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Abstract. Controlled dynamical systems with different type of actuators (e.g. external powered electromotors,
magnetostrictive actuators, internal unpowered (passive) spring-damper-like drives, etc.) are considered. These
systems are termed semi-passively controlled. Mathematical statement of optimization problem has proposed
that is suitable both for modeling of optimal motion and for optimization of structure of semi-passively
controlled dynamical systems with different degree of actuation. Numerical method for solving the proposed
optimization problem is described. The method was successfully used for solving optimal control problems for
several semi-passively controlled dynamical systems (industrial robots, human locomotor system with intelligent
lower limb prosthesis, bipedal locomotion robots, others). The results obtained have confirmed the efficiency of
the proposed numerical method for solving optimization problems for semi-passively controlled dynamical
systems. Analysis of the results gives insight into the study of the role of inherent dynamics in controlled motion
and how much a dynamical system should be governed by external drives and how much by a system’s inherent
dynamics. In particular, it has been shown that complex goal-directed and cost-efficient controlled motion of
underactuated dynamical system can be design using optimal interaction between external powered drives and
internal unpowered spring-damper-like drives. This constitutes the powerful ability of semi-passively controlled
dynamical systems.

1 INTRODUCTION

To perform cost efficient goal-directed controlled motions many machines and mechanisms can comprise not
only different external powered drives, e.g. traditional electromotors, magnetostrictive material based actuators,
hydraulic motor and/or pneumatic motors, but also some other force/torque generators like springs, dampers, etc.
These generators do not use external power. The forces and/or torques that are exerted by these generators
depend only on their inherent dynamics and phase state of the dynamical system modeled the considered
mechanism. For the above reasons these generators can be called unpowered (passive) drives. A dynamical
system comprises both powered and unpowered drives is termed as semi-passively controlled one. Ground
vehicle suspension with passive shock absorber and powered actuator is a classical example of a semi-passively
controlled dynamical system.

Efficiency of the control of motion of a dynamical system depends not only on which kinds of drives are
used, but also how much the system is actuated. If the number of powered drives is less than the number of
degrees of freedom the dynamical system is called underactuated!]. Opposite, if the number of powered drives
exceeds the number of degrees of freedom then the system is called overactuated. The term full actuated
dynamical system refers to the system which has the same numbers of degrees of freedom and powered drives.

Usually the analysis of dynamics and design of control algorithms for underactuated systems are much more
complicate than for full actuated or overactuated systems!. Difficulties can arise due to specific features of
underactuated dynamical systems, e.g. luck of their controllability.

In this paper the semi-passively controlled dynamical systems with different degree of actuation are under the
study. Mathematical statement of the problem is proposed that is suitable both for modeling of optimal motion
and for optimization of structure of semi-passively controlled dynamical systems. Numerical method is
described and successfully used to solve energy-optimal control problems for several semi-passively controlled
biomechanical systems. Results of numerical analysis and computer simulation of obtained energy-optimal
controlled processes of considered systems are presented.
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2 METHEMATICAL MODEL AND STATEMENT OF THE PROBLEM

Consider a dynamical system with n degrees of freedom. Let the controlled motion of a dynamical system is
described by the following equations

A(q)q +B(q,9) = C(q)u +D(q)p (1)
H(q,q,p,8) =0 2)

Here q =[q,,...,q,]  be a vector of independent generalized coordinates, W =[u,,...,u, ]  be a vector

of controlling stimuli exerted by powered drives, p =[p,,..., P, ]T be a vector of control stimuli exerted by
unpowered (passive) drives, A, B, C, D are given matrices that describe the inherent dynamics of the considered
semi-passively controlled dynamical system, H and § = [fl ooy fl]T are matrix and vector of structural

parameters that describe the inherent dynamics of unpowered (passive) drives of the system.

The considered system (1)-(2) is underactuated if m<n; for m>n — overactuated, and in case of m=n the
considered semi-passively controlled dynamical system is full actuated.

Let assume that the motion of the system is subject to multipoint boundary conditions that can be written as
follows

qt, ) =4, q(¢,_)=4q;,, Jj=L2,---\N 3)

Here the vectors q;. qul determine the phase states of the considered dynamical system at the instants of

times ¢ i1
specified in advanced depend on the requirements imposed on the motion of the system.
Usually, the control stimuli exerted by drives and their structural parameters are not arbitrary and must

satisfy some restrictions. In general case these restrictions can be written as

j=1,2,---, N . All or some of the components of the vectors q;, qu and the times 7, can be

u)eQ , te [tO,T] 4)
p(NeQ,, teft,T] )
&(1) e Q, (6)

In formulae (4)-(6) Qu is given domain in control space Rum of powered drives, €2 » is given domain in
control space R]; of unpowered drives, 2 ¢ is given domain in space Ri& of the values of the vector of structural

parameters of the unpowered drives, f,,,7 are initial and final instants of time of the controlled motion of the

dynamical system.
In many practical cases the controlled motion of a dynamical system can be restricted not only at the
particular instants of time (see boundary conditions (3)) but also during some interval of

timef € [‘[ T 2] c [tO,T ] It will lead to the equality and/or inequality constraints that are imposed on the

phase trajectories of the system. These restrictions on the phase trajectories can be written as
T T
[4"().4" O], te[r.n,]|c|t.T] (7)

. o 2 .
where €2 g 18 given domain in phase space R qZ of a dynamical system.

The equations (1), (2), the boundary conditions (3), the restrictions on control stimuli (4)-(6), and the
constraints on the phase trajectories (7) compose the mathematical model of a semi-passively controlled
dynamical system. The examples of the described general mathematical model (1)-(7) that were used for
modeling and design of optimal processes for different semi-passively controlled robotic and biomechanical
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systems can be found in papers(?! -],
Assume that there exists a non-empty set of vector-functions {q(¢),u(?),p(?),t € [to, T ]} and a vector of

structural parameters & which satisfy the equations (1), (2) and the restrictions (3)-(7). The following optimal

control problem can be formulated.
Problem A. Given a dynamical system the controlled motion of which is described by equations (1), (2). It is

required to determine the vector-function P.(f), the motion of the system (.(?), the external controlling
stimuli W, (Z,(.,P.), and the vector &, which alltogether satisfy the equations (1), (2), the restrictions (3)-(7),

and which minimize the given objective functional ®[u].
As a result of the solution of Problem A the optimal control process of a dynamical system having both
powered and unpowered drives will be designed. Both internal P.(f)and external controlling stimuli

u.(?,q.,P.) for the system are found which minimize the given objective functional.

One of the primary goals for the incorporation of unpowered drives into the structure of the dynamical
systems is an improvement of their control processes. It means that the validity of the following inequality is

expected D[, (7,q.,p.)] < DPu,(¢,q,)]. where q,(¢),u,(¢)are the optimal motion and the respective

controlling stimuli obtained under the restrictions (3), (4), (7) for the dynamical system without the unpowered
drives. In this sense the solution of Problem A could help to estimate the limiting possibility of improvement of
the external control strategies for the dynamical systems due to incorporation into their structure different
unpowered drives determined by the equation (2) and restrictions (5), (6).

3 METHODOLOGY

We have formulated the optimal control problem for a semi-passively controlled dynamical system. The key
feature of the proposed mathematical statement of the problem is direct utilization of the equations describing
the inherent dynamics of internal unpowered drives together with all other constraints that are imposed on the
state vector and the controlling stimuli of a system. It leads to the non-uniqueness of the solution of the direct
and the inverse dynamics problems as well as makes it possible to design optimal unpowered drives for a
dynamical system.

In general case for the dynamical systems with many degrees-of-freedom powerful numerical algorithms are
needed to solve Problem A. Futhermore, during the calculation of optimal control for a dynamical system it is
necessary to design at the same time the optimal structure of the unpowered drives taking into account the
equation (2) and the restrictions (5), (6). This can significantly increase the complexity of the computation.

The numerical method has been developed for the solution of Problem A for the dynamical systems,
which model semi-passively controlled manipulator robots and bipedal locomotion systems with unpowered
drives at their joints 2+ [} 7], The method is based on a special procedure to convert the initial optimal control
problem (Problem A) into a standard nonlinear programming problem:

F(C)=min,, g)<0 (8)

where C is a vector of varying parameters. This is made by an approximation of the independently varying
functions by a combination of the fifth order polynomial and Fourier series, i.e. by using the following
expression:

S Ny‘ . . .
x(1) = ; Cx]z (t _tj—l )l +; [a;k Cos(ka)j (1— tj—l)) + ;k Sln(ka)j (t— tj—l))] )

te[tj_l,tj], j=12,..N, t,=T

Here x(7) is an independent varying function, @, =27 /(¢; —t, ), and N,;is given positive integer. The
list of independent varying functions can include generalized coordinates g, (¢)and/or some of the components

of the vector of controlling stimuli of powered drives u(z).

Considering the boundary conditions (3) and the restriction (4), the vector of independently varying
parameters C can be determined. For instance, in case of two-point boundary conditions imposed on the state
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vector [q(t),('](l‘)]r of the system, from the formulae (3) and (9) with N=2 follows that the parameters
C.}' C./' a./' b./'

.Cl,al b, j=12, k=1,., ij can serve as independently varying parameters.

To solve the nonlinear programming problem (8) different algorithms have been used that are based on the
Rozenbrock’s method!®, and the sequential quadratic programming method® implemented in the software
package TOMLAB!Y,

The key features of the proposed method for solving Problem A is its high numerical efficiency and the
possibility to satisfy a lot of restrictions imposed on the phase coordinates of the system automatically and
accurately. The efficiency of the developed method has been illustrated by solution of the energy-optimal control
problems for several semi-passively controlled robotic and biomechanical systems!?} (6} [7],

4 OPTIMIZATION OF CONTROLLED MOTION OF A BIPEDAL LOCOMOTION SYSTEM

Here the application of methodology of optimization of semi-passively controlled dynamical systems
described in paragraph 3 is demonstrated by solving the design problem of lower limb prostheses and by
optimization of controlled motion of bipedal locomotion system models amputee with above-knee prosthesis.

There is an important difference between the dynamics of an intact limb and a prosthetic limb of an amputee.
Here the mathematical modelling of a human gait of an amputee with above-knee prosthesis is considered based
on an assumption that the force moments at the knee and at the ankle joints of the prosthetic leg are passive ones.
The values of these moments depend not only on the gait pattern, but also on the prosthesis construction. The
considered model of the amputee system belongs to the class of underactuated semi-passively controlled
dynamical systems.

The sketch of the bipedal locomotion system that models the amputee with above-knee prosthesis is depicted
in Figure 1. The system is modeled as the mechanical system of seven rigid bodies connected by ideal cylindrical
hinges. The bodies HG, HKj, and KjA; (i=1,2), which model the torso, thighs, and shins respectively, are
assumed to have weight and inertia, and the bodies A;TiH; (the feet) are weightless and inertialess.

In addition to the weights of the trunk, thighs and the shanks, the external forces acting on the system include
the interaction forces between the feet and the ground, which are replaced by the resultant forces. It is also
assumed that the control torques gqi(?), ui(?), pi(t) acting at the hip (point H), knee (point K;) and the ankle (point
Aj) joints, respectively.

As generalized coordinates that jointly determined the position of the given mechanical system we chose the
following: x and y, the Cartesian coordinates of the point of attachment of the legs (the point H); v, «;, b, 7,

the angles of deviation of the link HG, HK;, KjA;, and A;TiH;, (i=1,2) from vertical (Figure 1).

G

v

Figure 1. Sketch of an amputee with above-knee prosthesis
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The above-knee prosthesis comprises the linear-viscoelastic ankle mechanism and the hydraulic or the
pneumatic knee mechanism that are assumed to be weightless and inertialess.
During locomotion of the amputee with above-knee prosthesis the unpowered (passive) control torques pi(?),
u;(t) are generated at the ankle and at the knee joints of the prosthetic leg, respectively. These torques are
determined as follows[®!

pl(Z‘)ZC(ﬂl—]/1+7Z'/2)+K(ﬂ.1—]}1)+D

2, 12N\/2 (10)
ul(t) = (Pz _E)Spd2(dl +lo) Sln(a1 _ﬁl +77)/Zl

Here C, K are the torsion spring and the damping coefficients of the ankle mechanism; D is determined by
the free angle of the spring and torsion spring coefficients; Pl, P2 are the chamber pressures of the hydraulic or
the pneumatic actuator that can be calculated by using the equations of dynamics of the knee mechanism of the
prosthesis [°], § , is the cylinder piston cross-area, and

L=(d}+d; +1; +2d,(d} +1)" cos(a, — B, +1))"*

n=atan(l,/d), d =|BK|, d,=|KC,|, I, =|BD,| "

The detailed description of the considered model of amputee with above-knee prosthesis can be found in 2],
The design problem of the above-knee prosthesis can be formulated in the same way as Problem A. It should
be taken into account that the considered semi-passively controlled dynamical system has the state vector

[x,)'c,y,j/,l//,al.,di,ﬂi,ﬁi,]/[,j?i,i=1,2]T, the vector of controlling stimuli of the powered drives

u=|[q,,q,,u,, pz]T, and the vector of the -constructive parameters of the unpowered drives
T

Cp:[C,K,D,d,,dz,lo,Sp,So] .

The controlled motion of amputee with above-knee prosthesis is described by Lagrange equations 2} 1), and
by the expressions (10), (11). The boundary conditions and other constraints on the phase coordinates of the
system have been given based on known experimental data on the human gait ['!1,

The following functional

E:ij!:{iil |qi(‘/‘/_05'i)|+|u2(a'2_ﬂ'2)|+|pz(ﬁz—y;) |}dl (12)

is used for solving Problem A. The objective functional (12) estimates the energy expenditure per unit of
distance traveling of bipedal locomotion systems [!?} 13, The same approach as described in paragraph 3 has
been used for solving the problem of design energy-optimal above-knee prostheses. Due to the dynamic
constraints (10) the procedure of converting the Problem A into the standard nonlinear programming problem (8)
includes the solution of the semi-inverse dynamics problem for the controlled mechanical system that models
amputee with above-knee prosthesis. It sufficiently increases the time consumption of the numerical algorithm
for designing the energy-optimal above-knee prosthesis.

We now present the individual results of mathematical modeling of motion of amputee with energy-optimal
above-knee prosthesis obtained in the context of the proposed formulation of the optimal control problem
(Problem A) and the methodology for solving it numerically.

The computation was carried out for a model of amputee of height 1.76 m and mass 73.2 kg. The respective
values of linear and mass-inertia characteristics of links of amputee were calculated on the basis of known
experimental datal'¥l,

Problem A has been solved numerically for two types of the prostheses: the above-knee prosthesis with the
hydraulic actuator at the knee and the prosthesis with the pneumatic knee mechanism. For both of these
prostheses three types of human gait have been studied, characterized by different values for the duration of a
double step T, velocity V, and length of step L' : slow walking with Ts=1.383 s, Vs=0.998 m/s, Ls=0.69 m;
walking at a normal pace Tx=1.1396 s, Vx=1.325 m/s, Ly=0.755 m; and fast walking at Tg=0.9733 s, V¢=1.685
m/s, Ly=0.82 m.

The analysis of the solutions obtained has shown that the kinematic, dynamic, and energetic characteristics of
controlled motion of amputee are strongly sensitive to the essential prosthesis’ parameters. For a given
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individual and pace of a gait there exist optimal values of constructive parameters of the prosthesis’ knee and
ankle mechanisms C*p =[C",K",D’, d]*,d; ,lg , S;, S; 1. These parameters give minimum energy expended

per unit of distance traveled. For above mentioned types of human walking the following minimal values for the
energy consumption were obtained for slow, normal and fast paces of motion respectively: Es=117 J/m, Ex=114
J/m, Er=147 J/m (for pneumatic knee mechanism), and Es=103 J/m, Ex=96 J/m, Er=125 J/m (for hydraulic knee
mechanism). Comparison of these data shows that the normal pace of the amputee’s gait gives a minimum to the
energy expended per unit of distance traveled comparing to the amount of energy needed for the slow or fast
gaits. This is valued for both energy-optimal pneumatic and hydraulic knee mechanisms.

Some kinematic and dynamic characteristics of the energy-optimal motion of amputee with optimal structure
of the above-knee prosthesis that were obtained by the numerical solving of Problem A for the gait with normal
pace are shown in Figures 2 - 5 (solid thin curves correspond to the prosthesis with the hydraulic actuator at the

knee, dashed curves - to the prosthesis with the pneumatic knee mechanism). Knee angle (@, — f3,) and hip
angle (@, —y ) of the prosthetic leg are depicted in Figures 2-3, respectively. Hip torque of the prosthetic leg,
(q,(t)/ M ), and knee torque of the healthy leg, (u,(¢)/ M ) are presented in Figures 4-5, respectively (here M

is a total mass of the amputee). For the comparison purposes in Figures 2-5 the domains of the values of the
respective kinematic and dynamic characteristics obtained by the biomechanical experiments for a human
normal gait are depicted by heavy solid curves!!!],

80 T

0 20 40 60 80 100
% of stride T

Figure 2. Knee angle of the prosthetic leg, (&, — ﬂl ), in degrees

304

% of stride T

Figure 3. Hip angle of the prosthetic leg, (&; — ), in degrees
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% of stride T

Figure 4. Hip torque of the prosthetic leg, (¢, (¢)/ M ), in Nm/kg

-0,8 ~

% of stride T

Figure 5. Knee torque of the healthy leg, (u,(¢)/ M ), in Nm/kg

Analysis of the plots depicted in Figures 2-5 shows that the kinematic and dynamic characteristics of the
motion of amputee with obtained energy-optimal structure of above-knee prostheses are within reasonable
proximity to the respective characteristics of a human normal gait!'!l,

4 CONCLUSIONS

The optimal control problem (Problem A) has formulated for semi-passively controlled dynamical systems.
The key feature of the proposed mathematical statement of the problem is the direct utilization of the equations
describing the inherent dynamics of unpowered (passive) drives together with all other constraints imposed on
the state vector and the controlling stimuli of the system. It leads to the non-uniqueness of the solution of the
direct and inverse dynamics problems and makes it possible to design optimally both structure (passive drives)
and external control of a dynamical system.

For solving optimization problems of general type of semi-passively controlled dynamical system the
numerical method has been presented. Efficiency of the proposed method is illustrated by the solution of design
problem of the energy-optimal above-knee prostheses with two types of passively controlled knee mechanisms.
Analysis of the numerical results obtained has shown that during the optimal motion of the considered
underactuated semi-passively controlled system there is a strong interaction between the gravity force, the
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external control torque exerted by the powered drives and the internal torque exerted by the passive linear
spring-damper actuators. The kinematic, dynamic, and energetic characteristics of controlled motion of
considered system that models amputee with above-knee prosthesis are strongly sensitive to the essential
parameters of the passive drives of the prosthesis. For a given individual and pace of a gait there exist optimal
values of the spring and damper parameters of the prosthesis’s ankle and knee mechanisms. These parameters
give minimum energy expended per unit of distance travelled.

Results obtained give some insight into the study of questions about the role of inherent dynamics in
controlled motion, and how much the controlled dynamical systems should be governed by the external powered
drives and how much by the system's inherent dynamics. They can also be used to design energy efficient
passively controlled mechanisms of the lower limb prostheses.
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