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Abstract. We argue why vector-like quarks are usually expected to mix predominantly with the third generation,
and discuss about the expected size of this mixing and its naturalness.

1 Introduction

New quarks beyond the three chiral families of the Stan-
dard Model (SM) have been searched at the Tevatron and
now at the Large Hadron Collider (LHC). The most ob-
vious1 possibility of a fourth chiral generation is now ex-
cluded by indirect constraints and also by the agreement
found for Higgs cross sections and decay branching ratios
with the SM predictions. But this is not the only way to ex-
tend the quark sector. Indeed, vector-like quarks, namely
multiplets whose left- and right-handed parts transform
under the same SU(2)L representation, can exist and cou-
ple to the SM particles. In particular, they can be produced
at the LHC and give a variety of clean characteristic sig-
natures [1]. It is usually assumed that vector-like quarks
couple predominantly to the third SM generation. Here
we discuss some motivations for this assumption, and in-
vestigate the expected size for that mixing.

2 General mixing

If the scalar sector comprises only SU(2)L doublets, as it is
suggested by the agreement of the measured Higgs boson
properties with the SM predictions, there are only seven
possibilities for vector-like multiplets coupling to the SM
particles [2]

T 0
L,R , B0

L,R (singlets) ,

(X T 0)L,R , (T 0 B0)L,R , (B0 Y)L,R (doublets) ,

(X T 0 B0)L,R , (T 0 B0 Y)L,R (triplets) , (1)

where a zero superscript is included in the weak eigen-
states to distinguish them from the mass eigenstates. (This
superscript will be omitted for brevity when it is clear
from the context.) We will consider here minimal models

ae-mail: jaas@ugr.es
1Here, obvious does not mean natural: a fourth generation of fermions

includes a fourth neutrino heavier than half the mass of the Z boson, that
is, 11 orders of magnitude heavier than the other three neutrinos.

with one additional multiplet. The resulting mass eigen-
states are linear combinations of all weak eigenstates of
the same charge, with mixing matrices that are determined
from the diagonalisation of the mass matrix. For example,
for charge 2/3 quarks, the addition of a new weak eigen-
state T 0 results in a 4 × 4 mass matrix

Lmass = −
(

ū0
Li T̄ 0

L

)  yu
i j

v
√

2
yu

i4
v
√

2

yu
4 j

v
√

2
M0

  u0
R j

T 0
R

 + H.c. .

(2)
We use a compact block notation where u0

Li.R j, i, j = 1, 2, 3,
are three-vectors of the SM fields u0

L,R, c
0
L,R, t

0
L,R; yu

i j is the
standard 3 × 3 matrix of Yukawa couplings and yu

i4, yu
4 j

are matrices of Yukawa couplings with dimensions 3 × 1
and 1 × 3, respectively; v = 246 GeV is the Higgs vac-
uum expectation value and M0 is a bare mass term. When
T 0 is a singlet or belongs to a triplet yu

4 j = 0, while if
it belongs to a doublet yu

i4 = 0. The 4 × 4 mass matrix
Mu appearing in Eq. (2) can be diagonalised by a biuni-
tary transformation Uu

LM
u(Uu

R)† =Mu
diag, and the relation

between mass and weak eigenstates is u0
Lα = (Uu

L)αβ uLβ,
u0

Rα = (Uu
R)αβ uRβ, with α, β = 1 − 4. Exact expressions for

Uu
L,R are unmanageable, but simple ones can be obtained

under the assumption that M0 � y v
√

2
, where y denotes

any of the Yukawa couplings. This assumption is well mo-
tivated by the lower limits on heavy quark masses set by
LHC searches, which range between 600 and 800 GeV [3–
6]. Then, at first order, for singlets and triplets (yu

4 j = 0)
one has [7]

Uu
L =

 Ûu
L 0

0 1


 113×3 −yu

i4
v

√
2M0(

yu
i4

)† v
√

2M0 1

 ,
Uu

R =

 Ûu
R 0

0 1

 , (3)

where Ûu
L,R are 3 × 3 unitary matrices that diagonalise the

3 × 3 submatrix of the lighter mass eigenstates. The mix-
ing between the light and heavy eigenstates is given by
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the off-diagonal entries in the second factor of Uu
L, namely

−yu
i4v/(

√
2M0). The assumption M0 � y v

√
2

made for the
approximate 4 × 4 diagonalisation implies that these mix-
ings are small, which is in agreement with experimental
constraints. For extra quark doublets (yu

i4 = 0) one has
instead

Uu
L =

 Ûu
L 0

0 1

 ,
Uu

R =

 Ûu
R 0

0 1


 113×3 −

(
yu

4 j

)† v
√

2M0

yu
4 j

v
√

2M0 1

 .
(4)

The same formalism applies with trivial replacements to
the down sector in the presence of an additional eigenstate
B0, with respective mixing matrices Ud

L,R, Ûd
L,R and d0

Lα =

(Ud
L)αβ dLβ, d0

Rα = (Ud
R)αβ dRβ.

Let us now focus on the 3 × 3 mixing among SM
quarks. The standard 3 × 3 Cabibbo-Kobayashi-Maskawa
matrix is Ûu

L(Ûd
L)†, and is experimentally measured to be

nearly diagonal. This means that either Ûu
L, Û

d
L ∼ 113×3,

or Ûu
L, Û

d
L ∼ ÛL, with ÛL a unitary matrix with large off-

diagonal entries. But the latter possibility is equivalent to
the former with a redefinition of the initial weak eigen-
states (u0

L d0
L), (c0

L s0
L), (t0

L b0
L). So, in full generality one

has Ûu
L, Û

d
L ∼ 113×3. Furthermore, with a redefinition of

the initial right-handed eigenstates one can also assume
Ûu

R = Ûd
R = 113×3. Hence, the strong hierarchy of SM

quark masses mu � mc � mt in the up sector implies
yu

11 � yu
22 � yu

33. Although we do not yet have a theory
of flavour, it is natural to have the same hierarchy in the
entries involving the new quarks

yu
14 � yu

24 � yu
34 (singlets,triplets) ;

yu
41 � yu

42 � yu
43 (doublets) , (5)

so that the mixing with the top quark, proportional to yu
34

(or yu
43 for doublets) is expected to be the largest one. The

same argument, following from the mass hierarchy md �

ms � mb, suggests that in the down sector the mixing with
the bottom quark is dominant.

Aside from these plausibility arguments, there are
stringent constraints on mixing from experimental data.
The mixing of a vector-like quark with more than one
light quark generates flavour-changing neutral interactions
among the SM quarks [7, 8]. Their non-observation
then implies —in our framework with only one additional
multiplet— that only one light quark can have significant
mixing with the vector-like quark. In the up sector the
mixing with the top quark is less constrained than with
the up and charm quarks [9], so also from an experimen-
tal point of view a larger mixing with the top quark is
favoured. On the other hand, this does not happen in the
down sector, where constraints on the bottom quark mix-
ing (resulting from precise measurements of Z → bb̄ at
LEP) are more stringent than the ones for the d, s quarks.
We note, however, that these constraints can be evaded in
non-minimal models with more than one vector-like quark

and, in particular, mixing with the light generations can be
sizeable while fulfiling experimental constraints [10].

3 Mixing with the third generation

Assuming that the new states only mix with the third
generation ones, the exact mass matrix diagonalisation is
straightforward, and the non-trivial blocks of the 4×4 uni-
tary matrices in Eqs. (3), (4) read [11](

tL,R

TL,R

)
=

(
cos θu

L,R − sin θu
L,Reiφu

sin θu
L,Re−iφu cos θu

L,R

) (
t0
L,R

T 0
L,R

)
(6)

for the up sector and(
bL,R

BL,R

)
=

(
cos θd

L,R − sin θd
L,Reiφd

sin θd
L,Re−iφd cos θd

L,R

) (
b0

L,R
B0

L,R

)
(7)

for the down sector. In terms of the mass matrix elements,
the mixing angles for singlets and triplets are [11]

tan 2θq
L =

√
2|yq

34|vM
0

(M0)2 − (yq
33)2v2/2 − |yq

34|
2v2/2

,

tan θq
R =

mq

mQ
tan θq

L , (8)

with (q,mq,mQ) = (u,mt,mT ), (d,mb,mB) , and

tan 2θq
R =

√
2|yq

43|vM
0

(M0)2 − (yq
33)2v2/2 − |yq

43|
2v2/2

,

tan θq
L =

mq

mQ
tan θq

R , (9)

for doublets (see also [12, 13]). Note that the diagonal
entries of the mass matrices can be assumed real in full
generality. The approximate expressions in Eqs. (3), (4)
can be recovered by expanding the trigonometric functions
at first order in v/M0. The masses of the third generation
quark and its heavy partner are

mq = cos θq
L cos θq

R y
q
33

v
√

2
+ sin θq

L sin θq
R M0

− cos θq
L sin θq

R |y
q
34|

v
√

2
,

mQ = sin θq
L sin θq

R y
q
33

v
√

2
+ cos θq

L cos θq
R M0

+ sin θq
L cos θq

R |y
q
34|

v
√

2
(10)

for singlets and triplets. These equations can be inverted
to write the moduli of the 2 × 2 mass matrix elements in
terms of the two masses and the mixing angle,

M0 =

√
m2

Q cos2 θ
q
L + m2

q sin2 θ
q
L ,

|y
q
34|

v
√

2
=

m2
Q − m2

q

M0 sin θq
L cos θq

L ,

y
q
33

v
√

2
=

√
m2

Q sin2 θ
q
L + m2

q cos2 θ
q
L − |y

q
34|

v
√

2
.

(11)
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For doublets the expressions are analogous, and can be ob-
tained from Eqs. (10), (11) by interchanging θq

L and θq
R and

replacing yq
34 by yq

43. We emphasise here that it is very con-
venient to give limits and parameterise observables such
as cross sections in terms of the physical quark masses mq,
mQ and mixing angles (the angles in the left and right sec-
tors are not independent, see Eqs. (8), (9)). Among other
advantages, using this parameterisation one of the vari-
ables —the third generation quark mass mq— is already
fixed by experimental data. However, this parameterisa-
tion “hides” the fact that, for a heavy mQ, a large mixing
requires a large off-diagonal matrix element yq

34 (or yq
43),

as it can be seen from Eqs. (8), (9). We will discuss this
issue for the up and down sectors in turn.

3.1 Mixing in the up sector

It can be seen from Eqs. (10), that the top quark mass is
mt ' yu

33v/
√

2 to a good approximation (see below for a
detailed derivation for the down sector). Then, the diago-
nal Yukawa coupling is large, yu

33 ' 1, just as in the SM.
We can then ask ourselves which is the expected mixing in
case that the diagonal and off-diagonal Yukawas are not hi-
erarchical, taking for example yu

34 (or yu
43) between yu

33/2
and 2yu

33. The result is given in Fig. 1, where the upper
limits on the mixing derived from the heavy quark contri-
butions to oblique parameters T,S and Z → bb̄ [11] are
overlaid.

These plots clearly show that, unless the off-diagonal
Yukawa coupling yu

34 (or yu
43) is significantly smaller than

the top quark one, the mixing of the top quark with its
heavy partner is expected to be close to its upper exper-
imental limit. Moreover, in certain setups [14] a larger
off-diagonal coupling is expected. A detailed study of
the phenomenological implications of a sizeable mixing
for LHC searches and precision measurements of top cou-
plings at the International Linear Collider (ILC) can be
found in [11].

3.2 Mixing in the down sector

In the down sector, non-hierarchical Yukawa couplings
imply a very small mixing, due to the smallness of the bot-
tom quark mass. However, this is not a necessary require-
ment and, in the same way as for the top quark, one can
naturally have off-diagonal couplings of order unity [15].
Then the question arises whether this does imply a fine
tuning of the small b quark mass, with cancellation of large
contributions. We will show that this is not the case. Con-
sidering for definiteness the case of an extra B doublet, and
dropping the d superscripts everywhere, one has from the
first of Eqs. (10)

mb = cos θL cos θR y33
v
√

2
+ sin θL sin θR M0

− sin θL cos θR |y43|
v
√

2
. (12)

The mixing in the down sector is experimentally con-
strained to be small [11]. The limits are less restrictive for
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Figure 1. Expected mixing of the top and its heavy partner for
the T , (T B) and (X T ) multiplets, for non-hierarchical Yukawa
couplings. The upper limits on the mixing from precision mea-
surements [11] and current mass limits from direct searches are
also indicated.

a (B Y) doublet that explains the forward-backward asym-
metry in Z → bb̄ with a mixing angle sin θR ∼ 0.15. There-
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fore, one can use a second order Taylor expansion,

sin θR ' θR , cos θR ' 1 −
1
2
θ2

R ,

sin θL '
mb

mB
θR , cos θL ' 1 −

1
2

m2
b

m2
B

θ2
R ,

M0 ' mB

(
1 −

1
2
θ2

R

)
+

m2
b

m2
B

θ2
R ,

|y43|
v
√

2
' mB

1 − m2
b

m2
B

 θL . (13)

The second term in Eq. (12) is the contribution to the b
quark mass from the bare mass term M0, and equals mbθ

2
R,

dropping higher orders in θR. The third term is the con-
tribution from the off-diagonal Yukawa coupling y43, and
equals −mbθ

2
R(1 − m2

b/mB
2). Both are quadratically sup-

pressed, and their sum mbθ
2
L(m2

b/m
2
B) is even more sup-

pressed, so the b quark mass is mainly given by the first
term in Eq. (12). Therefore, having a moderate mixing in
the down sector can be natural provided one has a mech-
anism to yield an off-diagonal Yukawa coupling much
larger than the bottom quark one.
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