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Abstract

Copulas offer a useful tool in modelling the dependence among random variables.

In the literature, most of the existing copulas are symmetric while data collected

from the real world may exhibit asymmetric nature. This necessitates developing

asymmetric copulas that can model such data. In the meantime, existing methods

of modelling two-dimensional reliability data are not able to capture the tail depen-

dence that exists between the pair of age and usage, which are the two dimensions

designated to describe product life. This paper proposes a new method of construct-

ing asymmetric copulas, discusses the properties of the new copulas, and applies the

method to fit two-dimensional reliability data that are collected from the real world.

Keywords: copula, tail dependence, warranty, two-dimensional reliability data, asym-

metric.

1 Introduction

1.1 Motivation

Copulas are a tool for constructing multivariate distributions and formalising the dependence

structures between random variables. The notion of copula was first introduced by Abe Sklar in

1959 when he responded to a question with respect to the relationship between a multidimensional
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probability function and its lower dimensional margins [1]. It has attracted considerable attention

in recent years in both theoretical and application aspects.

Sklar’s Theorem states that any cumulative distribution function of a random vector can be

written in terms of marginal distribution functions and a copula that describes the dependence

structure between the variables [1]. That is, given a vector of random variables (X1, ..., Xd),

its cumulative distribution function H(x1, ..., xd)(= P (X1 ≤ x1, ..., Xd ≤ xd)), and marginals

Fk(xk)(= P (Xk ≤ xk), where k = 1, ...d), Sklar proved that H(x1, ..., xd) can be written as

H(x1, ..., xd) = C(F1(x1), ..., Fd(xd)) and named C(.) as a copula [1]. Copulas are useful in sta-

tistical applications because they allow one to easily model and estimate the distribution of a

random vector through estimating the marginals and the copula separately.

In the literature, many parametric copula families have been proposed [2,3]. Most of them are

symmetric in the sense that the variables in a copula are exchangeable, C(v1, v2) = C(v2, v1)

(v1, v2 ∈ [0, 1]) for the bivariate copula case, for example. However, there are many natural

processes that possess asymmetric dependence structures. Using symmetric copulas to model

such processes may not be able to capture the nature of the data. This necessitates developing

asymmetric copulas. This paper serves this necessity by developing a method of constructing

asymmetric copulas.

1.2 Related work

1.2.1 Construction of asymmetric copulas

There are many copula families. The reader is referred to the monographs by Joe [2] and Nelsen

[3] for detailed accounts of the theory and surveys of commonly used copulas and to the review

papers [4–6], work on tail dependence [7,8], and papers on applications [9,10].

Some work has been done for constructing asymmetric copulas ([11,12], for example). Alfonsi and

Brigo [11] described a method based on periodic functions. Liebscher [12] introduced two methods

to construct asymmetric multivariate copulas: the first is connected with products of copulas

and the second generalises the Archimedean copulas, and the resulting copulas are asymmetric.

However, their research did not show how those methods can be used to construct asymmetric

copulas with tail dependence in a given direction.

1.2.2 Modelling two-dimensional reliability data

Estimating reliability functions is important for both product manufacturers and asset managers.

System reliability is usually estimated based on one dimension, either usage (for example, the

number of door openings of an elevator, the number of pages copied by a copy machine) or age.
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In reality, however, failures or other adverse events in systems may depend on both the age and

the usage history of the systems. Such examples can be found in warranty claim data analysis, in

which the warranty policy for certain types of products specifies the limits of coverage in terms of

both age and usage. For example, a sold car may be covered by a 3 year and 30,000 mile warranty,

which implies that the warranty supplier—which is usually the manufacturer—will repair the car

if it fails within the warranty coverage. It is important for the manufacturer to estimate the

reliability of their products for the purpose of product improvement and fiscal planning. There

is considerable research on warranty data analysis. For more detailed discussion, the reader is

referred to recently published review papers [13,14] and papers on reliability data analysis (see

[15–17], for example).

There are three methods that have been developed for analysing two-dimensional reliability data.

Those methods are briefed below.

The univariate method. It indirectly estimates F (x1, x2) through the following two steps: to

estimate F2(x2|x1) and F1(x1), separately, then to obtain F (x1, x2) = F2(x2|x1)F1(x1) (where

x1 and x2 represent age and usage, respectively). This method treats the usage as a function

of the age [18,19].

The bivariate method. It directly estimates F (x1, x2) from data. For example, Jung and Bai

[20] developed a bivariate method and assumed that the bivariate distribution can describe

the positive correlation between the age and the usage.

The time scale method. In addition to the above two methods, Gertsbakh and Kordonsky

[21] proposed a method that integrates the two scales (age and usage) to create a single

composite scale and failures are modelled as a counting process. For example, in Gertsbakh

and Kordonsky [21], a new variable Z = αX1 + (1− α)X2 is introduced, where α ∈ (0, 1), X1

and X2 are the random variables representing the age and the usage, respectively.

However, the above methods have the following drawbacks.

• Both the univariate and the time scale methods assume a relationship, for example, a linear

relationship, between the usage and the age, and then derive a bivariate joint lifetime distri-

bution. A drawback of those two methods is apparent because such an assumption may be

violated.

• Compared with the univariate method and the time scale method, the bivariate method is

simpler and more straightforward, in the sense that the former two methods need two steps:

first to estimate the relationship between age and usage and then estimate a joint distribution,

but the bivariate method needs only one step that directly estimates a joint distribution.

When the bivariate method is utilised, however, one needs to select a bivariate distribution in

which the two variables are positively correlated. Furthermore, when the usage is measured

as a discrete random variable (the number of pages copied by a copy machine, for example)

and the age is described as a continuous random variable, to find a bivariate distribution that
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Fig. 1. Warranty claim data

combines a discrete marginal with a continuous marginal may be difficult.

• In addition to the above two drawbacks, an important fact has never been addressed in the

existing literature so far. This fact is the existence of the tail dependence between age and

usage, as explained below.

(a) If the age of the product is small, its usage should be small. This is because the age is the

calendar time and it is not possible to develop large cumulative usage within a short period

of the calendar time. Another reason is due to the operating limit, for example, a car usually

cannot be driven faster than 100 miles per hour, hence the usage within a time interval is

limited.

(b) If the age is large, on the other hand, the usage can be small. For example, some cars are

not frequently used. Hence, although they are very old, their mileage can be very small.

Those two points (a) and (b) can also be observed from Figure 1, which is a scatterplot with the

age on the X-axis and the usage on the Y-axis of the warranty claims of a particular model of

car. The data are collected from a car manufacturer. As can be seen, there is no observation in

the left-upper region in the figure (marked with the ellipse), which agrees with point (a). But

there are some observations in the right-lower region in the figure (marked with the star), which

agrees with point (b).

The above two points (a) and (b) can also be observed in those warranty data illustrated in

Figure 2 of Alam and Suzuki [19] and in Figure 2 of Rai and Singh [22].

1.3 Contribution and importance of this work

This paper proposes a new method to construct asymmetric copulas and then applies the method

to model two-dimensional reliability data. Its contribution is summarised in the following.

• It proposes a new method of constructing asymmetric copulas and a convex-combination of

asymmetric copulas that can exhibit different tail dependence along different directions.

• It is the first paper to use asymmetric copulas to model the lifetime distribution on two-
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dimensional reliability data.

The proposed method has the following merits.

Ability to handle tail dependence. The proposed method of construction of asymmetric

copulas differs from other existing methods in the sense that it can directly construct a copula

with tail dependence in a given direction.

No limitation on the form of the marginal distributions. With copulas, one can select

whichever two distributions to combine with in modelling reliability data, which can over-

come the difficulty of selection of bivariate distributions, this is especially true for the case

when the variables (age and usage, for example) come from different parametric families (one

of a discrete random variables and one of a continuous random variable, for example).

The paper has important managerial implications. Derivation of the lifetime distribution for

systems is important for both product manufacturers and users [13,14].

• For the product manufacturers, product warranty has become increasingly more important in

consumer and commercial transactions and is widely used to serve many different purposes as

the US Congress has enacted several acts (UCC, Magnusson Moss Act, Tread Act, etc.) over the

last 100 years and the European Union (EU) passed legislation requiring a two-year warranty

for all products sold in Europe. The proposed method to estimate the lifetime distribution

for the products under two-dimensional warranty can be beneficial to the manufacturers in

estimating product reliability and forecasting future warranty claims needed for preparing

warranty reserves plans.

• For product users, the proposed method can be used in their life cycle performance analysis

or asset management.

Although this paper is developed using examples borrowed from reliability theory, its results and

discussion can also be applied to any situations when random variables exhibit an asymmetric

relationship. Such applications can be found in other disciplines. For example, the proposed

method can be used to model the flow velocity and the wind speed [23].

1.4 Overview

The remainder of the paper is structured as follows. Section 2 introduces the concept of copu-

las, dependence measures, and asymmetric copulas. More importantly, it introduces a method

of constructing asymmetric copulas, studies the properties of the constructed copulas, and then

applies the method of constructing asymmetric copulas to the bivariate copula case. Section 3 dis-

cusses the existing methods of modelling two-dimensional reliability data, proposes two required

conditions for modelling two-dimensional warranty data, and then compares the performance

of the proposed method to two existing methods based on warranty data collected from a car
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manufacturer. Section 4 concludes the findings of this work and suggests our future work.

2 Two methods of constructing asymmetric copulas

In this section, we introduce the concept of the copula and tail dependence coefficient, and study

the properties of the proposed copulas.

2.1 Introduction to copulas

Assume a d-dimensional random vector X(= (X1, ..., Xd)) with marginal cumulative distribu-

tion functions F1(X1), ..., and Fd(Xd). Sklar’s theorem then proved that the joint distribution

F (X1, ..., Xd) of the random vector X can be written as a function of its marginal distributions,

ie., F (X1, ..., Xd) = C(F1(X1), ..., Fd(Xd)) [1]. The function C(.) is called a copula, which can

also be defined as following.

Definition 1 (Copula) Denote [0, 1] by I. A copula of dimension d is a function C: Id → I

with the following properties:

(a) (Grounded) C(v1, ..., vd) = 0, if ∃k ∈ {1, ..., d} with vk = 0,

(b) (Consistence with margins) C(1, ..., 1, vk, 1, ..., 1) = vk, for ∀vk ∈ I and k ∈ {1, ..., d},

(c) (d-increasing)
2∑

k1=1

...
2∑

kd=1

(−1)k1+...+kdC(v1,k1 , ..., vd,kd) ≥ 0, for ∀vk,1, vk,2 ∈ I and k ∈ {1, ..., d}.

Property (a) reflects the fact that the joint probability of all outcomes is zero if the marginal

probability of any outcome is zero. Property (b) tells that if the realizations of any d−1 variables

have marginal probability ones, then the joint probability of the d outcomes is the probability of

the remaining uncertain outcome. Property (c) shows the non-decreasing nature of the cumulative

probability distribution.

Many copulas have been proposed. The reader is referred to monographs [2,3] for more compre-

hensive introduction. For example, below are two popular copulas.

• The Clayton copula [3]. The Clayton copula is given by

C(v1, ..., vd) = (
d∑

k=1

v−θk − 1)−1/θ, (1)

where θ ∈ [−1, 0) ∪ (0,+∞).
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• The Gumbel copula [3]. The Gumbel copula is given by

C(v1, ..., vd) = exp{−[
d∑

k=1

(− ln vk)
θ]1/θ}, (2)

where θ ∈ (0,+∞).

2.2 Tail dependence

In essence, a copula C(v1, ..., vd)(= P (F1(X1) ≤ v1, ..., Fd(Xd) ≤ vd)) depicts the dependence of

the random vector (X1, ..., Xd). Tail dependence is a widely studied topic. Below we introduce

the definitions of symmetric and tail dependence.

Definition 2 (Symmetry) For a given copula C(v1, ..., vd), if

C(v1, ..., vi−1, vi, vi+1, ..., vk−1, vk, vk+1, ..., vd) = C(v1, ..., vi−1, vk, vi+1, ..., vk−1, vi, vk+1, ..., vd),

we say that vi and vk are exchangeable. For any pair vi, vk ∈ I, if vi and vk are exchangeable, we

say the copula C(v1, ..., vd) is a symmetric copula.

Based on Definition 2, both the Clayton and the Gumbel copulas are symmetric.

Tail dependence coefficients provide useful information of the properties of the conditional prob-

abilities of extreme values. Loosely speaking, the tail dependence describes the limiting property

that one margin exceeds a certain threshold given that the other margin has already exceeded

that threshold. For example, the lower tail dependence coefficient is the conditional probability

that random vector (F1(X1), ..., Fd(Xd)) with standard uniform margins belongs to the lower tail

orthant given that a univariate margin takes extreme values.

Let /k denote {Xk ≤ F−k (v)} and .k denote {Xk > F−k (1− v)}, k = 1, ..., d. Then, P (/1, ..., /d) =

C(v1, ..., vd). We can define the following tail dependence coefficients.

Definition 3 (Tail dependence) The lower-lower, lower-upper, upper-lower, and upper-upper

tail dependence coefficients are defined below, respectively.

λl,li|k(C) = lim
v→0+

P (/1, ..., /k−1, /k+1, ..., /i−1, /i, /i+1, ..., /d|/k), (3)

λl,ui|k(C) = lim
v→0+

P (/1, ..., /k−1, /k+1, ..., /i−1, .i, /i+1, ..., /d|/k), (4)

λu,li|k(C) = lim
v→0+

P (/1, ..., /k−1, /k+1, ..., /i−1, /i, /i+1, ..., /d|.k), (5)

λu,ui|k (C) = lim
v→0+

P (/1, ..., /k−1, /k+1, ..., /i−1, .i, /i+1, ..., /d|.k). (6)
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The above four coefficients define the amount of dependence in the tails of two variables in a

multivariate distribution. For example, λl,ui|k(C) depicts the probability of the extreme values in

the (k-lower, i-upper) direction, or more precisely, the i-th variable is large given that the k-th

variable is small.

Based on Definition 3, one can obtain the following Lemma.

Lemma 1 For a given copula C(v1, ..., vd), if vi and vk are exchangeable, then λu,li|k(C) = λl,ui|k(C).

The proofs of the lemmas and the theorems in this paper can be found in the Appendix.

For example, for both the bivariate Clayton and the bivariate Gumbel copulas, λl,ui|k(C) = λu,li|k(C),

but λl,li|k(C) 6= λu,ui|k (C).

Lemma 1 is important as it shows the following fact. If vi and vk are exchangeable in C(v1, ..., vd),

then the tail dependence coefficient in the (k-lower, i-upper) direction and that in the (k-upper,

i-lower) direction are equal. This poses a problem that such a copula cannot fit data exhibiting

unequal tail dependence in the two directions (see the end of Section 1.2.2 for a data example).

To overcome this drawback, we introduce a method of constructing asymmetric copulas in the

following section.

2.3 Construction of asymmetric multivariate copulas

Denote

C̆k(v1, ..., vd) = C(v1, ..., vk−1, 1, vk+1, ..., vd)− C(v1, ..., vk−1, 1− vk, vk+1, ...vd). (7)

Theorem 1 If C(v1, ..., vd) is a copula, then C̆k(v1, ..., vd) is a copula.

We may refer to C(v1, ...vd) in (7) as a base copula. From Theorem 1, we can have the following

Lemma.

Lemma 2 Theorem 1 suggests that the identity

C(v1, ..., vi−1, vi, vi+1, ..., vk−1, vk, vk+1, ..., vd) = C(v1, ..., vi−1, vk, vi+1, ..., vk−1, vi, vk+1, ..., vd)

does not entail

C̆k(v1, ..., vi−1, vi, vi+1, ..., vk−1, vk, vk+1, ..., vd) = C̆k(v1, ..., vi−1, vk, vi+1, ..., vk−1, vi, vk+1, ..., vd),

for all vi ∈ [0, 1]

8



In other words, although vi and vk are exchangeable in copula C(v1, ..., vd), they may not be

exchangeable in copula C̆k(v1, ..., vd). As such, from Lemma 1 and Lemma 2, C̆k(v1, ..., vd) can be

used to fit the data exhibiting unequal tail dependence in the direction along the (k-lower,i-upper)

and (k-upper,i-lower), where i = 1, ..., k − 1, k + 1, ..., d.

C̆k(v1, ..., vd) = (
d∑
i 6=k
i=1

v−θi )−1/θ − [(1− vk)−θ +
d∑
i 6=k
i=1

v−θi − 1]−1/θ. (8)

If the d-dimensional Gumbel copula is used as a base copula, then

C̆k(v1, ..., vd) = exp{−[
d∑
i 6=k
i=1

(− ln vi)
θ]1/θ} − exp{−[(− ln vk)

θ]1/θ +
d∑
i 6=k
i=1

(− ln vi)
θ]1/θ}. (9)

It is apparent that the above two copulas (8) and (9) are asymmetric in the sense that vi is not

exchangeable with other variables.

From Theorem 1, we have the following Lemma 3.

Lemma 3 From Theorem 1, we have

(a). Denote the density of C(v1, ...vd) by c(v1, ..., vd), then the density of copula C̆k(v1, ..., vd) is

c(v1, ..., vk−1, 1− vk, vk+1, ...vd).

(b). If Xk is independent of the other variables (X1, ..., Xk−1, Xk+1, ...Xd), that is

P (X1 ≤ x1, ..., Xk−1 ≤ xk−1, Xk+1 ≤ xk+1, ..., Xd ≤ xd|Xk ≤ xk)

=P (X1 ≤ x1, ..., Xk−1 ≤ xk−1, Xk+1 ≤ xk+1, ..., , Xd ≤ xd), (10)

then vk in C̆k(v1, ..., vd) is exchangeable with any other vi (with i ∈ {1, .., k− 1, k+ 1, ..., d}).

Point (b) of Lemma 3 suggests that, if the independence copula, C(v1, ..., vd) =
∏d
k=1 vk, is the

base copulas, for all k = 1, ..., d, then C̆k(v1, ..., vd) is not an asymmetric copula.

As can be seen in the following section, one of the merits of using C̆k(v1, ..., vd) is its capability

of capturing the tail dependence. As such, we can conclude that the method of construction of

asymmetric copulas introduced in Theorem 1 differs from the Liebscher’s method in [12] from

the following aspects. The single-dimensional asymmetry method constructs copulas that present

the asymmetric property in one variable (variable k in Theorem 1, for example), whereas the

Liebscher’s method constructs copulas that may have the asymmetric property in all of the

variables. Of course, when d = 2, such difference does not exist.

To overcome the drawback that C̆k(v1, ..., vd) only presents the asymmetry property in a single

dimension along the variable vk, one may use the following (11) to construct copulas with the

asymmetry property in multiple directions.
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Lemma 4 Let

C̄(v1, v2, ..., vd) =
d∑

k=0

pkC̆k(v1, v2, ..., vd), (11)

where
∑d
k=0 pk = 1, 0 ≤ pk ≤ 1 and C̆0(v1, v2, ..., vd) = C(v1, v2, ..., vd), then C̄(v1, v2, ..., vd) is a

copula.

In (11), the parameters of different copula C̆k(v1, v2, ..., vd) with k = 1, .., d can take different

values. For example, if the Clayton copula shown in (1) is used, the parameter θ of C̆k(v1, v2, ..., vd)

can take different values over different k’s.

With (11), if one wants to build a copula in which the i1th,...,ikth variables are not exchangeable

with other variables, he/she can let pi1pi2 ...pik > 0. Hence, the copula can have unequal tail

dependence coefficients along the i1th,...,ikth directions. Examples of using such a method to

construct the asymmetric bivariate copulas are given in Lemma 8.

C̆k1,...,ki(v1, ..., vd) = C̆k1,...,ki−1
(v1, ..., vki−1, 1, vki+1, ..., vd)−C̆k1,...,ki−1(v1, ..., vki−1, 1−vki , vki+1, ..., vd),

(12)

The iteration formula (12) provides an alternative method to construct asymmetric copulas. For

example, for a given copula C(v1, ...v4), it possesses: v1 and v2 are exchangeable, and v3 and v4 are

exchangeable. From Lemma 1, the copula has: λl,u2|1(C) = λu,l2|1(C) and λl,u4|3(C) = λu,l4|3(C). Assuming

one wants to construct a new copula Cnew(v1, ...v4) with λl2|1(Cnew) 6= λu,l2|1(Cnew) and λl,u4|3(Cnew) 6=
λu,l4|3(Cnew), he can use (12) to construct the copula Cnew(v1, v2, v3, v4) = C̆1,3(v1, v2, v3, v4) that

possesses λl,u2|1(Cnew) 6= λu,l2|1(Cnew) and λl,u4|3(Cnew) 6= λu,l4|3(Cnew).

The tail dependence coefficients defined in Definition 3 can be re-written in terms of copulas, as

shown in Lemma 5.

Lemma 5 The tail dependence coefficients defined in Definition 3 can also be expressed as

λl,li|k(C) = lim
v→0+

C(v, ..., v)

v
, (13)

λl,ui|k(C) = lim
v→0+

C̆i(v, ..., v)

v
, (14)

λu,li|k(C) = lim
v→0+

C̆k(v, ..., v)

v
, (15)

λu,ui|k (C) = lim
v→0+

C̆k,i(v, ..., v)

v
, (16)

respectively, where C̆k,i(v1, ..., vd) = C̆k(v1, ..., vi−1, 1, vi+1, ..., vd)−C̆k(v1, ..., vi−1, 1−vi, vi+1, ..., vd).

From Lemma 5, we have the following lemma.
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Lemma 6 The tail dependence coefficients have the following relationships.

λl,li|k(C̆i) = λl,ui|k(C), (17)

λl,li|k(C̆k) = λu,li|k(C), (18)

λl,li|k(C̆k,i) = λu,ui|k (C). (19)

The reason that the above lemma holds is that the copulas C̆i, C̆k, and C̆k,i are rotated copulas

and differ from each other because they are constructed considering a different degree of rotation.

2.4 Construction of bivariate asymmetric copulas

Following Definition 1, a bivariate copula C(v1, v2) can also be defined (see [3] for more detailed

discussion).

One can have the tail dependence coefficients for the bivariate copula case as following.

Lemma 7 From Lemma 5, the tail dependence coefficients of copula C(v1, v2) are given by

λl,l2|1(C) = lim
v→0+

P (X2 ≤ F−2 (v)|X1 ≤ F−1 (v)) = lim
v→0+

C(v, v)

v
, (20)

λl,u2|1(C) = lim
v→0+

P (X2 > F−2 (1− v)|X1 ≤ F−1 (v)) = 1− lim
v→0+

C(v, 1− v)

v
, (21)

λu,l2|1(C) = lim
v→0+

P (X2 ≤ F−2 (v)|X1 > F−1 (1− v)) = 1− lim
v→0+

C(1− v, v)

v
, (22)

λu,u2|1 (C) = lim
v→0+

P (X2 > F−2 (1− v)|X1 > F−1 (1− v)) = 2− lim
v→0+

1− C(1− v, 1− v)

v
. (23)

Lemma 7 provides tail dependence coefficients in four different directions.

Some widely used copulas have either λu,u2|1 (C) > 0 or λl,l2|1(C) > 0. For example, the Clayton

copula has λl,l2|1(C) = 21/θ and λu,u2|1 (C) = 0 while the Gumbel copula has λu,u2|1 (C) = 2− 21/θ and

λl,l2|1(C) = 0. For both the Clayton copula and the Gumbel copula, λl,u2|1(C) = λu,l2|1(C) = 0.

Following the notation in Section 2.3, for a given bivariate copula C(v1, v2), we have

C̆1(v1, v2) = v2 − C(1− v1, v2), (24)

C̆2(v1, v2) = v1 − C(v1, 1− v2), (25)
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and

C̄(v1, v2) = p0C(v1, v2) + p1C̆1(v1, v2) + p2C̆2(v1, v2), (26)

where pk ≥ 0 and
∑2
k=0 pk = 1.

The above copulas C̆k(v1, v2) (k = 1, 2) and C̄(v1, v2) are also discussed in the monograph by

Nelsen [3] for a different purpose. It is easy to prove the following lemma.

Lemma 8 For the copula C̄(v1, v2) defined in (26),

(a) we have

λl,l2|1(C̄) = p0λ
l,l
2|1(C) + p1λ

u,l
2|1(C) + p2λ

l,u
2|1(C), (27)

λl,u2|1(C̄) = p0λ
l,u
2|1(C) + p1λ

u,u
2|1 (C) + p2λ

l,l
2|1(C), (28)

λu,l2|1(C̄) = p0λ
u,l
2|1(C) + p1λ

l,l
2|1(C) + p2λ

u,u
2|1 (C), (29)

λu,u2|1 (C̄) = p0λ
u,u
2|1 (C) + p1λ

l,u
2|1(C) + p2λ

u,l
2|1(C), (30)

(b) if p1p2 > 0, then λl,u2|1(C̄)λu,l2|1(C̄) > 0.

Remark 1 From point (a) of the above lemma, one can construct copulas with λl,u2|1(C̄) 6= λu,l2|1(C̄)

and/or λl,l2|1(C̄) 6= λu,u2|1 (C̄). From point (b), if p1p2 > 0, then both λl,u2|1(C̄) and λu,l2|1(C̄) are non-

zeros. This result is useful as many popular copulas have either λl,l2|1(C) 6= 0 or λu,u2|1 (C) 6= 0 but

they have λl,u2|1 = λu,l2|1 = 0.

For example, the Clayton copula has λl,l2|1(C̄) = 21/θp0, λ
l,u
2|1(C̄) = 21/θp2, λ

u,l
2|1(C̄) = 21/θp1, and

λu,u2|1 (C̄) = 0, while the Gumbel copula has λl,l2|1(C̄) = 0, λl,u2|1(C̄) = (2 − 21/θ)p1, λ
u,l
2|1(C̄) =

(2−21/θ)p2, and λu,u2|1 (C̄) = (2−21/θ)p0. As such, one can use C̄(v1, v2) to build new copulas with

non-zero λl,u2|1(C̄) and/or λu,l2|1(C̄). See Section 3 that gives an example.

Let C(v1, v2) be a bivariate Clayton copula, and v1 and v2 follow normal distributions N(µ1, σ1)

and N(µ2, σ2), where µ1 = 1, σ1 = 1, and µ2 = 5, σ2 = 3, respectively. Figure 2.(a) shows the

contour of the density of C(v1, v2) with θ = 0.8. Figure 2.(b) shows the contour of the density

of the copula C̄(v1, v2) = p0C(v1, v2) + p1C̆1(v1, v2) with θ = 0.8, p0 = 0.7, and p1 = 0.3. From

Figure 2.(b), it can be seen there are tail dependence in the lower-lower area as well as in the

upper-lower area.

As above-mentioned, the bivariate method used in modelling reliability data needs to select a

bivariate distribution in which the two variables are positively correlated. Copulas provide a

natural way to study and measure dependence between random variables. Linear correlation

(or Pearsons correlation) is most frequently used in practice as a measure of dependence. The

Kendall’s tau and the Spearmans rho provide the perhaps best alternatives to the linear correla-
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(a) The density of Clayton copula
with θ = 0.8

(b) The density of copula
p0C(v1, v2) + p1C̆1(v1, v2) with
θ = 0.8, p0 = 0.7 and p1 = 0.3

Fig. 2. Contours of the densities of the Clayton copulas

tion coefficient as a measure of dependence for nonelliptical distributions [3], for which the linear

correlation coefficient is inappropriate and often misleading [24]. For example, the Kendall’s tau

of the Clayton copula in (1) and that of the Gumbel copula defined in (2) are θ
2+θ

and 1 − 1
θ
,

respectively. Unfortunately, the Spearman’s rho’s of the two copulas are too complicated to be

given.

The Kendall’s tau and the Spearman’s rho of copula C̄(v1, v2) are discussed in the following

lemma.

Lemma 9 For the copula C̄(v1, v2) defined in (26), if the Spearman’s rho of C(v1, v2) is ρ0, then

(a) the Kendall’s tau of C̄(v1, v2) satisfies 1
3
(2(p0−p1−p2)ρ0−1) ≤ τ ≤ 1

3
(2(p0−p1−p2)ρ0 +1),

and

(b) the Spearman’s rho of C̄(v1, v2) is (p0 − p1 − p2)ρ0.

Lemma 9 suggests that both the Kendall’s tau and the Spearman’s rho are positive if p0−p1−p2 >
0 in C̄(v1, v2).

3 Application in two-dimensional reliability modelling

As discussed above, modelling two-dimensional reliability data is important for both manufac-

turers and asset managers. In this section, we show how the proposed method of constructing

asymmetric copulas can be applied in modelling reliability data.

Remark 2 With the above analysis, one can conclude that the age X1 and the usage X2 of

reliability systems should satisfy the following two conditions.

13



• Condition 1 (Positive dependence). X1 and X2 are positively correlated in the sense that

their Kendall’s tau and Spearmans rho are larger than zero; and

• Condition 2 (Tail dependence). If the copula associated with the joint probability distribution

of X1 and X2 is C(v1, v2), then λu,l2|1(C) ≥ λl,u2|1(C).

Condition 1 is needed because the usage of a system has usually a positive relationship with the

age of the system. Condition 2 reflects the relationship between the extreme values of the age

and the usage, as explained in bulleted points (a) and (b) in Section 1.2.2.

Let Vk = Fk(Xk) where k = 1, 2. Condition 2 can also be interpreted as limv→0+
P (V2≤v|V1>1−v)
P (V2>1−v|V1≤v) >

1, which can also be expressed as

lim
v→0+

P (V2 ≤ v|V1 > 1− v)

P (V2 > 1− v|V1 ≤ v)

= lim
v→0+

P (V1 > 1− v, V2 ≤ v)P (V1 ≤ v)

P (V1 ≤ v, V2 > 1− v)P (V1 > 1− v)

= lim
v→0+

[P (V2 ≤ v)− P (V1 ≤ 1− v, V2 ≤ v]P (V1 ≤ v)

[P (V1 ≤ v)− P (V1 ≤ v, V2 ≤ 1− v)][1− P (V1 ≤ 1− v)]

= lim
v→0+

v − C(1− v, v)

v − C(v, 1− v)
> 1. (31)

In the following, we will use the copula based method that satisfies the two conditions explained

in Remark 2.

3.1 Re-thinking of the existing two-dimensional reliability models

Many bivariate distribution models have been proposed to model two-dimensional reliability data

(see [15,18,20,21], for example). It can be easily checked that some bivariate distributions cannot

capture the existence of the upper-lower or the lower-upper tail dependence. Below we analyse

the one proposed in reference [20] as an example.

Jung and Bai [20] proposed using the following bivariate survival distribution to fit two-dimensional

reliability data.

S(x1, x2) = exp

−
(x1

β1

)α1θ

+

(
x2
β2

)α2θ
1/θ

 . (32)

One can rewrite (32) as

S(x1, x2) = exp
{
−
[
(− ln(1− v1))θ + (− ln(1− v2))θ

]1/θ}
, (33)

where v1 = 1− exp
{
−
(
x1
β1

)α1
}

and v2 = 1− exp
{
−
(
x2
β2

)α2
}

.
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Since

S(x1, x2) = P (X1 > x1, X2 > x2) = 1− F1(x1)− F2(x2) + F (x1, x2), (34)

or

F (x1, x2) = F1(x1) + F2(x2)− 1 + S(x1, x2), (35)

where F1(x1) = P (X1 ≤ x1), F2(x2) = P (X2 ≤ x2), and F (x1, x2) = P (X1 ≤ x1, X2 ≤ x2), then

the associated copula of F (x1, x2) is given by

C(v1, v2) = v1 + v2 − 1 + exp
{
−
[
(− ln(1− v1))θ + (− ln(1− v2))θ

]1/θ}
, (36)

It can be re-written as

C(v1, v2) = v1 + v2 − 1 + C0(1− v1, 1− v2), (37)

where C0(v1, v2) = exp
{
−
[
(− ln(v1))

θ + (− ln(v2))
θ
]1/θ}

and C0(v1, v2) is the bivariate Gumbel

copula.

Jung and Bai [20] claimed that some bivariate distributions may not be appropriate for mod-

elling the two-dimensional failure data; the two variables should be positively correlated. One may

interpret the positive correlation as the Kendall’s tau or the Spearman’s rho being positive.

It can be found that λl,l2|1(C) 6= λu,u2|1 (C) and λl,u2|1(C) = λu,l2|1(C), which implies that this copula can

capture the unequal tail dependence along the lower-lower tail and the upper-upper tail, but it

is unable capture the unequal tail dependence along the lower-upper tail or the upper-lower tail.

Compared with the marginal method proposed in Lawless et al [25] and the time-scale method

[21], Jung and Bai’s method [20] has its merits as it is simple to use and directly fits a bivariate

distribution. Their method, however, has the following drawbacks:

• The selection of the age distribution and the usage distribution to form a bivariate distribution

may be hard. For example, it is not easy to find a bivariate distribution with a discrete marginal

and a continuous marginal.

• As shown from the above analysis, their method cannot capture the asymmetric along the

upper-lower tail dependency or the lower-upper tail dependency.

With copulas, the above drawbacks can be overcome. In the next section, we fit two-dimensional

reliability data with such a copula.

3.2 A case study

In this section, we fit three copulas to a two-dimensional warranty claim data.
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In warranty management, product manufacturers can only collect warranty claim data on those

products whose warranty is claimed. Product performance is not known on those sold products

whose warranty is not claimed, or those data are censored.

3.2.1 The data

3,466 car warranty claims were collected from a car manufacturer. In those observations, the

warranty of 2,289 cars were claimed within 36 months or 30,000 miles and the rest 1,177 cars

were not claimed.

Figure 3.(a) and Figure 3.(b) show the histograms of the age and mileage of the claimed cars,

respectively.

(a) Histogram of age (b) Histogram of Usage (ie., Mileage)

Fig. 3. Histograms of the age and usage of the claimed cars.

3.2.2 Modelling

In order to compare the modelling method proposed by Jung and Bai [20], we use C(v1, v2)(=

v1 + v2 − 1 + C0(1 − v1, 1 − v2)) in (37) as the base copula and use the following three models,

where C0(v1, v2) = exp
{
−
[
(− ln(v1))

θ + (− ln(v2))
θ
]1/θ}

.

Model 1. The copula is

C1(v1, v2) = p0C(v1, v2; θ1) + p1C̆1(v1, v2; θ2)

= p0(v1 + v2 − 1 + C0(1− v1, 1− v2; θ1)) + p1(v1 − C0(v1, 1− v2; θ2))

= p0

{
v1 + v2 − 1 + exp

{
−
[
(− ln(1− v1))θ1 + (− ln(1− v2))θ1

]1/θ1}}
+p1

{
v1 − exp

{
−
[
(− ln(v1))

θ2 + (− ln(1− v2))θ2
]1/θ2}}

. (38)

Model 2. The copula is
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C2(v1, v2) = p0C(v1, v2; θ1) + p1C(v1, v2; θ2)

= p0(v1 + v2 − 1 + C0(1− v1, 1− v2; θ1)) + p1(v1 + v2 − 1 + C0(1− v1, 1− v2; θ2))

= v1 + v2 − 1 + p0

{
exp

{
−
[
(− ln(1− v1))θ1 + (− ln(1− v2))θ1

]1/θ1}}
+p1

{
exp

{
−
[
(− ln(1− v1))θ2 + (− ln(1− v2))θ2

]1/θ2}}
. (39)

Model 3. The copula is

C3(v1, v2) =C(v1, v2; θ1)

= v1 + v2 − 1 + C0(1− v1, 1− v2; θ1)
= v1 + v2 − 1 + exp{−[(− ln(1− v1))θ1 + (− ln(1− v2))θ1 ]1/θ1}. (40)

Model 1 is based on the method proposed in this paper. Model 2 is a mixture of two Gumbel

copulas with different parameters θ1 and θ2. In both Model 1 and Model 2, p0 + p1 = 1. Model 3

is the model proposed in [20].

All of the above three models, Models 1, 2 and 3, use the copula C(., .) as the base copula. Hence,

checking with Condition 2 in Remark 2, we have the following results.

• Model 1 has λl,l2|1(C1) = p0(2− 21/θ1), λl,u2|1(C1) = 0, λu,l2|1(C1) = p1(2− 21/θ2), and λu,u2|1 (C1) = 0.

We have λu,l2|1(C) > λl,u2|1(C) as long as p0 6= 1. Hence Model 1 meets Condition 2.

• Model 2 does not meet Condition 2 as it has λl,l2|1(C2) = 2 − 21/θ1p0 − 21/θ2p1, and λl,u2|1(C2) =

λu,l2|1(C2) = λu,u2|1 (C2) = 0.

• Model 3 does not meet Condition 2 as it has λl,l2|1(C3) = 2 − 21/θ1 , and λl,u2|1(C3) = λu,l2|1(C3) =

λu,u2|1 (C3) = 0.

We maximise the following log-likelihood to estimate the parameters of the models.

Lk(θ) =
∑
i∈D

log fk(x1, x2) +
∑
i/∈D

log(1− Fk(Aw, Uw))

=
∑
i∈D

log[f1(x1)f2(x2)ck(F1(x1), F2(x2))] + (N −Nr) log[1− Ck(F1(Aw), F2(Uw))] (41)

where k = 1, 2, 3, D = (0, Aw]×(0, Uw], fk(x1, x2) = f1(x1)f2(x2)ck(v1, v2), ck(v1, v2) = ∂2Ck(v1,v2)
∂v1∂v2

,

and N −Nr is the number of cars that were not claimed. Aw is the age limit and Uw is the usage

limit, here Aw = 36 and Uw = 30, 000.

In (41), the component
∑
i∈D log fk(x1, x2) is the log-likelihood for all of the claimed cars, and

the component
∑
i/∈D log(1 − Fk(Aw, Uw)) is the log-likelihood for all of those cars that had not

been claimed within the region (0, Aw]× (0, Uw].

In the literature, there are some models, including the generalized Pareto distribution, the lognor-

mal distribution, and the Weibull distribution, that were proposed as the marginal distributions
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for two-dimensional reliability modelling. We have tried to fit those distributions on the data

and found that using the Weibull distribution as the marginals yields the smallest AIC (Akaike

information criterion). As such, the Weibull distribution is adopted as the marginals. Denote

v1 = F1(x1) = 1− exp{−
(
x1
β1

)α1} and v2 = F2(x2) = 1− exp{−
(
x2
β2

)α2}.

We estimate the parameters of the above three models based on the original dataset (with 3466

observations), and obtain the following parameters. From Table 1, it can be seen that Model 1

Table 1
Parameters and performance of the three models.

α1 β1 α2 β2 θ1 θ2 p0 AIC Methods

0.78 27.00 0.77 24496.98 3.76 0.48 0.90 30945.39 Model 1

0.73 33.38 0.65 37332.16 4.62 1.86 0.75 31061.48 Model 2

0.81 25.01 0.71 24965.02 3.01 31035.36 Model 3

outperforms Model 2 and Model 3 as the AIC value of Model 1 (i.e., 30945.30) is smaller than

those of models 2 and 3.

Furthermore, in order to compare model performance on datasets with different samples, we

build models on the following three cases of datasets. We randomly sample 500, 1500, and 3000

observations from the original dataset, which creates three datasets, denoted as D1, D2 and D3,

respectively. Some basic statistics of the claimed products in the three datasets are shown in

Table 2, in which N is the sample size and Nr is the number of claimed observations. Of course,

the number of the un-claimed observations is N − Nr. To reduce the uncertainty caused by

the random sampling, we further sample with replacement for 20 times from each of the three

datasets. This creates 20 datasets with sample size N = 500, 1500 and 3000, respectively, and

obtains 60 datasets in total. Denote Dk,1, ..., Dk,20 as the 20 datasets sampled from dataset Dk,

where k = 1, 2, 3. The models will be built on each of the 60 datasets.

We calculate the Kendall’s tau and the Spearman’s rho based on the observations in each dataset

Dk,i with k = 1, 2, 3 and i = 1, 2, ..., 20. The values in the 3rd and the 4th columns in Table 3

show the mean and the standard deviation of the Kendall’s tau’s and the Spearman’s rho’s on

datasets Dk,1, ..., Dk,20 (k = 1, 2, 3), respectively. From the table, we can see that both Kendall’s

tau and Spearman’s rho are positive.

We estimate the parameters of Model 1, Model 2, and Model 3 based on dataset D1,1, ..., D1,20,

D2,1, ..., D2,20, D3,1, ..., D3,20, respectively. The results are shown in Table 4. The values without

brackets are the averages of the parameter estimates, and the values within brackets are the

standard deviations of the parameter estimates. For example, the underlined value 0.79 located

in Cell(2,2) (ie., the 2nd row and 2nd column) and the value 0.032 within the brackets under

it are the average value and the standard deviation of the 20 estimates of α1 based on datasets

D1,1, ..., D1,20, respectively. Similarly, another underlined value 26.68 located in Cell(8,3) and the
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Table 2
Basic statistics of the age and the usage of the claimed cars.

Dataset N Nr Age/Usage Mean Std. Deviation Skewness Kurtosis

Age 10.28 8.25 0.70 -0.31
D1 500 324

Usage 8890.70 7953.59 0.99 0.33

Age 9.78 8.33 1.06 0.60
D2 1500 981

Usage 8520.89 7475.36 1.13 0.86

Age 10.21 8.44 0.90 0.13
D3 3000 1939

Usage 8842.91 7628.02 1.05 0.66

Table 3
Kendall’s tau and Spearman’s Rho

Data N Kendall’s tau Spearman’s rho

D1,1, ..., D1,20 500
0.615 0.796

(0.024) (0.024)

D2,1, ..., D2,20 1500
0.635 0.819

(0.012) (0.012)

D3,1, ..., D3,20 3000
0.631 0.817

(0.011) (0.011)

value 1.61 within the brackets under it are the average value and the standard deviation of the 20

estimates of β1 based on datasets D2,1, ..., D2,20, respectively. The number 4469.18 in bold font in

Cell(2,9) (ie., the 2nd row and 9th column) is the average of the AIC values of Model 1 on the 20

datasets D1,1, ..., D1,20, and the value 124.89 under this average value is the standard deviation

of the AIC values.

From Table 4, we have the following findings.

(a). As can be seen from the last two columns, Model 1, which is the model proposed in this

paper, always outperforms the other two models as it has the smallest AIC. Model 2 is the

second best model, and Model 3 performs the worst.

(b). If we define a relative improvement factor as

Model 2′s AIC −Model 1′s AIC

Model 3′s AIC −Model 1′s AIC
,
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then for the cases N = 500, 1500 and 3000, their relative improvement factors are 0.130

(= 4471.50−4469.18
4486.98−4469.18), 0.205(= 13455.11−13442.77

13483.00−13422.77) and 0.615(= 26953.39−26919.03
26974.92−26919.03), respectively. This

shows: the performance of Model 1 becomes increasingly better when the sample size becomes

larger.

Table 4
Parameters and performance of the three models.

N α1 β1 α2 β2 θ1 θ2 p0 AIC Methods

0.79 26.79 0.79 23656.14 3.77 0.46 0.89 4469.18 Model 1

(0.032) (2.72) (0.041) (2988.96) (0.28) (0.027) (0.029) (124.89)

500

0.78 26.39 0.74 24071.96.11 2.26 3.50 0.42 4471.50 Model 2

(0.056) (2.68) (0.067) (2618.457) (1.53) (2.10) (0.27) (123.53)

0.81 25.13 0.72 24268.27 2.88 4486.98 Model 3

(0.033) (2.45) (0.043) (2381.91) (0.16) (126.39)

0.77 26.68 0.76 24017.97 3.90 0.54 0.92 13442.77 Model 1

(0.018) (1.61) (0.036) (1346.64) (0.30) (0.19) (0.033) (198.83)

1500

0.75 25.15 0.71 23237.66 3.65 2.74 0.58 13455.11 Model 2

(0.024) (1.62) (0.025) (1798.94) (1.35) (1.48) (0.23) (191.18)

0.79 24.16 0.71 23544.67 3.13 13483.00 Model 3

(0.022) (1.63) (0.026) (1678.95) (0.083) (190.87)

0.77 30.23 0.75 29308.12 3.78 0.77 0.87 26919.03 Model 1

(0.021) (3.26) (0.052) (5412.91) (0.38) (0.66) (0.21) (339.52)

3000

0.75 30.38 0.69 31128.44 4.62 2.09 0.67 26953.39 Model 2

(0.024) (4.30) (0.030) (6455.89) (0.89) (0.59) (0.14) (327.83)

0.79 24.69 0.73 22882.41 3.01 26974.92 Model 3

(0.017) (1.67) (0.016) (2942.32) (0.10) (350.35)

4 Conclusion

This paper introduced a new method to construct asymmetric copulas. This method has the

merit that it can construct asymmetric copulas with tail dependence of given directions. Using

the proposed copula, the paper proposed a novel method to model two dimensional reliability

data. It then tested the proposed method based on a warranty dataset collected from a car

manufacturer. It was shown that the proposed method outperformed two existing modelling

methods.
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Our future work aims to construct asymmetric copulas that possess other types of dependence,

for example, to reflect the probability of the extreme values of a subset of random variables.

Another possible research focus is to investigate the use of nonparametric or semiparametric

copulas in reliability data modelling.
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Appendix

Proofs of Lemmas 1, 2, 4, 6 7, and 8. Proofs of those lemmas are trivial and are therefore

omitted.

Proof of Theorem 1. Denote Vk = Fk(Xk), where k = 1, ..., d. Then

P{V1 ≤ v1, ..., Vk−1 ≤ vk−1, 1− Vk ≤ vk, Vk+1 ≤ vk+1, ..., Vd ≤ vd}
=P{V1 ≤ v1, ..., Vk−1 ≤ vk−1, Vk > 1− vk, Vk+1 ≤ vk+1, ..., Vd ≤ vd}
=P{V1 ≤ v1, ..., Vk−1 ≤ vk−1, Vk+1 ≤ vk+1, ..., Vd ≤ vd}
−P{V1 ≤ v1, ..., Vk−1 ≤ vk−1, Vk ≤ 1− vk, Vk+1 ≤ vk+1, ..., Vd ≤ vd}

=C(v1, ..., vk−1, 1, vk+1, ..., vd)− C(v1, ..., vk−1, 1− vk, vk+1, ..., vd).

= C̆k(v1, ..., vd)

This proves that C̆k(v1, ..., vd) is a copula. 2

Proof of Lemma 3 Proof of (a) in Lemma 3 is trivial and is therefore omitted. Below we prove

(b) and (c), respectively.

• Proof of (b) of Lemma 3. If Xk is independent of the rest variables (X1, ..., Xk−1, Xk+1, ...Xd),

then

C(v1, ..., vd) = vkG(v1, ..., vk−1, vk+1, ..., vd) (42)

where G(.) is a function. Substituting C(v1, ..., vd) into (7), one can obtain (b) in Lemma 3.

Proof of Lemma 5. Denote ωk = v and $k = 1 − v with k = 1, ..., d. We establish (14). The

proofs of (13), (15), and (16) are similar.

λl,ui|k = lim
v→0+

P (/1, ..., /k−1, /k+1, ..., /i−1, .i, /i+1..., /d|/k)

= lim
v→0+

P (/1, ..., /k−1, /k, /k+1, ..., /i−1, .i, /i+1..., /d)

P (/k)

= lim
v→0+

P (/1, ..., /k−1, /k, /k+1, ..., /i−1, /i+1..., /d)− P (/1, ..., /k−1, /k, /k+1, ..., /i−1, /
′
i, /i+1..., /d)

P (/k)

= lim
v→0+

C(ω1, ..., ωi−1, 1, ωi+1..., ωd)− C(ω1, ..., ωi−1, $i, ωi+1..., ωd)

v

= lim
v→0+

C̆i(ω1, ..., ωd)

v

where /′i = {Xi ≤ F−i (1− v)}. 2

Proof of Lemma 9. The proof of Lemma 9 can easily be done based on the following concepts.

Let X1 and X2 be continuous random variables whose copula is C(.). Then the population

version Spearman’s rho (or ρ) between X1 and X2 is given by ([26], p. 172),

ρ = 12
∫ 1

0

∫ 1

0
C(v1, v2)dv1dv2 − 3. (43)

The lower and upper bounds of the Kendall’s τ in (b) of Lemma 9 can be obtained based

23



on the following relationship between the Kendall’s tau and the Spearman’s rho [27],

−1 ≤ 3τ − 2ρ ≤ 1. (44)

2
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