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Abstract

Implementation of complex discrete event fabrication processes can be considerably sim-

pli�ed by use of general reusable software modules representing the physical components.

At the same time, construction of the control system can be facilitated by use of for-

mal methods for automatic generation of the control laws. These two aspects can be

joined into a general concept with object-oriented modeling and control law synthesis as

foundations. The goal is to allow an operator to specify operation lists describing the

required sequences of operations for the manufacturing of the product, independently of

constraints given by a speci�c plant. With a suitable model of the capabilities and con-

straints of the resources of that plant, a product route can be automatically generated

from the operation list. Such a product route describes all available paths through the

system, for each type of product, irrespective of any other type of product that may be

simultaneously present within the production system. Given a set of product routes and

a model of the plant, control laws guaranteeing production according to those product

speci�cations can be synthesized.

Based on the supervisory control theory, using interleaved product routes as speci�cation,

we show how such control laws can be synthesized. An added complexity is that the a

speci�cation becomes non-deterministic, in the sense that the same string of events can

lead to di�erent system states. We show that the supervisory control theory can be used

with non-deterministic speci�cations assuming certain properties. We also describe an

object-oriented modeling approach to discrete event fabrication processes. It is shown that

the properties that have been de�ned as necessary for the non-deterministic supervisory

approach are immediate by the modeling approach. Thus, we show that the approach

to non-deterministic supervisory control can be combined with object-oriented modeling

techniques, and so we have a powerful framework for implementing control of large and

complex discrete event fabrication processes.

Keywords. Supervisory Control, Object-Oriented Modeling, Flexible Manufacturing,

Finite State Automata
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Chapter 1

Introduction

As pointed out by Fox (1992), modern corporations in the industrialized world must seek

new paths to be able to compete in the coming decade. These paths ought to result in

safe and eÆcient ways to manufacture customized, high-quality, environmentally benign

and technically advanced products. This calls for increasingly 
exible manufacturing pro-

cesses. However, industrial demands for a fast project-implement-run cycle, often limits

both the generality and the 
exibility of the designed systems. Due to the complexity of

the problem, the resulting systems often become not only expensive but also in
exible,

despite the fact that their components are themselves highly 
exible.

The main reason for this is that the control system is heavily in
uenced by the product

routes relevant at the time of implementation. Implementing only the required routes and

no more, gives (in some sense) the minimum amount of work. This minimal work load is

often at the cost, though, of decreased 
exibility and reusability. For new product routes

and for implementation of new systems, much (if not all) code has to be re-implemented.

Thus, this approach would (in some other sense) really require a maximum amount of

work. For instance, robots and machine tools can be used 
exibly in a large variety of

applications, while the control software that synchronizes these components most often

cannot function with machine tools or products other than those it was designed for, see

Sargent (1993). In order to lower costs and increase 
exibility, we need a truly 
exible

manufacturing system that can be reused without the need to reprogram the controller

whenever a change in production is introduced.

Flexibility can be incorporated on di�erent time-scales. A long time-scale 
exibility

permits incorporation of new or di�erent equipment within the system, without having

to extensively reprogram the control system. Flexibility on a medium time-scale allows

incorporation of new products within the manufacturing system, and 
exibility on a

very short time-scale permits rescheduling of the manufacturing system on-line. When

implementing control of production systems, some high-level support for modeling is

of a great advantage. This high-level support should provide means to build a system

appropriate for all three levels of 
exibility, described above.

Object-oriented modeling has shown to be a valuable tool for structuring complex sys-

tems and easing their implementation by providing general software components reusable

in di�erent applications with little or no alteration, see for instance Joannis (1992) and

Jobling (1994). The systems resulting from object-oriented modeling consist of indepen-

dent communicating modules. Thus, object-oriented modeling supports the incorporation

1



of new equipment, without extensive reprogramming of already functional modules. In

this way, the long time-scale aspect of 
exibility is supported.

Flexibility on the medium time-scale is supported by distributed product speci�cation.

Each product is an autonomous entity coexisting with other products simultaneously

present within the system. However, we can certainly do without the added complexity

of having to specify independent product routes with regard to other products that may

be existing at the time of production. It is favorable to be able to specify a distinct

product route irrespective of any other products, and have some underlying system tie it

all together.

Finally, the automatic synthesis of control laws supports the very short time-scale

aspect of 
exibility. For the sake of reliability and safety of the constructed system,

this synthesis should be supported by a rigid foundation of formal methods. Given an

object-oriented model of the system and a number of independent product speci�cations,

together with other speci�cations on the systems behavior, safe and correct control laws

must be synthesized. Since a manufacturing system can be regarded as a discrete event

process (DEP), this foundation of formal methods can be found in the supervisory control

theory (SCT) initiated by Ramadge (1987) and Wonham (1987).

Being a relatively new discipline within control theory, DEPs have attracted much at-

tention both in the systems modeling area and within the control-law synthesis �eld.

Shlaer (1992) and Adiga (1993) describe methodologies of modeling DEPs, based on

object-oriented approaches. A dynamic system is modeled as being composed of objects,

whose dynamic behavior is expressed by state automata. These objects communicate

by means of events representing state transitions. Ramadge (1987) and Wonham (1987)

have, with the SCT, provided a unifying framework for synthesis of control laws for DEPs.

Kumar (1991) and Balemi (1992), among others, have proposed their own variations of

the SCT, based on di�erent interpretations of the interaction between the controlling and

the controlled processes. Giua (1991) bases an approach on Petri nets. Even so, until

now there has been very little (possibly no) work done in merging the two domains of

object-oriented modeling and supervisory control synthesis.

In this work we will show how object-oriented modeling of 
exible manufacturing and

assembly systems can be used with the SCT. The object-oriented modeling approach

builds on the ability to identify and extract the general behavior of production resources

into reusable software models, one for each di�erent class of manufacturing device. These

reusable models o�er generalized functions on a high abstraction level, using lower level,

speci�c instruction sequences to implement that behavior. In this way the synchronizing

aspects of the required control will be separated from the control of the actual devices. The

general, high-level functionality is represented by message driven DEPs. The messages are

modeled as events. Thus, the plant to be controlled consists of a number of independent

(but possibly coupled) DEPs, operating concurrently.

The speci�cation of the product routes will likewise be given as DEPs. Each type

of product can be speci�ed without regard for any other product simultaneously present

within the system, even though they may require use of the same processing equipment.

The product routes thus speci�ed encompass a subset of the events o�ered by the plant,

not necessarily disjoint between di�erent types of products. The concurrently executing

product routes can thus be seen as a speci�cation for the plant to exhibit a certain

behavior, and it is up to some underlying control system, the supervisor, to guarantee



that this behavior is actually accomplished.

To synthesize a supervisor with a global view of the controlled system, the individual

product route speci�cations have to be composed into a joint speci�cation on the overall

system. However, the products are to run asynchronously with respect to each other,

though synchronously with respect to the plant. The concurrent sharing of the machining

resources by the products can be modeled by interleaving, see Hoare (1985). The joint

speci�cation is the interleaving of the individual product route speci�cations, which leads

to a non-deterministic speci�cation; non-deterministic in the sense that a choice between

several products simultaneously wanting to share a resource may arise. Only one of

these will be allowed access to the shared resource, and the choice between them is non-

deterministic. Non-determinism in this sense means that one and the same sequence of

events may lead to any of a number of states. It will in this work be shown that the SCT is

valid for the certain class of non-deterministic speci�cation arising in systems as described

above. Furthermore, a supervisor does exist and is algorithmically constructable.

The resulting system contains three basic types of objects all described as DEPs;

internal resources that are models of the actual machining equipment; product individuals

that model the physical workpieces; and a controller that controls the behavior of the

system, so as to ful�ll the speci�cation of having the products satisfactorily produced.

The controller operates within the boundaries set by the supervisor, since the supervisor

expresses all allowable routes through the system, satisfying the speci�cations.

To set the scene, we will begin with a brief introduction of the concepts to be presented

in detail. This introduction comes in the form of an example system modeled by the

object-oriented principles described in Chapter 5, with a supervisor synthesized by the

variation of the supervisory control theory that will be presented in Chapters 3 and 4.

First the example system is described, followed by a short description of the object-

oriented modeling approach in general, and its application to the example system. Then

some aspects of distributed product speci�cation is discussed, and two products to be

produced by the example system are introduced. Finally, the SCT algorithm is brie
y

described, and applied to the example system. The presented example will by no means

be exhaustive, but we feel that this introduction gives a reasonable indication on how

object-oriented modeling and the SCT can be used in practice, and, thus, motivates the

remaining chapters of this thesis.

1.1 An Example System

The example assembly system is shown schematically to the right in Figure 1.1. It consists

of an input bu�er, a lathe, a mill and an assembly unit. The system also contains a robot

for loading and unloading the production resources. These are the resources that we will

regard here. The operator station for manual supervision of the production, and the bar

code reader that registers incoming workparts will not be considered.

The input bu�er, M1, has a limited capacity of one product at a time. Products

are loaded onto M1 on request, by some external source which is not modeled and is

considered to be of in�nite capacity. FromM1 the products are transported by the robot

to either the lathe, M2, or the mill, M3, depending on the speci�cation of the product

route. The assembly unit, M4, takes two di�erent products|loaded one at a time|
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Figure 1.1: Object-oriented model of a 
exible assembly cell. The PI's represent product

route speci�cations.

assembles them and emits one product to some external sink outside the system. As with

the external source, the external sink is not modeled, and considered to be of in�nite

capacity. M2 and M3 can both handle only one product at a time.

Note that this is a purely imaginary system, carefully chosen so as to illustrate the core

of the concepts described in this work. However, the example system has many things in

common with real life 
exible manufacturing and assembly systems.

1.2 Object-Oriented Modeling

For the generation of any type of control system, a model of the system to be controlled

is needed. It is favorable for this model to lie as close to the physical representation as

possible, yet encompass as little information as absolutely necessary. A manufacturing

system involves a number of independent manufacturing devices interacting to perform

useful work. Object-oriented modeling caters for abstraction by encapsulating data and

behavior. It also modularizes the modeled system in a natural way by resulting in an

object structure close to the physical structure. The objects are independent software

modules interacting by messages.

1.2.1 Internal Resources

An internal resource is an autonomous reusable software model, described as a DEP. The

reusability emanates from the fact that machining devices can be described by their gen-

eral behavior on an abstract level. On this level, application-speci�c details are not visible;

a crucial requirement for the generation of reusable software components. However, the

functionality promised by the abstract level, the general part, has to be implemented

somewhere. Therefore, each resource also has a speci�c part that interacts with the gen-

eral part. This speci�c part is tailored to the requirements of the actual physical device
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Figure 1.3: M1 represents a general production unit, such as a lathe or a mill. M4

represents a general assembly unit, and R represents a general transporting device.

in the speci�c application. Thus, control over a physical device is routed through the

corresponding internal resource, see Figure 1.2.

Operating concurrently, the internal resources constitute the plant to be controlled.

This concurrent execution is modeled by full synchronous composition (FSC) of the in-

ternal resources, see Hoare (1985). This allows the internal resources to be coupled and

thus able to synchronize, for instance, over mutual use of tools.

General parts, representing generic production resources such as a milling device and

an assembly unit, are given in Figure 1.3; in this case in the form of Petri nets, see

Peterson (1981). These models include only details speci�c for supervisor synthesis. More

elaborate resource models usable for actual control can be found in Gullander (1995) and

in Section 5.2. SuÆce it to say that the models presented in Figure 1.3 are subsets, in

some sense, of the more elaborate reusable resource models of Section 5.2. We can also

note the work of Tittus (1995b), were reusable resource models are given for control of

chemical batch processes.

The resource models of Figure 1.3 simply model whether a resource is available or not.

The model of M4 being somewhat more complicated, since it includes the fact that two

products have to be loaded, before an assembly operation can take place. The details

of the actual operations to perform, or that can be performed, are not included in the



models. Once a product has claimed a resource, the actual operation is of no concern to

the supervisor. The supervisor merely coordinates the dynamic resource allocation among

the products.

1.3 Distributed Product Speci�cation

Products are also modeled as DEPs. Each product speci�cation describes a number of

alternative desired routes through the system. It is thus natural to view a product as a

speci�cation on the manufacturing process to exhibit a certain event-sequence. However,

there can be several independent products using the plant simultaneously. Together these

form a joint speci�cation on the system's overall behavior. So as not to overburden the

user with an overly detailed knowledge of the system, it is important that there exists

support for high-level distributed speci�cation of the product routes.

1.3.1 High-Level Product Speci�cation

By a high-level product speci�cation, we mean that the speci�cation of the product route

does not explicitly mention speci�c devices pertaining to a particular application. Rather,

the product route is given as an operation list (see Andr�easson (1995) and Section 5.3),

a sequence of operations that the product has to undergo to be produced. In this way

a high-level product speci�cation is independent of any plant that is to manufacture the

product. Any plant that o�ers the required operations can produce the speci�ed product.

Compare with the general recipe of Tittus (1995b).

The preferred way to specify operation lists is graphical. The operator lays out the

desired operation list, focusing merely on what operations to perform and in which or-

der. A graphical layout is well suited for a computerized tool with a graphical interface.

A number of graphical high-level operators for specifying operation lists and product

routes are given in Section 5.3.1. High-level operators in an algebraic form are shown in

Andr�easson (1995).

However, once a plant is chosen to manufacture the product, the speci�ed operations

can be mapped onto the capabilities of speci�c resources within that plant. This mapping

procedure is described for batch processes by Tittus (1995a), and brie
y exempli�ed in

Example 5.2 on page 156. The result is a speci�cation for the product consisting of

all possible sequences of resource allocations that will manufacture the product. Note

that this is still a distributed speci�cation. No regard for other products that may be

simultaneously produced by the plant is taken. Such a product speci�cation will be called

a product route in this work, while it is called amaster recipe by Tittus (1995b). Naturally,

a product route can be manually speci�ed for a given product and plant

For the example system two operation lists are given to the left in Figure 1.4. These

are overly simplistic, for instance, no alternative paths are speci�ed. Nonetheless, they

serve well as an example.

The two product types, AB and CD, are assembled from A and B, and C and D

parts, respectively. Thus, A, B, C and D represent raw material entering the system

at M1, while AB and CD represent the �nished products. The C and D parts are

not processed upon, other than in the assembly unit, M4, while the A and B parts are
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Figure 1.4: To the left is shown operation lists for two types of products to be manufac-

tured by the example system. To the right is shown the corresponding high-level product

routes, assuming that operationOpi can be performed by machineMi, only (i = 1; 2; 3; 4).

Note that both product types use M1 and M4.

operated upon by the lathe,M2, and the mill,M3, respectively. The exact speci�cations

for these operations are given as parameters "hidden" within the boxes of Figure 1.4.

Note that these parameters can represent an entire program for a numerically controlled

production resource, if necessary. However, for the control of the overall assembly process,

the nature of the operations being performed within each resource is not important, merely

the sequencing between the resources is regarded.

The operation lists of Figure 1.4 can, together with a model of the plant, be trans-

lated into product routes that point out speci�c resources of the given plant. These are

shown to the right in Figure 1.4. These are not yet DEPs, since they only describe the

available sequences of resources that the products are to visit. A detailed example of this,

relating to chemical batch processes, is shown in Tittus (1995d). This example is also

brie
y discussed in Example 5.2 on page 156. The approach is equally appropriate for

manufacturing and assembly systems.

For the synthesis of a supervisor, we need the product routes in a "lower-level" form

of DEPs. The resulting "low-level" product routes are given in Figure 1.5. Since there is

a well-de�ned correspondence between a product route given as a DEP, as in Figure 1.5,

and given in a more "high-level" way, as in Figure 1.4, we will make no clear distinction

between the two. When necessary we will speak of "high-level product routes". Note

though, that Tittus (1995d) does distinguish between these two views of a product route;

the "high-level" one is called a master recipe, while the "low-level" DEP is called a syn-

chronizable master recipe. The indices of the events denote the respective resources, see

Figure 1.3.

We can note that, though the robot is required for moving products between the

machines, it is not modeled in Figure 1.4, neither for the operation lists or the high-level

product routes. This is not needed, since there is only one robot that is assumed to be

able to handle all products and serve all machines. If this was not the case, there were

multiple robots each of which could only handle speci�c types of products, for instance,

then these would have been included in the high-level product routes. However, note that

the events pertaining to the robot, x and y, are present as elements of the ordered pairs,
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Figure 1.5: A Petri net describing the high-level product routes of Figure 1.4 in con-

junction with the resource models of Figure 1.3.
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Figure 1.6: The state-machine representation of the product route for the CD product

of Figure 1.5, assuming one part each of C and D. The initial state is indicated by the

unlabeled arrow to the top left. Note that this state-machine is non-deterministic, since

the a1 event leads from the initial state to either of two states.



hc1; xi, for example. The reason for these ordered pairs is explained in Section 1.4.2.

1.3.2 Interleaving

A distributed product speci�cation means that all products can be speci�ed independently

of each other. The operator laying out the operation list does not have to consider any

other product that may be present within the system simultaneously. Only the speci�c

product that is being speci�ed is of concern, even though there may be a multitude of

di�erent products running concurrently through the same system.

The product routes describe claiming and releasing of resources that constitute the

plant. Claiming a resource and releasing it modeled as events, so that the product routes

have event sets that are subsets of the plant's event set. Thus, it is not uncommon for

di�erent product routes to have common events, on the contrary. In Figure 1.5 we can see

that both product routes have the events ofM1 andM4 in common. At the same time, for

maximal utilization of the plant, all product routes must be able to run as unconstrained

by all other product routes as possible. Given distributed product speci�cations, a joint

speci�cation on the overall systems behavior is obtained by composing the independent

product routes by interleaving.

The concept of interleaving is described by Hoare (1985). Essentially, interleaving

means that two DEPs can execute their events asynchronously and irrespective of each

other, even though there may exist mutual events. In fact, interleaving explicitly prohibits

synchronous execution of any event.

Interleaving is inherent in the asynchronous execution of two or more DEPs. At

each time instant any DEP can execute its own event, asynchronously with regard to

any of the other DEPs. Thus, at each time instant the total system behaves as either

of the DEPs, and at no times will two DEPs engage in the same action synchronously.

Furthermore, the execution of an event is considered to be an instantaneous atomic action,

without duration. Therefore, no two di�erent events, equally labeled or not, can occur

simultaneously. Thus, the event sequences of the interleaved system is the interleaving

of the event sequences of the respective DEPs. Figure 1.5 shows the interleaving of the

distributed product speci�cations of the example system in Petri net form. The interleaved

product speci�cation of all simultaneously present product routes will be denoted Sp, and

is said to be a local speci�cation.

Each product route de�nes a number of states that the system is desired to be able to

reach. The completion of a product is typically such a desired state. Thus, the product

routes describe desired paths through the system. These desired paths are naturally

retained in Sp. However, in Sp there may also exist states that we do not want the

system to be able to reach. These states can be designated as forbidden. With multiple

robots, such a state may be that one robot unloads a machine, while at the same time

another robot is to load that machine. Furthermore, some paths through Sp may be

either desired or forbidden. This can also be introduced by synchronizing Sp with some

auxiliary speci�cation expressing these paths. See Lin (1988).

Due to the fact that multiple product routes may have equally labeled simultaneously

executable transitions, the local speci�cation may be non-deterministic, in the sense that

one and the same string of events can lead to any of a number of states. This non-

determinism arises naturally, given a number of independent resources and distributed



speci�cations of products to be manufactured by these resources. However, this non-

deterministic speci�cation is also an added complexity with regard to the SCT, which

originally only considered deterministic plant and speci�cation. In the following chapters

will be shown that the SCT can be extended to handle the case of non-deterministic

speci�cation.

We can also note that the individual A, B, C and D parts use the same resource

M1 when entering the system. Thus, not only may non-determinism arise due to the

interleaved product routes as such, but within each product route the respective parts

may also be interleaved, and so the product routes themselves are non-deterministic. In

Figure 1.6 the product route for the CD product is given in state-machine form, making

the non-determinism more explicit.

1.4 Supervisory Control

A supervisor is a DEP that operates in synchrony with the plant, in
uencing the plant

so as to have the closed-loop system of plant and supervisor exhibit some pre-speci�ed

desired behavior. For our purposes, the full synchronous composition (FSC) adequately

models the interaction between the plant and the supervisor. When synthesizing the

supervisor, the SCT regards the plant as a generator of events; all events occur as a

consequence of some action within the plant. Thus, the supervisor is con�ned to restrict

the actions of the plant by disabling events as the system executes. With the FSC this

disabling is a matter of the supervisor not de�ning some disabled events at each closed-

loop system-state. Note that in di�erent closed-loop system-states di�erent events can be

disabled.

However, not all events generated by the plant can be disabled by the supervisor. The

set of events of the plant is partitioned into two disjoint event-sets, the controllable and

the uncontrollable events. The controllable events can be dynamically disabled by the su-

pervisor so as not to occur. The uncontrollable events are, on the other hand, not subject

to in
uence by the supervisor; the plant can generate any of these whenever it occupies

a state from which an uncontrollable event is valid. The completion of an operation is

a typical uncontrollable event; once the supervisor has allowed the operation to start (a

controllable event), the supervisor has no control over when the task is completed. A

machine breakdown, is another typical uncontrollable event1. For the supervisor not to

become "out of sync" with the plant, it is imperative that the supervisor is able to fol-

low all uncontrollable events that can be generated in each closed-loop system-state; the

supervisor must be complete with respect to the plant.

It may be desirable for the closed-loop system to always be able to reach some signif-

icant state. For instance, the state denoting completion of production with all products

satisfactorily manufactured is a typical desired state. For this, the speci�cation includes

marked states. The closed loop system must be such that from any state reachable from

the initial state, some marked state can always be reached. This ensures that the system

will never be controlled into a state from which further production cannot continue. A

DEP that is such that all states can reach some marked state is said to be coaccessible.

Furthermore, to retain only states that can in practice be reached, we will require the

1One which we have chosen not to model, see the resource models of Figure 1.3.
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Figure 1.7: The global speci�cation PkSp expressed as a Petri net. Note that, for

clarity, the places corresponding to M4 have been duplicated, and places corresponding

to M1 and R have been removed.

closed-loop system to be accessible. A DEP which is both accessible and coaccessible is

said to be trim. When the closed-loop system is trim, any event sequence can be continued

into a marked state, ensuring that the speci�cation can always be met.

1.4.1 Global Speci�cation

The local speci�cation Sp contains all possible interleavings of the desired product routes

possibly with other speci�cations for forbidden or desired states and forbidden paths. Not

all of these interleavings are physically possible, though, due to the con�guration of the

plant, P . In fact, Sp does not fully describe the desired behavior of the plant. This is

so, because some events of P may not be in the event set of Sp, and thus the plant can

execute any of these whenever in a state to do so.

To retain only the physically possible and desired routes, Sp is synchronized with

the plant under full synchronous composition. That is, the global speci�cation PkSp
is generated, see Figure 1.7. This guarantees that only physically possible routes are

expressed, and it also guarantees that the desired behavior, expressed by PkSp, is a

restriction of the possible behavior, expressed by P . However, in the global speci�cation

some combinations of product routing will inevitably block the system from ever reaching

a state where all products have been satisfactorily completed. For instance, in Figure 1.7



it is clear that allowing two consecutive C parts to enter the system will inde�nitely

prohibit the assembly of any product.

Furthermore, the uncontrollable events of P may have as a consequence that not all

of the behavior expressed by PkSp is controllable. Some states of the global speci�cation
must not be reached, otherwise some uncontrollable event may take the plant to some

undesirable state, not allowed by the speci�cation. Some combinations of product routing

must be prohibited, and this is one of the tasks of the supervisor.

1.4.2 Event Connection

The algorithm presented in Chapter 4 concerns �nite state automata. Therefore, the

(�nite) state automaton representing the DEP PkSp must be generated. This is the

reachability graph of the global speci�cation, the Petri net of Figure 1.7. Since PkSp
is a bounded Petri net, this can be done, see Peterson (1981). Naturally, it requires an

initial marking vector to be speci�ed for the Petri net. The number of states of PkSp
is considerably smaller than the number of states of Sp, primarily because the number of

physically possible routes through the plant is limited. This is one of the reasons for �rst

using some "reduced state" description of DEPs, like Petri nets, to express P , Sp and

PkSp, and then generating a state automaton representation of PkSp.
Some transitions of Figure 1.7 are labeled by ordered pairs of events from P . These

transitions describe the passing of the product from one resource to another, and consists

of the "exit" event of the former resource together with the "entry" event of the next.

These ordered event-pairs arise when generating the DEP representation of the product

routes, and can be automatically introduced. This models the fact that when passing

a product from one resource to another, the product actually occupies both resources

simultaneously. Thus, no other event can be allowed to happen in-between the two events

of such an ordered pair. We say that the events are connected. This means that we

regard the connected events as one event, even though the individual events are named

di�erently.

Not including connected events would mean that the model of the system allowed a

product to "exit" M2, say, without "entering" any other resource. The robot R could

be used to load M2 from M1, even though the product cannot "exit" M2 without the

robot being present.

Event connection can be seen as a product-unspeci�c speci�cation, not dependent on

the product routes but on the physical connectivity of the plant. Event connection is a

consequence of the fact that we have autonomous resources with mutually disjoint alpha-

bets. Between any type of resources shared by the same product route, event connection is

required . Without event connection the resources would have to be explicitly coupled by

common events. This would hinder their reusability and the 
exibility of the system. The

number of required "exit" events, and their labels, of one resource would have to match

the number of resources that it is to be "connected" to, as well as having equal event

labels. Thus, introduction of a new resource would require altering other resources. The

mere instantiation of an appropriate object would no longer be possible when introducing

a new resource into the system. Compare the approach of Banaszak (1990), where each

resource is modeled speci�cally for the products it is to operate upon.

In the state automaton representation of PkSp, the connected events are "unfolded",



so that the global speci�cation includes the same events as the plant. In Section 5.4.2 this

is shown to be valid, since it generates a subprocess of PkSp from which a valid supervisor

for P can be synthesized.

1.4.3 The Supervisor

In the state-machine representation of the global speci�cation, arbitrary transitions and

states can be removed; states and transitions that are considered unwanted during execu-

tion. For instance, two resources may not be allowed to work simultaneously, because of

constraints on the amount of power drawn. In such a case, all states representing those

two resources working simultaneously can be removed. Removal of the speci�ed states

and transitions, results in the �nal speci�cation, within which the supervisor is to control

the plant.

The synthesis of a supervisor is an iterative process. Except for special cases, see

Brandt (1990), no closed form expressions exist. In the approach described in this work,

a supervisor is a subprocess of the �nal speci�cation. A subprocess is a DEP with its

graphical structure contained within another process, the superprocess. A subprocess can

be generated from a given process by removing states and transitions between states. In

generating the supervisor, a complete and trim subprocess of the �nal speci�cation is

synthesized. Naturally, there may exist several solutions to the given problem of �nding

a complete and trim supervisor for a given plant. However, an additional requirement

is to �nd the supervisor allowing the largest possible behavior, that is, the supervisor is

required to be minimally restrictive. Since the supervisor is an exact model of the plant

under supervision, it is clear that the minimally restrictive complete and trim supervisor

is the maximal complete and trim subprocess of the control recipe. A formal description

of the supervisor synthesis algorithm will be given in Chapter 4.

Usually the number and types of resources are constant and known, while the number

and types of products is time-varying. New products are initiated and old ones terminate,

asynchronously and independently as the work progresses. Thus the total number of

products, and their routes through the system cannot be known a priori. For the sake

of 
exibility we must allow any possible route through the system. We must also allow

inclusion of new products at any time during execution. However, with the introduction

of new product routes there may arise additional constraints on how the products can

be allowed to run concurrently. Thus, we start up the system with a number of initial

product routes and calculate a supervisor for these. When new orders for more products

or new product types arrive, we interleave the new routes in their initial-states with the

old routes in their current state. The resulting joint speci�cation is then composed with

the plant in its current state, and a new supervisor can be calculated. Even as product

routes terminate, this calculation can be performed so as to minimize the size of the

supervisor.

The supervisor is a state automaton expressing all physically possible and allowable

routes through the system, given the �nal speci�cation. It is within the boundaries set

by the supervisor that the system will be driven by the controller.



1.4.4 The Controller

We have carefully avoided de�ning the controller, mentioned above. This is for the reason

that there are many ways to interpret the controlling entity, and they all come down to

the question of event generation. Who sends which message when and to whom? That

is, who generates which events and who follows?

The SCT normally regards the plant as generating all events. The supervisor merely

follows and restricts the event generation. Thus, the plant and the supervisor operates in

synchrony. For the supervisor and the plant to never get "out of synch" it is imperative

that the supervisor can follow all events it allows the plant to generate. Restriction of

an event is enforced by the supervisor not de�ning that event in the closed-loop system

state. The uncontrollable events cannot be restricted from being generated by the plant.

Therefore, it follows that the supervisor must be able to follow all uncontrollable events.

It must be complete with respect to the plant. This is the philosophy we have adopted in

generating the supervisor.

By Balemi (1992) the controller is regarded as a supervisor that generates some events,

the commands, while the plant as generating other events, the responses. It is shown by

Balemi (1992) that the commands can be equated to the controllable events, while the

responses are equal to the uncontrollable events. Furthermore, Balemi (1992) shows that

the controller and the plant have to be mutually complete so that the controller only

generates events for which the plant is ready. In our case S is derived from P since

it is the maximal complete and trim subprocess of the �nal speci�cation. This means

that the generated supervisor and the plant are always mutually complete. Therefore,

we can regard the supervisor as a controller; an active entity controlling the plant by

generating commands and receiving responses. The closed-loop system is then modeled

by the synchronous composition of the plant and the controller. It will be shown, see

Chapter 3, that this is in fact equal to the supervisor itself when the supervisor is complete

(which it is) and the plant is deterministic (which it is). Thus, the supervisor is an exact

model of the plant under supervision.

The supervisor coordinates the usage of the resources, commanding the robot to

load and unload the machines as appropriate. At times the supervisor expresses non-

deterministic choices of products to load or unload. The optimal choosing between such

non-deterministic routes, taking into account aspects like fairness, due dates, etc., is a

complex task, the implementation of which is outside the scope of this thesis.

1.5 Objectives of this Work

The goal of this work is to show how the supervisory control theory can be combined with

an object-oriented modeling approach as applied to, for instance, 
exible manufacturing

systems. In doing so we primarily extend our previous work on object-oriented modeling

of DEPs, mainly presented in [3]. It has been shown by Adiga (1993), Joannis (1992) and

Jobling (1994), as well as by others, that object-oriented analysis and modeling caters for

the partitioning and structuring of a large problem domain into manageable pieces. The

main bene�ts of object-oriented modeling of manufacturing systems comes from using

reusable software modules. This has a great impact on the structuring, modularization

and implementation of the system. There arises a natural separation of the control of the



individual subsystems from the synchronization of the system as a whole. This immedi-

ately brings about the possibility for distributed high-level product speci�cations, as was

shown in the previous sections.

1.5.1 Contributions

The objective is now to show that the supervisory control theory can be adapted to

systems with the above properties. The main contributions of this work is then the

following:

� We introduce an object-oriented modeling approach for fabrication processes, build-

ing on the ability to extract general behavior into reusable models of the physical

devices; general in providing functionality common to all devices of a similar class,

and reusable from a viewpoint of extendibility. A more elaborate description of this

modeling approach is given in references [1], [2] and [3].

� The outcome of that modeling approach is set of internal resources, that constitute

the plant to be controlled. These describe the capabilities, restrictions and dynamic

behavior of the physical devices. Generic models in the form of discrete event

processes will be given.

� We show that for such systems, the speci�cation on the desired behavior can be given

as a set of operation lists describing the desired sequences of general operations for

production of the respective product.

� The internal resources and the operation lists emphasize the separation of the control

of the individual devices from the overall synchronization of the fabrication process.

We maintain that this is a crucial issue for reusability and true 
exibility.

� Based on the operation lists we generate product routes describing desired routes

through the system. The concurrent execution of the product routes is modeled

by interleaving so that the joint speci�cation of all products simultaneously present

within the system is typically non-deterministic.

� The supervisory control theory of Ramadge (1987) and Wonham (1987) is extended

to encompass non-deterministic speci�cation. It is shown that the notion of con-

trollability is not strong enough to guarantee a complete supervisor.

� We give algorithms for synthesizing a complete supervisor such that the closed-loop

system is always nonblocking, given a non-deterministic speci�cation.

� We also show that the input/output formulation of Balemi (1992) is valid for this

case, so that the supervisor itself can act as an active controller, driving the plant

within the given speci�cation and outside the undesired states.

1.5.2 Assumptions and Restrictions

In this thesis we will make the following assumptions and restrictions.



� We will only regard �nite state automata, and hence, regular languages.

� We will neglect the combinatorial explosion of the number of states. Automata is

used merely as a formal tool for proving our statements and algorithms. In practical

implementations eÆcient approaches like binary decision diagrams, for instance, will

probably have to be employed.

� We will disregard the silent event, so that non-deterministic choice will only be

modeled by equally labeled transitions emanating from the same state.

� The plant that we control will be regarded as non-marked. Marking is introduced

as a means of speci�cation.

� We will always assume that the event-set of the supervisor is equal to the set of

events de�ned by the plant. Thus, the supervisor expresses all desired and allowed

behavior. The plant has no additional freedom in generating events not in the

event-set of the supervisor.

� All events are considered to be observable. Non-determinism is not a consequence

of un-observable events.

Note also that we elaborate on the applicability of the supervisory control theory for non-

deterministic speci�cation as well as non-deterministic plant. However, the application of

the presented algorithm is restricted to the case of a deterministic plant.

1.5.3 Thesis Outline

This work is organized as follows. A thorough de�nition of the �nite transition machines

that we will use to model DEPs, is given in Chapter 2. A number of properties are shown,

and the special case of two transition machines, with one being deterministic and the

other being non-deterministic, is investigated. It is shown that when the non-deterministic

transition machine holds the property of re�nement relative to the deterministic one, then

their synchronous composition will be equal to the non-deterministic transition machine.

The de�nitions and results presented in Chapter 2 are essentially well-known, though

the notion of re�nement is extended to non-deterministic processes. The de�nitions of

operations on subprocesses seem to be novel. In the literature the state-spaces are required

to be disjoint; see Eilenberg (1974) and Hopcroft (1979), for instance.

In Chapter 3 we �rst restate the original supervisory control problem, as formulated

by Ramadge and Wonham. This is given complete with proofs of the propositions, signif-

icantly simpli�ed compared to the original proofs. A more "modern" notation has been

used, mainly by introducing the full synchronous composition as modeling the interaction

between the supervisor and the plant. This has already been done in Kumar (1991), but

the treatment there did not include all of the SCT; marked states were not treated, for

instance. We feel that the presented notation casts some light on the SCT for the unfa-

miliar reader, as well as helping the reader familiar with the SCT in its original form to

better understand the extensions that follow. The derivation of the controllability prop-

erty is, as far as we know, our own. Wonham (1987), Ramadge (1987), Balemi (1992)

and Kumar (1995), among others, de�ne controllability but do not derive it.



Since the input/output formulation of Balemi (1992) lies closer to a control engineering

point of view, this approach is also described in Chapter 3. The inverse properties are

not our own, though the terminology is. These properties are de�ned by Balemi (1992),

though he makes no distinction between controllability and completeness.

Then follows the application of the SCT to the general case of non-deterministic

transition machines in Section 3.4. It is shown that the notion of controllability is no

longer strong enough to guarantee a usable supervisor. Necessary and suÆcient conditions

are given for a non-deterministic supervisor, S, to be complete with respect to a plant,

given a controllable language, L(S). Furthermore, it is shown that the input/output

formulation is also encompassed by the non-deterministic supervisory control approach

as given in this work. The notion of a nonblocking closed-loop system is investigated for

the non-deterministic case. It is shown that a nonblocking supervisor is not enough to

guarantee that the closed-loop system is nonblocking when non-determinism is present.

Necessary and suÆcient conditions for the marking of the supervisor relative to the plant

is given, so that the closed-loop system is nonblocking. Finally, an overall view is given of

a number of combinations of non-deterministic plant, speci�cation and supervisor, with

necessary and suÆcient conditions for the existence of a supervisor.

Section 3.4 is almost entirely our own. Most of the results seem to be non-existent

in the literature. The generalized de�nition of completeness has also been given by

Overkamp (1994), though the generalized condition for a non-deterministic supervisor

with a controllable language to be complete is our own. The extension of the input/output

interpretation to non-deterministic systems has not appeared anywhere else, as far as we

know. Also, to our knowledge the conditions for a nonblocking closed-loop system is not

previously known. The theorems presented in the last section is not known to have been

given in such a uni�ed framework.

In Chapter 4 an algorithm for synthesis of a non-deterministic supervisor is derived.

This is shown for a non-deterministic speci�cation and deterministic plant. It is shown

that the set of usable supervisors the speci�cation de�nes relative to the plant can be

ordered in an upper semilattice structure. From this, we show how to calculate the

minimally restrictive supervisor such that the closed-loop system is nonblocking. That is,

the supremal complete and trim subprocess of the speci�cation.

Some of the lattice results given are well-known and given by Tremblay (1987), for

instance. Other results for the speci�c application of calculating a complete and trim

supervisor are new. The de�nition of the supremal operator to calculate the supremal ele-

ment of the intersection of two upper semilattices, when it exists, is new. The algorithms

given for calculating complete, accessible and coaccessible subprocesses are not new, how-

ever. Eilenberg (1974) also shows the algorithm for accessibility and coaccessibility, while

the algorithm for completeness is well-known within the supervisory control theory. See

Kumar (1991), for instance. What is new, is the application to non-deterministic systems,

and the short and concise notation of the algorithms resulting from the de�nition of the

various operators.

The object-oriented modeling approach that initiated this work, is brie
y described in

Section 5.2. This approach is described in detail by our previous work, as shown on page ii.

Of greater importance to the present work are the various aspects of speci�cation that are

discussed, and the application of the mathematical framework of the previous chapters to

the speci�c class of problems that arises. It is shown that the properties that have been



de�ned as necessary for the non-deterministic supervisory approach are immediate by the

modeling approach. Thus, it is shown that the non-deterministic supervisory approach

can be combined with object-oriented modeling techniques, and so we have a powerful

framework for implementing large and complex discrete event systems.

A number of application examples are �nally described in Chapter 6. The modeling

and the synthesis of supervisors are shown to some extent.



Chapter 2

Finite Transition Machines

This work concerns control of what is usually known as discrete event processes, acronymed

DEP. A discrete event process is a system that at each time instant occupies a state of

being, one out of a �nite number of possible states. The state has a symbolic value,

rather than a numeric, and represents a situation of the process during which certain

conditions hold. The DEP transits between the states according to the occurrances of

events, occurring instantaneously at discrete intervals of time. Thus, the process' behavior

is given by the sequences, strings, of events that occur, and the sequences of states that

the process occupies due to these strings. These notions will be formalized in the following

de�nitions.

Let us �rst, however, note that the term �nite transition machine will be used, in-

stead of the more common �nite automata (see Eilenberg (1974) and Hopcroft (1979)) or

�nite state-machine. The reasons for this are similar to those given in Arnold (1994) for

using the term �nite transition system. Automata can be considered to be the funda-

mental concept for the formal description of DEPs. The term transition system is used

by Arnold (1994) to distinguish automata viewed as formal systems containing states

and transitions from automata regarded as machines to recognize certain languages.

Also, �nite state-machines normally de�ne one or more initial states and a set of �-

nal states, see Eilenberg (1974). This is not necessarily so for the �nite transition systems

of Arnold (1994). See also Cassandras (1993) who gives good reasons for not always de-

manding an explicit initial state, as well as disregarding a set of �nal states. We will use

the term transition, for the same reason as given in Arnold (1994), that is, to point out

that we do not merely regard the DEPs as recognizers of speci�c languages. However,

we will also use the term machine to point out that we do indeed require a speci�c set

of initial states. Furthermore, we will also allow, but not require, a set of marked states.

These are not to be regarded as �nal states, though. Rather, these states can be regarded

as states within which the system is allowed to rest. Some subtask may be completed and

the system waits for more tasks to perform.

This chapter will lay the formal ground necessary to prove that a �nite transition

machine can be controlled to adhere to a prespeci�ed behavior. We will formally de�ne

what we mean by a �nite transition machine and its behavior. A universal set containing

all �nite transition machines will be de�ned to bring meaning to the operations on tran-

sition machines. A number of properties relevant for the control of transition machines

will be proved, and we will de�ne an ordering relation between �nite transition machines.
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Finally, some other approaches to modeling discrete event processes will be brie
y dis-

cussed, and compared to the approach described in this work. Mainly, di�erences arise

in the de�nition of equality of transition machines, and we will show why we feel that

the strong equality relation that we de�ne is necessary in the context of this work. Most

other approaches give a much weaker de�niton of transition machine equivalence, see

Section 2.5.

2.1 Universe of Discourse

A �nite transition machine is a system that occupies a distinct state of being, from which

it can transit to another state on the occurance of an event. Thus, the fundamental

concepts are states, events and transitions. Formally we have the following.

De�nition 2.1 States, Events and Strings

Let Q and � be two �nite sets. For simplicity we will require the elements of these sets

to be singular, that is they are not themselves sets. Let Q+ =
1S
i=1

Q
i, where Q1 = Q,

Q
2 = Q � Q and Q

n+1 = Q
n � Q. Similarily, let �� =

1S
j=0

�j. The elements of Q+, will

be called states, the elements of � are referred to as events, and � itself will be called an

alphabet. The set �� is the set of all �nite sequences of events of �. An element of �� is

called a string. The string of no events, �0, is called the null string and is denoted ".

Remark. The set �� is called the Kleene closure of �, see Hopcroft (1979). Of course,

the Kleene closure can be applied to any set. Note that, for two arbitrary sets ES �
EP , E

�

S � E
�

P .

Observe that the null string " = �0 is an element of ��, while the element Q0 does

not belong to Q+.

Unindexed lowercase letters, from the greek alphabet or from the beginning of the

latin alphabet, will be used to denote events. For example, �; �0; a; b; c will all represent

events. Strings will normally be denoted by s; s
0
; s

00 and the like. Since Q � Q
+, the

elements of Q are also states. Lowercase letters from the middle of the latin alphabet,

possibly indexed, will denote states. That is, q; q0; p0; pn all denote states. Furthermore,

states of Q+ not in Q will be given as ordered tuples of the singular elements of Q, thus

hp0; q0i and hpi; qj; rki are two states of Q
+.

As a convention we will, following Eilenberg (1974), systematically confuse an element

x of any set with the subset of that set fxg consisting of x only. Furthermore, we will

regard the sets (X � Y ) � Z, X � Y � Z, and X � (Y � Z) as identical. This is also

according to Eilenberg (1974), but note that it is contrary to Tremblay (1987).

2

The de�nition of the set of states as being Q+ may need some elaboration. Normally, a

given transition machine will have a state set of Q. In fact we can even claim that the

state sets of a number of given transition machines de�ne the state set Q. We will de�ne

operations composing di�erent transition machines into new ones. These operations all

make the state set of the composed transition machine equal to the cartesian product of



the state sets of the original transition machines, so that transition machines generated

by the composition operators will acquire state sets from Q
+ � Q. These operations

are the normal way to compose given transition machines, and for these compositions to

be contained within the universe of discourse, this universe must include the cartesian

products over all singular states and any number of compositions, that is Q+. We will

only consider �nite number of compositions, though.

The transitions of a �nite transition machine will, for historical reasons, be referred

to as edges, see Eilenberg (1974). Intuitively, an edge de�nes the state from which the

transition is valid, the label of the occurring event and the state that the transition transits

to. Because of this, it will not make any sense to distinguish between two edges de�ning

transitions from the same state, labeled by the same event and transiting to the same

state. Therefore, for a �nite transition machine the set of all edges can be de�ned.

De�nition 2.2 Edges and the Edgeset

Let E = Q
+ � ��Q

+. The elements of the set E will be called edges, and consequently

E is called the (universal) edge-set.

De�nition 2.3 Finite Transition Machine

A �nite transition machine P , is described by a 5-tuple (QP ;�P ; IP ;MP ; EP ) where

QP � Q
+ :

�P � � :

IP � QP :

MP � QP :

EP � QP � �P �QP :

the state � space; the �nite set of states

the alphabet ; the �nite set of events

the set of initial states

the set of marked states

the edge � set of P

(2.1)

Remark. Note that the state-space as well as the alphabet, and hence the edge-set, are

all required to be �nite.

The edge-set EP � QP � �P � QP de�nes the transitions of P . That is, the ordered

triple (p; �; p0) 2 EP , with p; p
0 2 QP and � 2 �P , means that there exists a transition

from the state p to the state p0 labeled by the event �. The state p0 is then said to be

reachable from the state p via the event �. Since both Q
+ and � are required to be

�nite, so are QP and �P and, hence, also EP . This is why we speak of a �nite transition

machine.

Note also that an edge is equivalent to a directed path (of length one) as de�ned graph

theoretically. 2

In the following we will de�ne, propose and prove a number of properties concerning �nite

transition machines. In doing so we will extensively make use of set union and intersection,

cartesian product and other operations from set algebra. As noted by Eilenberg (1974),

to bring meaning to the operations on the de�ned entities we �rst have to de�ne the

universe of discourse, see Tremblay (1987), within which all elements are contained.

De�nition 2.4 Universe of Discourse

For any �nite transition machine that we de�ne, the universe of discourse is Q+ � � �
Q

+ �Q
+ �E. That is, for any �nite transition machine P , we have that P � Q

+ ���
Q

+ �Q
+ � E.



Remark. Note that we will equate the terms discrete event process, �nite state automaton

and �nite transition machine. These will all be considered to refer to objects of the same

type, that is, objects within the universe of discourse de�ned above. Furthermore, for the

sake of brevity, we will often refrain from using the whole terms, merely saying process,

automaton, transition machine or even use the more common term state-machine. 2

It is clear that a �nite transition machine has the equivalent expressive power of a �nite

state-machine, see Hopcroft (1979). However, a �nite state-machine is normally de�ned

with a transition function de�ning its transitions instead of an edge-set. For notational

convenience, it is sometimes more appropriate to use the transition function1, Æ, in place

of the edge-set.

De�nition 2.5 Transition Function

The transition function of a transition machine P , is a mapping ÆP : QP ��P ! 2QP that

maps a state p 2 QP and an event � 2 �P into the set of reachable states, ÆP (p; �) � QP .

The transition function can be extended into strings over �� as ÆP : QP � ��

P ! 2QP .

With " denoting the null string of ��

P we have

ÆP (p; ") = p p 2 QP

ÆP (p; s�) = ÆP (ÆP (p; s); �) � 2 �P ; s 2 ��

P

(2.2)

The transition function can also be extended to sets of states as ÆP : 2QP ���

P ! 2QP , as

ÆP (Q; s) =
S
p2Q

ÆP (p; s) Q � QP : (2.3)

Remark. For an event � 2 �P for which ÆP is unde�ned at state p we have ÆP (p; �) = ;.
This distinguishes events that are not feasible in the state p due to the structure of the

transitions machine, from events that are feasible but have the property of not changing

the state. Though ÆP (�; �) is formally de�ned for �P only, the case that a transition

machine will have to consider events not in its alphabet will arise when the transition

machine is composed to run concurrently with other transition machines. Events in the

alphabet of one of the machines but not in the alphabet of the other machine, is of no

concern to the other machine. The other machine is physically incapable of participating

in, or even noticing, the execution of the event. Thus, the only reasonable de�nition of

ÆP (p; �) when � =2 �P seems to be ÆP (p; �) = p. Note that this implicitly includes a

self-loop on all events not present in the machines own alphabet.

2

For notational convenience, we will, as introduced in Overkamp (1994), use the name of

the transition machine itself to denote its initial states, when appropriate. We will then

drop the subscript, that is

ÆP (IP ; � ) � Æ(P; � ): (2.4)

1Though, strictly speaking, Æ is not a function for transition machines, the common name transition

function will be used in this work. Compare Hopcroft (1979).



Remark. The transition function of a process P is related to its edge-set as ÆP (p; �) =

fp0 2 QP j9(p; �; p
0) 2 EP g and that the edge-set can be described by the transition func-

tion as EP = f(p; �; p0) 2 QP � �P �QP jp
0 2 ÆP (p; �)g. Consequently (p; �; p0) 2 EP ,

p
0 2 ÆP (p; �). 2

Summary

In this section we have formally de�ned �nite transition machines that will be used to

model DEPs. A global universe, of which all transition machines are elements, have been

de�ned to bring meaning to the operators and relations between transition machines that

will be de�ned.

The de�nition of a �nite transition machine is, of course, fundamental to the rest of

the work presented in this thesis. Operations and ordering relations will be de�ned on

transition machines. The universe of discourse merely sets the boundaries to which we

will con�ne ourselves.

2.2 Traces and Tracesets

The edges of a �nite transition machine can be concatenated into sequences describing

the states visited according to the occuring events. Thus, the behavior of the transition

machine can be de�ned in terms of sequences of states and events. For an edge e to be

"valid" in a given state, e must have that state as an "initial component". The transition

on the event represented by the edge reaches another state, from which the valid edges

must again have that state as initial components. These concepts can be formalized as in

the following de�nitions.

De�nition 2.6 First, Label, Last

For any edge e = (p; �; p0) 2 E, we de�ne three functions,

first(e) = p

label(e) = �

last(e) = p
0

(2.5)

De�nition 2.7 Well-ordered

Two edges e1; e2 2 E are said to be well-ordered, denoted e1 < e2, if the last state of e1 is

equal to the �rst state of e2. That is

e1 < e2 , last(e1) = first(e2). (2.6)

De�nition 2.8 Trace

A trace t 2 E� is an ordered set of well-ordered edges that can be written as (for ei 2 E,
i = 1; : : : ; n for some �niten)

t = e1; e2; : : : ; en; (2.7)

such that ei < ei+1 for i = 1; 2; : : : ; n� 1 and n > 0 is the length of t.



Note that, though E� contains all �nite sequences of edges, well-ordered or not, when we

write t 2 E
� it will silently be understood that t is a valid trace, that is, t is a set of

well-ordered edges. In the same spirit we will also allow us to write et 2 E� meaning that,

for t = e0e1 : : : en, e < e0.

The functions �rst, label and last of De�nition 2.6 can be extended to traces as, for a

trace ete0 2 E�,
first(ete0) = first(e)

label(ete0) = label(e) label(t) label(e0)

last(ete0) = last(e0)

(2.8)

Remark. Note that, while �rst and last (when extended to traces) still generate states,

label generates strings of events by concatenating the labels of the edges of the trace. 2

For completeness we also de�ne the null trace, ", as the trace of zero length, de�ned

for each state. Thus, each state is able to reach itself, and both first(") and last(") can

result in any state of the considered transition machine. The label of the null trace is

of course label(") = ", the empty string. Using " for both the null trace and the empty

string will not cause any ambiguity.

Two traces t1; t2 2 E
� are well-ordered, that is t1 < t2, if last(t1) = first(t2). Thus

the null trace is well-ordered with respect to any trace (or edge).

De�nition 2.9 Pre�x, Subtrace, SuÆx

For a trace � 2 E� such that � = t
0
tt
00

t
0 2 E� is called a pre�x

t 2 E� is called a subtrace

t
00 2 E� is called a suÆx

9>=
>; of � (2.9)

Remark. For a trace t 2 E�, the pre�x of length one is called the initial edge of t. The

suÆx of t consisting of all but the initial edge, is called the tail of t. The null trace, ", is

a pre�x to any trace. 2

De�nition 2.10 Set of All Pre�xes

The set of all pre�xes of a trace t 2 E� is denoted �t and is de�ned as

�t = ft0 2 E� j9t00 2 E�
t
0
t
00 = tg: (2.10)

Remark. Of course, every trace is a pre�x of itself and therefore t 2 �t. 2

De�nition 2.11 Similar, Related

Two traces t1; t2 2 E
� are said to be similar if they have the same label. That is

t1 sim t2 , label(t1) = label(t2): (2.11)

Two traces t1; t2 2 E
� are said to be related if they reach the same state. That is

t1 rel t2 , last(t1) = last(t2): (2.12)



Remark. Traces that are not similar will be called dissimilar, and traces that are not

related will be referred to as unrelated or diverging. Traces of di�erent transition machines

can, of course, be similar. However, it does not make sense to consider whether two traces

of di�erent transition machnes are related or not. Since two traces are related only if

they reach the same state, this is obvious. One and the same state cannot belong to

two di�erent transition machines, even if there may exist equivalently labeled states in

several machines. However, we will sometimes, with abuse of terminology, refer of traces

of di�erent transition machines as related. Note though that we mean by this that the

traces reach equally labeled states, not equal states.

It is easy to see that, whenever two traces are dissimilar or unrelated, they are also

nonequal. This also means that two equal traces are also similar and related. These

are immediate consequences of the above de�nitions. However, note that the converse

does not necessarily hold. Two traces can be similar and related without necessarily

being equal. There exist certain conditions on the structural properties of a transition

machine, under which the converse holds, though. Such as when a transition machine is

deterministic, for instance. 2

2.2.1 Tracesets

Since a transition machine P de�nes a subset IP of its state-space QP as initial states,

not all well-ordered traces of E�

P are generated by P as it evolves. That is, the behavior

of P does not include all traces de�nable over the edge set EP , but merely those traces

which start in some initial state. Thus, for a �nite transition machine we de�ne its

(closed) traceset as the set of traces that can arise when all possible combinations of valid

transitions beginning at IP are considered.

De�nition 2.12 Closed Traceset

The (closed) traceset of a transition machine P is the set of well-ordered traces beginning

at initial states. This is de�ned as

tr(P ) = ft 2 E�

P jfirst(t) 2 IP g: (2.13)

Remark. The traceset tr(�) de�nes all traces beginning at some initial state. Therefore,
for a trace t 2 tr(�), all the the pre�xes of t are also included in tr(�). That is �t � tr(�).
Therefore, when necessary for distinction, tr(�) is also called the closed traceset. 2

In general, a transition machine also encompasses a number of marked states. It is then

interesting to consider the set of traces beginning at the initial states and reaching the

marked states. This set is called the marked traceset.

De�nition 2.13 Marked Traceset

The marked traceset of a transition machine P is the set of well-ordered traces beginning

at initial states and reaching marked states, de�ned as

trm(P ) = ft 2 tr(P ) jlast(t) 2MP g: (2.14)



Remark. Since both the closed and the marked tracesets, tr(�) and trm(�), of a transition
machine are de�ned from the initial states, and since last(trm(�)) � last(tr(�)), it is

obvious that the marked traceset must be a subset of the closed traceset. 2

For ease of notation, we will extend the functions of first(�), label(�) and last(�) to any

set of traces, most notably to the traceset of a given transition machine. For an arbitrary

set of traces, T � E
�, we have that

first(T) =
[
t2T

first(t)

label(T) =
[
t2T

label(t)

last(T) =
[
t2T

last(t)

(2.15)

Of course, for a transition machine P = (QP ;�P ; IP ;MP ; EP ), we have that first(tr(P )) =

IP and last(trm(P )) =MP . The set of strings given by label(tr(P )) will be de�ned to be

the language of P in De�nition 2.21 of Section 2.2.3.

De�nition 2.14 Pre�x Closure

The pre�x closure of a set of traces T � E
�, is de�ned as

T =
S
t2T

�t: (2.16)

Remark. For any traceset we have that T � T . When T = T this is said to be a pre�x

closed traceset. Note that, for any transition machine the traceset tr(�) is always pre�x
closed, while the marked traceset trm(�) seldom is. It follows directly from De�nition 2.13

that the pre�x closure of the marked traceset is a subset of the closed traceset, so that

the following ordering always holds,

trm(�) � trm(�) � tr(�): (2.17)

. 2

2.2.2 Accessibility

The structure of a �nite transition machine may be such that some or all of its states

can be reached from the initial states, and from some or all states some marked state can

be reached. This is of importance when it is required to guarantee that the transition

machine is live, that is, that some marked state can always be reached. When all states

are reachable from the initial states, the transition machine is said to be accessible, and

when some marked state is reachable from any state it is said to be coaccessible. A process

which is both accesible and coaccessible is called trim, and a trim transition machine can

thus reach all of its states, and from every state some marked state can be reached; the

process is live.



De�nition 2.15 Accessible

For a transition machine P a state q 2 QP is said to be accessible, if q can be reached

from some initial state. That is

q 2 QP is accessible , 9tP 2 tr(P ) such that last(tP ) = q: (2.18)

When all states of QP are reachable we will say that P is accessible. That is

P is accessible , 8q 2 QP 9tP 2 tr(P ) such that last(tP ) = q: (2.19)

Remark. Some authors make a global assumption that all transition machines are acces-

sible, see for instance Eilenberg (1974).. There is little gained by allowing non-accessible

states. However, in this work we will generally not make this assumption. Only in very

speci�c places will we assume the transition machines to be accessible, and then this fact

will be mentioned explicitly. At other times, it turns out that some of the proofs that are

to be given become simpler when we do not have to consider whether a speci�c transition

machine is accessible or not. 2

Some states of a transition machine have the property that there exists at least one trace

of the closed traceset reaching that state. For instance, the empty trace, ", is considered

to reach all the states of IP . Thus, when a transition machine is accessible, such atates

are the only states. This results in the following lemma.

Lemma 2.16 When a transition machine P is accessible, its traceset de�nes its state-

space. That is,

P accessible , QP = last(tr(P )): (2.20)

Remark. Thus, for an accessible transition machine every edge is a subtrace (of length

1) of some trace of that machine, and the union over all subtraces of length 1 of all traces

is equal to the edge set. That is, when P is accessible EP =
S

tet02tr(P )

e. This means that

for an accessible transition machine, the traceset holds all information conveyed by the

state-space and the edge-set. We can also note that when P is accessible, any t 2 E
�

P is

a subtrace of some tP 2 tr(P ). 2

De�nition 2.17 Coaccessible

For a transition machine P a state q 2 QP is said to be coaccessible if from q some marked

state can be reached. That is

q 2 QP coaccessible , 9t 2 E�

P first(t) = q ^ last(t) 2MP : (2.21)

When all states of QP are coaccessible, we say that P is coaccessible. That is

P coaccessible , 8q 2 QP 9t 2 E
�

P first(t) = q ^ last(t) 2MP : (2.22)



Remark. Note that any state reaches itself by the null trace, thus any marked state

is naturally coaccessible. Note also that when MP = ; but QP 6= ; the process is

inherently non-coaccessible. Therefore, we will always assume that for any given process

P with QP 6= ;, MP is also nonempty. This has the, seemingly unfortunate, consequence

of requiring a "non-marked" process to have all its states marked, that is MP = QP .

However, there is a lot gained by this assumption, and it seems unavoidable unless we

refrain totally from mixing marked and unmarked automata. 2

De�nition 2.18 Trim

A transition machine P is said to be trim if it is both accessible and coaccessible. That is

P trim , 8q 2 QP 9tt
0 2 trm(P ) last(t) = q (2.23)

Remark. This de�nition means that for P to be trim, every state must be reached by

some trace beginning at an initial state and ending in a marked state.

The fact that a transition machine is trim if it is both accessible and coaccessible,

suggests an e�ective method of �nding the trim part of a given transition machine. This

will be of importance in Chapter 4 where we attempt to �nd a supervisor such that the

supervised system is trim. 2

Lemma 2.19 A transition machine P is trim if the pre�x closure of its marked traceset

is equal to its closed traceset. That is,

P trim ) trm(P ) = tr(P ): (2.24)

Proof. We only show that when a transition machine is trim, then its closed traceset is

a subset of the pre�x closure of its marked traceset, that is, P trim ) tr(P ) � trm(P ).

Together with the fact that for any transition machine trm(�) � tr(�), it then follows that

whenever P is trim trm(P ) = tr(P ).

()) When P is trim it is also accessible, so that for all states q 2 QP there exists a trace

t 2 tr(P ) such that q = last(t). Furthermore, P is also coaccessible, so that there exists

a trace t0 2 E�

P such that t < t
0 and last(t0) 2MP . Thus tt

0 2 trm(P ) and t 2 trm(P ).

Remark. Since a trim transition machine is both accessible and coaccessible, all states

can be reached from some initial state, and all states can reach some marked state.

Therefore, every state is "passed" by some trace on the way to a marked state, and the

pre�x closure of trm(�) reaches all states. This is why trm(�) = tr(�).
Note though, that the converse does not necessarily hold. The pre�x closure of the

marked traceset can be equal to the closed traceset, without the transition machine being

trim. This is so, since when trm(�) = tr(�), all accessible states, given by tr(�), are also
coaccessible, given by trm(�); non-accessible states are not concerned. However, when a

transition machine is trim there does not exist any non-accessible states. 2
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Figure 2.1: The transition machine P is both accessible and coaccessible, and therefore

trim. Since from q3 no marked state can be reached, Q is not coaccessible. The machine

R is not accessible since r4 cannot be reached from any of the two initial states. For S

all states are marked, while for T no states are marked, therefore, S is coaccessible but

T is not. Neither of S nor T is accessible. Note also that P and R are nondeterministic,

since from the state p0 the a event leads either to p1 or p2, while R has two initial states.

Furthermore, the alphabet �Q contains the event d, which is not present in any edge of

EQ.



Summary

In this section we have de�ned the behavior of a �nite transition machine. This behavior is

described by traces that record the states and events that the process visits and executes

due to its transiting between states. Some states are distinguished to be of speci�c

importance, so that a subset of the possible traces is regarded as signi�cant; that is, they

constitute the marked traceset.

The notion of a trim transition machine will be very important in the following sections.

The goal is to control a transition machine so that it can always reach some marked state.

Lemma 2.19 shows that trimness is suÆcient to be able to reach all marked states from

the set of initial states.

See Figure 2.1 for a number of transition machines that aim to illustrate the notions

of accessibility, coaccessibility and trimness, described in the latter part of this section.

2.2.3 Strings and Languages

The label of an edge is the event that either occurs as a consequence of the transition from

first(�) to last(�) of that edge, or triggers that transition. In the former case we say that

the event is generated by the transition, and in the latter case the transition, or rather the

transition machine, follows the event. We will for the most part not distinguish between

event generation and event following, (formally there is no di�erence), and we will merely

say that the event or transition is executed. As the transition machine evolves, it transits

between states, executing events. The sequences of events are called strings, and are given

by the labels of the traces. Thus, many of the de�nitions and proofs concerning transitions

have corresponding de�nitions and proofs regarding the strings. Note, however, that in

general the strings that are executed hold less information than the traces, since traces

can di�er in the visited states, while having the same label. Thus, one and the same

string cannot distinguish between similar traces.

De�nition 2.20 Substring

A substring of a string & 2 �� is any string s 2 �� such that

9s0; s00 2 �� such that & = s
0
ss

00
: (2.25)

Remark. The de�nitions of pre�x and suÆx of a string correspond to the de�nitions

given for traces in De�nition 2.9. 2

De�nition 2.21 Closed and Marked Language

The set of event strings represented by a transition machine P is called its closed language,

and is de�ned as

L(P ) = fs 2 ��

P jÆ(P; s) 6= ;g: (2.26)

The subset of the closed language reaching marked states is called the marked language,

and is de�ned as

Lm(P ) = fs 2 L(P ) jÆ(P; s)
T
MP 6= ;g: (2.27)



Remark. The closed traceset and the closed language of a transition machine P are

related as L(P ) = label(tr(P )) = fs 2 ��

P j9t 2 tr(P ) such that s = label(t)g. Thus,

the empty string " 2 L(P ).
The marked traceset and the marked language are related as Lm(P ) = label(trm(P )) =

fs 2 ��

P j9t 2 trm(P ) s = label(t)g. A string may, in general, lead to a number of states.

If one of these is marked, then that string belongs to the marked language. 2

De�nition 2.22 Nonblocking

For a transition machine P with marked and closed languages Lm(P ) and L(P ), respec-

tively, L(P ) is said to be nonblocking if every string of L(P ) can be continued into a string

of Lm(P ). That is,

L(P ) nonblocking , Lm(P ) = L(P ): (2.28)

Remark. A transition machine with a nonblocking language is such that for every string

there exists some accessible state that is also coaccessible. That is

Lm(P ) = L(P ), 8s 2 L(P ) 9p 2 Æ(P; s) 9s0 2 ��

P ÆP (p; s
0)
T
MP 6= ;: (2.29)

From the de�nitions of the marked and closed tracesets and languages, these implications

follow,

P trim ) trm(P ) = tr(P )) Lm(P ) = L(P ): (2.30)

That P trim only implies that trm(P ) = tr(P ) was shown by Lemma 2.19. That this, in

turn, only implies that P is nonblocking is a consequence of the fact that di�erent traces

can have the same label. Thus, P can be nonblocking without the pre�x closure of the

marked traceset being equal to the closed traceset. 2

The way we have de�ned a transition machine, the events executable in a speci�c state

may be only a subset of the events de�ned by the transition machines alphabet. The set

of events that are de�ned by edges with that state as first(�) is called the ready set of

that state.

De�nition 2.23 Ready Set

The ready set of a state p 2 QP is the set of events leading out of that state, de�ned as

out(p) = f� 2 �P j9e 2 EP first(e) = p ^ label(e) = �g

= f� 2 �P jÆP (p; �) 6= ;g
(2.31)

Remark. A transition machine (or state machine) with the ready set of some state being

a subset of the alphabet is sometimes said to be incompletely speci�ed (or incomplete),

see Eilenberg (1974), or even nondeterministic, see Hopcroft (1979). It can be shown, see

Eilenberg (1974), that an incompletely speci�ed state machine can always be converted

to a completely speci�ed state machine by adding a non-marked "junk" state. All states

that do not have their ready sets equal to the entire alphabet are then augmented with

the missing events, transiting to the junk state. This does not alter the marked language

represented by that machine, albeit, the closed language would be altered. We feel that our



de�nition is an intuitive one; most discrete event processes cannot execute all events in all

states. Furthermore, requiring the transition machines to be completely speci�ed removes

the ability for one transition machine to control another. Therefore, we do not include

this requirement. Note also, that we reserve the term nondeterministic to mean something

else. An incompletely speci�ed transition machine is not necessarily nondeterministic, see

De�nition 2.28. 2

Naturally, the ready set of a state is allowed to be empty. Thus, no further execution of

events can occur from that state, and the execution of the transition machine can be seen

to have terminated. Thus, such states are called terminating states.

De�nition 2.24 Terminating State

A state q 2 Q+ with an empty ready set will be called a terminating state. That is,

q terminating , out(q) = ;: (2.32)

Remark. A terminating state is not necessarily non-coaccessible. If q is marked, then

from q a marked state can always be reached, namely q itself. Thus, q is then by de�nition

coaccessible, even though it may be terminating. 2

A completely speci�ed transition machine P will, after any string, have the entire alphabet

as possible continuation. Hence its closed language is L(P ) = ��

P . Not so, however, when

the transition machine is allowed to be incompletly speci�ed. After a string s only a

subset of the alphabet is possible as continuation of s in P . This subset is called the

active set of L(P ) after s.

De�nition 2.25 Active Set

For a string s 2 L(P ) the active set, 
(L(P ); s), is the set of events that can follow s in

the language L(P ). That is


(L(P ); s) = f� 2 �P js� 2 L(P )g

=
[

p2Æ(P;s)

out(p) (2.33)

Remark. Note that, the active set of a string is the union of the ready sets of the states

reachable by that string. This is an important fact that will be used to examine properties

of nondeterministic supervisors, such as completeness and controllability in Section 3.4.

The di�erence between the ready sets and the active set after a string s is depicted in

Figure 2.2.

Sometimes we will speak of the "active events after s", and mean the active set of s.

We will use these two expressions interchangeably. 2

The following lemma will be used when showing how structural properties of automata

and their languages relate. This is important in characterizing transition machines able

to control other transition machines within some prespeci�ed speci�cation.
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Figure 2.2: The active set after the string s is 
(L(P ); s) = fa; bg. This is the same as

the ready set of the state p1. However, for the state p2, the ready set is out(p2) = fbg.

Lemma 2.26 For two transition machines S and P , when the language of S is a subset

of the language of P , then, and only then, the active set of any string of S is a subset of

the active set of the same string of P . That is,

L(S) � L(P ), 8s 2 L(S) 
(L(S); s) � 
(L(P ); s): (2.34)

Proof. ()) Assume that L(S) � L(P ) but there existst a string s 2 L(S) with


(L(S); s) 6� 
(L(P ); s). Then, there exists an event � 2 �P such that s� 2 L(S)

but s� =2 L(P ). Thus, L(S) cannot be a subset of L(P ).

(() Assume that for all strings s 2 L(S), 
(L(S); s) � 
(L(P ); s) but L(S) 6� L(P ).

Then there exists a string t� 2 L(S) such that t� =2 L(P ). Of course, then � 2 
(L(S); t)
and � =2 
(L(P ); t), so that 
(L(S); t) 6� 
(L(P ); t).

These two contradictions prove Lemma 2.26.

Remark. By Lemma A.6 the right hand side of (2.34) is equivalent to 8s 2 L(S) 8q 2
Æ(S; s) out(q) � 
(L(P ); s). This means that after a string present in both languages,

the ready sets of all the states of S reached by that string are subsets of the active set of

L(P ) after that string. Note that this, as well as Lemma 2.26, holds regardless of whether

the two transition machines have mutual alphabets or not. However, if �P � �S then

it is obvious that the ready sets of the states of QS cannot include the events �S � �P ,

otherwise L(S) cannot be a subset of L(P ). 2

By Lemma A.2 of Appendix A, Lemma 2.26 immediately leads to the following corollary,

which will also be needed later.

Corollary 2.27 For two transitions machines S and P and any subset A � �P we have

that

L(S) � L(P )) 8s 2 L(S) 
(L(S); s)
T
A � 
(L(P ); s)

T
A: (2.35)

Structural properties of certain transition machines make them behave "nicely". For

instance, when a transition machine is deterministic its traces are uniquely de�ned by its

strings. By deterministic we mean the following.

De�nition 2.28 Deterministic Transition Machine



A transition machine P will be called deterministic, if and only if the set of initial states

contains exactly one element and every edge is uniquely de�ned by its first(�) and label(�).
That is

P deterministic ,
�
jIP j = 1

8e; e0 2 EP first(e) = first(e0) ^ label(e) = label(e0)! e = e
0

(2.36)

Remark. The second requirement can also be expressed as 8q 2 QP 8s 2 ��

P jÆP (q; s)j �
1. This has the consequence that for a deterministic process every string reaches one, and

only one, state. This has the immediate consequence that a transition machine P is

deterministic if and only if all similar traces of its traceset are also equal. Thus, every

state is reachable by unique strings reaching only that state, see Hopcroft (1979). 2

Thus, a transition machine is called deterministic if and only if

1. The set of initial states contains (at most) one element, and

2. Every string uniquely de�nes one and only one reached state.

Consequently, a transition machine is nondeterministic if

1. The set of initial states contains more than one element, or

2. There exists at least one string reaching more than one state.

For generality as well as for ease of notation we will formally consider transition ma-

chines with multiple initial states. However, with a few exceptions, we will only show

transition machines with a single initial state. This is in keeping with the tradition of

Eilenberg (1974), where only automata with single initial states are shown as examples,

but multiple initial states are formally considered. We can note also that Hopcroft (1979)

does not consider multiple initial states at all.

Summary

In this section we have only considered the event sequences executed by a transition ma-

chine. Thus, no information of the states visited during the event execution is included in

such a model. It is important to note that only when a transition machine is deterministic,

can it be fully described by its event sequences, see the remark to De�nition 2.28. The

supervisory control theory of Ramadge (1987) and Wonham (1987) originally considered

only deterministic automata so that a language representation was suÆcient. However,

when generalizing to nondeterministic transition machines this is no longer so, as will be

shown in Chapter 3.

Of speci�c importance in this section are the de�nitions of the active set, De�ni-

tion 2.25, and the ready set, De�nition 2.23. Note that the active set de�ned by a given

string is the union of the ready sets of the states reached by that string. It is precisely

this fact that complicates matters when considering nondeterministic processes. Of im-

portance are also the properties of sublanguages given by Lemma 2.26 and Corollary 2.27.

These will be used when considering uncontrollable events and contribute to conditions

under which a transition machine can in fact be controlled by another transition machine

to exhibit a speci�ed behavior.



2.3 Re�nement And Subprocesses

Some processes have structural properties relating them to each other. These structural

properties are important for the correct application of the algorithms to be described.

Therefore, two ordering relationships among processes will be de�ned, subprocess and

re�nement. Note that we will only consider closed tracesets in this section, including the

marked states without much notice. However, since the marked traceset is included in

the closed traceset, this will constitute no problem.

2.3.1 Subprocesses

When the structural appearance of a process S is contained within another process P , S is

said to be a subprocess of P . The process P is termed the superprocess of S. An intuitive

de�nition of a subprocess as having subsets of the state-space and the edge-set of its

superprocess will be given. However, another de�nition of a subprocess will also be given,

not requiring the state-space of the subprocess to be a subset of the state-space of the

superprocess. This latter de�nition may seem to be less constricting of the superprocess,

but it will be shown that the two de�nitions are in fact eqivalent, in the sense that the

number of di�erent subprocesses that they de�ne is the same.

We begin with the intuitive de�nition of a subprocess.

De�nition 2.29 Subprocess

For two transition machines S = (QS;�S; IS;MS; ES) and P = (QP ;�P ; IP ;MP ; EP ),

with �S = �P , S is said to be a subprocess of P if its state-space is included in P 's, and

S has smaller or equal structural behavior at each state. That is,

S � P ,

8>>>>><
>>>>>:

QS � QP

�S = �P

IS = IP
T
QS

MS =MP

T
QS

ES � EP

(2.37)

Remark. Note that, while QS and ES are allowed to be subsets of QP and EP , �S is

required to be equal to �P . Thus, in forming a subprocess of a given process, we are

allowed to remove states and edges, but not to remove events. Furthermore, if an initial

or marked state of P is in the state-space of S, then this state must also be an initial or

marked state, respectively, of S.

2

In Figure 2.3 the Si are all subprocesses of their respective Pi processes. However, S2
is not a subprocess of P3, even though QS2 � QP3 , since an edge (p1; b; p2) belongs to

ES1 but not to EP2 . Note also that S2 is a subprocess of both P2 and P1, as well as S1.

Furthermore, the state p3 is non-accessible in S1, but not in P1. Removing this state from

QS1 would not alter the closed traceset of S1, tr(S1) would still be a subset of tr(P1), but

S1 would no longer be a subprocess of P1. Finally, note that P1 is nondeterministic due

to the edges (p0; a; p1) and (p0; a; p3) both belonging to EP1.
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Figure 2.3: Examples of subprocesses and superprocesses. S1 is a subprocess of P1. S2
is a subprocess of both P1 and P2, while S3 is a subprocess of both P2 and P3. Note also

that P3 � P2 and that P1 is nondeterministic.

The subprocess relation de�nes a partial ordering on transitions machines. This is

shown by the following lemmas and theorem.

Lemma 2.30 The subprocess relation is re
exive, that is, any transition machine is a

subprocess of itself.

Proof. This is immediate by De�nition 2.29.

Lemma 2.31 The subprocess relation is transitive, that is for three transition machines,

S, P and Q, if S � P and P � Q then S � Q.

Proof. Again this is obvious by De�nition 2.29. When S � P and P � Q we have that

QS � QP � QQ, and ES � EP � EQ, Also, IS = IP
T
QS and IP = IQ

T
QP so that

IS = IQ
T
QP

T
QS = IQ

T
QS, and similarily for MS. Thus, S � Q.

Lemma 2.32 The subprocess relation is antisymmetric, that is for two transition ma-

chines, S and P , each is a subprocess of the other if and only if they are equal. That

is,

S � P ^ P � S , S = P (2.38)

Proof. By De�nition 2.29 we have that

S � P ^ P � S ,

8>>>>><
>>>>>:

QS � QP ^QP � QS

�S = �P

IS � IP ^ IP � IS

MS �MP ^MP � MS

ES � EP ^ ES � EP

9>>>>>=
>>>>>;
,

8>>>>><
>>>>>:

QS = QP

�S = �P

IS = IP

MS =MP

ES = EP

9>>>>>=
>>>>>;
, S = P (2.39)



Remark. This de�nes what we regard as equivalent processes, each is a subprocess of the

other. This is certainly a strong notion of equivalence of processes. Other de�nitions of

equivalence have been proposed. A discussion of these and other topics related to di�erent

approaches for modeling �nite state-machines is given in Section 2.5. 2

A binary relation is said to be a partial ordering if it is re
exive, transitive and anti-

symmetric. From Lemmas 2.30, 2.31 and 2.32 we know that the subprocess relation is

re
exive, transitive and antisymmetric. This leads to the following theorem.

Theorem 2.33 The subprocess relation de�nes a partial ordering on transition machines.

The partial ordering of the subprocess relation can also be seen in Figure 2.3. For instance

S2 � S1 � P1. Note also that, even though S2 and S3 are both subprocesses of P2, they

are not related to each other. Neither is a subprocess of the other; they are incomparable.

This comes, of course, from the fact that some edge of ES2 does not belong to ES3 , and

vice versa.

Since both the state-space and the event set of any process is �nite, so is the edge-set.

Thus, the number of subprocesses that can be obtained by removing states and transitions

is also �nite. Therefore the set of all subprocesses of a given process can be readily de�ned.

De�nition 2.34 Set of All Subprocesses

For a given transition machine P , the set of all subprocesses is de�ned as

S(P ) = fS 2 P jS � P g (2.40)

where P denotes the universe of discourse as de�ned by De�nition 2.4.

There are a number of useful properties regarding subprocesses in relation to their super-

processes. For instance, when S is a subprocess of P , the traceset of S is a subset of the

traceset of P . That is S � P ) tr(S) � tr(P ). When S and P are accessible and their

alphabets are equal, the converse also holds. This is obvious since the edge-set of S is a

subset of the edge-set of P , and the initial states of S are also initial states for P . This

also means that the language of S is a subset of the language of P . Naturally, both of

these properties hold equally for the marked tracesets and languages. Note though that

a subprocess is not necessarily marked, that is MS = MP

T
QS may be empty. However,

by De�nition 2.17, such a subprocess is not coaccessible (unless QS is also empty) and

thus trm(�) = ; which is, of course, a subset of any marked trace set.

Lemma 2.35 For a subprocess S of a superprocess P , we have that tr(S) � trm(P ),
trm(S) = tr(S).

Proof. ()) Since tr(S) is closed and tr(S) � trm(P ), every state reached by tr(S) must

be marked. That is, it must hold that last(trm(S)) = last(tr(S)), and thus trm(S) =

tr(S).



(() When trm(S) = tr(S), last(trm(S)) = last(tr(S)) � MP and therefore tr(S) �
trm(P ).

Since tr(S) is closed, so is trm(S) when they are equal. This means that the pre�x

closure of the marked traceset is equal to the marked traceset, as well as to the closed

traceset. Therefore, Lemma 2.35 has the corollary that whenever the closed traceset of

the subprocess is a subset of the marked traceset of the superprocess, the closed traceset

of the subprocess is equal to the pre�x closure of its marked traceset.

Corollary 2.36 For a subprocess S of a superprocess P , we have that tr(S) � trm(P ),
trm(S) = tr(S).

Remark. Thus, when S is accessible, tr(S) � trm(P ) means that S is trim. See De�ni-

tion 2.18. 2

We also have a lemma relating the de�nition of subprocesses as given in De�nition 2.29

to the transition function as de�ned in De�nition 2.5.

Lemma 2.37 For a subprocess S of a process P , for all states of QS and for all events

of �S, the value of the transition function of S is a subset of the value of the transition

function of P . That is,

S � P ) 8q 2 QS 8� 2 �S ÆS(q; �) � ÆP (q; �): (2.41)

Proof. This comes from the fact that when S � P then QS � QP and ES � EP .

()) Assume that ES � EP but that there exists a state q 2 QS and an event � 2 �S such

that ÆS(q; �) 6� ÆP (q; �). Then there exists a state q0 2 ÆS(q; �) such that q0 =2 ÆP (q; �).

By the remark to De�nition 2.5, this is equal to (q; �; q0) 2 ES and (q; �; q0) =2 EP . This

clearly contradicts the initial assumption.

Remark. This merely means to state the obvious fact that when ES is a subset of EP

then the transition functions are as above. However, we can say nothin about states not

included in the edge-sets. When the processes are accessible, though, the converse of

Lemma 2.37 also holds. 2

We can note that the intuitive de�nition of a subprocess places an unnecessary constraint

on the state-space of the subprocess. In essence De�nition 2.29 says that the structure

of a subprocess is contained within its superprocess. Since the structure of a process is

independent of the naming of its state-space, we can relax the constraint that the state-

space of the subprocess has to be included in the state-space of the superprocess. This

can be done by de�ning a subprocess through the existence of an injective state-mapping

between the subprocess' state-space and the state-space of its superprocess.

De�nition 2.38 Subprocess



For two transition machines S = (QS;�S; IS;MS; ES) and P = (QP ;�P ; IP ;MP ; EP ),

with �S = �P , S is said to be a subprocess of P if there exists an injective (total) function

f :QS ! QP , such that for all traces tS 2 E
�

S there exists a trace tP 2 E
�

P such that

f(first(tS)) = first(tP )

label(tS) = label(tP )

f(last(tS)) = last(tP )

(2.42)

and

8q 2 QS

�
q 2 IS , f(q) 2 IP
q 2MS , f(q) 2MP

(2.43)

Remark. The function f being injective means that it is one-to-one. That is, distinct

states of QS are mapped onto distinct states of QP . Obviously, f can be injective only if

the number of states in QS is less than or equal to the number of states in QP . Since, by

de�nition, every state has at least the null trace, ", all states of QS are mapped into QP

by f . That is, the domain of f is Df = QS. Thus, nonaccessible states are also covered

by this de�nition. Note though, that the range of f is Rf � QP , not necessarily the entire

state-space QP . If both Df and Rf are the entire state-spaces QS and QP , respectively,

then f is said to be bijective. This means that every distinct state of QS is mapped onto

a distinct state of QP , and every state of QP has a corresponding state in QS. Of course,

when the f is bijective, the number of states of QS is equal to the number of states of

QP ; in fact, the two processes are equal.

Note that, when P is nondeterministic there may exist many such functions f for

one and the same subprocess S of P , all of which satisfy De�nition 2.38. However, the

existence of any such function from QS into QP is enough to make S � P . 2

De�nition 2.38 has the consequence that for all pairs of related traces of the subprocess,

there must exist pairs of respectively similar traces of the superprocess that are also

related. Furthermore, for every pair of diverging traces of the subprocess, there must

exist pairs of respectively similar diverging traces of the superprocess. In Figure 2.5 on

page 43 all the Si are subprocesses of the respective Pi kSi, as can be veri�ed by inspection.
However, none of the Pi are subprocesses of Pi kSi, since in every Pi the strings t and

u are related, but these strings are not related in Pi kSi. Also S4 is a subprocess of P4

since there exist similar traces that are related as well as unrelated in both transition

machines. Note that we can establish this without knowledge of the state-space of the

processes. What we do is that we determine the function de�ned in De�nition 2.38.

De�nition 2.38 concerns the traces de�ned by the sets E�

S and E
�

P . This so, since we

want the de�nition of a subprocess to encompass nonaccessible states; a subprocess is

not allowed to have nonaccessible states that have no corresponding state in the state-

space of the superprocess. However, since ES � E
�

S, and EP � E
�

P individual edges of

ES are mapped onto distinct edges of EP . Edges are essentially traces of length 1, and

De�nition 2.38 places no restriction on the length of the traces; they can be of length 0,

1 or n (for �nite n, of course).

The two de�nitions of subprocesses, De�nition 2.29 and De�nition 2.38, may seem

vastly di�erent. However, it can be shown that they are in fact equivalent in the sense

that the set of di�erent subprocesses of a given process de�ned by each de�nition can



be mapped onto each other by bijective mappings. Thus, for every element de�ned by

De�nition 2.29 there exists an element in De�nition 2.38 such that the two elements are

considered equal in the sense that each is a subprocess of the other.

Lemma 2.39 De�nition 2.29 is equivalent to De�nition 2.38.

Proof. To prove this, let us denote by S1(P ) the set of all subprocesses of P as de�ned

by De�nition 2.29, and by S2(P ) the set of all subprocesses de�ned by De�nition 2.38.

Let us also denote by f(QS), the subset of QP to which the injective function f maps the

states of QS.

( )) It is obvious that for any element S1 2 S1(P ) there does exist an injective mapping

function such as given by De�nition 2.38, namely the function f1:QS1 ! QP such that

8p 2 QS1 f1(p) = p 2 QP . This so, since QS1 � QP . Thus, the set of subprocesses de�ned

by De�nition 2.29 is a subset of the set de�ned by De�nition 2.38, so that the implication

holds.

We can note that, since f1 maps QS1 onto the subset of QP that is QS1 itself, f1 is in fact

the identity function, I1, on QS1 . Thus, the inverse f
�1
1 is also equal to I1.

( () Assume that for S1 2 S1(P ) and S2 2 S2(P ) there exists the injective functions

f1:QS1 ! QP and f2:QS2 ! QP , respectively. f1 is I1 as de�ned above, with Df1 = QS1

and Rf1 = QS1 � QP , while f2 exists by De�nition 2.38 and Df2 = QS2 and Rf2 � QP .

We have to show that whenever f1(QS1) = f2(QS2) then there exists a bijective function

g, such that g(QS1) = QS2 and g
�1(QS2) = QS1 . If so, then S1 and S2 are equal in the

sense that they are subprocesses, as de�ned by De�nition 2.38, of each other.

For f1, its inverse exists and is I1, with both domain and range QS1 . Since f2 is injective,

the inverse f�12 exists. Also, Df
�1

2

= Rf2 and Rf
�1

2

= Df2. However, since Rf2 � QP ,

f
�1
2 is not a function from QP to QS2 , but merely f

�1
2 :Rf2 ! QS2 . De�ne g = I1 Æ f2,

where Æ denotes function composition. The composition of two injective functions is also

injective. We have that Dg = Df2 = QS2 and Rg = DI1 = QS1 . The inverse function g
�1

is then equal to f
�1
2 Æ I1 with Dg�1 = Df1 = QS1 and Rg�1 = Rf

�1

2

= QS2 . Thus, g is

bijective, so that S1 � S2 and S2 � S1. Therefore, S1 = S2.

Remark. The relations between the sets of subprocesses de�ned by each de�nition, and

the mapping functions is graphically displayed in Figure 2.4.

That De�nition 2.29 implies De�nition 2.38 is rather obvious, as the simplicity of

its proof shows. That is, for a superprocess P , the set of subprocesses of P de�ned by

De�nition 2.29 is a subset of the set of subprocesses de�ned by De�nition 2.38.

However, that De�nition 2.38 in its turn implies De�nition 2.29 is more delicate. What

this says is that if we have a subprocess de�ned by De�nition 2.38, then we can always

�nd a mapping, g(�), to rename the states of that subprocess so that De�nition 2.29 is

satis�ed. In this sense, for every subprocess S2 de�ned by De�nition 2.38 there exists a

subprocess S1 of P , de�ned by De�nition 2.29, such that g(QS2) = QS1 . This means that

g(S2) � S1 and S1 � g
�1(S2), with subprocess de�ned according to De�nition 2.29. And

thus, the set of di�erent subprocesses de�ned by De�nition 2.38 is not larger than the set

of subprocesses given by De�nition 2.29.
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Figure 2.4: The relation between the di�erent de�nitions of subprocesses of a process

P , and the mapping functions. The set S1(P ) is the set of subprocesses de�ned by De�ni-

tion 2.29, while S2(P ) is the set de�ned by De�nition 2.38. f1, f2 and g are the mapping

functions.

To rephrase, Lemma 2.39 means that, with a given superprocess P , for any subprocess

S2 as de�ned by De�nition 2.38 we can always �nd another subprocess, S1, of P , that

satis�es both de�nitions and is such that S1 = S2 , S1 � S2 ^ S2 � S1 with subprocess

de�ned by De�nition 2.38. Thus, S1 and S2 are isomorphic in the sense that they di�er

only in the way the states are named. But, as also pointed out by Arnold (1994), these

names have no particular meaning and can be arbitrarily chosen. It is by their structural

properties that transition machines are distinguished. However, for practical purposes

the naming of the states can contribute considerably to the interpretation of the traces.

For instance, when composing two transition machines in parallel, the state-space of

the composed process becomes the cross product of the state-spaces of the respective

processes, and thus a state in the composed process can immediately tell us which actions

have been executed by the respective process. 2

The equivalence of the two subprocess de�nitions has the implication that, without

loss of generality, a subprocess that satis�es De�nition 2.38 can always be considered to

satisfy De�nition 2.29, and vice versa.

2.3.2 Re�nement

The subprocess relation is a partial ordering in which two processes are comparable if they

have the same alphabet, and the structural appearance of one of them, the subprocess,

is included in the other, the superprocess. This is a rather strong relation, in the sense

that the number of di�erent subprocesses of a given process is very limited. A subprocess

can be nondeterministic, for instance, only if the superprocess is. In this section we will

de�ne a weaker ordering relation between transition machines, re�nement, that allows a

much larger number of di�erent processes to be related to a given process. For instance,

a nondeterministic process can re�ne a deterministic one.

De�nition 2.40 Re�nement

For two transition machines S = (QS;�S; IS;MS; ES) and P = (QP ;�P ; IP ;MP ; EP ),

with �S = �P , S is said to re�ne P if there exists a function f :QS ! QP , such that for



all traces tS 2 E
�

S there exists a trace tP 2 E
�

P such that

f(first(tS)) = first(tP )

label(tS) = label(tP )

f(last(tS)) = last(tP )

(2.44)

and

8q 2 QS

�
q 2 IS , f(q) 2 IP
q 2MS , f(q) 2MP

: (2.45)

Remark. This de�nition is di�erent from the subprocess de�nition, De�nition 2.38, in

that the function f is not required to be injective. In fact, it is simply required to be

a (total) function, meaning that for every state of QS, there is a unique state in QP .

However, some states of QS may be mapped onto the same state of QP . Thus, f can be

many-to-one, so that a nondeterministic S can re�ne a deterministic P , see Figure 2.6.

It is precisely this fact that will be exploited when generating a supervisor for a given

process. Obviously, when S is a subprocess of P , S also re�nes P . Furthermore, when S

re�nes P , the language of S is a subset of the language of P .

The de�nition of re�nement means that all related traces of S have similar related

traces in P , and thus L(S) � L(P ). This also holds when S is a subprocess of P , but

then, additionally, nonrelated traces in S have similar nonrelated traces in P . With

re�nement, the traces of P are not necessarily unique with respect to the traces of S.

This has the consequence that the number of traces of P may be smaller than the number

of traces of S, thus making it possible for a nondeterministic S to re�ne a deterministic

P . This is illustrated in Figure 2.5, see S2 and P2. Note also that, when S re�nes P , two

nonrelated traces of S may or may not be related in P . This is also shown in Figure 2.5.

Finally we note that, when a deterministic process S re�nes P , S is a subprocess of P .

This follows from the fact that when S is deterministic, there does only exist one trace

with a given label, so that the function f must be one-to-one, see Figure 2.6. 2

The following lemma will be important when showing that given a transition machine S

to act as a controlling unit for another transition machine P , we can �nd the "controllable

part" of S.

Lemma 2.41 Re�nement is a transitive relation, that is, for transition machines S, P ,

and Q, if S re�nes P and P re�nes Q then S re�nes Q.

Proof. When S re�nes P and P re�nes Q, then there exist functions f1:QS ! QP and

f2:QP ! QQ as de�ned by De�nition 2.40. Obviously, the composition f2 Æ f1:QS ! QQ

exists and satis�es De�nition 2.40. Therefore, S re�nes Q.

Re�nement serves the purpose of characterizing when the composition of two transition

machines will be equal to one of them, as will be shown in Section 2.4. Observe that,

when considering only the accessible parts of the transition machines, the function f of

De�nition 2.40 can be de�ned from the tracesets, tr(S) and tr(P ), instead of the set of

all possible traces given by E�

S and E
�

P . This is also the case for the subprocess relation,
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Figure 2.5: A number of transition machines, Pi, and examples of re�ning transition

machines, Si. Only the labels of the traces have been indicated. Note that P2 is determin-

istic, while S2 is nondeterministic, yet still S2 re�nes P2. To the right is shown the full

synchronous composition of the respective pair of automata. We can also note that each

Si is a subprocess of the respective Pi kSi, as well as S4 is a subprocess of P4.
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Figure 2.6: The relation between re�nement and subprocess. S re�nes P when there

exists a function f mapping the states of QS into QP . When this function is injective, S

is a subprocess of P , and when this function is bijective, lower right quadrant, S and P

are equal.

and it is a consequence of the fact that when a transition machine is accessible, its state-

space is de�ned by its traceset, see Lemma 2.16. Quite commonly, we will only regard

the accessible part of a given transition machine, and the largest accessible part, at that.

This is well-de�ned, as will be shown in Chapter 4.

Summary

In this section we have de�ned ordering relations between transition machines, re�nement

and subprocesses. Re�nement is coarser than the subprocess relation in the sense that,

for a given transition machine, the number of its re�ning processes is much larger than the

number of its subprocesses within the universe of discourse. For instance, a deterministic

process can have nondeterministic re�ning processes but only deterministic subprocesses.

It has also been shown that the condition on the state-space of the intuitive notion

of a subprocess can be relaxed, and subprocesses can be de�ned by an injective mapping

from the state-space of the subprocess to the state-space of its superprocess. When two

transition machines are equivalent there exists a bijective mapping. This is important

since we will in the next section show that, when a process S re�nes a deterministic

process P , their concurrent execution with events in both their alphabets executed by

both processes or none (synchronization), is equal to S. Naturally, the state-space of the

process describing the interaction of P and S is not a subset of any of the processes, and

particularly not of QS.



2.4 Operations On Processes

Operations on processes can be divided in two sections; one de�ning operations on pro-

cesses in general, and one de�ning operations on subprocesses. However, since the universe

of discourse is equal for all processes, any pair of transition machines can be considered

to be subprocesses of some process. Nonetheless, we will make the distinction here, since

the operations on subprocesses will only be used in speci�c contexts.

2.4.1 General Operations

The general operations concern, in fact, only one operator with two important specializa-

tions. These model processes executing under various forms of interaction. The compo-

sition results in a new transition machine that expresses the behavior that is the result

of the interaction. Obviously, the various forms of interaction model di�erent constraints

of synchronization, from interleaving that includes no constraints, to full synchronization

that requires all mutual events to synchronize. The general operator is called parallel

composition with partial synchronization, abbreviated PCPS.

De�nition 2.42 Parallel Composition

For two transition machines P = (QP ;�P ; IP ;MP ; EP ) and S = (QS;�S; IS;MS; ES)

we de�ne parallel composition with partial synchronization, denoted Pk AS, with A �
�P

T
�S, as

PkA S = (QP �QS;�P

S
�S; IP � IS;MP �MS ; EPk

A
S) (2.46)

where

8(p; �; p0) 2 EP 8(q; �; q
0) 2 ES

8><
>:
((p; q); �; (p0; q)) 2 EPk

A
S � =2 A

((p; q); �; (p; q0)) 2 EPk
A
S � =2 A

((p; q); �; (p0; q0)) 2 EPk
A
S � = � 2 A

: (2.47)

Remark. Note that, when composing two (accessible) transition machines in parallel

under partial synchronization not all states of the composed process necessarily become

accessible. The set A is referred to as the synchronization set (or synchronization alpha-

bet). 2

PCPS is also de�ned by Heymann (1991) where a number of its properties are shown. For

our present purposes it suÆces to recognize the following two specializations of PCPS,

synchronous composition and interleaving.

De�nition 2.43 Synchronous Composition

The (full) synchronous composition of two transition machines P and S, denoted by P kS,
is their parallel composition with the intersection of their alphabets as the synchronization

set. That is,

PkS = Pk�P
T

�S
S (2.48)



Remark. Thus, the full synchronous composition of two transition machines requires all

mutual events to synchronize. An event that is in both machines' alphabets can only

occur when both processes agree upon executing it. Non-mutual events, on the other

hand, can be executed whenever the respective transition machine is in a state to do so.

The transition function for the composed system is thus

ÆP kS(hp; qi ; �) =

8><
>:
ÆP (p; �)� ÆS(q; �) � 2 �P

T
�S

ÆP (p; �)� fqg � 2 �P � �S

fpg � ÆS(q; �) � 2 �S � �P

(2.49)

When �P = �S, every event occurs if and only if both processes are ready to execute it.

The edge-set of the composed transition machine becomes

EPkS =
n
(hp; qi ; �; hp0; q0i) jhp0; q0i 2 ÆPkS (hp; qi ; �)

o
. (2.50)

2

When composing two transition machines under full synchronous composition, the lan-

guage of the resulting automaton can be readily de�ned. However, for our purposes only

the following special cases will be considered.

Lemma 2.44 For two transition machines S and P with �S � �P , let �P�S = �P ��S

be the set of events of �P not in �S and let ��

P�S denote all �nite strings over �P�S

including the empty string. Then the following language inclusions hold,

L(P )
T
L(S)�P�S � L(P )

T
L(S)��

P�S � L(P kS): (2.51)

Here L(S)�P�S and L(S)��

P�S denotes the languages obtained by concatenating all

strings of L(S) with all elements of �P�S and ��

P�S, respectively.

Proof. We will show this by induction on the length of a string s = �0�1 : : : �n 2 L(P ).
We will show only the rightmost inclusion. The left one follows immediately.

(n = 0) When n = 0, s is the empty string and the inclusion trivially holds. All languages

are pre�x closed.

(n = m) We assume that the inclusion holds for this case, that is, sm = �0 : : : �m 2
L(S)��

P�S

T
L(P ) and sm 2 L(PkS).

(n = m + 1) For sm�m+1 there are three possibilities with regard to L(S).

1. �m+1 2 �P�S so that �m+1 =2 �S and thus sm�m+1 =2 L(S). Then P can execute

�m+1 after sm as it pleases. The event �m+1 cannot be prevented by S from occuring

in P . Thus, sm�m+1 2 L(PkS).

2. �m+1 2 �S and sm�m+1 2 L(S). Then both S and P can agree on executing �m+1

after sm, and sm�m+1 2 L(PkS).

3. �m+1 2 �S but sm�m+1 =2 L(S). In this case S prevents P from executing �m+1

after sm, and sm�m+1 =2 L(PkS).



So, whenever a string ss0 2 L(P ) and either s 2 L(S) and s
0 2 ��

P�S or ss0 2 L(S), then
ss

0 2 L(PkS), since when s
0 2 ��

P�S then ss
0 2 L(S)��

P�S. Thus Lemma 2.44 holds.

Remark. We can view this as a case where S has no control over the events of �P�S.

These events are uncontrollable to S, so that P can execute them whenever in a state to

do so. This concept of uncontrollable events is in fact a crucial issue for the supervisory

control theory, which will be presented in Chapter 3. 2

The following corollary to Lemma 2.44 follows from the fact that when �S = �P , we

have that �P�S = ;, and it tells us what language results when two automata with equal

alphabets are fully synchronized.

Corollary 2.45 For two transition machines P and S with �P = �S, the following holds

L(PkS) = L(P )
T
L(S) (2.52)

In a similar manner it can be shown that when �S = �P , then ready set of any state

of the composed system, PkS, is the intersection of the ready sets of the corresponding

states of the original processes. That is

8 hp; qi 2 QPkS out(hp; qi) = out(p)
T
out(q): (2.53)

The requirement that �S = �P is in fact a loss of generality, and it is really unnecessary.

Equation (2.53) holds (with a slight reformulation) even if this constraint is relaxed.

However, the proof becomes more intricate involving restriction (see Hoare (1985)) of

strings to the alphabets of the respective processes, a notion which we have chosen not to

de�ne, simply because we will not need it. The assumption that �S = �P will be globally

introduced, and it is a common assumption within the supervisory control theory.

A special case is worth mentioning though, since it will be used to derive requirements

for a supervisor process to be able to control another process. This is the case when

�S � �P . Then the following holds,

8 hp; qi 2 QP kS out(hp; qi) = out(p)
T
[out(q)

S
�P�S] (2.54)

where �P�S = �P ��S , as in Lemma 2.44. Since we always have that the active set of a

string is the union over the ready sets of the states reached by that string, Lemma 2.44

follows from (2.54), as is readily veri�ed. Usually, when two processes are brought together

to evolve concurrently, the intention is that they are to interact. Such interactions are

then expressed by mutual events on which the processes synchronize. This is what the

synchronous composition models. However, sometimes it is more useful to join processes

with mutual events to operate concurrently, without directly interacting with each other.

Such a composition of transition machines is called interleaving.

De�nition 2.46 Interleave

The interleaving of two transition machines P and S, is their parallel composition with

the empty set as the synchronization set. That is,

Pk
;
S (2.55)



Remark. Interleaving is similarily de�ned by Hoare (1985), though for failure model

systems (see Section 2.5). The interleaving of two processes prohibits any mutual events

to synchronize. Thus, any process can execute any event irrespective of the other process,

even though this event may exist in the alphabet of both processes. Each action of the

interleaved system is an action of exactly one of the processes. When an event occurs,

if one of the processes could not have executed the event it must have been the other.

However, if both processes could have engaged in the event, then the choice between them

is nondeterministic. Therefore, interleaving two deterministic processes with (partly)

mutual alphabets, results in a nondeterministic automaton; that is, an automaton in

whcih one and the same string can lead to any of a number of states.

When interleaving two accessible transition machines, all states of the interleaved

process become accessible.

2

In Figure 2.7 the di�erent ways two simple transition machines can be composed in

parallel under partial synchronization, is shown. Note that the alphabets of the two

automata are only partially mutual, meaning that some events, a and b, can never syn-

chronize. Note also that P includes the e event in its alphabet, but there is no transition

labeled by e. Thus, whenever synchronization on e is requested, as in �1, for instance, e

is hindered from ever occuring.

Lemma 2.47 For any three transition machines P , Q, R, PCPS is associative. That is

P kA (Q kB R) = (P kA Q) kB R, (2.56)

whenever A = B or A = �P

T
�Q and B = �Q

T
�R,

Proof. The proof is cumbersome and given in Appendix B.

Remark. This may seem a very special case. However, the algorithm to be presented

relies on the associativity of PCPS under these conditions. Note that A = B includes

interleaving, A = B = ;, and when A = �P

T
�Q and B = �Q

T
�R the operation is

full synchronous composition. Observe that PCPS is not associative when, for instance

A = �P

T
�Q and B = ;. An annoying fact which will be commented upon later. 2

In the following theorem we will consider only the accessible parts of the given and com-

posed transition machines. We have hitherto tried to keep the propositions on as general

a level as possible, not requiring the transition machines to be accessible. However, for

practical purposes the restriction to the accessible parts has no consequences; the behav-

ior of a transition machine can only ever concern its accessible states. We will introduce

the requirement of the transition machine P to be deterministic though. This restricts

the generality of the given lemma, but in the next chapters P will represent the plant to

be controlled. We will assume that such a plant is always modeled as a deterministic au-

tomaton, an assumption that we feel is adequate for most purposes. See Shayman (1994)

and Overkamp (1995), though, for discussions concerning non-deterministic models rep-

resenting uncertainty of the physical plant behavior.
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Figure 2.7: The eight possible accessible transition machines resulting from composing

the P and S automatons shown at the top. The di�erent composition alphabets are shown

top right.



Theorem 2.48 For two transition machines S and P , with P deterministic, when S

re�nes P their synchronous composition equals S. That is,

P deterministic ) (S re�nes P , PkS = S); (2.57)

when we only consider the largest accessible parts of the transition machines.

Proof. When we only consider the accessible parts of the transition machines, the func-

tions de�ning re�nement and equality of processes, can be de�ned from the tracesets of

the respective machines. That is, S re�nes P if there exists a function f :QS ! QP map-

ping such that for all traces tS 2 tr(S) there exists a trace tP 2 tr(P ), such that (2.44)

holds. Similarily, equality between P kS and S can be de�ned by a bijective function

from the state-space QP kS to QS, such that for all traces of tr(P kS) there exists traces
of tr(S) satisfying (2.42).

By de�nition, the full synchronous composition of two transition machines result in sim-

ilar traces being composed such that the composed trace' last(�) equals the state in the

composed automaton given by the ordered pair of the original traces' last(�). That is, for
tS 2 tr(S) and tP 2 tr(P ), when tS sim tP , there exists a trace tPkS 2 tr(PkS) such that

last(tPkS) = hlast(tP ); last(tS)i. For a nondeterministic transition machine S, two traces

tS; t
0

S 2 tr(S) can be di�erent, yet have equal labels, that is, tS 6= t
0

S but tS sim t
0

S. This

cannot be the case for a deterministic transition machine. With a deterministic machine,

two traces are similar if and only if they are equal.

( )) It is easy to see that there does always exist a function f :QP kS ! QS such that

P kS re�nes S. Choose, for instance, the function that picks out the elements of QS from

the ordered pairs of QP kS. That is, for hp; qi 2 QP kS, we have that f(hp; qi) = q. This

follows from the de�nition of the synchronous composition.

When S re�nes P , every trace of S can be mapped onto a trace of P by a function

fS:QS ! QP . Say that we have the traces tS; t
0

S 2 tr(S) and tP ; t
0

P 2 tr(P ), such that

(with some abuse of notation) fS(tS) = tP and fS(t
0

S) = t
0

P . To simplify our notation,

de�ne p = last(tP ), p
0 = last(t0P ), q = last(tS), and q

0 = last(t0S). Since for these traces

tS sim tP and t0S sim t
0

P , we have that there exists traces tP kS; t
0

P kS 2 tr(P kS) such that
tP kS sim tS and t

0

P kS sim t
0

S. Furthermore, last(tP kS) = hp; qi and last(t0P kS) = hp
0
; q

0i.
When two traces of S are related, their corresponding traces in P must also be related,

otherwise fS is not a function. This means that hp; qi = hp0; q0i if and only if q = q
0.

Therefore, the function f is injective, meaning that f(hp; qi) = f(hp0; q0i) ) hp; qi =
hp0; q0i. Thus P kS � S.

Furthermore, when P is deterministic there exists only one trace with a given label so

that when tS sim t
0

S then tP = t
0

P ., with tS, t
0

S, tP , t
0

P as de�ned in the above paragraph.

Therefore, two similar but non-equal traces of P kS can only di�er in the "S-part". This

means that for every trace of S there will exist a trace in P kS, and all traces of P kS will

have corresponding traces in S. Therefore, the function f is injective (as above) and onto,

that is, the domain of f is equal to the entire state-space QS. This makes f bijective, so

that P kS = S.

( () When f :QP kS ! QS is bijective, its inverse f�1:QS ! QP kS exists. Let us de�ne

the function fP :QP kS ! QP such that fP (hp; qi) = p. Then the composite function



(fP Æ f
�1):QS ! QP exists. However, when P is deterministic, and S nondeterministic,

for two states reached by the same string in P kS, and hence in S, only one state is

reached in P . Thus, for tP kS sim t
0

P kS, we have that fP (last(tP kS)) = fP (hp1; q1i) =

fP (last(t
0

P kS)) = fP (hp1; q2i) = p1, so that fP is not injective and therefore fP Æ f
�1 is

not injective. Thus, S re�nes P .

Remark. From the proof of Theorem 2.48 it follows that the synchronous composition

P kS always re�nes P (as well as S). This holds irrespective of whether S re�nes P

or not, and this is important since when P is deterministic then Pk (PkS) = PkS,
by Theorem 2.48. This means that a nondeterministic speci�cation S can be composed

under full synchronization with a deterministic plant P , and their composition can be

used as a supervisor for the plant. (Assuming some other properties are upheld, such as

completeness, see Section 3.4.) A similar result for deterministic processes was given by

Kumar (1991). 2

In Figure 2.5, on page 43, examples of the synchronous composition between a re�ning

process and the re�ned process, are given. As can be seen, both P1kS1 and P2kS2
equal the re�ning processes S1 and S2, respectively. This so, since P1 and P2 are both

deterministic. It can also be seen that the resulting synchronization of a re�ning process,

Si, with the re�ned process, Pi, really re�nes Pi.

When a transition machine is a subprocess of another machine, then it also re�nes its

superprocess. Thus, Theorem 2.48 has the following important special case.

Corollary 2.49 For two transition machines S and P , with P deterministic, if S is a

subprocess of P then their synchronous composition equals S. That is,

P deterministic ) ( S � P ) PkS = S); (2.58)

when we only consider the largest accessible parts of the transition machines.

Remark. We can note that, when S � P and P is determinstic, so must also S be. It

is always the case that when P is deterministic P kS � S, and when S is deterministic,

P kS � P . However, when P and S are both allowed to be nondeterministic, their

synchronous composition only re�nes P and S, respectively. It is easy to see that the

functions fP (hp; qi) = p and fS(hp; qi) = q determine this. 2

2.4.2 Operations On Subprocesses

The parallel composition with partial synchronization makes sense for modeling the in-

teraction of arbitrary transition machines. However, when studying the partial ordering

of subprocesses of a given superprocess, the operations of subprocess union and subprocess

intersection are more relevant.

De�nition 2.50 Subprocess Union and Intersection

For two subprocesses Q and R of a superprocess P , their union is de�ned as

Q
S
R = (QQ

S
QR;�P ; IQ

S
IR;MQ

S
MR; EQ

S
ER); (2.59)



and their intersection is de�ned as

Q
T
R = (QQ

T
QR;�P ; IQ

T
IR;MQ

T
MR; EQ

T
ER): (2.60)

Remark. Note that subprocess union and subprocess intersection join and intersect the

respective sets of the 5-tuples representing the processes. The alphabet will in either case

be the same as the alphabet of the superprocess, here �P . 2

When intersecting two subprocesses, it may happen that their state-spaces and edge-sets

are disjoint, so that the state-space and the edge-set of the resulting process are empty.

For this to be a valid result of subprocess intersection, we make the following de�nition,

which will also come in handy when attempting to prove existence of certain types of

subprocesses.

De�nition 2.51 Null Process

The smallest subprocess of any transition machine P is the null process, de�ned as

;P = (;;�P ; ;; ;; ;): (2.61)

Remark. Note that the null process is de�ned for any transition machine, and that it has

that transition machines alphabet. Hence the index P . When denoting the null process

corresponding to any transition machine, this index is omitted. Naturally, tr(;) = ; and
L(;) = ;.

By the de�nitions of accessibility, De�nition 2.15, and coaccessibility, De�nition 2.17,

and since the null process has no states it trivially holds that the null process is always

accessible and coaccessible. Therefore, it is also trim. 2

There are a number of properties of subprocess union and subprocess intersection that are

important for the synthesis of a supervisor described in Chapter 4. These are summarized

in the following theorem. Since a process is described as an ordered 5-tuple of sets, and

since subprocess union and subprocess intersection unite and intersect the respective sets

of the 5-tuple, Theorem 2.52 follows immediately from the de�nitions. Therefore, the

following theorem is given without proof.

Theorem 2.52 For two subprocesses Q and R of a superprocess P , the following holds,

1. Q � P ^ R � P ) Q
S
R � P ^Q

T
R � P

2. Q
S
R = R, Q � R, Q

T
R = Q

3. R � Q
T
P , R � Q ^R � P

4. R
S
Q � P , R � P ^Q � P



Remark.

1. Since the union and intersection of two arbitrary subprocesses of a given superpro-

cess, are still subprocesses of that superprocess, the set of subprocesses of a given

superprocess is closed under both subprocess union and subprocess intersection.

The union of any number of subprocesses can never be "larger" than the superpro-

cess. This is a signi�cant fact that will be used when proving that there does exist

unique maximal elements of sets of subprocesses of a given process, in Section 4.1.

2. For two arbitrary processes, one is a subprocess of the other, if and only if their

intersection is equal to one of them, and if and only if their union is equal to one of

them. Then their intersection is the subprocess, and their union is the superprocess.

3. When a process is a subprocess of a superprocess that can be written as the in-

tersection of two processes, then the subprocess is also a subprocess of both these

processes.

4. When the union of two processes is a subprocess of some superprocess, both of these

processes are subprocesses of that superprocess.

The last two of these propositions will be of great importance when we examine eÆcient

ways to calculate speci�c subprocesses of a given process. 2

When composing subprocesses under union and intersection we know that the composed

processes are still subprocesses of the same superprocess. Furthermore, the tracesets of

the composed processes hold a number of properties relative to the trace ets of their

original processes. Some of these properties are shown in the following lemmas.

Lemma 2.53 For two subprocesses Q and R of a superprocess P , we have that

tr(Q)
S
tr(R) � tr(Q

S
R): (2.62)

Proof. Assume that Lemma 2.53 does not hold. That is, there exists a trace t 2
tr(Q)

S
tr(R) such that t =2 tr(Q

S
R). By de�nition t 2 tr(Q)

S
tr(R) , t 2 E

�

Q

S
E
�

R^
first(t) 2 IQ

S
IR and t =2 tr(Q

S
R) , t =2 (EQ

S
ER)

�_ first(t) =2 IQ
S
IR. That

first(t) 2 IQ
S
IR and at the same time first(t) =2 IQ

S
IR is an obvious contradiction.

However, since E�

Q

S
E
�

R � (EQ

S
ER)

� we also have a contradiction in that t 2 E�

Q

S
E
�

R �
(EQ

S
ER)

� and that t =2 (EQ

S
ER)

�. Thus all traces of Q and all traces of R are included

in the traces of Q
S
R.

Lemma 2.54 For two subprocesses, Q and R of a superprocess P , we have that

E
�

Q

T
E
�

R = (EQ

T
ER)

�
: (2.63)

Proof. The set E�

Q contains all (�nite) traces composed of the edges of EQ, and the same

holds for E�

R and ER. E
�

Q

T
E
�

R contains all traces composed of edges both in EQ and ER,

that is, edges in EQ

T
ER. This must of course be the same set as (EQ

T
ER)

�.



From Lemma 2.54 and the fact that the traces of the traceset always start at initial

states, it immediately follows that the traceset of a subprocess composed by intersecting

two subprocesses of a given superprocess, is equal to the intersection of the tracesets of

the original processes.

Lemma 2.55 For two subprocesses Q and R of a superprocess P , we have that

tr(Q)
T
tr(R) = tr(Q

T
R): (2.64)

Remark. Similarily it can be shown that trm(Q
T
R) = trm(Q)

T
trm(R). Also, from

Lemma 2.53 it can similarily be shown that trm(Q)
S
trm(R) � trm(Q

S
R). 2

Summary

In this section we have de�ned an operator for composing transition machines in par-

allel. The result is another transition machine that models the concurrent execution of

the original processes under the synchronization constraint given by the synchronization

alphabet. Two important specializations of this operator, full synchronous composition

and interleaving, have been de�ned, and conditions have been given under which these

operations are associative. In the Chapter 3 these two operations will be used to compose

a transition machine from a number of given processes. This composed transition machine

will describe a speci�cation on the behavior of a given system, a speci�cation from which

a supervisor, controlling the system will be calculated.

The fact that the union of two subprocesses of a given superprocess is still a subpro-

cess of that superprocess will be used extensively in showing that a maximal subprocess

satisfying some characterizations does exist. These characterizations are for the subpro-

cess to be trim and complete with respect to the plant to be controlled. These are all

characterizations that we will require a supervisor to satisfy. In eÆciently calculating this

maximal subprocess the properties shown by Theorem 2.52 will be used.

2.5 Transition Machine Modeling Approaches

Several approaches to modeling discrete event processes have been proposed in the lit-

erature, and it is interesting to brie
y study some of these; those that are most related

to this work. No attempt is being made, however, to be complete in citing related work.

There is just too much literature available on discrete event processes.

The approaches that we will study are two that have been used in a non-deterministic

supervisory control theory setting, namely the failures model of Hoare (1985) and the

trajectory model of Heymann (1991). We will also make some remarks on interesting

aspects of the work of Milner (1989), when discussing aspects of generated and accepted

events. And �nally, we give an example to justify our need for a modeling formalism that

includes states. We can note that both Hoare (1985) and Milner (1989) are concerned with

modeling communication between concurrently executing processes. Heymann (1991), on

the other hand, aims to develop a general algebra for discrete event systems.



The two approaches can be ordered according to increasing detail of modeling. It will

be shown by an example that the trajectory model distinguishes processes that are not

distinguished by the failures model. This increasing detail is very signi�cant regarding

the equivalence of discrete event processes. We will try to follow this increasing detail in

the following sections.

2.5.1 The Failures Model

The failures model of Hoare (1985) models discrete event processes by the events they

can execute and the events they can refuse to execute. A (nondeterministic) process is

described by a set of ordered pairs of a string and a refusal set. The refusal set is itself a set

of event-sets that the process may refuse if some other process, the environment, o�ered

them by means of the synchronous composition. The set of all ordered sets of strings

and refusal sets is called the failures of the process. The failures of a process is more

informative about the behavior of the process than its language, which can be de�ned in

terms of the failures. The failures distinguishes between states reached by similar strings

but with di�erent ready sets, but equates states reached by similar strings and with equal

ready sets. See Example 2.1 and Example 2.3.

A deterministic process is one that (in the words of Hoare (1985)) "can never refuse

any event in which it can engage". This means that a nondeterministic process can, after

a string s, both refuse and engage in some event, say �. That is, the event � is both

part of the active set after s, and part of the refusal set after s. The active set is not

de�ned by Hoare (1985), claiming that the refusal sets are slightly simpler since they obey

some mathematical laws, whereas the corresponding laws for the active set would be more

complicated. Using the active set, though, we can write a formal expression that explains

when a process is nondeterministic in the failures model. A process P is nondeterministic

in the failures model sense, if

9s 2 L(P ) 9X 2 ref(P; s) 
(L(P ); s)
T
X 6= ;: (2.65)

Here ref(P; s) represents the refusals of P after string s.

A number of operators for composing processes are introduced by Hoare (1985). Of

main interest to us are the full synchronous composition and interleave. Though the

synchronous composition is introduced for processes with non-equal alphabets, to inter-

leave two processes it is required that their alphabets be equal. Why this restriction is

introduced, we have not been able to penetrate.

The main component of the theory presented by Hoare (1985) used in this thesis is

sharing by interleaving. Hoare (1985) introduces the concept of a named subordinate pro-

cess, whose sole task is to meet the needs of a main process. This is done by parametrizing

the events of the main process, so as to distinguish the subordinate process. The parame-

ter serves as a local name for the subordinate process. Suppose then that the main process

consists of two processes operating in full synchrony, both of who need to communicate

independently with a shared process. Then the parametrized events are not suÆcient.

Since these events would be parametrized equally in both of the synchronous main pro-

cesses, their sharing of the subordinate process would have to be synchronous. This is

not the intended e�ect.



Example 2.1 Failures and Synchronization

a
a aa

c
b

b

b ba

P: Q: P Q:

Figure 2.8: Two processes P and Q, and their full synchronous composition

This example serves to illustrate the failures model. In Figure 2.8 three processes are given, P ,

Q and their synchronous composition PkQ. The processes have equal alphabets, � = fa; b; cg,
and the failures describing these processes are

failures(P ) =
n
h"; f;; fbg ; fcg ; fb; cggi ; ha; f;; fag ; fcg ; fa; cggi ;

D
ab; 2�

E
;
D
ac; 2�

Eo

failures(Q) =
n
h"; f;; fbg ; fcg ; fb; cggi ; ha; f;; fag ; fcg ; fa; cggi ;

D
ab; 2�

E
;
D
aa; 2�

Eo

failures(PkQ) =
n
h"; f;; fbg ; fcg ; fb; cggi ; ha; f;; fag ; fcg ; fa; cggi ;

D
ab; 2�

Eo
(2.66)

where 2� as usual denotes the set of all subsets of �.

We can note that P is nondeterministic with respect to the failures model, since


(L(P ); a)
T
fcg = c and fcg 2 ref(P; a). Thus, P can both refuse the event c, while it can

also engage in that event. This means that there must exist two states (at least) reachable by

a, one where c is refused, and one where it is not, just as shown in Figure 2.8. We can also note

the, perhaps surprising fact that PkQ is deterministic, despite P being nondeterministic. This

is a consequence of the fact that the two branches that would arise if we were to synchronize

the state-machine representations of P and Q, represent equivalent strings as well as equivalent

refusal sets. Thus, these failures are not distinct. See also Example 2.3



The problem is that two processes need to independently share a mutual resource. A

general method of sharing is provided by multiple labeling; that is, we create enough local

names for the subordinate process to be shared between all sharing processes. In essence,

we create extra transitions labeled by the parametrized events. However, this requires

that all sharing processes are known in advance, and is not adequate for a subordinate

process intended to serve the needs of an unknown number of unknown sharing processes.

This leads Hoare (1985) to interleave the sharing processes, before synchronizing with

the subordinate process. Thus, the sharing processes can both include the event-set of

the subordinate process, without any synchronization taking place between the sharing

processes. Of course, this prohibits direct synchronization between the sharing processes,

but only as long as full interleaving is used. With the parallel composition operator of

De�nition 2.42, (not de�ned by Hoare (1985)), this can also be achieved. Sharing by

interleaving will be discussed in detail in Chapter 5.

The failures model is used by Overkamp (1995) to model non-deterministic systems,

and to extend the supervisory control theory to non-deterministic plant and speci�cation.

See Section 3.4.

2.5.2 The Trajectory Model

The trajectory model has much in common with the failures model. Just like the failures

model, the trajectory model disposes of states in favor of the transitions that the process

can refuse to execute. However, Heymann (1991) shows that the trajectory model is more

detailed than the failures model, in that the trajectory model can distinguish between

nondeterministic processes that are not distinguished by the failures model. The key to

this lies in the expression "the environment, o�ered them by means of the synchronous

composition". The main process composition operator of the trajectory model is the

prioritized synchronous composition (PSC).

The trajectory model models a discrete event process by its set of trajectories, elements

of the set of observations (2� � �)� � 2�. A trajectory is thus an ordered set of ordered

pairs of a set of events and an event, followed at the end by a �nal set of events. The

sets of events are called refusals. Note that these are not refusal sets as described above.

Rather, a refusal is the set of all events the process can refuse to engage in at that point.

See Example 2.2.

The prioritized synchronous composition of two processes P and Q with equal alpha-

bets �, is by Heymann (1991) de�ned as PAk BQ, where the priority sets A and B are

both subsets of �. This partitions � into the following four disjoint subsets. See also

Balemi (1992) who relaxes the constraint of equal alphabets.

1. A
T
B { the strict synchronization events. Either both processes execute these events

or none.

2. � � (A
S
B) { the broadcast synchronization events. Any of the two processes can

execute such an event autonomously. If the other process can participate, it will.

3. A � B { the priority events of P . Can occur if and only if P participates. If the

other process can participate, it will.



Example 2.2 Trajectories and Prioritized Synchronization

a aa a a

b cb

d bd

b bc c

P: Q: R:

Figure 2.9: Three discrete event processes, P , Q and R with equal alphabets, � =

fa; b; c; dg.

The trajectories of maximal length and with maximal refusals, describing the processes of Fig-

ure 2.9 are given in (2.67).

traj(P ) =

�
hfb; c; dg ; a; fa; dg ; c;�i ; hfb; c; dg ; a; fa; dg ; b;�i ;
hfb; c; dg ; a; fa; c; dg ; b; fa; b; cg ; d;�i

�

traj(Q) =

�
hfb; c; dg ; a; fa; dg ; c;�i ; hfb; c; dg ; a; fa; c; dg ; b;�i ;
hfb; c; dg ; a; fa; dg ; b; fa; b; cg ; d;�i

�

traj(R) = fhfb; c; dg ; a; fa; b; dg ; c fa; c; dg ; b;�ig

(2.67)

That these are the maximal trajectories, means that we do not list their pre�xes, even though

these should formally be included. That we only list the maximal refusals means to say that all

conceivable trajectories with subsets of the refusals should formally also be included.

The prioritized synchronous composition with A = fa; b; dg and B = fa; b; cg of PAk BR and

QAk BR are shown in Figure 2.10.

a aa a

b

c c c

d

b

c

P RA B : Q RA B :

Figure 2.10: The processes resulting from the prioritized synchronous composition of

the processes shown in Figure 2.9.

Example continued on next page



Example 2.2 continued

The models presented in this example are taken from Heymann (1991), Example 9.1. The

interesting thing about them is that they are used by Heymann (1991) to show that the failures

model cannot necessarily distinguish between processes that behave di�erently in concurrent

composition with another process; not under prioritized synchronous composition, that is. The

failures describing P and Q of Figure 2.9 are identical, yet when composing these processes with

R under the prioritized synchronous composition, the results are di�erent, even as described

by the failures model; the failures of PAk BR are di�erent from the failures of QAk BR. This

comparison may seem unfair to the failures model, since the prioritized synchronous composition

is not included in the theory presented by Hoare (1985). Under full synchronous composition,

the processes PkR and QkR are identical.

4. B � A { the priority events of Q. Can occur if and only if Q participates. If the

other process can participate, it will.

Naturally, if A = �P and B = �Q, then the PSC is equivalent to the synchronous com-

position. However, if the priority sets are A = B = ;, then the PSC is not equivalent

to interleaving as de�ned in De�nition 2.46. The phrase "If the other process can par-

ticipate, it will" makes sure of this. Interleaving was de�ned as the total asynchronous

execution of two processes. No mutual execution of any event is allowed. The PSC, as

well as interleaving in the failures model, see Example 2.3, states that if both processes

are in a state to execute a common event, then both will do so simultaneously, and no

distinction can be made of which process actually executed (or initiated) the event. This

is not so surprising, since neither the trajectory model nor the failures model uniquely

distinguish the states. Several states may have the same refusals or refusal sets.

2.5.3 Automata Equivalence

The question of equivalence between DEPs is a delicate one. Hopcroft (1979) for instance,

equates two processes that have the same language. Hoare (1985) equates two processes

that have the same language and the same refusal sets. Heymann (1991), naturally,

equates two processes that have the same trajectory model, while we in this work equate

processes that have the same structural appearance, that are subprocesses of each other.

Milner (1989) gives several de�nitions of automata equivalence.

Why do we need to discuss the aspect of DEP equivalence, at all? The supervisory

control theory assumes the existence of a plant P to be controlled, and a speci�cation

Sp, say, that de�nes the desired behavior of P . Both of these may be regarded as given

as DEPs. Then we are to �nd a third DEP S, the supervisor, such that the composition

of plant and supervisor equals the speci�cation. This places some constraints on Sp, but

we will disregard that for now, as we will disregard under what operation P and S are

composed. However, the question of what we mean by process equivalence, comes into

play here. If all of the processes are deterministic, then we can say that the composition

of P and S are equal to Sp, if they generate the same language.



aa a

bb b b

Figure 2.11: Two DEPs that are not distinguished by their externally visible behavior.

Equating two processes by they having equal languages is obviously not strong enough

when we are considering nondeterministic automata. The failures model would equate

the processes if they have the same language and the same failures, while the trajectory

model equates them if their trajectories are the same. We have chosen to equate two

processes when they are subprocesses of each other. The main reason for this is that,

to us, the states hold signi�cant information, determining the context under which a

sequence of events was executed. Thus, we equate two transition machines if they have

identical structural appearance.

A comment on such a de�nition of automata equivalence is given by Milner (1989)

(italics at the end have been added for emphasis.)

... this is too strong, since there are cases of apparent nondeterminism which

are not real. We shall want to equate the agents whose trees are as follows:

[see Figure 2.11] since the extra branching on the right cannot be distinguished

by any conceivable experiment, if the experimenter is only able to detect which

actions can occur at any stage.

Milner (1989), p. 87

Furthermore, on page 208, Milner (1989) says "bisimilarity - or its associated congruence

- the appears to be the strongest equivalence based upon observable actions that one can

reasonable demand." (Italics added for emphasis); and Hoare (1985) p. 29, "Two objects

which behave the same up to every moment in time have the same behavior, i.e. they are

the same process". We can note that both Hoare (1985) and Milner (1989) (more or less)

implicitly de�ne how an automaton is to be experienced. From their point of view it is

the externally visible behavior that is important. Again, Milner (1989), page 84, "... we

only wish to distinguish between two agents P and Q if the distinction can be detected by

an external agent interacting with them". Thus, the question of process equivalence gets

down to what one means by the behavior of the process. One can get very philosophical

about these aspects, but we will try to refrain from that here.

In the approaches of Hoare (1985), Milner (1989) and Heymann (1991) automata are

distinguished by their externally visible behavior. This has been emphasized in the ci-

tations above. The way an automaton is experienced is through the events it executes,

and the events it may refuse to execute. The speci�c states are not deemed important.

Thus, a refusal-trace "does not uniquely determine the state" (Shayman (1994), Remark

1). We distinguish automata by its internally modeled behavior.

As pointed out by Shlaer (1992), describing a DEP from its externally visible behavior,

and from its internally modeled behavior, results in two very di�erent views of the process.



Modeling the externally observable behavior regards the modeled system as a "black box",

whose inner workings are not known. States are formed in accordance with what can be

observed from the outside, and information conveyed by the states or actions performed

in the states have to be omitted. By contrast, our approach, as well as the approach of

Shlaer (1992), seek to explain the details of the behavior from inside the system. Every

state has a purpose and a context. The full meaning of a state is not necessarily conveyed

by the string of events reaching that state, but also by the states preceding, and perhaps

even following that state. Shlaer (1992), gives models of a microwave oven both from

the externally visible behavior view-point, and from the internal perspective. Di�erences

between these two approaches are also described for a mixing tank.

To supervise any system, or at least to calculate a supervisor for any system, we need

an adequate model representing that system. Since any object encompasses an in�nite

number of properties, of which any model can only hope to catch a limited amount, any

model is an abstraction of the actual object. Of importance then, is that this abstraction

captures the speci�c properties relevant to the task at hand, and as little as possible of

those properties of lesser or no interest. For nondeterministic processes we know that the

language model does not capture all relevant aspects of the DEP. As has been discussed

above, for our purposes, it is not enough to distinguish two processes by their externally

visible behavior. We need to know the actions leading up to speci�c states, even though

these actions may be equivalent from an external point of view. Speci�cally, we need to

know which individual product has undergone what sequence of events. For this purpose,

we may need to distinguish between states that the language, failures, trajectories or the

Milner-equivalences do not care to distinguish. Thus, we may have to distinguish between

the two automata of Figure 2.11, since the states represent di�erent contexts under which

the a and ab strings were generated. See also, Example 2.3.

The trajectory model is used by Shayman (1994), who use the prioritized synchronous

composition to model driven events. The supervisory control theory is extended to this

case, including non-deterministic plants. See Section 3.4.

2.5.4 Event Generation

Formally, there is no di�erence between viewing an automaton as a generator or an accep-

tor of events, as pointed out by Ramadge (1987). However, an acceptor is a device which

is driven by events generated by some external source, its environment. The acceptor

merely informs the environment of whether the generated string was "recognized" or not.

This is the interpretation of an automaton given by Hopcroft (1979). We can view such a

device as a box with a number of labeled buttons on it; one for each event of the alphabet,

a reset button and a button with a question mark on it. In each state of the automaton,

the buttons corresponding to the events of the ready set are lit. When pressing such a

button, we generate an event that forces the automaton to transit to a new state. In

this state, a new set of buttons may light up. When we are done generating events, we

push the question mark button, thus requesting the information of whether the generated

string was recognized by the device, or not. If the automaton is then in a marked state,

a green lamp is lit, otherwise a red lamp. Now we have the possibility to generate new

events from the present state, or reset the automaton and play again. What is important

to note here, is that it is we, as the environment, that generates the events, and thus we



also determine when a string is ended. If the green lamp lights up, that string is in the

accepted language of the automaton.

A generator on the other hand, has no buttons to push. Only small lamps labeled with

the events. When an event is generated, the lamp corresponding to that event is lit, so

that we can observe its generation. This time, it is the automaton that determines when it

is �nished generating a sequence of events. Since we do not know the amount of time the

automaton spends between event-generation, it seems reasonable that we regard all strings

as "�nished", at any time. This would mean that the language generated is pre�x closed,

whereas, for the acceptor, the language accepted is not necessarily pre�x closed. This

is also the interpretation given by Ramadge (1987); the plant to be controlled generates

all the events, and so its language is pre�x closed. Hopcroft (1979), on the other hand,

regards an automation as an acceptor, and so the language represented by the automaton

is the marked language. In this context, it is also strange to regard a generator as having

marked states. In this work we do not, Ramadge (1987) do.

In the work of Hoare (1985), marking is not regarded. In fact, the distinction between

generated and accepted events is entirely disregarded. Hoare (1985) claims that "... there

is no need to make a distinction between events which are initiated by the object [...] and

those which are initiated by some agent outside the object." (page 24)

However, the distinction between generated and accepted event is formally introduced

by Milner (1989). For every event a there exists a complement event, denoted a. The a

event is the generated event and its complement is the accepted event. In practice, when

two processes are brought together to evolve concurrently, some events are generated by

one of the processes while some events are generated by the other. Thus, when they are to

synchronize, it makes sense to distinguish between the generated and the accepted event.

Every process P de�nes its alphabet as �P = �0

P

S
�P , where �0

P are the events

generated by P , and �P are the events accepted by P . Milner's composition operator is,

with the exception of treatment of the silent (null) event � , equal to P k�Q where the

generated events of P are synchronized with the accepted events of Q, and vice versa.

2.6 Chapter Summary

In this chapter we have described �nite transition machines that will be used to model

discrete event processes. A global universe of which all transition machines are elements

have been de�ned to bring meaning to a number of operators and relations between

transition machines. A number of properties have been de�ned and shown. The main

points of this chapter are the following

1. When a process S re�nes a deterministic process P , then the synchronous compo-

sition PkS is equivalent to S. Equivalence is in this case de�ned as the strong

equivalence given by the structur of the processes being equal.

2. When S re�nes P it holds that L(S) � L(P ).

3. Any subprocess re�nes its superprocess, and the subprocess relation is a partial

ordering. Therefore, when S re�nes P , any subprocess S 0 of S re�nes P , so that

PkS 0 is equivalent to S 0 when P is deterministic.



Example 2.3 Types of Interleaving

The following example is adapted from Hoare (1985), Example X1 of Section 3.6.

a

b

a

b

a

b

Figure 2.12: Two Petri nets. The right net consists of two identical interleaved nets,

while the left one consists of one net with two tokens.

The di�erence between the failures model and the transition machine model is best shown by

the two Petri nets of Figure 2.12. The left Petri net consists of one set of place/transitions, with

two tokens. In such a Petri net, the tokens have no identity (unless they are colored), and so

�ring one is identical to �ring the other. The reachability graph for this net is shown to the left

in Figure 2.13. This is, in practice the failures model resulting from interleaving two identical

processes like the ones given in Figure 2.12. For a given marking, we cannot determine which

token has executed what sequence of events. This is identical to the failures model description.

The failures model does not uniquely determine the state of a nondeterministic state-machine.

The refusal sets after one of the tokens has initially �red the a transition is no di�erent from the

refusal set after the other token has initially �red the same transition. Therefore, the failures

model does not distinguish between states that it might be necessary to distinguish between in

practice. If the tokens represents products to be produced, it may very well be critical to be

able to determine which product has executed which sequence of events.

The right Petri net of Figure 2.12 consists of two identical sets of place/transitions, with one

token each. In such a net, the tokens are individual and have their own unique identity. This

net is in fact the transformation into ordinary Petri nets of the net to the left of Figure 2.12,

had the tokens there been colored. The reachability graph of the right Petri net of Figure 2.12

is shown to the right of Figure 2.13. This is the transition machine resulting from interleaving

two identical transition machines like the ones to the right in Figure 2.12. As can be seen, this

transition machine distinguishes between each token. The state (1; 0; 0; 0; 0; 1) is di�erent from

the state (0; 0; 1; 1; 0; 0), even though they are both reached by the string ab. It may be crucial

for the control system to know that in state (0; 0; 1; 1; 0; 0) it is product number one that has

executed the string ab.

Example continued on next page



Example 2.3 continued

a
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a

b
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(2.0,0) (1,1,0)

(0,2,0)

(1,0,1)

(0,0,2)(0,1,1)

(1,0,0,1,0,0)

(0,1,0,1,0,0)
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Figure 2.13: The reachability graphs of the two nets given in Figure 2.12. The left one

does not maintain the uniqueness of the tokens, while the right one does.

Interleaving two identical transition machines as the ones given to the right in Figure 2.12 in

their failures model representation, would result in the left process of Figure 2.13. The thing

is that the failures model does not distinguish between states reached by the same string, if

the refusal sets of those states are equal. This also holds for the trajectory model, as noted by

Shayman (1994) in Remark 1. Of course, it is not always the case that such states must be

distinguished. Overkamp (1995) and Shayman (1994) do not seem to need this. In such cases,

the failures model, as well as the trajectory model, is applicable and can be used as reduced

state models.

Finally, we can note that the left transition machine of Figure 2.13 is deterministic, while the

right one is not.



4. For any two processes P and S, the synchronous composition PkS re�nes P ,

whether P is deterministic or not.

This has the consequence that given a deterministic process P and a process S, not

necessarily deterministic, a subprocess S 0 of PkS re�nes P , so that PkS 0 is equivalent
to S 0 and is thus a subprocess of PkS.

The importance of this observation stems from the interpretation of P as a determin-

istic plant to be controlled, and S as a speci�cation process, with PkS as the speci�ed

achievable behavior. Then, S 0 can be interpreted as the controlling entity, the supervisor,

in
uencing P so that a part of the speci�ed behavior is accomplished. This part can be

regarded as the controllable part of the speci�cation, and in the next chapter will be given

conditions for such a part to exist.

The de�nitions and results presented in this chapter are essentially well-known, though

the notion of re�nement is extended to non-deterministic processes. The observation that

the synchronous composition of PkS is equal to S, whenever P is deterministic and S

re�nes P , Theorem 2.48, is an important result that seems to be new. Particularily since

we show that the synchronous composition of P with any process re�nes P . This fact

is implicitly used in Kumar (1991), among others, where PkS is used as a supervisor

"candidate" to be made complete. The de�nitions of operations on subprocesses, De�ni-

tion 2.50, seem to be novel. In the literature the state-spaces are considered to be disjoint

and the event-sets equal; see Eilenberg (1974) and Hopcroft (1979), for instance.





Chapter 3

Supervisory Control

In this chapter we will show how the supervisory control theory (SCT) can be used in

the more general setting of nondeterministic discrete event processes. We will give formal

proofs for existence and uniqueness of a number of di�erently speci�ed supervisors. First a

brief background regarding some of the various formulations of the SCT found in the liter-

ature, is given . Naturally, all of these are based on the pioneering work of Ramadge (1987)

and Wonham (1987). Then, the input/output formulation of Balemi (1992) is described

in some detail, followed by our approach to nondeterministic supervisory control.

3.1 Introduction

The SCT views the DEP to be controlled, that is, the plant, as a generator of events.

All events arise within the system as a consequence of some action taking place within

the plant, spontaneously and asynchronously. The controlling entity, the supervisor, has

to follow the generated events, while having the ability to disable the generation of some

events. This ability to disable the generation of plant events is in Ramadge (1987) ex-

ercised by the use of a feedback map, determining for each supervisor state which plant

events to disable.

However, in Kumar (1991) the full synchronous composition of plant and supervisor

as a model of the controlled system, is introduced . Here the plant and the supervisor

operate in full synchrony and only those events simultaneously de�ned by the plant and

the supervisor can be generated. Thus, the ability to disable events is applied by not

de�ning those events in the relevant supervisor state. This latter approach signi�cantly

simpli�es the analysis of the supervisor synthesis problem.

The event set of the plant is partitioned into two disjoint event sets, the controllable

and the uncontrollable events. The controllable events are subject to in
uence by the

supervisor, whereas the uncontrollable events are not. Despite the formal de�nition of

the full synchronous composition, the plant can generate the uncontrollable events as it

pleases. Thus, for a supervisor S to guarantee that the controlled closed-loop system

behaves within the given speci�cation, S must at no time try to disable any of the uncon-

trollable events. Such a supervisor is said to be complete with respect to the plant and

the uncontrollable events.

In Ramadge (1987) the behavior of a plant is de�ned by the sequence of events, the

language, it can generate. Thus, for the controlled system's behavior a speci�cation
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language can be given, and it is shown that for a complete supervisor to exist, this

language must be controllable. That is, for any string of the speci�cation language that

can be followed by an uncontrollable event in the plant language, that uncontrollable

event must also be allowed within the speci�cation language. It can be shown, see the

remark to Lemma 3.3 below, that for a deterministic supervisor completeness is equivalent

to controllability of its language.

Other interpretations of the generation of events in the interaction between the plant

and the supervisor have been investigated. For instance, the input/output formulation

by Balemi (1992), which is described in Section 3.3. Heymann (1991) introduces the pri-

oritized synchronous composition to model the interaction between supervisor and plant,

primarily to include driven events by which the supervisor can force actions to occur

within the plant. This plant/supervisor interaction model with driven events is also used

by Shayman (1994) and Kumar (1994). Balemi (1992) uses the prioritized synchronous

composition to model to model the interaction between a controller and the plant, intro-

ducing command and response events.

3.2 The Basic Supervisory Control Theory

A supervisor for a deterministic plant P = (QP ;�P ; iP ; QP ; EP ) is a deterministic process

S = (QS;�S; iS;MS; ES) that operates in full synchronization with the plant, thereby

in
uencing the plant's behavior. Note that the initial states are given as singular iP
and iS, respectively, emphasizing that we are dealing with deterministic processes in this

section. Note also that the plant is considered to be unmarked, that is MP = QP , and

Lm(P ) = L(P ). Ramadge (1987) allows the plant to be marked as well, interpreting

marking as a modeling option to signify, for instance, completion of speci�c tasks. But

marking, as we interpret it, is a type of speci�cation; states that the closed-loop system

of plant and supervisor has to be able to reach are marked. Other approaches, such as

Overkamp (1994) and Giua (1991) have considered non-marked supervisors.

We will always assume that the alphabet of the supervisor is equal to the alphabet of

the plant. That is, �S = �P . This assumption means that the supervisor speci�es the

whole controlled behavior. An event of �S that does not appear in any string of L(S)

is forever disabled, and only events present in some string of L(S) can ever be enabled.

This assumption also signi�cantly simpli�es all notations and proofs, and is commonly

accepted. See for instance Ramadge (1987), Kumar (1991), Heymann (1991) and others.

Given a plant P and a speci�cation language K de�ning the closed-loop system's

behavior, the supervisor synthesis problem is a matter of �nding a supervisor S, such that

L(PkS) = K. Note that this implicitly requires K to be pre�x closed, since L(PkS) is
pre�x closed by de�nition.

However, since the event set of P is partitioned into the controllable and the uncon-

trollable events, �c and �u, respectively, the supervisor must ensure the speci�cation,

without ever trying to disable an uncontrollable event. This is the notion of complete-

ness de�ned by Ramadge (1987). A supervisor S is complete, with respect to a plant P

with an uncontrollable event set �u, if and only if in the closed-loop system of PkS, no
uncontrollable events that may be generated by P are ever disabled by S. Formally, we

have the following de�nition.



De�nition 3.1 Completeness

A supervisor S is said to be complete with respect to a plant P and a set of uncontrollable

events �u, if and only if

8s 2 L(PkS) out(Æ(P; s))
T
�u � out(Æ(S; s)) (3.1)

Remark. Since the ready sets of the states of the composed system P kS are the inter-

section between the corresponding ready sets of the individual processes, a supervisor S

is complete if the ready set for a state q reached by a string s arising in the closed-loop

system, contains the uncontrollable events of the ready set of the state p reached by s in

the plant P . Thus, if (3.1) holds, no uncontrollable events following strings allowed in the

controlled system are ever disabled.

Note that S and P being deterministic is essential here. Otherwise, neither out(Æ(P; s))

nor out(Æ(S; s)) would be well de�ned, since, in general, Æ(�; �) is not a singleton. However,
when S and P are deterministic, Æ(P; s) and Æ(S; s) are both single states. Note also that

we have assumed that the supervisor exercises control by executing in full synchrony with

the plant. Thus, events are generated if and only if both the plant and the supervisor

participate. Disabling events is therefore a matter of the supervisor not agreeing to

participate in the event. Naturally, all uncontrollable events that are possible under

supervision must be agreed upon by the supervisor for it to properly control the plant.

This is just what completeness says.

There are other ways to express supervisor completeness. For instance, Balemi (1992)

uses the prioritized synchronization operator to express supervisor completeness. Then,

a supervisor S is complete with respect to a plant P with uncontrollable events �u, if the

full synchronous composition PkS is equal to the prioritized synchronous composition

P�k �uS.
Completeness of a supervisor S only concerns the states of QS that are accessible

in the closed-loop system. Only states reached by strings in PkS are considered by

De�nition 3.1. Just as there may exist regions of QP that we do not want the closed-loop

system to visit, so may there exist parts of the supervisor S that are not accessible in

the closed-loop system. Such parts of S are, in practice, of no interest to us. With the

assumption that the plant generates all events, these parts of S will never be entered

by the closed-loop system. Therefore, it is perfectly reasonable to assume that L(S) �
L(P ), that is, the supervisor only restricts the behavior of the plant. Then, L(PkS) =
L(P )

T
L(S) = L(S), so that we could replace L(PkS) with L(S) in the de�nition above.

Note that in the literature, this replacement is often done without any comments. 2

In Lemma 2.44 was shown that when �S � �P then L(P )
T
L(S)�P�S � L(PkS). It was

also mentioned in the remark that the events of �P�S could be regarded as uncontrollable

to S. Assume now that �S = �P = �c

S
�u. When S cannot control the generation of

the events of �u, these "behave" in the same way as the events of �P�S of Lemma 2.44

even though �u is a subset of �S. Then the following inclusion holds

L(P )
T
L(S)�u � L(PkS): (3.2)

Formally, though, by Corollary 2.45 we have that the language of the synchronous com-



position of two processes with equal alphabets is

L(PkS) = L(P )
T
L(S): (3.3)

For S to be able to control P so that the speci�cation language is guaranteed, both the

expressions of (3.2) and (3.3) must hold. That is, we must have that

L(P )
T
L(S)�u � L(P )

T
L(S): (3.4)

This expression is obviously (see Lemma A.1) equivalent to

L(P )
T
L(S)�u � L(S): (3.5)

When this holds, L(S) is said to be controllable with respect to the plant. This is also

de�ned by Ramadge (1987). For an arbitrary pre�x closed language, K, the following

de�nition of controllability can be made.

De�nition 3.2 Controllability

For a plant P with language L(P ) and a set of uncontrollable events �u, a pre�x closed

speci�cation language K is controllable with respect to P if and only if for any string

s 2 K and for any uncontrollable event �u 2 �u such that s�u 2 L(P ) we have that

s�u 2 K. That is

K controllable, K�u

T
L(P ) � K (3.6)

Remark. Intuitively, controllability means that for a string s of K that exists in L(P )

and can be followed by an uncontrollable event in L(P ), this uncontrollable event must

also be able to follow s inK. This means that, if the plant uncontrollably takes the system

somewhere, the speci�cation has to be able to "follow". Thus, controllability ensures that

it is possible to control the plant so as to stay within the language K. 2

Note that controllability is a property of the language de�ned by a transition machine,

whereas completeness is a property pertaining to the structure of the transition machine.

These two notions are obviously closely related, in fact, for deterministic automata they

are equivalent.

Lemma 3.3 A supervisor S is complete with respect to a plant P and a set of uncon-

trollable events �u � �P if and only if L(S) is controllable.

Proof. By the de�nitions of active events, ready sets, controllability and completeness

the following expressions are all equivalent.

L(S)�u

\
L(P ) � L(S)

8s 2 L(PkS) 
(L(P ); s)
\
�u � 
(L(S); s)

8s 2 L(PkS) out(Æ(P; s))
\
�u � out(Æ(S; s))

(3.7)

Thus, controllability of L(S) (at the top) is equivalent to completeness of S (at the

bottom).



Remark. Again we note that it is essential that we deal with deterministic processes.

Otherwise, 
(L(P ); s) and 
(L(S); s) are, respectively, not necessarily equal to out(Æ(P; s))

and out(Æ(S; s)).

That completeness of S is equivalent to controllability of L(S), is also proved by

Balemi (1992), though the term controllability is never de�ned. The proof merely states

that when S is complete, then (3.5) is satis�ed, and vice versa. Note also the simplicity

of the proof above relative to the involved proof of Balemi (1992), who uses language

projection to arrive at the desired result. 2

Naturally, L(P ) is always controllable. Because of this, the following lemma can be

proved.

Lemma 3.4 For a supervisor S, its language L(S) is controllable with respect to a plant

P and a set of uncontrollable events �u � �P , if and only if L(PkS) is controllable.

Proof. Since L(P ) is always controllable the following expressions are all equivalent.

L(PkS)�u

\
L(P ) �L(PkS)h

L(P )
\
L(S)

i
�u

\
L(P ) �L(P )

\
L(S)

L(P )�u

\
L(S)�u

\
L(P ) �L(P )

\
L(S)

L(S)�u

\
L(P ) �L(S)

(3.8)

Therefore, L(S) is controllable, if and only if L(P kS) is controllable.

Remark. Thus it follows that a supervisor S is complete, if and only if L(PkS) is

controllable.

This proposition is also given by Kumar (1991), Lemma 2.7. 2

Next, we give necessary and suÆcient conditions for the existence of a complete supervisor

S, given a plant P and a speci�cation language K.

Lemma 3.5 Let K be a pre�x closed speci�cation language for a plant P . Then there

exists a complete supervisor S such that L(PkS) = K, if and only if K � L(P ) and K

is controllable.

Proof. ()) Since we assume �P = �S we have that L(PkS) = L(P )
T
L(S) = K �

L(P ).

Since S is complete, we know by Lemma 3.4 that L(PkS) is controllable.

(() We have that K � L(P ) , L(P )
T
K = K. Choose S such that L(S) = K.

Since K is pre�x closed (and regular) this can always be achieved. Then L(PkS) =

L(P )
T
L(S) = L(S) = K. Thus, L(S) is controllable, and by Lemma 3.3 S is complete.

Remark. This proof is also given by Ramadge (1987) as a part of Proposition 5.1.



Formally, L(S) = K is only one possible choice. Any supervisor with a language such

that L(P )
T
L(S) = K would be suitable. However, by the remark to the de�nition of

completeness, De�nition 3.1, L(S) � L(P ) is a perfectly reasonable assumption. In that

case, only supervisors such that L(S) = K are possible. This assumption also means that

L(P kS ) = L(P )
T
L(S) = L(S), and thus, the supervisor is a model of the plant under

supervision. 2

In a manner similar to (3.2), Lemma 2.44 also shows that L(P )
T
L(S)��

u � L(PkS).
Obviously, it is always the case that

L(P )
T
L(S) � L(P )

T
L(S)��

u (3.9)

since

L(S) � L(S)��

u; (3.10)

so that L(S) controllable is equivalent to

L(P )
T
L(S) = L(P )

T
L(S)��

u: (3.11)

By, (3.11), controllability can also be expressed by L(P )
T
L(S)��

u � L(S). This is also

noted and proved by Brandt (1990), Lemma 1, as well as, though without proof, by

Kumar (1991) in Corollary 3.3.

For any language K � L(P ), there does exist a supervisor such that L(PkS) = K,

irrespective of whether K is controllable or not. However, though formally the language

of the closed-loop system is still equal to K, in practice this will not be the case when K

is non-controllable. This is a fact arising from the usage of the synchronous composition

operator to model the interaction of plant and supervisor. The aspect of uncontrollable

events is not included in the de�nition of the synchronous operator, as shown above.

Thus, the plant can generate the uncontrollable events as it pleases. Thus, the syn-

chronous composition PkS is not an adequate model of the closed-loop system. In fact,

Balemi (1992) uses the prioritized synchronous composition to model the closed-loop sys-

tem, requiring that PkS = P�k�u S. This expression is used by Balemi (1992) to de�ne

both controllability and completeness.

Not all speci�cation languages K such that K � L(P ) are controllable. Then the con-

trollable sublanguage of K has to be considered. The set of all controllable sublanguages

of a speci�cation language K is known to be closed under language union. Therefore

there exists a supremal controllable sublanguage, denoted K
". For a given speci�cation

language K, we always have K" � K.

Now we know that a supervisor S such that L(PkS) = K
" will be complete and allows

the largest achievable behavior within the speci�cation language K. The supervisor S is

then said to be minimally restrictive. However, we also want the supervisor to uphold

the marked speci�cation language as well as possible. The largest achievable marked

behavior within the marked speci�cation language is of course Km

T
K

". This is the

largest marked behavior that is (in the words of Ramadge (1987)) "consistent with the

controlled behavior". But there is more to this. An aspect of great importance is that we

always want the closed-loop system to be able to reach a marked state. We can look at

the marked states as states wherein the system is allowed to rest. Typically marked states

denote the completion of some sub-task of the system, after which a new task proceeds.



Thus, we do not want to allow the closed-loop system to inde�nitely transit between

some unmarked states, even though this behavior may be allowed by the controllability

property. We want the closed-loop system to be nonblocking, see De�nition 2.22. Note

that with a deterministic transition machine, there is one, and only one, state reached by

each string. Thus, a deterministic transition machine has a nonblocking language if and

only if every accessible state is also coaccessible.

By the remark to Lemma 3.5 we can always assume that the supervisor is a model

of the closed-loop system under supervision, that is, L(S) � L(P ). Then, of course,

Lm(S) � L(P ). Because of this when the supervisor is nonblocking, the closed-loop

system will also be. See also Corollary 3.30. The following theorem gives necessary

and suÆcient conditions for the existence of a nonblocking and complete, deterministic,

marked supervisor.

Theorem 3.6 Let Km � K be two speci�cation languages for a plant P with K pre�x

closed. Then there exists a nonblocking and complete, supervisor S such that Lm(PkS) =
Km, L(PkS) = K and Lm(PkS) = L(PkS) if and only if Km � Km = K � L(P ), and

K controllable.

Proof. ()) When S is complete L(PkS) = K is controllable. Then L(PkS) =

L(P )
T
L(S) = K so thatK � L(P ). The marked language Lm(PkS) = L(P )

T
Lm(S) =

Km � L(P )
T
L(S) = K, since by de�nition Lm(S) � L(S). Furthermore, we have that

Lm(PkS) = Km = L(PkS) = K.

(() Choose S such that L(S) = K. When K is controllable, S is complete. Let

Lm(S) = Km, this can always be achieved since Km � K. Then, since Km � K � L(P ),

L(PkS) = L(S) and Lm(PkS) = Lm(S). When Km = K then Lm(S) = L(S), so that

S is nonblocking and Lm(PkS) = L(PkS).

Remark. When K = K
" we also know that the supervisor S is minimally restrictive.

Similar proofs are given in Propositions 5.1 and 6.1 of Ramadge (1987) and Proposition

2.8 of Kumar (1991). We can note the simplicity of proving the existence of a complete

and nonblocking supervisor, due to the use of the synchronous composition to model

control of a discrete event process. This model of supervisor-plant interaction is also used

by Kumar (1991), but the proof above is even simpler than the proof of Proposition 2.8

of Kumar (1991), even though nonblockingness is not treated in that work. 2

The supervisory control problem now consists of �nding the supremal controllable sub-

language, K", for given speci�cation languages, Km and K. Once this language has been

found, by the above, we know that we can �nd a supervisor S such that, for the plant P ,

L(PkS) = K
" and Lm(PkS) = Km

T
K

". If, in addition, Km

T
K" = K

", the resulting

closed-loop system will be nonblocking.

Summary

In this section we have given a brief overview of the original supervisory control theory as

presented by Ramadge (1987) and Wonham (1987). The important proofs of those works

have been given in the notation presented earlier. Where indicated, the proofs that are



presented are slight reformulations of the proofs given in Ramadge (1987), Kumar (1991)

and Balemi (1992) to better suit the notation given in this thesis. The main di�erence

between this chapter and the original work of Ramadge and Wonham lies in the use of

the full synchronous composition to model the interaction between the supervisor and

the plant. Originally a control map was used together with a supervisor automaton,

see Ramadge (1987), which, for every supervisor state, speci�ed the allowed events. In

essence, with the synchronous composition the ready sets of the supervisor states model

this control map. This has the added property, as has been shown, that the synchronous

composition of the plant and the supervisor equals the supervisor itself, so that the super-

visor is a model of the plant under control, the closed-loop system. This is not necessarily

so in the model originally proposed by Ramadge and Wonham. The closed-loop sys-

tem could, for instance, be trim without the supervisor automaton being trim, since it

was this automaton together with the control map that speci�ed the controlled behavior.

Use of the synchronous composition to model the interaction between the plant and the

supervisor is also described by Kumar (1991), though nonblockingness is not treated.

In the next section the supervisory control theory will be extended to another in-

terpretation of the interaction between the supervisor and the plant, the input/output

formalism of Balemi (1992), where the supervisor no longer is just a passive device fol-

lowing the plant and restricting the event generation, but also generates events of its

own. This view lies closer to a control engineering point of view, a supervisor acting as a

controller receives input from the plant and generates output to the plant.

3.3 The Input/Output Interpretation

In the original model proposed by Ramadge (1987) the plant generates all events, with

the supervisor being a passive follower, dynamically restricting the choices of events to

generate. However, from a control engineering point of view, it seems more natural to

regard the plant as generating some kind of output in accordance with some input. Thus,

it is natural to also view the supervisor as an active device, a controller, generating the

input to the plant, the process, to be controlled.

It is observed by Balemi (1992) that in most real life systems events are seldom gen-

erated spontaneously, but only as responses to commands. For instance, a manufacturing

device does not start its processing spontaneously, but only as a consequence of some

start signal. Balemi (1992) equates the commands with the controllable events, and the

responses with the uncontrollable events. For a control engineer this seems an intuitive

interpretation of the controllable and uncontrollable events. We are free to determine

when to enforce some control action, the command, but we cannot control its outcome,

the response. The plant automaton can thus be interpreted as the (discrete event) transfer

function between the input commands and the output responses. The di�erences between

the original Ramadge/Wonham interpretation and the input/output interpretation are il-

lustrated in Figure 3.1. The original Ramadge/Wonham approach to the left in Figure 3.1

is referred to as the asymmetric feedback loop, by Balemi (1992). The plant/supervisor

connection resulting from the input/output interpretation, to the right in Figure 3.1, is

referred to as the symmetric feedback loop by Balemi (1992).

Naturally, the supervisor must always be prepared to accept the responses generated
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Figure 3.1: The original Ramadge/Wonham approach (left) and the input/output inter-

pretation (right).

by the plant, otherwise they become "out of synch" with each other. Since the interaction

between the plant and supervisor is modeled by full synchronous composition, this means

that in each reachable closed-loop system-state the ready set of the supervisor must include

all uncontrollable events that are in the ready set of the plant. In other words, the

supervisor S must be complete with respect to the plant P and the uncontrollable events

�u, the responses.

Supervisor completeness is a necessary and suÆcient requirement for the original Ra-

madge/Wonham interpretation of plant/supervisor interaction, since the plant is regarded

as generating all events. However, for the input/output interpretation, supervisor com-

pleteness is not enough. It is a requirement that suÆces for the acceptance of the responses

by the supervisor, but the supervisor cannot be allowed to generate its commands hap-

hazardly. The plant must be able to accept every command issued by the supervisor1.

In Balemi (1992) the plant is then said to be complete with respect to the supervisor.

However, since the plant is given and the supervisor chosen, this is actually an additional

constraint on the behavior of the supervisor. It must only generate events which the

plant can follow. Therefore, we will say that the supervisor must be inverse complete

with respect to the plant and the controllable events.

De�nition 3.7 Inverse Completeness

A supervisor S is said to be inverse complete with respect to a plant P and a set of

controllable events �c, if and only if it only generates controllable events (commands)

that P can accept. That is

S inverse complete , 8s 2 L(PkS) out(Æ(S; s))
T
�c � out(Æ(P; s)): (3.12)

Remark. De�nition 3.7 is of course the dual to the de�nition of supervisor completeness,

De�nition 3.1, and as was the case with that de�nition, De�nition 3.7 implicitly concerns

only deterministic supervisor and plant. 2

There also exists a dual to De�nition 3.2 of language controllability. We say that a pre�x

closed language K is inverse controllable with respect to a plant language L(P ) and a set

of controllable events �c if a string s of K that exists in L(P ) and can be followed by a

1Note that this is very di�erent from the driven events of Shayman (1994). It is an essential feature
of the control design of Shayman (1994) that the plant is able to refuse a supervisor-initiated event.



controllable event in K, then s can also be followed by that controllable event in L(P ).

Formally we have the following de�nition.

De�nition 3.8 Inverse Controllability

For a plant P with language L(P ) and a set of controllable events �c, a pre�x closed

language K is inverse controllable with respect to P if and only if for any string s 2 L(P )
and for any controllable event �c 2 �c such that s�c 2 K we have that s�c 2 L(P ). That
is

K
T
L(P )�c � L(P ): (3.13)

Remark. This is the direct dual of De�nition 3.2, with K and L(P ) interchanged, and

�c in place of �u. 2

Note that inverse controllability is a property of the language de�ned by a transition

machine, while inverse completeness is a property of the transition machine. Just as

was the case with controllability and completeness. Of course, the notions of inverse

controllability and inverse completeness are closely related; so much that for deterministic

transition machines inverse controllability and inverse completeness are equivalent.

Lemma 3.9 A supervisor S is inverse complete with respect to a plant P , with a set of

controllable events �c, if and only if L(S) is inverse controllable.

Proof. By the de�nitions of active events, ready sets, inverse controllability and inverse

completeness the following expressions are all equivalent.

L(S)
\
L(P )�c � L(P )

8s 2 L(PkS) 
(L(S); s)
\
�c � 
(L(P ); s)

8s 2 L(PkS) out(Æ(S; s))
\
�c � out(Æ(P; s))

(3.14)

Remark. Again, note that the requirement of deterministic processes is essential here,

just as in Lemma 3.3. However, note that it is not true that L(S) being inverse controllable

is equivalent to L(PkS) being inverse controllable. It holds, though, that if L(S) is inverse
controllable then L(PkS) is also inverse controllable. 2

When does a supervisor have an inverse controllable language, and hence is inverse com-

plete? For controllability (not inverse controllability) a suÆcient condition would be that

the language of P is a subset of the language of S, that is L(P ) � L(S). In such a case

it is obvious that L(S) is controllable. For inverse controllability we have the following

suÆcient condition.

Lemma 3.10 For a supervisor S its language L(S) is inverse controllable with respect

to a plant P and a set of controllable events �c � �P , if L(S) � L(P ).
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Figure 3.2: Illustration of completeness and inverse completeness. S1 and S2 are super-

visors for the plants P1 and P2. S1 is both complete and inverse complete with respect to

P1, since out(p1)
T
�u � out(q1) and out(q1)

T
�c � out(p1). Note though that L(S1) is

not a subset of L(P1). S1 is also complete with respect to P2 but not inverse complete,

and again L(S1) 6� L(P2). S2 is inverse complete with respect to P1 but not with respect

to P2. S2 is not complete with respect to any of the plants.

Proof. We have that L(S) � L(P ) � L(P )�c. Thus, L(P )�c

T
L(S) = L(S) � L(P ).

Remark. Note that this is only a suÆcient condition and is presented, without proof,

by Balemi (1992), who also gives no necessary and suÆcient conditions. The reason

for L(S) � L(P ) not to be a necessary condition for supervisor inverse completeness,

is that the de�nitions of inverse completeness and inverse controllability only concern

the controllable events, the commands. As far as inverse completeness is regarded, the

supervisor can choose to de�ne any uncontrollable event whatsoever in its ready sets.

Thus, the language of S is not required to be included in the plant language. This is true

even if we demand the supervisor to be complete, though then the supervisor must at

least de�ne the uncontrollable events de�ned by the plant. This is illustrated in Figure 3.2

below. 2

Naturally, the notion of inverse completeness restricts the available solutions of the su-

pervisor synthesis problem relative to the original SCT. It is also shown by Balemi (1992)

that the solution set of the input/output interpretation is a subset of the solution set

of the original Ramadge/Wonham approach. This is so, because now we have an extra

restriction on the structure of the supervisor, and are not as free to choose the supervisor

as without the constraint of inverse completeness. However, as Balemi (1992) also points

out, since the solution to the supervisory synthesis problem as given by Theorem 3.6



generates a supervisor with a language that is in fact a subset of the plant language, this

supervisor will always be inverse complete with respect to the plant. Note though, that in

general we may choose controllable supervisor languages L(S), such that L(S) 6� L(P ).

Such languages are not necessarily inverse controllable.

Note that, when concerning completeness, the condition that L(S) � L(P ) arises

naturally, since it is the behavior of the closed-loop system that is of concern, and in

that behavior P will always restrict the supervisor from going outside L(P ). On the

other hand, with inverse completeness, where S is considered to generate some events,

this condition is explicit as a suÆcient condition to ensure that the supervisor will not

generate commands that the plant cannot accept.

When a supervisor is both complete and inverse complete with respect to a given plant,

their synchronous composition is said to be wellposed. Balemi (1992) uses the prioritized

synchronous composition to elegantly express the interconnections between plant and

supervisor, as regards completeness, inverse completeness and wellposedness.

For a supervisor S and a plant P , regarding completeness we have

PkS = P�k �uS: (3.15)

As regards inverse completeness we have

PkS = P�ck �S: (3.16)

And �nally when the interconnection is wellposed

PkS = P�ck �uS: (3.17)

The simplicity of these expressions is indeed elegant.

The input/output interpretation again raises the issue of event generation. A supervi-

sor as de�ned by the Ramadge/Wonham approach would in the formalism of Milner (1989)

only de�ne complemented (overbarred) events, and a plant would only de�ne non-comple-

mented events. As de�ned by Balemi (1992), a supervisor would have the controllable

events non-overbarred while the uncontrollable would be overbarred. For the plant, on

the other hand, the situation would be the opposite.

Thus, let us denote by �S and �S the complemented and non-complemented events

of the supervisor, respectively, and likewise �P and �P for the plant. Then we have for

the Ramadge/Wonham approach �S = �c

S
�u, �S = ;, �P and �P = �c

S
�u, while

for the input/output interpretation we have �S = �u, �S = �c, �P = �c and �P = �u.

Other variations are, of course, also conceivable.

Summary

In this section we have brie
y presented the input/output interpretation of the supervsiory

control theory, as given by Balemi (1992). A supervisor is no longer just a passive device

following the events generated by the plant and merely restricting event generation. The

supervisor acts as a controller, receiving input from the plant and generating output to

the plant. The events generated by the supervisor, the commands, are considered to be

the controllable events, while the responses generated by the plant are the uncontrollable

events.



In the next sections we will extend both the original supervisory control theory and

the input/output interpretation to non-deterministic processes. This extension requires

di�erent approaches for the two interpretations of supervisor/plant interaction. For a

supervisor as a passive device it is rather straight-forward, whereas for the input/output

interpretation the added constraint of inverse completeness needs some more elaboration.

In both cases, though, the properties of controllability and inverse controllability de�ned

for a supervisor language will be shown to no longer be equivalent to the properties of

completeness and inverse completeness of the supervisor automaton.

3.4 Non-deterministic Supervisory Control

The original Ramadge/Wonham formulation of the supervisory control theory considered

only deterministic discrete event processes. These have inherent structural properties not

applicable to the more general form of non-deterministic systems. Thus, the SCT implic-

itly included certain aspects given by the deterministic system that has to be explicitly

spelled out for non-deterministic DES.

It is not until very recently, see Inan (1994), Overkamp (1994) and Shayman (1994),

that the SCT has been generalized to non-deterministic systems. In Shayman (1994),

though the plant is allowed to be non-deterministic, the speci�cation of the behavior of

the controlled system is given as a desired closed-loop language. Thus, the speci�cation

cannot be non-deterministic, since non-determinism is a property of a process, not of a

language. Given that the speci�cation language is controllable there is given necessary

and suÆcient conditions for there to exist a deterministic supervisor that can control

the plant to meet the speci�cation, marked as well as unmarked. Similarily, Inan (1994)

uses a deterministic automaton as speci�cation. In this case though, given a determin-

istic automaton representing a controllable language, a non-deterministic nonblocking

supervisor is considered. Overkamp (1994) allows both the plant and the speci�cation

to be non-deterministic, and then a deterministic supervisor is generated, such that the

closed-loop system reduces the speci�cation. That is, the closed-loop system generates

a sublanguage of the speci�cation, and does not deadlock unless allowed by the speci-

�cation. Thus, nonblocking is not considered by Overkamp (1994)2. We can note that

in all of the works mentioned above, non-determinism arises as a consequence of some

type of partial observation, representing model uncertainty. We can also note that none

of the authors above have considered non-deterministic supervisors in conjunction with

non-deterministic plants.

In this section we will examine non-deterministic supervisors. We will give neces-

sary and suÆcient conditions for the structure of a non-deterministic supervisor with

a controllable language to be complete as well as inverse complete with respect to a

non-deterministic plant. We will also show under what conditions a non-deterministic

supervisor exists for a deterministic plant, given a non-deterministic speci�cation, such

that the closed-loop behaves as a subprocess of the speci�cation.

Are non-deterministic supervisors of importance, one may ask. In the object oriented

2Note though, the unfortunate choice of Overkamp's terminology. Overkamp (1994) refers to deadlock
as blocking, and consequently a deadlock-free system is called nonblocking. This is not nonblocking in the
sense of De�nition 2.22.



modeling of 
exible manufacturing systems, as will be described, a non-deterministic spec-

i�cation arises naturally as individual product routes are composed into a global speci�ca-

tion on the systems behavior. The product routes themselves are all deterministic, but the

requirement for them to evolve mutually asynchronously leads to the non-deterministic

speci�cation. This is also the case in batch processes, as described in Tittus (1995b).

In Tittus (1995d) is shown how such a non-deterministic speci�cation results in a non-

deterministic supervisor. Inan (1994) develops a theory to generate a non-deterministic

supervisor from a deterministic one. The reason for this is that the deterministic su-

pervisor relies on observing some unobservable events. The non-deterministic supervisor

avoids this. These examples show that there are applications in which non-deterministic

speci�cations and supervisors are necessary. Therefore, a rigid foundation for how to

handle these problems is required.

3.4.1 Controllability, Completeness and Conformity

We begin by recapitulating and reformulating some of the expressions of controllability

and completeness given in Section 3.2, and generalize some of these to non-deterministic

processes. It is important to notice that the de�nitions and proofs given in Section 3.2

and those given in Ramadge (1987), Kumar (1991), Balemi (1992) and many others, de-

pend on the fact that all automata are deterministic, even though this may not always be

explicitly spelled out. When non-deterministic transition machines are considered, some

of these de�nitions have to be reformulated, mainly those that concern the structure of

the automaton. There does exist a certain structural property of non-deterministic au-

tomata that would make the original de�nitions and proofs hold, the notion of conformity

described below.

Note that in this section we will make the two assumptions stated in Section 1.4,

namely that, for a supervisor S and a plant P we have that �S = �P and L(S) � L(P ).

This is just for ease of notation and proofs, and does not incur any loss of generality. See

the remark to De�nition 3.1.

Those de�nitions involving only the language of an automaton are not altered when

generalized to non-deterministic processes. Thus, the expression de�ning controllability is

L(S)�u

T
L(P ) � L(S) (3.18)

which, by the de�nition of active events is equivalent to

8s 2 L(P kS) 
(L(P ); s)
T
�u � 
(L(S); s): (3.19)

This expression is obviously equivalent to

8s 2 L(P kS) 
(L(P ); s)
T
�u � 
(L(S); s)

T
�u: (3.20)

This last expression, (3.20), will be used extensively in the following.

The de�nition of nonblocking, De�nition 2.22 is also not altered since nonblocking is

a language property.

However, completeness is a property of the transition machine that must be reformu-

lated for non-deterministic automata. Naturally, such a reformulation must be a general-

ization of De�nition 3.1, and contain this de�nition as a special case. Thus, we make the

following de�nition.



De�nition 3.11 Completeness

A supervisor S is complete with respect to a plant P and a set of uncontrollable events

�u if and only if

8s 2 L(P kS) 8q 2 Æ(S; s) 8p 2 Æ(P; s) out(p)
T
�u � out(q): (3.21)

Remark. It is easy to verify that this de�nition is indeed a generalization of De�nition 3.1

since when S and P are deterministic both Æ(S; s) and Æ(P; s) are singletons. In that case

it is perfectly valid to write out(Æ(S; s)), as in De�nition 3.1, in place of 8q 2 Æ(S; s) out(q).
When S is not complete, there exists a string s 2 L(P kS), a state q 2 Æ(S; s)

and a state p 2 Æ(P; s), such that out(p)
T
�u 6� out(q). In that case, q is said to be

uncontrollable. 2

Completeness has been expressed in terms of the transition function, above. Naturally,

it can also be expressed in terms of edges and traces, a version which will be used later.

Then we have that a transition machine S is complete with respect to a plant P and a

set of uncontrollable events �u if and only if for all tPk tS 2 tr(P kS) we have that

tP eP 2 tr(P )
label(eP ) 2 �u

�
) 9eS 2 ES such that label(eS) = label(eP ) and tSeS 2 tr(S): (3.22)

Here, tPk tS is used to denote the trace arisng in tr(PkS) due to synchronization of the

traces tP 2 tr(P ) and tS 2 tr(S). As was indicated by Section 3.2, completeness can be

viewed as the fundamental requirement for a supervisor; unless the supervisor is complete

with respect to the plant, we cannot guarantee that the behavior of the closed-loop system

is contained within the speci�cation. It was shown by Lemma 3.3 that completeness and

controllability are equivalent when considering deterministic processes. However, when

non-determinism is involved this does not hold entirely.

It will be shown below that a complete supervisor S will always represent a controllable

language L(S), but the converse is not necessarily true. This so, since the notion of

controllability is weaker than the notion of completeness in the case of non-deterministic

supervisor. Controllability concerns the active events, while completeness concerns the

ready sets of the supervisor. For a given supervisor state reached by a string s, the ready

set is a subset of the active event set corresponding to s, as shown by the remark to

De�nition 2.25. See also Figure 2.2 on Page 33.

Lemma 3.12 A supervisor S that is complete with respect to a plant P , with a set of

uncontrollable events �u, will always have a controllable language L(S).

Proof. Completeness is de�ned as

8s 2 L(P kS) 8p 2 Æ(P; s) 8q 2 Æ(S; s) out(p)
T
�u � out(q); (3.23)

which, by Lemma A.1 can be rewritten as

8s 2 L(P kS) 8p 2 Æ(P; s) 8q 2 Æ(S; s) out(p)
T
�u � out(q)

T
�u: (3.24)



Now, we can use Lemma A.4 with f(�) � out(�)
T
�u to write (3.24) equivalently as

8s 2 L(P kS) 8q 2 Æ(S; s) 
(L(P ); s)
T
�u � out(q)

T
�u: (3.25)

Finally, by Lemma A.5 (3.25) implies that

8s 2 L(P kS) 
(L(P ); s)
T
�u � 
(L(S); s)

T
�u; (3.26)

which by (3.20) means that L(S) is controllable.

Remark. Note that this also means that when S is complete, then L(P kS) is con-
trollable. This holds whether the plant and supervisor are deterministic or not, since

the properties of the languge represented by an automaton is not altered due to non-

determinism. Thus, controllability of L(S) is equivalent to controllability of L(P kS).
2

Note again that (3.25) and (3.26) are not equivalent, when S is allowed to be non-

deterministic. This is a consequence of the fact that for a non-deterministic S, the ready

set of a state reached by a string s, is not equal to the active set after s. Thus, control-

lability of L(S) is not suÆcient for S to be complete; a fact which we emphasize by the

following corollary.

Corollary 3.13 A supervisor S with a controllable language L(S) is not necessarily

complete, with respect to a plant P and an alphabet of uncontrollable events �u.

Remark. Note though, that a supervisor cannot be complete if its language is not

controllable. This is because completeness is a stronger property than controllability. The

set of all complete supervisors is a subset of the set of all supervisors with controllable

language. Thus, if we choose a supervisor outside the set of the ones with controllable

languages, we will never choose a complete supervisor. 2

That for a deterministic supervisor controllability is equivalent to completeness is due

to the fact that for all strings the active event set is equal to the ready set of the state

reached by that string. Thus, the equivalence of controllability of L(S) and completeness

of S, does not depend on the determinism of P . This fact is emphasised in the following

corollary to Lemma 3.12 which is a reformulation of Lemma 3.3.

Corollary 3.14 A deterministic supervisor S is complete with respect to a, possibly

non-deterministic, plant P , with a set of uncontrollable events �u, if and only if L(S) is

controllable.

Note that Corollary 3.14 only concerns deterministic supervisor. The plant P can be non-

deterministic, since when S is deterministic and L(S) is controllable, the state reached

after string s will have a ready set that includes all the uncontrollable events that P

de�nes in any state reached by s. See also Example 3.1.

For controllability to be equivalent to completeness we have to add some restriction on

the structure of S. For S to be deterministic is a suÆcient but not necessary condition.

In fact, it is enough to require S to have equal ready sets of the states of Æ(S; s), as far



Example 3.1 Controllable, Complete and Conforming Supervisors
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Figure 3.3: Examples of controllability, completeness and conformity of non-

deterministic supervisors, S1, S2 and S3, with respect to a non-deterministic plant P .

In Figure 3.3 is shown three supervisors, S1, S2 and S3, for a plant P . The languages of all

three supervisors are equal, L(S1) = L(S2) = L(S3) = f"; s; sa; scg and the plant language is

L(P ) = f"; s; sa; sb; scg. The uncontrollable event is �u = fcg. The supervisor languages are

controllable since L(Si)�u

T
L(P ) = fscg � L(Si) (for i = 1; 2; 3). However, S1 is not complete

with respect to P , since Æ(P; s) = fp1; p2g and Æ(S1; s) = fq1; q2g and out(p2)
T
�u = fcg 6�

out(q1) = fag. Both S2 and S3 are complete, on the other hand, since, both out(p1)
T
�u = ;

and out(p2)
T
�u are subsets of out(r1) = fa; cg, out(s1) = fa; cg and out(s2) = fcg. Note also

that S1 is not conforming, while both S2 and S3 are.



as �u is regarded. We can think of this as S must be deterministic with regard to �u.

This restriction will be called conformity and a supervisor with this property is said to

be conforming with respect to �u. The formal de�nition looks like this.

De�nition 3.15 Conforming Supervisor

A supervisor S is said to be conforming with respect to a plant P with uncontrollable

events �u, if and only if all states reachable by one and the same string de�nes equal

ready sets with regard to �u. That is,

S conforming , 8s 2 L(P kS) 8q1; q2 2 Æ(S; s) out(q1)
T
�u = out(q2)

T
�u: (3.27)

Remark. When S is deterministic, Æ(S; s) is a singleton and so S is always conforming.

2

By using Lemma A.12 we immediately get the following equivalent expression for confor-

mity,

8s 2 L(P kS) 8q 2 Æ(S; s) 
(L(S); s)
T
�u = out(q)

T
�u: (3.28)

By combining (3.28) with (3.26) it follows that when L(S) is controllable and S is con-

forming with respect to �u, then S is also complete. Additionally, we know that when S

is complete, L(S) is always controllable. This is summarized in the following theorem.

Theorem 3.16 For a plant P with a set of uncontrollable events �u, a supervisor S that

is conforming with respect to �u, is complete if and only if L(S) is controllable. That is,

S conforming) (S complete $ L(S) controllable): (3.29)

Proof. It is obviously so that (3.25) and (3.26) are equivalent when (3.28) holds.

Remark. Note that S being deterministic is a special case of S being conforming. In

Example 3.2 is illustrated that a non-deterministic supervisor with a controllable language

is not necessarily complete, unless it is conforming, that is. 2

We illustrate the relations between completeness and controllability in Figure 3.4. From

completeness we can always get to controllability and conformity. However, to get from

controllability to completeness, we must cross the gap by means of the gray arrow. This

is where the additional requirement of S being conforming comes in. When S is con-

forming, such as when it is deterministic, then this gap is bridged, and completeness and

controllability are equivalent.

Finally, it can be interesting to note that when a supervisor is complete and its lan-

guage is a subset of the plant language, then that supervisor is always conforming.

Lemma 3.17 For a plant P , with a set of uncontrollable events �u, and a supervisor S

with L(S) � L(P ), S complete implies S conforming with respect to �u.

Proof. Since L(S) � L(P ), we can replace L(P kS) by L(S).



Completeness Conformity

Controllability

Figure 3.4: Relations between completeness, controllability and conformity. The gray

arrow means that conformity is required to cross the gap from controllability completeness.

Compare also Figure A.1.

By Corollary 2.27

L(S) � L(P ) ) 8s 2 L(S) 
(L(S); s)
T
�u � 
(L(P ); s)

T
�u: (3.30)

By (3.25) we can write completeness as

8s 2 L(P kS) 8q 2 Æ(S; s) 
(L(P ); s)
T
�u � out(q)

T
�u: (3.31)

Combining these two expressions, we get

8s 2 L(P kS) 8q 2 Æ(S; s) 
(L(S); s)
T
�u � 
(L(P ); s)

T
�u � out(q)

T
�u; (3.32)

meaning that the union of all out(q)
T
�u is a subset of every out(q)

T
�u. Of course, this

can only happen if all out(q)
T
�u are equal, so that

8s 2 L(P kS) 8q 2 Æ(S; s) 
(L(S); s)
T
�u = out(q)

T
�u; (3.33)

thus proving Lemma 3.17.

As mentioned in Section 3.2, there is really no loss of generality to assume that L(S) �
L(P ). Using Lemmas 3.12 and 3.17 we get the following theorem, realting completeness,

controllability and conformity.

Theorem 3.18 A supervisor S, for a plant P with a set of uncontrollable events �u,

with L(S) � L(P ), is complete if and only if L(S) is controllable and S is conforming.

That is,

L(S) � L(P ))(S complete $ L(S) controllable ^ S conforming); (3.34)

all with respect to �u

It is interesting to note the following words, (here K = L(PkS) = L(P )
T
N and det(K)

is a deterministic automaton with language K).

... when the supervisor is chosen to be det(K). The determinism of S is

essential here. If S is a non-deterministic [supervisor] with L(S) = N , there

is no guarantee that the closed-loop language [ L(PkS)] will be K.

Shayman (1994), Remark 11



Example 3.2 Conforming and Nonconforming Supervisors
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Figure 3.5: A deterministic plant, P , and two supervisors, S1 and S2. The languages

of the supervisors are equal and controllable, but S1 is not conforming and therefore not

complete with respect to �u = fcg.

This example shows that of two supervisors with equal and controllable languages, only the one

that is conforming is also complete with respect to the plant. The only uncontrollable event

is �u = fcg. As can be seen in Figure 3.5, the two supervisors, S1 and S2 have the same

language. It is easily veri�ed that this language is indeed controllable with respect to L(P ) and

�u. However, S1 is not complete since it cannot follow the uncontrollable event c when in its q1
state. S2, on the other hand, can follow the uncontrollable event in both its r1 and r2 states.

Thus, S2 has both a controllable language and is conforming with respect to �u. Therefore S2
is also complete, which is evident from Figure 3.5.



This observation has above been shown to be accurate, since a non-deterministic super-

visor guarantees the controllable speci�cation language only when it is conforming with

respect to the uncontrollable events. Note also that this holds regardless of whether the

plant is non-deterministic or not. Example 3.2, adapted from Shayman (1994), shows

that a non-deterministic supervisor is not necessarily complete when its language is con-

trollable even though the plant is deterministic. Not unless the supervisor is conforming,

that is.

Finally, we will generalize Lemma 3.4 to non-deterministic processes. This is needed

in the proof of existence of non-deterministic supervisors, given non-deterministic speci�-

cations, in Section 3.5. However, when a plant P is non-deterministic, it is not necessarily

complete with respect to itself. This is obvious from the general de�nition of complete-

ness, De�nition 3.11. Not unless all the states reached by a string s de�nes the same set of

uncontrollable events, that is. This condition is satis�ed when the plant is deterministic,

for example. But more generally, it is satis�ed when the plant is conforming with respect

to the uncontrollable events. Compare De�nition 3.15 and see also De�nition 3.21.

Theorem 3.19 For a conforming plant P and a supervisor S, the closed-loop system

PkS is complete with respect to P if and only if S is complete with respect to P . All

with respect to a set of uncontrollable events �u � �P . That is,

P conforming )( PkS complete , S complete): (3.35)

Proof. When the above conditions hold, the following four expressions are all equivalent

8s 2 L(P kS) 8q 2 Æ(S; s) 8p 2 Æ(P; s) out(p)
T
�u � out(q): (3.36)

8s 2 L(P kS) 8q 2 Æ(S; s) 8p; p0 2 Æ(P; s) out(p0)
T
�u � out(p)

T
out(q)

T
�u: (3.37)

8s 2 L(P kS) 8 hp; qi 2 Æ(PkS; s) 8p0 2 Æ(P; s) out(p0)
T
�u � out(p)

T
out(q)

T
�u

(3.38)

8s 2 L(Pk (PkS)) 8 hp; qi 2 Æ(PkS; s) 8p0 2 Æ(P; s) out(p0)
T
�u � out(hp; qi): (3.39)

Remark. Equation (3.36) expresses completeness of S by De�nition 3.11. That (3.36) is

equivalent to (3.37) comes from the fact that P is conforming with respect to �u. Then

speci�cally for the strings of L(P kS) it holds that the ready sets of the states reached by

s are all equivalent with respect to �u. Since S is complete, no uncontrollable events are

removed from P kS. Therefore, (3.38) is equivalent to (3.37). Finally, by using the fact

that, since �S = �P , for all states hp; qi 2 QPkS it holds that out(hp; qi) = out(p)
T
out(q),

see (2.53), and that the languages L(PkS) and L(Pk (PkS)) are equivalent by Corol-

lary 2.45 we get the �nal equivalence. Obviously, (3.39) shows that PkS is in fact

complete with respect to P and �u.

Naturally, similar reasoning shows the converse. The equivalence between (3.38) and

(3.37) comes from P kS being complete, so that no uncontrollable events have been lost

in the synchronization. 2



Example 3.3 Inverse Controllability but not Inverse Completeness
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Figure 3.6: An example of a supervisor and plant, where the supervisor is not inverse

complete, even though its language is inverse controllable according to De�nition 3.8.

In Figure 3.6 is shown a supervisor S with a language L(S) that is inverse controllable, since

L(S) � L(P ). All shown events are considered to be controllable, that is, fa; b; cg � �c. After

the string s, the plant P can be in either p1 or p2, while S can be in either q1 or q2. If, which

is considered to be the case, the supervisor cannot determine which state P actually occupies,

for S to be inverse complete it must never generate either the a or c commands when in either

of the states q1 or q2. If the supervisor did execute command a when the plant is in state p2,

the notion of inverse completeness would be violated. Thus, S is not inverse complete with

respect to the given plant even though L(S) is inverse controllable. This so, since (from (3.44))


(L(S); s)
T
�c = fa; b; cg 6�

T
p2Æ(P;s)

out(p) = fbg.

3.4.2 Inverse Properties

When regarding non-deterministic processes, it is not surprising that the notion of inverse

completeness has to be rephrased. It is also not surprising that inverse controllability of

L(S) is no longer equivalent to S being inverse complete. The duality of controllabil-

ity/inverse controllability and completeness/inverse completeness carries these facts with

it.

In the general setting of non-deterministic plant and supervisor, there may exist sev-

eral states reachable by the same string s, each of which may have di�erent ready sets.

Naturally, if the supervisor S is not to generate any commands that the plant cannot

follow, the set of controllable events of the ready set of every state reachable by s in S

must be a subset of the ready sets of all states reached by s in P . See Example 3.3.

Thus we can make the following de�nition of inverse completeness.

De�nition 3.20 Inverse Completeness

A supervisor S is said to be inverse complete with respect to a plant P and a set of

controllable events �c, if and only if it only generates controllable events (commands)

that P can accept. That is,

S inverse complete , 8s 2 L(P kS) 8p 2 Æ(P; s) 8q 2 Æ(S; s) out(q)
T
�c � out(p):

(3.40)



Remark. It is obvious that this de�nition is more general than the de�nition given for

deterministic supervisors, De�nition 3.7. The di�erence being that we no longer assume

that one and the same string reaches a single state. Note though that the informal wording

is the same, only the formal expression has been reformulated. 2

Let us now use Lemma A.1 and Lemma A.7 to write equivalent expressions of inverse

completeness. De�nition 3.20 is equivalent to the following expressions.

By Lemma A.1, we have

8s 2 L(P kS) 8p 2 Æ(P; s) 8q 2 Æ(S; s) out(q)
T
�c � out(p)

T
�c; (3.41)

which is by Lemma A.7, with f(�) � out(�)
T
�c equivalent to

8s 2 L(P kS) 8p 2 Æ(P; s) 
(L(S); s)
T
�c � out(p)

T
�c: (3.42)

But by Lemma A.7, (3.41) is also equivalent to

8s 2 L(P kS) 8q 2 Æ(S; s) out(q)
T
�c �

T
p2Æ(P;s)

out(p)
T
�c: (3.43)

Remark. We can note that (3.42) is the immediate dual of (3.25). Just interchange p

and q, and replace �u with �c.

The expression (3.43) can also be seen as a dual of (3.25). In this case, also the union


(L(S); s) =
S

q2Æ(S;s)

out(q) is replaced by the intersection
T

p2Æ(P;s)

out(p)
T
�c. More impor-

tantly though, (3.43) is presented, since we believe it to be a more intuitive description

of inverse completeness than (3.42). In the case of completeness, the supervisor must be

guaranteed to follow all uncontrollable events generated by the plant; that is, the union

of all feasible uncontrollable plant events. On the other hand, with inverse completeness,

the supervisor must be guaranteed to only generate commands that the plant can follow;

that is, the intersection of all feasible controllable plant events. See also Example 3.3.

We can also note that inverse completeness is equivalent to

8s 2 L(P kS) 
(L(S); s)
T
�c �

T
p2Æ(P;s)

out(p)
T
�c; (3.44)

by Lemma A.11. An expression that might suggest an eÆcient way to check for inverse

completeness. See Example 3.3. 2

We can also note that by Lemma A.9 we have that inverse completeness implies that

8s 2 L(P kS) 
(L(S); s)
T
�c � 
(L(P ); s)

T
�c; (3.45)

which is in fact inverse controllability. Compare (3.26). As a dual to Lemma 3.12, (3.45)

above shows that inverse completeness implies inverse controllability.

In Theorem 3.16 we used the notion of conformity to bridge the gap between controlla-

bility and completeness for non-deterministic systems. We also showed that completeness

of S implies conformity of S, but recall that this proof involved the assumption that

L(S) � L(P ). When regarding inverse completeness and conformity, this assumption

cannot help us in showing that inverse completeness implies conformity. In fact, we can-

not show this at all.

Moreover, it is not conformity of S that is of signi�cance here, but a similar restriction

on the plant, P .



De�nition 3.21 Conforming Plant

A plant P is said to be conforming with respect to a supervisor S, with a set of controllable

(command) events �c, if and only if all states reachable by one and the same string of the

closed-loop system de�nes equal ready sets with regard to �c. That is,

P conforming , 8s 2 L(P kS) 8p1; p2 2 Æ(P; s) out(p1)
T
�c = out(p2)

T
�c: (3.46)

Remark. When P is deterministic, Æ(P; s) is a singleton and so P is always conforming.

Note that a plant P , as well as a supervisor S, can be conforming with respect to any

subset of events of �P = �S. When the context unambigously tells us which set of events

we mean, we will simply say that P or S is conforming, as in (3.46). The event-sets that

will be of interest are, of course, �u and �c. 2

However, it is not realistic to demand P to be conforming, since we do not choose P .

We can only guarantee that S is conforming with respect to the plant, since we create S.

However, if P is conforming then we can show that inverse controllability is equivalent to

the de�nition of inverse completeness.

Lemma 3.22 For a plant P and a supervisor S, inverse controllability is equivalent to

inverse completeness, if the plant is conforming. That is,

P conforming ) (S inverse complete $ L(S) inverse controllable): (3.47)

Proof. Conformity of the plant can, by Lemma A.12, be equivalently rewritten as

8s 2 L(P kS) 8p 2 Æ(P; s) out(p)
T
�c =

T
p2Æ(P;s)

out(p)
T
�c; (3.48)

an expression that, by inspection of the expressions (3.44) and (3.45), immediately shows

that when the plant is conforming, inverse controllability and inverse completeness are

equivalent.

Remark. In the case of completeness and controllability, conformity of the supervisor was

a necessary and suÆcient condition for completeness to be equivalent to controllability.

This so, since we were able to derive that a complete supervisor S is always conforming

when L(S) � L(P ). In the case of inverse controllability and inverse completeness,

things are not so easy. A conforming plant is just a suÆcient condition, since the inverse

controllability and inverse completeness does not induce any conditions on P ; merely on

S itself.

In the deterministic case, L(S) � L(P ) was shown to be a suÆcient condition for S to

be inverse complete, again, not a necessary condition. The problem is that in the case of

completeness, P generated the events and the demand was on S. Naturally, this tightly

links S to P . In the case of inverse completeness, S generates (some) events, but the

demands still lie on S. Thus, P is not linked to S. 2

To bring structure into the relations between inverse completeness and inverse controlla-

bility, we show Figure 3.7. With deterministic P and S, all expressions are equivalent,
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Figure 3.7: A systematic representation of the correspondance between the various equa-

tions given for inverse completeness and inverse controllability. Compare also Figure A.1,

as well as Figure 3.4.

since then both Æ(P; s) and Æ(S; s) are singletons. Herein lies the root to the di�erence

of complexity between deterministic and non-deterministic systems. However, we can be

more general than this. Determinism is a specialization of conformity. A suÆcient condi-

tion for inverse controllability to be equivalent to inverse controllability is that the plant

is conforming, for example, deterministic.

For non-deterministic systems, inverse controllability at the right is not equivalent

to inverse completeness at the left, because of the implication between the two sets of

expressions. Thus, for non-deterministic systems we have to have some added constraint

to bridge the gap. It has been shown that one possible added constraint is the property

of plant conformity.

Note that with the above de�nition of inverse completeness (as well as completeness)

a plant is seldom inverse complete (or complete) with respect to itself. Only when all its

ready sets for states reachable by one and the same string are equal with respect to �c (

�u), will this be the case. This is, of course, conformity.

3.4.3 Blocking and Nonblocking

In the previous sections we have shown that with a non-deterministic supervisor, complete-

ness and controllability are no longer equivalent. Not unless the supervisor is conforming,

that is. Similarily, inverse completeness and inverse controllability are also not necessarily

equivalent. In the case where the plant is conforming, though, they are. Another aspect

of interest for supervisory control, is the nonblockingness of the closed-loop system. We

do not want to allow the system to halt in a nonmarked state, or even to transit inde�-

nitely between two unmarked states, even though the supervisor may be both complete

and inverse complete. We want the closed-loop system to be nonblocking.

However, nonblocking is a language property, saying that Lm(P kS) = L(P kS).
That is, every string of L(P kS) can be continued to reach a marked state. By the



Example 3.4 Nonblocking Language but Blocking Transition Machine

q0

q1

q3

q2

s

s

s'
S:

Figure 3.8: A transition machine with a nonblocking language, but a non-coaccessible

state.

In Figure 3.8 is shown a transition machine, S, with a nonblocking language. The marked

language is Lm(S) = fss0g, so that Lm(S) = f"; s; ss0g. The closed language is, of course,

L(S) = f"; s; ss0g, so that Lm(S) = L(S) and S is nonblocking. However, note that from the

state q2, no marked state can be reached, thus, q2 is not coaccessible.

de�nition of the marked language of a transition machine, De�nition 2.22, a string is

included in the marked language if it reaches some marked state. This is, in fact, not

strong enough to guarantee that, when the plant and the supervisor are both allowed to

be non-deterministic, the system can always reach a marked state. Though the language

is nonblocking, there may exist non-coaccessible states reached by strings that reach a

marked state by some other route through the transition machine, see Example 3.4.

Thus, when non-determinism is involved, the intuitive notion of nonblockingness, re-

garding languages, is not adequate. In the light of the two previous sections, this is not

a surprising fact. The problem is that with non-deterministic systems, one and the same

string may lead to several states. The condition that Lm(�) = L(�) only requires that a

marked state be reached from at least one of these states, as opposed to all of these states.

We make the following de�nition.

De�nition 3.23 Trace Nonblocking

A transition machine S is trace nonblocking, if and only if the pre�x closure of its marked

traceset is equal to its closed traceset. That is,

S trace nonblocking , trm(S) = tr(S): (3.49)

Remark. In the remark to De�nition 2.22 we showed that the following implications

hold for a transition machine S,

S trim ) trm(S) = tr(S)) Lm(S) = L(S): (3.50)

Thus, when S is trim, it is also trace nonblocking, and whenever it is trace-nonblocking

it is also language nonblocking.

See also Kumar (1994), who de�ne trajectory model non-blocking, which requires that

each trajectory belonging to the closed trajectory set be extendable to a trajectory of the



marked trajectory set. This lies in-between trace nonblocking and language nonblocking.

2

When a transition machine S is trace nonblocking, all accessible states are also coacces-

sible. That is

8s 2 L(S) 8q 2 Æ(S; s) 9s0 2 ��

S such that ÆS(q; s
0)
T
MS 6= ;: (3.51)

Note that, for all states q, reached by a string s, there is required to exist some string s0,

reaching from q to some marked state. It is not required that all strings emanating from

q reach marked states. Also, it is only required that some state reached from q by s
0 is

marked. This must hold for all states reached by s.

For language-nonblocking, the corresponding expression looks like

8s 2 L(S) 9q 2 Æ(S; s) 9s0 2 ��

S such that ÆS(q; s
0)
T
MS 6= ;: (3.52)

Here it is only required that for some state q, reached by a string s, there exists some

string s0, reaching some marked state from q. All states reachable from q are not required

to be marked.

Comparing the two expressions, it is easy to see that that (3.51) implies (3.52), and

that they are equivalent, if and only if S is deterministic. Because of this equivalence,

when we speak of determinsitic transition machines, we will merely call them blocking or

nonblocking, whatever the case may be.

Assume now that we have a nonmarked plant P and a marked complete supervisor

S, with �P = �S. The closed-loop system is then by de�nition trace-nonblocking, if and

only if

8s 2 L(P kS) 8 hp; qi 2 Æ(P kS; s) 9s0 2 ��

P kS such that ÆP kS(hp; qi ; s
0)
T
MP kS 6= ;:

(3.53)

We have that ÆPkS (hp; qi ; s) = ÆP (p; s) � ÆS(q; s), see (2.49) of De�nition 2.43. Thus,

(3.53) can be equivalently expressed as

8s 2 L(P kS) 8 hp; qi 2 Æ(P kS; s) 9s0 2 ��

P [ÆP (p; s
0)� ÆS(q; s

0)]
T
MP kS 6= ;: (3.54)

Since P is nonmarked, MP = QP , so that MP kS = QP �MS by de�nition. Furthermore,

it holds that [A� B]
T
[C �D] = [A

T
C]� [B

T
D], and, by de�nition A�; = ; for any

set A. Thus we can write

8s 2 L(P kS) 8 hp; qi 2 Æ(P kS; s) 9s0 2 ��

P [ÆP (p; s
0)
T
QP ]� [ÆS(q; s

0)
T
MS] 6= ;:

(3.55)

If there exists a string s
0 such that ss

0 2 L(P kS), then it is obvious that P kS is

trace nonblocking whenever S is. Since then ÆP (p; s
0) and ÆS(q; s

0) are both de�ned, and

ÆS(q; s
0)
T
MS 6= ;. In fact, S is not required to be trace nonblocking in its entirety, merely

with regard to the language of the closed-loop system. However, S trace nonblocking is a

suÆcient condition for P kS to be trace nonblocking, if that string s0 exists.

However, it may happen that there does not exist any string s
0 at all, such that

ÆP (p; s
0) and ÆS(q; s

0) are both de�ned. In such a case, the closed-loop system would have

a terminating state hp; qi. Such a terminating state results from the plant branching one



way and the supervisor another while executing a string s, until there are no more mutual

events to execute. This is a consequence of allowing both the plant and the supervisor

to be non-deterministic. In that case, unless that state hp; qi is marked, the closed-loop
system cannot be trace nonblocking.

What are the requirements for such states to always be marked in the closed-loop

system?

Naturally, all terminating states being marked is a necessary requirement for a transi-

tion machine to be trace nonblocking. It is not suÆcient, though, since, for instance, an

accessible nonmarked state that can only reach itself is not terminating, but it is also not

coaccessible. Such a livelock is precisely the reason that the approach of Overkamp (1994)

does not generate a nonblocking closed-loop system.

When composing a non-deterministic supervisor and a non-deterministic plant under

full sycnhronous composition, we are interested in under what conditions the closed-loop

system is trace nonblocking. The problem is that when both the supervisor and the plant

are non-deterministic, there may arise blocking states, even though the supervisor itself is

nonblocking and the plant is nonmarking. If the closed-loop system is to be nonblocking,

we must guarantee that these states are either not accessible, or marked. If such states

are marked, they are, by de�nition, nonblocking; the system is allowed to rest in these

states inde�nitely.

To be able to always determine when the closed-loop system will be trace nonblocking,

we make the following de�nition.

De�nition 3.24 Deterministically Marked

A supervisor S is said to be deterministically marked with respect to a plant P , if for all

strings present in both languages and for all states reached by such a string in the plant

and in the supervisor, a supervisor state is marked whenever its ready set is disjoint from

the ready set of at least one of these plant states. That is,

S deterministically marked

, 8s 2 L(P kS) 8p 2 Æ(P; s) 8q 2 Æ(S; s) out(p)
\
out(q) = ; ! q 2MS

(3.56)

Remark. This means that for S to be deterministically marked with respect to P , all

terminating states of S, and all states corresponding to terminating states of P must

be marked. Also, if a state of S and a state of P , reached by the same string, have

disjoint ready sets, then this state must be marked. This corresponds to states that will

be terminating in the closed-loop system.

Since we always assume that P is nonmarked, the expression above can be equivalently

rewritten as

8s 2 L(P kS) 8 hp; qi 2 Æ(P kS; s) out(hp; qi) 6= ; _ hp; qi 2MP kS; (3.57)

which emphasizes the fact that when S is deterministically marked with respect to P ,

then terminating states of the closed-loop system are marked. Interpreting marking as

"allowed by the speci�cation to be terminating ", then S deterministically marked means

that the closed-loop system is "nonblocking" in the sense of Overkamp (1994).

When P is deterministic, Æ(P; s) is singular. When L(S) � L(P ) we have that the

ready set of any state q = Æ(S; s), is a subset of the ready set of the state p = Æ(P; s), so



Example 3.5 Deterministically Marked Transition Machine
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Figure 3.9: A plant and two trace nonblocking supervisors. The supervisor S1 is not

deterministically marked, while S2 is.

In Figure 3.9 is shown a plant P and two supervisors S1 and S2. Both of these are trace

nonblocking. However, S1 is not deterministically marked, since Æ(P; ab) = fp4; p5g, Æ(S1; ab) =
fq4; q5g, and out(p4)

T
out(q5) = ; as well as out(p5)

T
out(q4) = ;, but neither q4 nor q5 are

marked. Of course, marking these states generates a deterministically supervisor, as S2.

that for all q = Æ(S; s) out(p)
T
out(q) = out(q). Therefore, when P is deterministic and

L(S) � L(P ), De�nition 3.24 is equivalent to

8s 2 L(PkS) 8q 2 Æ(S; s) out(q) 6= ; _ q 2MS: (3.58)

That is, for a deterministic P , when L(S) � L(P ), S is deterministically marked, if and

only if all terminating states of S are marked. 2

For a deterministically marked supervisor, not only are all terminating states marked

so that the corresponding terminating states of the closed-loop system are also marked,

but all states that become terminating states in the closed-loop system, are also marked.

Thus, all terminating states of the closed-loop system are marked. In addition, any other

state that is marked in the supervisor and survives under synchronization with the plant

will also be marked in the closed-loop system. Thus, the closed-loop system is trace

nonblocking, if the supervisor is trace nonblocking and deterministically marked. This is

shown in Lemma 3.26 below.

But �rst we must show the following important equivalence, which will be used in the

following proofs.

Lemma 3.25 For two states p and q of two transition machines P and S, with �S = �P ,

the following equivalence holds,

out(p)
T
out(q) 6= ; , 9s0 2 �+

P ÆP (p; s
0) 6= ; ^ ÆS(q; s

0) 6= ;; (3.59)

where �+
P is the set of all nonempty �nite strings over �P .

Proof. ( )) When out(p)
T
out(q) 6= ; there exists an event � 2 �P such that � 2

out(p)
T
out(q). Thus, ÆP (p; �) 6= ; and ÆS(q; �) 6= ;. Since �P � �+

P , s
0 exists and can

be chosen equal to �.



( () When there exists a nonempty string s0 2 �+
P such that ÆP (p; s

0) 6= ; and ÆS(q; s
0) 6=

;, then there exists an event � 2 �P such that s0 = �s
00. Obviously, � 2 out(p)

T
out(q).

Remark. Note that the implication

out(p)
T
out(q) 6= ; ) 9s0 2 ��

P ÆP (p; s
0) 6= ; ^ ÆS(q; s

0) 6= ; (3.60)

is also proved by this lemma. Since s0 may then be chosen to be the null string, it is not

necessarily so that a common event exists in the ready sets. Furthermore, the implication

9s0 2 �+
P ÆP (p; s

0) 6= ; ^ ÆS(q; s
0)
T
A 6= ; ) out(p)

T
out(q) 6= ; (3.61)

for A � QS follows readily.

2

Now we are equipped with tools to prove the following lemmas.

Lemma 3.26 For a plant P and a supervisor S, the closed-loop system will be trace

nonblocking if the supervisor is trace nonblocking and deterministically marked.

Proof. When S is deterministically marked we have by (3.57)

8s 2 L(P kS) 8 hp; qi 2 Æ(P kS; s) out(hp; qi) 6= ; _ hp; qi 2MP kS; (3.62)

which, by (3.60) implies that

8s 2 L(P kS) 8 hp; qi 2 Æ(P kS; s) 9s0 2 ��

P ÆP kS(hp; qi ; s
0) 6= ; _ hp; qi 2MP kS;

(3.63)

using that out(hp; qi) = out(p)
T
out(q). When S is trace nonblocking, we have by (3.51)

8s 2 L(S) 8q 2 Æ(S; s) 9s0 2 ��

S ÆS(q; s
0)
T
MS 6= ;: (3.64)

Since this holds for all strings of L(S), it speci�cally holds for all strings of L(P kS).

We have that ÆP kS(hp; qi ; s) 6= ; , ÆP (p; s) 6= ; ^ ÆS(q; s) 6= ;. Since S is trace non-

blocking there always exist a string s
0 so that ÆS(q; s

0)
T
MS 6= ;. If this string is not

de�ned from p, so that ÆP (p; s
0) = ;, then ÆP kS(hp; qi ; s

0) = ; so that hp; qi is marked,
since S is deterministically marked. If, on the other hand, ÆP (p; s

0) 6= ;, then, since S is

nonblocking, ÆP kS(hp; qi ; s
0)
T
MP kS. This follows from the fact that MP kS = QP �MS .

Thus, when S is both deterministically marked and trace nonblocking, the closed-loop

system will be trace nonblocking.

Remark. In practice, it is not required that the supervisor is entirely trace nonblocking,

as de�ned by De�nition 3.23. It is in fact only required that the supervisor is trace

nonblocking with regard to the strings arising in the closed-loop system. 2

We can also show that, whenever the closed-loop system is trace nonblocking, the super-

visor is also deterministically marked. This is shown by the following lemma.



Lemma 3.27 For a plant P and a supervisor S, the supervisor is deterministically

marked if P kS is trace nonblocking.

Proof. By (3.53) the closed-loop system is trace nonblocking if and only if

8s 2 L(P kS) 8 hp; qi 2 Æ(P kS; s) 9s0 2 ��

P ÆP kS(hp; qi ; s
0)
T
MP kS 6= ;: (3.65)

Since ��

P = �+
P

S
f"g, this expression can be equivalently rewritten as

8s 2 L(P kS) 8 hp; qi 2 Æ(P kS; s) 9s0 2 �+
P

h
ÆP kS(hp; qi ; s

0)
\
MP kS 6= ;

i
_h

ÆP kS(hp; qi ; ")
\
MP kS = hp; qi

i (3.66)

where ÆP kS(hp; qi ; ") = hp; qi by de�niton. For PkS to be trace nonblocking, either hp; qi
is marked, or some marked state is reachable by s0.

Using Lemma 3.25 and the fact that out(p)
T
out(q) = out(hp; qi), we can now write the

implied expression

8s 2 L(P kS) 8 hp; qi 2 Æ(P kS; s) out(hp; qi) 6= ; _ hp; qi 2MP kS (3.67)

which clearly shows that S is deterministically marked, see (3.57).

We cannot show, however, that when the closed-loop system is trace nonblocking so will

also S be. Naturally, this is a consequence of the de�nition of trace nonblocking, regarding

all strings in the language L(S). The closed-loop system can only tell about the subset

of L(S) de�ned by L(P kS). If L(S) � L(P ), though, it can be shown that S is trace

nonblocking if the closed-loop system is.

Lemma 3.28 For a plant P and a supervisor S, with L(S) � L(P ), the supervisor is

trace nonblocking if the closed-loop system P kS is trace nonblocking.

Proof. The only thing that prohibited us from claiming that (3.53) implies (3.51) was

the fact that the latter concerns L(S), while the former concerns L(P kS) � L(S), in

general. However, when L(S) � L(P ) we have that L(P kS) = L(S), so that we can

exchange one for the other as we please. Under this assumption it should be clear that

(3.53) implies (3.51).

Finally, we arrive at the following, by now obvious, theorem.

Theorem 3.29 For a plant P and a supervisor S, with L(S) � L(P ), the closed-loop sys-

tem P kS is trace nonblocking if and only if S is trace nonblocking and deterministically

marked.

Proof. ( )) By Lemma 3.27 and Lemma 3.28 we know that when L(S) � L(P ) and

P kS is trace nonblocking, then S is trace nonblocking and deterministically marked.

( () By Lemma 3.26 we know that when S is trace nonblocking and deterministically

marked, then P kS is trace nonblocking.



Remark. Note that, in general, P kS does not become deterministically marked with

respect to P . Thus, the system Pk (PkS) is not necessarily trace nonblocking, even

though both S and P kS may be. This means that P kS cannot be used as a supervisor

for P to generate a nonblocking closed-loop system; a strategy that is sometimes em-

ployed for deterministic systems. Furthermore, when P is non-deterministic, the system

Pk (PkS) is not necessarily equal to P kS; something which is sometimes relied upon

for deterministic systems. See Kumar (1991), for instance. 2

By Theorem 3.29 we know that the closed-loop system of plant and supervisor PkS is

nonblocking if and only if S is nonblocking and deterministically marked. By the remark

to De�nition 2.24 we know that a necessary condition for S to be nonblocking is that

all its reachable terminating states are marked. In the remark to De�nition 3.24 it was

shown that when P is deterministic and L(S) � L(P ), then S is deterministically marked

if and only if all terminating states are marked. Thus, when P is deterministic and

L(S) � L(P ), the closed-loop system is nonblocking if and only if S is nonblocking. This

is emphasized in the following corollary to Theorem 3.29.

Corollary 3.30 For a deterministic plant P and a supervisor S, with L(S) � L(P ), the

closed-loop system P kS is trace nonblocking if and only if S is trace nonblocking.

In the �nal section of this we will use the lemmas and theorems de�ned in the previous

sections, to show existence of a complete supervisor for a nonblocking closed-loop system

under various combinations of deterministic and/or non-deterministic plant, speci�cation

and supervisor. This is the main contributions of this thesis.

3.5 Some Notes on Non-deterministic Supervisory

Control

In this section we will �nally tie together the aspects of non-deterministic supervisory

control that have been described in the previous chapters. We will examine combinations

of deterministic and non-deterministic plant P , speci�cation Sp, and supervisor S, and

give suÆcient and necessary conditions for the existence of a complete supervisor such

that the closed-loop system is nonblocking. Note that when we speak of a deterministic

speci�cation, we will regard the language L(Sp). Thus, we assume that a deterministic

speci�cation imposes a restriction on the language of the closed-loop system, whether

this system is deterministic or not. We will regard the plant as nonmarking, that is

Lm(P ) = L(P ), so that only the speci�cation and the supervisor introduces marking.

There are other interpretations of the interconnection of plant and supervisor, such

as the inclusion of driven events described by Kumar (1994) and Shayman (1994). There

are also other interpretations of how the speci�cation is to in
uence the behavior of the

closed loop system, such as the notion of reduction, described by Overkamp (1994) and

Overkamp (1995).

Theorem 3.31 For a deterministic plant P , and a speci�cation language L(Sp), there

exists a deterministic, complete supervisor such that Lm(P kS) � Lm(Sp), L(P kS) �



L(Sp) and Lm(P kS) = L(P kS), if and only if there exists a controllable pre�x closed

sublanguage K � L(P )
T
L(Sp) and a marked language Km � L(P )

T
Lm(Sp), such that

K = Km.

Proof. ()) Choose K = L(P kS). When S is complete, L(P kS) = K is con-

trollable. Since L(P kS) is always a sublanguage of L(P ), L(P kS) � L(Sp) means

that L(P kS) = K � L(P )
T
L(Sp). Choose Km = Lm(P kS). Since Lm(PkS) �

L(P )
T
Lm(S), Lm(PkS) � Lm(Sp) means that Lm(PkS) � L(P )

T
Lm(Sp), so that

Km � L(P )
T
Lm(Sp). When Lm(P kS) = L(P kS), then Km = K.

(() Choose S such that Lm(S) = Km and L(S) = K. This can always be achieved since

Km � K. Since K is controllable, S is complete. Since L(S) = K � L(P )
T
L(Sp),

L(P kS) = L(P )
T
L(S) = L(S) � L(P )

T
L(Sp) � L(Sp). Since Lm(S) = Km �

L(P )
T
Lm(Sp), Lm(P kS) = L(P )

T
Lm(S) = Lm(S) � L(P )

T
Lm(Sp). When Km =

K, then Lm(S) = L(S) so that Lm(P kS) = L(P kS).

Remark. This is, of course, the original supervisory control problem proposed by

Ramadge (1987) and Wonham (1987). If K is the supremal controllable sublanguage

of L(P )
T
L(Sp), then S is also minimally restrictive. Since we choose L(S) = K � L(P ),

and both S and P are deterministic, we know that S is also inverse complete. 2

Theorem 3.32 For a deterministic plant P , and a speci�cation language L(Sp), there ex-

ists a non-deterministic, complete supervisor such that Lm(P kS) � Lm(Sp), L(P kS) �
L(Sp) and Lm(P kS) = L(P kS), if and only if there exists a controllable pre�x closed

sublanguage K � L(P )
T
L(Sp) and a marked language Km � L(P )

T
Lm(Sp), such that

K = Km.

Remark. Obviously, this is the same as Theorem 3.31 above. Since we only regard the

languages of the closed-loop system and the speci�cation, we can choose whatever non-

deterministic supervisor we want, as long as its language satis�es the conditions given

in Theorem 3.31 above. Note though, that given a controllable language, the chosen

supervisor with this language has to be conforming to be complete.

Theorem 3.32 is essentially the problem studied by Inan (1994). Given a controllable

sublanguage of L(P ), a deterministic marked state-machine speci�cation with this lan-

guage is generated. Any such state-machine is applicable, and it is, of course, complete.

From this speci�cation is then generated a deterministic supervisor, essentially by syn-

chronizing the plant with the speci�cation. However, under the assumption that not all

plant events are observable, the deterministic supervisor is augmented so as not to rely

on observations of unobservable events. This augmentation generates a non-deterministic

supervisor, which is then pruned to be nonblocking.

Note though that, given this controllable languageK, when choosing a non-deterministic

supervisor S such that L(S) = K, we have in Section 3.4 shown that S must be conforming

with respect to the plant. Of course, a deterministic S is always conforming. 2

Theorem 3.33 For a deterministic plant P , and a non-deterministic speci�cation Sp,

there exists a complete supervisor S such that P kS � Sp and trm(P kS) = tr(P kS),



if and only if there exists a complete subprocess S 0 � Sp such that S 0 re�nes P and S
0 is

trace nonblocking.

Proof. ()) Choose S 0 = PkS. Since S is complete and P is conforming with respect to

�u, by Theorem 3.19, S 0 is complete. Since the closed-loop system is trace nonblocking,

S
0 is trace nonblocking. Since PkS � Sp, we have that S 0 � Sp. From Theorem 2.48 it

follows that S 0 = PkS always re�nes P .

(() Choose S = S
0 � Sp. Since S re�nes P , and P is deterministic, it follows from

Theorem 2.48 that PkS = S � Sp. Since S is trace nonblocking and P is deterministic,

by Corollary 3.30 we know that PkS is trace nonblocking.

Remark. If S 0 is the largest complete subprocess of Sp re�ning P , then S is also min-

imally restrictive. Since we choose S = S
0 which re�nes P , so that L(S) � L(P ), and

since P is deterministic and therefore a conforming plant, we know that S is also inverse

complete.

This is the problem that initially launched the work that has resulted in this thesis. As

described by the introductory example, when applying object oriented-modeling principles

to complex manufacturing systems, a non-deterministic speci�cation arises naturally by

the interleaving of all the desired product routes. From such a speci�cation, a non-

deterministic supervisor is generated; see the next chapters. 2

Theorem 3.34 For a non-deterministic plant P , and a speci�cation language L(Sp),

there exists a deterministic, complete supervisor such that Lm(P kS) � Lm(Sp), L(P kS) �
L(Sp) and Lm(P kS) = L(P kS), if and only if there exists a controllable pre�x closed

sublanguage K � L(P )
T
L(Sp) and a marked language Km � L(P )

T
Lm(Sp), such that

K = Km.

Remark. This is close to the problem studied by Kumar (1994) and Shayman (1994),

though take a trajectory-model point of view with the inclusion of driven events. Driven

events can be refused by the plant, and this is an essential feature of the successful

control design. Driven events are therefore not equivalent to the controllable command

events of Balemi (1992). The closed-loop system is trajectory model nonblocking, a weaker

requirement than trace nonblocking, but stronger than language nonblocking.

Since the speci�cation is given as a language, the necessary and suÆcient conditions

for existence of a supervisor are the same as given in Theorem 3.31. This is also noted

by Shayman (1994), but it only holds when there are no driven events. Otherwise K

is required to be controllable with respect to the augmented plant, which depends on

the trajectory model of P . The augmented plant sel
oops at every state on the driven

events not de�ned by the ready set. Note also that non-determinism is modeled by silent

transitions. 2

In addition we note that Overkamp (1994) and Overkamp (1995) have studied the com-

bination of non-deterministic plant and speci�cation. For this problem a deterministic

supervisor is generated. In Overkamp (1994) automata are used for the supervisor syn-

thesis, while in Overkamp (1995), the failures model is used. Furthermore, Overkamp



requires the closed-loop system to reduce the speci�cation; that is, L(P kS) � L(Sp) and

P kS does not reach a terminating state after a string s, unless Sp also does. Reduction is

related to the notion of a deterministically marked supervisor, as mentioned in the remark

to De�nition 3.24. Note though that marking as such is not treated by Overkamp.

3.6 Chapter Summary

In this chapter we have extended the supervisory control theory to the case of non-

deterministic speci�cation. We have also discussed and shown some results for the case

where the plant is non-deterministic as well. The basic supervisory control theory have

been presented in a uni�ed framework, with the synchronous composition as the means

to disable events of the plant. Necessary and suÆcient conditions for the existence of a

supervisor have been given for some combinations of non-deterministic plant, speci�cation

and supervisor. The main result being, of course, the existence of a non-deterministic

supervisor given a deterministic plant and a non-deterministic speci�cation, Theorem 3.33.

The results of Section 3.2 and Section 3.3 are not new. The synchronous compo-

sition as a means for the supervisor to control the plant was introduced already by

Kumar (1991), albeit without considering marking. The derivation of the controllability

property is, as far as we know, our own. Wonham (1987), Ramadge (1987), Balemi (1992)

and Kumar (1995), among others, de�ne controllability but do not derive it.

The results of Section 3.4 are generalizations of known results. The de�nition of

conformity, De�nition 3.15, is our own, and it is a relaxation of the requirement of deter-

ministic processes given by many authors. Ramadge (1987) and Kumar (1995), among

others. The necessary and suÆcient condition for choosing a non-deterministic supervisor

given a controllable language, Theorem 3.18, is a new result.

The results obtained for the input/output interpretation of Balemi (1992) are also

generalizations of known results. The inverse properties have been generalized by us, but

the original de�nitions come from Balemi (1992).

The de�nition of a deterministically marked supervisor, De�nition 3.24, is new. So

is also the necessary and suÆcient condition for when the closed-loop system of a non-

deterministic plant and a non-deterministic supervisor is trace-nonblocking, Theorem 3.29.

The results shown in Section 3.5 are our own only as concerns Theorem 3.33. The other

results have not been collected and presented in such a uni�ed framework before, though.





Chapter 4

Supervisor Synthesis

For supervisor synthesis we need eÆcient algorithms for calculating the complete and

trim subprocess of a given marked supervisor "candidate" S, given a non-marked plant

P . Naturally, there may exist several solutions. The null process, for instance, is always

a solution since it is both complete and trim. However, an additional requirement is to

�nd the supremal complete and trim subprocess of S.

The problem will be broken down into �nding the supremal complete and accessible

subprocess and the supremal coaccessible subprocess of S, respectively. First we will focus

on �nding the supremal accessible, the supremal coaccessible and the supremal trim, that

is, accessible and coaccessible, subprocess of a given process. Then we use the algorithm

for �nding the supremal accessible subprocess, when we calculate the supremal accessible

and complete subprocess. Finally, we use those algorithms to �nd the supremal complete

and trim subprocess.

In this chapter we observe certain properties of the characterizations of accessibility,

coaccessibility and completeness. For each characterization, we give general conditions

under which we can �nd the supremal subprocesses holding the given property, under

some additional constraints. We also give general �xpoint algorithms for �nding these

subprocesses. Finally, we specialize these algorithms to the speci�c problems of �nding

the supremal trim, and the supremal trim and complete subprocesses of S.

4.1 Supremal Elements

The number of subprocesses of a given process, P , is �nite and limited by the number of

possible subsets of EP and QP . The set of all subprocesses of P , S(P ) of De�nition 2.34

has been shown to be a partial ordering, by Theorem 2.33. The fact is, that given the

union and intersection operations on subprocesses, de�ned in De�nition 2.50, the set of

all subprocesses is a lattice with P itself as the least upper bound and ;P as the greatest

lower bound.

A lattice is a partially ordered set hL;�i in which every pair of elements a; b 2
L has a greatest lower bound and a least upper bound.

Tremblay (1987), De�nition 4-1.1

Here, hL;�i is an ordered pair of a set L and its ordering relation �.
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When working on the problem to �nd a proper supervisor among the subprocesses

of the supervisor candidate, we can make use of properties pertaining to lattices. We

will view lattices as algebraic systems, since then many concepts that are associated with

algebraic systems can also be applied to lattices. Thus, it will be possible to de�ne

semilattices, for instance. The following is a reformulation of De�nition 4-1.2, given by

Tremblay (1987), who also shows that this de�nition is equivalent to the De�nition 4-1.1

cited above.

De�nition 4.1 Lattice

A lattice is an algebraic system hL;
S
;
T
i with two binary operations

S
and

T
on L that

are both are both associative, commutative and satisfy the absorption laws (4.1),

a
S
(a
T
b) = a and a

T
(a
S
b) = a: (4.1)

for any a; b 2 L.

Remark. This has the consequence that under the
S
and

T
operators all elements of L

are idempotent. That is, for a 2 L we have that a
S
a = a

T
a = a. It also follows that

a lattice is closed under the operations and
S
and

T
, that is, for a; b 2 L we have that

a
S
b 2 L and a

T
b 2 L. This is a property of a binary operation, see Tremblay (1987).

2

Every subset of a partially ordered set is still a partially ordered set under the same

partial ordering relationship, but not all subsets of a lattice are necessarily lattices. That

is, for a lattice hL;�i , hL;
S
;
T
i, a (�nite) subset X � L is a partial ordering hX;�i,

but hX;
S
;
T
i is not necessarily closed under the binary operations

S
and

T
. However,

hX;
S
;
T
i may be closed under

S
, in which case it is said to be an upper semilattice, or it

may be closed under
T
and is then a lower semilattice.

De�nition 4.2 Upper and Lower Semilattices

Let X � L be a subset of the set L of the lattice hL;
S
;
T
i. The partial ordering hX;�i

is an upper semilattice if X is closed under
S
, and hX;�i is a lower semilattice if X is

closed under
T
.

Remark. When hX;�i is an upper semilattice, for all x1; x2 2 X we have that x1
S
x2 2

X, but it may be that x1
T
x2 =2 X. Similarly for lower a semilattice, x1

S
x2 may not be

in the set. See also Example 4.1. When hX;�i is both an upper and a lower semilattice

under the operations
S
and

T
, it is a sublattice of hL;

S
;
T
i.

Note also that hX;�i may be a lattice even though it is not closed under either of the

operations
S
and

T
. hX;�i may be closed under two binary operations, say � and 
,

di�erent from
S
and

T
, respectively. It is not a sublattice of hL;

S
;
T
i, then. 2

It is well-known, see Tremblay (1987), that for any (�nite) subset X � L there exist a

unique least upper bound or supremum, and a unique greatest lower bound or in�mum.

These can be expressed as

supX =
S

xi2X

xi and infX =
T

xi2X

xi: (4.2)



Example 4.1 Partial Orderings, Lattices and Semilattices

L: U:

N:S:

M:

f g

h

e

db c

a

e

b

g

h

e

db c

a

e

db c

a

f g g

h

e f

dc

f g

dc

Figure 4.1: Examples of lattices, semilattices and partially ordered sets.

In Figure 4.1 is shown the Hasse diagrams of a number of partially ordered sets. The ordering

is implied by the lines between the set elements. The transitiveness of a partial ordering is

employed to not draw an excessive amount of lines. For instance, the elements e and c, that are

present in all sets, are ordered as c � e. Since a is ordered as a � c in L, for instance, this also

implies that a � e. We can let the lines denote the binary operations on the elements of the

sets. For
S
we move upwards, and for

T
downwards. For instance, in L b

S
d = f and b

T
d = a.

The partially ordered set L is a lattice. It is closed both under
S

and
T
. All other sets are

subsets of L. The set M is not a lattice, but a lower semilattice, since sup(M) =2 M , that is

e
S
f = e

S
g = f

S
g = h =2M . However, inf(M) = a 2M . Similarly, U is an upper semilattice,

since sup(U) = h 2 U . N is not a lattice since neither sup(N) = h nor inf(N) = a belong to N .

S is a subset of L forming a lattice. Note that the binary operation
S
is not the same operation

for S as for L. In L, b
S
d = f , while in S b

S
d = h. Thus, S is not a sublattice of L.



However, it is not necessarily so that inf(X) 2 X and/or sup(X) 2 X, though it will

always hold that inf(X) 2 L and sup(X) 2 L. It is also not necessarily so that both

sup(X) and inf(X) belong to X simultaneously. When are we guaranteed that sup(X) 2
X and inf(X) 2 X, for X � L? We can show the following lemma, which follows readily

from the de�nitions of sup and inf, and therefore we will give no proof.

Lemma 4.3 For a lattice hL;
S
;
T
i, a (�nite) subset X � L contains its least upper

bound and its greatest lower bound, if X is closed under the binary operations
S
and

T
.

That is,

8x1; x2 2 X x1

[
x2 2 X ) supX 2 X and

8x1; x2 2 X x1

\
x2 2 X ) infX 2 X

(4.3)

Remark. Note though thatX being closed under
S
(and

T
) is a suÆcient condition. The

least upper bound of X can belong to X, without X being closed under
S
. A necessary

and suÆcient condition for supX 2 X is in fact

8x1; x2 2 X 9x3 2 X x1
S
x2 � x3: (4.4)

However, this is of no importance for the following presentation. 2

Subprocess union and subprocess intersection are in essence de�ned as ordinary set union

and set intersection on ordered 5-tuples of sets, see De�nitions 2.50. Of course, set union

and set intersection hold the properties required above for lattices, and thus, it is obvious

that the set of all subprocesses, S(P ), of any transition machine P , is indeed a lattice.

Subsets of S(P ) can be distinguished by demanding certain structural properties of

the elements, characterizations. Typically such characterizations concern accessibility,

coaccessibility and completeness. The subsets of S(P ) thus distinguished consist of all

subprocesses of P holding the requested property. This notion can be generalized as in

the following de�nition.

De�nition 4.4 Set of All Characterized Subprocesses

Given a characterization, X (�), of subprocesses of a process P , X (P ) � S(P ) is the set of
all subprocesses of P satisfying X (�). That is,

X (P ) = fS � P jS satis�es X (�)g: (4.5)

Remark. P is called the generating element, since from the characterization X (�) it gen-
erates the set X (P ). Of course, a characterized set is a subset of the set of all subprocesses
of the generating element. Therefore, each characterized set is partially ordered. Some

characterizations though, are such that the generated set is not closed under subprocess

union and/or intersection. When a characterized subset is closed under subprocess union

it will be said to be union closed. When it is closed under both union and intersection it

will be said to be closed. The characterized subset is then a sublattice of S(P ).
The closedness of a characterization is an inherent feature of the characterization itself,

not of the generating element. Thus, for a union closed characterization its generated set

will always be an upper semilattice, no matter what the generating element looks like. It

may happen that the generated set is empty, but then we trivially have a lattice.



Characterizations like X (�), are normally called predicates, see Tremblay (1987), but

since we will use X (P ) to denote the set of all elements of S(P ) satisfying X (�), we have
chosen to speak of characterizations. When regarding X (�) as a predicate, X (P ) is either
true or false, so that the generated set would have to be given as fP 0 2 S(P ) jX (P 0)g, the
extension of X (�) in the set S(P ). An element P 00 belongs to this set if and only if X (P 00)

is true. Viewing X (�) as a characterization and thus having X (P ) denote the generated
set, gives us a shorter and more concise notation. 2

Of speci�c interest to us will be characterizations such that they are closed under the

operation of subprocess union. Such characterizations de�ne upper semilattices of S(P ).
As shown by Lemma 4.3, for such characterizations there exists a unique supremal ele-

ment satisfying the characterization, and of which all other elements satisfying the same

characterization are subprocesses. This element is obtained by taking the union of all el-

ements satisfying the characterization. The supremal element of the characterized upper

semilattice X (P ) thus "contains" all subprocesses of P that satisfy the characterization

X (�); that is all elements of X (P ). Naturally, for S(P ), the supremal element is P itself.

Likewise, the ini�mal element of S(P ) is obtained by intersecting all subprocesses of P ,

which will of course yield the null process, ;P .
In this section we are set out to show that given an arbitrary process P and two

union closed characterizations, X (�) and Y(�), we can eÆciently �nd the supremal ele-

ment satisfying both characterizations. By eÆciently we mean, without using the brute

force method of calculating the entire sets X (P ) and Y(P ), intersecting them and then

calculating the union over all elements of the intersection. The brute force method would

naturally give a correct result, however, in practice it would be unusable due to the large

amount of subprocesses that would have to be generated. An eÆcient method would only

generate those subprocesses of P that were absolutely necessary in order to guarantee

that the sought element was found. Such an eÆcient method does exist, as will be shown.

To prove the claim above, we will need the following "toolbox".

Lemma 4.5 With two union closed characterizations X (�) and Y(�), and generating el-

ements P 0
; P

00 � P for the generated sets X (P );X (P 0);Y(P 00) � S(P ), the following

holds

1. X (P 0) � Y(P 00)) supX (P 0) � supY(P 00)

2. supX (P 0) = P
0 , P

0 2 X (P 0)

3. X (P ) � S(supX (P ))

4. X (P 0) = X (supX (P 0))

5. X (P 0) = X (P )
T
S(supX (P 0))

6. X (P 0) = X (P )
T
S(P 0)

Remark.

1. If all elements of X (P 0) are also elements of Y(P 00), then the union over all elements

of X (P 0) cannot be "larger" than the union over all elements of Y(P 00).



2. If the supremal element of the generated set is equal to the generating element, then

this element satis�es the characterization, and so must also belong to the generated

set.

3. The set of subprocesses of the supremal element of the generated set can include

processes that do not satisfy the characterization. For instance, all subprocesses of

an accessible process are not necessarily accessible.

4. The supremal element is the largest subprocess of the generating element satisfying

the characterization. Therefore, the two generated sets must be equal.

5. X (P ) is the set of subprocesses of P satisfying the characterization X (�). Thus,

when intersecting with S(supX (P 0)), only those subprocesses of supX (P 0) satisfy-

ing the characterization remain. Of course, this is the set X (P 0), and it is an upper

semilattice of S(P ).

6. X (P 0) is the set of all subprocesses of P satisfying the characterization X (�), such
that they are also subprocesses of P 0. Note the equivalence between these last two

expressions. Indeed X (P )
T
S(P 0) = X (P )

T
S(supX (P 0)).

Note that the characterization "subprocess" is union closed, as well as intersection closed.

Thus, it is valid to substitute S(�) for any of the characterizations above. For example,

Lemma 4.5.1 shows that X (P 0) � S(P 00)) supX (P 0) � supS(P 00) = P
00, which is used

to prove Lemma 4.8 2

For the sake of brevity, in the following P 0 and P
00 denote arbitrary elements of S(P ).

When we say that " X (P ) is a (characterized) upper semilattice", we implicitly also mean
"under the subprocess relation". The sets X (P 0) and Y(P 00) denote characterized upper

semilattices with unique supremal elements supX (P 0) and supY(P 00), respectively. Note

that it is always the case that supX (P 0) � P .

Lemma 4.6 The intersection of the upper semilattices X (P 0) and Y(P 00) is also an upper

semilattice.

Proof. We prove this by showing that the set X (P 0)
T
Y(P 00) is closed under union, that

is for all elements S 0; S 00 2 X (P 0)
T
Y(P 00) their union S

0
S
S
00 2 X (P 0)

T
Y(P 00).

When S
0
; S

00 2 X (P 0)
T
Y(P 00) , S

0
; S

00 2 X (P 0) ^ S 0; S 00 2 Y(P 00). When X (P 0) and

Y(P 00) are closed under union, we have that S 0
S
S
00 2 X (P 0) ^ S

0
S
S
00 2 Y(P 00) ,

S
0
S
S
00 2 X (P 0)

T
Y(P 00).

Remark. Note that we use the same notation for subprocess union, as S 0
S
S
00 above, and

(ordinary) set union, as X (P 0)
S
Y(P 00). We also use the same notation for subprocess

intersection, like S 0
T
S
00, and (ordinary) set intersection, like X (P 0)

T
Y(P 00) above. The

meaning will be clear form the context. 2

Lemma 4.6 means that the supremal element sup [X (P 0)
T
Y(P 00)] exists and is unique.

Note that we will assume that any characterization is always satis�ed by the null process.



That is, X (P ) and Y(P ) both include ;P , so that their (set) intersection X (P )
T
Y(P ) is

never empty. This signi�cantly simpli�es the proofs, while adding little loss of general-

ization. The characterizations pertaining to the supervisory control problem concern the

states of the processes. Since the null process has no states, it satis�es all such character-

izations. The null process as a solution to the problem of �nding the supremal element

of the intersection of two upper semilattices is deemed useless, however, and signals the

fact that no (useful) solution exists.

Next we make the following observation concerning the relation between the sets X (P 0)

and Y(P 00) and their supremal elements.

Lemma 4.7 For X (P 0) and Y(P 00), the supremal element of X (P 0) is a subprocess of the

supremal element of supY(P 00), if and only if X (P 0) is a subset of the set of subprocesses

of Y(P 00). That is,

supX (P 0) � supY(P 00), X (P 0) � S(supY(P 00)): (4.6)

Proof. ()) It is obvious that supX (P 0) � supY(P 00), 8P 000 2 X (P 0) P
000 � supY(P 00).

By de�nition, P 000 � supY(P 00) ) P
000 2 S(supY(P 00)). Since this holds for all elements

of X (P 0), it must hold that X (P 0) � S(supY(P 00)).

(() Obviously, supS(supY(P 00)) = supY(P 00). Therefore, X (P 0) � S(supY(P 00)) )
supX (P 0) � supS(supY(P 00)) = supY(P 00).

Remark. Note that supX (P 0) � supY(P 00) does not imply that X (P 0) is a subset of

Y(P 00). There may very well be elements of X (P 0) that are not included in Y(P 00). This

is so, since not all subprocesses of supY(P 00) necessarily satisfy the characterization Y(�).
However, it always holds that X (P 0) � Y(P 00)) supX (P 0) � supY(P 00). 2

Given a process P and two union closed characterizations, X (�) and Y(�), we are looking
for the largest subprocess of P that satis�es both characterizations. This is of course

the supremal element sup [X (P )
T
Y(P )]. By Lemma 4.6 we know that this supremal

element exists and is unique, since X (P )
T
Y(P ) is also an upper semilattice. We also

know that when the characterization is union closed, the set generated by an arbitrary

process P 0 is an upper semilattice. Speci�cally, this holds when P
0 � P , as is the case

when P
0 = supY(P ), for instance. Then also, supX (P 0) � supX (P ). We can thus

show the following subprocess ordering. Again, note that in X (P )
T
Y(P ),

T
denotes set

intersection, while in supX (P )
T
supY(P ) it denotes subprocess intersection.

Lemma 4.8 For upper semilattices X (P ) and Y(P ) with P as generating element, the

following ordering holds

sup [X (P )
T
Y(P )] � supX (supY(P )) � supX (P )

T
supY(P ): (4.7)

Proof. By Lemma 4.5.3 we have that Y(P ) � S(supY(P )) so that X (P )
T
Y(P ) �

X (P )
T
S(supY(P )). From Lemma 4.5.5 we get thatX (P )

T
S(supY(P )) = X (supY(P )),

and therefore X (P )
T
Y(P ) � X (supY(P )). By Lemma 4.5.1 we �nally have that the

left subprocess relation sup [X (P )
T
Y(P )] � supX (supY(P )) holds.



Obviously supX (supY(P )) � supX (P ). From Lemma 4.5.1 with P
0 = P

00 = P and

Y(�) = S(�), we can derive that supX (supY(P )) � supY(P ). From Theorem 2.52.3 we

then know that supX (supY(P )) � supX (P )
T
supY(P ).

Remark. It should be clear that this ordering also holds if we exchange the order of

calculation of the supremal elements of supX (supY(P )). That is,

sup [X (P )
T
Y(P )] � supY(supX (P )) � supX (P )

T
supY(P ); (4.8)

also holds, as is easily veri�ed.

2

Now we have an ordering of a number of supremal elements that can all be calculated,

either by brute force, calculating all elements of both sets, or by more e�ective means, such

as calculating the supremal elements of both sets and intersecting these, or calculating the

supremal element of the upper semilattice obtained from using the supremal element of

the other set as generating element. All three of these can be calculated, but to eÆciently

�nd the supremal element of both sets we must use as little computing power as possible.

Since the number of subprocesses of either set may be very large, the brute force method

is really no alternative. Even if an eÆcient way of calculating the supremal elements of

either set, without calculating the whole set, is given, calculating the supremal elements

of both sets and intersecting these, requires the operation of intersection. Calculating

supX (supY(P )) does not include this intersection of two processes, and so this would

seem to be the most e�ective way to calculate the sought supremal element, if this was

our answer.

Fortunately, when supX (P )
T
supY(P ) 2 X (P )

T
Y(P ) it is.

Theorem 4.9 For two union closed characterizations X (�) and Y(�), the supremal ele-
ment of the intersection X (P )

T
Y(P ) of the upper semilattices X (P ) and Y(P ) with P

as generating element, is equal to the supremal element of one of the characterized upper

semilattices with the supremal element of the other set as generating element, if the in-

tersection of the supremal elements of the respective sets is an element of the intersection

X (P )
T
Y(P ). That is,

supX (P )
T
supY(P ) 2 X (P )

T
Y(P )) sup [X (P )

T
Y(P )] = supX (supY(P )): (4.9)

Proof. By Lemma 4.8 we know that sup [X (P )
T
Y(P )] � supX (P )

T
supY(P ). Thus,

when supX (P )
T
supY(P ) 2 X (P )

T
Y(P ) we must have that supX (P )

T
supY(P ) is

equal to sup [X (P )
T
Y(P )]. Obviously, when this holds, the subprocess ordering of

Lemma 4.8 collapses, so that all the supremal subprocesses are equal, and hence

sup [X (P )
T
Y(P )] = supX (supY(P )) = supX (P )

T
supY(P ): (4.10)

Remark. This means that if we can show that the intersection of the supremal elements

of both sets is an element of both sets, then we can calculate the supremal element of



the intersection of the sets by �rst calculating the supremal element of one set, and then

calculate the supremal subprocess of this element satisfying the other characterization.

Calculating the supremal element of a subprocess P 0 � P satisfying a characterization,

would not be any di�erent from calculating the supremal element of P satisfying that

characterization. On the contrary it would in general require less number of operations.

Since Lemma 4.8 hold equally for supY(supX (P )), it does not matter in which order

the supremal elements are calculated. That is, Theorem 4.9 also holds for supY(supX (P )).
However, note that this is so only when sup [X (P )

T
Y(P )] = supX (P )

T
supY(P ). This

is an important fact which will be generalized to the case when sup [X (P )
T
Y(P )] 6=

supX (P )
T
supY(P ). 2

In the general case it does not necessarily hold that supX (P )
T
supY(P ) 2 X (P )

T
Y(P ).

Therefore, we are not guaranteed to acquire the sought supremal element by calculating

supX (supY(P )). We will show, though, that iteratively repeating the steps of calculating

the supremal elements of the previous calculation will eventually give us the supremal

element of the intersection of the sets. For this, we �rst de�ne the following operator,

applying the calculation of the supremal elements interweavingly, that is, �rst supY(P ),
then supX (supY(P )), then supY(�) of this element, etc.

De�nition 4.10 The Supremal Operator

For two union closed characterizations X (�) and Y(�), de�ne on the upper semilattices,

X (P ) and Y(P ), with generating element P , the supremal operator, supXYn(�), as

supXY0(P ) = supY(P )

supXY1(P ) = supX (supY(P ))

supXYn+1(P ) =
�
supX (supXYn(P )) n even

supY(supXYn(P )) n odd

(4.11)

The index n will be called the iteration index.

Remark. It is obvious that supXYn+1(P ) � supXYn(P ) � supXYn�1(P ), since each

increase in iteration index in essence adds one constraint to the generated set.

Note that when the iteration index, n, is odd, the outermost calculation of supXYn(P )
calculates supX (�), and when n is even it calculates supY(�). Thus, the following are

immediate consequences of the de�nition.

n odd : supX (supXYn(P )) = supXYn(P )
supY(supXYn+1(P )) = supXYn+1(P )

(4.12)

We could also have de�ned a complementary supremal operator, supYXn(�), which started
by calculating supX (�) of the generating element. In fact, all the properties that are

proved for supXYn(�) hold with duality for supYXn(�). Note though that, depending on

the ordering and the characterizations, it may in some cases be more eÆcient to use one

of the operators instead of the other. See for instance Example 4.2. When and why this

is so has not been investigated in any depth. One case where it is known which one is

more e�ective, is when one of the sets contains the generating element as the supremal

element. Then it is more e�ective to calculate the supremal element of the other set �rst.



Note also that supYXn(�) is not necessarily equal to supXYn(�), on the contrary. This is

also shown in Example 4.2. 2

Next we show that when applying the iterative supremal operator to two upper semilat-

tices, if and once a supremal element is equal to the next calculated supremal element,

then all other supremal elements will be equal to this element. That is, we start out with

a process P as generating element and calculate the supremal element with respect to

one characterization. Then we alternatively calculate the supremal element of the subset

obtained from using the supremal element of the other characterized set as generating

element. If an element is calculated that remains �xed, then it is �xed no matter how

many times more we perform the iteration.

Lemma 4.11 For two upper semilattices, X (P ) and Y(P ), we have that

supXYn+1(P ) = supXYn(P ), supXYn+k(P ) = supXYn(P ) 8k � 1: (4.13)

Proof. We will show only for odd n. The result for the case when n is even follows as a

dual. Just exchange " sup 1" for " sup 2", and vice versa.

()) When n is odd, we have by (4.12) that supX (supXYn(P )) = supXYn(P ) and that

supY(supXYn+1(P )) = supXYn+1(P ). When supXYn(P ) = supXYn+1(P ) we have that

supXYn+1(P ) = supY(supXYn+1(P ))
= supY(supXYn(P ))
= supXYn(P )

(4.14)

so that supXYn(P ) is the supremal element of both the characterized subsets X (supXYn(P ))
and Y(supXYn(P )). Therefore, no matter how many times we calculate the supremal ele-

ment of the sets obtained from supXYn(P ) as generating element, supXYn(P ) will always
be the result. This then, is our �xpoint.

(() When 8k � 1 supXYn(P ) = supXYn+k(P ) this speci�cally holds for k = 1, so that

supXYn(P ) = supXYn+1.

From Lemma 4.11 we also have the following immediate corollary.

Corollary 4.12 For two upper semilattices, X (P ) and Y(P ), we have that

supXYn+1(P ) = supXYn(P ),

supXYn(P ) = supX (supXYn(P )) = supY(supXYn(P ))
(4.15)

Now we know that if the iterative supremal operator supXYn(P ) �nds an element that

is equal from one iteration to the next, then this element is such that all consequent

iterations will return that element. Now we have to show that there does indeed exist

such an element and it will be found by the supremal operator , so that we can guarantee

that the supremal operator terminates in a �nite number of iterations. We prove this by

showing that there does always exist a lower bound for the supremal operator, such that,

for any n, this lower bound is a subset of supXYn(P ). It so happens that this lower bound
is in fact the element that we are looking for, the supremal element of the intersection of

both characterized sets.



Example 4.2 Calculating Supremal Element

This example shows an application of using the supremal operator to calculate the supremal

element of the intersection of two upper semilattices, X (P ) and Y(P ).

P

P3 P4 P5

P6 P7 P8

P9
P10 P11

∅ P

P2P11( )P
2( )P

Figure 4.2: The sets S(P ), X (P ) and Y(P ). P1 = supX (P ) and P = supY(P ). Note
that P6 and P7 both belong to X (P ), but P6

T
P7 = P9 =2 X (P ), thus X (P ) is not closed

under subprocess intersection. Neither is Y(P ), since P11 =2 Y(P ). However, it is easily

veri�ed that both sets are closed under subprocess union.

We have the generated set of X (P ) = fP1; P3; P4; P6; P7; P8; P10; P11; ;P g and for Y(P ) =

fP; P2; P4; P5; P7; P8; P10; ;P g, and, of course, the supremal element of their intersection is

sup [X (P )
T
Y(P )] = sup fP4; P7; P8; P10; ;P g = P4. The supremal element of X (P )

T
Y(P )

is obtained by iteratively calculating supremal elements as follows.

1. supXY1(P ) = supX (supY(P )) = supX (P ) = P1, since supY(P ) = P .

2. supXY2(P ) = supY(supXY1(P )) = sup [Y(P )
T
S(supXY1(P ))] =

sup fP4; P7; P8; P10; ;P g = P4

3. supXY3(P ) = supX (supXY2(P )) = sup [X (P )
T
S(supXY2(P ))] =

sup fP4; P6; P7; P8; P10; P11; ;P g = P4

We can note that the sets XY2(P ) and XY3(P ) are not equal, even though their supremal

elements are. However, for all even n � 2, XY2(P ) = XYn(P ), and for all odd n � 3, XY3(P ) =
XYn(P ). Furthermore, as shown by Lemma 4.13, sup [X (P )

T
Y(P )] � supXYn(P ) for any n.

Note also that using the complementary supremal operator supYXn(P ), which begins by calcu-

lating supX (P ) = P1, convergence would have been reached in just three supremal calculations,

instead of the four required above. This is so since supYX1(P ) = supY(P1) = P4, and then

supYX2(P ) = supX (P4) = P4, while supY(P ) = P and supXY1(P ) = supX (P ) = P1. Thus,

supY(P ) conveys no new information, and is in practice a redundant calculation.



Lemma 4.13 For upper semilattices X (P ) and Y(P ) with P as generating element, and

a supremal operator supXYn(P ), the following ordering holds for any iteration index n

sup [X (P )
T
Y(P )] � supXYn(P ) (4.16)

Proof. For n = 0 we have that supXY0(P ) = supY(P ). Obviously, sup [X (P )
T
Y(P )] �

supXY0(P ).

For n = 1, that sup [X (P )
T
Y(P )] � supXY1(P ) = supX (supY(P )) was shown in

Lemma 4.8.

The rest will follow by induction from these two properties.

Assume that Lemma 4.8 holds for n = m, that is sup [X (P )
T
Y(P )] � supXYm(P ). By

Lemma 4.7 this is equivalent to X (P )
T
Y(P ) � S(supXYm(P )). Since it always holds

that X (P )
T
Y(P ) � X (P ), we have that X (P )

T
Y(P ) � X (P )

T
S(supXYm(P )). From

Lemma 4.5.1, this implies that sup [X (P )
T
Y(P )] � sup [X (P )

T
S(supXYm(P ))].

For n = m+1 we have that (whenm is even)1 supXYm+1(P ) = supX (supXYm(P )). From
Lemma 4.5.6 supX (supXYm(P )) = sup [X (P )

T
S(supXYm(P ))]. By the assumption

above we have that sup [X (P )
T
Y(P )] � supXYm(P ) implies that sup [X (P )

T
Y(P )] �

sup [X (P )
T
S(supXYm(P ))] = supXYm+1(P ).

By the principle of induction, the results above prove that Lemma 4.13 holds.

Remark. Of course, we will always have that supXYn(P ) � supX (P )
T
supY(P ), see

Theorem 2.52.3, so that the ordering of Lemma 4.13 is a generalization of Lemma 4.8.

This lemma only concerns the special case of n = 1.

Note also that Lemma 4.13, together with the remark to De�nition 4.10, means that

for any n

sup [X (P )
T
Y(P )] � supXYn+1(P ) � supXYn(P ) � supXY0(P ) (4.17)

2

We know now that when the characterizations X (�) and Y(�) are union closed and such

that they are both satis�ed by the null process, there does exist a unique supremal element

that is contained in both sets X (P ) and Y(P ). Now we want to �nd this element by some

e�ective calculation.

Intuitively, since the lower bound of the supremal operator is the element that is

sought, this element is equal to the �xpoint of the supremal operator. If this were the case,

then we would indeed have an e�ective way of calculating this element, only calculating as

many elements of the sets X (P ) and Y(P ) as is absolutely necessary to �nd the supremal

element contained in both sets. It can be shown that this is so.

Theorem 4.14 For upper semilattices X (P ) and Y(P ) with P as generating element,

and the supremal operator supXYn(P ), the supremal element of the intersection of the

sets is equal to the �xpoint calculated by the supremal operator. That is,

supXYn+1(P ) = supXYn(P ), sup [X (P )
T
Y(P )] = supXYn(P ) (4.18)

1Again, it is straightforward to show that this also holds for odd m.



Proof. Again, we show only for even iteration index. The result follows similarly for odd

n.

()) When supXYn(P ) = supXYn+1(P ) we know by Corollary 4.12 that

supXYn(P ) = supX (supXYn(P )) = supY(supXYn(P )); (4.19)

and thus supXYn(P ) 2 X (P ), as well as supXYn(P ) 2 Y(P ). Therefore, supXYn(P ) 2
X (P )

T
Y(P ). Since we by Lemma 4.13 know that sup [X (P )

T
Y(P )] � supXYn(P ),

for any n, when supXYn(P ) 2 X (P )
T
Y(P ) we must have that sup [X (P )

T
Y(P )] =

supXYn(P ).

(() By (4.17) we know that sup [X (P )
T
Y(P )] � supXYn+1(P ) � supXYn(P ). Thus,

when sup [X (P )
T
Y(P )] = supXYn(P ) it must also hold that sup [X (P )

T
Y(P )] =

supXYn+1(P ), and thus supXYn+1(P ) = supXYn(P ).

Theorem 4.14 tells us that the iteration of the supremal operator will always �nd a �xpoint

for a �nite and bounded iteration index, and when it does, this �xpoint is the supremal

element of the intersection of the characterized upper semilattices X (P ) and Y(P ).
In this section we have shown that for arbitrary upper semilattices with common

universe of discourse, the supremal element of the intersection of any two such upper

semilattices can be eÆciently calculated by an iterative operator. This is a general result

that has applications to many areas, not only that of subprocess characterizations.

In the next sections, we will use the algorithm de�ned by this theorem, to calculate the

supremal trim and complete subprocess of a given process that is to act as a supervisor

for a plant. Furthermore, Theorem 4.9 will be used in calculating the supremal trim

subprocess, since it can be shown that the sets of accessible and coaccessible subprocesses

hold the required property that the intersection of the supremal elements is both accessible

and coaccessible.

4.2 The Supremal Trim Subprocess

As we are set out to show that we can calculate the supremal trim subprocess of a given

process S, we begin by de�ning the set of all trim subprocesses of S. Since trimness

of a transition machine is equivalent to accessibility and coaccesibility we will begin by

de�ning these sets.

De�nition 4.15 Sets of All Accessible, Coaccessible and Trim Subprocesses

For a process S set of all accessible subprocesses is de�ned as

A(S) = fS 0 2 S(S)jS 0 is accessibleg; (4.20)

the set of all coaccessible subprocesses is de�ned as

�A(S) = fS 0 2 S(S)jS 0 is coaccessibleg; (4.21)

and the set of all trim subprocesses is de�ned as

T (S) = fS 0 2 S(S)jS 0 is trimg; (4.22)
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Figure 4.3: The set A(P ) of all accessible subprocesses of P = S9. Note that, for

instance, S5
T
S8 is not accessible since q3 2 QS5

T
QS8 but no edge e0 with q3 = last(e0)

exists in ES5

T
ES8 . Note though, that the union of any two elements of A(P ) is still in

A(P ).

Remark. We use the notation �A(�) since coaccessibility can in some sense be regarded

as the complement to accessibility. It is an obvious fact that the set A(S) is closed under

union. This follows from Lemma 2.53. When a subprocess is accessible, every state is

reachable by some trace. These traces do not disappear under union, so in the union

all states are also accessible. See also Figures 4.3 and 4.4. Closedness of �A(S) under
union again follows from the fact that all traces survive under union, see Lemma 2.53. By

De�nition 2.18 we know that the set of trim subprocesses is the intersection of the set of

accessible and coaccessible subprocesses, T (S) = A(S)
T �A(S). By Lemma 4.6, and the

above comments, we know that T (S) is also closed under subprocess union. 2

By the remark above we know that A(S), �A(S) and T (S) are upper semilattices under
the operation of union. Furthermore, the null process is both accessible and coaccessible,

so that it belongs to both sets. Therefore, we can use the lemmas and theorems derived

in Section 4.1.

Since T (S) = A(S)
T �A(S) we could �nd sup T (S) by generating the sets of acces-

sible and coaccessible subprocesses and take the supremal element of their intersection.

However, we want to do this more eÆciently, not having to generate the entire sets of

A(S) and �A(S). It seems that De�nition 2.18 strongly suggests that the supremal trim

subprocess of a given process, can be obtained by intersecting the supremal accessible

and the supremal coaccessible subprocesses. As it turns out, this is so. But �rst, let

us give algorithms for calculating the supremal accessible and the supremal coaccessible

subprocesses.

The following algorithm is a variant of an algorithm given by Eilenberg (1974), though

without proof.
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Figure 4.4: The ordering of the subprocesses in A(P ).

Algorithm 4.16 Supremal Accessible Subprocess

De�ne an operator �(Q;Qi) : 2QS � 2QS ! 2QS on a state-space QS of a transition

machine S such that

�(Q;Qi) = fq 2 (QS �Q) j9(q0; �; q) 2 ES such that q0 2 Qig (4.23)

1. Set Q0  IS

2. Iterate Qi+1  �(
iS

j=0
Qj; Qi) until Qi+1 = ;

3. Qac =
iS

j=0
Qj and then Eac = fe 2 ES jfirst(e) 2 Qac ^ last(e) 2 Qacg

The generated accessible subprocess Sac � S then has the state-space Qac and the edgeset

Eac.

Remark. The � operator picks out those states of QS not in Q, such that they are

reachable from the states of Qi. Beginning with the initial states, � is used iteratively

to return sets of states reachable in one "step", by some edge, from the states of the

former iteration, until no more states can be reached from the present state subspace.

The operator is careful not to pick out states that are already known to be accessible.

Thus, even if there existed an edge from some state of the present state-space into some

former state-space, that reached state is not picked out again. The union over these state

subspaces of QS are the accessible states of QS. Removing all other states, which are

not reachable from the initial states, and all edges concerning these states generates the

accessible subprocess Sac � S. 2

Lemma 4.17 Algorithm 4.25 terminates in at most jQSj iterations.



Proof. All of the Qi are disjoint, since q 2 Qi+1 , q 2 QS ^ q =2 Q0

S
: : :
S
Qi. Therefore

(for n = jQSj) Qn = QS �
n�1S
j=0

Qj = ;.

Remark. This means that if the iteration goes on until i = jQSj � 1, then the algorithm

necessarily terminates. Note though, that termination after jQSj iterations is a worst

case scenario with all Qi singleton. Normally the algorithm will stop before the entire

state-space is exhausted, since once Qi = ; Qi+k = ; for k = 1; 2; : : : 2

Now we must also show that the accessible subprocess Sac � S found by Algorithm 4.16 is

indeed the supremal accessible subprocess. That is, we have to show that Sac � supA(S)
and supA(S) � Sac.

Lemma 4.18 Algorithm 4.16 �nds the supremal accessible subprocess of S

Proof. It is obvious that the states of Qac are accessible, so that Sac is an accessible

subprocess of S, and hence Sac � supA(S). Since both supA(S) and Sac are accessible,

we know that their tracesets hold all relevant information. Thus, tr(Sac) � tr(supA(S)),
and we have to show that tr(supA(S)) � tr(Sac).

Assume that tr(supA(S)) 6� tr(Sac). Then there exists a trace t 2 tr(supA(S)) but
t =2 tr(Sac). This trace we can writes as a sequence of well-ordered edges, t = e0e1 : : : em,

where ei 2 ES for i = 0; 1; : : : ; m. Obviously, first(e0) 2 Q0 and Q0 � QsupA(S) as well

as Q0 � QSac. On the �rst iteration, we calculate Q1 = �(Q0; Q0). That is

Q1 = fq 2 QS �Q0 j9(q
0
; �; q) 2 ES q

0 2 Q0 g: (4.24)

Clearly, since first(e0) 2 Q0, first(e1) 2 Q1 and e0e1 2 tr(Sac). Continuing this iteration
we get that t 2 tr(Sac). This contradiction shows that Sac is indeed equal to supA(S).

To �nd the supremal coaccessible subprocess of S, we essentially do the same thing as in

Algorithm 4.16, only backwards. We start with the marked states and iterate until no

more states can be found that reach the states picked out by the former iteration.

Algorithm 4.19 Supremal Coaccessible Subprocess

De�ne an operator 
(Q;Qi) : 2QS � 2QS ! 2QS on a state-space QS of a transition

machine S such that


(Q;Qi) = fq 2 (QS �Q) j9(q; �; q0) 2 ES such that q0 2 Qig (4.25)

1. Set Q0  MS

2. Iterate Qi+1  
(
iS

j=0
Qj; Qi) until Qi+1 = ;

3. Qco =
iS

j=0
Qj and then Eco = fe 2 ES jfirst(e) 2 Qco ^ last(e) 2 Qcog



Example 4.3 Supremal Trim Subprocess

q1
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Figure 4.5: The accessible and coaccessible subprocesses of a transition machine S. The

accessible states are Qac = QS�fq1; q6g and the coaccessible states are Qco = QS�fq4; q6g.

In Figure 4.5 is shown a transition machine S. Its initial state is q0, and its only marked state

is q5. The states fq0; q2; q3; q5g = Qac

T
Qco are both accessible and coaccessible, while q1 2 Qco

and q4 2 Qac. The state q6 is, of course, neither accessible nor coaccessible.

Note that the subprocess intersection sup

A(S)
T
sup �A yields a trim subprocess of S. However, the intersection between the accessible

subprocess A with QA = fq0; q2; q3g and the coaccessible subprocess C with QC = fq2; q3; q5g
does not result in a trim subprocess of S. QA

T
QC = fq2; q3g, so that A

T
C can be neither

accessible nor coaccessible.

The supremal coaccessible subprocess Sco � S then has the state-space Qco and the

edge-set Eco.

The proof for termination of Algorithm 4.19 and the proof of it �nding the supremal

coaccessible subprocess go along the same lines as shown for Algorithm 4.16. We will not

go into this again.

Now we have e�ective ways of calculating the supremal accessible and the supremal

coaccessible subprocess of a given process S. When using these algorithms to calculate

the supremal trim element, that is, sup
h
A(S)

T �A(S)
i
, we want to be as e�ective as

possible. From Theorem 4.9 we know that if we can show that supA(S)
T
sup �A(S) is

both accessible and coaccessible, then the supremal trim element can be calculated as

supA(sup �A(S)) or sup �A(supA(S)).

Lemma 4.20 For a given transition machine S, the intersection of the supremal accessi-

ble and the supremal coaccessible subprocesses is both accessible and coaccessible. That

is,

supA(S)
T
sup �A(S) 2 A(S)

T �A(S): (4.26)

Proof. All states of supA(S) are accessible andQsupA(S) is by de�nition the largest subset

of accessible states of QS. Similarily, all states of sup �A(S) are coaccessible and Qsup �A(S) is
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Figure 4.6: The relations between the initial and marked states of supA(S) and

sup �A(S). Obviously, supA(S)
T
sup �A(S) is both accessible and coaccessible.

the largest subset of QS that is coaccessible. Since all states of IS are accessible, IsupA(S) =

IS and Isup �A(S) � IsupA(S), thus IsupA(S)
T

sup �A(S) = IsupA(S)
T
Isup �A(S) = Isup �A(S). Like-

wise, since all states of MS are coaccessible, Msup �A(S) = MS and MsupA(S) � Msup �A(S),

and thus MsupA(S)
T

sup �A(S) =MsupA(S)

T
Msup �A(S) =MsupA(S). Note that this is not nec-

essarily so for accessible and coaccessible subprocesses that are not supremal. See also

Figure 4.6.

We know by Lemma 2.55 that tr(supA(S)
T
sup �A(S)) = tr(supA(S))

T
tr(sup �A(S)).

Since supA(S) is the supremal accessible subprocess of S, no traceset of any subprocess

of S can ever reach outside tr(supA(S)). Therefore, tr(sup �A(S)) � tr(supA(S)), so
that tr(supA(S)

T
sup �A(S)) = tr(sup �A(S)), meaning that the accessible states of the

subprocess supA(S)
T
supC 0(S) are exactly those that are accessible by sup �A(S). Nat-

urally, such a state q is also coaccessible in sup �A(S), so that there exists some trace t of
E
�

sup �A(S)
� E

�

S taking q into MS. Since q is accessible, t also exists in E
�

supA(S) � E
�

S, and

thus all reachable states of QsupA(S)
T

sup �A(S) are also coaccessible.

By sreasoning we can show that all coaccessible states of QsupA(S)
T

sup �A(S) are also acces-

sible. Thus, supA(S)
T
sup �A(S) is both accessible and coaccessible.

Remark. Therefore, supA(S)
T
sup �A(S) is trim and supA(S)

T
sup �A(S) 2 T (S). By

Theorem 4.9 we then know that sup T (S) = supA(sup �A(S)) = sup �A(supA(S)).
Note that the supremality of supA(S) and supC 0(S) is of essence here. The intersec-

tion of any accessible subprocess with any coaccessible subprocess, does not necessarily

yield a trim subprocess. On the contrary, see Example 4.3. 2

Now we know that the supremal trim subprocess of a given process can be found by

calculating the supremal accessible subprocess of the supremal coaccessible subprocess of

S, or vice versa. Therefore, the algorithm for calculating the supremal trim subprocess is

very simple.

Algorithm 4.21 Supremal Trim Subprocess



The following two steps calculate the supremal trim subprocess of a given process S.

1. Calculate sup �A(S) using Algorithm 4.19.

2. Calculate supA(sup �A(S)) using Algorithm 4.16.

Proof. The proof of this algorithm is given by Theorem 4.9 together with the fact that the

intersection of the supremal accessible and the supremal coaccessible subprocess is trim,

as shown by Lemma 4.20. Naturally, the proofs of Algorithm 4.19 and Algorithm 4.16

are also needed.

Remark. Of course, it does not matter if we calculate the supremal accessible or the

supremal coaccessible subprocess of S �rst. In Algorithm 4.21 we have just arbitrar-

ily chosen to calculate the supremal coaccessible subprocess �rst. However, there may

be performance gain in choosing to calculate one before the other. This has not been

investigated, though. 2

4.3 The Complete Accessible Subprocess

In this section we will give an algorithm for calculating the supremal complete subprocess

of a given process S. Complete, that is, with respect to some plant P with uncontrollable

events. In this section we will make the following three assumptions.

� We will assume that P is deterministic, though S may be non-deterministic.

� It will be assumed that S re�nes P , and thus, L(S) � L(P ).

� P and the subprocesses of S will all be assumed to be accessible.

The loss of generality induced by these assumptions is of minor practical consequence.

The main loss of generality comes from the assumption of the plant to be deterministic.

We believe that the algorithm presented works also for non-deterministic plants, but we

are unable to prove that at the moment. As noted in Chapter 3, though, either the

plant or the supervisor is normally regarded as deterministic. The requirement that S

re�nes P is natural. For the deterministic case, L(S) � L(P ) is agreed to be a reasonable

assumption. In the same way we feel that S re�nes P is an equally reasonable assumption.

As for accessibility, there is no real loss of generality at all in this. States not accessible

in S cannot concern the completeness of S, or its subprocesses, whatsoever. Note that S

is always a subprocess of itself, so that S is also assumed to be accessible.

Note that, the three assumptions are essentially the same as those made in Section 6 of

Wonham (1987), though here we allow the supervisor candidate to be non-deterministic.

For practical purposes, all three assumptions are satis�ed naturally.

Informally we have already mentioned the set of all complete subprocesses. The formal

de�nition is made here.



De�nition 4.22 Set of All Complete Subprocesses

The set of all complete subprocesses of a given process S, with respect to a process P with

uncontrollable event set �u, is de�ned as

C(S) = fS 0 2 S(S)jS 0 complete w:r:t Pg: (4.27)

Completeness is a characterization of a process, by which we select elements from the

set S(S) to compose the set C(S). In Section 4.1 we showed a number of interesting

properties for sets of characterized subprocesses of a given process that are closed under

subprocess union. To be able to use these in showing existence of a supremal complete

subprocess, we have to show that the set of all complete subprocesses is closed under

subprocess union.

Unfortunately, this is not the case, in general. This is illustrated by Example 4.4. It

comes from the fact that in the union of two subprocesses, states that were not accessible

in the synchronous composition of either of the subprocesses with the plant may become

accessible by a string s when synchronizing their union with the plant. It may be that the

ready set of such a state does not include all uncontrollable events de�ned by the ready

sets of the states reached by s in the plant. If so, then the union of the subprocesses is

not complete with respect to the plant and the uncontrollable events. Thus, we cannot

show that the set of all complete subprocesses is closed under union, so that C(S) is

not necessarily an upper semilattice. To use the upper semilattice properties to show

existence of some supremal complete element, we have to add more constraints to the

set we are searching, so as to guarantee that it is closed under union. This is where the

three assumptions stated above come in. Unlike the characterizations of accessibility and

coaccessibility, that only relied on the process itself, the completeness characterization

relates the subprocesses to some other process, outside the set. Thus, it is impossible

to regard the set of all complete subprocesses of S without imposing some restriction

relative to the plant. This restriction will be that S re�nes P . This also means that all

the subprocesses of S re�nes P .

Completeness relates subsets of QS and ES to subsets of QP and EP , namely those

subsets that survive the synchronous composition PkS. Thus, adding any number of

non-accessible states and edges to sup C(S) does not destroy its completeness. Of course,

all of these must be present in sup C(S). The problem is that sup C(S) may not be unique.
Another problem is that of computational complexity. To be sure to �nd the supremal

element we do not want to compare S and P over and over again. Certainly not if all

that it earns us is a lot of non-accessible states and edges that are of no importance for

the closed-loop system. Because of this, we will only search for accessible and complete

subprocesses of S. That is, we will search the supremal element of C(S)
T
A(S) � CA(S).

Under the three assumptions above, we can now show the following lemma.

Lemma 4.23 For a given accessible plant P and an accessible speci�cation process S

such that S re�nes P , CA(S) is closed under arbitrary subprocess union. That is

Q;R 2 CA(S)) Q
S
R 2 CA(S): (4.28)

Proof. The processes Q, R and Q
S
R are all subprocesses of S, and therefore they

re�ne S. Since S re�nes P and re�nement is transitive, see Lemma 2.41, Q, R and



Example 4.4 Subprocess Union not Complete
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Figure 4.7: Illustration of the fact that the union of two complete subprocesses, with

one non-accessible, is not necessarily complete.

In Figure 4.7 is shown two processes Q and R, that we consider to be subprocesses of some

process, say S, with �S = �P . Both Q and R are complete with respect to the plant P , with

uncontrollable event �u = f�ug. For R the states q1 and q3 are not accessible, and thus R is not

accessible. However, in the union Q
S
R these states become accessible, since q1 is accessible

in the process Q. The states p3 2 QP and q3 2 QQ
S

R are both reached by the same string,

s1s3 2 L(P )
T
L(Q

S
R). Since p3 has the uncontrollable event �u in its ready set, and q3 has

not, it is obviously so that q3 is an uncontrollable state of Q
S
R, and therefore Q

S
R is not

complete with respect to P and �u. Note though, that q3 is not an uncontrollable state of R,

since q3 2 QR is not accessible in R and hence not in PkR.

Example continued on next page



Example 4.4 continued
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Figure 4.8: Illustration of the fact that the union of two deterministic and complete

subprocesses is not necessarily complete, even though both are accessible.

In Figure 4.8 is shown two deterministic and accessible processes Q and R, that we consider to

be subprocesses of some process, say S, with �S = �P . Both Q and R are complete with respect

to the plant P , and the uncontrollable event �u = f�ug. Since both subprocesses are accessible,

the union Q
S
R is also accessible. However, even though both subprocesses are complete, their

union is not. After the string bac 2 L(P )
T
L(Q

S
R) the plant is in state p5 while Q

S
R is in q3.

The uncontrollable event �u = out(p5), while �u =2 out(q3), and therefore Q
S
R is not complete.

This follows from the fact that the union of the language of two subprocesses is a subset of the

language of their union. That is, L(Q)
S
L(R) =

n
ac; ba

o
� L(Q

S
R) =

n
ac; bac

o
, where the

overbar represent pre�x closure.

Note also that, though both Q and R re�ne P , their union does not. This is because the function

de�ning re�nement is di�erent for Q and R. We have that fQ(q2) = p4 and fR(q2) = p2.

Therefore, fQ
S

R(q2) is not unique, either p4 or p2, and thus it is easy to see that there exists

no function such that Q
S
R re�nes P .



Q
S
R also re�ne P . By Theorem 2.48 this means that PkQ = Q, PkR = R and

Pk (Q
S
R) = Q

S
R, since P is deterministic. Furthermore, when Q and R are accessible,

so is Q
S
R.

Assume that there exists a trace t 2 tr(Q
S
R) such that s = label(t) 2 L(Pk (Q

S
R)).

Assume further that out(Æ(P; s))
T
�u 6� out(last(t)), that is, the state q = last(t) is

uncontrollable and hence Q
S
R non-complete. Say that q 2 QR. Since PkR = R and

R is accessible, there exists a trace tR 2 tr(R) � tr(Q
S
R) such that q = last(tR) and

sR = label(tR) 2 L(PkR) � L(Pk (Q
S
R)). Denote by tP the trace of tr(P ) such that

label(tP ) = s = label(t), and by t0P the trace of tr(P ) such that label(t0P ) = sR = label(tR).

Since P is deterministic there can only exist one of each. Then, since t and tR both belong

to tr(Q
S
R), P is deterministic, Q

S
R re�nes P and t relQ

S
R tR, last(tP ) = last(t0P ) so

that hlast(tP ); last(t)i = last(tP kt) = last(t0P ktR ) = hlast(t
0

P ); last(tR)i.

Since R is complete, out(last(tP ))
T
�u � out(last(tR)) which contradicts that q is un-

controllable. Therefore, CA(S) is closed under union when S re�nes P .

Remark. Here we have denoted by tP kt and t
0

P ktR the traces of Pk (Q
S
R) resulting

from the synchronization. Obviously, P being deterministic is essential here, otherwise

there may exist several non-related traces with the same label s. Knowing that R is

complete, is then no guarantee for Q
S
R being complete. Note also that the proof holds

equally for the case that q 2 QQ.

The null process, ;S, is accessible, re�nes any process and is complete with respect to

any plant. Thus, ;S 2 CA(S), so that the characterization CA(�) satis�es the assumption
made in Section 4.1. 2

From Section 4.1 we know that Lemma 4.23 means that CA(S) is an upper semilattice

under the given conditions. Therefore, there exists a unique supremal element of CA(S),
the union over all elements of CA(S).

Theorem 4.24 The supremal accessible and complete subprocess of S (with respect to P

and �u), when S re�nes P , sup CA(S), exists and is unique.

Proof. Since CA(S) is an upper semilattice it is well-known that sup CA(S) exists and is

unique.

Remark. Note though, that sup CA(S) may be the null process, as could be the case

when all events of P are uncontrollable. 2

To synthesize sup CA(S), we could iteratively compare P and S, applying the test for

completeness and removing the uncontrollable edges on each iteration. However, a more

eÆcient algorithm, comparing P and S only once and then operating on S alone, will be

described here. The following algorithm generates a complete subprocess of S, which we

will call Sc.



Example 4.5 Union of Complete Subprocesses
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Figure 4.9: A speci�cation S, pertaining to two plants, P and P 0 such that S re�nes P

but not P 0. Q and R are two complete subprocesses of S.

The proof for the fact that CA(S) is closed under union, is illustrated in Figure 4.9. The

speci�cation S re�nes the plant P , but not P 0. Therefore, in P 0 sQ and sR can reach di�erent

states, even though they reach the same states in S. When S re�nes P we know that this is not

the case. In this speci�c example, S is a subprocess of P .

Two subprocesses of S, Q and R are shown to the top left in Figure 4.9. We assume these to be

complete with respect to P , even though no uncontrollable events are shown. S is not necessarily

complete, though in this case it is. If Q and R were to have only initial states in common (or

none) then there would be no problem, since then tr(Q
S
R) = tr(Q)

S
tr(R). However, in this

case the state q1 is in both state-spaces. Therefore, there arises a new trace in tr(Q
S
R), namely

tQt
0

R = (q0; sQ; q1)(q1; s
0

R; q2). A string with this label also exists in the plant, so that this trace

will survive under synchronization with the plant. However, if this trace should make Q
S
R

non-complete, then also R must be non-complete.

Example continued on next page



Example 4.5 continued

QQ

QR

Q QQ R

q
t sR R,

t  s,

Figure 4.10: Illustration of how jumping between the state-spaces of Q and R is possible

in Q
S
R.

In Figure 4.9 the proof of Lemma 4.23 is illustrated for one "step" only. However, in Q
S
R we

may jump back and forth between QQ and QP , as shown in Figure 4.10. Nonetheless, for all

states it holds that they are accessible, and each corresponds to one distinct state of QP , when

S re�nes P . Note that the in initial states q0, q
0
0 and q000 may be the same state.

Algorithm 4.25 Supremal Complete Subprocess

De�ne an operator �(Q;Qi) : 2QS � 2QS ! 2QS on a state-space QS of a transition

machine S such that

�(Q;Qi) =

fq 2 (QS �Q)j 9(q; �u; q
0) 2 ES such that �u 2 �u ^ q

0 2 Qig
(4.29)

1. Compare P and S, set Q0  fq 2 Qs jq is an uncontrollable stateg

2. Iterate Qi+1  �(
iS

j=0
Qj; Qi) until Qi+1 = ;

3. Quc =
iS

j=0
Qj and then QSc = QS �Quc and Ec = ES � fe 2 ES jlast(e) 2 Qucg

Remark. An uncontrollable state, is a state q 2 QS reached by a string s 2 L(P )
T
L(S)

such that there exists p 2 QP with out(p)
T
�u 6� out(q). Furthermore, by an uncontrol-

lable edge (controllable edge), we mean an edge labeled by an uncontrollable (controllable)

event.

Note that only transitions are removed from S to generate Sc. The state-space of Sc
is equal to the state-space of S; an (uninteresting) technicality we employ just to simplify

the proof of this algorithm.

2

The operator � picks out those states of QS not in
iS

j=0
Qj from which uncontrollable edges

lead into Qi. Each Qi can thus be seen as a forbidden subspace of the state-space QS.
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Figure 4.11: A general description of the various partitions of the state-space of an

arbitrary speci�cation S not necessarily re�ning P .

For S to be complete it cannot be allowed to enter any forbidden subspace, since then,

either the state reached is uncontrollable, or the state reached can reach an uncontrollable

state by one or more uncontrollable edges. In Algorithm 4.25, � is applied iteratively to

the states not already in the forbidden subspace, calculating a new forbidden subspace,

extending the previous one. The union over all forbidden subspaces is then the forbidden

subspace of QS, which S must be prevented from reaching. By removing those edges

leading into the forbidden subspace this is assured. Since the iteration goes on until no

more uncontrollable edges reach into the previous subspace, it is guaranteed that S can

be prevented from reaching the forbidden subspace by removing controllable edges, only.

See also Example 4.6 on page 133.

Lemma 4.26 Algorithm 4.25 terminates in at most jQSj iterations.

Proof. All of the Qi are disjoint, since q 2 Qi+1 , q 2 QS ^ q =2 Q0

S
: : :
S
Qi. Therefore

(for n = jQSj) Qn = QS �
n�1S
j=0

Qj = ;.

Remark. Note that termination after jQSj iterations is a worst case scenario with all

Qi singleton. Normally the algorithm will stop before the entire state-space is exhausted,

since once Qi = ; Qi+k = ; for k = 1; 2; : : : 2

In Figure 4.11 is given a general description of the various partitions of the state-space of

an arbitrary speci�cation, not necessarily re�ning P . When S is accessible and re�nes P ,

then its state-space is given by the inner boundary, surrounding the dark gray area. The

extended set of uncontrollable states, is represented by the white area, Quc = Q0

S
Q1

S
: : :

The remaining states QS � Quc,, represented by the entire gray area, are controllable.

The gray area within the thick boundary is the states of sup CA(S), while the dark gray

area is the states that survive under synchronization, f(QsupA(PkS)) � QS. Note that

the state-space of sup C(S) (assuming it exists) includes everything but the intersection

Quc

T
f(QsupA(PkS)).



Naturally, Sc as given by Algorithm 4.25 is not necessarily accessible. Therefore we

have to calculate the supremal accessible subprocess of Sc, that is, supA(Sc). Obviously,
this does not destroy completeness, since it merely removes states and edges that are non-

accessible due to the removal of Quc and its associated edges. supA(Sc) is both accessible
and complete.

Now we must also show that the accessible and complete subprocess supA(Sc) � S

found by Algorithm 4.25 is the supremal accessible and complete subprocess. That is,

there does not exist a transition machine S 0 � S such that S 0 is accessible and complete

and supA(Sc) � S
0. This is shown by the following lemma.

Lemma 4.27 Algorithm 4.25 �nds the supremal accessible and complete subprocess of

S.

Proof. Consider how Algorithm 4.25 works. Q0 contains the uncontrollable states, that

is, states that can be reached by strings of the closed-loop system such that P can generate

an uncontrollable event which S cannot follow. Since S is accessible and L(S) � L(P ),

Q0 are all accessible states. By de�nition, for S to be complete it must be such that it

prevents the closed loop system from ever reaching these states. Formally,

Q0 = fq 2 QS j9s 2 L(P kS) hp; qi 2 Æ(P kS; s) out(p)
T
�u 6� out(q)g (4.30)

This is straightforwardly given by the inverse of (3.23), with P kS instead of regarding

P and S separately. Next, Q1 is generated by selecting those states which lead into Q0

by uncontrollable events. Again, Q1 only contains accessible states. That is,

Q1 = fq 2 QS �Q0 j9(q; �u; q
0) 2 ES �u 2 �u ^ q

0 2 Q0g: (4.31)

This is equivalent to

Q1 = fq 2 QS �Q0 j9�u 2 out(q)
T
�u ÆS(q; �u)

T
Q0 6= ;g: (4.32)

For Q2 we similarly have that Q2 contains those states which lead us into Q1. That is

Q2 = fq 2 QS � (Q0

S
Q1) j9�u 2 out(q)

T
�u ÆS(q; �u)

T
Q1 6= ;g (4.33)

For Q1, by (4.32) a single uncontrollable event takes us into Q0. For Q2, a single uncon-

trollable event takes us into Q1, from where a single uncontrollable event takes us into Q0.

That is, from Q1 and Q2 a string of length 1 and length 2, respectively, of uncontrollable

events take us into Q0. Naturally, from Qi, a string of length i of uncontrollable events

takes us into Q0. Of course, this includes the string of length zero, the null string ", taking

us from Q0 to Q0 itself.

Thus, for the union over all Qi we have that these are the states from which strings of

uncontrollable events of any length less than i + 1 lead to Q0. The subprocess of S with

the transitions to these states removed is Sc. It is clear that supA(Sc) is complete, that
is supA(Sc) 2 CA(S) and supA(Sc) � sup CA(S).

Assume now that sup CA(S) 6� supA(Sc). Then Qsup CA(S) 6� QsupA(Sc) or Esup CA(S) 6�
EsupA(Sc). Since both sup CA(S) and supA(Sc) are accessible, their edge-sets contain all



states. Therefore, when sup CA(S) 6� supA(Sc), there exists an edge e0 2 Esup CA(S) such

that e0 =2 EsupA(Sc). Of course, e
0 is not accessible or last(e0) 2 Quc, otherwise e

0would not

have been removed from ES in forming EsupA(Sc) Thus, sup CA(S) is not complete or not
accessible. This is of course a contradiction, saying that if sup CA(S) 6= supA(Sc) then
sup CA(S) =2 CA(S), and thus sup CA(S) = supA(Sc).

Remark. Note that the proof relies on L(S) � L(P ). Otherwise, some accessible edges

pertaining to strings in L(S) not in L(P ) could be allowed in sup CA(S), since these

strings cannot be present in the closed-loop system. The algorithm, however, makes no

such distinction. L(S) � L(P ) makes sure that such edges do not arise. 2

4.4 The Supremal Complete and Trim Subprocess

We know that the sets CA(S) and �A(S) are closed under subprocess union. By Lemma 4.6
we then also know that CA(S)

T �A(S) is closed under subprocess union, so that a unique

supremal element sup
h
CA(S)

T �A(S)
i
exists. The problem is �nding that element algo-

rithmically. One way is to generate the sets CA(S) and �A(S), and then take the supremal

element of CA
T �A(S). Though, formally no problem, this approach is not usable in prac-

tice, due to the large amount of subprocesses that has to be generated for a realistic

implementation.

We want to generate as few subprocesses as possible while still being guaranteed that

we can �nd the supremal element. The following algorithm uses Algorithm 4.25 and

Algorithm 4.21 to iteratively calculate the supremal complete and trim subprocess until

a �xpoint is reached. Thus, we will only generate as many subprocesses as is required to

�nd the one that is trim, complete and supremal. Naturally, under the assumptions that

the plant is deterministic and the speci�cation re�nes the plant.

Algorithm 4.28 Supremal Complete and Trim Subprocess

Using Algorithm 4.25 and Algorithm 4.21 above, calculating the supremal complete and

supremal trim subprocess, we iterate through the following steps.

1. Set S0  sup CA(S)

2. Calculate Si+1  sup �A(Si) if Si+1 = Si terminate, else

3. Calculate Si+2  sup CA(Si+1) if Si+2 = Si+1 terminate, else

4. Goto 2

Remark. Initially the supremal complete and accessible subprocess is calculated, then

the supremal coaccessible subprocess of this. If a �xpoint is not reached, the supremal

complete and accessible subprocess of the resulting transition machine is calculated, and

so on until termination. See also Example 4.6. 2



Lemma 4.29 Algorithm 4.28 terminates in at most n�1
2

number of iterations, for n =

jQSj.

Proof. In the worst case, we iterate until ;S and only one state for each calculation of

sup CA(Sj) or sup �A(Si) is removed by Algorithm 4.25 and Algorithm 4.21, respectively.

Thus, two states per iteration in Algorithm 4.28 are removed. On the initial step one

state is removed in the worst case. With jQSj = n we have that 1 + 2i = n, for number

of iterations i. This means that the supremal number of iterations can be i = n�1
2
.

Remark. Starting with jQSj = n, S0 has n � 1 states. Calculating S1 = sup �A(S0)
requires n � 1 operations, and S1 has n � 2 states. Calculating S2 = sup CA(S1) then
requires n� 2 operations and S2 has n� 3 states, and so on. It is obvious that the total

number of operations, that is, the total number of states we have to check, in the worst

case, is n+ (n� 1) + : : :+ (n� n+ 1) = n(n+1)

2
. 2

Does Algorithm 4.28 really generate the supremal complete and trim subprocess? The

answer has in fact already been given in Theorem 4.14, but the following theorem proves

this for Algorithm 4.28 speci�cally.

Theorem 4.30 Algorithm 4.28 generates the supremal complete and trim subprocess.

Proof. The proof follows from Theorem 4.14. We know from the fact that CA(S) and
�A(S) are closed under union and from Lemma 4.6 that CA(S)

T �A(S) is closed under

union. What Algorithm 4.28 does is in fact implement the supremal operator, de�ned

by De�nition 4.10. To see this, note that the iteration of Algorithm 4.28 �rst calculates

sup CA(S), then sup �A(sup CA(S)) and then sup CA(sup �A(sup CA(S))), and so on. Thus,

Algorithm 4.28 implements the operator sup �ACAn(S).

The iteration halts when sup �ACAi(S) = sup �ACAi+1(S), and by Theorem 4.14 we then

know that this is indeed the supremal element sup
h
CA(S)

T �A(S)
i
. That is, the supremal

complete and trim subprocess of S, sup
h
C
T
A(S)

T �A(S)
i
.

An algorithm for �nding the supremal controllable sublanguage of a given language is given

by Wonham (1987). This algorithm is of order m2
n
2, according to Kumar (1991) Remark

3.12, where m and n are the number of states in the minimal state-machine realizations

of the languages L(P ) and K, respectively. Kumar (1991) gives an algorithm of order

mn operating on automata. However, this algorithm is only described for deterministic

state-machines and does not guarantee a trim closed-loop system.

In Kumar (1995) is shown a similar application of lattice theory to synthesis of supervi-

sors. However, Kumar (1995) considers deterministic automata, and so models a discrete

event process by its language. Therefore, languages are ordered into lattice structures,

whereas we order automata, which are allowed to be non-deterministic. Kumar (1995)

shows that a non-deterministic process can always be transformed into a deterministic

process with the same language. A fact also shown by Hopcroft (1979). This is irrelevant

to the approach taken in this work, however. To us the states have signi�cant meaning.

Even if two states can be reached by the same string, they do not (necessarily) convey



the same information. Typically, the states distinguish between which speci�c product

has undergone what sequence of operation. This information is lost in the minimal, de-

terministic automaton, where a state only says that some product has been through the

sequence of the events leading to this state. This is not detailed enough for us, as was

shown in Example 2.3.

Algorithm 4.28 presented in this section is similar to Algorithm 3.1 of Kumar (1995),

though there it is presented without proof. (The proof is left as an exercise for the reader.)

With the operators de�ned in Algorithms 4.25, 4.16 and 4.19, we feel that our versions

are more compact and concise.

4.5 Chapter Summary

In this chapter we have shown that transition machines can be ordered in lattice struc-

tures according to the subprocess relation. Furthermore, sets of subprocesses can be

distinguished by certain characterizations, mainly the set of all complete and accessible

and the set of all trim subprocesses. These sets can then be ordered in upper semilattice

structures, so that the supremal element of the respective sets exists. For the set of all

complete and accessible subprocesses, we also have to add the constraint that the gener-

ating element re�nes the plant. We have shown how to �nd these supremal elements, and

given algorithms for automatic synthesis. We have also shown how these algorithms can

be used to �nd the supremal complete and trim subprocess of a given transition machine.

This is done iteratively, no general closed form expressions exist. Given a transition ma-

chine as a speci�cation for the desired behavior of a plant, the supremal complete and trim

subprocess of that speci�cation is, of course, the minimally restrictive supervisor guaran-

teeing that the closed-loop system is trim and always behaves within the boundaries set

by the speci�cation.

Some of the lattice results given are well-known and shown by Tremblay (1987), for

instance. Other results for the speci�c application of calculating a complete and trim

supervisor are new. The de�nition of the supremal operator to calculate the supremal

element of the intersection of two upper semilattices, when it exists, is new, as far as we

know. The algorithms given for calculating complete, accessible and coaccessible subpro-

cesses are not new, however. Eilenberg (1974) also shows the algorithm for accessibilty

and coaccessibility, while the algorithm for completeness is well-known within the super-

visory control theory. See Kumar (1991), for instance. What is new, is the application of

the algorithms to non-deterministic systems, and the short and concise notation resulting

from the de�nition of the various operators.

In the next chapter we will elaborate on aspects of speci�cations, which can be given

with various intentions, such as forbidden states and connected events. Enforcing these

speci�cations generates a subprocess of the original speci�cation from which the supervi-

sor subprocess is synthesized. Since we know that a subprocess re�nes all processes that

its superprocess re�nes, enforcing such speci�cations is legal; we know that such manip-

ulations are allowed within the theory presented in the previous chapters. In fact, any

operation that preserves the re�nement property can be applied, which means that we

can also speci�y forbidden strings and add extra marking, if necessary.



Example 4.6 Supervisor Calculation

In this example the process S is a supervisor candidate for the plant P , and the supremal

complete subprocess of S, with respect to P will be generated. These processes are chosen so

as to best illustrate the described characteristics of this calculation, yet at a manageable size.

We will not even try to give any physical interpretation of the shown transition machines. In

Chapter 6 examples with relevant practical aspects will be described.
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Figure 4.12: The supervisor candidate S and the plant P . The uncontrollable events are

�u = fb; c; eg. The initial states are IP = fp0g and IS = fq0g. The encircled states are

the marked states of S, that isMS = fq4; q5; q6; q7g. Notice that only states of importance

have been named.

In Figure 4.12 the speci�cation and the plant is shown. It is obvious that both processes are

accessible, P is deterministic and S re�nes P . Therefore, we can use Algorithm 4.25. However,

it is also obvious that S is not trace nonblocking, since a terminal state is not marked.

Comparing S and P , the algorithm sets Q0 = fq2g, since after the string ab, P can execute the

events c and e, both of which are uncontrollable. However, after ab in the state q2, S can only

follow event c, and thus S is not conforming. Hence S is not complete with respect to the plant.

Note though that L(S) is controllable. The state q3 is thus an uncontrollable state, and it is the

only uncontrollable state, as is easily veri�ed.

In calculating Q1, Algorithm 4.25 applies the � operator, with Q0 as both arguments. Thus,

states of QS not in Q0 are checked to see if any exist such that they reach into Q0 via an

uncontrollable event. In this case, q1 is the only state that reaches q2 by an uncontrollable

event, b. Thus, Q1 = fq2g.

Next, the operation �(Q0

S
Q1; Q1) = �(fq2; q3g ; fq2g) is performed. However, no states of

QS �Q0

S
Q1 reach into Q1 by uncontrollable events, so Q2 = ;, and the iteration terminates.

Now all those edges reaching some state of Q0

S
Q1 is removed. In this case the edges (q1; b; q2)

and (q0; a; q1) are removed. Note that the transition machine is \pruned" at controllable events

only.

The resulting transition machine is shown in Figure 4.13. It is clear that the resulting process

is complete with respect to the plant. However, it is also clear that it is not trim. Even if it

would have been trim to start with, by removing the mentioned edges, the marked state q4 is

no longer reachable from the initial state q0.

Example continued on next page



Example 4.6 continued

Next we show how Algorithm 4.21 calculates the supremal trim subprocess of the result obtained

from calculating Sc of Figure 4.12.
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Figure 4.13: The complete subprocess Sc � S, as calculated by Algorithm 4.25.

In calculating the supremal trim subprocess of Figure 4.13, Algorithm 4.21 uses Algorithm 4.19 to

calculate the subprocess sup �A(supA(Sc)). First the non-accessible states are removed. Clearly,

q2, the edges reaching q4 are non-accessible. Removing these generates supCA(S).

However, supCA(S) is accessible but not coaccessible. It is not coaccessible, since the terminating

state reached by c from q7 cannot reach any of the marked states, fq4; q5; q6; q7g. Thus, we will
have to calculate the supremal coaccessible subprocess of supCA(S), that is sup �A(supCA(S)).
This removes the c-transition from q7. The resulting process, sup �A(sup CA(S)) is shown to the

left in Figure 4.14. This process is both accessible and coaccessible, but it is no longer complete,

even though it was complete before it was made coaccessible.
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Figure 4.14: The resulting processes of the respective calculations sup �A(sup CA(S)) and
sup �A(supCA(sup �A(supCA(S)))). Note that sup �A(supCA(S)) is no longer complete, even

though it was complete before it was made coaccessible.

Therefore, the calculation of the supremal complete and accessible subprocess has to be carried

out again. As it turns out, this process is not coaccessible, so the supremal coaccessible part of it

has to be calculated. Finally, we arrive at a process that is complete, accessible and coaccessible.

This process is shown to the right in Figure 4.14. Note that, though in this example the resulting

complete and trim supervisor is deterministic, this is not generally the case.



Chapter 5

Control of Discrete Event

Fabrication Processes

In this chapter we aim to put the supervisor synthesis procedure into perspective. Im-

plementing a control system is not just a matter of synthesizing a supervisor. There are

numerous other aspects that have to be considered, and inconsistencies between these and

the supervisory control theory have to be resolved.

Even though the main concern of this thesis has hitherto been on supervisor synthesis,

given a plant model and product speci�cations, it has been inevitable not to investigate

the aspects of plant and product modeling. In fact, most of the problem statements

and results in the previous chapters originated from research of applications of object-

oriented design methods to the implementation of control systems for 
exible fabrication

processes1. This work has since been continued by a cross-departmental academic research

team, in conjunction with a number of industrial participants. Here we present the early

results already presented in our previous works shown on page ii, though modi�ed to �t

the terminology and proposed structure of the continued work in its current status.

We begin with some aspects of modeling discrete event fabrication processes, relevant

to the implementation of control-systems, as well as for actual control of such processes.

We argue that an object-oriented design approach facilitates both the implementation and

the 
exibility, due to its inherent feature of separating control of the individual physical

subsystems from control of the system as a whole. A description of the object-oriented

modeling approach follows. This is then followed by a discussion of high-level product

descriptions in such systems. Then we discuss a speci�c aspect of event synchronization

that is needed as a result of using reusable autonomous resources to model the plant,

event connection de�ned in Section 5.4.2. Next we describe how the individual product

routes are to be joined to describe a global speci�cation on the behavior of the plant.

By interleaving the product routes in their Petri net form we model the sharing of the

resources among the products and synchronize with the plant model. It is from this

speci�cation that we generate the supervisor. Finally we summarize the approach, and

apply the theory presented in the previous chapters.

1Here we use the term fabrication process to mean, not only discrete event manufacturing systems,
but also batch processes and assembly systems.
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Figure 5.1: Three levels of fabrication process control.

5.1 Introduction

Control of manufacturing systems can be applied on several di�erent levels. We will

identify three of these, and simply call them the low, middle and high level. See Figure 5.1.

On the low level the emphasis of control is on the implementation of certain behavior of

each physical device involved in the manufacturing process. At this level very simple

primitives, like Boolean functions and feedback control-loops, make sense. Each device is

controlled separately and close to the hardware. Some local control mechanism regulates

the 
ow of energy and other resources of the device in accordance with a given speci�cation

in order to accomplish a given operation. For instance, to control the movement of a robot

arm at this level would involve controlling the position, speed and acceleration of each

individual joint.

On the middle level the device is viewed as a more uni�ed entity, o�ering particular

services to be invoked, with the lower level implementation being hidden from the user.

At this level control over the device is more a question of sequencing, allowing for logical-

branch primitives. Complex actions can thus be described in a more feasible way, building

on the capabilities of the lower level. The movement of a robot arm can be described in

terms of moving the end e�ector, the individual joints are of no concern at this level. Still,

the control is local, focused on each device, and hence makes no provision for expressing the

interworking between the devices that must exist for pro�table work to be accomplished.

On the high level the emphasis is on the problem of synchronizing the individual

devices. In order for the manufacturing of products to take place in an ordered way, the

controller has to ensure that some actions are taken before others, and that other actions

are not carried out if various conditions are not ful�lled, etc. A machine can obviously

not be loaded unless the previous workpiece has been unloaded, a robot cannot fetch a

new item while it has not disposed of the current one, and so on. Obviously, this calls

for some kind of sequential control to guarantee the orderly 
ow of events. This thesis

shows that the supervisory control can provide the means to generate such control laws

for discrete event fabrication processes.

The low and middle levels have traditionally been the realm of Control Engineering,
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Figure 5.2: Synthesization structure of a control system for a 
exible fabrication process.

In this thesis we have in the previous chapters mainly been concerned with the part within

the gray oval; generating a supervisor given product speci�cations and resource models.

with the high level being seen as subdivided between Computer Science and Operations

Research. However, with the supervisory control theory, especially in the input/output

interpretation, the problem on the high level can be stated as "given a dynamic plant,

�nd a controlling entity to keep the output of the plant within some given speci�cation".

This statement could just as well describe the traditional problem of control engineering;

the only di�erence between the types of control is the character of the available control

actions and plant output.

The emphasis of the work presented in this thesis is on the global control software at

the high level, not on the local control of individual devices. Our aim is to facilitate true


exibility in fabrication processes by separating the global control at the high level from

the lower level speci�c control. Also, we want the system to be able to incorporate new

products and new equipment with minor or no reprogramming of the control system. This

is achieved by using a modular control system where the modules are as independent of

each other as possible, with control laws synthesized from suitable models of the products

and the machining resources.

As mentioned in Chapter 1, one of the main reasons for fabrication processes to be

in
exible, despite the fact that their components are themselves highly 
exible, is that

the control system is heavily in
uenced by the product routes relevant at the time of

implementation. A way to remedy this is to impose a modular control system with a strong

separation between the modules. The stronger the separation between two modules, the

more we are guaranteed that a change in one of them will not a�ect the other.

One way to achieve a strong separation between two modules of a control system is

to implement one without regard for the implementation of the other. For instance, we

should be able to specify product routes without concern for what resources there are

available in the fabrication process, or what other products there may exist in the system

simultaneously. A clear separation between the product speci�cations and the resource

models facilitate this. Also, we should be able to model the resources without concern for



what other resources there may exist in a speci�c application, or what kind of products

this process is going to produce. This enhances the 
exibility of the system, since we can

introduce new resources and new products (within reason) without a�ecting the modules

already present within the control system.

However, for pro�table work to be carried out, the modules of the control system

must interact. This interaction must be performed in an orderly way to guarantee that

all products can be satisfactorily produced. For this, we use the models of the products

together with the models of the fabrication resources to synthesize a supervisor that

acts as a controller, commanding the resources to carry out tasks in such a way that

the resource interactions cannot lead to undesired system states. For control systems of

fabrication processes we propose the implementation scheme shown in Figure 5.2. The

lion's share of this thesis has been concerned with the supervisor synthesis, but in the

rest of this chapter, we will discuss the resource modeling and the compilation of high

level product speci�cations into a format suitable for supervisor synthesis. Resource and

product models applicable for control, once the supervisor is generated, are given by

Adlemo (1995a), Andr�easson (1995) and Gullander (1995). The work presented in this

thesis builds on earlier work looking at some of these problems. See page ii. The work

has focused on three sub-topics.

Resource models { the capabilities, constraints and behavior of the production re-

sources must be adequately modeled. Such a model must also be transformable into

a low-level model usable for supervisor synthesis.

Product models { the operations necessary to produce a speci�c product are given as

high-level operation lists. These must also be transformable into low-level models,

usable for supervisor synthesis, as well as for debugging and manual control.

Control synthesis { this includes mapping the operation lists onto the capabilities of

the plant for static resource allocation, and to generate a supervisor that dynamically

drives the system outside any undesired states, but always able to reach some desired

state.

As pointed out by Balemi (1992), two reasons for the supervisory control theory not to

have gained a widespread acceptance in industrial applications, are the problem of model

interpretation and that of supervisor implementation. For supervisor synthesis we need

models of the plant and the product speci�cations given as discrete event processes on

a high abstraction level, such as state-machines or Petri nets. For implementation of

control systems for complex and 
exible fabrication processes, there is a need for entirely

di�erent kinds of models. An implementor or operator of such a control system would not

be content with working with Petri nets or state-machines on a global scale. For product

speci�cation, for instance, we would like to be able to merely give the operations that

the workpart is to undergo to be satisfactorily produced, together with actions to take at

speci�c points concerning malfunctioning. Then a product can be speci�ed independently

of the plant it is to be produced by, and the same speci�cation can be used to produce the

same product in di�erent plants. This approach is becoming widely accepted within the

chemical batch processing industry, see, for instance, SP-88 and Tittus (1995b). Resource

models must also be available in a format suitable for control-system implementation, as



well as for operator interfaces. An operator cannot be presented with a large Petri net

representing the global fabrication process.

This inconsistency between what the system should look like to an implementor or

operator, and what the system should look like for supervisor synthesis, has to be resolved.

One way to do this is to "compile" high-level product speci�cations and resource models

into a format suitable for supervisor synthesis; see Figure 5.2. Such a compilation must

be done very carefully, so as to maintain the connection between the two levels of views.

The topic of control synthesis above reveals that we will view the supervisor in the

Balemi-framework, the input/output interpretation, where the supervisor generates com-

mand events, and the plant generates response events. The response events are considered

to be uncontrollable, so that, once the supervisor has sent a command to initiate some

action, it must always be able to accept the response. This work has been continued by a

cross-departmental research project at Chalmers University of Technology, looking also at

operator interfaces and structured design methodologies for 
exible fabrication processes.

Our present goal is to answer the question: where does the supervisor �t into all of this?

5.2 Object Oriented Resource Modeling

The resource models are based on an explicit mapping between elements of the phys-

ical system and modules of the control system. Using object-oriented principles, see

Shlaer (1992), we create internal resources corresponding to the physical devices. For

each physical device there exists a corresponding internal resource, handling the com-

munication between that physical device and the other physical devices through their

corresponding internal resources. The functionality implementation and I/O-demands

of each physical device is encapsulated within a closed module. This readily structures

the system in a coherent, logical way. The control system is modularized, and the I/O-

requirements of the system are partitioned into logically connected units. Furthermore,

the concept of an internal resource brings the possibility to raise the modules to equal

levels of "intelligence", even though they may be of varying sophisticacy in the real world.

For instance, a collection of a number of low-level devices, such as air-pressure cylinders,

can be viewed as a uni�ed device. Thus, as seen from the controller and the other internal

resources all devices can be made to look equally intelligent.

For reusability of the internal resources, it is imperative that they are as decoupled

as possible. Therefore, the synchronization of the system is administered by a separate

entity{the controller. This is the only module that has to know every resource in the

system, thus it will contain and encapsulate the system-speci�c aspects. This separates

the control of the individual devices from the control of the whole system. To make

the internal resources general they are partitioned into a general part comprising general

information common to all similar devices, and a speci�c part that particularizes this

information, adapting it to the actual physical device. See Figure 5.3.

The general part is described by a DEP, typically an automaton or a Petri net, rep-

resenting the behavior of the physical device. Thus, the general part keeps track of the

current state of the external resource. The internal resources have a client/server rela-

tionship, and synchronize their activities using high-level messages. These messages are

sent and received by the general part, that executes resource-speci�c tasks upon receipt of



a message. The speci�c part has to translate the high-level messages exchanged between

the internal resources into some (lower-level) proprietary protocol that can be understood

by the physical device. In some cases this translation may simply be to relay the received

message to the physical device. In other cases, though, when the functionality promised

by the general part is not available by the physical device itself, this functionality is im-

plemented within the speci�c part. In many cases this leads to the execution of speci�c

state-machines, and we may thus achieve a hierarchical resource model.

Physical devices can be collected into classes with similar behavior on an abstract

level. All such devices are modeled similarly, by the same DEP, and thus the internal

resource provides a homogenous interface to the other internal resources as well as to

the supervisor. The same general part would be used for all internal resources modeling

physical devices of the same class; only the speci�c parts would have to be adapted for

each speci�c physical device. In an object-oriented environment the speci�c part would be

implemented as virtual functions, see Shlaer (1992), that are �lled in at instantiation time.

It is not hard to conceive of the speci�c part being o�ered by the device vendor, ready

to be plugged in when the application is con�gured. See Cox (1986) for an interesting

discussion on such "software IC's".

The internal resources modularizes the control system, and their message interchanging

makes them loosely coupled. This has the following bene�ts.

Flexibility { the 
exibility of the control system is enhanced, since internal resources can

be added, replaced or reprogrammed, without a�ecting any of the other modules.

Reusability { the general parts are not speci�c to vendor, model, calibration etc., this

is all collected in the speci�c part. Therefore the general part is reusable.

Understanding { the structure of the control system adheres closely to the structure

of the physical system, thus making it intuitive and easy to understand.

Feasible design { since the internal resource provides a high-level interface to the

physical device, implementation of the supervisor is simpli�ed. The supervisor only

has to consider high-level "intelligent" tasks, the internal resource handles local

tasks and communication with other internal resources, so called handshaking.

Three classes of resources have been identi�ed, and for these Gullander (1995) has

developed Generic Resource Models (GeRMs). The generic resource models are based

on the ones presented in [3] and experiences from several case studies as well as from

the PAC model developed by the ESPRIT project COSIMA, see Bauer (1991). Note

though, that the GeRMs that have been developed by Gullander (1995) are not suitable

for assembly systems or batch processes. Constructs very similar to GeRMs applicable to

batch processes are presented by Tittus (1995b).

The identi�ed resource classes are2:

Producers { devices that make physical or logical changes in product properties, such

as lathes (physical) or quality control stations (logical).

2These were originally called machines, bu�ers and robots in [3], but the current terminology seems
more general.
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Figure 5.3: The proposed control system structure. The physical devices at the bottom

left, are the external resources, while their corresponding software modules within the

control system are the internal resources.

Locations { devices that provide intermediary storage for products, such as bu�ers.

Movers { devices that transport products between producers and/or locations.

In Gullander (1995) a Generic Message Passing Structure (GeMPS) describing the inter-

action between controller and resources, as well as between resources is presented. The

purpose of the GeMPS is to support system development, giving a set of messages and a

message-passing structure that together will lead to a modular and 
exible system, easy

to understand and simple to implement. GeMPS focuses on the interaction between inter-

nal resources and the controller necessary for moving parts from one position to another,

loading parts, processing and then unloading parts. See Gullander (1995). A GeRMs li-

brary, see Figure 5.3, further facilitates the implementation of control systems for 
exible

fabrication processes.

As can be seen from Example 5.1, there are two types of messages described by GeMPS

operation messages { sent between the controller and the resources. These are the

commands Take, Release, and Process and the responses Taken, Released and Pro-

cessed.

handshake messages { exchanged between movers and producers (and locations).

These messages are used to perform local tasks, typically loading and unloading of

a machine.

For speci�c details on the application of the proposed GeMPS to manufacturing systems,

we refer the reader to Gullander (1995). Example 5.1 describes a modi�ed form of the

GeMPS, suitable for the controller implementation that will be described in this work.

Refer also to [1], [2] and [3]. To us, the bene�t comes from the fact that we can assume

that the system is controlled by the commands and responses, only. Locally, the resources

perform handshaking when requested by the controller to perform a task. Thus, the



Example 5.1 Generic Message Passing Structure

Illustration of the modi�ed Generic Message Passing Structure of a control system.
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92 UnloadReq
3 Unload
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Loaded

Handshake messages

14
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16

Figure 5.4: The generic message structure proposed. The handshake messages are listed

to the left, while the messages 1, 7, 8 and 14 to 16 are the command messages. The

internal resources are shown at the bottom.

This scenario describes an unload-move-load procedure initiated by the controller. The mover

�rst receives a Take message from the controller, instructing the mover to move to producer #1

to unload it. When the mover arrives it informs the producer by sending an UnloadReq message.

The producer replies with an Unload message, when it is ready to have the part unloaded. The

mover then moves into position to fetch the workpart, and sends a request to the producer to

release the part, Loosen. When the part has been released, the producer replies by sending a

Loosened message. Then, the mover exits the producer and informs it that the unload procedure

is �nished by sending an Unloaded message. The mover also responds to the controller with a

Taken message.

By sending a Release message, the controller then instructs the mover to load producer #2 with

the product. After moving the part to producer #2, the loading is performed using the LoadReq,

Load, Grip, Gripped and Loaded messages, in a similar way as the unloading of producer #1.

After completion of the load procedure, the mover informs the controller that the move-load task

has been carried out successfully. This is done by the Released message. The controller then

orders the producer to start the machining of the part, by sending a Process message. When

the processing has �nished, the producer sends a Processed message back to the controller.
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Figure 5.5: Generic models of the Producer and the Mover classes, used for supervisor

synthesis.

controller chooses what commands to issue and receives responses upon completion of

those commands. However, in addition, the controller needs to coordinate the dynamic

usage of the resources so as not to issue con
icting commands or commands that take the

system to unwanted states; it has to know what actions can be performed when. This

coordination is expressed by the supervisor, in allowing or preventing speci�c products

access to speci�c resources at speci�c system-states. For the following discussion, we

will distinguish between these two aspects of control, commanding and coordinating, by

saying that the controller commands and the supervisor coordinates. However, there is

really no need to distinguish between the supervisor and the controller, a controller is just

an active supervisor that issues commands. See also Balemi (1992).

For dynamic resource coordination we need to model whether a resource is being free

for some task, or not. If it is free, that resource may be designated to that task if this does

not incur blocking of the system. However, we also need to model the commanding parts

of the resources. The resource models we have found adequate for supervisory control are

shown in Figure 5.5.

In Figure 5.5 we can note that the Process, Take and Release commands are present,

as are the Processed, Taken and Released responses. But there are also two events "book"

and "unbook" for each resource, the synchronization events. These, as well as the com-

mands and responses are speci�c for each internal resource, so that all resources have

disjoint event-sets as far as the supervisor is concerned. For supervisor synthesis, the

responses are considered to be uncontrollable. We can decide when to initiate a task at

some resource, but we cannot know when or prevent that task from being �nished. The

aspect of resource failure is not being modeled, but it is obvious that it can be included

in the model. When, how and what types of failures to include, is still an open question.

The book and unbook events keep track of whether a speci�c resource is available

for a task, or not. Naturally they are controllable, and they permit the supervisor to

allow or prevent a product access to the resource. Thus, these events constitute the

synchronization events, used by the supervisor to determine what commands to allow the

controller to generate. When in a system-state where a resource is booked, it is guaranteed

to be safe to issue the commands, and any of the commands allowed in a speci�c state

are valid. In this way the supervisor restricts the command sequences of the controller,

so as to guarantee that the closed-loop system always stays outside the forbidden states

and is nonblocking.

We can note that the models presented in Figure 5.5 are very similar to the ones given
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Figure 5.6: The synchronization models of the generic resource models. The events are

in this thesis denoted by ai and ci, for a producer Mi, and xj , yj for a mover Rj

by Tittus (1995b) for control of chemical batch processes. The producer model seems to

be exactly the same, while the mover model should be compared to the connection-line

of Tittus. For batch processes the movers do not actually move, but they remain �xed

and only move the product. Furthermore, the product is a continuum as far as moving

it is concerned. Thus, the product occupies both the resource to be moved from and the

resource to be moved to, as well as the movers, simultaneously during transportation.

This is not so for manufacturing systems, however. In a manufacturing (and assembly)

system the product is a discrete component (a single product or a pallet, for instance),

that only occupies the mover during transportation. It is mainly this that makes the

mover models so di�erent for manufacturing systems and batch processes. The concepts

are the same though.

For the purpose of synthesizing a supervisor coordinating the sharing of the resources

among the simultaneously running product routes, it often suÆces to model the resources

even simpler than those shown in Figure 5.5. In the applications we have been looking

at, it seems enough to model the resources as two-state processes; the states essentially

meaning idle and busy, or booked and unbooked. See Figure 5.6. This is also

recognized by Zhou (1993), where such states, or rather places, are called B-places. See

also the work of Banaszak (1990). When a resource is in its booked state it is valid to

send the operation commands.

The models of Figure 5.6 will be referred to as synchronization models, see Tittus (1995c),

and we will use these in the following. See also Figure 1.3. In more complex settings, the

models may have to be more complicated, but it seems that that two states conveying

the information that the resource is free or occupied are always present. See, for instance,

Tittus (1995c), where the resources are modeled, essentially, by three states, booked,

unbooked and processing. In the third state a continuos (or hybrid) controller local

to the device executes to take the batch from some continuos state to another.

For systems with multiple movers that can get in the way of each other, the mover

routes have to be modeled also, so that the supervisor can coordinate the movers in their

actions. Such systems, though covered by the theory of the previous chapters, are not

considered in this chapter, other than when two movers can collide if the simultaneously

try to load and unload the same producer. Furthermore, for error recovery some states

and events representing failures have to be included but the idle and busy states are

still present. A resource can only break-down when it is performing some work, that is,

when it is in the busy state. In this thesis, we do consider resource failures.



5.3 Product Descriptions

The use of high-level product descriptions, operation lists by Andr�easson (1995) and gen-

eral recipes by Tittus (1995d), is motivated by a desire for increasingly 
exible fabrica-

tion processes. Flexibility inherently demands a separation between the manufacturing

resources, the product routes and the control system. Such a separation permits incor-

poration of new or di�erent equipment as well as new products without re-programming

the control system or re-con�guring the manufacturing resources. Thus, the system can

automatically survive changes in its environment, meaning that the system is reusable

between applications, since it can be used in di�erent environments.

Operation lists can come in di�erent forms, and on di�erent abstraction levels, each

suitable for its own use. The high-level operation lists permits people with a moderate

technical background and limited knowledge of the system to pro�tably interact with

it on a high abstraction level. However, this high abstraction level demands some kind

of support for managing the connection between the speci�ed product routes and the

available machining capabilities. There has to exist software tools for handling the high-

level operation lists, as well as automatically transforming them into lower level forms

usable for the control system. For instance, supervisor synthesis requires Petri net (or

automata) descriptions of the actual product routes.

High level operation lists can be given in either algebraic or graphical form. In this

section a suggestion for a graphical form, together with its Petri net transformation will

be described, while an algebraic approach is described in Andr�easson (1995).

Others have found equal or similar description mechanisms useful for specifying and

modeling production steps and work cell operations in a highly structured way. Compare,

for instance, the Process Activity Language (PAL), see Krieger (1993). Several of the

operators present in PAL will also be speci�ed in this section, though in some cases

renamed. Other operators de�ned in this text are not present in PAL, and yet others

have slightly di�erent semantics. PAL is focused on simulating and verifying product

speci�cations, while our work has as a goal to facilitate synthesis of correct control laws

for the production of the speci�ed products. Also, unlike PAL which bases its graphical

representation on ladder diagram, we base our graphical representation on Petri nets,

though on a higher abstraction level. All in all, though, it seems that there are at least two

research communities that have independently come to very alike conclusions concerning

the functionality that has to be present in order to express the operations of a 
exible

fabrication process in a structured high-level implementation-independent way.

5.3.1 High-Level Operation Lists

The preferred way to specify operation lists is graphical. The operator lays out the desired

product routes, focusing merely on what operations to perform and in which order. A

graphical layout is well suited for a computerized tool with a graphical interface. For

combining operations a number of general constructs will be described with examples of

useful applications.

A set of high-level operators is a �ne tool for specifying operation lists. However, for

supervisor synthesis and for veri�cation and simulation of the speci�cations, we have to

transform the high-level operators into a mathematically more strict, lower level formal-



ism. For this we will use bounded Petri nets, Peterson (1981), because of their well-known

and well-de�ned mathematical properties. It is also well-known that a bounded Petri net

can always be equivalently expressed as a �nite state automaton.

The key to Petri net transformation of the described high-level operators is the associ-

ation of every operation with an event symbolizing that operation. Each such event labels

a transition in the Petri net, and has a corresponding event, equally labelled, in (at least)

one resource. The resources may also include other events, not necessarily symbolizing

operations of interest to the operation list, such as PartLoaded, MachineReset, etc. How-

ever, only operations de�ned by the manufacturing resources can be used in specifying

the operation list.

In the Petri net formalism, the �ring (execution) of an event is considered to en-

compass zero time. Thus, the modeled events are considered to be primitive events, see

Peterson (1981). Primitive events are instantaneous and nonsimultaneous. Operations in

the real world, however, take time and are thus nonprimitive events. Nonprimitive events

are not nonsimultaneous, and hence may overlap in time. Nonprimitive events cannot

properly be modeled by single transitions in Petri nets, but have to be decomposed into

two primitive events, "nonprimitive event starts" and "nonprimitive event �nishes", to-

gether with an intermediate place representing "nonprimitive event occurring". Therefore,

for an operation (nonprimitive event), Op, we introduce two transitions into the Petri net,

labeled Op and Op, representing the primitive events. We will call Op the complement of

Op, compare Milner (1989) and Section 2.5.

Note that, "operation" is informally de�ned here. An operation can exist of se-

quences of actions, which could themselves be regarded as operations. This means that

the places representing, "nonprimitive event (operation) occurring", can be regarded as

"macro steps" representing arbitrary sequences of the de�ned constructs. Note also that

an "operation" is not necessarily an action of physical nature, but may also represent

"abstract" actions, such as the claiming of a resource for exclusive use, that is, booking,

see Tittus (1995a). In fact, this is how we will use the Petri net transformations, see

Section 5.4.

Sequence and Alternative

In Figure 5.7 can be seen the graphical representation of the Sequence and Alternative

constructs. As can be seen an operation is graphically represented by a rounded box with

the name of the operation. The type of product for which the route is speci�ed is also

named, and represented by a circle. Arrows between the operations de�ne their sequen-

tial order. Note also that, contrary to standard precedence graphs, multiple outgoing

arcs from an operation (or product) represent a choice of one, and only one, arc to fol-

low. Compare to the dynamic precedence graph of Valckenaers (1994). Sequence actions

typically represent constraints on the product given either by the physical layout of the

manufacturing cell, or the product itself. For instance, before a hole can be tapped it

has to be drilled. The Alternative ("case" in the vocabulary of Krieger (1993)) construct

is more subtle. An example might be that there are several machines performing the

same operations by di�erent means, such as metal cutting by laser, plasma or water jets.

For some products these operations must be distinguished due to material considerations,

whereas other products can be handled by any of these machines. Being able to express a
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Figure 5.7: Graphical high-level representation of the Sequence (left) and Alternative

(right) constructs.
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Figure 5.8: The Petri net transformations of the Sequence (left) and the Alternative

(right) constructs. Notice the similarity between the Petri nets and the high-level con-

structs of Figure 5.7.

selection for these products would thus increase throughput, since the currently available

cutting machine can be used.

The Alternative construct is thus used to choose a speci�c operation between a number

of allowed operations. The control system is allowed to choose any of these, presumably

the �rst to be available. However, should several operations be available simultaneously,

the choice is nondeterministic. In practice, some choice has to be made by the control

system, but this is a run time implementation issue. In some cases the nondeterministic

choice may be desirable, but in other cases it may not. To be able to exercise more control

over the actual run time choice made between several simultaneously available operations,

there can be set priorities between the alternatives. The uppermost (or leftmost) branch

can, for instance be considered to have the highest priority and thus the bottom(rightmost)

branch the lowest. More detailed priority structures can be de�ned by assigning a priority

number to each alternative.

The Sequence and Alternative constructs are trivially transformed into Petri nets, see

Figure 5.8. Transforming the Sequence construct is merely a matter of labeling transitions

in a sequence within the net. The places in-between would then symbolize occupying a

resource, being operated upon and (possibly) being transported to another resource for

the next operation. Note that in the case of the Sequence construct, the comlpement

event does not seem to be necessary. The reason for this is that the strict sequence does

not include the possibility to start the next operation before the current one has �nished.

This is inherent in the sequence construct.

Of course, more elaborate actions can also be taken in sequence or in alternative cases;

sequences can consist of sequences and alternatives, while alternatives may contain other
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Figure 5.9: The Unconstrained Order construct. The operations are allowed to be carried

out in any order, but Op1 and Op4 cannot be interleaved.

alternatives in sequence.

Unconstrained Order

The Unconstrained Order construct is actually a special combination of the Sequence and

Alternative constructs and could thus be expressed by these. However, for operation

list speci�cation we have found the Unconstrained Order construct very useful. Many

operations do not incur any constraints on their order as far as the product is concerned;

a product may in large be operated upon by the manufacturing devices in any order. For

instance, regarding automobile rear axles, it is clear that a milling operation on the rear

axle's 'banjo', and a lathe operation on the rear axle ends can be done in any order. The

real constraints come from the physical layout of the system and the available transport

routes.

The Unconstrained Order construct has to be adequately distinguished from the Al-

ternative construct with a clear, logical and intuitive graphical representation. We have

chosen to collect the operations of the Unconstrained Order construct within a bounding

box, as is seen in . This seems a logical representation in that all the operations within

the box are to be carried out before execution can continue outside the box. Absence of

arrows within the box automatically describe unconstrained order, whereas arrows present

within the box determine constraints. This can be seen in Figure 5.9 where Op1 and Op4

are to be carried out in sequence, but no constraints are speci�ed between Op1/Op4, Op2

and Op3. Note, that (though other interpretations are possible) in Figure 5.9 Op2 or Op3

cannot interleave Op1 and Op4. The bounding box can easily be speci�ed by means of a

pointing device (mouse) after other constraints have been introduced (though this is no

requisite). Thus, inside the box, any of the available constructs can be used.

Trivially, the Unconstrained Order construct can be transformed into a large Petri

net describing all the possible operation routes, see Figure 5.10, left. This net is really

the transformation of the Unconstrained Order construct expressed in the Sequence and

Alternative constructs. However, there exists a more sophisticated way to express the

Unconstrained Order construct in Petri net form. In Figure 5.10 to the right, is shown

a net with substantially fewer places that adequately describes the construct. The top

transition is the "exit" transition of the former product speci�cation construct, while the

bottom transition is the "entry" transition of the next product speci�cation construct.
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Figure 5.10: The trivial Petri net respresentation (left) and the more sophisticated repre-

sentation (right). In comparison with Figure 5.9, the bene�ts of a high-level representation

is e�ectively illustrated.

Note that, though the two nets in Figure 5.10 are equal from a sequencing point of

view, they are di�erent in the interpretation of the transitions and places. As mentioned

above, in the net of Figure 5.10, left, a place represents occupying a resource, being

operated upon and being transported to another resource for the next operation, the net

of Figure 5.10, right, also includes a transition representing "�nished operating upon".

This is the transition that returns the token to the single mutual exclusion place to the

right. This is imperative for a correct interpretation of the net; no other operation can

(physically) begin before the current one has been �nished. Thus, mutual exclusion of

the operations is inherent in the sequences of Figure 5.10, left, while it must be explicitly

introduced into the net of Figure 5.10, right. Observe though, that the complement event

for Op1 is not included in the net. Naturally, this a consequence of Op1 being in sequence

with Op4. Since no interleaving of the sequence is allowed, any other operation cannot

start before Op4 has �nished.

To introduce the possibility of parallel actions, the net of Figure 5.10, right, could be

constructed with multiple tokens in the mutual exclusion place. With only one token in

that place, the Unconstrained Order will not allow parallel actions, with multiple tokens it

will. Observe though, that in this way we cannot explicitly specify a subset of operations

that may be performed simultaneously. Either any speci�ed number of operations can

all occur simultaneously, or none. Furthermore, with multiple tokens, interleaving of the

Op1/Op4 sequence with the other operations cannot be prohibited.

When is the Unconstrained Order construct useful? As mentioned above, most con-

straints on order of operation is given by the manufacturing devices and the physical

layout of the system. Thus, the Unconstrained Order is a useful means to incorporate as

weak constraints as possible into the speci�cation of the operation order. This facilitates



a 
exible overall system, in that altering the physical system does not incur altering the

operation lists. For example, in one application, including a milling machine and a lathe,

an overcapacity in the mill was discovered. To increase throughput a second lathe was

planned to be introduced into the system, and both lathes were to take over some work

from the mill. The new physical system thus obtained would mean re-coding of the opera-

tion lists, had they been speci�ed with the constraints of what operation to be performed

where and in what order. Using the Unconstrained Order construct would unnecessitate

any change of the operation lists, whatever physical layout of the new system arised;

placing the new lathe before or after the mill, for example.

Synchronous and Asynchronous Divergence and Convergence

The di�erence between the Synchronous and Asynchronous Divergence constructs is del-

icate. Both involve simultaneous actions. However, the Asynchronous Divergence con-

struct expresses operations that may be executed concurrently, whereas the Synchronous

Divergence construct requires synchronous activation of the operations. Thus, there is

a di�erence between synchronous and non-synchronous activation of the involved op-

erations. In both cases, however, all operations must have been performed before the

construct is considered to be completed. The synchronous and asynchronous constructs

are distinguished by a �lled and non-�lled transition, as seen in Figure 5.11. The �lled

transition can thus be seen as representing a harder constraint on the operations than the

un�lled transition.

Convergence constructs denote ways to merge two (or more) products into one. The

operation lists of the hitherto independent products should thus meet in an assembly

operation. To mirror the divergence constructs described above, two useful convergence

operators have been de�ned; Synchronous and Asynchronous Convergence. These are

also shown in Figure 5.11. With the Synchronous Convergence construct the operation

of assembly cannot start until both "operands" (products, for instance) are present. The

Asynchronous Convergence construct however, allows the operation to start with just one

operand. Note though that both assembly operations cannot �nish until both operands

have been fully processed.

The Synchronous Convergence construct represents the "normal" assembly operation

within manufacturing processes. The assemblage of two products cannot begin until both

products have been successfully loaded and possibly preprocessed. The Asynchronous

Convergence construct, on the other hand, could represent operations within (chemical)

processing industries. For example, in a mixing operation where one tank is �lled from

two separate tanks, the �lling must not (always) be synchronous. One tank could start

emptying its contents into the mixer tank, while the other tank were still heating its

contents. Of course, the mixing operation would not be �nished until the contents of

both tanks had been mixed (and stirred) in the mixer tank. Note that if both tanks were

simultaneously ready to empty their contents, it would be nondeterministically decided

which one would begin.

In Tittus (1995b) is de�ned the General Join, consisting of a (possibly empty) presynch

phase, a synchronization point and concluding with a (possibly empty) postsynch phase.

In the presynch phase both material 
ows start independently of each other, and exe-

cute until the synchronization point is reached. In the postsynch phase the two, hitherto
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Figure 5.11: High level, graphical representation of the Synchronous (left) and Asyn-

chronous (right) Divergence (top) and Convergence (bottom) constructs.

self-sustained, 
ows are no longer independent. The Synchronous and Asynchronous

Convergence constructs are equal to the extreme cases of the General Join. The Syn-

chronous Convergence corresponds to the Synchronous Join of Tittus (1995b), where the

presynch phase is nonexistent. The Asynchronous Convergence, on the other hand, cor-

responds to the Asynchronous Join which lacks the postsynch phase. Note though that in

Tittus (1995b) is included the possibility to specify how the convergence should behave;

a speci�cation that is required to be upheld during the convergence. For instance, dur-

ing convergence of two (chemical) batches, there may exist constraints on the maximal

deviation from the speci�ed relative amounts of substance per time unit.

When considering the Petri net forms of the Synchronous and Asynchronous Diver-

gence and Convergence constructs, it is bene�cial to �rst consider an abstract device

performing the divergence or convergence. Divergence represents the splitting of one

product into two products, sawing or cutting, for instance, while convergence represents

assembly, welding, gluing, riveting or, as for batch processes, mixing. Neither of these

actions are spontaneous, the product cannot cut itself in two. There has to occur some

physical operation for the divergence and convergence to take place. In the following we

will discuss convergence to some depth. Divergence is the dual of convergence, so much

that the Petri net describing the action of divergence is equal to the Petri net describing

convergence. Only the initial marking has to be changed, as will be shown. Thus, for

divergence an equivalent discussion as for convergence is applicable.

Convergence is a matter of loading two distinct products into a resource, which then

performs an assembly operation, whereafter one product is emitted. The actual conver-

gence operation must, of course, be synchronous with respect to both products. However,

for such an Abstract Convergence Machine to be general, some additional aspects have

to be considered. First, since two separate products are loaded, this can occur in any

order, product A can be loaded before product B, or vice versa. But, there may also

exist convergence resources that can load both products simultaneously, an assembly unit

with two loading docks, for instance. This is especially important for mixing operations in

batch applications where the simultaneous �lling (loading) of a tank (resource) with both

components (products) may be required to keep their relative amounts constant. Second,

preprocessing may be applied to one or both of the products, before they are assembled.

This preprocessing will be regarded as part of the loading though. In the same way will

we regard any postprocessing, deburring, washing, etc., as part of the assembly operation.
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Figure 5.12: The Abstract Convergence (right) and Divergence (left) Machine. Op1, Op2

and Op12 represent loading/unloading and pre/post processing of the A, B and simul-

taneously the A and B products, respectively. Op represents the assembly/disassembly

operation.

Note that, for divergence the opposite holds; one product is loaded and so preprocessing

can only be applied to this product, while two products are emitted, thus postprocessing

can be applied for either. In this case, preprocessing is part of the divergence operation,

while postprocessing is part of the unloading operation.

Thus, the Abstract Convergence Machine must include, not only the possibility of

loading each product separately, but also loading both concurrently. In the Petri net for-

malism, this may be implemented as three separately labeled transitions; one representing

(the start of) loading and preprocessing of product A, one representing the same for B,

and a third transition representing the simultaneous loading of A and B. The Abstract

Convergence and Divergence Machines are shown in Figure 5.12. We can note that the

Abstract Divergence Machine is the dual to the Abstract Convergence Machine. One is

obtained from the other, simply by altering the initial marking, see Figure 5.12. The Ab-

stract Divergence Machine starts with the loading and disassembly operation, and then

the parts can be postprocessed and unloaded separately or simultaneously. The Abstract

Convergence Machine starts with the loading, either synchronously or asynchronously,

and then assembles the parts and emits a �nished product..

An alternative to specifying the third event, representing synchronous loading, is given

in Tittus (1995d), where the Petri net formalism is extended to include event connection.

This is a way of specifying synchronous occurrences of di�erent events. Thus, the notation

means that transitions labeled with a and b, respectively, should �re synchronously. This

extension of the Petri net formalism is motivated by a need to model mixing operations

in chemical batch processes. Two products, in liquid form, can then demand synchronous

mixing, as opposed to �rst pouring one of them into a tank, and then the other.

With the Abstract Convergence Machine, it is quite clear how the high-level operation

lists should be interpreted as Petri nets. The Synchronous and Asynchronous Convergence

constructs are shown in Figure 5.13. Note that the high-level operation list only has to

specify the (start of the) loading operations. For the divergence construct, simply reverse

all arcs and replace all operations with their complements.

The Synchronous Convergence construct of Figure 5.13, synchronized with the Ab-

stract Convergence Machine of Figure 5.12, is shown in Figure 5.14. Note that the places
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Figure 5.13: The Synchronous (left) and Asynchronous (right) Convergence constructs.
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Figure 5.14: The full synchronous composition of the Abstract Convergence Machine

and an operation list describing Asynchronous Convergence.

corresponding to the operation list are grey in Figure 5.14. Since the Abstract Conver-

gence Machine can load the products either synchronously or asynchronously, it is the

operation list that determines which action to take. With the Asynchronous Convergence

construct, the action of loading and preprocessing one product is allowed to start, even

though the other product may not yet be available. However, at some point both products

must be present for the operation of assembly to begin. With the Synchronous Conver-

gence construct neither the operation of loading and preprocessing, nor the operation of

assembling can begin unless both products are present.

5.4 From Operation List to Final Speci�cation

As described above, the operation lists, can be transformed into Petri nets describing the

sequence of operations necessary for the fabrication of the product. In Tittus (1995a) such

a Petri net is used as amapping recipe that can be mapped onto a model of the connectivity

of the plant, the mapping model. The mapping recipe is not speci�c to the plant that is

going to form the product. Only the relevant operations and their relations are speci�ed.

Naturally, for the product speci�cations to be usable for supervisor synthesis, speci�c

resources of the speci�c plant have to be singled out; static resource allocation have to

made. This is made for one product at a time, with no concern for any other products that

may be present in the system simultaneously. The result of the static resource allocation



is a high-level product route, a master recipe in the terminology of Tittus (1995a). The

high-level product route can also be translated into a Petri net, in a manner similar to the

operation list. In fact, the same Petri net constructs will be used for the transformation

of the high-level product route into its Petri net representation. The model of the plant

used for this is the same as the model that will be used for supervisor synthesis, the

synchronization models of Figure 5.6. The generated Petri net will, however, include

connected events, pairs of events representing sequences that cannot be interleaved by

other events. These event-pairs represent the passing of a product from one resource to

another, typically between a mover and a producer.

Once we have the product routes, we have to compose these into a joint speci�cation on

the plant. In Section 2.5.1 was given good reasons for model the sharing of the resources

among the product routes by interleaving. Thus, we will interleave the product routes to

form the local speci�cation. This speci�cation is termed local, since it does not necessarily

include the entire alphabet of the plant. To be strict, its alphabet is not even a subset

of the plant alphabet, due to the connected events. However, it will be shown that the

connected events can be unfolded so that the alphabet of the speci�cation is a subset of the

plant alphabet. The interleaved product routes contain many interleavings that will not be

physically possible. To remove these, and to make the alphabet of the speci�cation equal

to the plant alphabet, we synchronize the local speci�cation with the synchronization

model of the plant. This synchronization is, strictly speaking, not the same composition

as described in De�nition 2.43, again, due to the connected events. Once more, though,

since the connected events can be unfolded this is in practice not a problem. In the

global speci�cation the connected events will �nally be unfolded, and auxiliary, product

unspeci�c speci�cations can be introduced to generate the �nal speci�cation. This is then

used for synthesis of the supervisor.

In this section we will give a very brief example illustrating the generation of a high-

level product route from an operation list. We will not describe the necessary models in

any detail, merely give the operation list, the physical plant and the resulting high-level

product route. For details, we refer the reader to Tittus (1995a) and Tittus (1995c). Then

we describe the generation of the local speci�cation together with reasons for introducing

connected events.

5.4.1 Resource Allocation

The resource models needed for the static resource allocation are di�erent from the ones

needed for control. When attempting to map the functional requirements of a product

speci�cation onto the capabilities and constraints of the resources of the plant, the in-

ternal resources of Section 5.2 are not adequate. It is this that leads Tittus (1995c) to

speak of "multi-aspect" modeling. Di�erent design activities, like the resource alloca-

tion described in this section, like supervisor synthesis and product speci�cation, concern

di�erent aspects of the plant and so need di�erent representations of the resources.

For the purposes of the static resource allocation, mapping for short, we need to

know the functional capabilities and constraints of the resources, and the connectivity

between them. In a batch process the connectivity is governed by the physical connections

between the resources. Pipes connect tanks and reactors with other tanks and reactors,

via valves and pumps, etc. In a manufacturing system, the connectivity is governed by



the available mover routes. If there exists a mover that can transport a part between

two resources, then these resources are connected. We have already argued that for a

truly 
exible system complete connectivity is essential. We can never know beforehand

which routes may be speci�ed by products unconceived of at the time of control system

implementation. Of course, if the system possesses full connectivity, then there is no

need to model this explicitly. However, when full connectivity is not available, then the

connectivity is modeled by the mover resources.

The functional capabilities of the producers include the available operations that the

producer can perform. These operations are modeled as parametrized events, with unique

standardized names. These names are standardized so as to allow a mapping with the

corresponding functional requirements of the product speci�cation. The number of param-

eters is prede�ned, and they indicate the physical or safety constraints of the operation.

An operation is in this sense a task, such as drilling, together with constraints, such

as, maximum 100 mm deep, 30 mm diameter. For batch processes an operation is typ-

ically heating, maximum 100 degrees Celsius. The connectivity is of course a typical

functional capability of the movers.

The plant on which to map the product speci�cation is thus composed from the func-

tional capabilities of the resources. This includes the connectivity, when necessary, and

the operations. The task is now to map the product speci�cation onto this plant to gen-

erate all routes through the plant that lead to the correct production of the product. Of

course, for a large plant with 
exible devices, the possible number of such routes can be

enormous. Some strategy may be taken that does not generate all routes, but only the

fastest one, say. The problem is that the mapping is done on a single product basis, but

production in a 
exible fabrication process is a multiple product task. Thus, choosing

only one "best" way, or maybe even a few "good" ones, does not necessarily mean that

when running several di�erent products together through the plant, the overall "best"

way can be achieved. For that matter, there is no guarantee at all that, by choosing

only one route through the system for each individual product, there can be produced

several products simultaneously. In the worst case, the production will also have to be

on a single product basis, which is not a good thing. However, if we generate all possible

routes through the system for each product, then we know that the "best" route for all

products simultaneously will not be overlooked.

Mapping the product speci�cation onto the plant can be done by associating each

operation of the speci�cation with a class of operations of the plant. The basis for the

association being that the requirements are satis�ed. Thus, a product operation that says

drilling, 8 mm deep, 4 mm diameter, can be mapped onto the two di�erent plant oper-

ations, drilling, max 50 mm deep, max 10 mm diameter and drilling, max 100 mm,

max 30 mm diameter, which may be o�ered by two di�erent resources. In Tittus (1995a)

is given an algorithm to perform this. The result is a high-level product route with the

possible sequences of producers, locations and movers that will fabricate the product in

this speci�c plant. See Example 5.2.

5.4.2 Event Connection

When generating the Petri net representation of the high-level product routes, the syn-

chronization models of the resources are used, in the form given in Figure 5.6. However,



Example 5.2 From Operation List to Product Route

Op12

OpX

Op3F

Figure 5.15: Operation list for the F-product of Section 6.3.

A part of the operation list for the F-product of Section 6.3 is shown in Figure 5.15. This

operation list speci�es that the product is to �rst undergo operation Op12, and then operation

Op3. In-between these two operations the product is allowed to, but not required to, be subject

to OpX. This means that the product does not require immediate transport between the resources

performing Op12 and Op3. This also has the consequence that if a resource existed that could

perform both operations Op12 and Op3, but not OpX then these operations could be performed

in that same resource. In fact, the product does not require the operation OpX at all. In this

example OpX just represents intermediate storage.

The physical plant is given in Figure 6.5 on page 171. In this system there are several movers

that transport between the resources. Mover R1 transports incoming products from the entry

stations to either M1, M2 or M4. Likewise, the mover R3 transports products from M1 or

M2 to the bu�er B1, and from B1 to M3. The other resources need not concern us at this

moment. Since there are multiple movers that do not have full connectivity, the movers must

be included in the high-level product routes. This was not the case in the example system of

Chapter 1. There we had just one mover able to transport products between every producer,

and so the mover was not included in the high-level product route.

Example continued on next page



Example 5.2 continued

B1 M3R3R3R1

M1

M2

Figure 5.16: The high-level product route generated from the operation list of Figure 5.15

for the plant of Figure 6.5

Assuming that the operation Op12 can be performed by bothM1 and M2, the mapping proce-

dure will map Op12 to both these resources, generating alternative paths in the product route.

Transport of incoming products to either M1 or M2 is achieved by R1, so that the product

route begins with this mover. Likewise, transport from M1 and M2 is done by R3, so that

the next step in the product route concerns R3. The operation Op3 can be performed by M3

only. However, due to physical constraints there is no direct connectivity between M1 or M2

and M3. Every product unloaded from M1 or M2 must be stored in B1, before taken to M3.

It may be that the mover has to change its grip on the product, or that the product has to cool

down before being loaded into M3. Therefore, the product route will not include a direct path

between M1 or M2 and M3, even though the operation list allows this. Constraints given by

the physical structure of this speci�c plant thus generates a product route that is more limited,

in this sense, than the operation list. Note that for some other plant this constraint may not be

present and the alternative paths could have been included. The generated high-level product

route is shown in Figure 5.16. Its corresponding Petri net product route is given in Figure 5.17.

Note that this only describes a part of the product route for the F-product of Section 6.3, as

indicated by the broken line to the left in Figure 5.17. Note also that the transitions have been

labeled with connected events of the respective resources, except for x1.

x1

<y ,a1 2>

<y ,a1 1> <c ,x1 3>

<c ,x2 3>

<y ,b3 11> <b   x12, >3 <y ,a3 3>

R1 R3 R3

M2

M1

M3B1

Figure 5.17: The Petri net description of the high-level product route shown in Fig-

ure 5.16. The respective resources have been shown for reference.



Example 5.3 Event Connection

The two problems of not introducing connected events is best illustrated in a state-machine

representation.

R1

R1

M1

M1

Figure 5.18: A partial high-level product route to illustrate event connection.

Assume we have the product route in Petri net form as shown in Figure 5.18. The corresponding

synchronization models of the resources can be taken as those shown in Figure 1.3 on page 5.

Part of the state-machine representation of the resulting product route is shown in Figure 5.19.

Note that this is only a small part. For clarity not all transitions are shown.

Example continued on next page

it does not suÆce to generate a Petri net with transitions simply labeled by the synchro-

nization events, since such a net would not adequately describe reality. This is illustrated

in example Example 5.3. The problem is twofold. For one, nets without connected event

include places in which the product has been unloaded from a producer, say, and not

yet entered any other resource. These places arise between the events that we maintain

should be regarded as connected. In such a place, the product is non-existent in the

system as far as concerns the resources. The product does not occupy any resource, and

so all resources are available. Naturally, this is not an adequate model of the system's

present state, since the product in fact occupies two resources, typically a mover and a

producer or location. These resources are the resource immediately preceding that place,

and the resource immediately following that event. The second problem concerns the fact

that without connected events, one product could be unloaded from a resource and then

immediately loaded as another product. See the example.

When generating the Petri net representation of the high-level product route, event

connection is included by simply joining the events representing unbooking of the previous

resource, with the event representing booking of the next resource. Event connection is a

consequence of the modeling approach including reusable resource models with product

routes tying these resources together. Modeling the system speci�cally, with no concern

for reusability, these states would never be introduced since the exit event of the �rst

resource would be labeled the same as the entry event of the next resource. For instance,

Zhou (1993) states that "in general, the stop transition for one activity will be the same

as the start transition for the next activity" (Section 2.2.1, page 20). The start and stop

transitions of the activities can be equated to the entry and exit events of the respective

resources.

Not including connected events would make the resource-models dependent on the

product routes. The passing of a product from one resource to another would be modeled



Example 5.3 continued

II11

WI21

II31

IW41

WI32 II33 IW34

IW43

y1 a1

a1 a1

y1

x1

x1

Here we pick
up part 2
without having
fully loaded
part 1, yet.

Here we process part
2 in the producer
that were supposed
to process part 1.

Here part 2 is loaded... ... and here it is processed as
either part 1 or part 2.

Part 1

Part 2

Figure 5.19: Part of the state-machine representation of the product route of Figure 5.18

without connected events. The states are named as to represent the states of R1, M1,

part 1 and part 2, in that order. I means idle, W working.

The two upper explanatory remarks of Figure 5.19 concern the problem of using plant resources

that are actually held by part 1, in this case, for the production of part 2, while part 1 is in the

intermediary state representing the passing of part 1 between mover 1 and producer 1. In the

state II31, part 1 really occupies both resources, but allowing transitions between the y1 and the

a1 events, disregards this. Thus, this is not an adequate model of reality. With the connected

events hy1; a1i we are guaranteed that from the II31 state, x1 cannot occur.

The two lower remarks of Figure 5.19 concern the problem of loading a part as part 2, in this

case, and processing it as either a part 1 or a part 2. In state II33 the supervisor cannot

determine which of the two paths to take; the horizontal as a part 2, or the vertical as a part 1.

(Not unless we assume that there are more information available.) Havoc may reign if a part 2

is suddenly being processed as a part 1. Again, event connection makes sure that the vertical

a1 transition does not occur.

In this example the second problem is immediately solved by solving the �rst one. This is not

so in general, though.



by a single event in the product route, and both the resources would have to include that

event. Thus, each resource would have to include events speci�c for each product that

is to use the resource, and these events would also have exist in the resources that the

product is passed to. This is well illustrated by the approach of Banaszak (1990), where

the resources include parallel transitions for each product. Connected events avoids this.

5.4.3 Local and Global Speci�cations

The result of the static resource allocation is, for each operation list, a high-level product

route describing all possible routes through the plant for this product. This is called the

master recipe by Tittus (1995a). In the high-level product route resources are appointed

to speci�c operations. To generate the Petri net representation of the high-level product

route, it is compared to the plant and a Petri net with connected events is generated.

A product route describes the desired paths through the system for one product only.

Naturally, we want to be able to produce as many products as possible simultaneously.

However, since the products are to run as independently as possible through the system,

we must have some entity supervising them so as to achieve the goal of having all products

produced. For us, this entity is of course, a supervisor. It would be nice if we could

generate a supervisor by looking at each product route separately. Then we would not have

to deal with the exponential complexity of regarding all product routes simultaneously.

Unfortunately, such a scheme does not necessarily generate a minimally restrictive and

nonblocking supervisor.

The proposed system architecture of Section 5.2 consists of several concurrently op-

erating subsystems, the internal resources. An enticing approach would be to generate

local supervisors for the individual internal resources such that the desired goal is ful�lled.

This problem has been studied by Willner (1991) who shows that it can be solved, if and

only if the speci�cation satis�es a certain separability property. Essentially, this property

means that the speci�cation can be written as the synchronous composition of a number

of transition machines with alphabets equal to the alphabets of the respective resources.

Disregarding the fact that Willner (1991) is concerned with languages, and consequently

deterministic automata (though an algorithm for checking the separability property in-

volves generating nondeterministic automata), the separability property is in general not

satis�ed by the collection of product routes arising in our systems.

To guarantee a minimally restrictive and nonblocking supervisor, it seems that we will

have to compose all the individual product routes in parallel. Now, the product routes can

be seen as DEPs sharing a set of mutual resources. Since the number of sharing processes,

that is, the number of concurrently running products, is not known beforehand, we will

model their sharing of the mutual resources by interleaving. Arguments for this has

already been given in Section 2.5.1. See also Hoare (1985).

In our interpretation of Petri nets, interleaving is inherent in the concurrent execution

of two or more nets. At each time instant any net can execute its own event, totally

asynchronously with any of the other nets. Thus, at each time instant the total system

behaves as either of the nets completely non-deterministically, but at no time will two

nets engage in the same action synchronously. This generates a language of the total

system that is the interleaving of the languages of the respective nets. For bounded Petri

nets, it is also easy to verify that this indeed represents the transition machine resulting
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Figure 5.20: The interleaving (left) and the synchronous composition (right) of two Petri

nets.

from interleaving the transition machine representations of the original Petri nets. See

Figure 5.20, left. Interleaving is also inherent in a single Petri net, given that the net

contains multiple tokens and at least two di�erent transitions labeled by the same events.

This is illustrated by Figure 1.5 on page 8.

The synchronous composition of two DEPs require simultaneous participation of both

of the processes involved. These events are (usually) those that are present in the alpha-

bets of both processes; events in the alphabet of one process not present in the other's

alphabet can, of course, be executed freely. The synchronous composition of two Petri

nets is e�ected by "layering" transitions with equal labels on top of each other, see Fig-

ure 5.20, right. This is known as the act of fusing transitions. Fused transitions can �re if

and only if both nets are ready to �re them simultaneously. When connected events are

present, we have to fuse more than two transitions. For instance, a transition labeled by

an event hy1; a1i in some product route, must be fused both with the transition labeled

by y1 of mover R1, and the transition labeled by a1 of producer M1. See Figure 6.7.

For supervisor synthesis we generate the local speci�cation by interleaving the product

routes. The local speci�cation is called the interleaved synchronizable master recipe, by

Tittus (1995a); a more descriptive name, perhaps, albeit a lot longer. The term local, is

used to denote that the speci�cation's alphabet is not equal to the plant alphabet. The

local speci�cation does not necessarily include all events of the plant alphabet. Events

pertaining to resources not used by any product are not in the alphabet of the local

speci�cation. As mentioned above, the connected events are not present within the plant

at all.

The local speci�cation represents the interleaving of all desired product routes. How-

ever, in the physical system, not all of these interleavings are possible. The local speci�-

cation may, for instance, include a sequence of events that represents loading a producer

two times in a row with no unloading in-between. If this producer cannot handle multiple

products, this is not feasible in practice. To remove such sequences, we synchronize the

local speci�cation with the plant. In a Petri net representation this is done by fusing

equally labeled transitions of the speci�cation and the plant. As mentioned above, the

transitions of the speci�cation labeled by connected events are fused with two transi-

tions of the plant. This generates the global speci�cation, which represents all physically

possible and desired paths for these product routes through this plant.



The global speci�cation may not be satisfactory for supervisor synthesis, though. The

theory of supervisor synthesis presented in the previous chapters assumed that the alpha-

bet of the speci�cation was equal to the plant alphabet, and that the speci�cation re�nes

the plant. These assumptions are not necessarily satis�ed by the global speci�cation.

For one thing, the connected events have to be unfolded to become singular events. This

cannot be done in the Petri net representation, though, since this would introduce exactly

such "dangerous" places that we claimed was the reason for introducing connected events

in the �rst place; see Example 5.3. However, if the transition machine representation of

the bounded Petri net representing the global speci�cation is generated before the con-

nected events are unfolded, then states representing tokens in the "dangerous" places will

not arise.

Unfolding the connected events in the transition machine representation of the global

speci�cation makes its alphabet equal to the alphabet of the plant. Events not included in

the local speci�cation, have been introduced by the synchronization with the plant. Also,

the event sequences speci�ed by the connected events cannot be interleaved by other

events. The result of this is exactly the same as not introducing connected events at all

into the product routes, interleaving the product routes, generating the full synchronous

composition of the plant and the interleaved product routes, and then remove all tran-

sitions that violate the connected events. Thus, the transition machine representation of

the global speci�cation with the connected events unfolded is a subprocess of the full syn-

chronous composition of the plant and the interleaved product routes without connected

events. Therefore, it is clear that the global speci�cation, as described above, with the

connected events unfolded re�nes the plant. And so, the assumptions made in Section 4.3

are satis�ed, meaning that the presented supervisory control theory for non-deterministic

speci�cation can be used. (We take accessibility for granted.)

Furthermore, there may exist product unspeci�c speci�cations that we always want the

plant to satisfy during production of any type of products. Two producers may not be

allowed to process simultaneously for instance. Maybe this draws to much power, and the

electric account is overdrawn. Such product unspeci�c speci�cations can be introduced

by removing states and transitions from the transition machine describing the global

speci�cation, thus generating a subprocess of the global speci�cation. Introducing such

speci�cations and unfolding the connected events generates the �nal speci�cation. It is

from this speci�cation that we will synthesize the supervisor.

5.5 Applying the Theory

In this section we will apply the theory presented in the previous chapters to the models

and systems described in the previous sections of this chapter. A summary of the method

is shown in Figure 5.21. To generate the product routes from the operation lists, the

method of Tittus (1995a) generates Petri nets that are essentially synchronized with a

connectivity model of the plant. This generates the product routes in a high-level form.

Using the synchronization model of the resources, see Figure 5.6, product routes labeled

by connected events are generated. These are given as DEPs, forming individual speci�-

cations on the plant behavior, each only specifying the behavior of a subset of the plant

resources. The product routes typically come in the form of bounded Petri nets. It is
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Figure 5.21: Summary of the method applied to generate a supervisor for a discrete

event fabrication process. In Section 5.4 we took the shortcut indicated by the dotted

arrows.

signi�cant that the product routes include marked states, if no else, then the terminat-

ing states are marked. The product routes are to evolve asynchronously with respect to

each other, though synchronously with respect to the plant, sharing the resources among

them. Therefore, interleaving is used as the composition mechanism for the individual

speci�cations. We generate the local speci�cation,

Sp = S1k; S2k; : : :k; Sm (5.1)

for m product routes Si. Since any Si may be non-deterministic, and since they may

contain mutual events Sp becomes non-deterministic. Of course, the alphabet �Sp =

�S1

S
�S2

S
: : :
S
�Sm , and it contains only events from the plant, although some of these

may be connected.

The synchronization model of the plant is the full synchronous composition of the

synchronization models of the resources. That is,

P = P1k P2k : : : kPn (5.2)

for n resources Pj. The alphabet becomes �P = �P1

S
: : :
S
�Pn. Since each Pj is deter-

ministic, the plant, P , will also be.

We have claimed that the resources have disjoint alphabets, and this is typically the

case when using generic reusable models. For instance, the models for supervisor synthesis

shown in Figure 5.5 have this property. This is no requisite, however. The important thing

is that the plant must be deterministic. There may occur situations when two resources

need to share some "subresource". Like a machining tool that is common for all machines.

This can be included in the presented models by introducing events that are common to

the events of the subresource model, and thus synchronization between a resource and the

subresource can be achieved. Note though, that this implies that for each resource that



is to share the subresource, there exists transitions labeled by certain events pertaining

to that resource only, in the subresource. In fact, other than being deterministic, there

are no other restrictions on the structure of the plant.

To yield the global speci�cation, the composition P�Sp is obtained. Here we introduce
the operator � � �, which we will not de�ne very formally. What we mean is that an

edge (q; hy; ai ; q0) of ESp labeled by a connected event hy; ai is synchronized with the

edge (p1; y; p
0

1) as well as with the edge (p2; a; p
0

2), that both exist in EP . The result is

(p1p2q; hy; ai ; p
0

1p
0

2q
0) 2 EP�S. Compare the synchronization vectors of Arnold (1994).

Let U(�) denote the operation of unfolding the connected events. Now we claim that we

have the following subprocess relation U(P�Sp) � PkU(Sp). That is, �rst synchronizing
the plant and the local speci�cation and then unfolding the connected events generates a

subprocess of the synchronous composition of the plant and the local speci�cation with

unfolded events. This follows from our earlier claim that �rst unfolding the connected

events of Sp, then synchronize Sp with the plant under full synchronous composition, and

�nally remove all transitions violating the connected events is equivalent to U(P � Sp).

Since we in the �rst case remove transitions, it is obvious that we generate a subprocess

of the synchronous composition of P and Sp with unfolded events. If the equality holds

then it must also hold that U(P � Sp) � PkU(Sp). From the remark to Theorem 2.48

we know that PkS always re�nes P . From Figure 2.5 we know that a subprocess re�nes

its superprocess, so that U(P � Sp) re�nes PkS. Lemma 2.41 tells us that re�nement is
a transitive relation, so that U(P � Sp) re�nes P .

Either P � Sp or U(P � Sp) can be subject to product unspeci�c speci�cations that

are introduced by removing states and/or transitions, thus generating the �nal speci�ca-

tion S � U(P � Sp) � PkU(Sp). Again we know that the �nal speci�cation S re�nes

P . We also know that �S = �P , and we take accessibility of S and P for granted.

Thus, the assumptions of Section 4.3 are met by S, so we can synthesize the supremal

complete and trim subprocess of S, sup
h
C(S)

T
A(S)

T �A(S)
i
� sup CT (S) by means of

Algorithm 4.28. Since this is a subprocess of S and since P is deterministic, we know by

Theorem 2.48 that Pk sup CT (S) = sup CT (S), so that the closed-loop system is always

nonblocking. Consequently, the supervisor guarantees that all products can be produced

satisfactorily. Furthermore, with a deterministic plant and since sup CT (S) re�nes P , so
that L(sup CT (S)) � L(P ), we know from Lemma 3.22 that sup CT (S) is inverse complete
with respect to P . Therefore, the supervisor sup CT (S) can act as a controller, generating

commands and receiving responses. This controller can always drive the plant to produce

the desired products.

5.6 Chapter Summary

In this chapter we have joined an approach to object-oriented modeling of discrete event

fabrication processes with the supervisory control theory. Based on the use of interleaved

product routes as speci�cation for the behavior of the system, we synthesize a supervi-

sor that guarantees that the closed-loop system is always nonblocking. Other, product

unspeci�c, speci�cations can also be included. This forms a powerful framework for imple-

mentation of control systems for 
exible manufacturing and assembly systems as well as

batch processes. The object-oriented approach modularizes the control system according



to the structure of the physical system. Thus, the control system becomes intuitive and

easy to understand. The modularity and the synthesis of control laws make the system

adaptable to changes in its environment; new resources and new products can easily be

included. Naturally, this also enhances the 
exibility.





Chapter 6

Application Examples

To illustrate the concepts described in the previous chapters, we will in this chapter show

three examples of implementing control for 
exible fabrication processes. The �rst exam-

ple details the assembly system used as the motivating example of Chapter 1. The second

example illustrates the applicability of the proposed implementation scheme to chemical

batch processes. This example was initially given by Tittus (1995c), and here we will

focus on the controller synthesis, thus complementing the description of Tittus (1995c).

Last, we will show an example of a manufacturing system, adapted from Zhou (1993),

where the control for the described system is constructed manually, simultaneously with

modeling the system. We will show that, given resource and product models, we can

automatically construct the control of such a system. Naturally, we will also compare the

control structure generated by Zhou (1993) and by our proposed method.

6.1 Assembly System

The model of the system Chapter 1, together with the product routes can be summarized

as in Figure 6.1. These parts are shown separately in Figures 1.3 and 1.4 of Section 1.1.

The global speci�cation is shown in Petri net format in Figure 1.7 in the same section.

Note that the synchronization models of Figure 5.6 are used. The state-machine represen-

tation of this global speci�cation, assuming two parts each of A, B, C and D, is shown in

Figure 6.2. Note that the whole state-machine is not shown, only a part relevant to the

discussion on event connection and controller synthesis that follows. We can note that by

�rst representing the global speci�cation as a bounded Petri net, and then generating the

state-machine representation we obtain the accessible states only. In that way we save

a lot of states from the interleaving of the product routes, states that are not reachable

after synchronization with the plant.

The global speci�cation includes one marked state in which the evolution of the system

is allowed to terminate. This state represents the completion of all products with the

resources back in their initial states. This is typically the only marked state. However,

with product routes including alternative paths there may exist several such states. It

is not necessary, though, that all of these are marked. It may be the case that some of

these paths are undesired. The cost of following them may be too high, for example. This

marking and/or unmarking must, at present, be done manually. We will be looking at

ways to specify such constraints, so that they can be included automatically.
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Figure 6.1: The product routes overlaid on the assembly system model. The robot R is

shared among all product routes.

The connected events are speci�ed as all physically possible exit-entry combination.

We have full connectivity between all resources. However, for the described products only

the connected events hc1; xi, hc2; xi, hc3; xi, hy; a2i, hy; a3i, hy; a4i and hy; b4i are relevant.
Other combinations will not arise within the system with the speci�ed product routes.

Note that M4 emits the �nished products itself, the mover is not involved and no output

station is modeled. The event c4 represents "assembly �nished and product emitted".

If the robot �rst loads a C part into M4, and then picks up a new C part, then

the system deadlocks since there is nowhere for R to put the part it is holding. Similar

scenarios for the other products also leads the system into a non-marked terminating state.

The controller can prevent speci�c parts to enter the system, by disabling the event a1
for those parts. The identity of the product to prevent from entering the system can be

determined by the state-change that takes place for a speci�c a1 event. We must assume

that a1 is controllable, otherwise there is no possibility to control the system, whatsoever.

Should two C parts arrive in a row, then the system will inevitably deadlock. M1 can

only hold one part. Of course, the event a1 represents a command issued by the controller

to M1. Thus, M1 itself would pick out the requested product, or choose among the

allowed products.

Part of the resulting controller, with explanatory remarks, is shown in Figure 6.2.

Instead of giving the state-names, we have labeled some transitions with both the event

and the part pertaining to the event. This we can do once the global speci�cation is

generated. All transitions shown in Figure 6.2 can be continued into the marked state,

which represents the completion of all products with all resources back in their initial

states.
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Figure 6.3: Plant and two recipes. Recipe R1 describes �lling of the processor P4 from

the bu�er tank B1, while R2 describes �lling of P3 from B2.

6.2 Batch Process

In Tittus (1995d) and Tittus (1995c) is shown an example of applying the supervisory

control theory, as described in this thesis, to control and coordinate recipes in a chemical

batch process. For such applications, Tittus (1995b) describes reusable automata-based

modules, for modeling the plant and the products. Two types of resources have been

de�ned, processors, such as tanks and reactors, and transporters, such as valves and

pumps. Their equivalents for manufacturing systems, producers and movers, have been

brie
y described in Section 5.2. The recipes, describing the desired operations to be

carried out by the processors, are given in a high-level graphical form. Again, this is very

similar to the high-level product descriptions shown in Section 5.3, though speci�cally

aimed at batch processes. The plant-unspeci�c high-level product descriptions, the general

recipes, are mapped onto the plant to result in plant-speci�c master recipes. This is the

static resource allocation shown in Example 5.2 on page 156, which is described in detail

in Tittus (1995a) and Tittus (1995c).

We will not go into details of the plant modeling or the generation of the master recipes.

The reader is referred to Tittus (1995c) for details. We merely present an example to show

that the theory presented in this thesis is applicable, not only to manufacturing systems,

but also to batch processes. The presented example is Example 4.17 of Tittus (1995c),

though we have slightly tilted the focus to the generation of the controller.

We will assume that a suitable model of the plant and the product routes1 are given.

See Figures 6.3 and 6.4. The two recipes R1 and R2 describe the �lling of the processors

P3 and P4 from the bu�er tanks B1 and B2. The �lling of P4 from B1 requires that valves

V1, V3 and V5 are open, and that valves V2 and V4 are closed. In the same way, �lling

P3 from B2 requires that V2, V3 and V4 are open, while V1 and V5 have to be closed.

Obviously, this may lead to a deadlock, where neither of the recipes can be produced,

since each closes some valve that the other requires to be open. In this small example,

this could be avoided by having the recipes claiming the valves in the same order, so that

the recipe that succeeds in claiming the �rst valve would have exclusive access to the

other valves. However, in a more complicated (and more realistic) setting, this may not

be possible, or at least it may be much too restrictive.

To handle the valve cooperation necessary for material transport in a batch process,

1The product routes are called synchronizable master recipes, by Tittus (1995c).
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to the left, and a connection-line connecting B1 to P4, to the right.

Tittus (1995c) generates connection-lines. These are abstract objects that have purely

supervisory functions. For each possible connection between two processors, a connection-

line can automatically be generated from the plant's topology. A connection-line serves as

a high-level transport object for the recipes. In a manufacturing system a mover can hold

the product as a whole, and the transfer is accomplished independently of any producer,

that is, the producer is free as soon as the mover has fetched the product. In a batch

process, on the other hand, the involved processors have to be kept unavailable for other

activity while the material transfer takes place. The connection-lines provide this mutual

exclusion, provided that the recipes hold on to the processors until the material transfer

is �nished.

A connection-line for the plant of Figure 6.3 is shown to the right in Figure 6.4. This

connection-line connects the bu�er tank B1 with the processor P4. The events of the

connection-line represent booking and unbooking of the line, bl14 and lub14, respectively;

con�rmation that the line has been successfully booked, lok14; and the booking, blocking,

unbooking and unblocking of di�erent valves. Compare the generic valve model given in

Figure 6.4, lower left. Blocking a valve indicates that the valve is unbooked, but must

not be opened by any other line until the valve is unblocked. The set of events marking

the upper left transition of the connection-line, represent connected events.

The global speci�cation is generated for the plant of Figures 6.3 and 6.4, in the same

way as described above. The plant is synchronized under the synchronization constraint

described by the recipes. There are two minor technicalities to consider here, both having

to do with the connection-lines. For one, the connection-lines also de�ne synchroniza-

tion constraints that have to be considered when generating the plant model. These

synchronization constraints are generated automatically, though, given the connectivity

of the plant. There is no problem of including these when generating the plant model.

Secondly, the connection-lines have to be interleaved with each other, though they are

synchronized with both the valves of the plant and the recipes. The theory presented in

Section 3.4 requires the plant to be deterministic, and the speci�cation to have an alpha-

bet equal to the plant alphabet. Regarding the connection-lines as speci�cation clearly

violates this, since there are events in the lines that are not present in the alphabet of

the plant. These are the blij and the lokij events. Regarding the connection-lines as

part of the plant, also violates this, since then the plant is in general non-deterministic,



due to mutual connection-line events. Tittus (1995c) resolves this by re-labeling mutual

connection-line events. The argument for this, is that the plant and the connection-lines

are static. Once generated, they will not change, unless the plant is rebuilt. Therefore,

the re-labeling does not have to be done more than once for each connection-line object.

The result of the re-labeling is that the plant is deterministic. The reason not to re-label

the events of the recipes, to generate a deterministic speci�cation as well, is that the set

of recipes is not static. It changes and evolves over time. New recipes are introduced,

while old ones are �nished and dismissed. Thus, there would have to be introduced in

the plant new transitions labeled by events unique for each recipe. This would have to be

done again and again, an issue of complexity we can do without. See also the discussion

on multiple re-labeling contra interleaving in Section 2.5.1.

The resulting global speci�cation is much to large to be presented here. The incidence

matrix for the Petri net representation is shown by Tittus (1995c) on pages 141 and 142.

It is a very sparse matrix, but it has 74 places and 38 transitions. The resulting controller

automaton has 3645 states. Since all events are regarded as controllable, this is just the

trim part of the global speci�cation, always able to reach the state where both products

have been produced, and the resources are back in their initial states. Some branches

are removed, since some combinations of valve booking and blocking lead to deadlock

of the system. Any situation in which both connection-lines succeed simultaneously to

book/block one or more valves will inevitably lead to a deadlock. This is due to the fact

that both connection-lines need access to all valves in order to be able to start operation.

The resulting controller avoids this by only allowing one line to access the valves at a

time.

6.3 Manufacturing System

In the approach of Zhou (1993) a "hybrid" top-down/bottom-up method is used to gen-

erate a Petri net model of the controlled, closed-loop behavior of manufacturing systems.

This is done under a set of laws guaranteeing that the resulting system will have "nice"

properties. These properties are that the closed-loop system will be

Bounded{no reachable marking is greater than some �xed vector k. This guarantees

that no capacity over
ows will occur; no resource will be requested to handle more

products simultaneously, than it has the capacity to deal with.

Live{from any reachable marking, all transitions will eventually be enabled. This guar-

antees that all modeled processes can actually occur.

Reversible{from any reachable marking, the initial marking can always be reached.

This implies a cyclic structure, so that the system can always be reinitialized from

any reachable marking.

It is assumed that we always want the system to encompass these "nice" properties. How-

ever, this is not enough for the controlled system to behave "nicely". For instance, letting

too many products enter the system simultaneously, can lead to a deadlock. Therefore,

once the system is modeled, Zhou (1993) calculates the maximum number of products of
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Figure 6.5: Layout of the automated manufacturing system of Chapter 6 of Zhou (1993).

each type that can be allowed to run concurrently through the system. Basically, this

calculation determines the bu�er capacity available for each type of product.

The example system given in Chapter 6 of Zhou (1993) is shown in Figure 6.5. Parts

enter the system through the entry stations Entry 1 and Entry 2. The robot R1 loads

M1, M2 and M3 from the entry stations. Machines M1 and M2 are identical. From

M1 andM2, robot R3 moves parts to the intermediate bu�er B1, while R4 unloadsM4

to the bu�er B2. The bu�ers have capacity to hold b1 number of F-parts for B1, and

b2 number of G-parts for B2. Robots R3 and R4 also load M3 and M5, respectively,

from the respective bu�ers B1 and B2. Finally, R2 unloads both M3 and M5, loading

the automatically guided vehicles AGV1 and AGV2. Parts from M3 are loaded onto

AGV1, and parts from M5 are loaded onto AGV2. The AGVs take di�erent paths to

their respective unloading stations, Exit 1 and Exit 2, from which the �nished products

disappear.

Two high-level product descriptions will be given for this system, the F and G oper-

ation lists shown in Figure 6.6. Both operation lists have the same structure, with one

alternative operation that can be by-passed. This is typically a request for a location

resource, a bu�er, for intermediate storage, something which is not essential for the man-

ufacturing of the product. It merely signi�es that for these products intermediate storage
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Figure 6.6: Operation lists for the two products de�ned for the system of Figure 6.5.

is allowed if resources that can meet the speci�ed operations, OpX and OpY, respectively,

are available. In this example we will assume that OpX can be met by B1, and OpY by

B2, above.

In the speci�cation of the physical system Zhou (1993) requires that the robots R3

and R4 should always move the parts through the intermediate bu�ers B1 and B2.

There are no clues as to why this is assumed to be necessary. However, assuming that B1

and B2 are FIFO-bu�ers, it would guarantee fairness to the processed parts. Otherwise,

some parts could be held in the bu�ers, while other parts were transported directly from,

say, M2 to M3 even though these other parts entered the system after the parts in the

bu�er. This could be resolved outside the controller, by the controller, but for comparison

with the system of Zhou (1993), we will also make the assumption that there is no direct

connectivity between M1/M2 and M3, as well as between M4 and M5. This means

that the alternative to move the parts directly between the machines is lost in the product

route.

We will assume that operation Op12 can be performed by both M1 and M2, and

that operations Op3, Op4 and Op5 can be performed by M3, M4 and M5, respectively.

Thus, there arises an alternative path for the F-products, but not for the G-products.

The product routes are shown gray in Figure 6.7. As usual, only the synchronization

events are used. The events ai, xi, vi, b11 and b21 denote booking of a producer, a robot,

an AGV, B1 and B2 respectively. Similarly, the ci, yi, wi,b12 and b22 events represent the

releasing of the respective resource.

The connected events speci�ed by the product routes are

� hy1; a1i, hy1; a2i and hy1; a3i since R1 loads all three machines M1, M2 and M3;

� hc1; x3i, hc2; x3i, hy3; b11i, hb12; x3i and hy3; a3i, denoting that R3 unloads both M1

and M2, both loads and unloads B1 and loads M3 ;

� hc4; x4i, hy4; b21i, hb22; x4i and hy4; a5i since R4 unloadsM4, both loads and unloads

B2 and loads M5 ;

� hc3; x2i, hc5; x2i, hy2; v1i and hy2; v2i, denoting that R2 unloads both M3 and M5

and loads both AGV1 and AGV2.



The global speci�cation, that is, the plant synchronized with the interleaved product

routes, is shown in Figure 6.7. Compare this �gure with Figure 6.9 of Zhou (1993). The

gray places are the product routes and the white places represent the resources. Note

that some super
uous places that would arise when the synchronization is performed

automatically, have been omitted for clarity. When synchronizing two Petri nets, the

number of places in the composed net is equal to the sum of the places of the synchronized

nets. For every resource there would arise two places in the net of Figure 6.7. However,

one of these places always holds redundant information, such as the place where R1 is

moving a product after an x1 event. Removing these places makes the incidence matrix

smaller, though the number of states described by the net is not altered. The net of

Figure 6.7 is essentially the same as the net given by Zhou (1993) in Figure 6.9, though

not cyclic.

The global speci�cation is nondeterministic, as is easily veri�ed. For instance, initially

there is a choice of whether to let an F-part or a G-part to be moved by R1. This is in

both cases modeled by the x1 event, but leads to two di�erent states, that is, markings.

Such a nondeterministic choice can also arise in the usage of R2. Note that, Zhou (1993)

does not consider events, only transitions. This makes the alphabet of the Petri net of

Zhou (1993) equal to the transition set. Of course, all transitions are named di�erently,

though some transitions can be labeled by the same event. Thus, the systems arising in

the approach of Zhou (1993) are always deterministic. However, the controller experi-

ences the plant through the generated events, so that for supervisory control we require

the transitions to be labeled by events. This makes the global speci�cation, as well as the

controller, nondeterministic. Not labeling the transitions also makes it hard to automat-

ically generate the global speci�cation by synchronizing di�erent modules. The systems

of Zhou (1993) are, more or less, built manually, albeit under strict rules to guarantee the

desired properties of boundeness, liveness and reversibility.

To generate the reachability graph, we will have to give some initial marking and

de�ne the bu�er capacities b1 and b2. We will arbitrarily choose b1 = b2 = 1 and initially

mark two F-parts and one G-part. The entire reachability graph, that is, the transition

machine representation of the global speci�cation, is much to large to be presented here.

It has 530 states. A small portion of it is shown in Figure 6.8.

As can be seen from Figure 6.8, the system deadlocks in state 016. Since we have two

F-parts, but B1 only has capacity to hold one, when B1 is full and R3 picks up a new

F-part fromM1 orM2, the system deadlocks. In fact, there are three scenarios that lead

to the deadlock state 016. All three combinations of running the products through the

system as F1F2G, F1GF2 and GF1F2, where the �rst F-part F1 stays in B1, will deadlock

the system. Of course, the controller algorithm will prune the transition machine so as

not to include branches pertaining to these scenarios. Thus, the system will be controlled

to exhibit a well-mannered behavior.

The approach of Zhou (1993) can also generate control-laws for the physical system

by using the modeled closed-loop system. However, the correctness of the control-laws

depends, not only on the structure of the Petri net, but also on the initial marking, that is,

on how many products of each type are let into the system simultaneously. The calculation

of these numbers is a crucial aspect for correct behavior of the control. As noted by

Zhou (1993), this calculation is not straightforward to perform for general systems. It is

suggested that the reachability graph be used for this. We argue that, if the reachability
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forbidden state. The marked state is not shown.



graph has to be used, then our method of generating control-laws is less restrictive than

the approach of Zhou (1993).

As shown above, the controller inherently determines how many parts can be allowed to

be operated upon simultaneously, regardless of the number of requested production units.

If the robot R1, for instance, picks parts "intelligently", then there is no problem with

deadlock, no matter how many F-tokens there are in the initial marking. Furthermore,

it seems to us that when bu�ers are shared between products of di�erent types, the

number of products of each type that can be let into the system is not well-de�ned; see,

for instance, point 2 on page 78 of Zhou (1993). The total number of all products is

required to be less than or equal to a �xed value b. Of course, choosing the relative

proportions between the products is a scheduling issue. But it also has a great impact

on the control-laws. Our approach is to separate scheduling from control, generating

a controller expressing control-laws un-in
uenced by the scheduling process. When a

part to be produced arrives, we calculate how we can let this part through the system.

Zhou (1993) guarantees that if the parts arrive in adequate order and numbers, then the

system is able to let them through.

We can note also that the approach of Zhou (1993) does not seem to be able to handle

the case of multiple movers that may get in the way of each other. For instance, it seems

unlikely to us that R1 and R3, say, could load and unload M1 or M2 simultaneously.

The Petri net shown on page 135 of Zhou (1993) allows this. Markings such that p11 and

p14 are simultaneously marked are not excluded. These places represent "R1 acquiring a

pallet from Entry 1 and loadingM1 orM2", and "R3 unloadingM1 orM2 and placing

an intermediate F-part in Bu�er 1", respectively (see page 129, Table 6.2 of Zhou (1993)).

There seems to be no mentioning whatsoever of this problem in the book of Zhou (1993).

On the contrary, for the example of Chapter 6 (page 123), the requirement is that "the

system is not deadlocked, and has the smallest amount of starving", and "guaranteeing

the net's boundedness, liveness and reversibility".

However, deadlock could arise from a circular wait by two movers wanting to enter

some mutual area. In our approach, this can be included, and the controller would see

to it that this situation would never arise. For instance, by specifying that all markings

with both p11 and p14 simultaneously marked are forbidden states, this is achieved. In

Figure 6.8 the small rhomboid reachable via x1 from the state 353 marks such a state.

In this state R3 is unloading M1 while R1 loads M1. Marking this state as forbidden

removes it from the controller, so that in state 353 the only allowed x1 event is the one

representing R1 fetching a G-part. Of course, for the general case, where there are certain

areas in the fabrication system from which movers have to be mutually excluded, these

aspects have to be modeled. Then, the simple resource models used in this example do

not suÆce.

Another aspect of interest when regarding the work of Zhou (1993) is that Zhou does

not consider events. Only unlabeled transitions are modeled. This means that, though

Zhou (1993) interleaves the product routes, the resulting system is always deterministic

since every transition is unique. Apart from the fact that non-determinism cannot arise,

we believe that the absence of events, that is, transition labels, is the main reason for the

approach of Zhou not to be suitable for automatic synthesis. Since the transitions are

not labeled, how do we specify which transitions to synchronize? This is, in fact a critical

issue, since, as Zhou (1993) says, when the physical system is altered "... the Petri net



model needs to be modi�ed. Such modi�cation may destroy the desirable properties."

With our approach, when the physical system is altered, the model can be automatically

generated for any type of product that is to be processed by the new system. Note also

that Zhou does not use the term interleaving nor considers that it is the product routes

that are essentially modeled.

Though the generated models are basically the same, the approach and purpose of

generating them is di�erent for Zhou (1993) and for us. The approach of Zhou (1993) is

stated as

Given the speci�cations of a manufacturing system, model the system as a

Petri net such that its structure and initial markings make it bounded, live and

reversible.

Zhou (1993), Section 2.3

Then, Zhou (1993) claims, the resulting Petri net model can be translated to supervisory

control code for actual execution of a manufacturing system.

Our approach can be stated as

Given a model of a fabrication process and a speci�cation for its behavior,

generate a control system such that the closed-loop system is nonblocking.

To guarantee that PkS is nonblocking we know that S has to be complete. The model

is given as generic reusable resource models. However, even though each model itself

possesses "nice" properties, they are live, bounded and reversible, their composition may

not. Not unless either

1. the system is composed according to strict rules that preserve the properties, or

2. a controller is generated that prevents the system from exhibiting unwanted prop-

erties.

Of course, Zhou (1993) takes the �rst approach, while we take the second.





Chapter 7

Conclusions

In this thesis we have been concerned with control of a certain class of fabrication pro-

cesses, namely processes that are such that their continuous behavior can be disregarded.

The processes can therefore be described by transition machines. Typical examples of

such processes are manufacturing and assembly systems, but it may also be adequate to

model chemical batch processes on this level of abstraction.

We have proposed an object-oriented modeling approach for such systems, building

on the ability to abstract the general behavior of certain classes of resources, machines,

robots etc. The result of this is general models that can be adapted and reused for other

implementations of similar systems. In this way the arrangement of the physical system

is used to structure the control system coherently. To achieve reusability the removal

of application-speci�c aspects is of importance. This can be achieved by separating the

control of the individual subsystems from the control of the system as a whole. However,

this also necessitates some, preferably automatic, way of binding the individual parts

together.

In the supervisory control theory we have found the means to tie the modules of the

control system together. Given that we have suitable models of the resources and the

desired production sequences, we can synthesize control laws guaranteed to achieve the

required production. The models suitable for this approach are surprisingly simple even

for ample use in quite complex systems.

The speci�cation for the global desired production sequences generally become non-

deterministic, in the sense that the same sequence of events can lead to any of a number

of states. Therefore, we have generalized the supervisory control theory to the case of

non-deterministic systems. In doing so, we have also considered some aspects related

to non-deterministic plants. We have succeeded in showing that the supervisory control

theory can be used to generate control laws given non-deterministic speci�cations. We

have not achieved utter generalization, though, since at present we are unable to show

that our algorithms work for non-deterministic plant as well as speci�cation.

All in all, we have in this thesis, together with the earlier work presented on page ii,

shown how object-oriented modeling principles can be mated with the supervisory control

theory to form a powerful framework for the implementation of 
exible control systems for

discrete event fabrication processes. The emphasis of this work has been on the theoretical

side, focusing on the supervisor synthesis.

Some reviewers of the papers that preceded this thesis have taken the standpoint that
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the main theorems and proofs are merely minor and obvious extensions to the supervisory

control theory. The theorems may seem obvious once presented, but their derivation has

by no means been straightforward. As for the theorems being a minor extension, they

seem crucial for applying the supervisory control theory to real systems modeled by object

oriented principles.

We have avoided the question of optimality. Our supervisor merely expresses all

allowed paths through the system. How and when to choose what speci�c path is still

an open question. We know though, that the paths allowed by the supervisor are the

only paths worth considering when making such intricate decisions. Our models have also

avoided resource failures, though the presented theory raises no such constraints. Given

that we have the power to perform the calculations, the models can be as complex as

necessary for the particular application.

Martin Fabian

G�oteborg, August 10, 2000



Appendix A

Basic Set Results

In this appendix we show some basic set theoretic results that are used (mostly implictly)

in the proofs. Some of these basic results will also be proven. These results are speci�c

to the presented work, and this appendix is intentionally kept very terse. The reader

is referred to more comprehensive literature for more elaborate explanations, such as

Tremblay (1987).

Note that throughout this appendix, an exclamation mark in bold font, !, means that

a contradiction to the initial assumptions has been reached.

A.1 Singular Sets

In this section we will regard the sets A, B and C as subsets of some universal set �.

The elements of � are considered to be singular , that is, the elements are themselves

not sets. The presented results hold equally for sets of sets, but we make the distinction,

since in the next setion we will consider results speci�c to sets of sets; results that are not

applicable to sets of singular elements.

For arbitrary sets A;B;C � � , the following results hold.

Lemma A.1

A
T
B � C , A

T
B � B

T
C (A.1)

Lemma A.2

A � C ) A
T
B � B

T
C (A.2)

Lemma A.3

A
T
B = A, A � B , A

S
B = B (A.3)

A.2 Mappings

Let A and B be arbitrary disjoint sets. Let f : A
S
B ! 2� be a function mapping

elements of A and B into subsets of some set �. De�ne f(A) =
S

8a2A

f(a), and F (A) =
T

8a2A

f(a). Then the following relations hold. See also Figure A.1.
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Lemma A.4

8a 2 A 8b 2 B f(b) � f(a), 8a 2 A f(B) � f(a) (A.4)

Proof. ( )) Assume 8a 2 A 8b 2 B f(b) � f(a) but 9a0 2 A f(B) 6� f(a0). Then

9� 2 f(B) ^ � =2 f(a0), 9b0 2 B � 2 f(b0)^ � =2 f(a0), f(b0) 6� f(a0) !

( () Assume 8a 2 A f(B) � f(a) but 9a0 2 A 9b0 2 B f(b0) 6� f(a0). Then

9� 2 f(b0) ^ � =2 f(a0), � 2 f(B) ^ � =2 f(a0) , f(B) 6� f(a0) !

Lemma A.5

8a 2 A f(B) � f(a)) f(B) � f(A) (A.5)

Proof. ()) Assume 8a 2 A f(B) � f(a) but f(B) 6� f(A). Then 9� 2 f(B) ^ � =2
f(A), � 2 f(B) ^ 8a0 2 A � =2 f(a0), f(B) 6� f(a0) !

(6() Assume f(B) � f(A) but 9a0 2 A f(B) 6� f(a0) . Then 9� 2 f(B) ^ � =2 f(a0). No
contradiction, � can belong to f(�) of some other element in A.

Lemma A.6

f(B) � f(A), 8b 2 B f(b) � f(A) (A.6)

Proof. ()) Assume f(B) � f(A) but 8b0 2 B f(b0) 6� f(A). Then 9� 2 f(b0) ^ � =2
f(A), � 2 f(B) ^ � =2 f(A), f(B) 6� f(A) !

(() Assume 8b 2 B f(b) � f(A) but f(B) 6� f(A). Then 9� 2 f(B) ^ � =2 f(A) ,
9b0 2 B such that � 2 f(b0) ^ � =2 f(A), f(b0) 6� f(A)!

And here are the duals to the three lemmas above.

Lemma A.7

8a 2 A 8b 2 B f(b) � f(a), 8b 2 B f(b) � F (A) (A.7)

Proof. ()) Assume 8a 2 A 8b 2 B f(b) � f(a) but 9b0 2 B f(b0) 6� F (A). Then

9� 2 f(b0) ^ � =2 F (A) then 9a0 2 A such that � =2 f(a0) so that f(b0) 6� f(a0) !

(() Assume 8b 2 B f(b) � F (A) but 9a0 2 A 9b0 2 B f(b0) 6� f(a0). Then 9� 2
f(b0) ^ � =2 f(a0), � 2 f(b0) ^ � =2 F (A), f(b0) 6� F (A) !

Lemma A.8

8b 2 B f(b) � F (A)) F (B) � F (A) (A.8)



Proof. ()) Assume 8b 2 B f(b) � F (A) but F (B) 6� F (A). Then 9� 2 F (B) ^ � =2
F (A), 8b 2 B � 2 b ^ � =2 F (A). Thus 8b 2 B f(b) 6� F (A) !

(6() Assume F (B) � F (A) but 9b0 2 B f(b0) 6� F (A). Then 9� 2 f(b0) ^ � =2 F (A). No
contradiction. There may exist b00 2 B such that � =2 f(b00) and then � =2 F (B).

Lemma A.9

8b 2 B f(b) � F (A)) f(B) � f(A) (A.9)

Proof. ()) Assume 8b 2 B f(b) � F (A) but f(B) 6� f(A). Then 9� 2 f(B) ^ � =2
f(A), 9b0 2 B � 2 f(b0) ^ � =2 F (A) !

(6() Assume f(B) � f(A) but 9b0 2 B f(b0) 6� F (A). Then 9� 2 f(b0) ^ � =2 F (A) ,
� 2 f(B) ^ 9a0 2 A � =2 f(a0). No contradiction, � can belong to some other a00 2 A

Lemma A.10

F (B) � F (A), 8a 2 A F (B) � f(a) (A.10)

Proof. ()) Assume F (B) � F (A) but 9a0 2 A F (B) 6� f(a0). Then 9� 2 F (B) ^ � =2
f(a0), � 2 F (B) ^ � =2 F (A) !

(() Assume 8a 2 A F (B) � f(a) but F (B) 6� F (A). Then 9� 2 F (B) ^ � =2 F (A) ,
� 2 F (B) ^ 9a0 2 A � =2 f(a0) !

Lemma A.11

8a 2 A 8b 2 B f(b) � f(a), f(B) � F (A) (A.11)

Proof. ()) Assume 8a 2 A 8b 2 B f(b) � f(a) but f(B) 6� F (A). Then 9� 2
f(B) ^ � =2 F (A), 9b0 2 B � 2 b0 ^ 9a0 2 A � =2 a0. Then, of course, f(b0) 6� f(a0) !

(() Assume f(B) � F (A) but 9a0 2 A 9b0 2 B f(b0) 6� f(a0). Then 9� 2 f(b0) ^ � =2
f(a0), � 2 f(B) ^ � =2 F (A) !

The following lemma proves an important equality concerning conformity.

Lemma A.12

8a0; a00 2 A f(a0) = f(a00), 8a 2 A f(a) = f(A), 8a 2 A f(a) = F (A) (A.12)

Proof. We will only prove the �rst equivalence, the second follows similarily (and intu-

itively).

( )) Assume 8a0; a00 2 A f(a0) = f(a00) but 9a000 2 A f(A) 6= f(a000) !

( () Assume 8a 2 A f(A) = f(a) but 9a0; a00 2 A f(a0) 6= f(a00). Then 9� 2 f(a0) ^ � =2
f(a00) !



∀ ∈ ⊆a A f B f a( ) ( )

∀ ∈ ∀ ∈ ⊆a A b B f b f a( ) ( )

∀ ∈ ⊆b B f b f A( ) ( ) f B f A( ) ( )⊆

∀ ∈ ⊆b B f b F A( ) ( ) ∀ ∈ ⊆a A F B f a( ) ( ) F B F A( ) ( )⊆

f B F A( ) ( )⊆ F B f A( ) ( )⊆

Figure A.1: The basic relations shown by Lemma A.4 to Lemma A.11. The left oval

encircles the equivalent abstract expressions representing (inverse) completeness, while the

right oval encircle the equivalent abstract expressions representing (nverse) controllability.

A.3 Sets of Sets

For a set of set of subsets A � 2� of some universal set �, the following results hold.

A.4 Set Di�erences

Let A;B;C � � be arbitrary sets of some universal set �, and let :A denote the com-

plement of A, that is A
S
:A = �. Let A�B denote the set di�erence of A and B, that

is, A� B is the set of elements of A not in B. Furthermore, let the descending order of

precedence be
T
,
S
and �. Then the following holds.

Lemma A.13

A� B
T
C = (A�B)

S
(A� C) (A.13)

Lemma A.14

A
S
B � C = (A� C)

S
(B � C) (A.14)

Lemma A.15

A
T
(B � C) = A

T
B � C (A.15)



Appendix B

Proof of Lemma 2.47

Lemma 2.47 states that for any three state machines P , Q, R, the � kA � operator is

associative, that is

P kA (Q kB R) = (P kA Q) kB R, (B.1)

whenever A = B or A = �P

T
�Q and B = �Q

T
�R.

Let A�B denote the set di�erence of A and B, that is, A�B is the set of elements

of A not in B, and let the descending order of precedence be
T
,
S
and �.

Proof. By de�nition, we have for Q kB R

8(hq; ri ;�; hq0; r0i) 2 EQ k
B
R

� 2 B ^(q; �; q0) 2 EQ ^(r; �; r0) 2 ER _
� 2 �R � B ^(q; �; q0) 2 EQ ^ r = r

0 _
� 2 �R � B ^ q = q

0 ^(r; �; r0) 2 ER

(B.2)

and we have for P kA (Q kB R)

8(hp; q; ri ;�; hp0; q0; r0i) 2 EPk
A
(Q k

B
R)

� 2 A ^(p; �; p0) 2 EP ^(hq; ri ; �; hq0; r0i) 2 EQ k
B
R _

� 2 �P � A ^(p; �; p0) 2 EP ^ hq; ri = hq0; r0i _
� 2 �Q

S
�R � A ^ p = p

0 ^(hq; ri ; �; hq0; r0i) 2 EQ k
B
R

(B.3)

Combining these expressions we get

8(hp; q; ri ; �; hp0; q0; r0i) 2 EPk
A
(Q k

B
R)

� 2 A
T
B ^(p; �; p0) 2 EP ^(q; �; q0) 2 EQ ^(r; �; r0) 2 ER _

� 2 A
T
(�Q � B) ^(p; �; p0) 2 EP ^(q; �; q0) 2 EQ ^ r = r

0 _
� 2 A

T
(�R � B) ^(p; �; p0) 2 EP ^ q = q

0 ^(r; �; r0) 2 ER _
� 2 �P � A ^(p; �; p0) 2 EP ^ q = q

0 ^ r = r
0 _

� 2 (�Q

S
�R � A)

T
B ^ p = p

0 ^(q; �; q0) 2 EQ ^(r; �; r0) 2 ER _
� 2 (�Q

S
�R � A)

T
(�Q �B) ^ p = p

0 ^(q; �; q0) 2 EQ ^ r = r
0 _

� 2 (�Q

S
�R � A)

T
(�R �B) ^ p = p

0 ^ q = q
0 ^(r; �; r0) 2 ER

(B.4)

By de�nition we also have that B � �Q

T
�R and that A � �P

T
(�Q

S
�R).

187



In the same way we have for (P kA Q) kB R

8(hp; q; ri ; �; hp0; q0; r0i) 2 E(Pk
A
Q) k

B
R

� 2 A
T
B ^(p; �; p0) 2 EP ^(q; �; q0) 2 EQ ^(r; �; r0) 2 ER _

� 2 (�P

S
�Q � B)

T
A ^(p; �; p0) 2 EP ^(q; �; q0) 2 EQ ^ r = r

0 _
� 2 B

T
(�P � A) ^(p; �; p0) 2 EP ^ q = q

0 ^(r; �; r0) 2 ER _
� 2 (�P

S
�Q � B)

T
(�P � A) ^(p; �; p0) 2 EP ^ q = q

0 ^ r = r
0 _

� 2 B
T
(�Q � A) ^ p = p

0 ^(q; �; q0) 2 EQ ^(r; �; r0) 2 ER _
� 2 (�P

S
�Q � B)

T
(�Q � A) ^ p = p

0 ^(q; �; q0) 2 EQ ^ r = r
0 _

� 2 �R � B ^ p = p
0 ^ q = q

0 ^(r; �; r0) 2 ER

(B.5)

By de�nition we now have that A � �P

T
�Q and that B � (�P

S
�Q)

T
�R.

For (B.4) and (B.5) above to be equal we have the verify that the following equalities

hold for all �P , �Q and �R under the given conditions for A and B, that A = B or

A = �P

T
�Q and B = �Q

T
�R.

1: A
T
B = A

T
B

2: A
T
(�Q � B) = (�P

S
�Q �B)

T
A

3: A
T
(�R �B) = B

T
(�P � A)

4: �P � A = (�P

S
�Q � B)

T
(�P � A)

5: (�Q

S
�R � A)

T
B = B

T
(�Q � A)

6: (�Q

S
�R � A)

T
(�Q �B) = (�P

S
�Q � B)

T
(�Q � A)

7: (�Q

S
�R � A)

T
(�R �B) = �R � B

(B.6)

Let LHS denote the Left Hand Side of the expressions above, while RHS denotes the

Right Hand Side.

1. LHS is obviously equal to RHS.

2. Note that it is always the case that A � �Q. By Lemma A.15, LHS = A
T
�Q �

B = A � B = A
T
(�P

S
�Q) � B =RHS. Thus LHS is equal to RHS under any

con�guration of A and B.

3. When A = B LHS = A
T
(�R � A) = ; = B

T
(�P � B) =RHS. When A =

�P

T
�Q and B = �Q

T
�R, LHS = �P

T
�Q

T
�R��Q

T
�R = ; = �Q

T
�R

T
�P�

�P

T
�Q =RHS.

4. When A = B, RHS = (�P

S
�Q � A)

T
(�P � A) = �P � A =LHS. When A =

�P

T
�Q and B = �Q

T
�R, RHS = (�P

S
�Q � �Q

T
�R)

T
(�P � �P

T
�Q). By

Lemma A.14 and Lemma A.15, this is equal to [(�P � �Q)
S
(�P

S
�Q��R)

T
(�P�

�Q). Performing the intersection we get

(�P � �Q)
S
[(�P

S
�Q � �R)

T
(�P � �Q)]. Now, since (�P

S
�Q � �R)

T
(�P �

�Q) � (�P � �Q), we have (�P � �Q)
S
[(�P

S
�Q � �R)

T
(�P � �Q)] =(�P �

�Q) =LHS.

5. This is the dual to number 2. It is similarily veri�ed that LHS = B � A =RHS.

6. LHS = (�Q

S
�R)

T
:A

T
�Q

T
:B = �Q

T
:A

T
:B = (�P

S
�Q)

T
�Q

T
:A

T
:B =

RHS. Again, this condition does not incur any constraints on A or B.



7. This is the dual to number 4. It is similarily veri�ed that when A = B, LHS

= ; =RHS, and that when A = �P

T
�Q and B = �Q

T
�R, LHS = �R��Q =RHS.

Thus Lemma 2.47 is proven.
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