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Abstract

Among the possible interfaces with the peripheral nervous system (PNS), intra-
neural electrodes represent an interesting solution for their potential advantages
such as the possibility of extracting spikes from electroneurographic (ENG) signals.
Their use could increase the precision and the amount of information which can be
detected with respect to other processing methods.

In this study, in order to verify this assumption, thin-film longitudinal intra-
fascicular electrodes (tfLIFE) were implanted in the sciatic nerve of rabbits. Various
sensory stimuli were applied to the hind limb of the animal and the elicited ENG
signals were recorded using the tfLIFEs. These signals were processed to determine
whether the different types of information can be decoded. Signals were wavelet
denoised and spike sorted. Support vector machines were trained to use the spike
waveforms found to infer the stimulus applied to the rabbit. This approach was also
compared with previously used ENG processing methods.

The results indicate that the combination of wavelet denoising and spike sorting
techniques can increase the amount of information extractable from ENG signals
recorded with intraneural electrodes. This strategy could allow the development of
more effective closed-loop neuroprostheses and hybrid bionic systems connecting
the human nervous system with artificial devices.
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1 Introduction

Interfaces with the peripheral nervous system (PNS) can be used as a means to
create a bi-directional link between the user’s nervous system and an artificial
device. The neural prosthetic interface can be used to induce activity in nerve
fibers through electrical stimulation to place information into the nervous
system. Conversely, information from the nervous system could be retrieved
by recording the electrical activity of the nerve. Given a chronically stable
device acting on an appropriate set of nerve fibers, such an interface could
be used as part of a FES (functional electrical stimulation) system to restore
function to paralyzed limbs (Popović et al., 1993) or in a brain-controlled
robotic limb application (Micera et al., 2006).

In all these applications, the processing of raw electroneurographic (ENG)
recordings from the neural interface can be used to reduce noise and to es-
timate the neural information source. Currently, there are various electrodes
under investigation as neural interfaces (see Navarro et al., 2005, for a review
on the available electrodes). Their characteristics determine the choice of the
signal processing method. Electrodes with limited selectivity (e.g., cuffs) can,
generally, only record the compound activity formed by the superposition of
action potentials belonging to many axons. Therefore, in most cases, the neural
activity recorded in this way has been used for onset detection, for example for
the control of a 1-DoF hand prosthesis (Stein et al., 1980) or of FES-systems
in hemiplegics Hoffer et al. (2005). Even if these limits can be partly overcome
by using multi-site cuff electrodes (Yoo and Durand, 2005) and advanced pro-
cessing techniques (Micera et al., 2001; Cavallaro et al., 2003; Lin et al., 2007;
Tesfayesus and Durand, 2007), more selective PNS interfaces may be necessary
to access more specific information. In fact, higher selectivity interfaces make
possible the identification of single spikes from single axons (or a small group
of axons) and to access the natural frequency coded information (Micera et al.,
2006) in ENG signals.

Among the possible choices, intraneural electrodes represent an interesting so-
lution because of their trade-off between invasiveness and selectivity (Yoshida
and Stein, 1999; Warwick et al., 2003; McDonnall et al., 2004). In particu-
lar, longitudinal intrafascicular electrodes (LIFEs), which are wire-based elec-
trodes inserted longitudinally into the nerve (Li et al., 2005; Lawrence et al.,
2004), have been used in the past (Goodall and Horch, 1992; McNaughton and
Horch, 1994; Mirfakhraei and Horch, 1997) to identify single units in multi-unit
peripheral nerve recordings using different features and classification schemes.
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For example, artificial neural networks allowed differentiation of 4 to 5 units
with a 70 to 90% reliability with single channel or differential recordings and
a 90 to 98% reliability with dual channel recordings (McNaughton and Horch,
1994).

These very promising results could be improved by using different processing
algorithms. For example, wavelet denoising techniques have been shown in the
past to be a valuable tool for the analysis of signals recorded from the central
nervous system (CNS) (Oweiss and Anderson, 2001; Nenadic and Burdick,
2005) and from the PNS during microneurography (Diedrich et al., 2003).

At the same time, the selectivity of intraneural electrodes (e.g., extraction
of single units) enables the development of approaches based on spike sort-
ing techniques borrowed from cortical array signal processing (Wheeler and
Heetderks, 1982; Bankman et al., 1993; Lewicki, 1998; Welsh and Schwarz,
1999; Schwartz, 2004; Zhang et al., 2004; Bar-Hillel et al., 2004; Nenadic and
Burdick, 2005).

The combined use of wavelet denoising and spike sorting algorithms could
increase the amount of information that is decoded from intraneural recordings
in the PNS. This could allow the development of more effective neuroprosthetic
systems.

The aim of the present study was to assess the performance of these methods
while decoding neurally derived information recorded by using intraneural
electrodes. The approach proposed in this manuscript was further compared
with other previously used algorithms.

2 Methods

2.1 Experimental setup

2.1.1 thin-film LIFEs

A new version of the LIFEs, named the thin film LIFEs (tfLIFE) was used
in the experiments (Yoshida et al., 2006; Hoffmann and Koch, 2005). These
electrodes were developed on a micropatterned polyimide substrate which was
chosen because of its biocompatibility, flexibility and structural properties
(Stieglitz et al., 2005). After microfabrication, this substrate filament (shown
in Fig. 1) is folded in half so that each side has 4 active recording sites.
Therefore, tfLIFEs allow multi-unit peripheral nerve recordings at 8 recording
sites per structure. A tungsten needle linked to the polyimide structure is used
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Fig. 1. Picture and unfolded overview of tfLIFE (Hoffmann and Koch, 2005). Total
length: 60 mm. Length without pad areas: 50 mm. Each end of the tfLIFE carries
a ground electrode (GND), an indifferent recording electrode (L0, R0) and the
recording sites (L1-L4, R1-R4).

for implanting the electrode and is removed immediately after insertion.

2.1.2 Animal preparation

The experimental procedures were approved by the Danish Committee for
the Ethical Use of Animals in Research. A set of protocols, including the one
described in this paper, were carried out on a total of six adult (8-9 months
old) female New Zealand White rabbits of approximately 4-4.5 kg. Anaes-
thesia was induced in the rabbits using an intramuscular injection of a Hyp-
norm/Dormacrom cocktail (0.15 mg/kg Midazolam (Dormicum, Alpharma
A/S, Norway), 0.03 mg/kg Fetanyl and 1 mg/kg Fluranison combined in Hyp-
norm, Janssen Pharmaceutica, Belgium). TfLIFEs were implanted through a
lateral access to the sciatic nerve between the biceps femoris and abductor
cruris cranialis muscles. A second posterior access was created to expose the
popliteal fat pad, which was removed to allow visualization of the branches
of the sciatic nerve. The medial gastrocnemius nerve and lateral gastrocne-
mius/soleus nerves were identified by visual inspection, and by tracing the
nerve to the muscle.

2.1.3 Sensory stimuli

The protocol described in this paper was carried out on five rabbits. During
each session various sensory stimuli were applied to the hind limb of the rabbit
and the elicited signals were recorded using the tfLIFEs. Stimuli were, for
example, ankle flexion/extension, flexion/extension of one or more toes, and
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stroking cutaneous receptive fields. The various stimuli were selected as a
means to obtain adequate stimuli to activate mechanoreceptors on the paw,
and second to localize the activity. Between 50-100 g force was exerted during
the stroking stimulation to cause some stretching of the skin, but not sufficient
to be considered painful. Both the type and the location of stimulation were
retained in the experimental record. A similar technique was used by Goodall
et al. (1993).

Although the implant location was kept constant between animals, the exact
units and thus the sensors recorded by the electrode varied from animal to
animal since the units recorded by the electrode are those that happened to
be closest to the electrode site after implantation. The analysis conducted was
on the activity from the set of units detected. The intent of the study was to
obtain a representative set of neural activity given the current state of the art
LIFE. The electrode and the implant site were not optimized to obtain the
best set of units.

In one of the five sessions there was a clear increasing activity only during
dorsiflexion and plantarflexion while no perceptible activity was correlated
with the action of stroking superficial receptive fields. Since we wanted to test
the algorithm in discriminating at least four classes of stimuli, this session was
discarded.

Table 1 reports a more detailed description of the different stimuli applied
during each of the four remaining sessions.

2.1.4 ENG signal acquisition

Signals were amplified by using an 8 channel custom built low-noise headstage
amplifier. It had a gain of 1000x, a 1st order high-pass filter at 0.1 Hz, and
an input impedance of approximately 10 MΩ. The recording chain following
the amplifier consisted of an Axon Cyberamp 380 which high-pass filtered the
data at 1 Hz with a 2nd order Bessel filter, to remove any residual DC offset,
and post-amplified the signal obtaining an overall gain of 2500x. The signals
were then acquired by a customized Alexis XT 16 bit digital tape recorder
with a built-in anti-aliasing filter. Each channel was sampled simultaneously
with the others with a sampling rate of 48 kHz.

2.1.5 Channel combination

The acquired data contained simultaneous monopolar recordings from differ-
ent active sites of the tfLIFE electrodes (Fig. 1). For each animal, the best
monopolar or differential recording pair for a given stimulus was chosen using
an automated procedure.
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Table 1
Stimuli applied to the hind paw of the rabbits.

Session Stim. description Stim. label coarse

A

Squeezing the foot sqf

Ankle flexion af

Toe extension te

Toe extension combined with ankle flexion af te

C

Stroking medial plantar area of paw smpp

Stroking distal plantar area of paw sdpp

Extension of toes (2nd, 3rd, 4th) et

Ankle flexion af

D

Ankle flexion at 90o a90

Release from ankle flexion a90r

Ankle extension at 175o a175

Stroking paw with ankle at 90o sp a90

Stroking paw with ankle at 175o sp a175

E

Ext. of 2nd and 3rd toes with ankle neutral te an

Ext. of 2nd and 3rd toes with ankle flexed te af

Flex. of 2nd and 3rd toes with ankle flexed tf af

Ext. of 2nd and 3rd toes with ankle extended te ae

Starting from the assumption that the noise is Gaussian while the signal is not,
signal amplitudes exceeding four standard deviations of the estimated noise
amplitude were considered action potential peaks (Diedrich et al., 2003).

The following procedure was performed on every channel and differential com-
bination of channels. The noise variance σn was evaluated on aquiescent epoch.
For every epoch of stimulation a measure of spikiness sepoch was evaluated as
the ratio of the fraction of samples whose amplitude exceeded 4σn divided by
what is expected for a Gaussian distribution (6.3×10−5). These measures were
grouped by stimulus type and averaged, obtaining the spikiness of each stimu-
lus type sstim. The final figure of merit ssig of the signal (i.e. of the combination
of channels) was the minimum sstim of the different stimulus types.

Finally, the channel combination with higher ssig was chosen. This procedure
reflects the considerations an expert of the field would make by visual inspec-
tion of the recordings, but has the advantage of being objective, reproducible
and automated.
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Fig. 2. One minute of recordings related to session D while some stimuli (a90, a90r,
a175, see Table 1) were applied to the paw. The first two plots show the raw signal
recorded by two different active sites of the tfLIFE while the third is the difference
of the two signals. Below, the same signals after the wavelet denoising.

The combination with highest score was often from a differential configuration.
There are three possible reasons for this: First, a differential configuration al-
lows combining a site that responds better to one stimulus with another one
that responds better to a different type as shown in Fig. 2. This leads to some
loss of information but avoids the computational cost of processing more sig-
nals. Second, the recording configuration is a differential recording thus can-
celing noise from distant sources. Third, some characteristics of the typical
spike waveform that can ease spike detection are enhanced by this configura-
tion. In fact, most spike waveforms found were approximately composed of a
positive wave followed by a negative one, or vice versa (solid line in Fig. 3).
Therefore, the conduction speed of the action potential along the nerve fibre
determines a delay between the sites that can superimpose upon the positive
wave observed by one site and the negative one observed by the other. The
difference of the two signals can enhance the performance (Fig. 3).

2.2 Signal preprocessing

2.2.1 Downsampling

Recordings acquired at 48 kHz were later downsampled to 12 kHz. This should
not lead to significant loss of information since most of the physiological in-
formation is below 2 kHz as reported, among others, by Diedrich et al. (2003)
who found 10 kHz to be the optimal sampling frequency for similar record-
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Fig. 3. One of the spike templates typically found by the algorithm. With solid
stroke: the waveforms recorded by two active sites of the tfLIFE (R1 and R3). With
dashed stroke: the difference of the two signals.

ings. Nevertheless, signals were sampled at 48 kHz to benefit of the pros of
oversampling, mainly the lower phase distortion in the upper part of the band.

The data were downsampled using “sox”, a multiplatform utility for audio files
conversion. The algorithm used was a polyphase filter with Nuttal (∼ 90 dB
stopband) window and approximate filter length of 1024 samples.

2.2.2 Wavelet denoising

Wavelet denoising is a set of techniques for removing noise from signals and
images. It has been used in biomedical signal processing to reduce background
noise that can be approximated to a Gaussian distributed random source (e.g.,
Tikkanen, 1999; Oweiss and Anderson, 2001; Kim and Kim, 2003; Diedrich
et al., 2003).

The main idea is to transform the noisy data into an orthogonal time-frequency
domain. In that domain, thresholding was applied to the coefficients to remove
the noise, and the coeffecients were finally transformed back into the original
domain de-noised.

A decomposition scheme based on the Translation-Invariant Wavelet Trans-
form (Coifman and Donoho, 1995) was used. It is equivalent to the Stationary
Wavelet Transform and to the Undecimated Wavelet Transform. It was cho-
sen since it is invariant to signal time shifts unlike the usual wavelet denoising
performed via Dyadic Walelet Transform (DWT). This can be a key point
when dealing with abruptly changing signals such as spikes in our case. Fig. 4
shows how the same spike can be captured, missed, or “incorrectly” extracted
by a DWT-based denoising algorithm depending on the time the spike takes
place (e.g., signals #0, #4, and #7).
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Fig. 4. DWT-based denoising of the same signal performed with time shifts from
0 to 7 samples. The usual denoising (signal #0) completely misses the spike while
it would have detected it, in different ways, if the spike happened a few samples
before or later (signals #1 to #7). The Translation-Invariant Wavelet Transform
(the average of the 8 signals above, labelled with “ti”) detects it and the outcome is
always the same. At the bottom, the original signal (solid line) and a scaled version
of “ti” (dashed line).

The Symmlet 7 mother wavelet and hard-thresholding were used, as by Diedrich
et al. (2003), because this choice outperforms other alternatives when working
with similar neural signals.

Threshold selection is important because it determines how aggressive the
denoising is. In this paper, the minimax threshold method (1) was used

θ = σ (0.3936 + 0.1829 log2(N)) (1)

σ being the standard deviation of the noise, and N the number of samples
in the signal s. In statistics the minimax principle is often used to design
estimators. The denoised signal can be thought of as an estimator of the un-
known regression function. The minimax estimator minimizes the maximum
mean square error over a given set of functions (Donoho and Johnstone, 1994).
The use of the minimax leads to smaller thresholds as compared to the cor-
responding universal threshold by a factor 0.7 to 0.8 for the values of N used
in this work. This threshold selection is more conservative than the universal
one and is more adequate when significant details of the signal lie near the
noise range. This is exactly the case with the low signal to noise ratio typical
of neural signals.

As the noise is not assumed to be necessarily white, the noise standard devi-
ation was estimated at each decomposition level l on a 45 seconds quiescent
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epoch using

σl =
mediank(|cl(k)|)

0.6745
. (2)

In the standard wavelet denoising procedures, the thresholding function is
applied to the details at each decomposition level while the approximation
is left unchanged. In the present work, the approximation was completely
discarded because it contained components below around 2L fn, where L is
the maximum level of decomposition and fn is the Nyquist frequency, i.e., half
the sampling frequency. L = 3 was chosen in order to filter out frequencies
below 750 Hz.

2.3 Spike Sorting

If a sample of the denoised signal was greater than a detection threshold
θd, then a time window around the spike was extracted. The window had
a variable size in order to account for wide spikes - and consider the whole
waveform - and narrow ones - and allow them to repeat at higher rates. The
detection threshold was chosen to be 3 times the standard deviation of the
samples in the quiescent epoch.

In order to identify similar spike waveforms in the neural signal, a spike sorting
algorithm developed in C/C++ was used on the extracted windows. It con-
sisted of a two phase process. During the first phase a set of spike templates
was created. During the second phase the spikes in the signal were compared
to each template and labelled as belonging to its best match.

2.3.1 Templates creation

If the extracted spike was similar to any template present in the set, the
corresponding template was updated taking into account the new element,
otherwise a new template was created. To assess similarity between the spike
and the template, the spike was first aligned to the template using the lag
that maximizes the cross-correlation, and then the following two criteria were
checked:

• The correlation coefficient between the two was greater than 0.9;
• The ratio between the mean square difference of the two and the power of
the template was less than 0.5.

Among the templates meeting these criteria, the one satisfying them best was
chosen and the spike was labelled as belonging to that template. The template
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was then updated as the weighted average of the new spike and the template,
the latter having weight of the number of spikes that already joined the tem-
plate. To reduce the influence of sporadic irrelevant spike templates, the ones
formed by less than 0.5% of the overall number of spikes were discarded. The
set of final templates was saved in an xml file for use in the next steps.

2.3.2 Templates matching

The second step was identical to the first one with the exception that the
templates found in the first phase were not updated. Every spike was labelled
with the number of the best matching class in terms of the above mentioned
criteria.

2.4 Classification

2.4.1 Features

For each rabbit, the recordings were annotated with the types of stimulus
applied in each phase of the experiment. For each stimulus type, 6 to 12
epochs, during 3 to 6 seconds, were labelled.

Each epoch was an example that was used to train the classifier or to test its
generalization skills. The feature vector was made of the ratios between the
number of spikes matching each template and the total number of spikes in
the epoch, i.e. F = [f1, . . . , fM ] where M was the number of templates found
during the templates creation phase and each fi is given by

fi =
ni∑
j nj

. (3)

Therefore, the absolute spike rates were not used, but rather the relative spike
rates of each waveform w.r.t. the others. This should prevent classification
of the epochs based on the “quantity of activity” and favour the use of the
“quality of activity” intended in terms of different waveforms for different
stimuli.

2.4.2 Classifier

In order to infer the type of stimulus applied during a given epoch from the
feature vector F, a classifier based on Support Vector Machines (Cortes and
Vapnik, 1995) was used making use of the open source library LIBSVM (Chang
and Lin, 2001).
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Support Vector Machines (SVMs) are a family of supervised learning methods
for two-class classification problems. The type of SVM used is called ν-SVM
(Chen et al., 2005). Among the various kernels available, the radial basis func-
tion (RBF) was chosen because it allows complex separation surfaces requiring
a reduced number of hyperparameters to tune.

Even if this could lead to a more conservative result, it was decided to use fixed
hyperparameters because tuning them by means of iterative methods would
have required an additional cross-validation scheme. This would have further
reduced the already small number of examples available to train and test the
classifier. Using ν-SVM with RBF, hyperparameters ν and γ need to be chosen.
The regularization parameter ν is is an upper bound on the fraction of margin
errors and a lower bound on the fraction of support vectors. We chose ν = 0.4
because we considered it a good trade-off between allowing training errors and
favouring smooth separation surfaces. The parameter γ determines the radius
of the RBF. We set γ = 1/ρ2 where ρ is the radius of the smallest sphere in
the input space that contains all feature vectors F of the training set. Keerthi
(2002) reported that it is a good starting point for iterative methods.

To allow SVMs, and other binary classifiers, to handle multiclass problems,
the latter must be decomposed into several binary problems. In this work
we used a one-against-one approach (Huang et al., 2006) where, for a q-class
classification problem, q(q−1)/2 machines were trained. Each SVM separates
a pair of classes and, in the prediction stage, a voting strategy was used.

Each attribute of the feature vectors of the training set was scaled in the range
[−1,+1] and the scaling parameters were saved to later scale testing data in
the same way. The main advantage was to avoid features in greater numeric
ranges dominating those in smaller numeric ranges.

2.5 Assessment of the results

2.5.1 Validation scheme

A validation scheme was developed by using a single example per class (stimu-
lus type) as the test set (retained “blind”, i.e., never used to tune any param-
eter, to create spike templates, or to train the machine), and the remaining
ones as the training set. For example, if a given session had 9 epochs for each
of 5 different types of stimuli, the test set would consist of 5 epochs while
the training set of 40 epochs. In order to obtain an average performance with
small confidence intervals a random subsampling cross validation was used.
The following procedure was repeated 5000 times:

• build the test set by randomly selecting one epoch for each stimulus type
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(e.g., one set of 5 epochs among 95 combinations for the example above);
• build the training set by selecting the remaining epochs;
• run the template creation phase of the spike sort algorithm on the training
set;

• run the template matching phase of the spike sort algorithm on the whole
set;

• use the features from the training set to train a SVM machine;
• make the SVM machine predict the stimuli type for the test set and compare
it with the ground truth.

2.5.2 Inspection of results

The results were evaluated in multiple ways in order to look at them from
different points of view to clearly identify the potentials and limits of this
approach.

The overall percentage of correct classifications (PC) was calculated as the
ratio between the number of epochs whose stimulus type was correctly identi-
fied and the total number of epochs classified. This parameter can provide a
rapid synthetic indication of the average performance of the system.

The confusion matrix was also inspected to identify subsets of classes the
system recurrently confuses.

An interesting perspective is to analyse the results from an information the-
ory point of view. The system can be interpreted as a discrete memoryless
noisy communication channel where the actual stimulus type is the input and
the predicted stimulus type is the output. For such channel the mutual in-
formation is a measure of how much information can be obtained from the
input random variable (U) by observing the output one (Y ). The mutual in-
formation depends on the probability distribution of the input variable U . The
maximum of the mutual information over all possible distributions defines the
channel capacity, i.e., the maximum amount of discrete information that the
channel can carry. The channel capacity C has been evaluated by using the
Arimoto algorithm (Arimoto, 1972).

2.5.3 Comparison with other techniques

The results achieved using the method proposed in this manuscript were also
compared with the performance of previously used methods which can be
implemented in analog circuitry (i.e., not requiring complex denoise techniques
nor spike detection and sorting). This comparison was carried out in order to
understand the relative importance of each processing step (i.e., the wavelet
denoising and the spike sorting).
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Two preprocessing methods were compared: the wavelet denoising stage pre-
viously introduced (abbreviated to WD) and a bandpass filter (FIR). In the
latter case the input data were processed with a 90-tap equiripple FIR filter
with cutoff at 700 and 2000 Hz (as in Diedrich et al., 2003).

Two different feature creation methods were compared. The first one (abbre-
viated to Srt) is the previously introduced spike sorting algorithm that only
accounts for relative spike activity and gives the feature vector F. The second
one (abbreviated to RBI) is a traditional RBI (rectified and bin-integrated)
algorithm evaluated as the mean over the epoch of the RBI computed on 50 ms
windows.

The validation scheme is the same as before but the preprocessing stage is
either WD or FIR, and the feature creation is Srt, or RBI.

To assess statistical significance of the possible improvement introduced by
the use of WD over FIR, and Srt over RBI, the table of percentage of correct
classifications was fitted by a logistic regression. The analysis was performed
with the statistical software package R. The hypothesized relationship was
(Corr,Wrong) ∼ Prep∗Proc+Sess that, in the notation of R, means that
the dependent variable (number of correct and wrong classifications) depends
(∼) on a the explanatory variables Prep (accounting for the preprocessing:
WD or FIR) and Proc (accounting for the processing: Srt or RBI) and their
interaction (∗). The independent variable Sess for the session, was also in-
cluded to take into account the differences among the datasets.

3 Results

3.1 Quantitative results

The performance of the system for each of the four experimental sessions was
assessed. Measures of performance in terms of percentage of correct classifica-
tions and channel capacity are summarized in the WD/Srt column of Table 2.

Table 2 also presents a comparison of the different processing configurations.
The first column gives the results of the method introduced in this work
(WD/Srt). The last column reports the results of a typical ENG approach
(FIR/RBI) using a bandpass filter between 700 and 2000 Hz and RBI. The
other columns present the performance of hybrid configurations.
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Table 2
Performance of sessions with 4 (A, C, E) or 5 (D) stimuli in terms of percentage
of correct classifications (PC) and channel capacity (C). For PC, the radius of a
95% confidence interval (rounded up) is reported in parentheses. WD/Srt is the
approach introduced in this work; FIR/RBI is a typical ENG approach using a FIR
bandpass filter and rectified-bin integration; the others are hybrid configurations.

Session Measure WD/Srt FIR/Srt WD/RBI FIR/RBI

A
PC [%] 92.6(0.4) 66.7(0.7) 68.6(0.7) 52.8(0.7)

C [bit/symb] 1.59 0.87 1.01 0.84

C
PC [%] 99.1(0.2) 95.2(0.3) 88.8(0.5) 69.0(0.7)

C [bit/symb] 1.92 1.72 1.50 1.28

D
PC [%] 94.5(0.3) 80.4(0.5) 76.0(0.6) 66.5(0.6)

C [bit/symb] 2.01 1.64 1.61 1.54

E
PC [%] 90.1(0.5) 60.7(0.7) 92.6(0.4) 89.1(0.5)

C [bit/symb] 1.51 0.64 1.71 1.51

3.2 Logistic regression

As mentioned before, a logistic regression was performed in order to as-
sess statistical significance of the possible improvement introduced by the
use of WD over FIR, and Srt over RBI. The hypothesized relationship was
(Corr,Wrong) ∼ Prep ∗ Proc + Sess. The values of the estimated coef-
ficients for the explanatory variables are listed in Table 3. To interpret the
results one can consider that the presence of a given condition Xi over the
baseline (FIR+RBI) scales the odds (i.e., PC/(1− PC)) by eβi . Positive val-
ues of βi indicate increasing the performance while negative values indicate
decreasing performance. It is worth noting that the use of the wavelet de-
noise alone increases the odds by a factor 1.96 (e0.674) while the use of the
spike sorting alone increases the odds by a factor 1.43 (e0.358). The combined
use of wavelet denoise and spike sorting increases the odds by a factor 7.40
(e0.674+0.358+0.970). This means that the proposed algorithm introduces a signif-
icant improvement over the current techniques, that both steps are important
to achieve this goal, and that when used together the improvement is bigger
than the sum of the improvements when either one is used.

3.3 How the system works

For completeness, an example that can help understanding how the system
internally works is also reported. Two minutes of session D are considered.
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Table 3
Results of fitting the table of percentage of correct classifications with a logistic
regression. All the values are statistically significant (p < 0.001).

Explan. variable Xi coeff. βi

(Intercept) +0.218

PrepWD +0.674

ProcSrt +0.358

SessC +1.205

SessD +0.524

SessE +0.788

PrepWD:ProcSrt +0.970

Fig. 5 shows 5 out of the 17 templates found. Templates #3 and #4 are
considered together because they have similar properties and behaviour. The
same was done for templates #9 and #10. Looking at the plots in Fig. 5 it
is clear how their relative and absolute spike activities varied in time as the
experimenter changed the stimulus applied to the paw. This also results from
Fig. 6 that shows the probability density functions of the inter-spike interval
(ISI) for the three groups of templates (#1, #3+4, and #9+10) during the
different stimuli.

4 Discussion

4.1 General considerations

The aim of this work was to verify whether the combined use of wavelet
denoising and spike sorting algorithms could allow to increase the amount of
information which can be decoded from ENG signals recorded using tfLIFEs
(and in general intraneural electrodes).

To make this evaluation, different stimuli were applied to the paw of rabbits
while recording the ENG signals using tfLIFEs. The results achieved in the
discrimination by using a wavelet denoising algorithm, a spike sorting tech-
nique, and a SVM classifier together for only one channel (Table 2) show that,
with four out of the five initial animals, it was possible to discriminate four
(or five) different classes of stimuli with performance in a range between 90%
and 99%. The technique outperformed prior work carried out with different
approaches. Moreover, the channel capacity was in a range between 1.5 and
2 bits/symbol (approximately 20 to 50 bits/minute) which is comparable to
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Fig. 6. Probability density functions (scales on the left) and cumulative distribution
functions (scales on the right) of the inter-spike interval (ISI) for the three groups
of templates (#1, #3+#4, and #9+#10) during the different stimuli of Fig. 5.
The pdf has been estimated with kernel density estimation (or Parzen windows
method) using a standard gaussian kernel and bandwidth h = 7.5ms. The number
of ISIs used is reported in the legend near the template. When the number of ISIs
was insufficient to obtain a meaningful pdf (i.e., the firing rate was very low), the
corresponding plot has been omitted.

other invasive and non-invasive interfaces (Tonet et al., 2008).

It is important to point out that our attention was not focused on the use of
the absolute spike rates but rather on the relative spike rates of each waveform
w.r.t. the others. This approach was chosen to verify whether different “spike
waveforms” extracted from tfLIFE signals could aid in the detection of specific
stimuli. By using the absolute spike rate there is a further performance increase
of 0 to 2% but for the sake of brevity and clarity this result was not considered
in the paper.

The results have been achieved by using only the best channel available (as in
Dhillon et al., 2004) and it is likely that the use of several channels simultane-
ously could further improve the situation as also reported by McNaughton and
Horch (1994). Only one channel was used for the sake of simplicity; in fact,
using additional electrodes (e.g., two channels) greatly increases the number
of features for the classifier while maintaining the number of examples for the
training. To avoid risks of overfitting, the options would be either to include
an automated feature selection stage (e.g., PCA or ICA) to keep the dimen-
sion of the training vector reasonably small, or greatly increase the number of
sessions. At the present stage the aim of the manuscript was not to state the
maximum amount of information achievable, but just to give preliminary ev-
idence that spike sorting techniques can be useful with ENG signals recorded
through LIFEs and to stimulate further investigations in that direction. How-
ever, this is an open issue to be addressed in the future.

The performance of the system presented in this study outperformed pre-
viously used (e.g., FIR+RBI) methods (see Table 2). In particular, it was
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possible to show that the combined use of both the modules of our approach
(wavelet denoising and spike sorting) was able to considerably increase the
classification performance (as also confirmed by a logistic regression proce-
dure).

This method can also be implemented to work unsupervised, continuously, in
real-time by using compact, light-weight and battery-powered devices. In fact,
several works reported the feasibility of similar algorithms running on small
low power devices, such as stationary wavelet-based denoising algorithm on
programmable DSP and FPGA (Montani et al., 2003), and algorithms for
spike detection, alignment and spike sorting on VLSI architectures (Zumsteg
et al., 2005; Zviagintsev et al., 2006). Signals recorded from chronic setups are
dynamic in that the responses to repeated stimuli or motor commands change
in time. To cope with this issue, the thresholds for the wavelet denoising and
the spike detection can be updated adaptively as well as the spike templates
of the spike sorting algorithm (Mirfakhraei and Horch, 1997).

4.2 Use of this methodology for the control of limb prostheses

Even if the ENG signals recorded and processed in this study were related to
neural afferent information (instead of motor commands) the algorithms de-
veloped could be used in the near future to extract voluntary commands from
efferent motor signals. This represents a very important step in developing an
ENG-based control system for limb prostheses, extending the results shown
by Dhillon and Horch (2005).

However, in this case, a slightly different strategy in terms of classification
algorithm could be necessary. In fact, in order to select different grasping
tasks it could be necessary to identify the presence of several specific spike
classes related to a complex multi-muscle limb activity. Some of these spike
classes could also be related to the recruitment of the same muscle but in
this case it would simply require the development of a more flexible classifier
embedding this kind of information.

Moreover, information such as spike rate could be correlated to the force the
user would like to carry out. The combined use of spike sorting techniques and
fuzzy logic algorithms could allow the development of this kind of classifier.
All these considerations will be validated in animal models during the next
months.
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4.3 Open issues

Even though the results are encouraging, it is important to point out that
there is a big difference between inferring items of a reduced set of events and
doing so with the device in practical use. The use of qualitative general stimuli
such as brushing and stroking, instead of focusing on stimuli to quantitatively
characterize single unit responses, was an attempt to generate a more natural
data set of responses. The problem is well known in the field of cochlear
implants where in early days a single-electrode cochlear implant could only
provide some closed-set speech recognition with no open-set recognition at all
while now modern devices can provide 70-80% open-set speech recognition
(Zeng, 2004).

Another possible reason for performance degradation in real implants is that
the anesthetized animal model used in this work provides a relatively quiet en-
vironment for recording neural activity. The noise level would be much higher
in a real neuroprosthetic setting because of increased movement and back-
ground neural activity.

Moreover, the issue related to the possible overlap of different spike waveforms
should be addressed by developing specific techniques.

Finally, it is important to point out that the implantation of tfLIFEs (and
in general intra-neural electrodes) is blind. Thus, in some cases the position
of the site was not optimal for recording useful neural information. This is
the most important reason for the problems encountered with one of the five
rabbits. Moreover, electrode drift during the implantation is possible. This
limitation could be addressed by increasing the number of tfLIFEs implanted
or by moving the different electrical contacts embedded with micro-actuators
in the structure of the interface. Preliminary investigations by Bossi et al.
(2007) with tfLIFEs actuated in order to follow the signal have been carried
out.

5 Conclusions

In this paper, the possibility of decoding information from ENG signals recorded
with tfLIFEs by using wavelet denoising and spike sorting techniques has been
investigated. The results achieved seem to indicate that the approach proposed
could provide better performance than different perviously used methods.

It is importaint to point out that, although tfLIFE signals were used in this
work, the method is not limited to ENG signals recorded from tfLIFEs. It
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can be applied to other intrafascicular techniques, such as signals from Utah
probes, traditional LIFEs, polyLIFEs, sieve electrodes, and microneurography,
where the electrode selectivity allows resolution of separable unit spike activity.

Further dedicated experiments will be carried out in order to assess whether
this approach could be applied to efferent and afferent ENG signals to develop
innovative FES systems and brain-controlled artificial limbs.
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