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Abstract

We simplify the general form of the fermion-fermion-gauge boson interactions
generated by dimension-six gauge-invariant effective operators by using the equa-
tions of motion to remove redundant operators. It is found that the most general
vertex for off-shell fermions f;, f; and an off-shell boson V' = W, Z,v,g only
involves «* and o#”q, terms, with ¢ = p; — p;. Examples are given for the
Witb, Ztt, vtt and gtt interactions, whose general expression is greatly simplified
with respect to previous results in the literature. The same arguments apply to
top flavour-changing neutral interactions with the Z boson, the photon or the
gluon, which can also be parameterised in full generality with only v* and o#¥q,
couplings. Explicit expressions are given for these vertices in terms of dimension-
six gauge-invariant operators. We also discuss how effective operator coefficients

might be determined from eventual measurements of anomalous couplings.

1 Introduction

The precise measurement of the couplings among the known fermions and bosons is
a standard tool for the search of new physics beyond the Standard Model (SM). In
particular, at the Large Hadron Collider (LHC), top quarks will be produced in large
numbers, allowing to probe the top couplings with a great precision. Such a high preci-
sion is most welcome because, being the top the heaviest quark, effects of new physics
on its couplings are expected to be larger than for any other fermion, and deviations
with respect to the SM predictions might be detectable. An adequate parameterisation
of the most general interactions of the top quark (or any other fermion) with the gauge
bosons is compulsory in order to search for new physics and to interpret the results
of experimental measurements. In particular, it is important to avoid the appearance
of redundant parameters which only lead to a complication of the analyses, both from

the theoretical and experimental side, without making them more general.

The on-shell interaction between two fermions f;, f; and a gauge boson V =
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W, Z,~, g can be parameterised in full generality as

LYy, = [V (AuPL+ ArPR) iV
—FL}?] iUuqu (BLPL+BRPR) fz ‘/u—i—I‘I.C.7 (1)

where ¢ = p; — p; is the outgoing boson momentum and Ay, r, By r are form factors,

which in general may depend on ¢?. (For the flavour-conserving photon and gluon
vertices Ay = Ap and for the flavour-changing ones Ay r = 0 due to gauge symmetry.)
A term proportional to g* does not give any contribution to the amplitudes for on-shell
V, because in this case the vector boson polarisation €, satisfies gte, = OI Addltlonal
terms with different Lorentz structures can be brought into this form by using the on-
shell conditions, namely, the Dirac equation. For off-shell fermions f;, f; the situation
might seem quite different because the Dirac equation cannot be used to restrict the
number and structure of the Lagrangian terms. However, as we will show here, if the
new anomalous couplings arise from dimension-six gauge-invariant effective operators,
then the Lagrangian in Eq. () is still the most general one. We recall here that effects
of new physics at a high scale A can be described by an effective Lagrangian [1-3|

Cy
:ZFOI%—..., (2)

where O, are dimension-six gauge-invariant operators and C, are complex constants.
(Higher-order corrections from operators of higher dimension, suppressed by higher
powers of A, are neglected in this work.) Among the operators listed in Ref. [3],

fourteen contribute to top electroweak anomalous couplings,

Oé?;,ij) = i(¢'r! Dud) (@i qry) = (qri Dyug;) D
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up to different values of the flavour indices i,j =

02]1'/1/ = CILNMTIDVQL]'W,{V ;
OZJB = qriY"D"qr; By ,
OZUJB = ﬂRi’y‘uDyuRijj s (3)

1,2,3. Here qr;, ugr; and dg; are

the quark fields in standard notation (for details see the next section). Operators with

LA ¢* term can also be dropped if V couples to external massless fermions, in which case its
contribution to the amplitude vanishes by application of the Dirac equation. This is indeed the case
in several processes of interest at LHC and Tevatron, like for example single top production in ¢ and
s channels.



t = j = 3 contribute to the Wb, Ztt or ~ytt vertices, while operators involving two
up-type quarks with 4,5 = 1,3/3,1 or i,j = 2,3/3,2 contribute to flavour-changing
neutral (FCN) top-up and top-charm interactions, respectively. Only three operators

(up to flavour indices) contribute to strong interactions,

Oy = (qLiN"0™ ug;)d G5, O = qLi\"v" D" q1;GS,,,
02y = Upi\"v" D" up; G5, . (4)

For i = j = 3 they give diagonal gtt couplings whereas for ¢ # j the interactions are

flavour-changing, as the electroweak ones.

All operators in the left columns of Eqs. (@), @) yield v* and ¢#q, terms, while
those in the right columns give k* = (p;+p;)* and ¢* terms or more complicated Lorentz
structures. Not all these contributions to top couplings are independent, however. In
Ref. [4] it was pointed out that OZ,, O3}, O3} are redundant and can be expressed
in terms of other operators in Eqs. ([B]) with ¢ = j = 3, plus four-fermion interactions.
This implies in particular that their contributions to the Wtb, Ztt and ~tt couplings
can be expressed in terms of other operator contributions both for on-shell and off-
shell external particles. Here we will generalise this result for operators with i # 7,
including also strong interactions. We will find expressions which allow to write: (i)
O%,, Oéjé and O, in terms of operators in the left column of Egs. () plus four-fermion
interactions, extending the results in Ref. [4] to the case of i # j; (ii) O, and O, in
terms of OZJqu plus four-fermion interactions. After proving that these operators are
redundant, they can be excluded from further consideration in the same way as several
other gauge-invariant dimension-six redundant operators one may construct [3| are not

considered.

Concerning the remaining operators, it has been previously noted that using the
equations of motion O% and O can be expressed in terms of OF,, OF,, respectively,
plus additional terms. More recently, in Ref. [5] it has been shown with a direct calcu-
lation of the amplitudes that, for the specific case of the Wb vertex, the contributions
of O%,, O ~O%, and OF can be rewritten in terms of v and o#“q, terms. Here
we will show that the underlying reason for this simplification is that the four oper-
ators Ogu, Ogu, Ogd and Og , are actually redundant. Therefore, only the operators
in the left columns of Egs. ([B), (@) are independent, and all of them give 4* or o#¥q,
contributions to the vertices.

We must emphasise here that the fundamental principle which allows to rewrite
vertex contributions into v* and ¢*”q, terms for off-shell particles is gauge symmetry.
It is well-known that for off-shell fermions the Lorentz structure in Eq. (1) is not

the most general one and, for example, a k* term cannot be rewritten into o*q,



plus 7* terms using the Gordon identities if the fermions are off-shell. But when
these trilinear terms are generated from gauge-invariant operators, they have associated
quartic interactions (among several others) which also contribute to the amplitudes.
In this way, the contribution of a k* term plus the additional contributions related by
gauge symmetry are equivalent to the one from a combination of o#”q, and +* terms.

This fact will be explicitly shown here with examples of amplitude calculations.

The aim of this paper is to find general expressions of the electroweak top anoma-
lous interactions generated by dimension-six gauge-invariant operators, which are also
minimal in the sense that they involve a set of couplings as small as possible. Section
is devoted to obtain relations which will eventually prove that the operators listed in
the right columns of Eqs. (3, (@) are redundant and may be safely excluded. The
results obtained are then applied in section Blto the Wtb, Ztt, vtt and gtt vertices. We
find much simpler vertex structures in comparison to previous works [6-9]. Altogether,
these interactions can be described with only twelve independent anomalous couplings
which are the coefficients of the effective v* and 0#”q, interactions. The eventual mea-
surement of these anomalous couplings might be used to determine effective operator
coefficients. In section [l we present results for Ztu/Zte, ytq/vytc and gtu/gtc interac-
tions, simplifying previous results [10,11|. For example, the Ztu and Ztc interactions
can be each described by only four quantities and the vtu and ~tc vertices only need
two parameters, which are the most convenient ones to express observables such as
cross sections and branching ratios for FCN decays. As we will see, these parameters
turn out to be independent, despite the gauge relation between the Z boson and photon
fields. In appendix [Al we give explicit examples to show how gauge symmetry ensures
that the contributions to the amplitudes are the same in all cases when operators are
rewritten. In appendix [Bl we collect the effective operator contributions to the Wb,
Ztt, ytt and gtt vertices, while in appendix [Cl we do the same for the flavour-changing

ones.

2 Effective operator equalities

In this paper we follow the notation of Ref. |3] for gauge invariant effective operators
with slight normalisation changes and sign differences, also introducing flavour indices.
We denote by

qLi = (“L> , ugi, dp (i=1,2,3) (5)
L



the quark weak interaction eigenstates, with (uq,us,u3) = (u,c,t) and (dy,ds,ds) =
(d, s,b) in the usual notation. Analogously, ¢;; and eg; the lepton doublets and singlets,

respectively. The covariant derivative is
D L
Du:au—‘—ZgS?Gu—i—ZgEWu +Zg YBN’ (6)

where G%, W! and B, are the gauge fields for SU(3), SU(2), and U(1)y, A* are the
Gell-Mann matrices with a = 1...8, 7/ the Pauli matrices for I = 1,2,3 and Y is the
hypercharge (with @ = T3 +Y) of the field to which D,, is applied. The charged W
boson fields are

1
Wt =—
V2

and the Z and photon are related to the W3, B fields by

(W, FiWy3) (7)

3
Z‘u == CV[/'VI/:u — SwBH,

Ay = swW, + cwBy, (8)

where sy and ¢y are the sine and cosine of the weak angle 6y, respectively. The field
strength tensors for SU(3), SU(2), and U(1)y are

G2, = 8,6 — 0,G% — gy funeGEGE,

Wi, =0.W,) —0,W — gersxW,JWE,
B,, = d,B, — 0,B,, (9)

and the dual tensors are .
P = €y (10)

for ' = B,W! G* with €123 = 1. The SM Higgs doublet ¢ has vacuum expectation

value
1 0
<¢>=—\/§<U) , (11)

with v = 246 GeV, and we define q~§ = €¢*, € = i72. We will use the dimension-four

equations of motion of the quark fields
iDari =Y up;é + Vidgio,

iDug =Y, dqr;,
iDdr =Y, ¢lqr; (12)



with Y% Y? the 3 x 3 matrices of up- and down-type quark Yukawa couplings. The
equations of motion of gauge fields are

1 1 2 1-
o,B" — {—éﬁLﬂ%Li — eriYeri + EQM’Y“QLz’ + gaRi’Y“uRi - ngﬂ“dRi

+£¢Tﬁ¢} =0

I I
(DVWVN)I _ {KLZ'Y _ng + qLny ?qu + ) |:¢T DMQS (DM¢)T%¢:| } - Oa

A e ;A
(D,G"™)* = gs {qLi?/YMQLi + aRi?’YMuRi + dRi?VMdRi} =0, (13)

summing over flavours ¢ = 1,2, 3, with

(D Woe)' = 0.W., — gersxW,/ W,

vo )

(DMGVU)a = aNGZU - gsfachZ vo * (14)
The equation of motion for the scalar field is
DyuD"¢ —m*¢ + N¢'0)¢ + Y erilry + Y (ric) ury + Vi driqry . (15)
and we will also use
D,D"$ —m*¢+ No'0)¢ + Y (Lrie) er; + Vi tpiqrs + Vi (qrie) dr; (16)

In the rest of this section we will use the dimension-four equations of motion for the in-
teracting SM fields to obtain relations among the effective operators. These equations
can be used to remove redundant operators even for off-shell external particles [12].
Although for definiteness we restrict ourselves to operators involving quarks, it is evi-
dent that the same arguments apply to the lepton sector where the fields have the same
isospin structure but are singlets under SU(3), and the equivalent leptonic operators
are redundant as well. In appendix [A] we provide examples showing that the rewriting
of contributions implied by the operator equalities give the same result in amplitude

calculations even with off-shell fermions and bosons.

2.1 Equalities for OqW, OqB, Oqu OZG and Osz

In Ref. [4] it was pointed out that O3, O} and O}% are redundant and can be written
in terms of other gauge-invariant operators. We extend this result to the non-diagonal
case i # j also including OéjG and OY.. The desired relations can be obtained by
writing all these operators as

0% = 3 [09 + (O] + 3[04 — (0] (17)



and relating each of the terms between brackets to other gauge invariant operators.
Note that for ¢+ = j the first term is hermitian while the second one is anti-hermitian.

For the first one we have

o Jr(Oézw)T = (quiv"m'qr;) (D"W,)",

(q
( )T - ( qr:7Y QL]>8 Buuu
Ol (O]ZB)Jr = ( Ri"Y U’Rj)a Buu>
+(05)" = (@A"az;) (D" Go)
OZ +(0e) = (arX*y"ury) (D'Gup)*, (18)

up to a total derivative. These sums can then be transformed using the gauge field
equations of motion. For the second term we make use of the operators involving dual

field strengths, which we define with an extra ¢ factor,

0% = "Dt q1;, W, O = iqL\"y" D" qr,; G,

pv puv
O' = iG17" D" q1; By Ojjé iR Ay D ug; GY,
Ojfé = 1upy' D" ur; B,y (19)

Their relation with the ones involving B, W, G¢,

1
Oq]ﬁ/ = 0 ]VV + QQLZO—“ T ZDQL] y,y 3
ij oL
OqJB = O+ §QL10“ iq1; B
0. — _ov _1g oM iPug; B
wB uB 9 Ri RjPuv
. 1
g ij
Oqé = O + 2QL2)\ at” ZMQLJ )
i i 1 a
O, = =0+ 2uRz)\ o iDur;Gy, (20)
can be trivially obtained from the equality |3]
- 1
F“”%Dﬂﬁi == <iF“y7uDu - §Fuyguu@) ¢i7 (21)

where the spinors ¢4 satisfy v = izﬂia The quark equations of motion can then

be used in the last terms in Eqs. (20). Moreover, using the Bianchi identities it can be

2In Refs. [8,9] relations equivalent to those in Eqs. (20) plus the hermitian conjugate are quoted but
without the 1/2 factors in the terms with the o#* matrices. In order to clarify this discrepancy, we have
confirmed Eqs. (20) with a direct calculation using the property o/ = —e**7Py5y,+ivHg" —iy" gh.
Notice also a different sign in Ref. [3] when writing Eq. (2I)).



easily seen that

O = (O)' =05 = (O)5)" = 0y — (O}35)" =0,
O~ (0,8)' =05 = (0,5)' =0,

up to total derivatives. Joining the two terms it is found that

ij

ij
O,

5]
OuB

tj
O

ij
OuG

1
4
9im b (A 1
Z(QL{Y qri)(@ryuT ak)
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/ /
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/
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A sum over k = 1,2, 3 is understood. The operators

OZ% = (qrio""dr;j) 9B ,
oo = ([@uiX'o" dg;) oGy,

appearing in the above equations do not contribute to top couplings.

2.2 Equalities for ODU, O%u, Ogd and O% p

u i i u j j 9 3i
[ i Oy + Y3 Odfiy — Yl (O)' =Yl (02'%)*} T [Ofﬁq .

(1,i5)

+==(Upi\"Y"uR;) (URE A"V uRE) + %(ﬂRMa’Y“URj)(JRk)\aWde)-

+ 0@ ]

)
u 9 [ i i g . 7
Vi Ol = Vi (O5)T| + % |08, + (05| = L (arerumy) (Euvutie)

(22)

+ o ]

(qrin*qri)(Grevpgrk)

(24)

In order to show that these operators are redundant, it is convenient to consider their
+ Ogu, 0%, + Og , and differences oY — Ogu, oY, — Og ,+ The sums can

sums O},



be written as

5o+ 0% = D,(qriug;)D"é = —qriur;D,D"¢
Op,+ 02, = D,(qridrj)D"¢ = —qridr;D,D". (25)

Using the scalar equations of motion it is found that these sums are equivalent to

0P, + 03, = —m’quiug;éd + 02, + Vi(qiury) [(Lre) eri]
+quzT(67LiURj)(ﬁRkQLz) + chf((YLiURj) [(CijE)Tde] ;

oY+ Ogd = —m’*qLidr;¢ + AO% + Y (Gridr;) (€rilrr) ,
+Y,5(Gridr;) [(Gree) um] + YN (Gridry) (drrqrr) (26)

summing over k, [, with

07, = (0'¢)qLiur;o,
O0f = (0'0)anidr;¢, (27)

and therefore redundant. Note that the rewritten terms on the right-hand side of these
equations do not contribute to the gauge boson vertices. This result is not surprising
since the contribution before rewriting is proportional to ¢* and vanishes if the gauge
boson is on-shell or coupling to masless external fermions.

In order to rewrite the differences O3, — O¥ and 0P, — 0%, we introduce the

Dd’
auxiliary operators
Du = ’L(CILZ ot DVuR]>
= i(Dyqri 0" ur;) D
d = i(qr; 0" Dydp;) u¢>
( ) D

= i(D,qr; o" dg; (28)

which are gauge invariant. Using the definition of the o matrices and {y*, 7"} = 2¢"*,

it is easy to see that these two sets of operators are related by

0B, = OF, —iqu" (iPug;) Dy d =0 —AOY,,
03, = —0p, + i(iDai)y"ur; D6 = —O'E'j +A0Y |
gd - Ogjd - igLiryM (ngR]> D/J ¢ = O AODd 5
O, = =05, +iiDqui)y"dn; Dy & = 0 £ AOY. (29)



Using the fermion equations of motion we can obtain after a little algebra that

ij 1 U 3,ki ki
803, = 5Vl (05 = (04)1] |
AOB, = =Y (04" + Y (05)"

| ) ,
iy dt (3,ik) (1,ik)
A0F, = SVt o%™ + 0l

2 Ik
A0 =Yool +vitol, (30)
with
Ofb]d = i(¢TDu¢) (CZRﬂude) . (31)

On the other hand, we have

Og]; + Olg; = iDy(CYLiU“”uRj)Du(B = —Z'CYLiU”VURjDuDu$>
O,Dzjd + OIDZJd — iDV(q_LZ,O-:U'Vde)DuQS = —iqLiUuydeDyDuqb . (32)

Since
I
. T
[D/mDu]¢ = g

5 Wiw®+i9'Y B, (33)

these sums can also be written in terms of already known operators,

0 0 = _Ioi 490
Du Du 4 uW 4 uB¢
'ij 'ij g Aij q
Opa+Opy = —30av — 7Oy (34)

Finally, using Eqs. (29), (30) and (34) we arrive at the desired result,

Of— 08, = ~20i, + L0, — Lyt [0S — ()]
+Y (05" = Vil (04"
ij ij g ~ij g 1 dt [ ~(3,ik) (1,ik)
Ofy— Oy = ~20ihy = L0us — 5V 05" + O™
~yidol —vitoly. (35)

This, together with Eqs. (26), shows that the four operators Ogu, Ogu, Ogd and Ogd

are redundant.
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3 General Wtb, Ztt, vtt and gtt interactions

We consider new physics contributions to the third generation interactions, which are
described by the dimension-six effective operators in Eqs. ([B]) and (@) with flavour in-
dices ¢ = j = 3. These contributions are collected in appendix Bl for complex coefficients
C,. Here we exclude from the analysis the redundant operators in these equations, in
the same way as many other possible redundant operators one may construct |3| are
ignored. Thus, we provide completely general expressions for the Witb, Ztt, vtt and gtt
vertices for off-shell fermions and bosons which also involve a minimal set of couplings.
We remark that the expressions presented here do not make any assumption about
quark masses and mixings. (In fact, the operator equalities in the previous section
involve arbitrary Yukawa matrices, with arbitrary masses and mixings.) Moreover, we
take into account all contributing operators independently of whether they also give
corrections to the Zbb verte, which is very constrained by present experimental data,
or not. Cancellations among effective operator contributions are possible and occur in
minimal SM extensions [13] as we will show later in more detail. (The same remarks
apply to the results in the next section.) We finally show that anomalous coupling

measurements might be used to determine effective operator coefficients.

3.1 Wtb vertex

The effective Witb vertex including SM contributions and those from dimension-six

operators can be parameterised as

g 3 _
L = ——=by" (VL P, + VgrPr)t W
Wtb \/§V(LL RR) u

g BZ.U“VQV
V2 My

The mass scale normalising the ¢#”q, term has been taken as My, because this choice

(9r.PL + grPr)t W, + H.c.. (36)

considerably simplifies the algebraic expressions of observables calculated from this
vertex [14]. Additionally, with this normalisation the relation between g1, gr and
effective operator coefficients is simpler and involves the ratio of scales v? /A% Within
the SM, V;, equals the Cabibbo-Kobayaski-Maskawa matrix element Vy, ~ 1, while the

rest of couplings Vg, gr and ggr vanish at the tree level. The contributions to these

11



couplings from the operators in Eqs. (B areH

02
(3,33)% *
oV = C¢q A2 ) ng A2’
33 v? 33 v?
SV c¢¢ AT Ogr = V2015 - (37)

After removing redundant operators the structure of the Lagrangian in Eq. (36) is
rather simple. All the new physics effects on the Wtb vertex can be described by four

parameters, which have a direct connection with effective operator coefficients.

3.2 Jit vertex

We parameterise the Ztt vertex including the SM contributions as well as those from

dimension-six effective operators as

Low = —5— f Iy" (XEP, + X[EPr — 25%,Q0) t Z,
W
g ;w0"q o,
~Z g dZ 4 id%~:)t Z 38
QCW MZ ( \%4 +1 A’y5> W ( )

with QQ; = 2/3 the top quark electric charge. The mass scale for the o/ g, term is taken
as My in analogy with the Wtb vertex but, on the other hand, we have parameterised
this coupling in terms of the vector and axial parts. The former is real while the
latter is purely imaginary and CP-violating. They are the weak analogous to the top
quark magnetic and electric dipole moment, respectively (see next subsection), up to
normalisation. Within the SM, these couplings take the values X} = 2T3(t;) = 1,
X[ =2Ty(tg) = 0, where T3 denotes the third isospin component, and d2 = d% = 0
at the tree level. The contributions from dimension-six operators are
5XY = Re [0(3 - i) X—Z 5d% = V2Re [ew 8y — s, AZ ,
2 02

SXE = —Re 032 5d% = V2Im [ewC, — sy C

¢uA2 ) qub] A2 (39)

At this point it is worthwhile to discuss the relation between the Ztt and Zbb vertices,
the latter very constrained by LEP data. Some authors drop from their analyses the

operators qu) and Ogiz) for this reason, because they give contributions

2

3,33) (1,33)] v
6Xf = Re |[C* + L% . (40)
However, cancellations are possible and take place in minimal models. For example,
in a SM extension with a Q = 2/3 singlet we have 0(3 ) = (1 59) [13], so that

3Notice a typo in Egs. (8) of Ref. [5], where a minus sign should multiply O, .

12



the contribution to the Zbb vertex identically cancels but there can be deviations in
the Ztt interaction. One can still wonder about the corrections to the Wtb vertex
from Og;’g?’), which may affect low-energy B physics [15]. However, in this particular
model additional contributions can (at least partly) make up for the difference as it
has been shown with a global analysis of precision electroweak data and low energy
constraints from B and K physics [16]. The reason behind the (partial) cancella-
tion among new physics contributions in this simple, particular model is precisely the
Glashow-Iliopoulos-Maiani (GIM) mechanism [17].

3.3 ~tt vertex

The ~tt vertex including the SM coupling (given by the top electric charge @) and

contributions from dimension-six effective operators can be parameterised as

_ _iotvg,
Loy =—eQit 't A, — et q

() +idys) t A, . (41)

my
The couplings d|,, d); are real and related to the top quark magnetic and electric dipole

moment, respectively, by a multiplicative factor, and the latter is CP-violating. For

this interaction we have

vy
Az
V2 vy

We note that the +* term does not receive corrections from dimension-six operators

2
(Sd;{/ = % Re [ch3%¢ + SWCS?/V}

(this also applies to the gtt, ytu/vytc and gtu/gtc vertices). If we had included the redun-
dant operators Og, Oyp and O,p, the first two would yield corrections ~ qQELy"tLAu
and the latter ~ ¢*tgry*tpA,, non-vanishing only when the photon is off-shell. The
operator rewriting in Eqs. (23] eliminates such terms, so that corrections to the elec-
tromagnetic coupling are absent even for off-shell photons. In particular, as dictated
by Eqgs. ([23) the contribution to the amplitudes of a ¢>--dependent v* term can be re-
produced by a constant v* term (proportional to the square of the gauge boson mass)

plus four-fermion interactions. An explicit example can be found in appendix [Al

3.4 gtt vertex

This vertex, including the SM contribution, is written as

_A? _1oMq,
Lot = —gst —"t G — gt \°
gtt g B Y w9 .y

(dy, +idyys)t G, (43)
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The couplings df,, d’ are real and related to the top chromomagnetic and chromoelec-
tric dipole moments, respectively. They vanish in the SM at the tree level. The new

physics contributions from effective operators are

V2

Vg
oy, = sRecgg¢—A2,
2
o, = Ve, (44)

As in the case of the photon, the v* term does not include corrections from dimension-

six operators.

3.5 Determination of effective operator coefficients

One may finally wonder whether hypothetical measurements of these anomalous cou-
plings might provide any insight on the effective operators generating them. The
answer is affirmative, since there are 12 anomalous couplings and only 8 operator co-
efficients. (Notice, however, that some of the anomalous couplings correspond to the
real or imaginary parts of an effective operator coefficient or combination of them.)
The measurement of Wtb anomalous couplings would translate into a measurement of
C3P, 0% O3, and C33,. In the Ztt vertex, the anomalous contributions to X% and
X ¥ would then determine the real parts of C’é;’gg) and C32. From df; and dj, the real
parts of C3 and C5%, might be obtained, while from d% and d)) one would obtain
the imaginary parts. In the gluon vertex, df, and d determine the real and imaginary
parts, respectively, of ng¢. The only coefficient for which two independent determina-
tions are possible is C25,, which could be obtained from gr and also from the combined
measurements of d, d}, (the real part) and d%, d); (the imaginary part). Of course,
this is a tremendously optimistic picture, since obtaining these measurements in a real
detector is very challenging (see for instance Ref. [18]|) and finding some evidence of

physics beyond the SM would already be very positive.

4 General top flavour-changing interactions

In this section we collect the general Lagrangians for Ztc, ytc and gtc interactions
with off-shell ¢, ¢ quarks and gauge bosons, and the relation between the respective
terms and coefficients of dimension-six gauge-invariant operators. For Ztu, vytu and
gtu vertices the Lagrangian structure is the same and the coefficients are obtained by
replacing the generation index (2 — 1). The contributions of all operators are collected
in appendix

14



4.1 Zic vertex

This interaction, as the remaining flavour-changing ones, vanishes in the SM at the
tree level due to the GIM mechanism. The contributions from dimension-six operators
can be parameterised with the Lagrangian
g _
Lze = —ECVM (XGPL+ XSG PR)t Z,
g _10"q,

2CWC MZ

including only v* and ¢#”q, terms and involving four anomalous couplings whose con-

(kb PL+ kEPR)t Z, + Hec., (45)

tributions from effective operators read

1 v?
L_ (3,23) (3,32)% (1,23) (1,32)
0X et = 2 [Cqﬁtz t 0 — G — G ] A2
5XR _ 1 023 032* U2
ct — _5 [ U + U } F7
2
onty = V2 [ew Ol — swCigy] 15
2
Sk = V2 [ewCZy — swC,] % . (46)

A few comments are now in order. The Lagrangian in Eq. (@3] for Ztc interactions
involves all contributing dimension-six effective operators, including qu’ij ) and O((;q’ij )
that were discarded in Refs. [10,11]| because cancellations were banned there. These
cancellations naturally happen in some SM extensions, for example with an extra
Q) = 2/3 quark singlet (see the discussion in section and Refs. [13,16]). Hence,
this simplification does not have a solid phenomenological basis and turns out to be
restrictive. We also observe that, although there are several possible contributing op-
erators, the number of relevant parameters necessary to describe the Ztc interaction
is only four instead of seven as considered before [10,11]. We also emphasise that
these parameters are independent, as we will observe by comparing with the results
in the next subsection. We finally remark that a Lagrangian equivalent to the one in
Eq. (@3) has been used for previous phenomenological analyses [19,20]. The results
presented here show that those analyses are completely general also if regarded from

the framework of dimension-six gauge-invariant effective operators.

4.2 ~ic vertex

The ~tc vertex arising from dimension-six effective operators can be parameterised in
full generality as

_10"q,
L. = —ec

(AoPL+MEPR)t A, + Hee., (47)

my
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where

V2 N L7 om
\/§ vm
ONE = — [swCZy + ewC2,] A—; (48)

This Lagrangian is completely general but only involves two independent parameters
instead of the four ones considered in Refs. [10,11]. As we have anticipated, these
parameters are independent from the corresponding ones involving a Ztc interaction.
(For example, a combination of operators with C3%, = — tan 6y Cyj, does not con-
tribute to A% but contributes to x%.) An equivalent Lagrangian has been used in
previous phenomenological analyses [19,20| which are completely general, as we have

shown here.

4.3 gtc vertex

Finally, the gtc vertex arising from dimension-six effective operators is written as

woh’q,

Egtc - _gsé A m, (gcl{tPL + <§PR) t GZ ) (49)
where the contributions to the two relevant couplings ¢%, ¢ are
5 L _ £032* vmy
ct Js uGo A2 ’
\/§ vy
i = —Cly—5 - 50
ct s uGo A2 ( )

This parameterisation seems more convenient that other ones [21] because the rewriting
of Oy¢ and O, eliminates quartic terms which otherwise would have to be included
in amplitude calculations. Of course, the physical results are independent of the pa-
rameterisation but the effort needed for computations may be reduced if an adequate

parameter set is chosen.

4.4 Determination of effective operator coefficients

A hypothetical measurement of FCN couplings might eventually be used to determine
effective operator coefficients but not completely, because there are 8 anomalous cou-
plings involved in the vertices and 9 effective operator coefficients. Let us focus on
top-charm interactions for definiteness. The simultaneous measurement of k% and \L

would determine Cf, and C3,, while £ and AJ would do the same for C2}, and
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Crh,y- From the gluon couplings, C3%, and C3%, might be obtained. On the other
hand, the various coefficients appearing in X~ and X% cannot be disentangled using
only measurements of FCN couplings. As we have pointed out, the FCN anomalous
couplings are all independent, although they could be related to anomalous couplings

appearing in the Wtd and Wts vertices, which are not addressed here.

5 Summary

New physics at a higher scale can be described within the framework of gauge-invariant
effective operators which result after integrating the heavy degrees of freedom. These
operators can induce corrections to SM couplings and, in particular, may originate
anomalous couplings of the top quark to the gauge bosons. The large number and
variety of dimension-six gauge-invariant effective operators |3] leads to the apperance
of many possible Lorentz structures for the top trilinear vertices involving a large

number of parameters.

In this work we have used the equations of motion to remove redundant opera-
tors, arriving at the gratifying conclusion that all effective operator contributions to
the trilinear V' f; f; vertices involving a W or Z boson, a photon or a gluon, can be
parameterised in full generality using only v* and o"q, terms, with ¢ = p; — p;. This
result, which is well-known for an on-shell boson V' and on-shell fermions f;, f;, is also
valid if they are off-shell due to the gauge structure of the theory, i.e. the fact that
gauge-invariant effective operators include not only V f; f; vertices but also other ones
as for example gV f; f; and four-fermion interactions. In this way, phenomenological
analyses involving anomalous couplings can be considerably simplified. Compared to
previous literature, we find that new physics contributions to top interactions can be
described with a smaller number of parameters and a simpler Lorentz structure. The
reduction in the number of effective operator coefficients can be read in Table [ for
each of the couplings studied. The number of anomalous couplings involved in the ver-
tices is included as well. Note that some of the anomalous couplings are real or purely
imaginary by definition. For example, in the gtt vertex the two anomalous couplings

involve the real and imaginary part of the coefficient C32,.

A second important point which must be noted is that in most cases the relation
between anomalous couplings and effective operator coefficients is direct, for example
in the Wtb vertex. This would allow for the determination of effective operator coef-
ficients if these anomalous couplings were measured at LHC [5]. In some other cases

effective operator coefficients can be determined by simultaneous measurements of two
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Wtb Ztt ~tt gtt Ztu/c ~tu/c gtu/c
C? 9 10 5 3 20 10 6

C, 4 Y 2 1 10 4 2
Nmin 4 4 2 2 4 2 2

Table 1: For each interaction: number of effective operator coefficients C°, C, con-
tributing to the trilinear vertex before and after removing redundant operators; number

of anomalous couplings N,,;, necessary to describe the vertex.

anomalous couplings, e.g. involving the Z boson and the photon couplings. Moreover,
if all anomalous couplings in the Wb, Ztt and ~ytt vertices might be determined (which
is an extremely optimistic assumption) a consistency check could be performed by com-
paring the determination of C%}, from the Wb coupling gr and from the simultaneous
measurement of the Ztt couplings dZ, d4 and ~tt couplings d{,, ;. Analogous tests are
not possible in FCN interactions where all anomalous couplings involve independent
combinations of operator coefficients, but could be possible if anomalous Wtd and Wts

interactions were included.

Working within the framework of gauge-invariant effective operators, phenomeno-
logical studies of the influence of top anomalous couplings can be carried out using
the simple Lagrangians given in sections Bl and @ (This is valid for any other fermion,
since the results are general.) Of course, in a given process there may be further contri-
butions to the amplitudes apart from those originating from trilinear vertices, related
by gauge symmetry. But in this respect the operator rewriting performed also proves
to be very useful. The redundant operators removed include associated interactions,
for example gZtc and gvytc vertices, which should otherwise be taken into account in
amplitude calculations. After rewriting these operators and showing that they are re-
dundant, not only the extra terms in the vertex are unnecessary but also the quartic
interactions. This fact greatly simplifies the theoretical setup and the development of

Monte Carlo generators involving top anomalous couplings.
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A Gauge symmetry and amplitude calculations

For a better understanding of the results obtained, we show in this appendix how the
relations among operators obtained actually translate into the rewriting of the vertices,
and why this rewriting gives the same result in amplitude calculations. For simplicity
we restrict ourselves to charged current Wtb interactions and study the implications
for two single top processes in hadron collisions: s-channel production ud — tb and
tW~ associated production, gb — tW~, depicted in Fig.[Il Analogous results hold for
the rest of operators and other processes, as it is expected, once that all contributions

from gauge invariant operators are included.

U b b w b W
w b
t
d t q 4 q t

Figure 1: Left: Feynman diagram for single top production in the ud — tb process.

Center, right: diagrams contributing to gb — tW ™.

We begin with the operator 02‘3,[,, whose contribution to these two processes is given
by the Wtb and gWtb vertices,

ong’I?jV + oz*(Og’I?jV)T S5 —V2Rea ¢ byt W,
+iv2Im [BL(qk“ —k-qy")tr

a

s A 14 v a -
+2gstL7(7“pW —pw g )Gy | W, + H.c. (51)

where ¢ = p; — pp and py is the outgoing W boson momentum, which are equal in
the triple vertex. On the other hand, using Eqs. ([23)) to write O;’%V in terms of other

operators, the relevant contributions are Wtb vertices and a four-fermion interaction,

O‘OSI?;V + Q*(OS%)T D) —\/§ Rea M‘%V l_)L’)/‘utL WM_ — %([_)L’y‘utL)(ﬁL’}/“dL) + ...
iv2Ima bic* q,(m,Pr — myPp) t W, +Hec. (52)

This rewriting gives the same results in amplitude calculations even for off-shell fermions
or bosons. In the s-channel process, the ¢t and b quarks involved in the Wtb vertex are

on-shell but the W boson is not. The non-trivial substitution is in this case

9

q*brytty W — My, byt W, — \/i(bw“tL)(ﬂL%dL) (53)
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As we will find with the explicit calculation below, the resulting amplitude is the same
if we use (i) the ¢®b.+"t; interaction on the left-hand side of this equation, or (ii) the
M2:b;y"t;, term on the right-hand side plus the four-fermion contribution. In tW~
associated production the W boson is on-shell but the top and bottom quarks are not.

For this process, the non-trivial substitution is

a

_ A
buldk” — k- a 7"t + 295t o (v"pw — Pw g™ )b G| W,

— bio™ q,(myPr —myPL) t W, (54)

which gives the same result for the gb — tW~ amplitude once that the contribution
of the Wtb vertex to both diagrams and the new diagram involving the quartic vertex,
which is only present before the rewriting, are summed. The same reckoning obviously
applies to the Z boson, the photon and the gluon, namely the operators Oé{B, Offé,
O and O, Note that for this latter case a different approach has been taken
in Ref. [21] and subsequent works, doing the opposite replacement to Eq. (B4). We
find that performing the substitutions as suggested here has the added advantage of

removing quartic interactions from the analysis.

" o ij TR ij
For the rewriting of the combinations Op, — O , Op; — Op, the arguments are

analogous. The operator equalities imply for these processes the replacements
[bLk!tr — gsbL N g trGL) W, — brio™ q,tr + mibpy"tp + mybry*ts,
[tLk"br — gt L A"g" DRGLI WS —  —trio™ q,br + myty"br + mitry"br , (55)

which give the same result in amplitude calculations [5]. Notice that the trilinear term
substitutions in these equations exactly correspond to the Gordon identities that can
be applied for on-shell fermions. In the off-shell case, e.g. in tW~ production, the
trilinear terms in both sides are not equal but their difference is compensated precisely
by the gWtb quartic vertex, which is not present on the right-hand side. Besides,
it must be remarked that the rewritten expressions bring the advantage of not only
removing the k* terms from the effective Wtb vertex, but also the associated quartic

gWtb interactions which otherwise should be included in some of the amplitudes.

In the following we carry out the amplitude calculations to check that the replace-
ments in Eqs. (53), (54) give the same results in ud — tb and gb — tW~. The same
has been done in Ref. [5] for the replacements in Eqgs. (53).

A.1 Amplitude for ud — tb

We denote by pi, pa, p3 and ps the momenta of the u, d, t and b quarks, respectively.
Using the Wtb interaction on the left-hand side of Eq. (B3) and the standard Wud
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vertex, the amplitude reads

2
q _ _
My =—g—F—75 e u(p3)y" PLv(pa) v(p2)yuPru(pr) (56)
9 — Mw
while using the Wtb interaction on the right-hand side the amplitude is

2
My = —927%@(113)7”%”@4) v(p2)yuPru(pr) - (57)
q* — My

The amplitude corresponding to the four-fermion interaction is

Mz = —gu(ps)y" PLo(ps) 0(p2)v, Pru(p:) (58)

so that it is evident that M; = My + M3, as it should be.

A.2 Amplitude for gb — tW~

Checking that the substitution in Eq. (54) gives the same result in the gb — W~
amplitude is algebraically much more involved. The computations can be considerably
simplified if we define an “off-shell” operator subtracting the trilinear terms in this

equation,
O3 = [b(¢k" — k - q7") Pt — bio™ q,(mePr — my PL)t] W, + H.c. (59)

Then, to prove the validity of substitution in Eq. (54)) we only have to show that the
contribution of O3 plus the quartic term identically vanish. Using the anticommutation
relation for v matrices and the definition of ¢, O3 can be written in a much more

convenient form,
O3 = [by"(myPp —myPr)(#—my)t — b(ihy—mp)y" (my P — my Pr)t| W,
+ [Bk:”PR(ﬂt—mt)t — B(ﬁb—mb)k‘”PLt] W,
+ [~y PL(p} — mi)t + b(py — mi)y" Put] W, + H.c. (60)
This expression makes it apparent that Oz vanishes for both ¢, b on-shell.

We denote by pi, ps, p3 and py the momenta of the gluon, b, ¢t and W~ boson,
respectively. We use superscripts a, b, ¢ to label the contributions to the amplitudes of
the three terms in Eq. (60), in the order shown, and subscripts 1, 2 corresponding to the
s- and t-channel diagrams. After trivial simplifications using (y—m)(g+m) = p? —m?,

the first term gives

My = _%a(Ps))\av’WV(thL —myPrlu(pz) x ¢,
Ms = _%a(ps)kav”’y“(thL — mypPrlu(pz) X £, (61)
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where ¢ stands for the product of polarisation vectors €7,(pa)e,(p1). The sum of both
diagrams is
Tho = —gsu(p3) A g"" (my P, — myPr)u(ps) X €. (62)

The second term gives

M = %ﬂ(ps)ka(ps + p3)"y" Pru(pz) X €,
My = Lalpa)X"(pz + po) s Pru(ps) x . (63)

where ps = p1 + po and pg = p3 — p1 are the momenta of the internal b, t quarks in the

s- and t-channel diagrams, respectively. The sum of both is
M3y = goa(ps) AN piy” Pru(ps) X €. (64)

The third term yields the contributions

M7 = _%E(P:a))\a [Pry" (pe+mp)y” + 9" p1y" Pr]u(pz) x €,
M5 = %ﬁ(pg)xl " (s +me)y" P — v pry* Prlu(ps) x €. (65)

Using the v anticommutation relations and the Dirac equation for external fermions,
the sum of both is

o = —gsu(ps) NPy Pru(ps) X € — gsu(ps) A"y py Pru(ps) X €
+g5u(p3) A Ph g" Pru(ps) X €. (66)

Notice that the first of these terms already cancels M} ,. Finally, the contribution of
the quartic gWWtb coupling is

Mz = —ga(ps) N\ g"" Pru(pz) X € + gsu(ps)\* (my P — my Pr)g" u(ps) x €
+gsu(p3) Nyl Pru(ps) X €. (67)
The sum
T+ M+ MS,+ M3 =0 (68)

vanishes, as expected.
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B Operator contributions to Wtb, Ztt, vtt and gtt

We collect here the contribution to the effective Wtb, Ztt, vtt and gtt vertices of the
operators in Egs. (B]), (), including also those from the operators which are redundant.
We also collect the contributions to the associated gWtb, gZtt, gytt and ggtt quartic
couplings. We use the shorthand a, = C,/A? and drop the indices in the o constants.
Our expressions coincide with those in Refs. [8,9] except for sign differences originating
from the different definitions of the covariant derivative and the Z field, and also
coincide with Ref. [22]. For the Wb interaction we have
2 2
CXOS;’%) +a (08N o —aﬂva“bLW: —a*ﬂl;L'y”tLWM_,

" ¥ V2

2 2
v - v -
f D) —Oég—tR’}/ubRW:—Oé*g—bR’}/utRW/:,

2v/2 2v/2

a0, + o (O}

*

f D) OéUBLO'MVtRW + o UtRO'quLWJ;,
O3y + « T D awt o™ brWE + a*vbrat t LW,

)
Oy + a*(Ogy)
w)

Du +aF 03D3 )T D) a%i@La”tRWM_ — a*%i@“beLW:,
)
)
o)

(O,
(04

0;’33“ + o* 033

T 9Y - ouz — «9U .+ +
Pu D) a;z@”bLtRWM -« ?ztRa”bLWu ,
t gu - + «9U .7 _

D) agthﬁ"bRWM -« ?zﬁubRtLWu ,

d+a*

(

(
Opy + a*(Opy

(OB D a%i@“beRW: - a*?viBRa”tLW_

(

a03W +a*(03)1 o> V2 [Rea " (bry*tr) +iIma BL’)/”WtL] W,
_ _ <
+V3 [Rea & (1190, + iTma 9" 9 by | Wi, . (69)
Associated quartic gWtb terms arise only from the redundant operators:

sU 7 a _uv — * T a v a
a0 +a*(08)1 > —994 (@b Xg" tr W + a*EpAg™ b, W] G2,

aOF, +a*(0B)" > FE [abX'gta W, +a'TaX'g" b, W] G5,

a0%, +a* (0% > —gis“ [T X g br W + a"BrXg"t, W] G2,

ggsv I \a, uv *7 a  puv — a
aO% +a*(0E) > T [t A" g b W,T + a*brA“g"t, W, | G,

aO%y, + (05T D —V2Ima g, [bLA Y g Tt LW, + X Y g7 b W] G2 (70)
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The contributions from effective operators to the effective Ztt vertex are

2
3,33 " 3,33 guT -
aOéq ) +« (Oéq ))T O —Re«a EtL’yutLZM s

2
(O —
040(55233) + Oé*(Oézgg’))T D Rea —égCWtL’}/utLZH,
2
a0 + (Oii)T O Rea %th“tRZM,

QO3 +a* (OB D LCW Rea to"'t + iIlma to"y5t] Z,

V2

a0, + a*(03%,)T D —%SW [Rea to"t +ilma to" st Z,
gu

2\/§CW
gu

2\/_CW

aO3W + (Og’%V)T O cw [Rea O (tpy'ty) +ilma tLy“a”tL] s

OéODu + « (O?u)T D) [Oé ifLa“tR — Oé*iauthL] Z‘u ,

OéO%))u + Oé*(O?)D3u)T D) [Oé i@“thR — oz*ifRﬁ“tL] A
aO3B +a (Og%)T D —sw [Rea O (tryty) + i Ima tpy* 0" tL} Zy s
0¥ + o (Ofﬁg)T D —sw [Rea O (tpy'tg) + i Im « va“WtR] Zy . (71)

Among these operators, the contributions to the gZtt vertex are only from the redun-

dant ones,

aO¥ +a* (OB o> — 9950 [Rea tA%g"t + i Im o tAg" st G3 Z,,

4\/§CW

9958 [Rea tA\*g"t + i Ima tA*g" vt G5 Z

4\/§CW

)

O3W + ( )T O —Imagsewt N gt GAZ,, ,
%)
)

a0 + (0B >

aO?’B +a ( T 5 Imagsswi Ay gt GSZyy
03 +a* (0¥ o Imagswip)\ V9" tr G2, . (72)
The operators contributing to the ~tt vertex are

03, +a* (0B O —=sw [Reato"t+ilma to" yst] A,

@Q‘c
)

a0, + o (03,1 O —=aw [Rea tot + ilma to" y5t] A

S

a03W + (OZ’%V)T D Sy _Rea O (tpy*tr) + i Ima va“WtL] A

33 33\t [ V(T . Iy u<_y>
OB—FO{ (OqB> D Cw Rea 0 (tL’)/ tL)+ZImoth7 0 tL Auy,

a0% 1+ 0" (03) 5 e [Rea 8 (Fgytr) +ilma foa_%R] Aw.  (73)
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The associated gvtt quartic vertices are

a0, +a*(OX)T O —Imageswi A 9"t GEA,,
03B + o 2139)T D —Ima QSCWEL)\a’yugVUtL GZ'AMV )

(O
a0 +a* (037 O —ImageewtpA*y' g 7tr GEA,, . (74)
Finally, the contributions to the gtt interaction are

a0, + (0351 D = [Re a tA0"t + i Im o tA o™ vst] G

V2 .
a0, +a*(03)" > [Reoz O (tLN"Ytr) 4+ i Ilm o fLXW“WtL} G

pv

33 33\t V(E \G W . r \a ;,L<_l/> a
aO,n+a"(0,5)" D [Rea@ (trA"YMtRr) +ilma tpAY O tr| G}, . (75)

The two redundant operators include several associated quartic vertices with extra W,
Z, v bosons as the ones listed above, as well as new ones with an extra gluon. They
are
e n a vo - a vo a
aO%, + a* (03T > 5y [Reav £ [A* N]y* g7ty 4+ i Ima tL{A", N} g" 7t ] GLGS,
—V2¢gIma [EL)\av”g””bLW; + BL)\av“g””tLW(;} G,
—ifflm at N y'g" 7t Z,GY,
—2Qte Ima tp N\ g 7t A, G s
0%, +a* (0¥ D 15 [Re v Tp[A, M)y g 7 tg + i lma tr{\*, N g"tg] GLGE,
—iff Im o tpA" V9" trZ, G},
—2Qte Im o tpA " 9" tr A G, | (76)

with fL'=1-4/3s%,, fB=—-4/3s%, Q, =2/3.

C Operator contributions to top FCN interactions

In this appendix we give the effective operator contributions to top FCN interactions,
also including those operators which are redundant. Contributions for top-charm cou-
plings arise from both combinations i, 7 = 2,3/3, 2, while for top-up they are obtained
setting 4,7 = 1,3/3, 1. Notice that for i = j = 3 we can recover the results for Ztt and
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~tt trivially. The Ztu, Ztc vertices are

U2

aOS + o (OS5 —Z— [aay u; + o Gy us)

4CW

gv*

onfplq’ij) + a*(OéZij))T D —laupyMur; + o ugiy unil 2,

2CW

gv*

on;ju + Oé*(Oés{L)T D = laurMur + " Uiy uril Z,

4CW
(%

ij * i = v * = v
a0y, + a*( UW)T D —=cw [atrio"ug; + o Urjo" ur] Zy

V2

(%

OéOZJBzz) + Oé*(OZJB(z))T D ——=Sw [Oé HLZ-U“”uRj + a* ﬁRquyuLi] Z;w )

V2

gu

2\/§CW

gu

2\/§CW

a0}, +a”(03,)" >

a0 +a* (0% ) >

aO;Jf/V + CY*(OZ]I‘/V)T D cw [aury*0ur; + o 0 ury gl
aOZB + Oé*(OéZB)T D —swlatuyy"0"ur; +a* 0"ty url

OéOZjB + Oz*(Oéjé)T D —swlaupy"0"ur; + o 0"uriy uRi]

The associated quartic couplings with an extra gluon are

9gsv

_4\/§CW

9gsv

4\/§CW

gsCw

aO0p, +a*(03)" D

aOgu + a*(Ogu)T D

0Oy + o (04y)1 > i

i * ] -gsSW
a0 + o (07" D —i

a0, + " (0F) 5 —i

For the ~ytu, vtc vertices the corresponding contributions are

a0’ + o (0% )T > —
v

O‘O:ZB¢ + a*(OfLJB¢)T D —=cw (oo™ ugj + o Upjotur| A,

V2

OéO;]VV + Oé*(O;]W-)T D Sw [Oé ﬁLw“ﬁ”uLj +a* ayaLj’YuuLi] A,uu )
OéO;]B + Oé*( ;]B)T D Cw [Oé ﬁLw”(‘?”uLj +a* ayaLj’VuuLi] A,uu )

aOfﬂB + 04*(02]]'3)T D cw [aupy0"urj + o 0"y uRi| A,
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it 0"up; — o ot ugjur) 2, ,

laid"urup; — o iurj0*ur) 2, ,

[Oé HLi)\ag””uRj + o HRj)\ag“”uLi] G¢
[ uri\*g" ur; + o uri\"g" uri) Gy, Z,,
[t Ny 9" ur; — a U Ny 9" ] Go Zuw

[t N 9" ur; — &t U Ny 9" ] Go Zuw

— v * — v
sw a0 ug; + o urjour) A,

(77)

S — a vo * — a vo a
W [QUp A"V " uR; — o g\ V9" ur) G2, . (78)

(79)



whereas the associated gvytu, gytc couplings are

ij ij .GsSW — a * — a vo a
a0 g o’ (Oq]W)T DI 5 QU N Yur; — & up ;AN 9" ur] GeA,,

ij ij .gsCw — a * — a vo a
a0 op T’ (OqJB)T DI 5 QU N Yur; — @ up ;AN g u] Ge A,

a0 4+ a*(07)1 o igsgw [Qup N Y ur; — U AV g uR] Go A, . (80)
The gtu and gtc vertices can be obtained from the operators

v

1] i v — a __uv * — a __uv a
a0 G¢+a (OUJG¢)T D) ﬁ [OKULZ‘)\ ot URj + UR]')\ ot uLi] GM

OZG +« (O;@)T D [aupA* 0 ur; + a0 upi A"y up] G

v

@O, + (09 )T D [ir A0 up; + a0 Ur; Ay uR] G (81)

The last two also include the associated quartic vertices
i i e — a a vo a
a0" oo (Oq]G)T D) Y [auLi)\ Nyt g o ur; — a* i A" A ytg uLi] GZGW
+i% [t NV g"7d; — o up; Ny g d ] W;GZV

+i [adp Xy g ur; — o digXyg ur] Wy G,

V2

+iifuL [at Ny " ur; — & up N9 u) Z,GS,
QCW a
+iQe [t N Y g ur; — & up A g ) A oGl s
OZG+0z (Offé)T D z% [ozﬂRi)\“)\bv 9" ug; — @ UR NN Y g up }GbG“
+i%f§ [QUri A"V 9" uR; — Q" Urg A"V 9" uRi| Z.G},
w
+iQre [QUuri A"V 9" ur; — o Ur A"V 9" ur] A.GY, . (82)

with fLr=1—4/3s%, fF=—4/3s%, Q= 2/3.
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