful 

chemicals or mineral end products [Alexander, 1994]. Downgradient recovery wells 

extract contaminated groundwater to contain the plume and to enhance movement of 
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electron acceptors and nutrients. Air stripper tower or activated carbon can treat 

contaminated groundwater from the recovery wells. 

Taylor and Jaffe [1991] applied a bioremediation model to evaluate in-situ 

bioremediation design for sorbing and nonsorbing contaminants. Lang et al. [1997] 

designed in-situ bioremediation systems relying on cometabolic degradation. These 

approaches only employ bioremediation models to evaluate the efficiency of alternative 

system designs. It is difficult to use a simulation model alone to develop a least cost 

management strategy when designing a remediation system. A simulation/optimization 

(S/0) management model, which incorporates a groundwater flow and transport 

simulation model with an optimization program, can help engineers design an in-situ 

bioremediation system that satisfies best management goals and regulator requirements. 

Many S/0 applications have focused on optimal pump-and-treat (P&T) system 

design [Gorelick et al., 1984; Ahlfeld et al., 1988; Ahlfeld, 1990; Culver and Shoemaker, 

1992; Xiang et al., 1995]. Many optimization techniques have been applied within 

groundwater simulation/optimization management models. Traditional optimization 

methods include linear programming, nonlinear programming, dynamic programming, 

quadratic programming, mixed-integer programming. New optimization techniques 

include simulated annealing [Dougherty and Marryott, 1991; Kuo et al., 1992; Marryott 

et al., 1993; Marryott, 1996, Rizzo and Dougherty, 1996], neural network [Rogers and 

Dowla, 1994; Rogers et al., 1995; Johnson and Rogers, 1995] and genetic algorithm 

[Ritzel et al., 1994; McKinney and Lin, 1994; Huang and Mayer, 1997]. These new 

techniques eliminate the requirement of computing derivatives with respect to decision 
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variables. Such derivatives are difficult to calculate analytically or numerically in highly 

nonlinear and noncovex groundwater remediation problems. The new techniques are 

robust and easily coupled with groundwater simulation models. 

McKinney and Lin [1994] applied genetic algorithms (GAs) to develop 

groundwater management strategies for goals of maximizing pumping, minimizing cost 

of pumping and minimizing cost of aquifer remediation. Their results show that genetic 

algorithms can obtain optimal solutions that are as good as or better than those solved by 

linear and nonlinear programming. GA advantages include straight- forward formulation 

and no requirement for computing derivatives. GAs using parallel programming can take 

advantage of network or multi-processors computers to accelerate solution convergence. 

However, Cieniawski et al. [1995] pointed out some shortcomings. First, the GA 

requires substantial CPU time for objective function evaluations. Second, it handles 

multiple constraints with difficulty. Third, GAs are not theoretically guaranteed to find 

global optimal solutions. 

Rogers and Dowla [1994] used artificial neural networks (ANNs) with parallel 

solute transport modeling to optimize aquifer pump-and-treat remediation. Their 

approach includes: (1) training an ANN to predict remediation outcome of groundwater 

flow and transport modelling, (2) using the trained ANN linked with a GA to search 

through many pumping strategies and select the one which minimizes total pumping 

while meeting remediation goals. In their groundwater remediation applications, Rogers 

et al. [1995] treated the pumping rate of each well as either 1 (full capacity pumping) or 

0 (no pumping). This reduces the number of groundwater flow and transport simulations 
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needed to train an ANN to predict remediation outcome, but is impractical for real-world 

applications. Rogers and Dowla [1994] planned to apply ANNs to deal with continuous 

pumping. However, the computation efficiency and ability of ANNs to find optimal 

solutions for continuous pumping problems are still unknown. 

Dougherty and Marryott [1991] first apply simulated annealing (SA) to 

groundwater management problems. Marryott [1996] optimizes groundwater 

remediation design of interceptor trench, slurry wall and low permeability cap using SA. 

Those SA groundwater management applications assume a discrete solution space. 

Pumping rates were treated as discrete decision variables. SA has advantages similar to 

GA. SA is easily implemented with groundwater simulation models and does not require 

derivative computation. In addition, SA convergence to globally optimal solutions has 

been proven using homogeneous Markov chain and inhomogeneous Markov chain 

theory [Geman and Geman, 1984; Hajek, 1988; Romeo, F. and A. Sangiovanni­

Vincentelli, 1991]. Because SA sequentially searches for an optimal solution, applying 

parallel programming to accelerate convergence speed is more difficult with SA than 

with GA. 

We propose applying a new optimization algorithm, parallel recombinative 

simulated annealing (PRSA), to optimize in-situ bioremediation system design. 

Mahfound and Goldberg [1995] introduced PRSA as an effective combination of SA and 

GAs. PRSA retains the desirable asymptotic convergence of SA and adds the GA's 

population approach and recombinative operator. Here, we present the first application 

of PRSA to in-situ bioremediation or groundwater management system design. The 



6 

manuscript is organized as follows. In section 2, we formulate the management problem 

and describe the two-stage management approach. In section 3, we provide an overview 

of PRSA and its implementation. We also propose new techniques to improve PRSA 

performance. These techniques include Gray coding, uniform crossover, threshold 

accepting function and segregated genetic algorithm. In sections 4 and 5, we briefly 

introduce the bioremediation simulation model and describe the system design study 

case. In sections 6 and 7, we demonstrate in-situ bioremediation system design by PRSA 

and summarize findings. 

OPTIMAL SYSTEM DESIGN OF IN-SITU BID REMEDIATION 

Minsker and Shoemaker [ 1996] proposed dynamic optimal control via successive 

approximation linear quadratic regulator (SALQR), to optimize in-situ bioremediation 

design. Their optimal time-varying pumping strategy reduced the cost of in-situ 

bioremediation by 30 % compared with a steady pumping strategy during two-year 

cleanups [Minsker, 1995]. Their cost function considered pumping operation, 

maintenance, oxygen addition, and treatment costs. It did not include well installation 

and facilities capital costs - costs which can dominate in-situ bioremediation or P&T 

system costs for a short remediation period. Culver and Shoemaker [1997] demonstrate 

that capital treatment costs significantly affect a time-varying 5-year P&T pumping 

strategy period. They recommend explicitly incorporating these capital costs into a 

dynamic management model. 
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In this study, we propose a two-stage design approach. The first stage optimizes 

in-situ bioremediation system configuration, including the pumping well locations, steady 

pumping rates and facility capacities; the objective is to minimize total system cost 

including pumping/treatment, well installation, and facilities capital costs. The second 

stage involves reducing pumping costs of the system designed in the first stage; the 

objective is minimize pumping cost plus facility capital cost using a time-varying 

pumping strategy. 

The first stage objective function is expressed as 

MP MP 

Minimize z =W1 L CP(e)p(e)+ W2 L CIP(e)IP(e) 
e = 1 e = 1 

Mi Me 

+ W3 D(Lp(e))+W4 E(Lp(e)) (1) 
S=l e = 1 

where Z =total present worth of in-situ bioremediation system; W~, W2, W3, and W4 are 

factors used to convert pumping/treatment costs, well installation costs, injection facility 

capital cost and treatment facility cost to their present value, respectively; W1 = [(1+i)Te_ 

1]/[i(l+i)T•]; i is a discount rate and Te is total duration of remediation period; W2, W3, 

and w4 are equal to 1; e = index denoting a potential injection or extraction location; 

p(e) = injection or extraction rate at location e (I}fT); CP(e) = cost coefficient for 

injection (including oxygen, nutrient and pumping costs) or extraction (including 

treatment and pumping operation costs)($ per L 3/T); Ml' =total number of injection and 
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extraction wells; CIP(e) = injection or extraction well installation cost at location e ($ per 

well); IP(e) = zero-one integer for injection or extraction well existence at location e ; 

M; 

D( L p(e) ) = oxygen and nutrient injection facility capital cost, a function of total 
e = 1 

M' 
injection rate ($); M; = total number of injection wells; E( L p(e) ) = treatment facility 

e;; 1 

capital cost, a function of total extraction rate($); M' =total number of extraction wells; 

and M'=M; +M'. 

Injection and treatment facilities capital cost is dependent on facility capacities. In 

practical engineering design, facility capital cost is not a continuous function of capacity 

because only specific sizes on models of pipes, pumps and facilities are manufactured. 

Therefore, we use discrete function to present these facility capital costs. Capital cost of 

injection facility D can be expressed as 

M' M' 
D(Lp(e)) = o if LP(e) =0 

C=l e=1 
Mi 

=D q if CDq-I < LP(e) sCDq q= 1, 2, ..... , MQ (2) 
e = 1 

where Dq = capital cost of injection facility when total injection rate is between design 

injection capacity CDq-l and CDq; and M'< is the total number of alternative design 

injection capacities. Injection capacity CD0 is 0. The equation defining treatment facility 

M' 
E capital cost is analogous to Eq (2) and obtained by substituting E( L p(e) ) for 

e = 1 



9 

M; 

D( I; p(e) ), M' for M', Eq for Dq, CEq for CDq and MR for Ml. Eq is the treatment 
e = 1 

facility capital cost when total extraction rate is between design treatment capacity CEq.1 

and CEq; and MR is the total number of alternative design treatment capacities. 

Treatment capacity CEo is 0. 

The first management objective function is a combination of mixed-integer 

programming (well installation cost) and combinatorial optimization (discrete facility 

capacity). Traditional optimization techniques such as mixed-integer nonlinear 

programming cannot apply to equation (1) which is not differentiable. An advantage of 

SA, GA and PRSA is they do not need function derivatives 

First and second stage management model constraints include the following: 

1. Upper and lower bounds on injection and extraction rates 

2. Bounds on aquifer hydraulic heads at injection and extraction wells 

3. Upper bound on final contaminant concentration needed to achieve a cleanup standard 

Vk E 'I' (3) 

where Ck.Tc = contaminant concentration at node k by the end of time period Te (M!L3
); 

C,1 = contaminant concentration of cleanup standard (M!L3
); and 'I' = a set of locations 

where cleanup standard concentration are enforced. In this study, 'I' includes all study 

area nodes. 

·' 
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4. Upper bound on concentration at specific locations to assure capture (prevent 

unacceptable concentration migration) 

(4) 

where C.,, = contaminant concentration resulting at node o by the end of period t 

(MIL'); Cc, = maximum allowable contaminant concentration (M/L3
); and D. = a set of 

monitoring wells. 

In the second stage, we plan to use the wells suggested for installation by the first 

stage. However, in this stage we minimize the cost of injection, extraction and treating 

water at time-varying rates. We must consider the injection and treatment facility costs 

since those are functions of pumping rates. Thus, the second stage objective function is: 

M" ( 1 M' I 
Minimize U = ~ (l+i)'Y, ~ CP(e) p(e, t)) 

where U =total present worth of pumping and facility capital costs; p(e,t) =injection or 

extraction rate at location e for stress period t (L3/T) (a stress period is a period of 

unchanging pumping); M" = total number of stress periods; yP = stress period duration 

(T). Injection and treatment facilities are constructed before enhanced bioremediation 
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commences. Facility capital costs are determined by the capacity requirement. Injection 

and treatment facility capacities must not be less than the greatest total injection and 

extraction rates, respectively. The second phase S/0 model employs the same constraints 

as the first phase. 

PARALLEL RECOMBINATIVE SIMULATED ANNEALING 

Simulated Annealing and Genetic Algorithms 

The study of GAs has been well documented by many researchers [Holland, 

1975; Goldberg, 1989; Davis, 1991; Michalewicz, 1992; Mitchell, 1996; Back, 1996; 

Back et al., 1997]. GAs have been applied to many water resources management 

problems such as pipe network [Simpson et al., 1994; Dandy et al., 1996], groundwater 

remediation [Ritzel et al., 1994; McKinney and Lin, 1994] and multireservoir operation 

[Oliveira and Loucks, 1997]. GAs are naturally parallel and can be easily run on 

networks or parallel computers. They iterate a entire population using crossover, 

mutation and selection operators. GAs have no formal proof of convergence and lack 

good control of convergence. 

On the other head, SA can be mathematically proven to converge to global 

optimal solutions. The proof mainly depends on the annealing schedule. By slowly 

decreasing the temperature, SA can use more iterations to control the convergence to 

optimality. SA can be viewed as a sequence of homogeneous Markov chains. This makes 

paralleling simulated annealing to accelerate convergence very difficult. Recently, 
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researchers have investigated hybrid genetic annealing algorithm (GAA) approaches that 

combine desirable attributes of GA and SA methods [Sirag and Weisser, 1987; Brown 

et al., 1989; Boseniuk and Ebeling, 1991; Lin et al., 1993; Chen and Flann, 1994; 

Mahfound and Goldberg, 1995; Yong et al., 1995; Varanelli and Cohoon, 1995; Jeong 

and Lee, 1996]. The intended result is a general-purpose optimization algorithm that has 

the good SA convergence control and the efficient GA parallelization. Chen and Flan 

[1994] investigated 14 hybrid methods of combining GA and SA. For nine optimization 

problems, combining GA crossover and mutation operators with SA annealing schedule 

has yielded the best performance. Varanelli and Cohoon [1995] used population-oriented 

simulated annealing (POSA) to solve a VLSI network partitioning problem. Their results 

showed that POSA converged to a better optimal solution than GA for the same CPU 

time. 

Goldberg [1990] introduced the annealing schedule and the Boltzmann 

distribution to help prove GA convergence to global optimality. Mahfound and Goldberg 

[1995] presented a parallel recombinative simulated annealing (PRSA) algorithm and 

proved its asymptotic global convergence. For their test problems, PRSA consistently 

converged to the global optimum. The PRSA algorithm effectively combines simulated 

annealing and genetic algorithms to offer the user control over convergence. 
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Implementation of PRSA 

PRSA implementation is illustrated in Figure I. Initially, we set a sufficiently high 

annealing temperature To for exploring the solution space. Annealing temperature is a 

control parameter ofPRSA convergence. 

The initial population P0 of the decision variable values = (XI0
, X2°, X3 °, ...... , 

XN '), is randomly generated. N is the population size. XI 0 represents the first system 

configuration in the initial population. It is coded as a binary string. The precision of a 

decision variable value determines its binary string length. System configuration costs are 

represented by cost function. 

A new generation of system configurations is produced by three processes: 

crossover, mutation and Boltzmann trial. These processes are repeated N/2 times to 

generate the N new system configurations of the next generation pk+l In more details, 

two system configurations from the previous population (Pk) are chosen as parents 

without replacement. Using the crossover and mutation operators of GA, two parents 

produce two children. Then, the system costs of the two children are evaluated. Two 

Boltzmann trials are conducted. A Boltzmann trial refers to a competition between the 

system costs of a parent and a child. A parent has a 1/[I+exp((Cp,ent-Cchild)/Tn)] 

probability of wining this trial. A high initial temperature To is used to ensure that both 

parent and child are equally likely to win the trial even if a child is a much better solution 

(lower cost) than a parent, CP"'"' << Cchiid . This allows what is termed an uphill move in 

the decision space to permit escape from local optimal solutions. The winner of a trial is 

selected (as an optimal solution) for use as a parent of the next generation. After G 
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evolved generations, we reduce the temperature usmg the SA temperature update 

function Tn+l = aT •. As Tn+l decreases, uphill moves become more difficult. At low 

temperature, a system configuration that increases cost has little chance to win the 

Boltzmann trial because of low probability. The stopping criterion of PRSA is a final 

temperature Tr. The algorithm terminates when temperature Tr is passed. 

Improvement ofPRSA 

New SA or GA techniques can potentially improve PRSA performance. Sample 

techniques are (1) Gray coding scheme, (2) explicit well installation coding, (3) uniform 

crossover, (4) threshold accepting function, and (5) segregated genetic algorithm. 

Most GA encoding scheme use binary strings (0 and 1 bits) to represent decision 

variables [Holland, 1975]. Some researchers suggested real-valued coding (floating point 

representation) for real parameter optimization to increase efficiency and numerical 

precision [Wright, 1991; Goldberg, 1991; Janikow and Michalewicz, 1991; Eshelman 

and Schaffer, 1993; Surry and Radcliffe, 1997]. In this study, we choose Gray coding as 

the coding scheme ofPRSA. 

Gray coding can help in the following marmer. Although Gray coding uses 0 and 

1 bits to represent decision variables, it is an improvement because it reduces Hamming 

distance to 1 for adjacent decision variables. Hamming distance is defined as the number 

of bits difference between neighborhood substrings. The Gray code ensures that two 

similar solutions are represented by two similarly coded strings. Hinterding et al. [1995] 

found Gray code performance usually superior to binary code for function optimization. 
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Dandy et al. [ 1996] use Gray code to improve GA performance for pipe network 

optimization. Rana and Whitley [ 1997] prefer Gray coding for bit representation in GA. 

In groundwater remediation design involving well installation, installation cost is 

usually treated as an implicit decision variable such that well installation cost is zero if 

pumping rate is zero or close to zero [McKinney and Lin, 1995; Sawyer and Ahlfeld, 

1995]. Huang and Mayer [1997] use well locations as explicit decision variables in P&T 

GA optimization. They encode the x and y coordinates of well locations into a GA 

substring. Their objective is to minimize P&T cost by optimizing well locations and 

pumping rates simultaneously, but well installation cost is still determined by pumping 

rate (i.e. no well installation if pumping rate is zero). 

Here we propose a new approach which we termed explicit well installation 

coding. Each pumping well installation is explicitly coded as 1 or 0 bit values 

representing whether the well is or is not installed, respectively. Initially, PRSA randomly 

generates system configurations indicating injection and extraction well installation. 

Using crossover, mutation, and Boltzmann trial, PRSA optimizes the number of installed 

pumping wells and pumping rates to minimize system cost. 

Crossover, mutation and selection are three important GA operators. Two parent 

solutions use crossover and mutation to create two child solutions. Then, the selection 

operator selects solutions from the current population to form the next evolved 

generation. Mutation is usually a background operator in GA. The two main operators 

are crossover and selection. Traditional crossover operators are one-point and two-point 

crossover [Goldberg, 1989]. We choose uniform crossover for PRSA because Syswerda 
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[1989] shows that uniform crossover is superior to one-point and two-point crossover 

theoretically and empirically. In GA water resources applications, uniform crossover 

applications include water distribution networks design [Savic and Walters, 1997] and 

multireservoir operation [Oliveira and Loucks, 1997]. 

Traditional GA selection operators include proportional, tournament, ranked­

based selections [Back et al., 1997]. However, PRSA employs Boltzmann trial as its 

selection operator [Mahfound and Goldberg, 1995]. A Boltzmann trial uses annealing 

temperature to control selection pressure, which is described previously. To reduce S/0 

model simulation requirements, we introduce a threshold accepting function (T AF) 

[Dueck and Scheuer, 1990; Moscato and Fontanari, 1990; Althofer and Koschnick, 

1991] to reject expensive system design without requiring additional simulations. We will 

contrast the optimization results of Boltzmann trial and T AF for in-situ bioremediation 

system design application. 

This TAP (Figure 2) uses a deterministic rule to accept or reject a new 

configuration. Total cost now includes total system and penalty costs. The penalty cost is 

based on constraints violated according to biodegradation model simulation. After the 

crossover and mutation operators generate a new configuration (child), we calculate 

Cchitd 'l"'•m (child system cost) and t..C,.,,m, (Cvnent 'Y'''m-Cchitd 'l"''m), or the difference 

between parent and child system costs. If (1lC,Y',,m-parent penalty cost) is larger than the 

current temperature T., the new configuration is automatically rejected. Under this 

condition, it is not necessary to run the simulation model because the new configuration 
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has no chance to be accepted at the current Tn even if the new penalty cost is zero. If 

(11C,y,1,m-Parent penalty cost) is smaller than current Tn (i.e. new configuration reduces 

the system cost, or new configuration increases the system cost but has a chance to be 

accepted), we run the simulation model and estimate a child penalty cost. 11C, ( Cp,rent-

C,h;ld), is calculated. T AF is used again to determine whether to accept or reject the new 

configuration. 

Constraint handling is an important issue for many design problems. Michalewicz 

and Schoeauer [1996] review constraint handling methods applied in evolutionary 

algorithms. Most of these methods employ penalty functions that penalize infeasible 

solutions. Here we deal with inequality constraints by expanding the objective function 

to include penalty cost for infeasible solutions. A penalty cost fi.mction is defined as 

fi(X) =PeG) gi(X) for violated constraint gi(X) > 0 

= 0 for satisfied constraint g j(X) :::: 0 
(6) 

where fj(X) is a penalty cost function for t constraint (gj(X) ::::0); PeG) is a penalty 

coefficient for j'h constraint. The penalty cost is calculated by the distance from feasibility 

(acceptability) multiplied by a penalty cost coefficient for the violated constraint (i.e. if 

gj(X) > 0). If the constraint is satisfied (i.e. if gj(X):::: 0), the penalty cost is zero. 

SpecifYing penalty coefficients is challenging. A high penalty coefficient will 

ensure most solutions lie within the feasible solution space, but can lead to costly 
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conservative system designs. A low penalty coefficient permits searching both feasible 

and infeasible regions, but can cause convergence to an infeasible system design. 

Le Riche et al. [1995] introduce a segregated genetic algorithm to reduce penalty 

weight influence. The segregated GA uses two penalty coefficient values instead of one. 

It maintains two populations: individuals selected from a large penalty population will 

more likely stay in the feasible region; individuals selected from a small penalty 

population will probably remain in the infeasible region. Eventually, the optimization 

algorithm will converge to the feasible optimum from both sides of the feasible region 

boundary. We adapted this segregated method to PRSA procedures: 

Step 1. Generate two parent populations randomly. Evaluate the objective 

function values of one population using large penalty coefficients. Evaluate the 

other population using small penalty coefficients. 

Step 2. Each parent population uses crossover and mutation to generate its child 

population. 

Step 3. Evaluate the objective function values of child population oflarge penalty parent 

population using large penalty coefficients. Evaluate the objective function 

values of child population of small penalty parent population using small penalty 

coefficients. 

Step 4. New large penalty parent population is selected by competition between the 

current large penalty parent and child populations using Boltzmann trial or T AF. 

New small penalty parent population is selected by the competition between the 

current small penalty parent and child populations using Boltzmann trial or T AF. 



Step 5. Exchange individual solutions between the new large penalty and small penalty 

parent populations. 

Step 6. Continue step 2 through step 5 until stopping criterion is satisfied. 

GROUNDWATER BIODEGRADATION MODELS 

19 

Computer models incorporating microbial growth and biodegradable pollutants 

transport can be classified according to conceptual approach [Baveye and V alocchi, 

1989]. The first approach, which has been applied to biological wastewater treatment, 

uses a biofilm concept to simulate trace-organics biodegradation in the subsurface 

[Rittmann et al., 1980]. The second approach assumes contaminant transport and 

biodegradation occur in small discrete colonies attached to the surface of the solid 

aquifer particles [Molz et al., 1986]. They assume that a microcolony has the form of a 

cylindrical plate with radius and thickness and can be viewed as a simplified biofilm 

model. The third approach is strictly macroscopic and makes no assumption about 

microorganism distribution within the pore space. Removal of organic contaminant is 

assumed to be by Monod or Michaelis-Menten kinetics involving aerobic degradation 

and anaerobic degradation in the subsurface [Borden and Bedient, 1986]. A simplified 

simulation model using the third approach, BIOPLUME II, assumes that aerobic 

biodegradation can be treated as an instantaneous reaction [Rifai et al., 1988; Rifai and 

Bedient, 1990]. 

The BIOPLUME II model uses a dual-particle mover procedure to simulate 

subsurface oxygen and contaminants transport. It was developed by modifYing a two-
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dimensional transport model -- the method of characteristics (MOC) model [Konikow 

and Bredehoeft, 1978] . The contaminant and oxygen transport equations are solved at 

every time step to calculate contaminant and oxygen distributions [Rifai et al., 1988] : 

o(Cb) 
ot 

o(Ob) 

ot 

1 r o oC o J C'W - --(bD .-)--(bCV) --
R ox. '·' ox. ox. ' n 

C I J I e 

[ 
o oO o J O'W -(bD .-)--(bOV) --

ox, '·' oxj ox, ' n, 

(7) 

(8) 

where C and 0 = contaminant and oxygen concentration (MIL3
), respectively; C' and 0' 

= contaminant and oxygen concentration in a source or sink fluid (MIL3
); 11e = effective 

porosity; b = aquifer saturated thickness (L); t = time (T); x; and y1 = cartesian 

coordinates (L); W = volume flux per unit area (LIT); V1 = seepage velocity in the 

direction of x; (L/T); R, = retardation factor for contaminant; and D 1J = hydrodynamic 

dispersion coefficient (L2/T). 

The contaminant and oxygen plumes are combined usmg superposition to 

simulate instantaneous reaction between oxygen and the contaminants. Contaminant and 

oxygen concentration decreases at a node are calculated from 

~Cac = 0/F ; 0 = 0 if C > 0/F (9) 



Ll.CRo = CF ; C = 0 if 0 > CF 
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(10) 

where Ll.CRc and Ll.CRo = calculated change in contaminant and oxygen concentrations, 

respectively; F = ratio of consumed oxygen to consumed contaminant. 

BIOPLUME II can be calibrated and applied using data such as hydrogeological 

parameters, contaminant chemical and physical properties, contaminant source 

concentrations, and background oxygen concentration. Limitations of the BIOPLUME II 

model are : (1) it is unsuitable for simulating slowly biodegraded contaminants under 

aerobic condition because of its instantaneous reaction assumption, and (2) it is incapable 

of simulating anaerobic processes affected by other electron acceptors such as nitrate, 

ferric iron, sulfate and inorganic carbon. Here we use BIOPLUME II to simulate aerobic 

biodegradation processes and contaminant transport within a simulation/optimization 

management model. 

STUDY CASE 

Figure 3 illustrates the hypothetical study area and the initial contaminant plume. 

Table 1 presents BIOPLUME II input parameters for the 510 m by 690 m study area. 

The homogeneous aquifer has a hydraulic conductivity 6 x 10"5 m/sec and 15 m aquifer 

thickness. To the West and East are fixed head boundaries -- 30.5 and 27.7 m, 

respectively. Groundwater flow is from West to East. The initial hydraulic gradient is 

0.004. To the North and South are no-flow boundaries. Groundwater flow simulation is 

steady state. The contaminant retardation factor is assumed to be 1. 
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Figure 3 illustrates the plume configuration after 5 years if no action is taken. It 

will move and expand, reaching the monitoring wells. Natural aerobic decay reduces the 

total contaminant mass by only 16 %. An in-situ bioremediation system should be 

installed to contain the contaminant plume and enhance contaminant biodegradation. 

To design an in-situ bioremediation system, the optimization will consider 

potential injection and extraction wells. Seven wells within the plume can potentially 

inject water containing oxygen and nutrients at rates between 0 and 20 gpm (1.26 

liter/sec). Upper and lower bounds of hydraulic head for the injection wells are 33.5 and 

27.7 m, respectively. The initial oxygen concentration is 5 ppm except in the contaminant 

plume area, where the oxygen concentrations have been consumed by aerobic 

biodegradation. The vertical exchange of oxygen with the unsaturated zone is assumed 

to be insignificant. The injected oxygen concentration is 8 ppm. BIOPLUME II model 

assumes that injected water provides enough nutrients to support microbial growth in the 

aquifer. 

Figure 4 illustrates the potential well locations considered by the optimization. 

Six downgradient wells can potentially extract contaminated groundwater at rates 

between 0 and 20 gpm. The upper and lower bounds of hydraulic head for the extraction 

wells are 30.5 and 24.4 m, respectively. The cleanup standard, Cct , is 3 ppm for the 

entire study area. 

Figure 4 also identifies monitoring wells (not subject to optimization) used to 

observe whether the plume is captured during a three-year remediation period. Because 

the system can inject potentially much water, additional monitoring wells are installed in 
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the Western boundary. This helps ensure that unacceptable plume spreading does not 

result. The maximum contaminant concentration allowed to reach monitoring wells, C" , 

is 1 ppm. 

Table 2 lists cost coefficients used to estimate system costs. The injection 

coefficient is based on the nutrients, oxygen and pumping operation costs. The extraction 

cost coefficient considers cost of treating and pumping contaminated groundwater. 

Treatment includes air stripping and granular activated carbon. Injection and treatment 

facilities capital costs are based on their capacities. 

APPLICATIONS AND RESULTS 

Optimal In-situ Bioremediation System Design with Fixed Cost 

The first stage management goal is to minimize total system cost which includes 

pumping/treatment, well installation, and facilities capital costs. Below we contrast 

abilities of SA ,GA and PRSA varieties to achieve this goal. In SA we use a threshold 

accepting function and Corana's neighborhood search [Corana et al., 1987] to reduce 

SA computation cost and extend its ability to deal with continuous variables. Our two 

GA formulations are based on the methodology of McKinney and Lin [1994], but 

include replacing binary code with Gray code and use of uniform crossover. Our GAs 

also extend tournament size of tournament selection from 2 to 4 to increase selection 

intensity [Blickle and Thiele, 1996] and to improve convergence. We implement 

segregated GA to refine search in both feasible and infeasible regions. The parameter 

choice of GAs and PRSA is problem-dependent. After some test runs, we choose 
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population size 100 for optimizing system design with fixed cost and 200 for minimizing 

cost of time-varying pumping strategy. Crossover and mutation rates used for GAs and 

PRSA are 0.9- 1.0 and 0.01 - 0.03, respectively. 

We use six formulations to compare the three optimization algorithms. Because 

of the stochastic nature of these algorithms, we run each formulation twenty times using 

different random seeds. Table 3 lists maximum, minimum and average system costs of 

these runs for six formulations. Figure 5 illustrates the error bars of six formulations. The 

one 
upper and lower caps indicate the average system cost plus or minus standard deviation, 

J\ 

respectively. The large standard deviation reflects that the optimization algorithm does 

not converge to the same optimal solution consistently. 

PRSA2 (PRSA with Boltzmann trial and explicit well installation) designs the 

least-cost system ($188,6 00). It also has the lowest average system cost ($193,900) and 

the smallest standard deviation (Figure 5). GA2 and PRSA2 perform well because of 

explicit well installation coding. GAl and PRSAl using implicit well installation do not 

converge to optimal solutions. It is difficult for GAl and PRSAl to reduce well numbers 

because implicit well installation depends on whether or not pumping rates reach zero. 

SAl shows that SA can converge to optimal solutions but is not as stable as PRSA (note 

the large standard deviation in Figure 5). Threshold accepting helps SAl and PRSA3 

converge to optimal solution using fewer simulations. For example, PRSA3 reduces 

average number of simulation by 43% compared with PRSA2, while still maintaining 

reasonably good solution quality (low average system cost and small standard deviation). 
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Figure 6 shows the convergence behavior of SA, GA and PRSA. It illustrates the 

change of system cost vs. number of BIOPLUME II simulations as the optimization 

algorithms progress. We compare the best results of six formulations (minimum system 

cost of six formulations) in Figure 6. PRSAl and GAl converge slowly because of 

implicit well installation. GA2 has the fastest convergence but additional simulations do 

not improve solution quality. PRSA2 uses uphill moves (Boltzmann trial) and explicit 

well installation to gradually converge to optimality. SAl and PRSA3 employ threshold 

accepting to reject some expensive system designs without requiring simulation. This 

reduces total simulations and computation effort. Table 4 compares optimal systems 

designed by the different approaches. All three algorithms design similar systems. All use 

three or four injection wells and one extraction well. However, the PRSA yields the least 

cost strategy. 

Time-varying Pumping Strategy 

The second stage management goal is to minimize injection, extraction and 

treatment costs plus facility capital costs that are functions of the flow rates. Employing 

the four wells (Ul, U2, U4 and El) selected in the first stage optimization, we develop 

time-varying pumping strategy for a three-year remediation consisting of six half-year 

pumping periods. Figure 7 contrasts steady and time-varying pumping strategies. 

Optimal time-varying pumping reduces total injection and extraction volumes by 27 % 

and total injection and extraction cost by 31% when comparing with the optimal steady-
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pumping (Table 5). This supports the finding of Minsker (1995] that time-varying 

pumping can manage in-situ bioremediation better than steady pumping. 

Figure 8 shows contaminant plume response to optimal time-varying pumping. 

The pumping strategy prevents contaminant from reaching monitoring wells and 

achieves the final 3 ppm concentration cleanup standard. During management periods 1 

to 4, injection wells U2 and U4 employ nearly their full pumping capacity 20 gpm (1.26 

liter/sec) to enhance contaminant biodegradation [see Figure 7 (b)]. For periods 5 and 6, 

three injection wells employ low rates below 2 gpm (0.126 liter/sec) because injected 

oxygen can no longer reach contamination that is moving eastward [see Figure 8 (e) and 

(f)]. Extraction well E1 begins at a low pumping rate. Later, extraction increases to 

enhance mixing of oxygen and nutrients with contaminant. During the final periods, the 

extraction well serves mainly to contain plume migration. 

For a short term remediation project, the first stage goal of reducing capital costs 

is more important than the second stage goal of reducing pumping costs. Table 6 

compares pumping volumes and system costs for two cases, A and B. Design A 

configuration results from the first stage PRSA optimization. Design B is selected based 

on experience instead of optimization. Design B employs more wells than design A. 

Design B reduces injection volume by 25% and has lower pumping cost. The four 

injection and three extraction wells of design B efficiently use injected oxygen for 

biodegradation. However, $4,400 pumping cost reduction cannot offset the $44,000 

fixed cost increase due to additional wells and treatment facility capital costs (Table 6). 
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This illustrates that minimizing in-situ bioremediation system design while including fixed 

cost is sometimes more important than merely minimizing time-varying pumping cost. 

CONCLUSIONS 

We present a parallel recombinative simulated annealing (PRSA) model to 

optimize in-situ bioremediation system design. The new simulation/optimization model 

determines the pumping (extraction/injection) strategy that minimizes total system cost, 

reduces contaminant concentration to cleanup standard, and prevents contaminant plume 

migration. To improve PRSA convergence and performance we employ Gray code, 

uniform crossover, explicit well installation coding, threshold accepting function (T AF) 

and segregated genetic algorithm. Compared with Boltzmann trial, T AF reduces 

computation cost 43 % by rejecting expensive system design without requiring 

simulations. 

PRSA minimizes total system cost (pumping/treatment, well installation and 

facility capital costs) better than SA and GA. An optimal time-varying pumping strategy 

requires 31 % less pumping costs than an optimal steady pumping strategy. Optimizing 

system design while including fixed costs more significantly impacts • total system cost 

than merely minimizing pumping/treatment costs for the 3-year in-situ bioremediation 

project. 

Parallel recombinative simulated annealing is a general-purpose optimization 

approach that has the good convergence of SA and the efficient parallelization of GAs. 
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Here we have shown its efficiency and flexibility for optimizing system installation design 

and time-varying pumping. 
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Table 1. Input parameters of BIOPLUME II simulation model 

Grid size 

Cell size 

Input parameter 

Hydraulic conductivity 

Aquifer thickness 

Hydraulic gradient 

Longitudinal dispersivity 

Transverse dispersivity 

Effective porosity 

Retardation factor 

Anisotropy factor 

Injected oxygen concentration 

Background oxygen concentration 

Remediation time 

Value 

)9 X 25 

30m x 30m 

6 x 10 -s m/sec 

15m 

0.004 

10m 

2m 

0.3 

1.0 

1.0 

8 ppm 

5 ppm 

3 years 
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Table 2. Cost function coefficients 

Coefficients Value 

Discount rate 0.05 

u for injection cost (oxygen, 300 ($ per gpm-year) 
nutrient and pumping operation) 

U for extraction cost (treatment 1,000 ($per gpm-year) 
and pumping operation) 

ell'_ (well installation cost) 12,000 ($ per well) 

D 20gpm = $ 20,000 
D 40gpm = $ 24,000 
D 60gpm = $ 28,000 

D ( injection facility capital cost ) D SOgpm = $32,000 
D lOOgpm = $ 36,000 
D 120gpm = $ 40,000 
D 140gpm = $ 44,000 

E 20gpm = $ 30,000 
E 40gpm = $ 38,000 

E ( treatment facility capital cost ) E 60gpm = $ 46,000 
E SOgpm = $ 54,000 
E lOOgpm = $ 62,000 
E 120gpm = $ 70,000 

Note : 1 gpm = 0.06309liter/sec. 



Table 3. Optimal system costs for SA, GA and PRSA 
(20 runs for each formulation) 

Average 
Formulation Max Average Min number of 

.............................................. m ........................ m ............... J~>. ...................... s.i~t.~l_![~ig~s. .... . 
SAl 248,386 215,000 197,300 7,767 

GAl 315,493 273,900 230,600 13,100 

GA2 227,649 209,000 196,500 13,100 

PRSAI 280,207 256,600 239,400 13,300 

PRSA2 199,333 193,900 188,600 13,300 

PRSA3 202,734 196,700 191,900 7,591 

SAl : simulated annealing with continuous variables and threshold accepting 
GAl : genetic algorithm with implicit well installation 
GA2 : genetic algorithms with explicit well installation 
PRSAl : PRSA with Boltzmann trial and implicit well installation 
PRSA2 : PRSA with Boltzmann trial and explicit well installation 
PRSA3 : PRSA with threshold accepting and explicit well installation 
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Table 4. Optimal system from SA, GA and PRSA 

Well Injection Treatment 
installation Injection Extraction facility facility System 

cost cost cost capital capital cost 

....................... .... . ...... <~>. ...................... m ..................... ($.}.. . . . .. . <:o..s.~.C~). . . .<;9.s.~ .. m ................. m ......... . 
SA 60,000 36,200 43,100 28,000 30,000 

GA 48,000 38,100 52,400 28,000 30,000 

PRSA 48,000 37,600 44,900 28,000 30,000 

SA employs 4 injection wells (U1,U2,U3, and U4) and 1 extraction well (E2) 
GA employs 3 injection wells (U1,U2, and U4) and 1 extraction well (E2) 
PRSA employs 3 injection wells (U1, U2, and U4) and 1 extraction well (E2) 

197,300 

196,500 

188,500 



Table 5. Pumping volumes and costs comparison of steady and 
time-varying strategies 

Injection Extraction Injection Extraction 
volume volume cost cost 

................... -··-········ ..... . . . . ... __ .(g~llgll,) ............. _(g_a._ll.o..!lJ. ........ _ _(~} ................... m ... _ __ 

Steady pumping 72,647,793 26,043,548 37,600 44,900 

Time-varying 
pumpmg 52,376,469 19,195,059 25,800 31,500 

Note: 1 gallon= 3. 78534 liters 

39 



40 

Table 6. Comparison of pumping volumes and system costs for different 
system designs using time-varying pumping 

Well 
Injection Extraction Pumping installation System 

Design volume volume cost and facilities cost 
(gallon) (gallon) ($) capital cost ($) 

($ 

A 52,367,469 19,195,059 57,300 106,000 163,300 

B 39,237,938 23,762,873 53,000 150,000 203,000 

Design A has 3 injection wells (U1,U2, and U4) and 1 extraction well (E2) which 
is selected by PRSA optimization. 

Design B has 4 injection wells (U1,U2, U3 and U4) and 3 extraction wells 
(E1,E2,and E3) which is selected based on experience. 



initialize To; 
. . . 1. po { X o X o X o } tmtlatze = 1, 2, ........ N; 

evaluate C0 = cost function(P0
); 

k, n = 0; 
while (T. > Tf) 
{ 

} 

fori= 1 toG 
{ for j = 1 to N/2 

} 

{ select two parents without replacement from Pk; 

} 

generate two children using crossover and mutation operators; 
evaluate Cchild = cost function(Xcruld); 
if ( random(O, 1) < 1/[l+exp((Cp,ccnt-Cohi!d)/T.] ) 

select Xr,rent; 
else 

select Xcru1d; 

Pk+l = {X k+l X k+l 
1 ' 2 ' .... X k+l} 

., N ; 

k = k +1; 

Tn+l = aTn; 
n=n+ 1; 

Figure 1. Pseudo code of parallel recombinative simulated annealing 
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CP'""' •Y•tem = Parent System Cost; 
CP'""' = Cp,ent ,y,tem + Parent Penalty Cost; 
Ccruld •y•tem = Child System Cost 

~Csystem = Cchild system - Cparent system 

if(.'lC,y,tem- Parent Penalty Cost<= Tn) 
run simulation model; 
calculate Child Penalty Cost; 
Ccruld = Ccrutd •Y•tem + Child Penalty Cost; 
LlC = Cc!Uld - Cp,rent 
if (.'lC <= T n) 

return (1); /*accept new configuration*/ 
else 

return (0); /* reject new configuration*/ 
else 

return (0); /* reject new configuration*/ 

Figure 2. Pseudo code of threshold accepting function applied to 
optimal in-situ bioremediation system design 
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1~ (_0 ::> 
~ g-Jer Shieh, 11:35 PM 3/24/98 , Re: 2nd ~aper news and more di 

Return-path: <hjshieh@tpts5.seed.net.tw> 
Date: Tue, 24 Mar 1998 23:35:42 +0800 
From: Horng-Jer Shieh <hjshieh@tpts5.seed.net.tw> 
Subject: Re: 2nd paper news and more discussion on 1st paper 
To: "\"Richard C. Peralta\"" <peralta@cc.usu.edu> 

Dear Dr. Peralta: 

You can send the comments of WRR to the following address: 

Horng-Jer Shieh 
134 Min-tsu Road 
Hsinchu, 300 
Taiwan, R.O.C. 

~ or you can fax t6 my office fax number;@ 886-2-2325-7474 

After reviewing the comments, I will discuss with you about the 
resubmitting the smaller formate paper to WRR. 

About the 1st paper, it is true that 'Global optimality can be 
theoretically proven for small nonlinear problems, but has not been 
proven for complex remediation problems".;@The following references are 
the list of paper which applied simulated annealing (SA);@ to solve 
groundwater remediation problem. None of paper have prove that their 
solutions are global optimal solutions, but they all indicates that SA 
is a global optimizer.;@ 
i @ 

Dougherty, D. E. & Marryott, R. A., Optimal groundwater management: 1: 
Simulated annealing. Water Resources 
;@j@j@ Research, Vol. 27, No. 10, 1991, pp. 2493-2508. 
Kuo, C.-H., Michel, A.-N. & Gray, W. G., Design of optimal 
pump-and-treat strategies for contaminated groundwater 
;@;@;@ remediation using simulated annealing algorithm. Advances in 
Water Resources, Vol. 15, No. 2, 1992, 95-105. 

-

I Printed for "Richard C. Peralta" <peralta@cc.usu.edu> 1 I 



Dr. Richard C. Peralta 

Water Resources Research 
Published by the American Geophysical Union 

Dr. Samuel C. Colbeck, Editor 
Renee Melendy, Editor's Assistant 

USA CRREL, 72 Lyme Road 
Hanover, New Hampshire 03755-1290 USA 
Phone: 603/646-4844; Fax: 603/646-4820 

wrr@crrel.usace.anny.rnil (e-mail) 

March 9, 1998 

Biological and Irrigation Engineering 
Utah State University 
Logan, UT 84322-4105 
USA 

RE: WR97-605 Optimal in-situ bioremediation system design using parallel recombinative simulated 
annealing 

Dear Dr. Peralta: 

I regret to inform you that I must decline your manuscript for publication in Water Resources 
Research in its present form. However, the editors think that a new manuscript based on this work might 
eventually be acceptable for publication. This will probably require reducing it to the length of a 
Technical Note. 

All three reviewers have identified the contribution of this manuscript to be the application of an 
algorithm (PRSA) to a problem of interest to the water resources community, namely, groundwater 
remediation management. You show that this algorithm can be effectively used for this problem. We 
think this type of contribution is best presented as a Technical Note. This could best be done by a 
significant reduction in the literature review and introductory material. 

There is general agreement that the application of the new algorithm is technically sound. Most of 
the review comments address issues of clarity of presentation or value of the results. Please consider the 
marked manuscripts too. 

The reviews are included because they should prove to be very useful in rewriting the manuscript. I 
encourage you to resubmit your manuscript after you undertake the major revisions suggested. However, 
because the required revisions are so extensive, I have decided to treat a rewritten manuscript as a new 
submission. 

Please provide 5 copies, along with a detailed list of your responses to reviewers' comments. Your 
manuscript will receive a new manuscript number and will be re-reviewed. My decision to accept or to 
decline the manuscript will be made subsequent to that review process. 

Thank you for your interest in WRR and we hope to hear from you in the future. 

Enclosures 

Sincerely, ///"' /" 

s~c~-:L 
4?, 

Samuel C. Colbeck 
Editor 



Additional comments of the Associate Editor on 
"Optimal in-situ bioremediation system design using parallel recombinative simulated 

annealing" 
WR97-605 

I) The optimization formulation solved in this paper is described beginning on page 7. 
The formulation is constructed in two stages. Apparently, the well locations are 
selected in the first stage and the well rates and facility sizes are selected in the 
second stage. This method of formulation would appear to preclude the simultaneous 
selection of optimal well rates, locations and facility sizes. Some of the works cited 
by the authors have noted the importance of the well location problem in remediation 
design. The two stage formulation presented here may yield solutions that are not 
optimal relative to a formulation that allows for simultaneous selection of optimal 
well rates, locations and facility sizes. 

a) If the possibility of suboptimal solutions is present it should be noted in the 
text. 

b) The authors should explain why the formulation is constructed in this manner. 
Is it a requirement of the algorithm? Could other formulations also work with 
this algorithm? Is there some advantage to this formulation? 

2) The authors state mixed integer formulations do not apply to (1). It is not clear that 
this is true. It appears that the problem is the staircase function defined by (2) for 
computing D and E in (1). Consider a formulation in which a new binary variable is 
defmed for each of the possible states M" in (2). One of these new variables can be 
multiplied against each of the inequalities in (2). By setting these new variable to 
zero or one the constraint is effectively turned off or on. The formulation is 
completed by imposing the constraint that the sum of binary variable is 1 and that D 
is defined as the sum of the products of binary variables and individual capital costs. 
This is certainly a crude formulation- more clever ones may be available, but it 
appears that this problem could be formulated as a mixed integer problem. 

3) The utility of Table 6 and associated text is unclear. It appears that this is an attempt 
to compare the current algorithm with a scheme determined by conventional 
engineering practice (i.e. non-optimal). This is an important comparison in concept, 
but is very difficult to implement. In my opinion, this can only be fruitfully done by 
using an algorithm on a field site where a scheme has already been designed using 
conventional methods. The authors should consider dropping this. 
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Reviewer's co=ents for "Optimal in-situ bioremediation system design using parallel 
recombinative simulated annealing", by Shieh and Peralta, WR97-605. 

This paper presents a coupled simulation/optimization (S/0) management model for 
optimizing in-situ bioremediation system design. The authors use parallel recombinative 
simulated annealing (PRSA) optimization combined with the BIOPLUME II simulation 
model. The coupled S/0 model selects the appropriate combination of design variables to 
remediate a hypothetical contamination problem for the least cost. 

The primary focus of the paper is on the optimization method, PRSA, which is a relatively 
new hybrid method that has not previously been applied to groundwater management 
problems. The simulation model is not new. Neither is the idea of incorporating 
bioremediation design into the S/0 framework, as noted by the authors. Overall, this paper 
is well organized and well written and is worthy of publication in WRR. My co=ents and 
suggestions are provided below, as well as on the manuscript. 

My major criticism concerns the description of the optimization method(s) provided on 
pages 11-19. Most readers will not be familiar with these methods; I suggest the following 
changes to help clarify the manuscript: 

Page 11, paragraph 2. Expand the description of GAs slightly (perhaps a paragraph or two, 
at most). Describe the population approach, and the major operators (crossover, mutation, 
and selection) in more detail; some of this material appears later in the manuscript and can 
be removed from those sections. 

Page 13, paragraph 1. It would be helpful to introduce each of the control parameters (i.e., 
TO> T" a, N, G, etc.) at this point. How are they are selected? What are their significance? 

Page 13, paragraph 3. The first part of this paragraph needs to be clarified. How are the 
two parent configurations chosen (randomly, sequentially) from the population? Are these 
parents then excluded from further operations during the current generation? How are the 
Boltzmann trials carried out (between which parent and child)? 

Page 14, after paragraph 3. I suggest a short paragraph that explains in very general terms 
what Gray coding is. Briefly discuss the difference between binary coding and gray coding. 

Page 15, paragraph 3. How is the explicit well installation coding different from a binary 
installation code assigned to each potential well location after the rates have been selected 
(i.e., 0 for zero pumping, 1 for non-zero pumping)? This is not clear from the text. 
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Page 17, paragraph 1. TAF is used twice to accept or reject the new configuration. What 
would be the benefit or drawback of using TAF for the first selection (to eliminate 
unnecessary simulation runs) and a Boltzmann trial (to allow uphill moves) for the second 
selection? 

Page 19, description of Step 5. Are all the solutions exchanged after the current generation 
has been operated on, or are just the current selections exchanged? Need to clarify. 

Additional comments: 

Page 7, paragraph 2. I suggest using a variable other than i for the discount rate in the 
calculation of W1, since i and e denote injection and extraction elsewhere. Also, why are 
W2, W3, and W4 necessary if they all are equal to 1? 

Page 10, paragraph 2, equation (5). Again, I suggest using a different variable for the 
disconnt rate (other than i). Are w3 and w4 here the same as those used in equation (1); 
are they also equal to 1? 

Page 22, paragraphs 2 and 3. Why is it necessary to specify a lower bound on the hydraulic 
head of an injection well? Similarly, why is it necessary to specify an upper bound on the 
hydraulic head of an extraction well? 

Page 23, paragraph 2. Where did the cost coefficients come from? Are these established 
from field studies? Are they hypothetical? Have they been derived from other sources (i.e., 
is there some reference for the coefficients)? 

Page 24, paragraph 1. Values for the crossover and mutation rates should be discussed in 
more detail (if not here, then they should be described earlier, when crossover and mutation 
are originally introduced). 

Page 24, paragraph 2. It would be helpful to list the six different formulations and why they 
were selected right from the start of this discussion. 

Page 25, paragraph 2 and the discussion that follows. It is not clear which algorithms are 
compared in Figure 7. I assume that the second stage was conducted using PRSA, but 
which one (PRSA1, PRSA2, or PRSA3)? Which formulation was used for the steady 
pumping strategy. Please clarify. 

Page 26, paragraph 3. Design B was selected based "on experience". Please elaborate on 
the process used to select this design configuration. Was it intentionally over-designed (i.e., 
more wells than necessary) just to illustrate the point? Typical "experience", especially 
considering the simplicity of the hypothetical example problelll, would be to minimize the 
number of wells used in the design. 
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DESIGN USING 

PARALLEL RECOMB INA TIVE SIMULATED ANNEALING 

Horng-Jer Shieh and Richard C. Peralta 

Biological and Irrigation Engineering Department, Utah State University 

Abstract 

Presented is a simulation/optimization (S/0) model combining optimization with 

BIOPLUME II simulation for optimizing in-situ bioremediation system design. The 

\stofroodel uses parallel recombinative simulated annealing to search for an optimal 

design and applies the BIOPLUME II model to simulate aquifer hydraulics and 

bioremediation. Parallel recombinative simulated annealing is a general-purpose 

optimization approach that has the good convergence of simulated annealing and the 

efficient parallelization of a genetic algorithm. We propose a two-stage management 

approach. The first stage design goal is to minimize total system cost 

(pumping/treatment, well installation and facility capital costs). The second stage design 
-the. 

goal is to minimiz~ cost of a time-varying pumping strategy using the optimal system 

chosen by the first stage optimization. Optimization results show that parallel 

recombinative simulated annealing performs better than simulated annealing and genetic 

algorithms for optimizing system design when including installation costs. New explicit 

well installation coding improves algorithm convergence. Threshold accepting reduces 



2 

computation time 43 % by rejecting expensive system designs. Applying the optimal 

time-varying pumping strategy in the second stage reduces pumping cost by 31%. 

Key Words: in-situ bioremediation, groundwater remediation, aerobic biodegradation, 
optimization, parallel recombinative simulated annealing, simulated annealing, genetic 
algorithm. 

INTRODUCTION 

In-situ bioremediation for contaminated groundwater cleanup has emerged as a 

viable remediation technology because of cost -effectiveness and ability to achieve 

complete destruction of organic contaminants. Many successful applications of in-situ 

bioremediation for cleaning up petroleum hydrocarbons such as benzene, toluene, 

ethylbenzene, and xylene (BTEX) have been documented (Flathman, I993; Hinchee et 

a!., 1994). Major advantages of in-situ bioremediation include (1) lower capital cost, (2) 

in-situ operation, (3) permanent elimination of contaminants, and ( 4) cost-effectiveness 

[Cookson, 1995; Sturman et al., I 995]. An in-situ bioremediation system consists of 

subsurface delivery systems (injection wells, infiltration galleries or trenches) and 

recovery wells [Norris eta!., 1994]. The recharged water provides sufficient nutrients 

(e.g. Nand P) and electron acceptors (e.g. 0 2, N03"
1
, S04-2

, Fe•3 and C02) to stimulate 

the growth of microorganisms that can transform the contaminants to less harmful 

chemicals or mineral end products [Alexander, 1994]. Downgradient recovery wells 
The 

extract contaminated groundwater to contain the plume and to enhance movement of 
;\ 
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electron acceptors and nutrients. Air stripper tower or activated carbon can treat 

contaminated groundwater from the recovery wells. 

Taylor and Jaffe [ 1991] applied a bioremediation model to evaluate in-situ 

bioremediation design for sorbing and nonsorbing contaminants. Lang et al. ( 1997] 

designed in-situ bioremediation systems relying on cometabolic degradation. These 

approaches only employ bioremediation models to evaluate the efficiency of alternative 

system designs. It is difficult to use a simulation model alone to develop a least cost 

management strategy when designing a remediation system. A simulation/optimization 

(S/0) management model, which incorporates a groundwater flow and transport 

simulation model withihan optimization program, can help engineers design an in-situ 
A 

Many S/0 applications have focused on optimal pump-and-treat (P&T) system 

design [Gorelick eta!., 1984; Ahlfeld et al., 1988; Ahlfeld, 1990; Culver and Shoemaker, 

1992; Xiang et aL, 1995]. Many optimization techniques have been applied within 

groundwater simulation/optimization management models. Traditional optimization 

methods include linear programming, nonlinear programming, dynamic programming, 

quadratic programming, mixed-integer programming. New optimization techniques 

include simulated annealing (Dougherty and Marryott, 1991; Kuo et al., 1992; Marryott 

eta!., 1993; Marryott, 1996, Rizzo and Dougherty, 1996], neural network [Rogers and 

Dowla, 1994; Rogers et al., 1995; Johnson and Rogers, 1995] and genetic algorithmS" 
A 

[Ritzel et a!., 1994; McKinney and Lin, 1994; Huang and Mayer, 1997]. These new 

techniques eliminate the requirement of computing derivatives with respect to decision 
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variables. Such derivatives are difficult to calculate analytically or numerically in highly 

h 
nonlinear and noncovex groundwater remediation problems. The new techniques are 

/1 
robust and easily coupled with groundwater simulation models. 

McKinney and Lin [1994] applied genetic algorithms (GAs) to develop 

~ -tl,~ 
groundwater management strategies for~aximizing pumping, minimizing cost 

~ ~ 
of pumping and minimizing cost of aquifer remediation. Their results show that genetic 

II 

algoritluns can obtain optimal solutions that are as good a~ or bette5 than those solved by 

linear and nonlinear programming. GA advantages include straight- forward formulation 

and no requirement for computing derivatives. GAs using parallel programming can take 

advantage of network or multi-processors computers to accelerate solution convergence. 

However, Cieniawski et al. [1995] pointed out some shortcomings. First, ~As 
-+\,< ,., 

requir;l substantial CPU time for objective function evaluations. Second,_)f~andiJ 

multiple constraints with difficulty. Third, GAs are not theoretically guaranteed to find 

global optimal solutions. 

Rogers and Dowla [1994] used artificial neural networks (ANNs) with parallel 

solute transport modeling to optimize aquifer pump-and-treat remediation. Their 

approach includes: (1) training an ANN to predict remediation outcome of groundwater 

flow and transport modelling, (2) using the trained ANN linked with a GA to search 

through many pumping strategies and select the one which minimizes total pumping 

while meeting remediation goals. In their groundwater remediation applications, Rogers 

et al. [I 995] treated the pumping rate of each well as either 1 (full capacity pumping) or 

0 (no pumping). This reduces the number of groundwater flow and transport simulations 
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In this study, we propose a two-stage design approach. The first stage optimizes 

in-situ bioremediation system configuration, including the pumping well locations, steady 

pumping rates and facility capacities; the objective is to minimize total system cost 

including pumping/treatment, well installation, and facilities capital costs. The second 

stage involves reducing pumping costs of the system designed in the first stage; the 
fo 

objective iA minimize pumping cost plus facility capital cost using a time-varying 

pumping strategy. 

The first stage objective function is expressed as 

MP MP 

Minimize z = W1 :L CP (e) p(e) + W2 :L ciP (e) IP(e) 
e = 1 e = 1 

Ml Me 

+ W3 D(Lp(e))+W4 E(LP(e)) (1) 
e == 1 

where Z =total present worth of in-situ bioremediation system; W~, W2, W3, and W4 are 

factors used to convert pumping/treatment costs, well installation costs, injection facility 

capital cost and treatment facility cost to their present value, respectively; W1 = [(l+i)Te_ 

1]/[i(l+i)Te]; i is a discount rate and Te is total duration of remediation period; W2, W3, 

and W4 are equal to I; e =index denoting a potential injection or extraction location; 

p(e) = injection or extraction rate at location e (I}/T); cP(e) = cost coefficient for 

injection (including oxygen, nutrient and pumping costs) or extraction (including 

treatment and pumping operation costs)($ per L 3/T); M" =total number of injection and 
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extraction wells; Crr(i~) =injection or extraction well installation cost at location e ($ per 

well); IP(e) = zero-one integer for injection or extraction well existence at location e ; 

M' 

D( 2.: p(e) ) = oxygen and nutrient injection facility capital cost, a function of total 
€ = I 

M' 
injection rate($); M' =total number of injection wells; E( 2.: p(e) ) =treatment fucility 

e = 1 

capital cost, a function of total extraction rate($); M" =total number of extraction wells; 

and hlP= M' + M". 

Injection and treatment facilities capital cost is dependent on facility capacities. In 

practical engineering design, facility capital cost is not a continuous function of capacity 

because only specific size on models of pipes, pumps and facilities are manufactured. 

0. 'C'"<:yaJ <"-\- --r\-t 
Therefore, we use discrete function to P;:esent these facility capital costs. tl:apital cost of 

A ~ A~ 
injection facility D can be expressed as 

M' M; 

o(L;p(e) )=O if L;p(e) =0 
e = 1 S=l 

M; 

=D if CDq-t < LP(e) ::; CDq q = 1, 2, ..... , MQ (2) q 
c ~I 

the. 
where Dq = capital cost of injection facility when total injection rate is between design 

1\ 

injection capacity CDq-t and CDq; and ~ is the total number of alternative design 
th( c.r,h\ ~·rr ~-f 

injection capacities. Injection capacity CD0 is 0. The equation defining treatment facility E 

-----Lr'-- /\ M' "' 

C E capital cosyis analogous to Eq (2) and obtained by substituting E( 2.: p(e) ) for 
€ = I 
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M; 

D( L p(e) ), Me for M;, Eq for Dq, CEq for CDq and MR for ~- Eq is the treatment 
e = 1 

~e. 
facility capital cost· when total extraction rate is between design treatment capacity CEq-t 

A 
and CEq; and MR is the total number of alternative design treatment capacities. 

Treatment capacity CEo is 0. 

The first management objective function is a combination of mixed-integer 

programming (well installation cost) and combinatorial optimization (discrete facility 

capacity). Traditional optimization techniques such as mixed-integer nonlinear 
0V',f 

programming cannot apply to equation (I) which is not differentiable. )1\ advantage of 

-~We+ 
SA, GA and PRSA is they do not need function derivatives ~ 

A ~ 

First and second stage management model constraints include the following: 

I. Upper and lower bounds on injection and extraction rates ~ 

2. Bounds on aquifer hydraulic heads at injection and extraction wells ~ 

3. Upper bound on final contaminant concentration needed to achieve a cleanup standard J 

\fk E 'I' (3) 

where Ck.Te =contaminant concentration at node k by the end oftime period Te (MJL3
); 

Ce1 = contaminant concentration of cleanup standard (M/L3
); and 'I' = a set of locations 

-fl,e-
where cleanup standard concentration are enforced. In this study, 'I' includes all study 

A 

area nodes. 
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4. Upper bound on concentration at specific locations to assure capture (prevent 

unacceptable concentration migration) .J 

C•·V Cca Vo ED (4) 

/ .. / t o, T~·'~' (JJ !) -....._~ 
where C~ntaminant concentration resulting at node o by the end of perio0 

(M/1}); Cca = maximum allowable contaminant concentration (M/L3
); and .n = a set of 

monitoring wells. 
st. lui-~ 

In the second stage, we plan to use the wells Sl@lested tor instaifatioo by the first 

YI'I'VI+ 
stage. H~wever, in this stage we minimize the cost of injection, extraction and trea_!iRi 

~'',3 . W 'd h . . . d fi 'I' C~' t1me-varymg rates. e must cons1 er t e InJeCtion an treatment aCI 1ty costs 

since those are functions of pumping ratej. Thus, the second stage objective function is: 

Minimize 
M"( 1 M' ) 

u = ~ (I +i)'Y· ~ CP(e) p(e, t) 

{ M' }M" { M' }M" 
+ w, Max D(~ p(e, t)) ,., + w. Max E(~ p(e, t)) ,., (5) 

where U =total present worth of pumping and facility capital costs; p(e,t) = injection or 

extraction rate at location e for stress period t (L3/T) (a stress period is a period of 
CoO>f~'li 

.JJ.llCballgitlg pumping); M" = total number of stress periods; YP = stress period duration 

(T). Injection and treatment facilities are constructed before enhanced bioremediation 
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commences. Facility capital costs are determined by the capacity requiremenf. Injection 
A 

and treatment facility capacities must not be less than the greatest total injection and 

extraction rates, respectively. The second phase S/0 model employs the same constraints 

as the first phase. 

PARALLEL RECOMBINATIVE SIMULATED ANNEALING 

Simulated Annealing aud Genetic Algorithms 

The study of GAs has been well documented by many researchers [Holland, 

1975; Goldberg, 1989; Davis, 1991; Michalewicz, 1992; Mitchell, 1996; Back, 1996; 

Back et al.,1997]. GAs have been applied to many water resources management 

problems such as pipe network [Simpson et al., 1994; Dandy et a!., 1996], groundwater 

remediation [Ritzel et al., 1994; McKinney and Lin, 1994] and multireservoir operation 

[Oliveira and Loucks, 1997]. GAs are naturally parallel and can be easily run on 

networks or parallel computers. They iterate l' entire population using crossover, 
A 

mutation and selection operators. GAs have no formal proof of convergence and lack 

good control of convergence. 
ht:~r.A 

'"'--:>to "il,t "l'i ;..,.1 

On the other~. SA can be mathematically proven to converge to global ""A 1:1-y 

optimal solutions. The proof mainly depends on the annealing schedu~•' \<.,.,r ci-.. 
1•~,-tt. 

decreasing the temperature, SA can use more iterations to control the convergence to 

optimality. SA can be viewed as a sequence of homogeneous Markov chains. This makes 

paralleling simulated annealing to accelerate convergence very difficult. Recently, 
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evolved generations, we reduce the temperature usmg the SA temperature update 

function Tn+l = a.Tn. As Tn•l decreases, uphill moves become more difficult. At low 

temperature, a system configuration that increases cost has little chance to win the 

Boltzmann trial because of low probability. The stopping criterion of PRSA is a final 

temperature Tr. The algorithm tenninates when temperature Tr is passed. 

Improvement of PRSA 

New SA or GA techniques can potentially improve PRSA performance. Sample 

techniques are (I) Gray coding scheme, (2) explicit well installation coding, (3) uniform 

crossover, (4) threshold accepting function, and (5) segregated genetic algorithm. 

Most GA encoding schem~ use binary strings (0 and I bits) to represent decision 
A 

variables [Holland, 1975]. Some researchers suggested real-valued coding (floating point 

representation) for real parameter optimization to increase efficiency and numerical 

precision [Wright, 1991; Goldberg, 1991; Janikow and Michalewicz, 1991; Eshelman 

and Schaffer, 1993; Surry and Radcliffe, 1997]. In this study, we choose Gray coding as 

the coding scheme ofPRSA. 

Gray coding can help in the following manner. Although Gray coding uses 0 and 

I bits to represent decision variables, it is an improvement because it reduces Hamming 

distance to I for adjacent decision variables. Hamming distance is defined as the number 

of bits difference between neighborhood substrings. The Gray code ensures that two 

similar solutions are represented by two similarly coded strings. Hinterding et al. [1995] 

found Gray code performance usually superior to binary code for function optimization. 
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[ 1989] shows that uniform crossover is superior to one-point and two-point crossover 

theoretically and empirically. In GA water resources applications, uniform crossover 

applications include water distribution networks design [Savic and Walters, 1997] and 

multireservoir operation [Oliveira and Loucks, 1997]. 

Traditional GA selection operators include proportional, tournament, ranked­
A 

~ 
based selections [Back et al., 1997]. However, PRSA employs Boltzmann trial as its 

.1\ 
-tl.e 

selection operator [Mahfound and Goldberg, 1995]. A Boltzmann trial uses annealing 
or>l< >I 1 I /1 
f • \}Jet 

temperature to control selection pressure, which~ described previously. To reduce S/0 
~ . 

model simulation requirements, we introduce a threshold accepting function (T AF) 

[Dueck and Scheuer, 1990; Moscato and Fontanari, !990; Althofer and Koschnick, 

~ 
1991] to reject expensive system design without requiring additional simulations. We will 

A 

contrast the optimization results of Boltzmann trial and T AF for in-situ bioremediation 

system design application. II'\ s,~+-"""' ·& Or 1 J ~ 
/l 

This T AF (Figure 2) uses a deterministic rule to accept or reject a new 

"i\.t. t\.<. 
configurationA total cost now includes _!9lai system and penalty costs. The penalty cost is 

based ori~onstraints violated according to biodegradation model simulation. After the 
,A 

crossover and mutation operators generate a new configuration (child), we calculate 

Ccruld •Y"= (child system cost) and I'.C.ynem, (Cpucnt .y>tcm-Ccruld 'l"tcm), or the difference 

between parent and child system costs. If (I'.C.Y"''"'-parent penalty cost) is larger than the 

current temperature Tn, the new configuration is automatically rejected. Under this 

condition, it is not necessary to run the simulation model because the new configuration 
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has no chance to be accepted at the current Tn even if the new penalty cost is zero. If 

t~e 
(AC.,tem-parent penalty cost) is smaller than current T n (i.e. new configuration reduces 

.A 

the system cost, or new configuration increases the system cost but has a chance to be 
t~k\A l. -\-! ti-t-

accepted), we run the simulation model and ~t;...a'child penalty cost. AC, (Cp.,ent­
qr.o~ 

Cctuld), is calculate~ T AF is used again to determine whether to accept or reject the new 

configuration. 

Constraint handling is an important issue for many design problems. Michalewicz 

and Schoeauer (1996] review constraint handling methods applied in evolutionary 

algorithms. Most of these methods employ penalty functions that penalize infeasible 

solutions. Here we deal with inequality constraints by expanding the objective function 

to include penalty cost for infeasible solutions. A penalty cost function is defined as 

fj(X) =PeG) gi(X) for violated constraint gi(X) > 0 

= 0 for satisfied constraint gi(X)::; 0 
(6) 

where fj(X) is a penalty cost function for jth constraint (gj(X) ::;O); Pe(j) is a penalty 

coefficient for jth constraint. The penalty cost is calculated by the distance from feasibility 

(acceptability) multiplied by a penalty cost coefficient for the violated constraint (i.e. if 

gi(X) > 0). If the constraint is satisfied (i.e. if gj(X) ::; 0), the penalty cost is zero. 

Specifying penalty coefficients is challenging. A high penalty coefficient will 

ensure most solutions lie within the feasible solution space, but can lead to costly 
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Step 5. Exchange individual solutions between the new large penalty and small penalty 

parent populations. 

Step 6. Continue step 2 through step 5 until stopping criterion is satisfied. 

GROUNDWATER BIODEGRADATION MODELS 

Computer models incorporating microbial growth and biodegradable pollutan( 

transport can be classified according to conceptual approach [Baveye and Valocchi, 

1989]. The first approach, which has been applied to biological wastewater treatment, 

uses a biofilm concept to simulate trace-organics biodegradation in the subsurface 

[Rittmann et al., 1980]. The second approach assumes contaminant transport and 

biodegradation occur in small discrete colonies attached to the surface of the solid 

aquifer particles [Molz et al., 1986]. They assume that a microcolony has the form of a 
0, 

cylindrical plate wit~ radius and thickness and can be viewed as a simplified biofilm 

model. The third approach is strictly macroscopic and makes no assumption about 

microorganism distribution within the pore space. Removal of organic contaminant is 

assumed to be by Monod or Michaelis-Menten kinetics involving aerobic degradation 

and anaerobic degradation in the subsurface [Borden and Bedient, 1986]. A simplified 

simulation model using the third approach, BIOPLUME II, assumes that aerobic 

biodegradation can be treated as an instantaneous reaction [Rifai et a!., 1988; Rifai and 

Bedient, 1990]. 

The BIOPLUME II model uses a dual-particle mover procedure to simulate 

subsurface oxygen and contaminanf transport. It was developed by modifYing a two-
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L1CRo = CF ; C = 0 if 0 > CF (10) 

where L1CRc and L1CRo = calculated change in contaminant and oxygen concentrations, 

respectively; F = ratio of consumed oxygen to consumed contaminant. 

BIOPLUME II can be calibrated and applied using data such as hydrogeological 

parameters, contaminant chemical and physical properties, contaminant source 

concentrations, and background oxygen concentration. Limitations of the BIOPLUME II 

model are : (I) it is unsuitable for simulating slowly biodegraded contaminants under 

S' 
aerobic condition because of its instantaneous reaction assumption, and (2) it is incapable 

" of simulating anaerobic processes affected by other electron acceptors such as nitrate, 

funic iron, sulfate and inorganic carbon. Here we use BIOPLUME II to simulate aerobic 

biodegradation processes and contaminant transport within a simulation/optimization 

management model. 

STUDY CASE 

Figure 3 illustrates the hypothetical study area and the initial contaminant plume. 

Table 1 presents BIOPLUME II input parameters for the 510 m by 690 m stydy area. 
c.f ~ tl,, ""'''Hl 0 f-

The homogeneous aquifer has a hydraulic conductivity 6 x 10-s m/sec and 15 m ~ 
/1 A 

~s. To the West and East are fixed head boundaries -- 30.5 and 27.7 m, 

respectively. Groundwater flow is from West to East. The initial hydraulic gradient is 

0.004. To the North and South are no-flow boundaries. Groundwater flow simulation is 

steady state. The contaminant retardation factor is assumed to be I. 



22 

Figure 3 illustrates the plume configuration after 5 years if no action is taken. It 

will move and expand, reaching the monitoring wells. Natural aerobic decay reduces the 

total contaminant mass by only 16 %. An in-situ bioremediation system should be 

installed to contain the contaminant plume and enhance contaminant biodegradation. 

To design an in-situ bioremediation system, the optimization will consider 

potential injection and extraction wells. Seven wells within the plume can potentially 

inject water containing oxygen and nutrients at rates between 0 and 20 gpm (1.26 

ol\ 
liter/sec). Upper and lower bounds 'hydraulic head for the injection wells are 33.5 and 

27.7 m, respectively. The initial oxygen concentration is 5 ppm except in the contaminant 

plume area, where the oxygen concentrations have been consumed by aerobic 

biodegradation. The vertical exchange of oxygen with the unsaturated zone is assumed 

to be insignificant. The injected oxygen concentration is 8 ppm. BIOPLUME II~ 
assumes that injected water provides enough nutrients to support microbial growth in the 

aquifer. 

Figure 4 illustrates the potential well locations considered by the optimization. 

Six downgradient wells can potentially extract contaminated groundwater at rates 
OV\ 

between 0 and 20 gpm. The upper and lower bounds ;1 hydraulic head for the extraction 

wells are 30.5 and 24.4 rn, respectively. The cleanup standard, Cc1 , is 3 ppm for the 

entire study area. 

Figure 4 also identifies monitoring wells (not subject to optimization) used to 

observe whether the plume is captured during a three-year remediation period. Because 

much water, additional monitoring wells are installed in 
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the Western boundary This helps ensure that unacceptable plume spreading does not 

result. The maximum contaminant concentration allowed to reach monitoring wells, C" , 

is 1 ppm. 
-tht 

Table 2 list~ cost coefficients used to estimate system costs. The injection 

coefficient is based on the nutrient/, oxygen and pumping operation costs. The extraction 
-\h.. r 

cost coefficient considers cost of treating and pumping contaminated groundwater. 
A 

Treatment includes air stripping and granular activated carbon. Injection and treatment 

facilities capital costs are based on their capacities. 

APPLICATIONS AND RESULTS 

Optimal In-situ Bioremediation System Design with Fixed Cost 

ti-t. 
The first stage management goal is to minimize;., total system cost which includes 

pumping/treatment, well installation, and facilities capital costs. Below we contrast -fke 
. alo "' tl-1'1'> ,11 

abilities of SA ,GA and PRSA ~s to achieve this goal. In SA we use a threshold 

accepting function and Corana's neighborhood search [Corana et al., 1987] to reduce 

SA computation cost and extend its ability to deal with continuous variables. Our two 

GA formulations are based on the methodology of McKinney and Lin [1994], but 
t~t 

include replacing binary code with Gray code and use of uniform crossover. Our GAs 

+k ~ A 
also extend(!ournameflt ize of tournament selection from 2 to 4 to increase selection 

intensity [Biiclde and Thiele, 1996] and to improve convergence. We implement 

segregated GA to refine search in both feasible and infeasible regions. The parameter 

choice of GAs and PRSA is problem-dependent. After some test runs, we choose 
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C\ population size 100 for optimizing system design with fixed cost and 200 for minimizing,. ik 
V\ ..-1 

cost of time-varying pumping strategy. Crossover and mutation rates used for GAs and 

PRSA are 0.9- 1.0 and 0.01 - 0.03, respectively. 

We use six formulations to compare the three optimization algorithms. Because 

of the stochastic nature of these algorithms, we run each formulation twenty times using 

different random seeds. Table 3 lists maximum, minimum and average system costs of 

~~ ~ 
these runs for six formulations. Figure 5 illustrates the error bars of six formulations. The 

A ~ 
""'e 

upper and lower caps indicate the average system cost plus or minus~tandard deviation, 
p, 

respectively.~ large standar.d deviation reflects that the optimization algorithm does 

not converge to the same optimal solution consistently. 

PRSA2 (PRSA with Boltzmann trial and explicit well installation) designs the 

least-cost system ($188,6 00). It also has the lowest average system cost ($193,900) and 

the smallest standard deviation (Figure 5). GA2 and PRSA2 perform well because of 

explicit well installation coding. GAl and PRSAI using implicit well installation do not 

converge to optimal solutions. It is difficult for GAl and PRSAI to reduce well numbers 

because implicit well installation depends on whether or not pumping rates reach zero. 

SAl shows that SA can converge to optimal solutions but is not as stable as PRSA (note 

the large standard deviation in Figure 5). Threshold accepting helps SA! and PRSA3 

converge to optimal solution using fewer simulations. For example, PRSA3 reduces -1-J-e 
.-'1 

5 
average number of simulation by 43% compared with PRSA2, while still maintaining 

A 

reasonably good solution quality (low average system cost and small standard deviation). 
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OPTIMAL IN-SITU BIOREMEDIA TION SYSTEM DESIGN USING 

PARALLEL RECOMBINATIVE SIMULATED ANNEALING 

Horng-Jer Shieh and Richard C. Peralta 

Biological and Irrigation Engineering Department, Utah State University 

Abstract 

Presented is a simulation/optimization (S/0) model combining optimization with 

BIOPLUME II si~ optimizing in-situ bioremediation system design. The 

(S/0) model uses parallel recombinative simulated annealing to search for an optimal 

design and applies the BIOPLUME II model to simulate aquifer hydraulics and 

bioremediation_ Parallel recombinative simulated annealing is a general-purpose 

optimization approach that has the good convergence of simulated annealing and the 

efficient parallelization of a genetic algorithm. We propose a two-stage management 

approach. The first stage design goal is to minimize total system cost 

(pumping/treatment, well installation and facility capital costs). The second stage design 

goal is to minimize cost of a time-varying pumping strategy using the optimal system 

chosen by the first stage optimization. Optimization results show that parallel 

recombinative simulated annealing performs better than simulated annealing and genetic 

algorithms for optimizing system design when including installation costs. New explicit 

well installation coding improves algorithm convergence. Threshold accepting reduces 
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computation time 43 % by rejecting expensive system designs. Applying the optimal 

time-varying pumping strategy in the second stage reduces pumping cost by 31%. 

Key Words: in-situ bioremediation, groundwater remediation, aerobic biodegradation, 
optimization, parallel recombinative simulated annealing, simulated annealing, genetic 
algorithm. 

INTRODUCTION 

In-situ bioremediation for contaminated groundwater cleanup has emerged as a 
It~ 

viable remediation technology because oKcost-effectiveness and ability to achieve 

complete destruction of organic contaminants. Many successful applications of in-situ 

bioremediation for cleaning up petroleum hydrocarbons such as benzene, toluene, ef 
}b~,.'/-

ethylbenzene, and xylene (BTEX) have been documented (Flathman, 1993; Hinche/ \}J'r,().~( 

al., 1994). Major advantages ofin-situ bioremediation include (1) lower capital cost, (2) \ 
w~As 

in-situ operation, (3) permanent elimination of contaminants, and ( 4) cost-effectiveness e- -'• t 
T"~ e'l'{ 

[Cookson, 1995; Sturman et al., 1995]. An in-situ bioremediation system consists of 

subsurface delivery systems (injection wells, infiltration galleries or trenches) and 
~ 

recovery wells [Norris et al., 1994]. The recharged water provides sufficient nutrients 

(e.g. Nand P) and electron acceptors (e.g. 0 2, N03-\ S04'2, Fe+3 and C02) to stimulate 

the growth of microorganisms that can transform the contaminants to less harmful 

chemicals or mineral end products [Alexander, 1994]. Downgradient recovery wells 

extract contaminated groundwater to contain the plume and to enhance movement of 

di ~ee-~ 
bti If 
\* 

~uf{dve ~ 
ife~ 
tlj\J. •,A \ 

\-- l?JII' \ ""' 
(; -t\l'j 
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electron acceptors and nutrients. Air stripp.ef'tow"-- or 

:5 

3 

activated carbon can treat 

contaminated groundwater from the recovery wells. 

Taylor and Jaffe [1991] applied a bioremediation model to evaluate in-situ 

bioremediation design for sorbing and nonsorbing contaminants. Lang et al. [ 1997] 

designed in-situ bioremediation systems relying on cometabolic degradation. These 

approaches /onldempl~ bioremediation models to evaluate the efficiency of alternative 

system designs. It is difficult to use a simulation model alone to develop a least cost 

management strategy when designing a remediation system. A simulation/optimization 

(S/0) management model, which incorporates a groundwater flow and transport 

simulation model with an optimization program, can help engineers design an in-situ 

bioremediation system that satisfies best management goals and regulatofrcquirements. 
o ~ ~ lm\ 'l;l r~~ 

Many S/0 applications have focused on oplimal pump-and-treat (P&T) system 

design [Gorelick et al., 1984; Ahlfeld et al., 1988; Ahlfeld, 1990; Culver and Shoemaker, 

1992; Xiang et al., 1995]. Many optimization techniques have been applied within 

groundwater simulation/optimization management models. Traditional optimization 

methods include linear programming, nonlinear programming, dynamic programming, 

""'<> 
quadratic programming~ixed-integer programming. New optimization techniques 

include simulated annealing [Dougherty and Marryott, 1991; Kuo et al., 1992; Marry ott 
s 

et al., 1993; Marryott, 1996, Rizzo and Dougherty, 1996], neural networf[Rogers and 

Dowla, 1994; Rogers et al., 1995; Johnson and Rogers, 1995] and genetic algorithm S 

[Ritzel et al., 1994; McKinney and Lin, 1994; Huang and Mayer, 1997]. These new 

techniques eliminate the requirement of computing derivatives with respect to decision 

-
-
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variables. Such derivatives are difficult to calculate analytically or numerically in highly 

nonlinear and noncovex groundwater remediation problems. The new techniques are 

robust and easily coupled with groundwater simulation models. 

McKinney and Lin [1994] applied genetic algorithms (GAs) to develop 

groundwater management strategies for goals of maximizing pumping, minimizing cost 

of pumping and minimizing cost of aquifer remediation. Their results show that genetic 

algorithms can obtain optimal solutions that are as good as or better than those solved by 

linear and nonlinear programming. GA advantages include straight- forward formulation 

and no requirement for computing derivatives. GAs using parallel programming can take 

advantage of network or multi-processo~puters to accelerate solution convergence. 

However, Cieniawski et al. [1995] pointed out some shortcomings. First, the GA 

requires substantial CPU time for objective function evaluations. Second, it handles 

multiple constraints with difficulty. Third, GAs are not theoretically guaranteed to find 

global optimal solutions. 

Rogers and Dowla [1994] used artificial neural networks (ANNs) with parallel 

solute transport modeling to optimize aquifer pump-and-treat remediation. Their 

approach includes: (I) training an ANN to predict remediation outcome of groundwater 

flow and transport modellingR) using the trained ANN linked with a GA to search 
Of\d 

through many pumping strategies and select the one which minimizes total pumping 

while meeting remediation goals. In their groundwater remediation applications, Rogers 

et al. [ 1995] treated the pumping rate of each well as either I (full capacity pumping) or 

0 (no pumping). This reduces the number of groundwater flow and transport simulations 
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needed to train an ANN to predict remediation outcome, but is impractical for real-world 

applications. Rogers and Dowla [1994] planned to apply ANNs to deal with continuous 

pumping. However, the computation efficiency and ability of ANNs to find optimal 

solutions for continuous pumping problems are still unknown. 

Dougherty and Marryott [1991] first apply simulated annealing (SA) to 

groundwater management problems. Marryott [ 1996] optimizes groundwater 
f'P . 

remediation design of/interceptor trench, slurry wall and low permeability cap using SA. 

Those SA groundwater management applications assume a discrete solution space. 

~ r e. JZ-.-
Pumping rates WJM€ treated as discrete decision variables. SA has advantages similar to 

GA SA is easily implemented with groundwater simulation models and does not require 

derivative computation. In addition, SA convergence to globally optimal solutions has 

been proven using homogeneous Markov chain and inhomogeneous Markov chain 

theory [Geman and Geman, 1984; Hajek, 1988; Romeo, F. and A. Sangiovanni-

Vincentelli, 1991]. Because SA sequentially searches for an optimal solution, applying 

parallel programming to accelerate convergence speed is more difficult with SA than 

with GA. 

We propose applying a new optimization algorithm, parallel recombinative 

simulated annealing (PRSA), to optimize in-situ ) \ bioremediation system design. 

Mahfound and Goldberg [1995] introduced PRSA as an effective combination of SA and 

GA~PRSA retains the desirable asymptotic convergence of SA and adds the GA.'s 

population approach and recombinative operator. Here, we present the first application 

of PRSA to in-situ bioremediation or groundwater management system design. The 
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manuscript is organized as follows. In section 2, we formulate the management problem 

and describe the two-stage management approach. In section 3, we provide an overview 

of PRSA and its implementation. We also propose new techniques to improve PRSA 

performance. These techniques include Gray coding, uniform crossover, threshold 

accepting function and segregated genetic algorithm. In sections 4 and 5, we briefly 

introduce the bioremediation simulation model and describe the system design study 

case. In sections 6 and 7, we demonstrate in-situ bioremediation system design by PRSA 

and summarize findings. 

OPTIMAL SYSTEM DESIGN OF IN-SITU BIOREMEDIA TION 

Minsker and Shoemaker [ 1996] proposed dynamic optimal control via successive 

approximation linear quadratic regulator (SALQR), to optimize in-situ bioremediation 

design. Their optimal time-varying pumping strategy reduced the cost of in-situ 

bioremediation by 30 % compared with a steady pumping strategy during two-year 

cleanups [Minsker, 1995]. Their cost function considered pumping operation, 

maintenance, oxygen addition, and treatment costs. It did not include well installation 

and facilities capital costs - costs which can dominate in-situ bioremediation or P&T 

system costs for a short remediation period. Culver and Shoemaker [1997] demonstrate 

that capital reatment costs significantly affect a time-varying 5-year P&T pumping 

strategy period. They recommend explicitly incorporating these capital costs into a 

dynamic management model. 
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In this study, we propose a two-stage design approach. The first stage optimizes 

in-situ bioremediation system configuration, including the pumping well locations, steady 

pumping rates and facility capacities; the objective is to minimize total system cost 

including pumping/treatment, well installation, and facilities capital costs. The second ---
stage involves reducing pumping costs of the system designed in the first stage; the 

objective is minimize pumping cost plus facility capital cost using a time-varying 

pumping strategy. 

The first stage objective function is expressed as 

MP MP 

Minimize z = W1 L cp (e) p(e) + W2 L ciP (e) IP(e) 
e=l 

Mt Me 

+ w, D(Lp(e))+W4 E(Lp(e)) (I) 
e = 1 

where Z =total present worth of in-situ bioremediation system; W 1, W2, W,, and W • are 

factors used to convert pumping/treatment costs, well installation costs, injection facility 

capital cost and treatment facility cost to their present value, respectively; W 1 = [(l+i}Te_ 

1]/[i(l+i}Te]; i is a discount rate and Te is total duration of remediation period; W2, W3, 

and W4 are equal to I; e = index denoting a potential injection or extraction location; 

p(e) = injection or extraction rate at location e (L3/T); CP(e) = cost coefficient for 

injection (including oxygen, nutrient and pumping costs) or extraction (including 

treatment and pumping operation costs)($ per L 3/T); M' =total number of injection and 
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extraction wells; CIP(e) = injection or extraction well installation cost at location e ($ per 

well); IP(e) = zero-one integer for injection or extraction well existence at location e ; 

M' 

D( 2.: p(e) ) = oxygen and nutrient injection facility capital cost, a function of total 
a:= 1 

M' 
injection rate ($); M1 = total number of injection wells; E( 2.: p(e) ) = treatment facility 

e = 1 

capital cost, a function of total extraction rate ($); Me = total number of extraction wells; 

and Ml' = M1 +Me. 

Injection and treatment facilities capital cost is dependent on facility capacities. In 

practical engineering design, facility capital cost is not a continuous function of capacity 

because only specific sizes on models of pipes, pumps and facilities are manufactured. 
s 

Therefore, we use discrete fi.mctio¥t"o present these facility capital costs. rpital cost of 

injection facility D can be expressed as 

M' M' 
D(Lp(e)) = o if L:;p(e) =0 

e = 1 e =I 

M' 
=D if CDq-l < L:;p(e) sCDq q = 1, 2, ..... , MQ (2) q 

e ~ 1 

where Dq = capital cost of injection facility when total injection rate is between design 

injection capacity CDq-t and CDq; and ~ is the total number of alternative design 

injection capacities. Injection capacity CD0 is 0. The equation defining treatment facility 

M' 
E capital cost 1s analogous to Eq (2) and obtained by substituting E( I: p(e) ) for 

C=l 
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M; 

D( L: p(e) ), M' for Mi, Eq for Dq, CEq for CDq and MR for W. Eq is the treatment 
e= 1 

facility capital cost when total extraction rate is between design treatment capacity CEq- I 

and CEq; and MR is the total number of alternative design treatment capacities. 

Treatment capacity CE0 is 0. 

The first management objective function is a combination of mixed-integer 

programming (well installation cost) and combinatorial optimization (discrete facility 

capacity). Traditional optimization techniques such as mixed-integer nonlinear 

programming cannot apply to equation (1) which is not differentiable. An advantage of 

SA, GA and PRSA is they do not need function derivatives@ 

First and second stage management model constraints include the following: 

1. Upper and lower bounds on injection and extraction rates 

2. Bounds on aquifer hydraulic heads at injection and extraction wells 

3. Upper bound on final contaminant concentration needed to achieve a cleanup standard 

\fk E 'f' (3) 

where Ck,To =contaminant concentration at node k by the end of time period Te (MIL3
); 

Cc1 = contaminant concentration of cleanup standard (MIL'); and 'I' = a set of locations 

where cleanup standard concentratioAre enforced. In this study, 'I' includes all study 

area nodes. 5 
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commences. Facility capital costs are determined by the capacity requirement. Injection 

and treatment facility capacities must not be less than the greatest total injection and 

extraction rates, respectively. The second phase S/0 model employs the same constraints 

as the first phase. 

PARALLEL RECOMBINATIVE SIMULATED ANNEALING 

Simulated Annealing and Genetic Algorithms 

The study of GAs has been well documented by many researchers [Holland, 

1975; Goldberg, 1989; Davis, 1991; Michalewicz, 1992; Mitchell, 1996; Back, 1996; 

Back et al.,1997]. GAs have been applied to many water resources management 
.s 

problems such as pipe networXsimpson et al., 1994; Dandy et al., 1996], groundwater 

remediation [Ritzel eta!., 1994; McKinney and Lin, 1994] and multireservoir operation 

[Oliveira and Loucks, 1997]. GAs are naturally parallel and can be easily run on 

networks or parallel computers. They iterate '1rentire population using crossover, 

' mutation and selection operators. GAs have no formal proof of convergence and lack 

good control of convergence. 

h~lld 
On the other bel!tr, SA can be mathematically proven to converge to global 

optimal solutions. The proof mainly depends on the annealing schedule. By slowly 

· decreasing the temperature, SA can use more iterations to control the convergence to 

optimality. SA can be viewed as a sequence of homogeneous Markov chains. This makes 

paralleling simulated annealing to accelerate convergence very difficult. Recently, 
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researchers have investigated hybrid genetic annealing algorithm (GAA) approaches that 

combine desirable attributes of GA and SA methods [Sirag and Weisser, 1987; Brown 

et al., 1989; Boseniuk and Ebeling, 1991; Lin et al., 1993; Chen and Flann, 1994; 

Mahfound and Goldberg, 1995; Yong et al., 1995; Varanelli and Cohoon, 1995; Jeong 

and Lee, 1996]. The intended result is a general-purpose optimization algorithm that has 

the good SA convergence control and the efficient GA parallelization. Chen and Flan 

[1994] investigated 14 hybrid methods of combining GA and SA For nine optimization 

problems, combining GA crossover and mutation operators with SA annealing schedule 

~d the best performance. Varanelli and Cohoon [1995] used population-oriented 

simulated annealing (POSA) to solve a VLSI network partitioning problem. Their results 

showed that POSA converged to a better optimal solution than GA for the same CPU 

time. 

Goldberg [1990] introduced the annealing schedule and the Boltzmann 

distribution to help prove GA convergence to global optimality. Mahfound and Goldberg 

[ 1995] presented a parallel recombinative simulated annealing (PRSA) algorithm and 

proved its asymptotic global convergence. For their test problems, PRSA consistently 

converged to the global optimum. The PRSA algorithm effectively combines simulated 

annealing and genetic algorithms to offer the user control over convergence. 

--
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evolved generations, we reduce the temperature using the SA temperature update 

function Tn+I = aTn. As Tn+I decreases, uphill moves become more difficult. At low 

temperature, a system configuration that increases cost has little chance to win the 

Boltzmann trial because of low probability. The stopping criterion of PRSA is a final 

temperature Tr. The algorithm terminates when temperature Tr is passed. 

Improvement of PRSA 

New SA or GA techniques can potentially improve PRSA performance. Sample 

techniques are (1) Gray coding scheme, (2) explicit well installation coding, (3) uniform 

crossover, ( 4) threshold accepting function, and (5) segregated genetic algorithm. 
5 

Most GA encoding schem~se binary strings (0 and 1 bits) to represent decision 

variables [Holland, 1975). Some researchers suggested real-valued coding (floating point 

representation) for real parameter optimization to increase efficiency and numerical 

precision [Wright, 1991; Goldberg, 1991; Janikow and Michalewicz, 1991; Eshelman 

and Schaffer, 1993; Surry and Radcliffe, 1997]. In this study, we choose Gray coding as 

the coding scheme ofPRSA. 

Gray coding can help in the following manner. Although Gray coding uses 0 and 

I bits to represent decision variables, it is an improvement because it reduces Hamming 

distance to I for adjacent decision variables. Hamming distance is defined as the number 

of bits difference between neighborhood substrings. The Gray code ensures that two 

similar solutions are represented by two similarly coded strings. Hinterding et al. [1995] 

found Gray code performance usually superior to binary code for function optimization. 
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Dandy et al. [ 1996] use Gray code to improve GA performance for pipe network 

optimization. Rana and Whitley [ 1997] prefer Gray coding for bit representation in GA. 

In groundwater remediation design involving well installation, installation cost is 

usually treated as an implicit decision variable such that well installation cost is zero if 

pumping rate is zero or close to zero [McKinney and Lin, 1995; Sawyer and Ahlfeld, 

1995]. Huang and Mayer [1997] use well locations as explicit decision variables in P&T 

GA optimization. They encode the x and y coordinates of well locations into a GA 

substring. Their objective is to minimize P&T cost by optimizing well locations and 

pumping rates simultaneously, but well installation cost is still determined by pumping 

rate (i.e. no well installation if pumping rate is zero). Cj/ 

Here we propose a new approach which we term¢ explicit well installation 

coding. Each pumping well installation is explicitly coded as I or 0 bit values 

representing whether the well is or is not installed, respectively. Initially, PRSA randomly 

generates system configurations indicating injection and extraction well installation. 

Using crossover, mutation, and Boltzmann trial, PRSA optimizes the number of installed 

pumping wells and pumping rates to minimize system cost. 

Crossover, mutation and selection are three important GA operators. Two parent 

solutions use crossover and mutation to create two child solutions. Then, the selection 

operator selects solutions from the current population to form the next evolved 

generation. Mutation is usually a background operator in GA. The two main operators 

are crossover and selection. Traditional crossover operators are one-point and two-point 

crossover [Goldberg, 1989]. We choose uniform crossover for PRSA because Syswerda 
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[1989] shows that uniform crossover is superior to one-point and two-point crossover 

theoretically and empirically. In GA water resources applications, uniform crossover 

applications include water distribution networks design [Savic and Walters, 1997] and 

Traditional GA selection operators include proportional, 

,q(\ c\ 
tournament~nked-

multireservoir operation [Oliveira and Loucks, 1997]. 

based selections [Back et al., 1997]. However, PRSA employs Boltzmann trial as its 

selection operator [Mahfound and Goldberg, 1995]. A Boltzmann trial uses annealing 

temperature to control selection pressure, which is described previously. To reduce S/0 

model simulation requirements, we introduce a threshold accepting function (T AF) 

[Dueck and Scheuer, 1990; Moscato and Fontanari, 1990; Althofer and Koschnick, 

1991] to reject expensive system design without requiring additional simulations. We will 

contrast the optimization results of Boltzmann trial and T AF for in-situ bioremediation 

system design application. 

This T AF (Figure 2) uses a deterministic rule to accept or reject a new 

configuration. Total cost now includes total system and penalty costs. The penalty cost is 

based on constraints violated according to biodegradation model simulation. After the 

crossover and mutation operators generate a new configuration (child), we calculate 

Cchild system (child system cost) and .6.Csystem, (Cparent system-Cchild system), or the difference 

between parent and child system costs. If (t'l.C,y,1,.,-parent penalty cost) is larger than the 

current temperature T "' the new configuration is automatically rejected. Under this 

condition, it is not necessary to run the simulation model because the new configuration 
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conservative system designs. A low penalty coefficient permits searching both feasible 

and infeasible regions, but can cause convergence to an infeasible system design. 

Le Riche et al. [1995] introduce a segregated genetic algorithm to reduce penalty 

weight influence. The segregated GA uses two penalty coefficient values instead of one. 

It maintains two populatioris: individuals selected from a large penalty population will 

more likely stay in the feasible region; individuals selected from a small penalty 

population will probably remain in the infeasible region. Eventually, the optimization 

algorithm will converge to the feasible optimum from both sides of the feasible region 

boundary. We adapted this segregated method to PRSA procedures: 

Step 1. Generate two parent populations randomly. Evaluate the objective 

function values of one population using large penalty coefficients. Evaluate the 

other population using small penalty coefficients. 

Step 2. Each parent population uses crossover and mutation to generate its child 

population. ~f..- fht/ 
Step 3. Evaluate the objective function values of{hild population oKarge penalty parent 

population using large penalty coefficients. Evaluate the objective function 

values o~~d population of small penalty parent population using~;;;;ll penalty 

~~ coefficients. 

Step) New large penalty parent population is selected by competition between the 

current large penalty parent and child populations using Boltzmann trial or T AF. 

l"e_ tfew small penalty parent population is selected by the competition between the 

current small penalty parent and child populations using Boltzmann trial or T AF. 



Step 5. Exchange individual solutions between the new large penalty and small penalty 

parent populations. 

Step 6. Continue ste~ through step 5 until stopping criterion is satisfied. 

_s 

GROUNDWATER BIODEGRADATION MODELS 
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Computer models incorporating microbial growth and biodegradable pollutantr 

transport can be classified according to conceptual approach [Baveye and Valocchi, 

1989]. The first approach, which has been applied to biological wastewater treatment, 

uses a biofilm concept to simulate trace-organics biodegradation in the subsurface 

[Rittmann et al., 1980). The second approach assumes contaminant transport and 

biodegradation occur in small discrete colonies attached to the surface of the solid 
VIe. s-ew'I\J " ( ~t 1 n ~ 

aquifer particles [Molz et al., 1986). J;hey assum~hat a microcolony has the form of a 

cylindrical plate with radius and thickness and can be viewed as a simplified biofilm 

model. The third approach is strictly macroscopic and makes no assumption about 

microorganism distribution within the pore space. Removal of organic contaminant is 

assumed to be by Monad or Michaelis-Menten kinetics involving aerobic degradation 

and anaerobic degradation in the subsurface [Borden and Bedient, 1986). A simplified 

simulation model using the third approach, BIOPLUME II, assumes that aerobic 

biodegradation can be treated as an instantaneous reaction [Rifai et al., 1988; Rifai and 

Bedient, 1990]. 

The BIOPLUME II model uses a dual-particle mover procedure to simulate 

subsurface oxygen and contaminan~sport. It was developed by modifYing a two-
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6.CRo = CF ; C = 0 if 0 > CF (10) 

where 6.CRc and L1CRo = calculated change in contaminant and oxygen concentrations, 

respectively; F = ratio of consumed oxygen to consumed contaminant. 

BIOPLUME II can be calibrated and applied using data such as hydrogeological 

parameters, contaminant chemical and physical properties, contaminant source 

concentrations, and background oxygen concentration. Limitations of the BIOPLUME II 

model are : (1) it is unsuitable for simulating slowly biodegraded contaminants under 

aerobic condition,( because of its instantaneous reaction assumption, and (2) it is incapable 
S vttli;!-1~<1,--

of simulating anaerobic processes i!fte~t0a by lather electron acceptors such as nitrate, 

ferric iron, sulfate and inorganic carbon. Here we use BIOPLUME II to simulate aerobic 

biodegradation processes and contaminant transport within a simulation/optimization 

management model. 

STUDY CASE 

Figure 3 illustrates the hypothetical study area and the initial contaminant plume. 

Table 1 presents BIOPLUME II input parameters for the 510 m by 690 m study area. 

The homogeneous aquifer has a hydraulic conductivity 6 x 10"5 rn!sec and{5 ~aquifer 
thickness. To the /est and ]fast are fixed head boundaries -- 30.5 and 27.7 m, 

respectively. Groundwater flow is from Jest to jast. The initial hydraulic gradient is 

0.004. To the North and South are no-flow boundaries. Groundwater flow simulation is 

steady state. The contaminant retardation factor is assumed to be 1. 
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Figure 3 illustrates the plume configuration after 5 years if no action is taken. It 

will move and expand, reaching the monitoring wells. Natural aerobic decay reduces the 

total contaminant mass by only 16 %. An in-situ bioremediation system should be 

installed to contain the contaminant plume and enhance contaminant biodegradation. 

To design an in-situ bioremediation system, the optimization will consider 

potential injection and extraction wells. Seven wells within the plume can potentially 

inject water containing oxygen and nutrients at rates between 0 and 20 gpm (1.26 

liter/sec). Upper and lower bounds of hydraulic head for the injection wells are 33.5 and 

27.7 m, respectively. The initial oxygen concentration is 5 ppm except in the contaminant 

plume area, where the oxygen concentrations have been consumed by aerobic 

biodegradation. The vertical exchange of oxygen with the unsaturated zone is assumed 

to be insignificant. The injected oxygen concentration is 8 ppm~~PLUME II model ><:..._ 

assumes that injected water provides enough nutrients to support microbial growth in the 

aquifer. 

Figure 4 illustrates the potential well locations considered by the optimization. 

Six downgradient wells can potentially extract contaminated groundwater at rates 

between 0 and 20 gpm. The upper and lower bounds of hydraulic head for the extraction 

wells are 30.5 and 24.4 m, respectively. The cleanup standard, Cc1 , is 3 ppm for the 

entire study area. 

Figure 4 also identifies monitoring wells (not subject to optimization) used to 

observe whether the plume is captured during a three-year remediation period. Because 

the system can inject potentially much water, additional monitoring wells are installed in 



23 

the {estern boundary. This helps ensure that unacceptable plume spreading does not 

result. The maximum contaminant concentration allowed to reach monitoring wells, C" , 

is 1 ppm. 

Table 2 lists cost coefficients used to estimate system costs. The injection 

coefficient is based on the nutrients, oxygen and pumping operation costs. The extraction 

cost coefficient considers cost of treating and pumping contaminated groundwater. 

Treatment includes air stripping and granular activated carbon. Injection and treatment 

facilities capital costs are based on their capacities. 

APPLICATIONS AND RESULTS 

Optimal In-situ Biorcmediation System Design with Fixed Cost 

The first stage management goal is to minimize total system cost which includes 

pumping/treatment, well installation, and facilities capital costs. Below we contrast 

abilities of SA , GA and PRSA varieties to achieve this goal. In SA we use a threshold 

accepting function and Corana's neighborhood search [Corana et al., 1987] to reduce 

SA computation cost and extend its ability to deal with continuous variables. Our two 

GA formulations are based on the methodology of McKinney and Lin [ 1994], but 

include replacing binary code with Gray code and use of uniform crossover. Our GAs 

also extend tournament size of tournament selection from 2 to 4 to increase selection 

intensity [Blickle and Thiele, 1996] and to improve convergence. We implement 

segregated GA to refin~arch in both feasible and infeasible regions. The parameter 

choice of GAs and PRSA is problem-dependent. After some test runs, we choose 
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A- population size I 00 for optimizing system design with fixed cost and 200 for minimizing 

(J._ 
cost of time-varying pumping strategy. Crossover and mutation rates used for GAs and 

PRSA are 0.9- 1.0 and 0.0 I - 0.03, respectively. 

We use six formulations to compare the three optimization algorithms. Because 

of the stochastic nature of these algorithms, we run each formulation twenty times using 

different random seeds. Table 3 lists maximum, minimum and average system costs of 

these runs for six formulations. Figure 5 illustrates the error bars of six formulations. The 

one 
upper and lower caps indicate the average system cost plus or minus standard deviation, 

1\ 

respectively. The large standard deviation reflects that the optimization algorithm does 

not converge to the same optimal solution consistently. 

PRSA2 (PRSA with Boltzmann trial and explicit well installation) designs the 

~ 

least-cost system ($188,l,?O). It also has the lowest average system cost ($193,900) and 

the smallest standard deviation (Figure 5). GA2 and PRSA2 perform well because of 

explicit well installation coding. GAl and PRSAl using implicit well installation do not 

converge to optimal solutions. It is difficult for GAl and PRSAl to reduce well numbers 

because implicit well installation depends on whether or not pumping rates reach zero. 

SAl shows that SA can converge to optimal solutions but is not as stable as PRSA (note 

the large standard deviation in Figure 5). Threshold accepting helps SA I and PRSA3 

converge to optimal solution using fewer simulations. For example, PRSA3 reduces 

average number of simulation by 43% compared with PRSA2, while still maintaining 

reasonably good solution quality (low average system cost and small standard deviation). 

-
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Figure 6 shows the convergence behavior of SA, GA and PRSA. It illustrates the 

change of system cost vs. number of BIOPLUME II simulations as the optimization 

algorithms progress. We compare the best results of six formulations (minimum system 

cost of six formulations) in Figure 6. PRSAI and GAl converge slowly because of 

implicit well installation. GA2 has the fastest convergence but additional simulations do 

not improve solution quality. PRSA2 uses uphill moves (Boltzmann trial) and explicit 

well installation to gradually converge to optimality. SAl and PRSA3 employ threshold 

accepting to reject some expensive system designs without requiring simulation. This 

reduces total simulations and computation effort. Table 4 compares optimal systems 

designed by the different approaches. All three algorithms design similar systems. All use 

three or four injection wells and one extraction well. However, the PRSA yields the least 

cost strategy. 

Time-varying Pumping Strategy 

The second stage management goal is to minimize injection, extraction and 

treatment costs plus facility capital costs that are functions of the flow rates. Employing 

the four wells (Ul, U2, U4 and El) selected in the first stage optimization, we develop 

time-varying pumping strategy for a three-year remediation consisting of six ~ear --· 
·pumping periods. Figure 7 contrasts steady and time-varying pumping strategies. 

Optimal time-varying pumping reduces total injection and extraction volumes by 27 % 

and total injection and extraction cost by 3 I% when comparing wit~ the optimal steady-
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This illustrates that minimizing in-situ bioremediation system design while including fixed 

cost is sometimes more important than merely minimizing time-varying pumping cost. 

CONCLUSIONS 

We present a parallel recombinative simulated annealing (PRSA) model to 

optimize in-situ bioremediation system design. The new simulation/optimization model 

determines the pumping (extraction/injection) strategy that minimizes total system cost, 

reduces contaminant concentration t~eanup standard, and prevents contaminant plume 

migration. To improve PRSA convergence and performanc~we employ Gray code, 
) 

uniform crossover, explicit well installation coding, threshold accepting function (T AF) 

and segregated genetic algorithm. Compared with Boltzmann trial, T AF reduces 

computation cost 43'2% by rejecting expensive system design without requiring 

simulations. 

PRSA mmmuzes total system cost (pumping/treatment, well installation and 

facility capital costs) better than SA and GA. An optimal time-varying pumping strategy 

requires 31 % less pumping costs than an optimal steady pumping strategy. Optimizing 

system design while including fixed costs more significantly impacts a total system cost 

than merely minimizing pumping/treatment costs for the 3 -year in-situ bioremediation 

project. 

Parallel recombinative simulated annealing is a general-purpose optimization 

approach that has the good convergence of SA and the efficient parallelization of GAs. 
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Table 2. Cost function coefficients 

Coefficients Value 

Discount rate 0.05 

cP for injection cost (oxygen, 300 ($per gpm-year) 
nutrient and pumping operation) 

CP for extraction cost (treatment 1,000 ($per gpm-year) 
and pumping operation) 

ciP (well installation cost) I 2,000 ($ per well) 

D 20gpm = $ 20,000 
D 40gpm = $ 24,000 
D 60gpm = $ 28,000 

D ( injection facility capital cost) D 80gpm = $ 32,000 
D lOOgpm = $ 36,000 
D l20gpm = $ 40,000 
D l40gpm = $ 44,000 

E 20gpm = $ 30,000 
E 40gpm = $ 38,000 

E ( treatment facility capital cost ) E 60gpm = $ 46,000 
E 80gpm = $ 54,000 
E lOOgpm = $ 62,000 
E l20gpm = $ 70,000 

Note: 1 gpm = 0.06309 liter/sec. 
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Figure 8. Change of contaminant plume using time-varying pumping strategy after in­
situ bioremediation (a) 0.5 yrs, (b)l.O yrs, (c) 1.5 yrs, (d) 2.0 yrs, (e) 2.5 yrs, 
and (e) 3.0 yrs 




