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Abstract

We write down a minimal basis for dimension-six gauge-invariant four-fermion
operators, with some operator replacements with respect to previous ones which
make it simpler for calculations. Using this basis we classify all four-fermion op-
erator contributions involving one or two top quarks. Taking into account the
different fermion chiralities, possible colour contractions and independent flavour
combinations, a total number of 572 gauge-invariant operators are involved. We
apply this to calculate all three-body top decay widths ¢ — dkuﬂj, t— dkefuj,
t — upuity, t — ukeje;, t — uvjv; (with 4, j, k generation indices) mediated by
dimension-six four-fermion operators, including the interference with the Stan-
dard Model amplitudes when present. All single top production cross sections in
pp, pp and eTe” collisions are calculated as well, namely w;dj, — d;t, cfjdk — u,t,
uiczj — dit, uul — w;t, uii; — ugt, e"e” — Ut and the charge conjugate
processes. We also compute all top pair production cross sections, w;u; — tt,
ciidj — tt, uju; — tt and ete” — tf. Our results are completely general, without

assuming any particular relation among effective operator coefficients.

1 Introduction

Indirect searches for physics at scales not directly accessible have proved to be fruitful in
the past as, for instance, the successful prediction of the top quark mass from radiative
corrections has shown. Above the electroweak symmetry breaking scale, new physics
not directly observed can be probed by parameterising its effects in terms of an effective
Lagrangian involving only the Standard Model (SM) fields and invariant under the SM
gauge symmetry SU(3). x SU(2), x U(1)y [1H3],

Cy
geH:ZFOﬂu..., (1)

where O, are dimension-six gauge-invariant operators, A is the new physics scale and C,,
are complex constants. Effects of dimension-eight and higher-order operators are sup-

pressed by at least 1/A?, and are ignored in this work. Dimension-six gauge-invariant
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operators were classified in Refs. [3/[4], totalling 81 operators up to (many combi-
nations of) flavour indices. Later, several of these operators have been found to be

redundant [51/6] and the original list has been significantly reduced.

For top physics, the most relevant dimension-six operators are (i) those yielding
top tri-linear couplings with a W, Z, photon, gluon or Higgs boson; (ii) four-fermion
ones. The former have been classified in Refs. [6] and a minimal set of top anomalous
couplings has been obtained by dropping redundant operators. For the latter, the aim
of this paper is precisely to perform such a classification, concentrating on the operators
involving one or two top quarks. These operators can mediate top three-body decays,
single top production in association with a light quark and top pair production. They
will therefore be probed with a high precision at the Large Hadron Collider (LHC),
which is expected to produce top quarks copiously. The phenomenology of top-gauge
boson operators using a minimal basis has been investigated in detail in Refs. [7,].

For four-fermion operators, there is yet a wide field to be explored.

We will begin our task by writing down a new, completely general, basis for
dimension-six four-fermion operators. We will prove that it is equivalent to previ-
ous ones [34] with some redundant operators dropped and few operator replacements
which make our basis more “symmetric”. We will find some advantages when using
it. First, amplitude calculations are more straightforward, as the colour and isospin
structures at the operator level are simpler. Secondly, the results obtained for many
observables of interest (as for instance cross sections and decay widths) are very simple
in this basis due to its symmetry, and interferences between operators and also with
SM contributions are trivial in most cases. For specific processes a different, particular
operator selection may reduce further the interferences and give slightly more compact
expressions but, in general, the expressions obtained in our basis are quite simple,
given the large number of parameters involved. And, in any case, expressions for ob-
servables in terms of a different operator set are straightforward to obtain, as we will

occassionally do in order to compare with previous literature.

After introducing our basis we will classify all four-fermion operators which give
contributions to the effective Lagrangian involving one or two top quarks. Taking into
account the different fermion chiralities, colour contractions and independent flavour
combinations, a total number of 572 gauge-invariant operators are involved. But re-
markably, all the contributions to the Lagrangian we are interested in can be neatly
summarised in few tables of easy reading, which we expect will be useful for future
four-fermion operator studies, at the very least for bookkeeping purposes. This classi-
fication allows to easily find out which gauge-invariant operators generate four-fermion

terms with one top quark, with two top quarks, or both, and the relations between



these contributions implied by gauge symmetry. The type of the terms generated de-
termines the processes to which gauge-invariant operators can contribute, and in which
their presence can be probed. Thus, relations between four-fermion contributions imply

relations between processes in which new physics may manifest itself.

As a first application of this classification, we calculate all three-body top decay
widths, single top and top pair cross sections in pp, pp and ete™ collisions, including
dimension-six four-fermion operators, the SM contribution and their interference. They

are:

e Charged current decays t — dju,d;, t — dke;ryj and production processes u;dy —
djt, d;dy, — ut, wid; — dit (the charge conjugate processes are also understood).
They involve SM contributions, which are very suppressed by small Cabibbo-
Kobayashi-Maskawa (CKM) mixing angles Vz, for k = 1,2, as well as four-fermion

ones.

+
J
and production processes u;up — ujt, ut; — Uyt, ete” — it which do not

e Flavour-changing neutral (FCN) decays t — wiu;uj, t — ugele; , t — upl;v;
take place at the tree level in the SM and are suppressed at one loop by the
Glashow-Iliopoulos-Maiani mechanism [9]. In this case, SM contributions can
be safely neglected. (Strictly speaking, four-fermion amplitudes do not involve
neutral currents, but it is still useful to use this notation for processes with four

quarks of charge 2/3.)

e Top pair production processes: ¢ production wu; — tt, d;d; — tt, ete” — tt,
which have a SM contribution, and like-sign top pair production u;u; — tt which
is absent in the SM at the tree level. In particular, we give expressions to calculate
the top forward-backward (FB) asymmetry at Tevatron including all contributing

four-fermion operators.

The explicit expressions provided for these observables are relatively simple. Neverthe-
less, there are a plethora of processes studied and keeping a reasonable paper length
requires some amount of compact notation, giving observables such as cross sections in
terms of gauge-invariant operator coefficients and numerical factors, collected in tables
for LHC with a centre of mass (CM) energy of 14 and 7 TeV, and for Tevatron.

It is not our aim to explore the phenomenological consequences of the results derived
in this paper, although we will in some cases comment about the implications of these
results. Such studies, to be properly addressed, require either to treat the independent
parameters (operator coefficients) as effectively independent, or a well-based assump-

tion regarding the relations among them. After all, a gauge-invariant operator basis



is a basis in which heavy new physics contributions can be parameterised. One would
not expect that any kind of new physics, when integrated out from the Lagrangian,
yields effective operators with unrelated coefficients, all of the same order and with-
out “cancellations”. On the contrary, the opposite behaviour is often found [10]11]:
heavy new physics when integrated out gives effective operators with correlated coef-
ficients. With this philosophy, we will ignore the common prejudice which sets to zero
the coefficients of operators containing terms which could affect B physics, invoking
the absence of cancellations between effective operator contributions. That possibility,
which may appear to be a “fine tuning”, may well be only an effect of the choice of
basis. Examples are known [I0,[12] for which these apparent cancellations are not only
natural but required by the nature of the new heavy physics which is integrated out to

yield effective operators.

A final point deserves mention here. In our calculations we keep terms linear in
operator coefficients, proportional to 1/A% and quadratic ones proportional to 1/A%.
This is not inconsistent despite the fact that we ignore dimension-eight and higher-
order operators. For processes without a SM contribution, and for fermion chiralities
which do not interfere with the SM amplitudes, the lowest-order term is the 1/A* one,
and higher-dimension operators give contributions suppressed by higher powers of A.
Therefore, the expansion is consistent. For fermion chiralities interfering with the SM,
dimension-six operators give linear 1/A? and quadratic 1/A* terms, while dimension-
eight operators would give 1/A* and 1/A® contributions. In this case, 1/A* terms are
sub-leading and could be dropped, but we still keep them (there is no harm in doing
that, and they can always be discarded a posteriori) as part of a complete calculation
to order 1/A* with some missing 1/A* contributions from dimension-eight operators

interfering with the SM amplitude.

The necessity to keep quadratic terms in calculations should be clear for many
reasons. First, there are many new physics effects that cannot be properly addressed
only with the operators interfering with the SM. Actually, operators which do not have
interference with the SM are the ones mediating genuinely new physics effects, beyond
corrections to SM processes. FCN processes, which are extremely suppressed within
the SM, constitute one classical example but there are several other ones, as chirality-
breaking effects for light quarks (see Ref. [12] for a detailed discussion). Such effects,
absent in the SM, could then be visible even if suppressed by 1/A*. On the other
hand, nothing guarantees that, if new heavy physics manifests itself at low energies,
it can be parameterised precisely by the operators interfering with the SM. A third
reason is that, as we will find in the following, the quadratic 1/A* corrections from

non-interfering operators can be in some cases as large as the linear 1/A? corrections



from interference terms.

The rest of this paper is structured as follows. In section 2] we write our four-
fermion operator basis and in section [l we classify the four-fermion contributions to
the Lagrangian involving one or two top quarks. The explicit calculations of top decay
widths are presented in section Ml cross sections for single top production are given
in section Bl and for top pair production in section [l We summarise our results in

section [11

2 Four-fermion operator basis

We follow the notation in Refs. [3l[4] for gauge-invariant operators, introducing flavour
indices i, j,k,l = 1,2,3. The left-handed weak SU(2),; doublets are qr;, ¢1; and the
right-handed singlets wug;, dr;, €r;. The Pauli matrices are 7/, I = 1,2, 3, the Gell-
Mann matrices A% a = 1,...,8, normalised to tr(A?\?) = 20,4, and € = i72. Fermion
fields are ordered according to their spinorial index contraction. In operators with four
quark fields, the subindices a, b indicate the pairs with colour indices contracted, if
this pairing is different from the one for the spinorial contraction. Our basis consists

of the following operators:

(i) LLLL operators

Oéjékl = 5(qv"qry) (Geryugr) , Oéjjl = 2(qria"ariv) (QLesVulria) -
OZM = (Z i ng)(QLk%(JLl) OZfd = (ZL@"YHQLJ')(@LW;L@U)’
o = S (L™ ;) (Coylin) - (2)
(ii) RRRR operators
O = Lapy"ury) (Upsyatrs) , O = Hdriv"dr;) (driyudr)
O = (u riv"ur;) (drryudrr) | Ofﬂfl = (tRiaY" urjp) (dresYudRia)
OBl = (erer;) (Arryuum) Ot = (@riners) (dpyudr)
O = §(em"ery) Erpen) (3)
(iii) LRRL operators
O = (qrivr;) (Urkqri) , O = (qriaurp) (Urkedria) |
OF" = (qridry) (drraw) . O} = (qriadrsp) (drredria) |
O = (Craury) (urklea) O = (Lridpy) (dpilia)
O = (qrier;) (Errqrr) O(Zfdlzl (Crier;)(drrqri) ,
O = (Lriery)(ernln) - (4)



(iv) LRLR operators

O(Z;]q]:l = (qriur;) [(CILkE)Tde} ) Oéj;if = (qLiaUrjb) [(qube)Tde“] ’
OZ]:I = (Crier;) [(qere) um] | O;];:l = (quier;) [((ure) uri] - (5)

All the remaining four-fermion operators written in Refs. [3l[4] but not included in our
list can be written in terms of these, using the completeness relations for Pauli and

Gell-Mann matrices

(D)5 (T = 2 (6:0k; — 2040w

(A)ij (A )i = 2 (0akj — £6450m1) (6)

and Fierz rearrangements

(Ay"BL)(CrvuDr) = (Apy"Dp)(CryuBL),
(Ary"Br)(CryuDr) = (Ary"Dr)(CryuBr),
(Ary"Br)(CryuDr) = —2(CLBgr)(ArDy), (7)

where A, B, C, D are four-component spinors of the chirality indicated in each case.

Explicitly, the operators written in Refs. [3)/4] but missing from our list are

32]kl _ %( LiYuT EL])(eLk’YMT fu) o QOzlk] Ozglcl7
ogzvlvwk” 5 (@naXary) (@ X qn) = 204" = J051,
K ilk i
Ol = Hqrivum quy) (@ qu) = 20,7 — OEk
1

2

OB = H(qrimu At qr;) @y A7 qr) = 401k 4 201k — 203 — 20,

qq
O™ = (L ) (G qu) = QOij — oM,
Of7M = 4(

dd L(driyuNdry) (drey" Nd ) = 205y — 204
04" = (g A ums) (dray* Ndgr) = 200 — 200,

=(q ar

= (
= (

0(8 ijkl) __
qu
(8,ijkl)

O,d !

0(8 igkl) __

qq¢

q
Ui YA Ur; ) (Ure Y N up) = 2008 — 2018
O(8,ijkl)
)\ uRj)(uRk)\ qu) = 202jjl ZOUM

) (A au) = 2048 = 304,
A"ug;) [(quE)TA dR,} — 201k _ 2@%1. ®

Li
qLi
Li qaqe’ qqe

Some of these relations have previously been obtained in Ref. [I3]. In summary: in

our basis we have (i) dropped from the list in Refs. [34] the unnecessary operators



Og”ijkl), O,%’Mjkl), 0,53’3’ijkl), Oq(ﬁfjkl) and Oéi’ijkl); (ii) replaced six operators,

OBLk) QUM = LOU 1 Lo M.
Oy O = 101 4 1O
0" = O’ =300’ + 30"
OB — QUM = LOEH + L0,
05— Ot = L0 1 L0
OB Okl = 10K 1 Lo (9)

We see that these substitutions lead to a larger “symmetry” in our basis than in the
previous ones, which is apparent with a glance at Eqs. [2)—(). In particular, our
operators do not involve A (nor 7!) matrices but instead we have operators O;gfl, Offjl,
O;{ffl, Oégfl and O(ﬁf in which the colour and spinorial indices are contracted between
different quarks pairs. This obviously simplifies amplitude calculations because the
Ajj Ay colour sums do not have to be done case by case. But a more important advantage
is that operators with the same quark fields but different colour contractions, e.g. Offjl
and Ofﬁfl, correspond to the two possible colour flows in the four-fermion amplitudes
and only interfere when all colours are equal. These interferences are trivial (100%
constructive), take the same form in most processes and are easy to parameterise. The
symmetry in our basis leads to simple expressions for top decay widths and production

cross sections, as it will be seen in sections [4H6!

3 Four-fermion contributions

In this section we provide a complete list of independent four-fermion operators which

give Lagrangian terms with one or two top quarks. We use the shorthand

Ce

=12 (10)

Ay

to easy the notation, and perform Fierz rearrangements of LRRL terms. We classify
the operators according to the four-fermion terms they give, which in turn determine
the processes to which they can contribute. We find it also convenient to separate the
four-fermion operators giving terms with a b quark (which is the SU(2),, partner of the

top) from those giving lighter down-type quarks di, k = 1, 2.



3.1 Four-fermion terms tbu;d;, ttu;u;, ttd;d;

Four-fermion terms in these three groups arise from four-quark gauge invariant opera-
tors with two flavour indices equal to three. Often, the same gauge-invariant operator
gives contributions in more than one of these groups. For this reason it is convenient
to study them together, allowing for an easy comparison between the different four-
fermion contributions. Needless to say, the links between terms in the different groups

are due to the gauge symmetry.

The gauge-invariant operators giving four-fermion terms tl_)ﬂl-dj, ttu;u; and tfczidj
(plus the Hermitian conjugate), with u; ; = u, ¢, d; ; = d, s, b, are collected in Table [l
We also give the number of independent operators in each case. Note that, for example,
03;23 = Oggw and these two operators are not independent. The same applies to other

flavour combinations not listed, involving different index ordering.

o¥r v v - 10 o¥e - v 6
133 1733
o - v Vo2 Ovn v - 12
our - v -3 ong - - Vo2
03713 B v _ i33j v - v 12
ovy v - - 12 o,V - VoI
o® - v 12 OBy - 12
ud®) qq¢)
o¥ v v - 12 v - 8
qu’ qqe
0" - v v 12
qu()

Table 1: Gauge-invariant operators giving four-fermion terms tbii;d;, ttu;u; and ttdd;

(plus the Hermitian conjugate). The number of independent operators is also indicated.

Operators involving tl_)ﬂidj fields contribute to the top three-body decay ¢ — buicfj
and processes related by crossing symmetry and/or charge conjugation, such as single
top production in hadron collisions, u;b — d;t, Jjb — u;t and uﬂj — bt. For each
set of fields t, b, @;, d; there are 16 independent four-fermion terms, in 4 vector and 4

scalar structures, each with two possible colour contractions. Symbolically, we have
LLLL, LLRR, RRLL, RRRR,
ZaLbEbLa ) EaLbRbRa ) RaRbLbLa ) RaRbRbRa )
LRLR, RLRL (two orderings),
LoRyLyR,, R,LyR,L, (two orderings). (11)



All the resulting effective Lagrangian terms are collected in Table Bl with their cor-
responding effective operator coefficients. We only show the terms involving ¢ fields,
the Hermitian conjugate ones thu;d; have the complex conjugate coefficients. In these
tables, the coefficient of each four-fermion term in the Lagrangian can be read by sim-
ply intersecting the corresponding row and column. In the case of LRLR and RLRL
terms the dots stand for the insertion of the two fields in the upper row, in the or-
der specified (their chirality is determined by the fields in the left column, that is,
byt = bytgr, bt = brty). The LLLL coefficients, which are not all independent, are
shown separately. The coefficients of Hermitian operators can be assumed real without

loss of generality; they are shown over a gray background.

[ (@ryutr) (eoyutr) O (@ryyutra)  (CovVutra)
(Z_)L,yudL) 2;13 3213*/2 (BLafY'udLb) ag;li’) 3213*/2
(br"s1) 032132 a8 (Bravsis) 03213 /2 03223
(Buy"br) aB3/2 o2 (Bravbrs) 03313 /2 03823 12

‘ (@rivetr) (Umivutr) ‘ (rivvutra) (URibYutRa)
(bry*dry) O —aj? 2 (brav"drp) O —aii /2
(brrdry) | —ag’ /2 Ay (bray"dR;p) ‘ —ag’/2 Qi
‘ dj t t d; ‘ djp ta 1y dja
(br-) (iLi-) | —oiggd  ciggl (bra-) (@) | —age ot
(br-) (@r; ) ‘ —agi” ot (bra ) (arip-) ‘ —ag ol

Table 2: Four-fermion contributions with tBﬂidj fields, being ¢+ = 1,2, 7 = 1,2,3. For
LRLR and RLRL terms the dots stand for the insertion of the fields in the upper row.

Real coefficients are shown over a gray background.

Operators involving ttu;u; fields contribute for example to top pair production in
hadron collisions, @;u; — tt. There are 10 independent four-fermion terms, all of vector

type, with two possible colour contractions,
LLLL, RRRR,
LLRR, RRLL (three terms),
LaLbEbLa ) RaRbRbRa ’
LoLyRyR,, R.R,LyL, (three terms). (12)

The relevant four-fermion terms are collected in Table Bl Notice that many of them



are not independent, but related by Hermitian conjugation. In the upper and middle
tables the dots stand for the insertion of the fields in the second row (the chirality of the
latter is determined by the fields in the left column); the resulting bilinear multiplies
the corresponding one in the first row. The coefficients of Hermitian operators can be

assumed to be real and are shown over a gray background.

®(tryutr) ®(tRYulR)
u C u C
(@t -) Uss | o313 (23 1 o3213) /2 [ —alBl | 132/
@" ) (a 5333* + 0223 /2 2233 + o323 alse jy [ Lo
(@) a3l —a3283 /3 71&133 01233 /9
(ery-) 3213 /2 a2 Q1233+ /9 (2283
@t rpYutra) @ (tRyVut Ra)
up cy up &)
(e -) Q13 4 3113 (a2 1 a3213) /2 | —alB1 | o132
(e -) (23 4 03213+ /2 2233 + a2 332 g [ 2288
(ﬁRa’Y“ . ) _05211}3 3213/2 O‘ZES 3213/2
(R ) 03215+ /9 3223 Q5213 /9 5223
(@rivutr) (Wrivutr) ‘ (@rivYutra) (UribYutRra)
- 3% - y
(teyHury) - - ”/2 (traY*urp) - —ais /2
_ 337 - 335
(tR’Y'uuRj) —aquel*/Q — (tRa’WUij) —Oéqujl*/2 _

Table 3: Four-fermion contributions with ttu;u; fields, being i, j = 1,2. In the upper
and middle tables the dots stand for the insertion of the fields in the second row;
a multiplication by the corresponding bilinear in the first row is understood. Real

coefficients are shown over a gray background.

We point out that we have used Fierz identities to rewrite some terms such as
(try"ur;)(Urivutr), which arise from independent gauge-invariant operators, in order
to have as few different four-fermion structures as possible. Thus, the number of

independent four-fermion terms is 10, while the number of operator coefficients is 12.

Operators involving ttd;d; fields also contribute to top pair production, d;d; — tt.
There are 16 independent four-fermion terms, 8 of vector and 8 of scalar type, with two
possible colour contractions, as in Eqs. ([l). The relevant four-fermion terms and their

coefficients are collected in Table[dl As in the previous examples, the dots stand for the

10



insertion of the field(s) in the upper rows and the multiplication by the corresponding
bilinear, if so indicated. The coefficients of Hermitian operators can be assumed real

and are shown over a gray background.

; Q(tryutr) ) ; Q(trRYutR)
S S
(i) 01133 01233 /9 a3 /9 —al33t al332 /2 a3 /2
(5274 -) 0233+ /2 2233 2333 /2 o332 /2 23:;2 2333 /2
qq qu
oo 1333* 023 3333 _ 1333* o233 3333
(bpy*-) /2 /2 Qe g )2 —ag )2 O
)| R e ol WG o ol
(5r7" ) —a32i3 g [NEGEEEN 33y 3 23522 3:223
o) | oy ot RGN o oz e
Q(trpYutra) Q(trRpYutRa)
dy, Sp by dy, Sp by
(dra™-) o133 al23 /2 al33 /2 ol —al#32/2 182
(S1a7"-) a2 /2 02233 B[y —ql [y 02332 0233 /9
(e ) 1333* 2 a2 2233 —al33 g —a2338e /3 12 a3333
) | G o2 o3 [NEGHET ofP o
) | otz B o o SN b
(brar™ ) By 82 g |9 o318+ 03328+ 2 333
‘ dit  td ‘ dip ta 1y dja
— - — - — P oy
(dri-) (FL-) | —cgad  aged (dria-) (rp-) | —ogd  aggd
- - 33j 1334 s - 33ji i33i
(dRi . ) (tR . ) —aqqgl* af}qgl* (dRZ'a : ) (tRb : ) _quq‘tz’ﬁ< O[;qe/l*

Table 4: Four-fermion contributions with tfcfidj fields, being 7,7 = 1,2,3. For vector
terms the dots stand for the insertion of the fields in the second row; a multiplication
by the corresponding bilinear in the first row is understood. For LRLR and RLRL
terms the dots stand for the insertion of the fields in the upper row. Real coefficients

are shown over a gray background.

3.2 Four-fermion terms tbe;v;, tte;e;, ttv;v;

These four-fermion terms arise from gauge invariant operators with two quarks and

two leptons, with the two quark flavour indices equal to three and the lepton indices

11



arbitrary. The list of gauge-invariant operators and the type(s) of terms they give is

presented in Table [, including the number of independent operators in each case.

the;v;  tte;e; ttuip; # the;v;  tte;e; ttup; #
O/ v v 6 o3 v -6
o v - v 6 oV - -9
oJiss v - 6 oneE v v -9
o v v 6 oyl v v -9

Table 5: Gauge-invariant operators giving four-fermion terms tbe;i7;, tte;é; and tty;i

(plus the Hermitian conjugate). The number of independent operators is also indicated.

Four-fermion terms with fields tl_)eiﬂj contribute to three-body top decays t — be; v;,
being 7,7 = 1,2,3. Because vg fields are not introduced, there are only four Lorentz

structures, two of vector and two of scalar type,

LLLL, RRLL,

LRLR (two orderings) . (13)
The contributions to the effective Lagrangian are the ones in Table 6] plus the Hermi-

tian conjugate. The coefficients of Hermitian operators can be assumed real without

loss of generality. They are displayed over a gray background.

‘ (Prjvutr)
O (Teryute)  (Uuryute)  (Vroyute) (bry"ers) M
T
7 i 13/31 23,31 33/31 _ ii33
(l_)m 2 2% “a g (br"eri) | —agae /2
(bry*pr) gt 2 a3 ag?
(brrim) | o o [ 23 et te
. - 313 33
(br-) (7157) | 03—

Table 6: Four-fermion contributions with tl_)eﬂ?j fields, with i, = 1,2,3. For LRLR
terms the dots stand for the insertion of the fields in the upper row. Real coefficients

are shown over a gray background.

Lagrangian terms with fields tte;é; are involved for example in top pair production
at a future linear collider, ete™ — tf. These terms arise in eight possible Lorentz

structures, four vector and four scalar terms,
LLLL, LLRR, RRLL, RRRR,
LRLR, RLRL (two orderings). (14)

12



All contributions to the effective Lagrangian are collected in Table [ The coefficients

of Hermitian operators are shown over a gray background.

®(tL’7,utL) ®(tR'7utR)
e 1 T e 1 T
i 1133 2133+ 3133+ 2l 3331«
(eLry ) 2 QXyg Qg QXgq Qpy ay /2 Qpy /2
T m 2133 2233 3233 _ 2331 2332 _ 3332*
(ML’Y ) g 2 g ®rq oy /2 Oy @y /2
= A 3133 3233 3333 _ 3331 _ 3332 BESE
( LY ) Zq Zq 2 aéq Qpyy /2 Qp /2 —Qpy
> 3113 3123 3133 1133 2133* 3133*
(637“ : ) Qge — Qe /2 — Qe /2 2 Aoy Qey Qey
(ﬂR’}/M ) _a3123/2 _a3223 _a3233* /2 a2133 2 a2233 053333*
= 3133 3233 3333 3133 3233 BESE
( R ) /2 /2 Qe Qey, Ay 2 Ry
‘ €; t t €;
I = 3i53 7133
(tL : ) (eLJ : ) _aqée a[qe

B g3 i
(tr-) (Erj ) | —agie  Qge

Table 7: Four-fermion contributions with tte;e; fields, with ¢, = 1,2,3. For vector
terms the dots stand for the insertion of the fields in the second row; a multiplication
by the corresponding bilinear in the first row is understood. For LRLR and RLRL
terms the dots stand for the insertion of the fields in the upper row. Real coefficients

are shown over a gray background.

We also give for completeness the tty;; terms, although they seem to have little
relevance for phenomenology. After using Fierz rearrangements on some terms, there

are only two independent structures,
LLLL, LLRR, (15)

with three independent operator coefficients for each set of fields ttv;v;. We give in
Table [{ the full set of Lagrangian terms with their corresponding operator coefficients.
It is worth pointint out that, despite the fact that these four-fermion terms do not con-
tribute to lowest order processes in hadron or lepton collisions, the operators involved
can be probed either in top decays or in top pair production through the tl_)eiﬂj or tte;e;

terms generated, see Table [l

3.3 Four-fermion terms thﬂidj, turtiug, ttu,u;

These are four-fermion terms with d, = d, s (the case dy = b was presented in sec-

tion B), w;; = u,c, dj = d, s,b. They appear from four-quark gauge invariant opera-
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Q(tryutr)

Ve Vi v,
- 1133 1331 2133 2331 3133 3331
(Ter ™) 2(0‘£q + agg ) o, Fag et et
(Fury"-) a%:&s i agg/sl 2( a%?’?’ i a?(:;,/:az) a%gg* n a?(:;,;Q*
= 3133 3331 3233 3332 3333 3333
(VTL’.Y# : ) aéq + aéq’ afq + aéq’ 2(aﬂq + aéq’ )
Q(trRYutR)
Ve Vu v,
- 1331 2331 3331
(VGL’YM ’ ) — —Qy /2 —Qyy /2
= 2331 2332 3332
(VML7“ : ) —Qy /2 —Qyy —Qy /2
- 3331 3332 3333
(Trpy ) 0, /2 —ag )2 T —agy

Table 8: Four-fermion contributions with tty;v; fields, with 4,5 = 1,2,3. The dots
stand for the insertion of the fields in the second row; a multiplication by the corre-
sponding bilinear in the first row is understood. Real coefficients are shown over a gray

background.

tors with one or two flavour indices equal to three. (In the latter case there is no overlap
with the ones studied in section Bl) The gauge-invariant operators giving such terms
are collected in Table [@, also including the number of independent operators. Four-
fermion terms with two like-sign top quarks appear from the same operators giving
turt;u; terms, but when j = 3. Note that for O];zf?), O;]u]?;’) and O;éi’]f,), OZ’;Z?,) there is
some double counting of flavour combinations when j = 3, and the total number of

operators in each case is 40.

thfLidj tﬂkﬂin ttﬂkﬂi # t(jkﬂidj tﬂkﬂiuj ttﬂkﬂi #
kji3 ijk3
oMV v Vo2 oV - - 24
Okin v v o1 ost, v - -
13kj 3ijk
O ¥ - - Oty v - -
o v v v 24 o - - 16
qu qqe
ov - v v 16
qu()

Table 9: Gauge-invariant operators giving four-fermion terms tcikﬂl-dj, tugt;u; and
ttugu; (plus the Hermitian conjugate). The number of independent operators is also

indicated.

Operators involving thaidj fields mediate top three-body decays t — dkuidj and
single top production u;d, — d;t, (Zjdk — u,;t and uia@» — dt. These processes already
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take place in the SM but their amplitudes are very suppressed by small CKM mixings
Vsi. As in the case dj, = b, for each set of fields ¢, dj, @, d; there are 16 independent
four-fermion terms, 8 of vector and 8 of scalar type, with two possible colour contrac-
tions, summarised in Eqs. ([Il). The corresponding Lagrangian terms which involve ¢
fields are collected in Table The LLLL operator coefficients are shown separately
oz

because they are not all independent. In particular, we note that OZ(‘;’I?’ and give

two different four-fermion terms in each table.

[] (wryutr) (eryutrn) [] (@rpVutra) (CoyVutra)
(diydy) alll3jy o123 (draydyy) allis /2 al123 /9
(diysy) al213/2 12239 (drays1) al213 /2 al22 /9
(diy"br) Q313 0213 /2 (draybry) a3 aZ313 /9
(527Mdy) a2l13/2 213/ (510" d1s) 02413 /9 02123 /9
(52751 0Z3)2 2223 (S2a7"515) 02213 /2 o222 /9
(527"b1) aZ3j2 o223 (51a7"b1s) o213 /2 o223

‘ (wrivutr)  (Urivutr)

‘(ﬂub%tm) (@RibVulRa)

(drxy*dry) [ _ak3w/2 (drkay"drjp) H —aga /2
- k3 i3k - k3 i3k
(dridry) | —ay/2 apy? (drkaYdrjp) | —aiy®)2 WV’
‘ dj t td; ‘ djp ta o dja
- _ K k - 7 3kj  k3ij
(dpr-) (pi-) | —aged  aged (dika-) (Uriv) | —Quud Qg
_ 3ijk i3k 7 _ 3ijk i3k
(dpe ) (agi+) | —ogge™  onge” (drka ) (Griv ) | —age™  agei”

Table 10: Four-fermion contributions with thﬂidj fields, being 1,k = 1,2, j = 1,2, 3.
For LRLR and RLRL terms the dots stand for the insertion of the fields in the upper

Trow.

On the other hand, four-fermion operators giving tu;t;u; terms mediate top FCN
decays t — ugu;u;, with 7, j, k = 1,2, as well as several single top production processes
such as u;u, — ujt, u;u; — uxt. Since there are two identical (up to flavour indices)

fields w;, uy, there are only 6 independent four-fermion structures,
LLLL.
EaLbRbRa )

LLRR, RRLL, RRRR,
R,RyLyL, . (16)

The resulting Lagrangian terms are presented in Table [[I, where the hermitian con-

jugate ones are also understood. We have rewritten the (@, urjp)(GrivYutra) con-
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‘ (@rivutr) (WRiVutR) ‘ (@ripVutra) (URbVutRa)
- kji3 | ijk3 k3i - k3i)
(tpeyury) | (cgr” +oli?) /2 —ap? /2 (TLkay"urn) - —agu’ /2
(4 RpEYHuR)) ZJm/ 2 il /2 (@rkaY urjp) | —ogn”/2 -

Table 11: Four-fermion contributions with tuzu,u; fields, with 4,5,k =1, 2.

tributions from ij " using a Fierz rearrangement and included them in the left table.
We point out that there is no analog to O with a different colour index contrac-
tion: these operators are redundant as we indicated in section 2l It is also worthwhile
remarking here that, since there are two light u-type fields, in general each term will
give two contributions to the amplitudes. This multiplicity will be carefully dealt with
in the calculations performed in the following sections.

For operators with two like-sign top quarks, charge conservation requires that the
two other fields are light up-type quarks u;, uz. With two identical ¢ fields, for LLLL
and RRRR operators the index combinations with 4 and k interchanged actually cor-

respond to the same operator. There are only four independent structures for them,
LLLL, RRRR, LLRR, L,L,R,R,, (17)

as the other possibilities are equivalent due to the presence of two t fields. The resulting
terms are collected in Table [[21 In the upper table, the half below the diagonal is

identically equal to the one above, with exchange of the two bilinears. In the second

(Urvutr) (cLyutr) (@rvutr)  (CRYuLR)
(aL,Y,utL) ( 5213 + a1313)/2 ( 5223 + a1323)/2 1313/2 1323/2
(e1rtr) N (2338 4 o2323) /2 —a23/2 a2
(anyPtr) B N alBl3 /g o132 )9
(CrYHtR) - . a2323 /9
(@rpvutra)  (CoyVutra) (UmbYutrRa) (CRYYutRa)
(@ratry) - - —al818/2  —al3 )9
(CLavtrip) - - —aZ13/2 —a2% )2
(UraY"tRb) - - - -
(CRaY"tRb) - - - -

Table 12: Four-fermion contributions with ttu,u, fields, with ¢,k = 1, 2.
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table, LLLL terms have been Fierz-rewritten into the first table and RRRR terms are

identical to the ones already included there.

3.4 Four-fermion terms tde;v;, tuge;e;, tu,v;v;

These four-fermion terms with £ = 1,2 are analogous to the ones with k = 3 previously
classified in section 8.2l They arise from gauge invariant operators with two quarks and
two leptons, with only one quark flavour index equal to three and the lepton indices
arbitrary. The list of gauge-invariant operators producing these terms can be found in

Table [[3], including the number of independent operators.

tde;v;  tupeie; tugv;  # tdge;v;  tupeie; tugvy; #
ops - v v 18 o v - - 18
ot v - v 18 one v v - 18
oOiks v - 18 ogr - v - 18
o v v 18 onr v v - 18
okias - v - 18 o* v - 18

Table 13: Gauge-invariant operators giving four-fermion terms tczkeiﬁj, tupe;e; and
tugv;v; (plus the Hermitian conjugate). The number of independent operators is also

indicated.

Operators with fermion fields theiDj can mediate top semileptonic decays ¢t —
drefv; (k=1,2,1,5 =1,2,3). These decays take place in the SM when i = j, i.e. if
lepton flavour is conserved, but are suppressed by small CKM matrix elements. There
are only four possible Lorentz structures, two of vector and two of scalar type, as in
Egs. (I3). The resulting four-fermion contributions are given in Table [[4] being the

Hermitian conjugate terms also present in the Lagrangian.

‘ @Lj%tL) ‘ e; t te

_ . 7 7
(drpy*er:) Oéi‘glm - - o _—
o (di-) (71;+) | ok —af®

(dri"ers) —Qge /2

Table 14: Four-fermion contributions with t(;lkeiﬂj fields, being k = 1,2, 1,7 = 1,2, 3.
For LRLR terms the dots stand for the insertion of the fields in the upper row.

Four-fermion operators with fields tte;e; can mediate top FCN decays ¢ — ukejej_

and single top production ete™ — tuy, absent in the SM at the tree level. There are
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eight possible Lorentz structures for these four-fermion terms, four of vector type and
four scalar, as in Eqs. (I4)). All the possible four-fermion terms with their corresponding
coefficients are collected in Table[I3 As before, the Hermitian conjugate terms are also

present in the Lagrangian and their coefficients are the complex conjugate of the ones

shown.
‘ (trevute)  (Upeyutr) ‘ e; t te;
(erivters) | af” —al" )2 (i) (ery-) | —abe?® oo
(Eriv"ers) | —ag®/2 ol (e ) (Bry-) | —agel™ age

Table 15: Four-fermion contributions with tuge;e; fields, being £ = 1,2, ¢,57 = 1,2, 3.
For LRLR and RLRL terms the dots stand for the insertion of the fields in the upper

Trow.

Finally, the tuv;v; terms can also mediate top FCN decays ¢ — wyv;v;. After using
a Fierz rearrangement, there are only two possible Lorentz structures of vector type,
as it happens for tfyiﬁj terms in Eq. (IH). The resulting Lagrangian contributions are

collected in Table [[6l (The Hermitian conjugate are also understood.)

‘ (urkyute)  (UrkYulr)

— jik3 j3ki j3k‘l
(VLiv'vea) ‘ oy oy /2

Table 16: Four-fermion contributions with tu,v;v; fields, being k = 1,2, 4,7 = 1,2, 3.

4 Top decay widths

In this section we calculate and present in turn the partial widths for the several three-
body decays mediated by four-fermion operators: charged current decays t — dkuﬂj
and t — dye; v; (Where now dj = d, s,b can be discussed together), and FCN decays
t— upuiiij, t — uge; e; , t = vy, For top antiquark decays, the partial widths are
the same as the ones shown, but replacing CKM mixing elements and effective operator
coefficients by the complex conjugate. We obtain the top partial widths by integrating
the corresponding squared amplitudes over three-body phase space, taking all final
state particles massless. For charged current processes a SM contribution, mediated
precisely by an on-shell W boson, is present. In these cases we perform the exact
integrals including the W boson propagator and then make an expansion in I'y /My,

keeping the necessary terms. Trace manipulations are done using FORM [18].
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We only consider interferences between four-fermion operators which do not require
chirality flips of light quarks. Also, most interferences between the SM and four-fermion
amplitudes are suppressed by a light u, d, ¢, s quark or lepton mass. The only exception
is for decays t — dju;b, where there are some interferences suppressed by mj; which
we also neglect. These decays have SM amplitudes already suppressed by small CKM

mixings V,;, or V,,, anyway.

4.1 t— dkuﬂj

This decay can already take place in the SM, with an intermediate on-shell W boson.
Integrating in three-body phase space and taking the leading terms in Iy /My, we

obtain

2
Tay g-mg [ my

2
o [ | v - + 24, (18)

with xy = My, /m,. This result corresponds to the SM width for t — d W times the
branching ratio for W — uzdj.

For each set of indices i, j, k there are 16 four-fermion terms in the amplitude, 8
corresponding to the colour flow ¢, — dkauibczjb (with a,b colour indices) and 8 for
t, — dkbumJjb. Both sets have a 100% constructive interference for a = b, which
happens for one third of the colour combinations. In order to write the partial widths

in a more compact form, it is then very useful to define functions

(z,y)

2
2> + |y|> + = Rexy”*,
3
1 1
M(z,y,u,v) = xy*+uv” + gazv* + guy* : (19)

which satisfy II(x, z,y,y) = H(z,y), H(z,z) = 8/3|x[>. With this notation, the four-

fermion contributions for j, k # 3 read

F4F =

5 ()
204873 L A

< {TH(CH®, CL) + AT(CEY, Cl) + TUCLY, O3 + O, i)
+H(c;3k] Cl3k])+1—[(0531] C«k32j)+1—[(021]k C3zyk)+H(ngBk 0]2319)

ge > ~qqe’ qe 7 ' qqe’ qe 7 ' qqe qe ’ ~qqe

+ Re [T(CE, Cot, Civl, ity + T(CR, ok, otk e L (20)

qqe ) “qqe’ ) qqe’ ) T qqe qqe » ~qqé€’ qqe qqe

When one of these indices equals three, substitutions in the LLLL coefficients of
Eq. (20) may have to be performed because not all flavour combinations arise from
independent operators, and some of them (in particular, the Hermitian ones) give a
contribution twice larger. According to Tables 2l and [I0]
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o for k =3 (decay t — budy,), C’Zﬁ? must be replaced by 2 C’;’;f?’) (which are real) if
i = 4, and by CZ{;”;* if i > j:

o for j = 3 (decay t — dju;b), Cj;(i,?)’ must be replaced by 2 C’;iﬁ if i = k, and by
Coifi > k.

The interference between four-fermion operators and the SM amplitude is

2 2
g myg [y * (ki3 ji —
Tt = +153 [—A] {Re [\@kvij(cq;/ + 3047 3)} (Qr + Q%)

—m VeV (Cl° + 3Ck)| (9 +97) } | (21)

where the kinematic factors Qﬁ, ; arise from the three-body phase space integration for
invariant masses m,, g, < Mw (€25 ;) and m,q > Mw (€%). The first term between
the curly brackets, proportional to the real part of coupling products, corresponds
to the off-peak interference (in which the W propagator is almost real), whereas the
second term with the imaginary part is the peak contribution, where the W propagator

is imaginary. The corresponding phase space factors are

_ 9 11 Ty T
5 13 11 m2 — M2
U = =g = 2o+ o — iy + (L= 3my 20k log =
Lw 3 5
3 _
+37 - (xw — ),
O ~ QF ~ ga — 3ad, +225,) . (22)

As it is expected, for the real part of the interference term there is a large cancellation
in the total rate between the two phase space regions m,q, < Mw and m, g, > Mw,
in which the W boson propagator changes sign. For m; = 175 GeV, My, = 80.4 GeV,
Iy = 2.14 GeV, we have Qp = —3.367, Qf = 3.385 and the sum Qp + Qf = 0.018
is 200 times smaller. On the other hand, the interference of the imaginary part is
practically equal at both sides of the peak. For illustration, we show in Fig. [ the
normalised ud invariant mass distribution for the decay ¢ — bud within the SM and
with C231% =10, A = 1 TeV. It has been obtained numerically by implementing in the
generator Protos [I9] the four-fermion vertices. As a cross-check of our results, it has
been verified that the numerical values of the interference and quadratic contributions
coincide with the analytical ones in Eqs. (2I) and (20). We observe that the leading
four-fermion operator contributions, suppressed with respect to the SM one by the

ratio 9
3 [My !
n$C = e {T} 0f ~8.2x 10 4@ TeV?, (23)
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Figure 1: Normalised ud invariant mass distribution for the decay ¢ — bud within the
SM and with C2/'* =10, A = 1 TeV.

are rather small even for relatively large value of the effective operator coefficients.
Therefore, the presence of four-fermion operators with fields tdyi;d; can better be

detected in single top production, which is discussed in section 5.1

Finally, we point out that only Oggi?’ and Of;g,i ? interfere with the SM amplitude in
the limit of vanishing w;, d; masses. (The same coefficient replacements indicated above
have to be performed for specific values of indices.) The colour flow for the amplitude
with Osg/i % is the same as the SM one, t, — dkauibc@b, and hence the interference takes
place for all colour combinations; for Oggi?’ the flow is the other one and thus the 1/3

factor multiplying its coefficient.

4.2 t— dgev;

This leptonic decay is much simpler than its hadronic counterpart in the previous
subsection, because there is only one colour flow and fewer gauge-invariant operators
with these fields. As a result, only 4 four-fermion terms contribute to the amplitude (see

Tables [ and [[4]). The SM and four-fermion contributions, as well as their interference,

are
2
Tey — gom [ my |Vag|20:5(1 — 3%, + 225,)
5761 | My J ’
B my my 4 j3ki |2 jik3|2 kij3|2 jik3|2 kij3 ~jik3x
Lyp = 614473 |:Xi| |:4|ng’ ‘ + |C¢;de ‘ + |Cq£g ‘ + |nge ‘ —i—ReC’qu ngs i| )
2 2
g my [y i3ki1 /y— 3ki1 [ (y—
D = 2 | 5] 0 {Re [V Ci) (R + ) — Im [V GMI(Q7 +9) | - (24)
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For k = 3 (decay t — be; ;) the coefficients C’gj,ki must be replaced by 2 C}g’?’i (which
are real) if i = j, and by C’Z’,kj* ifi > 7.

The leading effects of four-fermion operators in this decay, namely the interference
with the Oy operators, are suppressed by (My,/A)? and numerical factors with respect
to the leading SM contribution. Still, this decay may be the only place to probe these
operators because they do not contribute to single top production in hadron collisions.
As we can see from Tables [l and [[3], Oy, cannot be probed in ete™ collisions either.
On the other hand, for k =1, 2, Oﬁki also give tu,v;v; terms which can mediate a FCN

decay t — ugv;v4, discussed in section [4.4]

4.3 T — upuiu;

This decay does not have a SM contribution but the calculation of the width is still
non-trivial due to the presence of two up-type quarks in the final state. We have to
distinguish the cases i # k and ¢ = k. In the first case there are 12 contributions to the
amplitude, 6 corresponding to operators (u;u;) (uxt) and 6 to (ugu;) (w;t), with ¢ and
k interchanged. There are two colour flows t, — ug,uiptij, and t, — Ugylia;p Which
only interfere for a = b. After averaging over colours, the resulting partial width can
be compactly written as

Ty Ty

Lo = s [] [ICH™ + o + 0l 4 IOk, ot

k3ij k31ij i3kj 13kj ijk3 ijk3 kji3 kji3
_'_H(C ! Cqu j) + H<C ’ C(qu ]) + H(qu/ 7CqZA ) + H(qu’ 7Cq1i )

qu/ Y qu’ )

(25)

When i = k there are 6 operators and only one colour flow, ¢, — u;,ut;5, because
the two quarks w;,, u; are precisely distinguished by colour when a # b. Whereas, for
a = b they are identical particles and the amplitudes get two contributions from each
Lagrangian term (with a 1/2 symmetry factor). The final result, after colour averaging,

1S

my [t iji iji iji i3ij visig
i = oo [5] [$1C82 + G2 + 42 + I(Cd, ciso)
+HI(CEP, CIP)) (26)

The latter expression (independently calculated) corresponds to Eq. (2H) setting i =
k and dividing by two (note that II(x,z) = 8/3|x|?). This relation can be easily

understood from the previous considerations:

e Case a # b: for i # k there are two sets of contributing operators which differ by

the interchange ¢ <+ k, each set contributing to one of the possible colour flows.
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For 7 = k there is only one set and only one colour flow. Then, setting : = k in

the partial width counts twice each contribution.

e Case a = b: for i # k there are two contributions from operators differing by
the exchange of 7+ and k£ while for © = k each operator gives two terms in the
amplitude because the two final state u; quarks are identical. However, in the

latter case there is a symmetry factor of 1/2.

It is worthwhile pointing out that this relation for the partial widths with ¢ # k£ and
© = k does not hold for the differential quantities, i.e. the angular distributions are not

the same.

The possible effect of FCN four-fermion operators in top decays can be measured
by the ratio of the prefactor in 'y over the SM width,

ne . my/Ty {mt]‘l 6 1 4
- M1 17 % 10— TeV 27
flaec = 504873 [ A T Y (27)

which determines the branching ratio for these decays, up to effective operator coeffi-
cients, once that the scale A is set. The small value of this quantity implies that it is
expected that new effects in FCN single top production (section [(.2]) would be much

easier to spot.

4.4 t— uke;rej

and t — u,vv;

The computation of the decay rates for these processes, with a trivial colour structure
and no SM contribution, is rather straightforward. The coefficients of the eight opera-
tors contributing to ¢t — ukei*ej’ are given in Table The partial width for this mode

18

my my74 jik3|2 jik3)2 j3ki|2 kij3|2 kij3|2
D = o || [4ICHRE + 4G + [CRM2 + 1 CR P + 1o
jik3 kij3 ~vjik3s 3jik i3k 3jik vij 3k
+|nge |2 + Re Cqég ngs + ‘ngs |2 + |C£(J16 ‘2 + Re nge Céés ] : (28)

The decay t — ugvjv; is completely analogous but involving only two four-fermion

terms, which can be read from Table [[6l The corresponding partial width is

my my
L [

4
jik3 i3ki |2 i3ki |2
s || 4G i ik (29)
These FCN decays are suppressed by (m;/A)* as the previous decay t — uju;u; but,
in contrast, the four-fermion terms involved do not contribute to single top production
at hadron colliders. For ¢ = 7 = 1, tugee terms can be probed in single top production
at an ete” collider, but this is not the case for other lepton flavours, nor for terms

involving two neutrinos.
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5 Single top production

After warming up with top decay width calculations, we present here the results for
crossing symmetry-related processes: single top production in association with a light
quark. Although the matrix elements are the same in both cases, in the latter the phase
space integration introduces kinematical differences among effective operator contribu-
tions, and initial state parton distribution functions (PDFs) between processes. This
makes the analysis much more cumbersome. We will discuss in turn charged current
processes at LHC and Tevatron, FCN single top production at the same machines and

single top production in ete™ collisions.

5.1 Charged current processes in pp, pp collisions

These processes are the counterpart of the top decays studied in section Il For a given
initial and final state there are, in addition to a SM amplitude (possibly suppressed by
small CKM matrix elements), 16 contributing four-fermion terms, 8 corresponding to
each colour flow, with 4 vector and 4 scalar Lorentz structures. All the cross sections

for these processes, namely
U(Ude — d]t) s O'(?_Lljk — CZJZ) ,
U((ijdk — ﬂit) s O'(dj(jk — u,f) ,
cr(uiJj — (jkt) s O(ﬂidj — dkf) (30)

can be written as

Ain * 7 i1
o = AVaPIVil? + T2 Re [V (Ol + L0

A2
P [0k, C4) - an(o, ]
5 (ML, O3 4 IO, O + IR, )+ e €]
48 [, €i39) + e, coib)
FR R [[U(C, O, 09, 0839) 4 (Ot Ca ck o] L a)

where the numerical factors Ag, A, Ai_4 depend on the specific process, as well as
the collider (pp or pp) and CM energy. Notice that Ay times the appropriate CKM
matrix elements in the first term on Eq. ([BI) simply give the SM leading-order (LO)
single top cross sections for ¢- and s-channel single top production subprocesses. In
the above equation, the same replacements in operator coefficients done for top decays

must be performed for specific index values:
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o for k = 3, ij(i/? must be replaced by 20;’;’% (which are real) if ¢ = j, and by
Coif i > j

- ki3 i3i3 e i3k3 ir s
e for j =3, Cq;(,) must be replaced by 2 qu(’) if + = k, and by qu(,) if 1> k.

The factors A; for LHC with 14 TeV are collected in Table [I7], for 7 TeV in Table 1§
and for Tevatron in Table They have been computed using CTEQ6L1 PDFs [20]
with ) = m;. There are more sophisticated factorisation scale choices for which SM
single top LO cross sections are closer to next-to-leading order ones, but we prefer
this simpler one, also bearing in mind that we are mainly interested in four-fermion

contributions.

For s-channel production, it is remarkable to find that the quadratic contributions
from some four-fermion operators which do not interfere with the SM amplitude can
be as large as those from the interference terms. For example, setting:=j=1, k=3

and neglecting CKM mixing for simplicity we have

= = 4.92
Oin(ud = bt) = A—92 Re [Cog'™ + 3C5 "] pb - Tev?,
- = 4.78
o (ud — bt) = W [|CEH? + |C23M? + ZRe O C331*] pb - TeV* + ...,

(32)

where we have omitted quadratic contributions from other operators in the second
equation. For s-channel production the quadratic term is large because it is not sup-
pressed by the s-channel W propagator as the linear and SM terms are. In contrast,
for the t-channel processes ub — bt and db — it the interference terms (Ajy) are a

factor of five larger than the quadratic ones (A;_4).

It is also worth comparing the four-fermion operator effects in top decays and single
top production. In the former processes, the leading corrections are proportional to the
small ratio n$< in Eq. [23)), of order 10~%. On the other hand, for single top production

dec

the leading effects, relative to the SM cross sections, are proportional to

oo _ A /A
prod — AO

. (33)

For example, for ub — dt at LHC (with 14 and 7 TeV) this ratio is around ngrgd =
0.1/A% TeV?, 100 times larger than n{<. This means that it will be difficult, using
bounds from other processes, to get rid of possible four-fermion operator contributions

to t-channel single top production to obtain a model-independent measurement of

Vi [14].
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widy — djt Ay A AL Ag A3 Ay
i=1 k=1 437 -51.6 149 503 -4.82 ¢
55.3 -5.33 0530 0.185 -0.161 £
7=2 k=1 817 -810 0915 0.317 -0.281 t
309 -2.88% 0247 0.087 -0.073 ¢
i=1 k=2 187 -196 291 0997 -0911 ¢
363 -3.42 0310 0.109 -0.093
1=2 k=2 195 -1.78 0.142 0.060 -0.042 t/f
i=1 k=3 106 -107 1.27 0438 -0.390 ¢
174 -1.59 0.123 0.044 -0.036 t
i=2 k=3 889 -0.784 0054 0019 -0.015 t/i

djdy, — gt Ao Ame AL Ay Ay Ay
j=1 k=1 120 -9.93 0783 228 /i
j=2 k=1 8.7 -686 0475 137 ¢
339 254 0.133  0.380
j=1 k=2 339 -254 0133 0.380
85.7 -6.86 0475  1.37
j=2 k=2 21.7 -1.60 0.078 0.221 t/f
j=1 =3 164 -1.19 0.054 0.154 t
46.0 -353 0205 0588 1
j=2 k=3 102 -0.724 0031 0088 /i

SRS R

u,dj — dit Ao Aie A1, A3 Ag, Ay

1=1 j5=1 392 246 1.63 4.78 t
224 1.28 0.65 1.89 t

1=1 j=2 307 181 1.00 2.90 t

0.713 0.345 0.108  0.309 t
1=1 j53=3 189 1.03 0.441 1.28 t

0.363 0.164 0.044 0.124 t
1=2 j=1 0615 0.292 0.087 0.247 t

147 0782 0.317 0913 t
i=2 j=2 0404 0.18 0.049 0.139 t/t
i=2 j=3 0193 0.083 0.019 0.0563 ¢/t

Table 17: Numerical factors for single top cross sections at LHC with 14 TeV. The
units of Ay, A and A;_4 are pb, pb - TeV? and pb - TeV*, respectively. The labels
t, t indicate whether the factors correspond to the processes in the left column or the

charge conjugate.

26



uzdk — djt A(] Aint A1 A2, A3 A4

t1=1 k=1 192 -21.0 3.21 1.10 -1.01 t
14.0 -1.24 0.0811  0.0290  -0.0230 t
1=2 k=1 228 -2.07 0.148 0.0527  -0.0430 t
6.86 -0.586 0.0336  0.0121  -0.0094 t
1=1 k=2 617 -593 0.533 0.187 -0.159 t
8.43 -0.731 0.0445 0.0160 -0.0125 t
1=2 k=2 398 -0.334 0.181 0.0660 -0.00498 ¢/t

1=1 k=3 307 -2.82 0.211 0.0749  -0.0616
3.51 -0.294 0.0159 0.00580 -0.00437
i=2 k=3 156 -0.128 0.00624 0.00229 -0.00167 ¢/t

| ok

djdy — gt Ay Ame AL Ay Ay Ay
j=1 k=1 390 -205 0.146 0418 t/i
j=2 k=1 253 -1.86 0.0844 0.239 t
8.05 -0.558 0.0205 0.0573
j=1 k=2 805 -0.558 0.0205 0.0573
95.3 -1.86 0.0844  0.239
j=2 k=2 474 -0.322 0.0112 0.0311 t/f
j=1 k=3 336 -0.225 0.00746 0.0205 ¢
11.8 -0.835 0.0331 0.0928 1
j=2 k=3 192 -0.127 0.00402 0.0110 ¢t/i

SR S o

widy — dit Ay A A Ay Ag Ay
i=1 j=1 160 0876 0319 0917 ¢
0.807 0.400 0.118 0337
i=1 j=2 116 0590 0187 0535 ¢
0.187 0.0783 0.0159 0.0441
i=1 j=3 0623 0291 00753 0213 ¢
0.0827 0.0325 0.0058 0.0161
i=2 j=1 0156 00635 0.0121 0.0334 ¢
0470 0215 0.0528 0.149 1
i=2 j=2 00934 0.0368 0.0067 00184 ¢t/
i=2 j=3 00384 00143 0.0023 0.0062 ¢t/

Table 18: Numerical factors for single top cross sections at LHC with 7 TeV. The
units of Ay, A and A;_4 are pb, pb - TeV? and pb - TeV*, respectively. The labels
t, t indicate whether the factors correspond to the processes in the left column or the

charge conjugate.
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uidy, — djt Ap A Ay A Az Ay

1=1 k= 4230 -330 128 48.3 -3.16  t/t
i=2 k=1 443 -323 1.06 0408 -0.245 t/t
i1=1 k= 1800 -138  5.22 1.97 -1.27 )t
1=2 k= 59.5 -4.09 0.117 0.046 -0.025 ¢/t
i1=1 k= 599 -44.4 153 0.583  -0.359 t/t

i=2 k=3 162 -1.09 0.030 0.012 -0.0061 ¢/t

djdy — u;t Ao A A1, Ay Az Ay

Jj= k= 4640  -302 8.46 229 t/t
j= k= 605 -36.1 0.821 2.15  t/t
j=1 k=2 605 -36.1 0.821 2.15  t/t
Jj= k= 86.3 -4.89 0.098 0.251 t/t

j=1 k=3 189 -11.0 0.234 0.607 ¢/t
j=2 k=3 241 -1.34 0.026 0.066 t/t

u,dj — dit Ao Aie A1, A3 Ag, Ay

1=1 j=1 285 120 20.3 55.4  t/t
1=1 j5=2 477 16.2 1.98 525  t/t
1=1 j5=3 168 534 0.583 1.53  t/t
1=2 j=1 127 392 0408 1.06  t/t
i=2 j=2 185 0,518 0.046 0.116 ¢/t
i=2 j=3 0513 0.138 0.012 0.028 t/t

Table 19: Numerical factors for single top cross sections at Tevatron. The units of Ag,
Ay and A,y are fb, tb - TeV? and fb - TeV4, respectively. The labels ¢/t indicate that

the factors are equal for the processes in the left column and the charge conjugate.

Besides, we point out that can recover previous results [I5] by setting 03;73 =
2(A?/v?)V;; Gy (with G4y a real parameter). Summing all contributions from the dif-
ferent sub-processes in Table 7 we get the inclusive ¢- and s-channel cross sections for

LHC at 14 TeV

or = 0p(1—-295Gy +...),
o, = 0Y(1+19.43Gy +...), (34)

where o7, are the SM cross sections and the dots stand for quadratic terms which, as

we have found, can be of the same size as the linear ones for s-channel production.
These equations agree very well with Ref. [15], and the small differences (-3.5% and

-1.1%, respectively) in the coefficients of G,¢ can be attributed to a different choice of

28



PDFs or factorisation scale.

5.2 Flavour-changing neutral processes in pp, pp collisions

There are several processes of FCN single top production in hadron collisions, absent

in the SM, to which four-fermion operators can contribute,

Uity —> Ut ,

U; U, — ﬂjt,

uiﬂj — Ut . (35)

They are related by crossing symmetry and/or charge conjugation to the FCN top
decays studied in section 2] and thus have the same matrix elements, with 12 four-
fermion terms (from 14 operators) contributing to the amplitudes for ¢ # k and 6 terms
(from 7 operators) for i = k. In the former case, the cross sections can be written as

By ki3 k3 ijk3 kji3 kji3 ijk3
o = T3 [ICH™ + CoP, Cal + ) + I(CH®, Ok

o3 (IR, CR) + IO, )|

A4 qu’ qu’

37 [TUCR, Cib) + (e, el (36)

qu’

These equations are also valid for ¢ = k, with a 1/2 symmetry factor for u;u; — u;t and
u;u, — u;t absorbed into the definition of the corresponding B; coefficients (see the
discussion in section 3 regarding the relation between ¢ # k and i = k). Alternatively,

one can also use a simpler expression obtained from the one above by setting i = k,

o = p[%\quq3+0qi,/3\2+%\%3?]
By + B i3ij  vi3ij iji iii
+2 i 2 [I(CE7, Cisy + TH(C?, Ciay] (37)

The factors B; for LHC with 14 TeV are given in Table 20, for 7 TeV in Table I and
for Tevatron in Table 22l They are computed using CTEQ6L1 PDFs [20] with @ = my.
These FCN processes have been previously considered in Ref. [16] but unfortunately
the cross sections provided are totally inclusive, summing charged current processes

from several flavours as well, and a direct comparison with their results is difficult.

The relative size of FCN single top production with respect to SM processes can be

appreciated by calculating the ratios

NC B/A4

(38)

prod
OsMm

29



U5 — Ut B, B B
U U — U,jt By BQ, B3 - L ,k D23 2 —
- = ] = 1.35 3.95 t/t
i=1 k=1 149 5.03 t . ]
_ 1=1 j57=2 0.674 1.95 t
0.214  0.0747 t _
0.0690 0.195 t
i=1 k=2 1.95 0.674 t .
_ 1=2 7=1 0.0690 0.195 t
0.195 0.0690 ¢ _
_ 0.674 1.95 t
i=2 k=2 0.0431 0.0153 t/t . _
i=2 j=2 0.0307 0.0864 t/t

Table 20: Numerical factors for single top cross sections at LHC with 14 TeV. The
units of B;_3 are pb - TeV*. The labels t, # indicate whether the factors correspond to
the processes in the left column or the charge conjugate.

Uity — ugt By, Bs By
Ui —> th By Bs, Bs - - -
: i=1 j=1 0259 0740 ¢t/
i=1 k=1 3.33 114 ¢ _ 4
_ 1=1 j57=2 0.119 0337 t
0.0316 0.0114 ¢ _
0.00942 0.0260 ¢
1=1 k=2 0.337 0.119 t .
_ 1=2 j=1 0.00942 0.0260 ¢
0.0260  0.00942 ¢ _
. _ 0.119 0337 t
i=2 k=2 0.00517 0.00189 t/t ) _
i=2 j=2 0.00380 0.0104 ¢/t

Table 21: Numerical factors for single top cross sections at LHC with 7 TeV. The units
of By_3 are pb - TeV*. The labels ¢, ¢ indicate whether the factors correspond to the

processes in the left column or the charge conjugate.

Uity — upt By, B; By
U UL — u]'t By BQ, B3 - - -
: — i=1 j=1 480 132 t/t
i=1 k=1 7.49 2.81 t/t . . _
. _ 1=1 7=2 1.01 2.64 t/t
i=1 k=2 2.64 1.01 t/t . . _
. _ 1=2 j5=1 1.01 2.64 t/t
i=2 k=2 0.0262 0.0104 ¢/t . . _

i=2 j=2 0.0210 0.0530 ¢t/t

Table 22: Numerical factors for single top cross sections at Tevatron. The units of
By_g are fb - TeV*. The labels ¢/# indicate that the factors are equal for the processes
in the left column and the charge conjugate.

of the FCN cross sections (up to effective operator coefficients) over the SM single top
cross section. For uu — ut this ratio takes values up to nggd = 0.067/A* TeV*, which

is 4 x 10* times larger than the corresponding quantity n}<

in the top decay, making
very interesting the study of four-fermion operator effects in single top production.
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5.3 Single top production in e"e~ collisions

Single top production in eTe™ collisions constitutes the best process to probe tieée
four-fermion terms, if a high-energy International Linear Collider (ILC) is built. The

cross section for ete™ — ut with longitudinally polarised beams is

_ s 32

oleper) = STAT (14 ) [A|CUR 1 + 1CeF 1P 3+ B),
_ s 52

olefer) = ST (11 B +ﬁ) [4[CLR P+ 1CRM P 3+ B),

oleier) = oo gy [CHEPE+ B) + 610K+ )

+6 Reckzlelficllkfi*(l_i_ﬁ)] ’

q Lge
a(e+e_) . S 572 [|0311k|2(3+6)+6| 113k|2(1+6)
R*R - 87TA4< + /8)3 qle Lqe
+6Re C2FClu(1+ )] (39)

being /s the CM energy and 8 = (s — m?)/(s + m?) the top velocity in the CM
frame. Note that for e the subindex indicates the helicity, not the chirality. For
uit production the cross sections are the same. Our expressions for the vector terms
(first two equations) agree with those in Ref. [I7], as it can be seen by translatin

our notation, Vip = Cll*, Vep = CLM Vig = —C¥1/2, Vi = —CEH'3* /2

For the scalar terms, our operators 031”g and OH?”LC are equivalent to Sgr and Trg in
that reference (the last one obtained by a Fierz transformation of a scalar term) while
our operators OF!* and O}}** were not included. As it can be found from Table 15
these operators generate terms (uryer)(€értr) and (upxtr)(€r er), respectively, plus
the Hermitian conjugate. In the notation of Ref. [I7], they would correspond to Sy,

terms.

6 Top pair production

For top pair production in hadron and e*e™ collisions the multiplicity of sub-processes
is much smaller than for single top production. However, the matrix elements (and thus
the total cross sections) are complicated by the presence of more interference terms,
proportional to m?, which are not present in processes with three light quarks. We will

first study ¢f production at LHC and Tevatron. The conspicuous process of like-sign

'Notice a missing factor of 1/2 in Eq. (32) of Ref. [17], because the total cross section is the average
of the polarised ones.
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top pair production in hadron collisions will be discussed in detail next. Finally, we

will turn our attention to ¢¢ production in ete™ collisions.

6.1 ¢t production in pp, pp collisions

We consider here the processes @;u; — tt, czl-dj — tt, with i, 7 = 1,2, for which there is
a SM QCD contribution when i = j. (We do not include electroweak ¢t production in
our calculations.) For @;u; there are, in addition, 12 independent four-fermion terms
resulting from 14 effective operators, 6 terms for the colour flow uu;, — t,t, and 6 for
UjqUjq — tyty. For Jidj there are 16 independent four-fermion terms, 8 for each colour
flow. We have checked that our matrix elements coincide with Ref. [21], for the subset
of operators considered there. For w;u; — tt the SM plus four-fermion contributions

are

— Dint 1133 3113 3113 1331 3ii3
a(ulul) = D0+ A2 [qu/ —|—qu _'_Cuu _Cqu _Cqu}

D, 1133 3ii3  vii33 3043 1933 303
+ 7 [T(CLP + CXP Ci® 4+ CH%) + TI(CL?, Ca?)

aq aq’ >
330 i33i ii id Dy ii ii
HI(Cu, Cou™) + THCG, Coui)] + 3 THCRT, Ci)

qu’ > qu’ > qu’ >

D3 1133 313 1331 1133 3413 1331
7 [TL(CL + O3 Ol Ol + O3 O

qq qq’ » Mqu’ > qq >
313 1133 3413 313
+H(Cqu’ ) Cuu ) C1qu ) Cuu )} ) (40)

and for flavour-nondiagonal processes the four-fermion cross sections are

D
out.cr) = S [I(CE + C21%, O3 + C21%) 4 TI(CLR, 0319)
IO, O + MO, O
D
+A—j [T(CZ32, Co312) + TIOR3, O]
1233 3213 1332 1233 3213 1332
+_ Re [H(qu _'_ qu/ 9 Cqu/ 3 qu/ _'_ qu 5 Cqu )

HI(Cou”?, O™, Cu™ . Coa™)] (41)

The numerical coefficients D; are collected in Table 23] for LHC at 14 TeV, in Table
for the same collider at 7 TeV and in Table 25 for Tevatron. We have used CTEQ6L1
PDFs with a factorisation scale () = m;. Notice that, except for different PDFs, the

cross sections for u¢ and cu are equal, involving the same set of operator coefficients.

It is remarkable that at LHC with 14 TeV the quadratic terms multiplying D,, corre-

sponding to four-fermion terms which do not interfere with the SM, give a contribution
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which can be comparable to the interferences of other operators. For example,

9.04

om(un) = e [quql,33 + 03;13 + 0211;3 _ 03331 _ 02513} pb - TeV2 :
6.82
oyr (ut) N [[COM? + |CoM [P + 2Re O3 O3] ph - TeV* + ..., (42)

where we have omitted other contributions in the second equation. Therefore, these
operators are worth being investigated in detail, as well as the ones interfering with
the SM. For d;d; — tt the SM plus four-fermion contributions are

_ Dine ri: N . .
o(did;) = Do+ —5 [CL 42055 — O35 — 03]

A2 qaq’ u
+A—i [IL(CUP2, ClP) + AIL(CR, Cos') + IO, C?h)
HIL(CR, Coi) + STL(Cs, Cpath)]

+A_j [H(C33zz 03322) + Re H(033m 02332 03311 01331)]

qqe ’ ~'qqe’ qqe v ~'qqe’ 1 Y qqe’ » ~ qqe
D3

qq  qu’ 0 qq’ >
and for flavour non-diagonal combinations we have

_ D,

olds,sd) = b (O, CRP) + AI(CE?, CBP) + T, C1)
I, C) + (O, O + 1O, O]
D
P (IO, O + T, G + Re NG, O, O, 1)
3321 2331 3321 2331
+Rell(Cs, Coi, Coni, Ot )}

+% Re [T1(C1233, €132 €123 01332y 4 o[[(C3213, 03312 03213 03312)]
(44)

The coefficients D; for these processes can be found in Tables 23] 24] and 23] as well.
We point out that again there are effective operators which do not interfere with the
SM but can give quadratic contributions of the same order of the interference terms at

a CM energy of 14 TeV. For example,
= 5.01

Gn(dd) = S [CLE 4 208 — O - O] ph - TeV?,
= 3.88
our(dd) = 7 [ICEMP + GBI + 3 ReCEICEN] pb- TV 4., (45)

with additional terms omitted in the second equation.

For Tevatron, it is also of interest to provide expressions for the FB asymmetry
of the top quark, motivated by an apparent disagreement between the CDF and
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U — tF Do D Dy Do Ds
i=1 j=1 425 904 472 682 -1.07
i=1 j=2 - ~0.0494 0.138 -0.0209
i=2 j=1 - 0564  1.61  -0.158
i=2 j=2 211 0.348 0.0820 0.113 -0.0393

didj — tt Dy Diw D Dy D3

i=1 j=1 264 551 270 3.88 -0.648
i=1 j=2 - ~ 0.103 0.290 -0.0377
i=2 j=1 - ~ 0399 1.14 -0.110

1=2 g=2 456 0.802 0.230 0.322 -0.0916

Table 23: Numerical factors for tt cross sections at LHC with 14 TeV. The units of Dy,
Din and Dy_3 are pb, pb - TeV? and pb - TeV*, respectively.

wuj — tt Dy Dint D, Dy Dy
i=1 j=1 146 269 0.796 1.11 -0.309
i=1 j=2 - - 0.00532 0.0143 -0.00329
i=2 j= - - 0.00847 0.234  -0.0387
i=2 j=2 0.323 0.0477 0.00780 0.104 -0.00524
didj — tt Do Din D, Dy D3
i=1 j=1 870 1.58 0.440 0.614 -0.181
i=1 j= - ~ 0.0127 0.0344 -0.00713
i=2 j= - — 0.0609 0.169 -0.0272
i=2 j=2 0.903 0.141 0.0270 0.0364 -0.0157

Table 24: Numerical factors for ¢t cross sections at LHC with 7 TeV. The units of Dy,
Dine and Dy_3 are pb, pb - TeV? and pb - TeV*, respectively.

DO [23] measurements and the SM prediction. Let € be the angle between the top
quark momentum in the ¢f rest frame and the incoming proton momentum. The FB

asymmetry is
o(cosf > 0) —o(cosb < 0)
App = : 4
7 o (cos 0 > 0) + o(cosf < 0) (46)

If this asymmetry is originated by new heavy physics contributing to ue — tt, dd — tt,
it can be parameterised in terms of gauge-invariant effective operators. In order to

calculate this asymmetry in the presence of four-fermion operators, we give here the

34



U — tf Do Diw D Do D
i=1 j=1 4780 717 110 145  -79.2
i=1 j=2 — 0295 0735  -0.292
i=2 j= ~ 0295 0735 -0.292
i=2 j=2 118 0.137 0.0123 0.0149 -0.0142

didj — tt Dy Din D, Dy D4

i=1 j=1 868 120 153 19.7  -129
i=1 j=2 - - 0.235 0.587 -0.238
i=2 j=1 - - 0.235 0.587  -0.238

1=2 j=2 682 0806 0.0752 0.0916 -0.0836

Table 25: Numerical factors for ¢t cross sections at Tevatron. The units of Dy, Dipy
and D;_5 are fb, fb - TeV? and fb - TeV*, respectively.

forward and backward cross sections

F

o =0(cosf >0), of =0(cosh <0), (47)

for uu — tt, dd — tt at the tree level. For the former process they are

DF,B DF,B
FB/ —\ __ in 1133 3113 3113 int 1331 3113
o"P(uu) = 2.39 pb+ A; [qu, +Chy "+ Ch }——AZ [Cqu +Cy ]
DF,B
1 1133 3113 ,~1133 3113 1133 3113
+ A4 [H(qu +qu’ ’qu’ _'_qu )_'_H(Cuu ’Cuu )}
DrP
1331 1331 11 11
+ A4 [H(qu’? 7Cq23 )+H(C§u’3ac§’u 3)]
0.0725 pb - TeV*
+ P I(CE, C
0.0395 pb-TeV4 1133 3113 ,~1331 ~1133 3113 ,~1331
- A4 [H(qu +qu’ ’Cqu’ ’qu’ Jrqu ’Cqu )
(G, CL2, ColP Co) ] (48)

being the numerical constants

DE = DB = 0.499 pb - TeV?, DB = DE =0.219 pb - TeV?,
DI = DP = 0.0890 pb - TeV*, DP = DF =0.0209 pb-TeV*.  (49)
Obviously, o = o + ¢P. The numerical coefficients of quadratic terms are about 1/5

of the linear ones, so these terms can be ignored in a first approximation, provided

that A 2 1 TeV and the operator coefficients are of order unity. For the latter process
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the forward and backward cross sections are

F.B nEF,B

_ D D::
F,B _ in 1133 3311 in 1331 | (3113
o P(dd) = 0434 pb+ —o- [Cp” +2C0 | — —5- [Cu” + Caa”]
DFB 1133 1133 3311 3311
+—a [IL(C, %, Coi®) + AIL(CoM, O
DEB
T /§4 [H(C;Z’ 01331) + H(C’P’;}?’, 03113) (C;ése 03331)}
9.86 fb - TeV* 3311 3311 DFB 3311 1331 3311 1331
+—A4 (C'qq6 ,C e’ )+ Ad ——Re H(C’qqe ,C P que, que )
6.47 fb - TeV* 1133 1331 1133 1331
- A4 [H(qu ’Cqu C Cqu )
FOTI(CH, O3, s, o3 (50)
with the numerical constants
DE = DB =0.0808 pb - TeV?, DE = DI =0.0388 pb - TeV?,
DFf = DP =121 fb. TeV*, DE = DF =322 fh - TeV*,
DY =542 fb - TeV*, DF =143 fb- TeV*. (51)

In this case the quadratic terms are multiplied by small numerical factors, and can be
dropped in a first approximation. The FB asymmetry can be obtained just summing
the ut and dd contributions and using Eq. (@G). Besides, we note that, among the
seven operators which interfere with the SM amplitudes and could give sizeable contri-
butions to the FB asymmetry, one (02;13) is also involved in single top production (see
section 5.1)). If the FB asymmetry can be explained by new physics which manifests as
four-fermion effective operators, related effects might be seen in single top production
at LHC as well.

6.2 Like-sign top pair production in pp, pp collisions

The process u;u; — tt is rather interesting due to its potentially large cross section, in
particular for the case of two initial u valence quarks, and its striking signature of two
like-sign top quarks. For 7 # j the matrix element is similar to the one for ¢t — w;u,;u;,
u;u; — tuj, except for some extra interference terms proportional to m?, which did not

appear in the former processes because u; was taken massless. The cross sections can
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be written as
- Ey
o(uc,uc) = A [[C3% + CLiP 1 + |Ca®)?)
Ey 1323 1323 2313 2313
11 [TL(CL7, Coz®) + TI(C22, C2%)]
Es 1323 1323+ 2313 ~2313+
+F {Re [Cqul Cqu + Cqul Cqu :|
ORI+ IO P+ ICRP +CZPP)} ()
with FE;_3 numerical factors, whose values for LHC at 14 TeV, LHC at 7 TeV and
Tevatron are given in Tables 26, 27 and 28] respectively, using CTEQ6L1 PDFs with a
factorisation scale Q = m;. The case i = j, with identical particles (except for colour)
in both the initial and final states, is quite singular. One of the subtleties particular
to these processes is that for different initial quark colours a, b the gauge-invariant

operators have two terms which contribute to the amplitude. For example, for ¢ = 1

we have

(upy"tr)(UrYutr) — (UraY'tRa)(UrsYulrs) + (Ury Y tRe) (URa Vet Ra)
= 2(Uga"tra) (UrpYutro)
(@ tr)(upyute) — (Gra¥*tre)(@reyutre) + (WreY*trs) (UraYutra) (53)
(no sum over a,b). For equal colours, u,u, — t,t, there is only one such term but

amplitudes get four contributions with a 1/2 symmetry factor for identical particles,

as usualH After colour averaging and phase space integration, the cross sections read
ooy b [ (333 | (i3i3)2 | | i3 2]
O'(UZUZ, uzuz) - A4 | qq + qq’ | + | uu |
By 1) ~isis )2 i3i312 | 2 i3i3 (1i3i3x
+F |:|Cqu/ + |Cqu | _'_ § Re Cqu/ Cqu ]
Es i3i3 ~vi3i3% | 1 [{vi3i3|2 i3i32
+7 {Re G’ O™ + 5 IG5 + 1CGP1P] } - (54)

with the factors E;_3 collected in Tables 26, 271 and 28] The large numerical value of
the coefficient E; for initial uu states at LHC, already with a CM energy of 7 TeV,
implies an excellent sensitivity to the four-fermion operators O;Z’(l,? and O313 namely
four-fermion terms (upy*tr)(ury*ty) and (ugy*tr)(ury*tg). It is then expected that
a large scale A will be probed at LHC for these operators, in the clean final state of

two like-sign top quarks.

2Two contractions were missing from the amplitudes for wu, cc — tt in the first two versions of this
paper. The cross section expressions have already been corrected in Ref. [24], and numerical values
for LHC with a CM energy of 7 TeV have been given. By introducing a ¢-channel propagator in the
amplitudes, the results have also been compared with the cross sections for a flavour-violating 7’
boson in Refs. [251[26], obtaining a good agreement.
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uju; — it Ey FEs E3

i1=1 j5=1 1756 9.60 -0.930 t
0.859 0.114  -0.0423 t

1=1 453=2 215 0.563 -0.158 t
0.184 0.0496 -0.0211 t

i=2 j=2 0151 0.0205 -0.00977 ¢/t

Table 26: Numerical factors for like-sign top pair cross sections at LHC with 14 TeV.
The units of E;_s are pb-TeV?*. The labels ¢, ¢ indicate whether the factors correspond
to the processes in the left column or the charge conjugate.

ujuj — tt Ey Es E3

1=1 j5=1 15.8 2.05 -0.420 t
0.102 0.0141  -0.00783 ¢

1=1 j5=2 0314 0.0848  -0.0389 t
0.0191 0.00534 -0.00330 ¢t

i=2 j=2 0.0138 0.00193 -0.00132 ¢/t

Table 27: Numerical factors for like-sign top pair cross sections at LHC with 7 TeV.
The units of E;_s are pb-TeV?*. The labels ¢, ¢ indicate whether the factors correspond
to the processes in the left column or the charge conjugate.

uuj — it E; Es FEs

i=1 4j=1 138 2.04 -1.88 t/t
i=1 j=2 0.983 0.296 -0.294 )t
i=2 j=2 0.0204 0.00319 -0.00380 t/t

Table 28: Numerical factors for like-sign top pair cross sections at Tevatron. The units
of Fy_g are fb-TeV*. The labels ¢/ indicate that the factors are equal for the processes
in the left column and the charge conjugate.

6.3 Top pair production in e¢*e~ collisions

We finally present results for ¢ production at a future ILC, including all four-fermion

contributions and considering longitudinally polarised beams. The SM cross sections
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for eTe™ — tt are

B

osmleher) = Tom s(3+ B8%) [Verl* + [Verl*] +24miViVir} |
O'SM(ezrels) = 16% 8(3 —|—62) UVRL‘Q + ‘VRR‘Q} + 24m?VRLVRR} ,
osu(erer) = osuleper) =0, (55)

with 8 = 1 — 4m?/s the top velocity in the CM frame. The “effective” couplings

apprearing in these equations are

2 afa’; Qt .o
= -2, i,j=L,R, 56
Vi =¢ stci (s —Mz) s " (56)

being @; = 2/3 the top quark charge, s}, the electroweak mixing angle and

e __ 1 2 e 2
aL__§+SW7 Ar = Sw
t 1 2.2 t 2.2

the chiral couplings of the electron and top quark to the Z boson. Four-fermion vector

terms can be included in Eqs. (53) simply by replacing

Vir = Vi +2Re aé;gg s VLR — Vi, — Re Ozéi’gl ,
Vrr — Ve — Re 042213 , Vrr — Vrr + 2Re 04;1[9’3 . (58)

We find it more convenient, however, to give separately the interference of four-fermion
operators with the SM and full quadratic four-fermion cross sections, including opera-

tors which do not interfere. The former is

B

om(ener) = S {5(3 + %) [QVLL Re C’glql?’3 — Vir Re 05331}
+12m7 [2VLrRe Cpy™ — Vi  Re €)%},
om(erer) = 875\2 {5(3 + %) [QVRR Re 061533 — Vi1 Re C’gen?’}

T 12m? [2V; Re O _ Yy Re G} (59)
with obviously oy (efer) = omi(efher) = 0. The four-fermion polarised cross sections
are

suwleier) = o (s34 87 [LReCY) + (ReCEMY
—48m; Re Cp; P Re Cy°' }
suwleier) = o {s(3+ 8%) [A(ReCAP) + (ReCLY)
—94m? Re L% Re 011 |
ourlefer) = ouleper) = # {3+ 870
+65(1 4 57) [|Crp’ | + Re Coil° Cl2**] } (60)
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Our expressions agree with the unpolarised cross sections in Ref. [27] for vector terms,

as it can be seen with the redefinitions A;, = 2 Re oz%qw?’ — Reay®!, By, = 2Re oz%qw?’ +
1331 — 1133 3113 — 1133 3113

Reay,”, Ar = 2Reaq,,™ — Rea,, ™, Bp = —2Rea,,™ — Reaq,,”. For scalar terms

our expressions agree as well, where comparable. Note also that cross sections for

transverse beam polarisation have been recently given in Ref. [2§].

7  Summary

In this paper we have thoroughly studied the role of gauge-invariant four-fermion op-
erators in top physics. The first difficulty one has to address in such a study is merely
to collect all the relevant four-fermion operators, which is cumbersome because of the

large number of flavour combinations, not all of them independent, that can be written.

We have used a new, minimal four-fermion operator basis, which offers some ad-
vantages for calculations, to classify all gauge-invariant four-fermion operators giving
terms with one or two top quarks. (Only a handful of operators give three or four
top quarks, and their classification is straightforward.) We have given our results in
several compact tables in which the Lagrangian terms can be directly read by inter-
secting the desired row and column. Having all the possible terms classified represents
a good share of the work needed for any calculation, and so we expect that the tables
provided will be useful for future studies. A bonus of this classification is that con-
tributions from the same gauge-invariant operators to different channels can be easily
related. Just as an example: we can identify which operators produce tbiid terms (and
thus contribute to single top production), which ones give ttuau terms (contributing to

top pair production) and those producing both.

We have gone beyond the classification, which is already important on its own, to
provide calculations of all decay widths, single top and top pair production cross sec-
tions mediated by four-fermion operators, including the SM contribution when present.
These calculations will be valuable to guide future more detailed simulations, not only
to have “reference” numerical values to compare with, but also to identify the most use-
ful channels and the relevant operators which can be probed. In this respect, we have
found that in s-channel single top and ¢t production there are four-fermion operators
which do not interfere with the SM amplitudes but whose quadratic 1/A?* contributions
to the cross sections can be as large as the linear 1/A? ones from the interfering ones.
As we have argued in the introduction, quadratic corrections from such operators can
and must be included in a complete analysis, even if we have ignored sub-leading effects

from dimension-eight operators.
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The phenomenological implications of our results have not been fully addressed, for
example providing expected limits on operator coefficients. This work is left for future
detailed studies. Still, there are several interesting points which are worth remarking
here:

1. Four-fermion terms with fields tczkaidj (including dj, = b) and tugu;u; will be
better probed in single top production than in top decays. In the former case, they
contribute to SM ¢- and s-channel production, while in the latter they mediate

new, FCN processes.

2. Four-fermion terms tdye;i; (including dj, = b) can only be probed in top decays.
Moreover, some of the gauge-invariant operators producing these terms, for ex-
ample Oy, cannot be investigated in other processes as single top or top pair

*e~ collisions. The net contribution to the decay width of four-

production in e
fermion operators is very small, but the interference produces an asymmetry in
the distribution for invariant masses m., < My, and m,., > My, which should

be studied with more detail.

3. Operators giving ttu,;u; terms will likely be probed with a good precision in like-
sign top pair production at LHC, especially for ¢ = j = 1, where the cross sections

are potentially large and the final state relatively clean.

We have also given expressions to calculate the FB asymmetry for ¢f production at

Tevatron including all contributing four-fermion operators, to complement present

studies [21].

In summary, we have provided in this paper a roadmap for future studies of gauge-
invariant four-fermion operators in top physics, which we expect will be useful now

that the era of precision measurements in the top sector has just begun.
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