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Abstract. Controlled dynamical systems with different type of actuators (e.g. external powered electromotors, 
magnetostrictive actuators, internal unpowered (passive) spring-damper-like drives, etc.) are considered.  These 
systems are termed semi-passively controlled. Mathematical statement of optimization problem has proposed 
that is suitable both for modeling of optimal motion and for optimization of structure of semi-passively 
controlled dynamical systems with different degree of actuation. Numerical method for solving the proposed 
optimization problem is described. The method was successfully used for solving optimal control problems for 
several semi-passively controlled dynamical systems (industrial robots, human locomotor system with intelligent 
lower limb prosthesis, bipedal locomotion robots, others). The results obtained have confirmed the efficiency of 
the proposed numerical method for solving optimization problems for semi-passively controlled dynamical 
systems. Analysis of the results gives insight into the study of the role of inherent dynamics in controlled motion 
and how much a dynamical system should be governed by external drives and how much by a system’s inherent 
dynamics. In particular, it has been shown that complex goal-directed and cost-efficient controlled motion of 
underactuated dynamical system can be design using optimal interaction between external powered drives and 
internal unpowered spring-damper-like drives. This constitutes the powerful ability of semi-passively controlled 
dynamical systems. 
 
 
1 INTRODUCTION 

To perform cost efficient goal-directed controlled motions many machines and mechanisms can comprise not 
only different external powered drives, e.g. traditional electromotors, magnetostrictive material based actuators, 
hydraulic motor and/or pneumatic motors, but also some other force/torque generators like springs, dampers, etc. 
These generators do not use external power. The forces and/or torques that are exerted by these generators 
depend only on their inherent dynamics and phase state of the dynamical system modeled the considered 
mechanism. For the above reasons these generators can be called unpowered (passive) drives. A dynamical 
system comprises both powered and unpowered drives is termed as semi-passively controlled one. Ground 
vehicle suspension with passive shock absorber and powered actuator is a classical example of a semi-passively 
controlled dynamical system.  

Efficiency of the control of motion of a dynamical system depends not only on which kinds of drives are 
used, but also how much the system is actuated. If the number of powered drives is less than the number of 
degrees of freedom the dynamical system is called underactuated[1]. Opposite, if the number of powered drives 
exceeds the number of degrees of freedom then the system is called overactuated. The term full actuated 
dynamical system    refers to the system which has the same numbers of degrees of freedom and powered drives.  

Usually the analysis of dynamics and design of control algorithms for underactuated systems are much more 
complicate than for full actuated or overactuated systems[1]. Difficulties can arise due to specific features of 
underactuated dynamical systems, e.g. luck of their controllability. 

In this paper the semi-passively controlled dynamical systems with different degree of actuation are under the 
study. Mathematical statement of the problem is proposed that is suitable both for modeling of optimal motion 
and for optimization of structure of semi-passively controlled dynamical systems. Numerical method is 
described and successfully used to solve energy-optimal control problems for several semi-passively controlled 
biomechanical systems. Results of numerical analysis and computer simulation of obtained energy-optimal 
controlled processes of considered systems are presented.  
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2 METHEMATICAL MODEL AND STATEMENT OF THE PROBLEM 

Consider a dynamical system with n degrees of freedom. Let the controlled motion of a dynamical system is 
described by the following equations 

 
 A(q)q + B(q,q) = C(q)u + D(q)p   (1) 

 
 H(q,q,p,ξ) = 0  (2) 
 
Here 1[ , , ]T

nq q=q   be a vector of independent generalized coordinates, 1[ , , ]T
mu u=u   be a vector 

of controlling stimuli exerted by powered drives, 1[ , , ]T
kp p=p   be a vector of control stimuli exerted by 

unpowered (passive) drives, A, B, C, D are given matrices that describe the inherent dynamics of the considered 
semi-passively controlled dynamical system, H and 1[ , , ]T

lξ ξ=ξ   are matrix and vector of structural 
parameters that describe the inherent dynamics of unpowered (passive) drives of the system.  

The considered system (1)-(2) is underactuated if m<n; for m>n – overactuated, and in case of m=n the 
considered semi-passively controlled dynamical system is full actuated. 

Let assume that the motion of the system is subject to multipoint boundary conditions that can be written as 
follows 

 1 1 1 1( ) , ( ) , 1, 2, ,j jt t j N− − − −= = =j jq q q q 
  (3)       

 
Here the vectors 1 1,− −j jq q determine the phase states of the considered dynamical system at the instants of 

times 1, 1, 2, ,jt j N− =  . All or some of the components of the vectors 1 1,− −j jq q and the times 1jt −  can be 
specified in advanced depend on the requirements imposed on the motion of the system. 

Usually, the control stimuli exerted by drives and their structural parameters are not arbitrary and must 
satisfy some restrictions. In general case these restrictions can be written as  

 
 [ ]0( ) , ,ut t t T∈Ω ∈u  (4) 
 
 [ ]0( ) , ,pt t t T∈Ω ∈p  (5) 
 
 ( )t ξ∈Ωξ  (6) 

 
In formulae (4)-(6) uΩ is given domain in control space m

u  of powered drives, pΩ is given domain in 

control space k
p of unpowered drives, ξΩ is given domain in space l

ξ of the values of the vector of structural 

parameters of the unpowered drives, 0 ,t T are initial and final instants of time of the controlled motion of the 
dynamical system. 

In many practical cases the controlled motion of a dynamical system can be restricted not only at the 
particular instants of time (see boundary conditions (3)) but also during some interval of 
time [ ] [ ]1 2 0, ,t t Tτ τ∈ ⊆ . It will lead to the equality and/or inequality constraints that are imposed on the 
phase trajectories of the system. These restrictions on the phase trajectories can be written as  

 
 [ ] [ ]1 2 0[ ( ), ( )] , , ,qqt t t t Tτ τ∈Ω ∈ ⊆T Tq q



  (7) 
 
where qqΩ



 is given domain in phase space 2n
qq  of a dynamical system. 

The equations (1), (2), the boundary conditions (3), the restrictions on control stimuli (4)-(6), and the 
constraints on the phase trajectories (7) compose the mathematical model of a semi-passively controlled 
dynamical system. The examples of the described general mathematical model (1)-(7) that were used for 
modeling and design of optimal processes for different semi-passively controlled robotic and biomechanical 
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systems can be found in papers[2] – [7]. 
Assume that there exists a non-empty set of vector-functions [ ]0{ ( ), ( ), ( ), , }t t t t t T∈q u p and a vector of 

structural parameters ξ  which satisfy the equations (1), (2) and the restrictions (3)-(7). The following optimal 
control problem can be formulated. 

Problem A. Given a dynamical system the controlled motion of which is described by equations (1), (2). It is 
required to determine the vector-function *( )tp , the motion of the system *( )tq , the external controlling 

stimuli * * *( , , )tu q p , and the vector *ξ  which alltogether satisfy the equations (1), (2), the restrictions (3)-(7), 

and which minimize the given objective functional [ ]Φ u . 
As a result of the solution of Problem A the optimal control process of a dynamical system having both 

powered and unpowered drives will be designed. Both internal *( )tp and external controlling stimuli 

* * *( , , )tu q p for the system are found which minimize the given objective functional. 
One of the primary goals for the incorporation of unpowered drives into the structure of the dynamical 

systems is an improvement of their control processes. It means that the validity of the following inequality is 
expected * * * 0 0[ ( , , )] [ ( , )]t tΦ < Φu q p u q , where ( ), ( )t t0 0q u are the optimal motion and the respective 
controlling stimuli obtained under the restrictions (3), (4), (7) for the dynamical system without the unpowered 
drives. In this sense the solution of Problem A could help to estimate the limiting possibility of improvement of 
the external control strategies for the dynamical systems due to incorporation into their structure different 
unpowered drives determined by the equation (2) and restrictions (5), (6). 

3 METHODOLOGY 

We have formulated the optimal control problem for a semi-passively controlled dynamical system. The key 
feature of the proposed mathematical statement of the problem is direct utilization of the equations describing 
the inherent dynamics of internal unpowered drives together with all other constraints that are imposed on the 
state vector and the controlling stimuli of a system. It leads to the non-uniqueness of the solution of the direct 
and the inverse dynamics problems as well as makes it possible to design optimal unpowered drives for a 
dynamical system. 

In general case for the dynamical systems with many degrees-of-freedom powerful numerical algorithms are 
needed to solve Problem A. Futhermore, during the calculation of optimal control for a dynamical system it is 
necessary to design at the same time the optimal structure of the unpowered drives taking into account the 
equation (2) and the restrictions (5), (6). This can significantly increase the complexity of the computation. 

 The numerical method has been developed for the solution of Problem A for the dynamical systems, 
which model semi-passively controlled manipulator robots and bipedal locomotion systems with unpowered 
drives at their joints [2], [6], [7]. The method is based on a special procedure to convert the initial optimal control 
problem (Problem A) into a standard nonlinear programming problem: 

 
 ( ) , ( )F ⇒ ≤CC min g C 0  (8) 

 
where C is a vector of varying parameters. This is made by an approximation of the independently varying 
functions by a combination of the fifth order polynomial and Fourier series, i.e. by using the following 
expression: 
 

 

5

1 1 1
0 1

1

( ) ( ) [ cos( ( )) sin( ( ))]

, , 1, 2,..., ,

xjN
j i j j

xi j xk j j xk j j
i k

j j N

x t C t t a k t t b k t t

t t t j N t T

ω ω− − −
= =

−

= − + − + −

 ∈ = = 

∑ ∑
 (9) 

 
Here ( )x t is an independent varying function, 12 /( ),j j jt tω π −= −  and xjN is given positive integer. The 

list of independent varying functions can include generalized coordinates ( )iq t and/or some of the components 

of the vector of controlling stimuli of powered drives ( )tu .  
Considering the boundary conditions (3) and the restriction (4), the vector of independently varying 

parameters C can be determined. For instance, in case of two-point boundary conditions imposed on the state 
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vector [ ( ), ( )]Tt tq q of the system, from the formulae (3) and (9) with N=2 follows that the parameters  

4 5, , , , 1, 2, 1,...,j j j j
x x xk xk xjC C a b j k N= =  can serve as independently varying parameters. 
To solve the nonlinear programming problem (8) different algorithms have been used that are based on the 

Rozenbrock’s method[8], and the sequential quadratic programming method[9] implemented in the software 
package TOMLAB[10].  

The key features of the proposed method for solving Problem A is its high numerical efficiency and the 
possibility to satisfy a lot of restrictions imposed on the phase coordinates of the system automatically and 
accurately. The efficiency of the developed method has been illustrated by solution of the energy-optimal control 
problems for several semi-passively controlled robotic and biomechanical systems[2], [6], [7]. 

4  OPTIMIZATION OF CONTROLLED MOTION OF A BIPEDAL LOCOMOTION SYSTEM 

Here the application of methodology of optimization of semi-passively controlled dynamical systems 
described in paragraph 3 is demonstrated by solving the design problem of lower limb prostheses and by 
optimization of controlled motion of bipedal locomotion system models amputee with above-knee prosthesis.  

There is an important difference between the dynamics of an intact limb and a prosthetic limb of an amputee. 
Here the mathematical modelling of a human gait of an amputee with above-knee prosthesis is considered based 
on an assumption that the force moments at the knee and at the ankle joints of the prosthetic leg are passive ones. 
The values of these moments depend not only on the gait pattern, but also on the prosthesis construction. The 
considered model of the amputee system belongs to the class of underactuated semi-passively controlled 
dynamical systems. 

The sketch of the bipedal locomotion system that models the amputee with above-knee prosthesis is depicted 
in Figure 1. The system is modeled as the mechanical system of seven rigid bodies connected by ideal cylindrical 
hinges. The bodies HG, HKi, and KiAi (i=1,2), which model the torso, thighs, and shins respectively, are 
assumed to have weight and inertia, and the bodies AiTiHi (the feet) are weightless and inertialess. 

In addition to the weights of the trunk, thighs and the shanks, the external forces acting on the system include 
the interaction forces between the feet and the ground, which are replaced by the resultant forces. It is also 
assumed that the control torques qi(t), ui(t), pi(t) acting at the hip (point H), knee (point Ki) and the ankle (point 
Ai) joints, respectively. 

As generalized coordinates that jointly determined the position of the given mechanical system we chose the 
following: x and y, the Cartesian coordinates of the point of attachment of the legs (the point H); , , ,i i iψ α β γ  
the angles of deviation of the link HG, HKi, KiAi, and AiTiHi , (i=1,2) from vertical (Figure 1). 
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Figure 1. Sketch of an amputee with above-knee prosthesis 
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The above-knee prosthesis comprises the linear-viscoelastic ankle mechanism and the hydraulic or the 

pneumatic knee mechanism that are assumed to be weightless and inertialess. 
During locomotion of the amputee with above-knee prosthesis the unpowered (passive) control torques p1(t), 
u1(t) are generated at the ankle and at the knee joints of the prosthetic leg, respectively. These torques are 
determined as follows[6] 

 1 1 1 1 1
2 2 1/ 2

1 2 1 2 1 0 1 1 1

( ) ( / 2) ( )
( ) ( ) ( ) sin( ) /p

p t C K D
u t P P S d d l l

β γ π β γ

α β η

= − + + − +

= − + − +





 (10) 

 
Here C, K are the torsion spring and the damping coefficients of the ankle mechanism; D is determined by 

the free angle of the spring and torsion spring coefficients; 1 2,P P are the chamber pressures of the hydraulic or 
the pneumatic actuator that can be calculated by using the equations of dynamics of the knee mechanism of the 
prosthesis [6], pS  is the cylinder piston cross-area, and 

 

 
2 2 2 2 2 1/ 2 1/ 2

1 1 2 0 2 1 0 1 1

0 1 1 1 2 1 0 0 0

( 2 ( ) cos( ))
tan( / ), , ,

l d d l d d l
a l d d BK d K C l BD

α β η
η
= + + + + − +

= = = =
 (11) 

 
The detailed description of the considered model of amputee with above-knee prosthesis can be found in [2], [6]. 

The design problem of the above-knee prosthesis can be formulated in the same way as Problem A. It should 
be taken into account that the considered semi-passively controlled dynamical system has the state vector 
[ , , , , , , , , , , , 1, 2]T

i i i i i ix x y y iψ α α β β γ γ =

   , the vector of controlling stimuli of the powered drives 

1 2 2 2[ , , , ]Tq q u p=u , and the vector of the constructive parameters of the unpowered drives 

1 2 0 0[ , , , , , , , ]T
p pC K D d d l S S=C . 
The controlled motion of amputee with above-knee prosthesis is described by Lagrange equations [2], [6], and 

by the expressions (10), (11). The boundary conditions and other constraints on the phase coordinates of the 
system have been given based on known experimental data on the human gait [11]. 

The following functional 
 

 
2

22 2 2 2 2
10

1 { | ( ) | | ( ) | | ( ) |}
2

T

i i
i

E q u p dt
L

ψ α α β β γ
=

= − + − + −∑∫
. . . . . .

 (12) 

 
is used for solving Problem A. The objective functional (12) estimates the energy expenditure per unit of 
distance traveling of bipedal locomotion systems [12], [13]. The same approach as described in paragraph 3 has 
been used for solving the problem of design energy-optimal above-knee prostheses. Due to the dynamic 
constraints (10) the procedure of converting the Problem A into the standard nonlinear programming problem (8) 
includes the solution of the semi-inverse dynamics problem for the controlled mechanical system that models 
amputee with above-knee prosthesis. It sufficiently increases the time consumption of the numerical algorithm 
for designing the energy-optimal above-knee prosthesis.  

We now present the individual results of mathematical modeling of motion of amputee with energy-optimal 
above-knee prosthesis obtained in the context of the proposed formulation of the optimal control problem 
(Problem A) and the methodology for solving it numerically. 

The computation was carried out for a model of amputee of height 1.76 m and mass 73.2 kg. The respective 
values of linear and mass-inertia characteristics of links of amputee were calculated on the basis of known 
experimental data[14]. 

Problem A has been solved numerically for two types of the prostheses: the above-knee prosthesis with the 
hydraulic actuator at the knee and the prosthesis with the pneumatic knee mechanism. For both of these 
prostheses three types of human gait have been studied, characterized by different values for the duration of a 
double step T, velocity V, and length of step L[11] : slow walking with TS=1.383 s, VS=0.998 m/s, LS=0.69 m; 
walking at a normal pace TN=1.1396 s, VN=1.325 m/s, LN=0.755 m; and fast walking at TF=0.9733 s, VF=1.685 
m/s, LF=0.82 m.  

The analysis of the solutions obtained has shown that the kinematic, dynamic, and energetic characteristics of 
controlled motion of amputee are strongly sensitive to the essential prosthesis’ parameters. For a given 
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individual and pace of a gait there exist optimal values of constructive parameters of the prosthesis’ knee and 
ankle mechanisms * * * * * * * * *

1 2 0 0[ , , , , , , , ]T
p pC K D d d l S S=C . These parameters give minimum energy expended 

per unit of distance traveled. For above mentioned types of human walking the following minimal values for the 
energy consumption were obtained for slow, normal and fast paces of motion respectively: ES=117 J/m, EN=114 
J/m, EF=147 J/m (for pneumatic knee mechanism), and ES=103 J/m, EN=96 J/m, EF=125 J/m (for hydraulic knee 
mechanism). Comparison of these data shows that the normal pace of the amputee’s gait gives a minimum to the 
energy expended per unit of distance traveled comparing to the amount of energy needed for the slow or fast 
gaits. This is valued for both energy-optimal pneumatic and hydraulic knee mechanisms. 

Some kinematic and dynamic characteristics of the energy-optimal motion of amputee with optimal structure 
of the above-knee prosthesis that were obtained by the numerical solving of Problem A for the gait with normal 
pace are shown in Figures 2 - 5 (solid thin curves correspond to the prosthesis with the hydraulic actuator at the 
knee, dashed curves - to the prosthesis with the pneumatic knee mechanism). Knee angle ( 1 1α β− ) and hip 

angle ( 1α ψ− ) of the prosthetic leg are depicted in Figures 2-3, respectively. Hip torque of the prosthetic leg, 

( 1( ) /q t M ), and knee torque of the healthy leg, ( 2 ( ) /u t M ) are presented in Figures 4-5, respectively (here M 
is a total mass of the amputee). For the comparison purposes in Figures 2-5 the domains of the values of the 
respective kinematic and dynamic characteristics obtained by the biomechanical experiments for a human 
normal gait are depicted by heavy solid curves[11]. 
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Figure 2. Knee angle of the prosthetic leg, ( 1 1α β− ), in degrees 
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Figure 3. Hip angle of the prosthetic leg, ( 1α ψ− ), in degrees 
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Figure 4. Hip torque of the prosthetic leg, ( 1( ) /q t M ), in Nm/kg 
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Figure 5. Knee torque of the healthy leg, ( 2 ( ) /u t M ), in Nm/kg 

 
Analysis of the plots depicted in Figures 2-5 shows that the kinematic and dynamic characteristics of the 

motion of amputee with obtained energy-optimal structure of above-knee prostheses are within reasonable 
proximity to the respective characteristics of a human normal gait[11].  

4  CONCLUSIONS 
The optimal control problem (Problem A) has formulated for semi-passively controlled dynamical systems. 

The key feature of the proposed mathematical statement of the problem is the direct utilization of the equations 
describing the inherent dynamics of unpowered (passive) drives together with all other constraints imposed on 
the state vector and the controlling stimuli of the system. It leads to the non-uniqueness of the solution of the 
direct and inverse dynamics problems and makes it possible to design optimally both structure (passive drives) 
and external control of a dynamical system. 

For solving optimization problems of general type of semi-passively controlled dynamical system the 
numerical method has been presented. Efficiency of the proposed method is illustrated by the solution of design 
problem of the energy-optimal above-knee prostheses with two types of passively controlled knee mechanisms. 
Analysis of the numerical results obtained has shown that during the optimal motion of the considered 
underactuated semi-passively controlled system there is a strong interaction between the gravity force, the 
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external control torque exerted by the powered drives and the internal torque exerted by the passive linear 
spring-damper actuators. The kinematic, dynamic, and energetic characteristics of controlled motion of 
considered system that models amputee with above-knee prosthesis are strongly sensitive to the essential 
parameters of the passive drives of the prosthesis. For a given individual and pace of a gait there exist optimal 
values of the spring and damper parameters of the prosthesis’s ankle and knee mechanisms. These parameters 
give minimum energy expended per unit of distance travelled. 

Results obtained give some insight into the study of questions about the role of inherent dynamics in 
controlled motion, and how much the controlled dynamical systems should be governed by the external powered 
drives and how much by the system's inherent dynamics. They can also be used to design energy efficient 
passively controlled mechanisms of the lower limb prostheses. 
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