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Abstract. We study a modified Kac model where the classical kinetic energy

is replaced by an arbitrary energy function φ(v), v ∈ R. The aim of this paper
is to show that the uniform density with respect to the microcanonical measure

is Ce−z0φ(v)-chaotic, C, z0 ∈ R+. The kinetic energy for relativistic particles is

a special case. A generalization to the case v ∈ Rd which involves conservation
momentum is also formally discussed.

1. Introduction. In 1956, Mark Kac published a paper [9], in which he answered
some fundamental questions concerning the derivation of the spatially homogeneous
Boltzmann equation. Kac considered a stochastic model consisting of N identical
particles, and obtained an equation like the spatially homogeneous Boltzmann equa-
tion as a mean-field limit when the number of particles tends to infinity. The key
ingredient in his paper was the notion of chaos, which goes back to Boltzmann’s
stosszahlansatz. Loosely speaking, chaos is related to asymptotic independence.
We give a precise mathematical definition later. He showed that if the probability
distribution of the initial state of the particles is chaotic then this property is prop-
agated in time, i.e., the probability distribution at time t > 0 is also chaotic. This
is referred to as propagation of chaos.

Kac’s model is a jump process on SN−1 = {(v1, ..., vN ) ∈ RN | v2
1 +· · ·+v2

N = N}.
This corresponds to an N -particle system where a particle is represented by its
velocity v ∈ R, and the kinetic energy of a particle is given by v2. The total energy is
conserved in this process, which is ergodic and hence has a unique invariant measure.
In the original model, the stationary distribution is the uniform measure on SN−1.

It is easy to prove that this uniform measure is (2π)−1/2e−v
2/2-chaotic according to

the definition given below, and Kac also provides a method of constructing other
families of chaotic measures on SN−1 which may serve as suitable initial distributions
for the process.

In this paper we consider a generalization of Kac’s model, where the energy of a
particle is given by a large class of functions φ(v), which includes φ(v) = v2. The
motivation for studying this problem comes from the theory of special relativity,
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where v represents the momentum of a particle rather than its velocity, and where
the kinetic energy is given by

φ(v) =
√

1 + v2 − 1.

The kinetic theory for relativistic particles is far less developed than for classical
particles, but there is a growing interest in this kind of problems (see below for
references), and this paper is a contribution to this work.

The first result of this paper is a proof that the uniform distribution on the mani-
fold represented by the total kinetic energy of the particles (depends on φ) with
respect to the microcanonical measure is chaotic by using the approach of Kac. We
also consider a jump process on this manifold, which is a direct generalization of
Kac’s model, and prove that propagation of chaos holds for this process. We also
consider a generalization to a model where the particles have momenta v ∈ Rd.

One of the most influential equations in the mathematical kinetic theory of gases
is the Boltzmann equation, which describes the time evolution of the density of a
single particle in a gas consisting of a large number of particles.

The Boltzmann equation is{
∂
∂tf(x, v, t) + ṽ · ∇xf(x, v, t) = Q(f, f)(x, v, t), v ∈ R3, t > 0,

f(v, 0) = f0,
(1)

where in the classical case ṽ = v, and in the relativistic case ṽ = v/
√

1 + |v|2. The
collision operator on the right hand side is a quadratic operator acting only in the
velocity variables. In the classical case it is given by

Q(f, f) =

∫
R3

∫
S2

(f(v′, t)f(v′∗, t)− f(v, t)f(v∗, t))B(v − v∗, σ)dv∗dσ.

The function B is called the collision kernel and is derived from the physics of
the model. The corresponding collision term is considerably more complicated in
the relativistic case, which is thoroughly investigated in [15], for example. In both
cases, (v, v∗) and (v′, v′∗) represent the velocities of a pair of particles before and
after an elastic collision, and satisfy the conservation of momentum,

v + v∗ = v′ + v′∗ , (2)

and energy

φ(|v|) + φ(|v∗|) = φ(|v′|) + φ(|v′∗|) . (3)

The derivation of the Boltzmann equation from a classical (Newtonian) many
particle system is still an important research topic. The classical result in this
direction is by Lanford [10], however, this result is valid only over a fraction of the
mean free time between collisions. Up to this date the result by Lanford has been
improved upon only in details, see e.g., [12] and the recent book [7]. For the study
of the relativistic Boltzmann equation, see e.g., [4].

To obtain an equation like (1) as a mean-field limit, Kac considered the master
equation, which describes the evolution of the probability density on state space.
Assuming that velocities of the particles is distributed according to a probability
density F0 initially, its time evolution is given by the following linear master equation{

∂
∂tFN (v1, . . . , vN , t) = KFN (v1, . . . , vN , t),

FN (v1, . . . , vN , 0) = F0(v1, . . . , vN ).
(4)
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where K is the generator of a Markov jump process,

KFN (v1, . . . , vN ) = N [Q− I]FN (v1, . . . , vN ),

with I being the identity operator and

QFN (v1, . . . , vN ) =
2

N(N − 1)

∑
i<j

∫ π

−π
FN (v1, . . . , v

′
i(θ), . . . , v

′
j(θ), . . . , vN )

dθ

2π
.

Hence K can be written as a sum of generators acting on only two variables, vi and
vj , say, which corresponds to binary collisions in a real gas. The pair of velocities
v′i(θ), v

′
j(θ) is the outcome of the velocities vi, vj undergoing a collision, and in the

classical case, as proposed by Kac they are given by

v′i(θ) = vi cos θ + vj sin θ, v′j(θ) = −vi sin θ + vj cos θ. (5)

The energy of a pair of particles is always conserved in a collision, i.e.,

v′i(θ)
2 + v′j(θ)

2 = v2
i + v2

j .

In a realistic model the momentum should also be conserved, but since the particles
have one-dimensional velocities, imposing conservation of momentum would lead to
either the particles keeping the velocities during a collision or exchanging velocities.
Momentum conservation is therefore sacrificed in this case.

The fact that particles are assumed to be indistinguishable corresponds to the
initial distribution F0 being symmetric with respect to permutations, and this prop-
erty is preserved by K, so that FN is symmetric for all t > 0.

In order to obtain a mean-field limit of the master equation (4) as N →∞, Kac
introduced the notion of chaos (in [9], he referred to it as the Boltzmann property).

Definition 1.1. Let f be probability density on R. For each N ∈ N, let FN be a
probability density on RN with respect to a measure m(N). The sequence {FN}N∈N
of probability densities on RN is said to be f−chaotic if the following two conditions
are satisfied:

1. Each FN is a symmetric function of v1, . . . , vN .
2. For each fixed k ∈ N, the k-th marginal fNk (v1, . . . , vk) of FN converges to∏k

i=1 f(vi), as N →∞, where f(v) = limN→∞ fN1 (v). The convergence is to
be taken in the weak sense, that is, if ϕ(v1, . . . , vk) is a bounded continuous
function of k variables, v1, . . . , vk ∈ R, then

lim
N→∞

∫
RN

ϕ(v1, . . . , vk)FN (v1 . . . , vN )dm(N)

=

∫
Rk

ϕ(v1, . . . , vk)

k∏
i=1

f(vi)dv1 . . . dvk.

(6)

More generally, this can be formulated for probability densities on products EN

where E may be an arbitrary Polish space. The setting of this paper is also slightly
different from the Definition 1.1 because the dynamics take place on a submanifold
of RN .

A chaotic family of probability densities on SN−1(
√
N) is the following:

Example 1.2. It is a well known fact that the surface area of the sphere SN−1(
√
E)

in RN is given by

|SN−1(
√
E)| = 2π

N
2 E

N−1
2

Γ
(
N
2

) .
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Let

FN (v1, . . . , vN ) =
1

|SN−1(
√
N)|

be the symmetric uniform density on SN−1(
√
N) with respect to surface measure

σ(N). Let ϕ be continuous function on R. It is easy to see that∫
SN−1(

√
E)

ϕ(v1)dσ(E) =

∫ √E
−
√
E

ϕ(v1)

∣∣∣∣SN−2

(√
E − v2

1

)∣∣∣∣ dv1.

Replacing E with N we have

lim
N→∞

∫
SN−1(

√
N)
ϕ(v1)dσ(N)

|SN−1(
√
N)|

= lim
N→∞

Γ
(
N
2

)
π

1
2N

1
2 Γ
(
N−1

2

) ∫ √N
−
√
N

ϕ(v1)

(
1− v2

1

N

)N−3
2

dv1

=
1√
2π

∫ ∞
−∞

ϕ(v1)e−
v2
1
2 dv1.

Taking ϕ to be a function on Rk, the same calculations show that, the family of

uniform densities on SN−1(
√
N), with respect to the surface measure, is 1√

2π
e−

v2

2

-chaotic.

Kac showed by using a combinatorial argument that the master equation (4)
propagates chaos, that is, if {FN (v1, . . . , vN , 0)}N∈N is f0−chaotic, then the solu-
tions to (4), {FN (v1, . . . , vN , t)}N∈N is f(v, t)−chaotic. The density f(v, t) satisfies
the Boltzmann-Kac equation

∂

∂t
f(v, t) = 2

∫
R

∫ π

−π
[f(v(θ), t)f(w(θ), t)− f(v, t)f(w, t)]

dθ

2π
dw,

f(v, 0) = f0,

(7)

with v(θ), w(θ) given by (5).
Kac described also a method to construct other chaotic probability densities on

SN−1(
√
N): Let

FN (v1, . . . , vN ) =

∏N
i=1 f(vi)

Z(
√
N)

, (8)

where

Z(
√
E) =

∫
SN−1(

√
E)

N∏
i=1

f(vi)dσ
(E), (9)

with σ(E) being the surface measure on SN−1(
√
E). Kac showed that, under

some conditions on the function f , the family of probability densities {FN}N∈N
is h(v)−chaotic, where

h(v) =
e−z0v

2

f(v)∫
R e
−z0v2f(v)dv

, (10)

and z0 is a positive constant. Note that the case f(v) = 1 corresponds to the
previous example.
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The purpose of the present article is to study chaotic probability densities on
other surfaces than SN−1(

√
N). Define

ΩN−1(
√
E) =

{
(v1, . . . , vN ) |

N∑
i=1

φ(vi) = E

}
, (11)

where φ(v) represents the energy of a particle with velocity v, and

φ ∈ C1(R,R+), φ is even and convex,

φ(0) = 0 . (12)

We show that the uniform density on ΩN−1(
√
N) with respect to the microcanonical

measure is Ce−z0φ(v)−chaotic, where C is a normalisation constant and z0 > 0 is
the unique solution to a specific equation.

Chaotic probability densities on spheres have been considered by many authors.
In a paper by Carlen, Carvalho, Le Roux, Loss and Villani, [1], the authors show
the following theorem, which differs from Kac’ result both in the exact definition of
chaos (the notion of entropic chaos is introduced), and in the method of proof:

Theorem 1.3. Let f be a probability density on R such that f ∈ Lp(R) for some
p > 1,

∫
R v

2f(v)dv = 1 and
∫
R v

4f(v)dv <∞. Let a family of densities {FN}N∈N,

be defined with FN as in(8) with σ(N) now being the normalized surface measure on

SN−1(
√
N). Then {FN}N∈N is f -chaotic.

Sznitman [13] constructed chaotic families of measures using a somewhat different
approach: Let h1, . . . , hN be i.i.d random variables with law µ(dh) = f(h)dh, where
h ∈ Rd. Assume that f is differentiable and satisfies the following condition∫

Rd

(f(h) + |∇f(h)|)eλ|h|dh <∞, (13)

where λ ∈ R. Then, the conditional distribution µN of (h1, . . . , hN ) subject to the
constraint h1+···+hN

N = a is Υ−chaotic, where

Υ =
1

Zλa

eλa·hµ(dh), (14)

with λa determined by the equation
∫
h dΥ(h) = a and Zλ is a normalisation

constant. Note that, the choice of λ for which condition (13) is satisfied depends
on a. Within the framework of this paper we think of the random variable h ∈ R
as the energy of a particle, in this case h = φ(v) ≥ 0.

The organization of this paper is as follows. In section 2 we define the micro-
canonical measure on ΩN−1(

√
N) and show that the uniform density on ΩN−1(

√
N)

with respect to this measure is chaotic. In Section 3, we introduce a modified Kac
model with particles having the energy φ(v) and the corresponding master equation.
We also show that this master equation propagates chaos and obtain the limiting
equation. In Section 4, we discuss how to generalize the results in Section 2 to the
case v ∈ Rd, d > 1, in which case the momentum is also conserved. An Appendix
is also included to introduce the methods that are used in the paper.

2. Chaotic measures. This section is devoted to showing that the family of uni-
form probability densities on ΩN−1(

√
N) with respect to the microcanonical mea-

sure is chaotic. By Example 1.2, another approach would be show that the uniform
density on ΩN−1(

√
N) with respect to surface measure is chaotic. However, since
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we consider a particle system where the total energy is conserved it is natural to use
the microcanonical measure on ΩN−1(

√
N). We show that the family of uniform

probability densities on ΩN−1(
√
N) with respect to the microcanonical measure is

Ce−z0φ(v)-chaotic where z0 > 0 is the solution to a specific equation and C is a
normalisation constant.

The microcanonical measure on ΩN−1(
√
N) is defined as follows: Let

H(v1, . . . , vN ) =

N∑
i=1

φ(vi). (15)

Definition 2.1. Provided that |∇H| 6= 0, the microcanonical measure, η(E), on

ΩN−1(
√
E), is defined by

η(E) =
σΩ

|∇H|
, (16)

where σΩ is the surface measure induced by the Euclidean measure in RN on
ΩN−1(

√
E).

The microcanonical measure arises naturally in physics from the assumption of
equal probability, meaning essentially that all microscopic particle configurations
corresponding to the same energy are equally probable, see e.g. [11] or [16].

A more geometrical approach is given by the coarea formula, as explained e.g.
in [6]: If Φ : Rn → Rm is Lipschitz continuous and n ≥ m, then for each measurable
set A ⊂ Rn, ∫

A

JΦ(x)dx =

∫
Rm

Hn−m(A ∩ Φ−1(y)) dy , (17)

where JΦ is the Jacobian of Φ, as defined in [6], and Hn−m denotes the n −
m-dimensional Hausdorff measure. In our setting this can be rephrased as (see
Theorem 3.13 in [6]): if H : Rn → R is Lipschitz continuous and ess inf|∇H| > 0,
and g : Rn → R is integrable, then for almost all E,

d

dE

∫
RN

g(x)χ{H(x)>E} dx =

∫
{H=E}

g

|∇H|
dHn−1 . (18)

where χ is the indicator function of a set. Because H(v1, ..., vN ) = φ(v1)+ · · ·φ(vN )
with φ convex and diffentiable, the set {H = E} is also convex and regular. Then∫

RN

g(v1, . . . , vN )δ(H(v1, . . . , vN )− E)dv1 . . . dvN

=

∫
R

∫
ΩN−1(

√
y)

gδ(y − E)
dσΩ

|∇H|
dy =

∫
ΩN−1(

√
E)

g
dσΩ

|∇H|
.

This shows that
δ(H(v1, . . . , vN )− E) =

σΩ

|∇H|
.

Another concept that is relevant in this context is that of disintegration of a
measure, which is a measure theoretic approach to almost the same problem, and
a means of approaching conditional probabilities, see e.g. [5]. In our setting, the
disintegration theorem states that given a measure dµ on RN there are a measure ν
on R+ and a family of measures µE on the level surfaces {(v1, ..., vN ) |

∑
φ(vj) =

E}, such that ∫
RN

f(y)dµ(u) =

∫ ∞
0

∫
{
∑
φ(vj)=E}

f(y)dµE(y)dν(E) , (19)
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Remark 1. On SN−1(
√
E), we have that |∇H| = 2

√
E. This implies that the

microcanonical measure is up to a constant factor equal to the surface measure on
SN−1(

√
E).

Using the equality H(v1, . . . , vN ) = E, we can express, at least locally, the vari-
able vN as function of v1, . . . , vN−1:

vN = U(v1, . . . , vN−1).

By this parametrization, the surface ΩN−1(
√
E) can be represented as the graph of

U : RN−1 → R. The surface measure σΩ on ΩN−1(
√
E) is now given by

dσΩ =
√

1 + |∇U |2 dv1 . . . dvN−1.

By the implicit function theorem it follows that

∂U

∂vk
= −

∂H
∂vk
∂H
∂vN

k = 1, . . . , N − 1.

Thus
dσΩ

|∇H|
=

1∣∣∣ ∂H∂vN ∣∣∣dv1 . . . dvN−1.

To carry out integration on ΩN−1(
√
E) with respect to the microcanonical mea-

sure η(E) we use the last equality:∫
ΩN−1(

√
E)

g(v1, . . . , vN )dη(E)

=
∑
ε=+,−

∫
∑N−1

i=1 φ(vi)≤E
g(v1, . . . , εvN )

1∣∣∣ ∂H∂vN ∣∣∣ε dv1 . . . dvN−1,

where

vN = φ−1

(
E −

N−1∑
i=1

φ(vi)

)
,

and φ−1(v) is the inverse of φ(v), v ≥ 0. Moreover,∣∣∣∣ ∂H∂vN
∣∣∣∣
ε

=

∣∣∣∣∣ ∂H∂vN
(
v1, . . . , vN−1, εφ

−1

(
E −

N−1∑
i=1

φ(vi)

))∣∣∣∣∣ .
The uniform density F (v1, . . . , vN ) on ΩN−1(

√
N) with respect to the micro-

canonical measure η(N) is given by

FN (v1, . . . , vN ) =
1

Zφ(
√
N)

, (20)

where

Zφ(
√
E) =

∫
ΩN−1(

√
E)

dη(E).

To show that the uniform density on ΩN−1(
√
N) with respect to the microcanonical

measure η(N) is Ce−z0φ(v)-chaotic we follow Kac [9], and start by determining the
asymptotic behaviour of

Zφ(
√
E) =

∑
ε=+,−

∫
∑N−1

i=1 φ(vi)≤E

1∣∣∣ ∂H∂vN ∣∣∣ε dv1 . . . dvN−1
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with E = N for large N . Since∣∣∣∣ ∂H∂vN
∣∣∣∣
ε

= |φ′(vN )| and vN = ±φ−1

(
E −

N−1∑
i=1

φ(vi)

)
,

we have

Zφ(
√
E) = 2

∫
∑N−1

i=1 φ(vi)≤E

1∣∣∣φ′(φ−1(E −
∑N−1
i=1 φ(vi)))

∣∣∣dv1 . . . dvN−1.

To write Zφ(
√
E) as an integral over the sphere SN−1(

√
E), we make the change of

variables y2
i = φ(vi) with respect to sign of vi, i = 1, . . . , N − 1. This leads to

Zφ(
√
E) =

2N
∫
∑N−1

i=1 y2i≤E

1∣∣∣φ′(φ−1(E −
∑N−1
i=1 y2

i ))
∣∣∣
N−1∏
i=1

|yi|
|φ′(φ−1(y2

i ))|
dy1 . . . dyN−1.

(21)

Let

f(y) :=
|y|

|φ′(φ−1(y2))|
. (22)

The integrand in (21) is almost a product of N copies of f(y). Multiply and di-

vide the integrand by |yN | =
√
E −

∑N−1
i=1 y2

i . Recall the following formula for

integration over a sphere∫
SN−1(E)

g(y1, . . . , yN )dσ(E2)

=
∑
ε=+,−

∫
∑N−1

i=1 y2i≤E2

g(y1, . . . , εyN )
Edy1 . . . dyN−1√
E2 −

∑N−1
i=1 y2

i

.

We now get

Zφ(
√
E) =

2N−1

√
E

∫
SN−1(

√
E)

N∏
i=1

f(yi)dσ
(E). (23)

Having Zφ given by (23) is convenient in sense that, in [9], Kac determined the

asymptotic behaviour of Zφ(
√
N) for large N by using the saddle point method

(see e.g. [8]). For completeness, we present each step of the result with rigorous
justification with f(y) given by (22). A short description of the saddle point method
is given in the Appendix.

We start by computing the Laplace transform of E 7→ Zφ(
√
E). The Laplace

transform of Zφ(
√
E) is defined provided that Zφ(

√
E) grows at most exponentially.

Since the behaviour of Zφ(
√
E) depends on the function f(y) defined by (22) we

assume that φ(y) is such that

f(y) ≤ Keby
2

, (24)

for some K ≥ 0 and b > 0. This condition ensures that Zφ(
√
E) grows at most

exponentially.
Taking the Laplace transform of Zφ(

√
E), making the change of variable r =

√
E,

we have, for w ∈ C where <(w) > b∫ ∞
0

e−wEZφ(
√
E)dE = 2

∫ ∞
0

e−wr
2

rZφ(r)dr.
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Using (23), the last equality equals

2N
(∫ ∞
−∞

e−wy
2

f(y)dy

)N
.

From condition (24) and since <(w) > b it follows that

Φ(w) :=

∫ ∞
−∞

e−wy
2

f(y)dy (25)

is an analytic function of w for <(w) > b. By applying the inverse of the Laplace
transform, we get

Zφ(
√
E) =

2N

2πi

∫ γ+i∞

γ−i∞
ezE

(∫ ∞
−∞

e−zy
2

f(y)dy

)N
dz,

where γ > b is such that the line γ = <(z) lies in the half-plane where Φ(z) is
analytic. Replacing E with N , we get

Zφ(
√
N) =

2N−1

πi

∫ γ+i∞

γ−i∞

(
ez
∫ ∞
−∞

e−zy
2

f(y)dy

)N
dz.

By comparing with the saddle point integral (52) in the Appendix, we set

q(z) = 1 and S(z) = z + log Φ(z), (26)

which is well defined because Φ(z) is nonzero on the line γ = <(z). We now have

Zφ(
√
N) =

2N−1

πi

∫ γ+i∞

γ−i∞
eNS(z)dz. (27)

The asymptotic behaviour of Zφ(
√
N) for large N is determined by the saddle points

of S(z). The next lemma concerns the saddle points of S(z).

Lemma 2.2. Assume that there exists a γ > 0 such that∫ ∞
−∞

e−γy
2

f(y)dy <∞. (28)

Moreover, assume that ∫ ∞
−∞

(1− y2)f(y)dy < 0, (29)

and ∫
|y|≤1

(1− y2)f(y)dy > 0. (30)

Let S(z) be given by (26) with Φ(z) by (25). For <(z) ≥ γ, the function S(z) is
analytic and there exists a unique saddle point z0 to S(z) such that z0 is real, z0 ≥ γ
and S′′(z0) > 0. Moreover

Zφ(
√
N) ∼ 2N−1eNz0√

NS′′(z0)

(∫ ∞
−∞

e−z0y
2

f(y)dy

)N
. (31)

Proof. Note that, for z = ξ + iη, for all ξ

arg max
η
|eξ+iηΦ(ξ + iη)| = {0}.

Hence, we only need to find saddle points on the real line.

Claim 1. The function S(z) has a unique saddle point z0 where z0 ≥ γ.
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Proof. For <(z) ≥ γ, we have

S′(z) = 1−
∫∞
−∞ y2e−zy

2

f(y)dy∫∞
−∞ e−zy2f(y)dy

. (32)

For z = ξ + i0 where ξ ≥ γ, the equation S′(ξ) = 0 is equivalent to∫ ∞
−∞

e−ξy
2

(1− y2)f(y)dy = 0.

Multiplying the last equality by eξ, we see that, S′(ξ) = 0 is equivalent to∫ ∞
−∞

e−ξ(y
2−1)(1− y2)f(y)dy = 0.

Let

A(ξ) =

∫ ∞
−∞

e−ξ(y
2−1)(1− y2)f(y)dy.

Since

A′(ξ) =

∫ ∞
−∞

e−ξ(y
2−1)(1− y2)2f(y)dy > 0,

it follows that A(ξ) is an increasing function of ξ. Moreover, by (29) we have

A(0) < 0.

Note that

lim
ξ→∞

∫
|y|>1

e−ξ(y
2−1)(1− y2)f(y)dy = 0.

Hence ∫ ∞
−∞

e−ξ(y
2−1)(1− y2)f(y)dy ∼

∫
|y|≤1

e−ξ(y
2−1)(1− y2)f(y)dy

=

∫
|y|≤1

eξ(1−y
2)(1− y2)f(y)dy.

The last integral goes to infinity by (30) as ξ → ∞. Hence, there exists a unique
z0 ≥ γ such that S′(z0) = 0.

Claim 2. The second derivative of S(z) at z0 is positive.

Proof. We have

S′′(z) =
Φ′′(z)

Φ(z)
− Φ′(z)2

Φ(z)2
.

For z = z0, using the Jensen inequality, we get

Φ′′(z0)

Φ(z0)
=

∫∞
−∞ y4e−z0y

2

f(y)dy∫∞
−∞ e−z0y2f(y)dy

>

(∫∞
−∞ y2e−z0y

2

f(y)dy∫∞
−∞ e−z0y2f(y)dy

)2

=
Φ′(z0)2

Φ(z0)2
.

This proves the claim.

We now turn to the proof of (31). We can write

Φ(z) =

∫ ∞
−∞

e−zy
2

f(y)dy =

∫ ∞
0

e−zy
2

(f(y) + f(−y))dy.

By a change of variables, the last integral equals∫ ∞
0

e−zy
f(
√
y) + f(−√y)

2
√
y

dy.
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Let z = ξ + iη, with ξ ≥ γ. The last integral can be written as∫ ∞
−∞

e−ξy
f(
√
y) + f(−√y)

2
√
y

1y≥0 e
−iηydy.

The last integral is the Fourier transform of the function Φ̃ξ at the point η, where

Φ̃ξ(y) = e−ξy
f(
√
y) + f(−√y)

2
√
y

1y≥0.

For ξ = z0, it follows that Φ̃ξ ∈ L1(R), and |F(Φ̃ξ)(η)| < F(Φ̃ξ)(0). Moreover, By
the Riemann Lebesgue lemma, it follows that

|F(Φ̃ξ)(η)| → 0 when |η| → ∞.

Let C+T and C−T be the curves in the complex plane given [γ + iT, z0 + iT ] and
[γ − iT, z0 − iT ], respectively.

We have∣∣∣∣∣
∫
C±T

eNS(z)dz

∣∣∣∣∣ =

∣∣∣∣∫ z0

γ

eN(ξ+iT )F(Φ̃ξ)(T )Ndξ

∣∣∣∣
≤

∫ z0

γ

eNξ|F(Φ̃ξ)(T )|Ndξ

≤ |z0 − γ| max
ξ∈[γ,z0]

eNξ|F(Φ̃ξ)(T )|N → 0, as|T | → ∞.

By Cauchy’s theorem, we can deform the contour in (27) to a contour passing
through the saddle point z0. Hence

Zφ(
√
N) =

2N−1

πi

∫ z0+i∞

z0−i∞
eNS(z)dz.

By the saddle point method, we obtain

Zφ(
√
N) =

2N−1

πi

√
−2π

NS′′(z0)

(
1 +O

(
1

N

))
eNS(z0)

∼ 2NeNz0√
NS′′(z0)

(∫ ∞
−∞

e−z0y
2

f(y)dy

)N
. (33)

This finishes the proof of the lemma.

The main theorem of this section is:

Theorem 2.3. Let f(y) defined by (22) satisfy the conditions (24), (29) and (30).

Then, the family of uniform densities on ΩN−1(
√
N) with respect to the micro-

canonical measure is Ce−z0φ(v)− chaotic. The positive constant z0 is the unique
real solution to the following equation∫ ∞

−∞
(1− φ(v))e−z0φ(v)dv = 0,

and C is a normalisation constant given by

C =
1∫∞

−∞ e−z0φ(v)dv
.
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Proof. Let ϕ be a bounded continuous function on Rk. For each fixed k ∈ N, a
modification of Lemma 2.2 shows that, for large N ,∑

ε=+,−

∫
∑N−1

i=1 φ(vi)≤E
ϕ(v1, . . . , vk)

1

| ∂H∂vN |ε
dv1 . . . dvN−1

∼
∫
Rk

ϕ(φ−1(y2
1), . . . , φ−1(y2

k))

k∏
i=1

e−z0y
2
i f(yi)dy1 . . . dyk

× 2Ne(N−k)z0√
NS′′(z0)

(∫ ∞
−∞

e−z0y
2

f(y)dy

)N−k
.

Using Lemma 2.2 again and making the change of variable y2
i = φ(vi), where

dvi = f(yi)dyi, i = 1, . . . , k leads to

lim
N→∞

∫
ΩN−1(

√
N)
ϕ(v1, . . . , vk)dη(N)

Zφ(
√
N)

=

∫
Rk

ϕ(φ−1(y2
1), . . . , φ−1(y2

k))

k∏
i=1

e−z0y
2
i f(yi)dy1 . . . dyk

∫
Rk

k∏
i=1

e−z0y
2
i f(yi)dy1 . . . dyk

=

∫
Rk

ϕ(v1, . . . , vk)

k∏
i=1

e−z0φ(vi)dv1 . . . dvk

∫
Rk

k∏
i=1

e−z0φ(vi)dv1 . . . dvk

.

This is what we wanted to prove.

We now consider two examples where Theorem 2.3 applies :

Example 2.4. In the classical Kac model φ(v) = v2. We get that f(y) = 1
2 and

thus, the conditions (28), (29) and (30) are fulfilled. To determine z0 we need solve
the equation ∫ ∞

−∞
(1− v2)e−z0v

2

dv = 0.

Direct calculations show that z0 = 1
2 is the unique real solution. Therefore the

uniform density on (ΩN−1(
√
N) = SN−1(

√
N)) with respect to the microcanonical

measure is e−
1
2
v2

√
2π
−chaotic. This has already been discussed in Example 1.2. Recall

that, on SN−1(
√
N), the microcanonical measure up to a constant is equal to the

surface measure

Example 2.5. For a relativistic energy function φ(v) =
√
v2 + 1−1, it follows that

f(y) =
(y2 + 1)|y|√
(y2 + 1)2 − 1

.

It is easy to check that the conditions (28), (29) and (30) are satisfied. To find z0

we solve the equation∫ ∞
−∞

(1− (
√
v2 + 1− 1))e−z0(

√
v2+1−1)dv = 0.
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By using numerical integration, we get that z0 ≈ 0.734641. Hence, the family of

uniform densities on ΩN−1(
√
N) with φ(v) =

√
v2 + 1−1 in (11) is Ce−z0(

√
v2+1−1)-

chaotic, where C ≈ 4.082.

We end this section by a comparison between our result and the result of Sznit-
man.The setting there is slightly different, and as commented by Sznitman it is not
directly applicable for the case h = v2 or the more general situation here. To see
the relation between two results, assume that an individual velocity is distributed
according the Gibbs measure e−βφ(v)/Z, where Z is normalization constant and
β > 0. Then the random variable h = φ(v) that is the energy of a particle, has a
distribution µ(dh) = f(h)dh, where

f(h) =
e−βh

|φ′(φ−1(h))|
. (34)

To apply Sznitman’s result, we need to show that f satisfies condition (13). This
is a strong integrability condition on f and depends on the choice of φ. Unfor-
tunately, even for the most classical case, the one studied by Kac, where h = v2,
condition (13) is not fulfilled since f ′(h)e−βh is not integrable at h = 0. It is a tech-
nical condition needed to control the Fourier transform of f , and it could probably
be relaxed, but it means that Sznitman’s result cannot be directly applied to our
case.

3. Particle dynamics and master equation for general energy functions.
In this section we follow [2] and [9] to introduce dynamics between particles having
the energy given by the function φ and obtain the corresponding master equation.
By similar arguments as in [9], we will see that the master equation propagates
chaos.

To introduce dynamics between the particles, let the master vector V = (v1, . . . ,

vN ) ∈ ΩN−1(
√
N). The master vector V makes a jump on ΩN−1(

√
N) according

the following steps:

1. Pick a pair (i, j), i < j according to the uniform distribution

Pij =
2

N(N − 1)
.

2. The pair of velocities (vi, vj) satisfies

φ(vi) + φ(vj) = h, h > 0.

Let

yi = sign(vi)
√
φ(vi) and yj = sign(vj)

√
φ(vj).

Then (yi, yj) is a point on the circle, and as in the original Kac model, the
collision may be performed there.

Pick an angle θ uniformly on (0, 2π] and let

y′i(θ) = yi cos θ + yj sin θ and y′j(θ) = −yi sin θ + yi cos θ.

The pair (vi, vj) is transformed on Ω1(
√
h) to (v′i(θ), v

′
j(θ)) according to

v′i(θ) = sign(y′i(θ))φ
−1
(
y′i(θ)

2
)
,

v′j(θ) = sign(y′j(θ))φ
−1
(
y′j(θ)

2
)
, (35)
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where

sign(v) =

{
1, if v ≥ 0

−1, if v < 0.

Note that

φ(v′i(θ)) + φ(v′j(θ)) = φ(vi) + φ(vj).

3. Update the master vector V and denote the new master vector by Ti,j(θ)V.

By step 2, it follows that Ti,j(θ)V ∈ ΩN−1(
√
N). Repeat step 1, 2 and 3.

This is only a generalization of the dynamics in [9] where φ(v) = v2.

The steps above describe a random walk on ΩN−1(
√
N). As in [2], we define its

Markov transition operator Qφ. If Vk is the state of the particles after the k-th step

of the walk, for a continuous function ϕ on ΩN−1(
√
N), the operator Qφ is defined

by

Qφϕ(y) = E [ϕ(Vk+1)|Vk = y] .

Writing out the expectation above, we get

Qφϕ(V) =
2

N(N − 1)

∑
i<j

∫ 2π

0

ϕ(Ti,j(θ)V)
dθ

2π
. (36)

If Fk is probability density of Vk with respect to the microcanonical measure η(N)

on ΩN−1(
√
N), we have∫

ΩN−1(
√
N)

ϕFk+1dη
(N) = E[ϕ(Vk+1)] = E [E[ϕ(Vk+1)|Vk]]

=

∫
ΩN−1(

√
N)

QφϕFkdη
(N).

By definition, the microcanonical measure is invariant under the transformation
V→ Ti,j(θ)V. It follows that Qφ is self adjoint and

Fk+1 = QφFk.

So far, the process defined above is discrete in time. To obtain a time continuous
process, we let the master vector V be a function of time, and the times between the
jumps (collisions) exponentially distributed. In this way, if FN (V, 0) is the proba-

bility distribution of the N particles on ΩN−1(
√
N) at time 0, the time evolution

of FN (V, t) is described by the following master equation

∂FN (V, t)

∂t
= KφFN (V, t), (37)

where

Kφ = N [Qφ − I] (38)

and I is the identity operator. A more complete discussion of master equations of
this kind may be found in [2].

Note that, for φ(v) = v2, the collision operator Kφ is the same as the collision
operator K in the Kac model. We have propagation of chaos for the master equation
(37):

Theorem 3.1. Assume that the family of initial densities {FN (V, 0)}N∈N on ΩN−1

(
√
N) is f(v, 0)−chaotic. Then, the family of densities {FN (V, t)}N∈N, where
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FN (V, t) is the solution to (37) is f(v, t)−chaotic. Moreover, the density f(v, t)
satisfies the following equation

∂

∂t
f(v, t) =

∫
R

∫ 2π

0

[f(v(θ), t)f(w(θ), t)− f(v, t)f(w, t)]
dθ

2π
dw, (39)

with f(v, 0) = f0(v) and v(θ), w(θ) given by (35).

Proof. The proof follows by the same arguments as in [9]. For a more detailed proof
where propagation of chaos is shown for more general master equations, we refer to
[2].

4. Chaotic measures in higher dimensions. In Section 2 we proved that the
uniform density with respect to the microcanonical measure on ΩN−1(

√
N) is

Ce−z0φ(v)-chaotic, v ∈ R. The goal of this section is to generalize this to the
case v ∈ R2 where now both the energy and momentum are conserved; the gener-
alization to Rd, d > 2 may be treated in the same way. The calculations here are
formal. For p ∈ R2, define

ΓN (
√
E, p) =

{
(v1, . . . , vN ) ∈ R2N

∣∣∣ N∑
i=1

φ(vi) = 2E,

N∑
i=1

vi = p

}
. (40)

We assume that E and p are chosen such that ΓN (
√
E, p) is non-empty. The classical

case when φ(v) = |v|2 has been thoroughly investigated in [3].
For p = (p1, p2) and vi = (vi1, vi2), i = 1, . . . N , a measure µE,p1,p2 concentrated

on ΓN (
√
E, p) is defined by

µE,p1,p2 = δ(2E −
N∑
i=1

φ(vi))δ(p1 −
N∑
i=1

vi1)δ(p2 −
N∑
i=1

vi2). (41)

The product of the Dirac measures is well defined since the hyper surfaces defined
by setting the arguments of the Dirac measures to zero are mutually transversal.
Let

Z(E, p1, p2) =

∫
R2N

δ(2E−
N∑
i=1

φ(vi))δ(p1−
N∑
i=1

vi1)δ(p2−
N∑
i=1

vi2)dv1 . . . dvN . (42)

As in Section 2, we need to determine the asymptotic behaviour of Z(E, p1, p2)
with E = N for large N . We note that in the case of relativistic collisions, with
φ(v) =

√
|v|2 + 1− 1, the measure µE,p1,p2 is Lorentz invariant (see [14]).

In the sense of distributions, the δ function is the inverse Fourier transform of
the function 1 and formally can be written as

δ(x) =
1

2π

∫
R
eixξdξ. (43)

For z = (z1, z2, z3), we can formally write

Z(E, p1, p2)

=
1

(2π)3

∫
R2N

∫
R3

ei(2E−
∑N

i=1 φ(vi))z3ei(p1−
∑N

i=1 vi1)z1ei(p2−
∑N

i=1 vi2)z2dz1dz2dz3 dV,
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where dV = dv1 . . . dvN . With E = N , the last equality is

Z(N, p1, p2) =

1

(2π)3

∫
R3

eip1z1+ip2z2

(
e2iz3

∫
R2

e−iφ(v1)z3−iv11z1−iv12z2dv11dv12

)N
dz1dz2dz3.

Note that here p1 and p2 are assumed to be independent of N . A natural and
straightforward variation is to replace p1 by Np1 and p2 byNp2.

Let

q(z1, z2, z3) = eip1z1+ip2z2 ,

S(z1, z2, z3) = 2iz3 + log

∫
R2

e−iφ(v1)z3−iv11z1−iv12z2dv11dv12,
(44)

where q : C3 → R, S : C3 → R. With these notations, we can write

Z(N, p1, p2) =
1

(2π)3

∫
R3

q(z1, z2, z3)eNS(z1,z2,z3)dz1dz2dz3. (45)

The right hand side of the last equality is a saddle point integral in dimension 3.
The asymptotic behaviour of Z(N, p1, p2) for large N is determined by the saddle
points of S(z1, z2, z3), i.e., points (z̄1, z̄2, z̄3) such that

∇S(z̄1, z̄2, z̄3) = 0. (46)

Using (44), we need to solve the following system of equations:

2i−
i
∫
R2 φ(v1)e−iφ(v1)z̄3−iv11z̄1−iv12z̄2dv11dv12∫

R2 e−iφ(v1)z̄3−iv11z̄1−iv12z̄2dv11dv12
= 0, (47)

−
i
∫
R2 v11e

−iφ(v1)z̄3−iv11z̄1−iv12z̄2dv11dv12∫
R2 e−iφ(v1)z̄3−iv11z̄1−iv12z̄2dv11dv12

= 0, (48)

−
i
∫
R2 v12e

−iφ(v1)z̄3−iv11z̄1−iv12z̄2dv11dv12∫
R2 e−iφ(v1)z̄3−iv11z̄1−iv12z̄2dv11dv12

= 0. (49)

Since φ is even, it follows that z̄1, z̄2 = 0 are the unique solutions to equations (48)
and (49). We can now obtain z̄3 by solving the following equation:∫

R2

(2− φ(v1))e−iφ(v1)z̄3dv1 = 0. (50)

Assuming that (0, 0, z̄3) is the unique solution to (46), and that we can deform the
integration domain in (45) to contain (0, 0, z̄3), we find that

Z(N, p1, p2) ∼ 1

(2π)3

(
2π

N

)3/2
1

(detS′′((0, 0, z̄3)))1/2
eNS(0,0,z̄3)q(0, 0, z̄3)

=
1

(2πN)3/2

1

(detS′′((0, 0, z̄3)))1/2
e2Niz̄3

(∫
R2

e−iφ(v1)z̄3dv1

)N
.

(51)

By the discussion in Section 2, this procedure shows formally that the uniform dis-
tributions on ΓN (

√
N, p) with respect to the measure µN,p1,p2 is Ce−z0φ(v)-chaotic,

where z0 = iz̄3 and z̄3 the unique solution to (50) and

C =
1∫

R2 e−z0φ(v)dv
.

Sznitman’s method, referred to in Section 1 and the end of Section 2, is not
restricted to the one-dimensional setting, but could formally be used also here:
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with N spatial dimensions, we would have d = N + 1, and h in Equations (13)
and (14) would be a generalized four-momentum, h = (v1, v2, ..., vN , φ(v1, ..., vN )).
However, the same difficulty as in the one-dimensional case would appear here, and
a modification of Sznitman’s argument would be needed, in the same way.

Appendix. The saddle point method is used to determine the asymptotic be-
haviour of integrals depending on a parameter. For a detailed description we refer
to [8]. Without proof we only state below the saddle point method which is con-
cerned with this paper.
One-dimensional saddle point method
Let γ be a contour in the complex plane. Assume that q and S are analytic functions
in a neighborhood of the contour γ. Consider the following integral

F (λ) =

∫
γ

q(z)eλS(z)dz. (52)

A point z0 ∈ C is called a simple saddle point of the function S : C → C if
S′(z0) = 0 and S′′(z0) 6= 0. Assume that z0 ∈ γ is the unique simple saddle point
of S. Then as λ→∞

F (λ) =

√
−2π

λS′′(z0)
eλS(z0)

(
q(z0) +O(

1

λ
)

)
. (53)

If there are more than one saddle point, F will be expressed as a sum over these
points.
Many-dimensional saddle point method
Let γ be an N -dimensional smooth compact manifold. Consider the following inte-
gral

F (λ) =

∫
γ

q(z)eλS(z)dz. (54)

where z = (z1, . . . , zN ) ∈ CN and the functions q(z) and S(z) are assumed to be
analytic in a domain D containing γ. A point z0 is called a simple saddle point of
S(z) if ∇S(z0) = 0 and detS′′(z0) 6= 0. Assume that z0 ∈ γ is the unique simple
saddle point of S. Then as λ→∞

F (λ) =

(
2π

λ

)N/2
1

(detS′′(z0))1/2
eλS(z0)

(
q(z0) +O(

1

λ
)

)
. (55)

If there are more than one saddle point, F is be expressed as a sum over these
points.
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