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Summary

In this thesis we study numerical methods for solving nonlinear eigenvalue problems of
polynomial type, i.e. P(λ )x ≡ (∑k

`=0 λ `A`)x = 0, where A` ∈ Cn×n, λ ∈ C, 0 6= x ∈ Cn. In
particular, we are interested in the quadratic (k = 2) and the quartic (k = 4) eigenvalue problems.
The methods are based on the corresponding linearization – the nonlinear problem is replaced
with an equivalent linear problem of the type (A−λB)y = 0, of dimension kn.

We propose several modifications and improvements of the existing methods for both the
complete and partial solution; this results in new numerical algorithms that are a substantial
improvement over the existing ones. In particular, as an improvement of the state of the art
quadeig method of Hammarling, Munro and Tisseur, we develop a scheme to deflate all zero
and infinite eigenvalues before calling the QZ algorithm for the linear problem. This provides
numerically more robust procedure, which we illustrate by numerical examples. Further, we
supplement the parameter scaling (designed to equilibrate the norms of the coefficient matrices)
with a two–sided diagonal scaling to nearly equilibrate (in modulus) the nonzero matrix entries.
In addition, we analyze the fine details of the rank revealing factorization used in the deflation
process. We advocate to use complete pivoting in the QR factorization, and we also propose a
LU based approach, which is shown to be competitive, or even better than the one based on the
QR factorization. The new method is extended to the quartic problem.

For the partial quadratic eigenvalue problem (computing only a part of the spectrum), the ite-
rative Arnoldi–like methods are studied, especially the implicitly restarted two level orthogonal
Arnoldi algorithm (TOAR). We propose several improvements of the method. In particular, new
shift selection strategy is proposed for the implicit restart for the class of overdamped quadratic
eigenvalue problems. Also, we show the benefit of choosing the starting vector for TOAR, based
on spectral information of a nearby proportionally damped pencil. Finally, we provide some
new ideas for the development of a Krylov–Schur like methods that is capable of using arbitrary
polynomial filters in the implicit restarting.

Keywords: polynomial eigenvalue problem, quadratic eigenvalue problem, quartic eigenva-
lue problem, projection method, Arnoldi like method, linearization, QZ, quadeig, deflation, rank
determination, normwise backward error, componentwise backward error, TOAR, SOAR
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Prošireni sažetak

Nelinearni problemi svojstvenih vrijednosti se javljaju u mnogim primjenama kako u pri-
rodnim znanostima, tako i u inženjerstvu. Jedna od najpoznatijih klasa nelinearnih svojstvenih
problema su polinomni svojstveni problemi. Tako se, na primjer, kvadratični svojstveni problem
(λ 2M + λC +K)x = 0 pojavljuje u dinamičkoj analizi mehaničkih i električnih struktura, u
vibro–akustici, mehanici fluida, obradi signala. S druge strane, polinomni se problem četvrtog
reda (λ 4A+λ 3B+λ 2C+λD+K)x = 0 pojavljuje u analizi stabilnosti Poiseuilleovog toka u
cijevi.

Za razliku od linearnih problema svojstvenih vrijednosti, numeričke metode za nelinearne
probleme još uvijek nisu dovoljno razrad̄ene, niti numerički pouzdane, iako je algebarska teorija
za polinomne probleme svojstvenih vrijednosti dobro razvijena.

Naglasak ove disertacije je na numeričkom rješavanju kvadratičnog svojstvenog problema.
Cilj je razviti nove, robusnije numeričke metode koje se mogu koristiti u praksi kao pouzdan
numerički softver.

U disertaciji se pročavaju dvije vrste metoda: direktne i iterativne. Direktne metode se
razvijaju za računanje svih svojstvenih vrijednosti i odgovarajućih svojstvenih vektora zadanog
problema. Kada nas zanima samo dio spektra, recimo one svojstvene vrijednosti koje su najveće
po modulu ili one koje se nalaze u lijevoj kompleksnoj poluravnini, tada korisitimo iterativne
metode. Ovdje je najčešće slučaj da je dimenzija originalnog problema mnogo veća od broja
svojstvenih vrijednosti koje želimo izračunati. Ideja iterativnih metoda je konstruirati potprostor
mnogo manje dimenzije od originalnog problema koji sadrži informaciju o traženom dijelu
spektra, a aproksimacija traženog dijela spektra se onda izračuna koristeći projekciju problema
na nad̄eni potprostor.

Osnova većine metoda za rješavanje polinomnih svojstvenih problema je linearizacija, to jest
polinomni problem se zamijeni ekvivalentnim linearnim problemom koji se onda rješava koris-
teći već razvijene metode za linearne probleme. Med̄utim, naivno direktno korištenje linearnih
metoda ne garantira zadovoljavajuće rezultate za originalni problem. Čak i ako izračunati svojst-
veni par ima malu grešku unazad za odgovarajuću linearizaciju, greška unazad za rekonstruirani
svojstveni par originalnog problema može biti puno veća.

Prije razvijanja metoda, u Poglavlju 2 je predstavljena analiza grešaka unazad za polinomni
svojstveni problem, bazirana na radu F. Tisseur [66]. Ideja analize grešaka unazad je da se
izračunate aproksimacije interpretiraju kao egzaktna rješenja problema koji je blizu originalnom
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Prošireni sažetak

problemu, i čiji matrični koeficijenti su definirani kao A`+∆A` pri čemu je ∆A` malo. Med̄utim,
u mnogim primjenama matrice A` imaju odred̄enu strukturu, npr. hermitske su, ili anti hermitske.
Prema tome, bilo bi prirodno zahtjevati da greška unazad ∆A` čuva ovu strukturu. U slučaju kad
je ta stuktura hermitska i anti hermitska, postojeći rezultati za realne svojstvene vrijednosti su
prošireni na općenite svojstvene vrijednosti.

U poglavlju 3 se proučavaju direktne metode za rješavanje kvadratičnog svojstvenog pro-
blema. Standardni pristup je korištenje QZ algoritma na odgovarajućoj linearizaciji. Med̄utim,
ako originalni problem ima svojstvene vrijednosti koje su nula ili beskonačno, ovakav pristup je
sklon numeričkim poteškoćama. 2011. Hammarling, Munro i Tisseur [37] su razvili quadeig
algoritam koji prije korištenja QZ metode za linearni problem skalira originalni problem kako
bi norme matričnih koeficijenata bile ujednačene te pokuša detektirati postojanje svojstvenih
vrijednosti nula i beskonačno koje ona procesom deflacije ukloni iz linearizacije.

Deflacija se temelji na odred̄ivanju ranga matrica M i K. Kod quadeiga se koristi QR fak-
torizacija pivotiranjem stupaca. Koristeći ortogonalne transformacije n− rank(M) beskonačnih
i n− rank(K) svojstvenih vrijednosti nula je uklonjeno iz odgovarajuće linearizacije. Glavni
doprinos ovog poglavlja je novi algoritam za nalaženje svih svojstvenih vrijednosti kvadratično
problema kojeg zovemo KVADeig. Kao motivacija za potrebu poboljšanja quadeiga je predsta-
vljen primjer kod kojeg quadeig nije uspio detektirati sve beskonačne svojstvene vrijednosti.
Štoviše, nakon što je uklonjen odred̄en broj ovih svojstvenih vrijednosti, preostale izračunate
svojstvene vrijednosti koje su konačne čak nemaju ni veliku apsolutnu vrijednost koja bi nas
možda mogla nagnati na zaključak da bi one trebale biti proglašene beskonačnim. Problem na-
stane kada postoji više od jednog Jordanovog bloka za svojstvene vrijednosti nula i bekonačno.
Naime, deflacija u quadeigu ukloni samo jedan Jordanov blok.

Kako bismo riješili ovaj problem razvili smo test koji služi za provjeru postoji li više od
jednog Jordanovog bloka za svojstvene vrijednosti nula i bekonačno. On je baziran na Van
Doorenovom algoritmu za odred̄ivanje Kroneckerove strukture generaliziranog svojstvenog
problema. Dodatno se analizira utjecaj metoda koje se koriste kao faktorizacije za odred̄ivanje
ranga te utjecaj kriterija po kojem se rang odred̄uje. Pored skaliranja koje je predloženo u
quadeigu uvodimo i dvostrano dijagonalno balansiranje čiji je cilj ujednačavanje elemenata u
matricama koje definiraju problem. Na kraju razvijamo metodu baziranu na LU faktorizaciji
potpunim pivotiranjem za odred̄ivanje ranga. Numerički eksperimenti u Sekciji 3.7 ilustriraju
prednosti predložene metode.

U poglavlju 4 je razvijen novi algoritam KVARTeig za rješavanje polinomnog svojstvenog
problema stupnja četiri. Umjesto direktne linearizacije koristimo kvadratifikaciju koja je uve-
dena u [17], tj. definiramo ekvivalentan kvadratični problem. Novi algoritam je baziran na
KVADeigu, s tim da je skaliranje definirano na matricama originalnog problema i proces defla-
cije je prilagod̄en tako da što više iskoristi strukturu originalnog problema. Kao i za kvadratični
problem, i ovdje je razvijen test za provjeru postojanja više od jednog Jordanovog bloka za
svojstvene vrijednosti nula i beskonačno. Numerički primjeri u Sekciji 4.5 prikazuju prednost
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nove metode nad quadeigom i polyeigom koji je implementiran u MATLABu.
U Poglavlju 5 se proučavaju iterativne metode Arnoldijevog tipa za kvadratični svojstveni

problem. Bai i Su [3] su prvi primijetili da je u slučaju iterativnih metoda Arnoldijevog tipa
bolje primijeniti Rayleigh–Ritzovu projekciju direktno na originalni kvadratični problem. U tu
svrhu su definirani Krilovljev potprostor drugog reda i odgovarajući algoritam SOAR (Second
Order Arnoldi) za računanje odgovarajuće baze. Ovaj algoritam je dodatno modificiran te je
razvijen takozvani TOAR (Two level orthogonal Arnoldi) algoritam [49].

U ovom poglavlju predlažemo nekoliko modifikacija implicitno restartanog TOAR algoritma
koje su temeljene na činjenici da algoritam koristimo za rješavanje kvadratičnog problema svo-
jstvenih vrijednosti. Pod implicitnim restartanjem se misli na korištenje polinomih filtera kako
bi se definirao novi početni vektor koji uvelike utječe na konvergenciju metode. Za posebnu
klasu pregušenih problema svojstvenih vrijednosti predlažemo novi način definiranja polino-
mih filtera. Takod̄er, za općenite probleme, predlažemo novi izbor početnog vektora koji se
temelji na aproksimaciji kvadratičnog svojstvenog problema problemom čije je gušenje linearno.
Numerički primjeri pokazuju da predložene modifikacije rezultiraju manjim brojem restartanja
potrebnih za nalažanje svojstvenih parova sa zadovoljavajućom greškom unatrag.

U drugom dijelu Poglavlja 5 dajemo pregled implicitno restartanog Krylov–Schurovog al-
goritma kojeg je uveo Stewart [64]. Ideja ovog algoritma je da se definira faktorizacija koja
ne zahtijeva posebnu strukturu kao Arnoldijeva, i na koju će se lakše primijeniti implicitno
restartanje. Med̄utim, prilikom ovakvog restartanja moguće je koristiti samo egzaktne pomake
za definiranje polinomnog filtera. Drmač i Bujanović su razvili metodu koja omogućava koriš-
tenje proizvoljnih pomaka kod implicitno restartanog Krylov–Schurovog algoritma. U ovom
poglavlju generalizairamo predloženi proces u svrhu korištenja Krylov–Schurovog algoritma za
rješavanje kvadratičnog svojstvenog problema.

vii



Prošireni sažetak

viii



Contents

Introduction 1

1 The Polynomial Eigenvalue Problem 7
1.1 Problem setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Canonical forms of matrix polynomials . . . . . . . . . . . . . . . . . . . . . 9

1.2.1 Jordan normal form of matrix . . . . . . . . . . . . . . . . . . . . . . 9

1.2.2 The Smith form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.3 Jordan chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.4 Invariant Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3 Applications of polynomial eigenvalue problem . . . . . . . . . . . . . . . . . 20

1.3.1 Disk brake squeal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3.2 Regularized Total Least Squares . . . . . . . . . . . . . . . . . . . . . 22

1.3.3 Orr-Sommerfeld equation . . . . . . . . . . . . . . . . . . . . . . . . 25

1.4 Linearizations of Matrix Polynomials . . . . . . . . . . . . . . . . . . . . . . 27

1.5 Localization of eigenvalues of nonlinear eigenvalue problem . . . . . . . . . . 31

1.5.1 Pseudospectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.6 Diagonalizable quadratic matrix polynomials . . . . . . . . . . . . . . . . . . 33

1.7 Minimax theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.7.1 The primary functional . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.7.2 The secondary functional . . . . . . . . . . . . . . . . . . . . . . . . . 38

2 Backward error 41
2.1 Optimal backward error for a given eigenpair . . . . . . . . . . . . . . . . . . 41

2.2 On Hermitian and skew–Hermitian backward error . . . . . . . . . . . . . . . 43

2.2.1 The left eigenpair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3 Backward error for a homogeneous form of P(λ ) . . . . . . . . . . . . . . . . 46

2.3.1 Backward error bounds for the homogeneous form . . . . . . . . . . . 47

2.3.2 Parameter scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.4 Componentwise backward error . . . . . . . . . . . . . . . . . . . . . . . . . 53

ix



Contents

3 Complete solution of the QEP 59
3.1 Rank revealing decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.1.1 Singular Value Decomposition (SVD) . . . . . . . . . . . . . . . . . . 61

3.1.2 QR factorization with column and complete pivoting . . . . . . . . . . 62

3.1.3 The complete orthogonal factorization (URV) . . . . . . . . . . . . . . 66

3.1.4 Rank revealing LU and Cholesky factorizations . . . . . . . . . . . . . 68

3.2 Kronecker’s canonical form for general pencils . . . . . . . . . . . . . . . . . 72

3.3 The algorithm quadeig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.3.1 Parameter scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.3.2 Deflation process in quadeig . . . . . . . . . . . . . . . . . . . . . . 78

3.3.3 Eigenvectors in quadeig . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.4 Balancing by two-sided diagonal scalings . . . . . . . . . . . . . . . . . . . . 90

3.4.1 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.5 Improved deflation process. New algorihm – KVADeig . . . . . . . . . . . . . 92

3.5.1 A case study example . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.5.2 Deflation process revisited . . . . . . . . . . . . . . . . . . . . . . . . 96

3.5.3 Computing the Kronecker’s Canonical form using rank revealing QR
factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.5.4 Putting it all together: Deflation process in KVADeig . . . . . . . . . . 103

3.5.5 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.6 LU based deflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.6.1 The case of nonsingular M . . . . . . . . . . . . . . . . . . . . . . . . 109

3.6.2 Rank deficient cases . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3.6.3 Eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3.6.4 Computing the Kronecker’s Canonical form using rank revealing LU
factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

3.7 Numerical examples. Comparison of rank revealing decompositions . . . . . . 117

3.7.1 Example 1. cd_player. . . . . . . . . . . . . . . . . . . . . . . . . . 117

3.7.2 Example 2. Scaled dirac. . . . . . . . . . . . . . . . . . . . . . . . . 119

3.7.3 Constrained least squares problem . . . . . . . . . . . . . . . . . . . . 122

4 Complete solution of the quartic eigenvalue problem 125
4.1 Quadratification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.1.1 Companion form of grade 2 . . . . . . . . . . . . . . . . . . . . . . . 126

4.2 Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.2.1 Tropical scaling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.2.2 Fan, Lin, Van Dooren generalization scaling. . . . . . . . . . . . . . . 128

4.3 Deflation process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.3.1 Backward error analysis for the deflation process . . . . . . . . . . . . 134

x



Contents

4.3.2 Eigenvector recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
4.4 Deflation process in KVARTeig algorithm . . . . . . . . . . . . . . . . . . . . 138
4.5 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5 Iterative methods 145
5.1 Arnoldi algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.1.1 Implicitly restarted Arnoldi (IRA) . . . . . . . . . . . . . . . . . . . . 149
5.2 Second Order Arnoldi (SOAR) . . . . . . . . . . . . . . . . . . . . . . . . . . 151
5.3 Two level orthogonal Arnoldi factorization . . . . . . . . . . . . . . . . . . . . 155

5.3.1 Implicitly restarting the TOAR procedure . . . . . . . . . . . . . . . . 157
5.4 TOAR revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.4.1 Deflation and breakdown . . . . . . . . . . . . . . . . . . . . . . . . . 159
5.4.2 TOAR as a linear eigenvalue problem solver . . . . . . . . . . . . . . 160
5.4.3 TOAR as a quadratic solver . . . . . . . . . . . . . . . . . . . . . . . 160
5.4.4 Polynomial filter for overdamped problems . . . . . . . . . . . . . . . 163
5.4.5 Numerical examples for overdamped problems . . . . . . . . . . . . . 165

5.5 Locking in IRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
5.5.1 Locking in TOAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

5.6 Rayleigh damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
5.6.1 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

5.7 Krylov–Schur algorithm for the linear eigenproblem . . . . . . . . . . . . . . 174
5.7.1 Using the arbitrary shifts in Krylov–Schur algorithm . . . . . . . . . . 176

5.8 Implicitly restarted Krylov–Schur algorithm for the QEP . . . . . . . . . . . . 177
5.8.1 Using arbitrary shifts in the Krylov–Schur algorithm for the quadratic

eigenvalue problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Conclusion 183

Bibliography 185

List of Figures 191

List of Tables 193

Curriculum Vitae 195

xi



Contents

xii



Introduction

Nonlinear eigenvalue problems arise in wide spectrum of applications in natural sciences
and engineering. In particular, the polynomial eigenvalue problem is to find all complex scalars
λ and nontrivial vectors x such that

P(λ )x≡ (
k

∑
`=0

λ
`A`)x = 0,

where A0, . . . ,Ak are real or complex n×n matrices. So, for instance, the quadratic eigenvalue
problem (λ 2M +λC+K)x = 0, which is in the focus of this thesis, is at the core of dynamic
analysis of mechanical and electrical structures, vibro-acoustics, computational fluid mechanics,
signal processing; just to name a few. For an excellent review, we refer [67]. Another important
class of the polynomial eigenvalue problems that we consider is the quartic eigenvalue problem
(λ 4A+λ 3B+λ 2C+λD+K)x = 0. It appears, for example, in the analysis of the stability of
the plane Poiseuille flow in a channel.

Unlike the linear case (i.e. the linear eigenvalue problem (A−λB)x = 0), numerical methods
for the nonlinear problems are not at the satisfactory level with respect to numerical reliability
and robustness. Interestingly, the algebraic theory of the general polynomial eigenvalue problem
is well developed and the spectral canonical structure of P(λ ) is well understood; yet, the
numerical methods, despite the importance of the problem in many engineering applications, are
not satisfactory. One of the main reasons is that the nonlinearity brings in many analytical and
numerical difficulties which in some situations can be classified as pathological. For instance,
some eigenvalues can be infinite.

The main focus of the thesis is numerical solution of the quadratic eigenvalue problem; our
goal is to contribute with development of new, better robust numerical methods that can be
implemented as reliable mathematical/numerical software and used in applications.

We consider the two main classes of problems and the corresponding solution methods. The
so called direct methods are designed to compute all eigenvalues and the corresponding eigen-
vectors, and are usually deployed for small to moderate dimensions n. On the other hand, in
some applications, only certain eigenvalues of particular interest are needed e.g. in an engi-
neering design. For instance, eigenvalues in the left half plane close to the imaginary axis are
important for studying the stability of the underlying dynamical system; or, the eigenvalues in
some given Ω⊂ C might be requested. In such applications, the coefficient matrices originate
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from a discretization process (e.g. by finite elements) and are usually of large dimension (e.g.
n > 104,105 or higher) and sparse (only small number of entries are nonzero) and structured.
The idea of the so called iterative methods is to, iteratively, construct a subspace (of dimension
much smaller than the original dimension n) such that the requested spectral information can be
extracted from the problem projected onto that subspace.

In the kernel of most of these methods is the linearization, i.e., the polynomial eigenvalue
problem is replaced with an equivalent linear eigenvalue problem, which is then solved using the
well developed techniques for linear problems. For example, one linearization for the quadratic
eigenvalue problem (λ 2M+λC+K)x = 0 is

Ay−λBy≡

(
C −I
K 0

)
y−λ

(
−M 0

0 −I

)
y = 0, where y =

(
λx

x

)
.

Unfortunately, this elegant algebraic manipulation cannot be so simply turned into a robust
numerical method. The finite arithmetic rounding errors and the truncation of the necessarily
infinite iteration process when solving the linear problem create the backward errors ∆A, ∆B

such that ‖∆A‖/‖A‖ and ‖∆B‖/‖B‖ are small, but this backward stability does not extend to the
original problem, i.e., we cannot in general claim that the approximate solution corresponds to
slightly backward perturbed original matrices M, C and K. Hence, for both the direct and the
iterative methods, careful modifications are necessary.

The thesis is structured as follows:
Chapter 1 contains preliminaries. It provides an algebraic setting of the polynomial eigenva-

lue problem, including the theory of canonical forms of matrix polynomials, which will be used
in the developments of numerical methods. In addition, we provide brief illustrations of two
selected applications of the quadratic eigenvalue problem, and one of the quartic eigenvalue pro-
blem. We also present the theory of the linearization of matrix polynomials, which is essential
for the development of numerical methods.

In Chapter 2 we present elements of backward error analysis of the polynomial eigenvalue
problem. It is based on the work of F. Tisseur [66]. Backward error analysis is fundamental
in assessing the quality of the computed approximations and it provides means for a posteriori
estimation of the accuracy of the computed eigenvalues and eigenvectors. It is the backward
error analysis that guides in removing the discrepancy between the backward stability of the
auxiliary linear and the original quadratic problem. In particular, it shows that the norms of
the coefficient matrices A` should be balanced, which is then achieved by a parameter scaling.
The idea of backward error analysis is to interpret the computed (approximate) result as the
exact result of a nearby problem, defined with the coefficient matrices A`+∆A`, with small
∆A`. However, in many applications the matrices A` have an additional structure, e.g., they
are Hermitian or skew–Hermitian. Hence, for proper use of backward error, it is desirable to
establish the existence of the optimal (smallest is some well defined sense) backward errors ∆A`

that preserve the structure. In Section 2.2 we extend the existing results for only real eigenvalues
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to the general case of any finite eigenvalues, when the required structure is the hermiticity or
the skew–hermiticity. In addition, we provide new insights in the component-wise measured
backward error.

In Chapter 3 we study the complete solution of quadratic eigenvalue problem (λ 2M+λC+

K)x = 0 by direct methods. The standard approach is to linearize it and then use the QZ
algorithm for the corresponding generalized (linear) eigenvalue problem. This procedure is
known to be prone to numerical difficulties in presence of zero and infinite eigenvalues. In
2011., Hammarling, Munro and Tisseur [37] proposed the quadeig algorithm that substantially
alleviated these problems by careful preprocessing. Before calling the QZ algorithm, quadeig
deploys parameter scaling to equilibrate the norms of the coefficient matrices, and then attempts
to detect and deflate the zero and the infinite eigenvalues from the linearized problem.

The deflation process relies on rank determination of the coefficient matrices M, and K, and
quadeig uses the (rank revealing) QR factorization with column pivoting. Using the orthogonal
equivalence transformation on the linearization, n− rank(M) infinite and n− rank(K) zero
eigenvalues are removed from the linearized pencil. The remaining eigenvalues are computed
using the QZ algorithm. In Chapter 3 we analyze the numerical properties of the quadeig in
more details. We present the backward error analysis of the deflation process in the case of only
one singular matrix, M or K. The main contribution of this Chapter is the new algorithm for
the complete solution of the quadratic eigenvalue problem, which we designated as KVADeig.
To illustrate the need for improvements, we use numerical case study examples where quadeig
fails to find all infinite eigenvalues; moreover, the eigenvalues that are computed instead of
infinities are finite and they may not be of large absolute values to even indicate that they may
correspond to infinities. This often poses difficulties in applications, because those eigenvalues
cannot be interpreted in a physically meaningful way. A closer analysis reveals that the problem
is when the infinite eigenvalues are carried in several Jordan blocks (in the canonical structure),
and quadeig is capable of deflating only one of them.

To solve this problem, we have developed a test for the existence of Jordan blocks for zero
and infinite eigenvalues, and we have developed a new algorithm for the deflation of all zero and
infinite eigenvalues. It is based on Van Dooren’s algorithm for the Kronecker canonical form
of the generalized eigenvalue problem. Further, we analyze the influence of the rank revealing
factorization, and rank determination (truncation) criteria used to determine the numerical ranks
of M and K. Here we show some weaknesses in the rank determination in the quadeig algorithm.
Furthermore, we advocate to equip the column pivoted rank revealing QR factorizations with
row sorting in the `∞ norm (the Powell–Reid and Björck pivoting). Also, in addition to parameter
scaling as in quadeig, we introduce a two–sided diagonal scaling that (nearly) equilibrates the
matrix entries; this proves to be a very powerful technique both for theoretical estimate and
the practical computation. And finally, we develop a rank-revealing LU analogue of the QR
approach. It may seem surprising at first, but the LU approach, when properly implemented, can
outperform the QR based preprocessing and can even be recommended as a method of choice.

3



Introduction

Numerical experiments in Section 3.7 demonstrate the power of the newly proposed method.

In Chapter 4, we develop a new algorithm, designated as KVARTeig, for the complete solution
of the quartic eigenvalue problem (λ 4A+ λ 3B+ λ 2C + λD+K)x = 0. Instead of the direct
linearization, we first use the so called quadratification introduced as an algebraic tool in [17],
i.e., we define an equivalent quadratic eigenvalue problem. The new algorithm is based on
KVADeig, wherein the scaling is done on the original matrices, and the deflation process is
modified so that the structure of the original problem is exploited as long as possible in the
process. As in Chapter 3, we provide a test for the existence of Jordan blocks for zero and
infinite eigenvalues in terms of the original matrix coefficients. Our numerical examples in
Section 4.5 show that the new algorithm outperforms quadeig and the polyeig function in
MATLAB.

In Chapter 5, we investigate computation of only a selected part of the spectrum of the
quadratic eigenvalue problem, using Arnoldi–like methods. Bai and Su [3] were the first who
realized that in the case of iterative Arnoldi-type methods, it would be advantageous to apply the
Rayleigh-Ritz projection directly to the initial quadratic problem, instead of to the linearization.
To that end, they introduced second order Krylov subspaces, and the corresponding second order
Arnoldi procedure for generating orthonormal bases. The resulting method, called Second Order
Arnoldi (SOAR), is further modified yielding TOAR (Lu, Su and Bai [49]).

Here we propose several modifications of the Implicitly restarted TOAR algorithm [49],
which uses the fact that the linear problem is a linearization of the quadratic eigenvalue problem.
Implicit restarting refers to an application of a polynomial filter (implicitly through QR iterati-
ons), designed to purge the initial vector from the directions of the unwanted eigenvalues. This
is a nontrivial issue as two eigenvalues (e.g., one wanted and one unwanted) may share the same
eigenvector. Selecting good shifts to define a good filter is also more complex. We devise a
new selecting strategy of shifts for one particular class – the overdamped quadratic eigenvalue
problems. Here we deploy polynomials in tropical algebra.

It is known that the quality of the approximation for eigenpair produced by the Arnoldi
algorithm depends on the starting vector. In this chapter we propose a new procedure for
picking the starting vector based on the approximation of the original quadratic problem with the
proportionally damped one, which can be reduced to the linear eigenvalue problem. Numerical
examples in Subsection 5.6.1 illustrate that this new choice of the starting vector, together with
other modifications of implicitly restarted TOAR, results with a smaller number of the restarts.

In the second part of Chapter 5 we introduce the Krylov–Schur algorithm developed by
Stewart in [64]. Here, restrictions on the structure of the factorization from the Arnoldi de-
composition are removed resulting in a more elegant restarting procedure. However, during the
implicit restart only exact shifts can be used. This was improved by Bujanović and Drmač in
[11]. They proposed the 4R procedure for applying arbitrary shifts in the implicit restart of the
Krylov–Schur algorithm.

The standard Krylov–Schur algorithm can be used for the quadratic eigenvalue problem
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so that the TOAR procedure is used to compute the starting decomposition. This method is
implemented in [14]. Again, only exact shifts can be used in the implicit restart. In order to use
the shifts proposed for the overdamped problems, and to use any other shifts in the restart we
extend the 4R procedure for the Krylov–Schur algorithm used as a quadratic eigenvalue problem
solver. The numerical example at the end of the Chapter demonstrates the importance of the
possibility to choose the arbitrary shifts.

The parts of this thesis were presented at the following scientific meetings: at 6th Croatian

Mathematical Congress, Zagreb, Croatia (the talk "Second Order Krylov Schur Algorithm with
Arbitrary Filter"), at European School on Mathematical Modelling, Numerical Analysis and

Scientific Computing, Kacov, Czech Republic (the talk "On Improved Implicit Restarting of
Arnoldi Methods for Quadratic Eigenvalue Problem", results from Chapter 5), at International

Workshop on Optimal Control of Dynamical Systems and Applications, Osijek, Croatia (the
talk "On Implicit Restarting Of Second Order Arnoldi Procedure For Quadratic Eigenvalue
Problem", results from Chapter 5), at 6th IMA Conference on Numerical Linear Algebra and

Optimization, Birmingham, United Kingdom (the talk "On Deflation Process and Solving the
Quadratic Eigenvalue Problems", results form Chapter 3), and at Ninth Conference on Applied

Mathematics and Scientific Computing, Šibenik, Croatia (the talk "An Algorithm for the Solution
of Quartic Eigenvalue Problems", results from Chapter 4).
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Chapter 1

The Polynomial Eigenvalue Problem

This chapter provides definitions and a selection of theory and results for polynomial eigen-
value problem needed in the development of the results in the remaining chapters.

1.1 Problem setting

In this section we define the polynomial eigenvalue problem and introduce the two canonical
forms for matrix polynomials, namely the Smith form, and the Jordan form. These forms will
be used for developing algorithms in Chapters 3 and 4. In addition, we present the notion of
invariant pairs, which is an analogue of invariant subspaces in the linear case.

Polynomial eigenvalue problem. Let P(λ ) be a matrix polynomial of degree k

P(λ ) =
k

∑
`=0

A`λ
`, (1.1)

where A` ∈Cn×n, `= 0, . . . ,k, and Ak 6= 0. P(λ ) is often called λ -matrix. The matrix polynomial
(1.1) is said to be regular if detP(λ ) is not identically zero for all values of λ , and nonregular

otherwise.

A scalar λ ∈ C is called an eigenvalue of the matrix polynomial if there exists a vector
x ∈ Cn \{0} so that

P(λ )x = 0. (1.2)

In this case, x is called a right eigenvector (or just an eigenvector). A vector y ∈ Cn \ {0} is
called a left eigenvector if

y∗P(λ ) = 0. (1.3)

We refer to (x,λ ) as an eigenpair, and (x,y,λ ) as an eigentriple.

Equivalently, λ is said to be an eigenvalue of the matrix polynomial P if it is a zero of
detP(λ ). Since detP(λ ) = detAkλ kn + lower order powers of λ , we conclude that, if the coef-
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ficient matrix Ak is regular, the number of eigenvalues for matrix polynomial of order k is kn.
Therefore, the set of eigenvectors cannot be linearly independent, and it is possible for different
eigenvalues to share the same eigenvector.

Example 1.1. Consider the quadratic eigenvalue problem

Q(λ )x≡

{
λ

2

(
1 0
0 1

)
+λ

(
5 0
0 5

)
+

(
3 −1
−1 3

)}
x = 0.

The eigenvalues are the zeros of the polynomial

detQ(λ ) = (λ 2 +5λ +3)2−1 = 0,

that is −1,−4, −5+
√

17
2 , −5−

√
17

2 . Eigenvalues −1 and −4 share the eigenvector
(

1 −1
)T

, and

−5+
√

17
2 and −5−

√
17

2 have the same eigenvector
(

1 1
)T

.

In addition, if the leading coefficient matrix Ak is singular, the degree r of the polynomial
detP(λ ) is smaller than kn and there are r finite and kn− r infinite eigenvalues. Infinite eigenva-
lues are defined as the zero eigenvalues of the so called reversal problem

revP(λ ) = λ
kP(1/λ ) =

k

∑
`=0

λ
`Ak−`. (1.4)

Example 1.2. Consider the quadratic eigenvalue problem

Q(λ )x =

{
λ

2

(
1 0
0 0

)
+λ

(
−3 0
0 1

)
+

(
2 0
0 −3

)}
.

The degree of the polynomial detQ(λ ) is 3

detQ(λ ) = λ
3−6λ

2 +11λ −6,

meaning that there is one infinite eigenvalue, and the remaining finite eigenvalues are 1,2 and 3.
The reversed problem is

revQ(λ )x≡

{
µ

2

(
2 0
0 −3

)
+µ

(
−3 0
0 1

)
+

(
1 0
0 0

)}
x = 0,

where µ = 1/λ . The eigenvalues are the zeros of the polynomial

det(revQ(λ )) =−6λ
4 +11λ

3−6λ
2 +λ ,

that is 0,1,1/2,1/3.
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1.2. Canonical forms of matrix polynomials

The algebraic multiplicity of an eigenvalue λ is the order of the corresponding zero in
detP(λ ). The geometric multiplicity of λ is the dimension of the nullspace kerP(λ ). An
eigenvalue λ is simple if its algebraic and geometric multiplicity are equal to 1. An eigenvalue
λ is semisimple if its algebraic and geometric multiplicities coincide.

We will sometimes use the so called homogeneous form of the polynomial eigenvalue pro-
blem

P(α,β ) =
k

∑
`=0

α
`
β

k−`A`. (1.5)

Here, λ is identified with any pair (α,β ) 6= (0,0) for which λ = α/β . The homogeneous form
is useful because all eigenvalues, including infinity, are treated the same way. It is used in
papers [42], [43] which consider backward errors and conditioning of linearizations of matrix
polynomials. Analogously, we define homogeneous generalized (linear) eigenvalue problem

L(α,β ) = βA−αB. (1.6)

1.2 Canonical forms of matrix polynomials

The goal of this section is to describe Jordan structure of matrix polynomials. This is a
generalization of the Jordan normal form for single matrix, and it is more complicated.

1.2.1 Jordan normal form of matrix

The Jordan normal form of a single matrix provides canonical structure that reveals complete
spectral information; in the simplest case of diagonalizable matrix, the Jordan form is simply a
diagonal matrix with the eigenvalues along the diagonal. If the matrix is not diagonalizable, the
structure is more complex. We briefly review the key details.

For every integer ` and each eigenvalue λi of a matrix A ∈ Cn×n, it holds that Ker(A−
λiI)`+1 ⊃Ker(A−λiI)`, and since we are dealing with finite dimensional space, there exists the
smallest `i such that

Ker(A−λiI)`i+1 = Ker(A−λiI)`i,

and Ker(A−λiI)` = Ker(A−λiI)`i for all `≥ `i. The integer `i is called the index of λi.
Denote with Mi = Ker(A−λiI)`i which is invariant subspace for A, and let mi = dim(Mi).
In each invariant subspace Mi there are γi≤mi independent eigenvectors which can be completed
to form a basis by adding the elements of Ker(A−λiI)2, Ker(A−λiI)3, and so on. The process
goes as follows:

• for each eigenvector u ∈ Ker(A−λiI), define z1 so that (A−λiI)z1 = u

• until it is possible, compute zi+1 as (A−λiI)zi+1 = zi.
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The vectors zi ∈ Ker(A− λiI)i+1 are called principal vectors. There are at most `i principal
vectors for each of the γi eigenvectors associated with the eigenvalue λi.

Finally, we can represent the matrix A with the respect to the basis made up of the p bases
of invariant subspaces Mi

X−1AX = J = diag(J1,J2, . . . ,Jp), (1.7)

where each Ji corresponds to the subspace Mi associated with the eigenvalue λi. Ji is of order mi

with following structure

Ji = diag(Ji1,Ji2, . . . ,Jiγi), Jik =


λi 1

. . . . . .

λi 1
λi

 . (1.8)

Each Jik corresponds to a different eigenvector of the eigenvalue λi, and its size is equal to
the number of the principal vectors for the corresponding eigenvector. Previous reasoning is
summed up in the following theorem.

Theorem 1.1 ([60]). Any matrix A can be reduced to a block diagonal matrix consisting of p

diagonal blocks, each associated with a distinct eigenvalue. Each diagonal block Ji has itself

a block diagonal structure consisting of γi subblocks, where γi is the geometric multiplicity of

the eigenvalue λi. Each of the subblocks, referred to as a Jordan block, is an upper bidiagonal

matrix of size not exceeding `i, with the constant λi on the diagonal and the constant one on the

super diagonal.

Notice that, since A and J are similar, their characteristic polynomials are the same, and thus
the algebraic multiplicity of the eigenvalue λi is the same, i.e., the algebraic multiplicity of λi is
equal to mi.

From all this we see that the Jordan form is very useful because it completely determines the
structure of the eigenvalues of matrix A. However, the computation of it is numerically unstable.
This is why the Schur form is used in numerical computation, because unitary matrix Q is used
instead of regular X which can be ill conditioned. However, the form is no longer compact. The
following theorem gives existence of the Schur form.

Theorem 1.2. For any given matrix A∈Cn×n there exists a unitary matrix Q such that Q∗AQ=R

is upper triangular.

The Jordan structure for matrix polynomials provides the complete information about the
structure of the eigenvalues. The main term we will define is Jordan pair. The first step is the
definition of canonical Jordan chains, which are something like a basis in finite dimensional
linear space [32]. The path of defining the Jordan pair is presented in Figure 1.1, therefore we
start by defining the Smith form of P.
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The Smith Form

Elementary
Divisors

Partial Mul-
tiplicities

Root Polynomial Canonical
Jordan Chain Jordan Pair

Figure 1.1: Diagram for defining the Jordan pair

1.2.2 The Smith form

The main result describing the Smith form is given in a more general form, meaning that it
holds for matrix polynomials P(λ ) = ∑

k
`=0 A`λ

`, where A` ∈ Cm×n are rectangular matrices:

Theorem 1.3 ([32]). Every m×n matrix polynomial P(λ ) admits the representation

P(λ ) = E(λ )D(λ )F(λ ), (1.9)

where

D(λ ) =



d1(λ ) 0
. . .

dr(λ )
...

0
. . .

0 · · · 0


(1.10)

is a diagonal polynomial matrix with monic scalar polynomials di(λ ) such that di(λ ) is divisible

by di−1(λ ); E(λ ) and F(λ ) are matrix polynomials of sizes m×m and n×n respectively, with

constant nonzero determinants.

Representation (1.9) is called the Smith form of the matrix polynomial P(λ ). Sometimes,
the matrix D(λ ) itself, given by (1.10), is also called the Smith form. The matrix polynomials
E(λ ) and F(λ ) are not unique. However, D(λ ) is unique, and its diagonal polynomials can be
expressed in terms of P(λ ) as stated in the following theorem:

Theorem 1.4 ([32]). Let P(λ ) be an m× n matrix polynomial. Let pk(λ ) be the greatest

common divisor (with leading coefficient 1) of the minors of P(λ ) of order k, if not all of them

are zeros, and let pk(λ ) ≡ 0 if all minors of order k of P(λ ) are zeros. Let p0(λ ) = 1 and

11
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D(λ ) = diag(d1(λ ), . . . ,dr(λ ),0, . . . ,0) be the Smith form of P(λ ). Then r is the maximal

integer such that pr(λ ) 6≡ 0, and

di(λ ) =
pi(λ )

pi−1(λ )
, i = 1,2, . . . ,r. (1.11)

Invariant polynomials and Elementary Divisors. The diagonal elements d1(λ ), . . . ,dr(λ )

in (1.10) are called invariant polynomials of P(λ ). Since rankP(λ ) = rankD(λ ) for every
λ ∈C, and rankD(λ )= r if λ is not a zero of one of the invariant polynomials, and rankD(λ )< r

otherwise, we conclude that
r = max

λ∈C
rankP(λ ).

If we represent each invariant polynomial as the product of factors

di(λ ) = (λ −λi1)
αi1 . . .(λ −λi,ki)

αi,ki , i = 1,2, . . . ,r,

where λi1, . . . ,λi,ki are different complex numbers and αi1, . . . ,αi,ki are positive integers, then the
factors (λ −λi j)

αi j , j = 1, . . . ,ki, i = 1, . . . ,r are called the elementary divisors of P(λ ). An
elementary divisor is said to be linear if αi j = 1, and nonlinear otherwise.
These characteristics will be important for developing the theory of Jordan structure. For better
understanding of these concepts, let us present a simple example:

Example 1.3 ([32]). Let

P(λ ) =

(
λ (λ −1) 1

0 λ (λ −1)

)
.

The proof of theorem 1.3 describes the computation of the Smith form. However, we will not

discuss the process here, but only state the final solution

D(λ ) =

(
1 0
0 λ 2(λ −1)2

)
. (1.12)

From (1.12) we read the elementary divisors: λ 2 and (λ −1)2.

Local Smith Form and Partial Multiplicities. We now return to consideration of matrix
polynomial with square matrix coefficients (1.1). If detP(λ ) 6≡ 0, that is, if P is regular, the next
theorem describes the local Smith form:

Theorem 1.5 ([32]). Let P(λ ) be and n×n matrix polynomial with detP(λ ) 6≡ 0. Then for every

λ0 ∈ C, P(λ ) admits the representation

P(λ ) = Eλ0(λ )


(λ −λ0)

κ1 0
. . .

0 (λ −λ0)
κn

Fλ0(λ ), (1.13)
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where Eλ0(λ ) and Fλ0(λ ) are matrix polynomials invertible at λ0, and κ1 ≤ . . .≤ κn are nonne-

gative integers, which coincide (after removing zeros) with degrees of the elementary divisors of

P(λ ) corresponding to λ0 (i.e., of the form (λ −λ0)
n). κi = 0, i = 1, . . . ,n if λ0 is not a root of

an invariant polynomial of P(λ ).

The integers κ1 ≤ . . . ≤ κn are called partial multiplicities of P(λ ), and they are uniquely
determined by P(λ ) and λ0. The representation (1.13) is called the local Smith Form of P(λ ) at
λ0.

Consider P(λ ) from Example 1.3. The partial multiplicities of eigenvalues 0 and 1 are
κ1 = 0,κ2 = 2, and the partial multiplicities of λ0 6∈ {0,1} are zeros.

Equivalence of Matrix Polynomials. Two matrix polynomials P(λ ) and R(λ ) of the same
size are called equivalent (we write P(λ )∼ R(λ )) if

P(λ ) = E(λ )R(λ )F(λ ), (1.14)

for some matrix polynomials E(λ ) and F(λ ) with constant nonzero determinants. This relation
is indeed an equivalence relation. The important property of equivalent matrix polynomials is
given in the following theorem

Theorem 1.6 ([32]). P(λ ) ∼ R(λ ) if and only if the invariant polynomials of P(λ ) and R(λ )

are the same.

1.2.3 Jordan chains

We will define a Jordan chain for matrix polynomial which is a generalization of a Jordan
chain for a square matrix A.

As a motivation for the definition, consider the matrix polynomial P(λ ) = ∑
k
`=0 A`λ

`, and
the associated homogeneous differential equation

k

∑
`=0

A`
d`

dt`
u(t) = 0, (1.15)

where u(t) is an n-dimensional vector valued function. Suppose that we seek the solution of
(1.15) in the form

u(t) = p(t)eλ0t =

(
tm

m!
x0 +

tm−1

(m−1)!
x1 + . . .+ xm

)
eλ0t, (1.16)

where p(t) is an n-dimensional vector valued polynomial in t, λ0 is a complex number, and
x j ∈ Cn, x0 6= 0. Now, the following proposition holds
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Proposition 1.1 ([32]). The vector function u(t) given by (1.16) is a solution of equation (1.15)

if and only if the following equation holds:

i

∑
p=0

1
p!

P(p)(λ0)xi−p = 0, i = 0,1, . . . ,m. (1.17)

P(p)(λ ) in (1.17) denotes the pth derivative of P with respect to λ .

The sequence of n-dimensional vectors x0,x1, . . . ,xm (xm 6= 0) such that (1.17) holds is called
a Jordan chain of length m+ 1 for P(λ ), corresponding to the complex number λ0. P(p)(λ )

in (1.17) denotes the pth derivative of P with respect to λ . Its leading vector x0 6= 0 is an
eigenvector, and the subsequent vectors x1, . . . ,xm are called generalized eigenvectors.

It is important to notice that the vectors in a Jordan chain for the polynomial P, of order
higher than one, need not be linearly independent. Indeed, the zero vector can be a generalized
eigenvector as well. Example 1.4 illustrates this phenomena.

It is useful to note that the solutions of the linear system
P(λ0) 0 · · · 0
P′(λ0) P(λ0) · · · 0

...
... · · · ...

1
`!P

`(λ0)
1

(`−1)!P
(`−1)(λ0) · · · P(λ0)




x0

x1
...

x`

= 0,

form the set of all Jordan chains x0,x1, . . . ,x` of P(λ ) with length not exceeding `+1 correspon-
ding to λ0.

The next proposition gives another way of writing a Jordan chain.

Proposition 1.2 ([32]). The vectors x0, . . . ,x`−1 form a Jordan chain of the matrix polynomial

P(λ ) of order k corresponding to λ0 if and only if x0 6= 0 and

A0X0 +A1X0J0 + . . .+AkX0Jk
0 = 0, (1.18)

where X0 =
(

x0 . . . x`−1

)
is an n× ` matrix, and J0 is the Jordan block of size k× k with λ0

on the main diagonal.

Root Polynomials and Canonical set of Jordan Chains. An n-dimensional vector polyno-
mial ϕ(λ ), such that ϕ(λ0) 6= 0 and P(λ0)ϕ(λ0) = 0, is called a root polynomial of P(λ ) cor-
responding to λ0. The multiplicity of the zero λ0 of P(λ )ϕ(λ ) is called the order of the root
polynomial ϕ(λ ).

Root polynomials are a tool for constructing the canonical set of Jordan chains:

1. Let ϕ1(λ ) = ∑
κ1−1
j=0 (λ −λ0)

jϕ1 j be a root polynomial with the largest order κ1.

14



1.2. Canonical forms of matrix polynomials

2. Let ϕ2(λ ) = ∑
κ2−1
j=0 (λ −λ0)

jϕ2 j be a root polynomial with the largest order among all the
root polynomials whose eigenvector is not a scalar multiple of ϕ10.

3. If ϕ1(λ ), . . . ,ϕs−1(λ ) are already chosen, ϕi = ∑
κi−1
j=0 (λ − λ0)

jϕi j, i = 1, . . . ,s− 1, let
ϕs(λ ) = ∑

κs−1
j=0 (λ −λ0)

jϕs j be a root polynomial with the largest order κs among all the
root polynomials whose eigenvectors are not in the span of the eigenvectors ϕ10, . . . ,ϕs−1,0.

4. We continue this process until the set kerP(λ0) of all eigenvectors of P(λ ) corresponding
to λ0 is exhausted. This means that we will construct r = dimkerP(λ0) root polynomials
by this procedure.

Now, the Jordan chains

ϕ10, . . . ,ϕ1,κ1−1, ϕ20, . . . ,ϕ1,κ2−1, . . . ϕr0, . . . ,ϕ1,κr−1 (1.19)

are called the canonical set of Jordan chains for P(λ ) corresponding to λ0.

Example 1.4 ([32]). Let

P(λ ) =

(
λ 2(λ −1)(λ 2 +1) λ 3(λ −1)

λ 2(λ −1)2 λ 3(λ −1)2

)
.

The determinant is detP(λ ) = λ 7(λ − 1), meaning that the eigenvalues are 0 and 1. We will
compute the Jordan chain for the eigenvalue 0. Let us write the derivatives

P′(λ ) =

(
5x4−4x3 +3x2−2x x2(4x−3)

2x(2x2−3x+1) x2(5x2−8x+3)

)
, P(IV )(λ ) =

(
24(5x−1) 24

24 24(5x−2)

)
,

P′′(λ ) =

(
20x3−12x2 +6x−2 6x(2x−1)

2(6x2−6x+1) 20x(10x2−12x+3)

)
, P(V )(λ ) =

(
120 0
0 120

)
,

P′′′(λ ) =

(
60x2−24x+6 24x−6

24x−12 60x2−48x+6

)
.

Since P′(0) = 0, we have that P′(0)x0 +P(0)x1 = 0 for all x0,x1 ∈ C2 with x0 6= 0, thus any
combination x0,x1 forms a Jordan chain. Denote the elements of the vector xi as xi1,xi2. Now,

1
2!

P′′(0)x0 +P′(0)x1 +P(0)x2 =

(
−1 0
1 0

)(
x01

x02

)
= 0,

implies that x01 = 0. The next equation

1
3!

P′′′(0)x0 +
1
2!

P′′(0)x1 +P′(0)x2 +P(0)x3 =

(
−x02− x11

x02 + x11

)
= 0

15
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implies that x11 =−x02. Similarly,

1
4!

P(IV )(0)x0 +
1
3!

P′′′(0)x1 +
1
2!

P′′(0)x2 +P′(0)x3 +P(0)x4 =

(
−x12− x21

x12 + x21

)
= 0

implies that x21 =−x12. From the last equation

1
5!

P(V )(0)x0 +
1
4!

P(IV )(0)x1 +
1
3!

P′′′(0)x2 +
1
2!

P′′(0)x3 +P′(0)x4 +P(0)x5 = 0,

it is obvious that x4,x5 can be any two vectors. To conclude, our Jordan chain is of the form(
0

x02

)
,

(
−x02

x12

)
,

(
−x12

x22

)
,

(
x31

x32

)
,

(
x41

x42

)
,

where x02,x12,x22,x31,x32,x41,x42 are arbitrary complex numbers.
Now, to determine the canonical set of Jordan chains, we recall that if x01 = 0 the order of the root
polynomial is 5, and if x01 6= 0 the order is 2. This means that we can choose ϕ1 j, j = 0, . . . ,4
to be (

0
1

)
,

(
−1
0

)
,

(
0
0

)
,

(
0
0

)
,

(
0
0

)
.

For ϕ2 j, j = 0,1 we can choose (
1
0

)
,

(
0
0

)
.

Some of the useful properties of the canonical set of Jordan chains (proved in [32]) are:

• not unique,

• the numbers κ1, . . . ,κr are uniquely defined

• κ1, . . . ,κr are the nonzero partial multiplicities of P(λ ) at λ0.

Jordan pair. Let (1.19) be the canonical Jordan chain of P(λ ) corresponding to the eigenvalue
λ0, and write it in the matrix form

X(λ0) =
(

ϕ10 . . . ϕ1,κ1−1 ϕ20 . . . ϕ2,κ2−1 . . . ϕr0 . . . ϕr,κr−1

)
∈ Rn×κ ,

J(λ0) = diag(J1,J2, . . . ,Jr) ∈ Rκ×κ ,

where Ji is the Jordan block of size κi with the eigenvalue λ0, and κ = ∑
r
j=1 κ j. The pair of

matrices (X(λ0),J(λ0)) is called Jordan pair of P(λ ) corresponding to λ0. The characterisation
of Jordan pair is given by the next theorem
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1.2. Canonical forms of matrix polynomials

Theorem 1.7 ([32]). Let (X̂ , Ĵ) be a pair of matrices, where X̂ is an n× p matrix and Ĵ is a

p× p Jordan matrix with unique eigenvalue λ0. Then the following conditions are necessary

and sufficient in order that (X̂ , Ĵ) be a Jordan pair of P(λ ) = ∑
k
`=0 λ `A` corresponding to λ0:

(i) detP(λ ) has a zero λ0 of multiplicity p,

(ii) rank


X̂

X̂ Ĵ
...

X̂ Ĵk−1

= p,

(iii) AkX̂ Ĵk +Ak−1X̂ Ĵk−1 + . . .+A0X̂ = 0.

Let p be the number of different eigenvalues of P(λ ), and take the corresponding Jordan pair
(X(λ j),J(λ j)) for every eigenvalue λ j of P(λ ). The finite Jordan pair (XF ,JF) of P(λ ) is

XF =
(

X(λ1) X(λ2) . . . X(λp)
)
,

JF = diag(J(λ1),J(λ2), . . . ,J(λp)).
(1.20)

Some useful facts about finite Jordan pair are:

• XF ∈ Rn×ν ,JF ∈ Rν×ν , where ν = degdetP(λ )

• (XF ,JF) is not determined uniquely

• (XF ,JF) does not determine P(λ ) uniquely.

Because of the last fact, we need to define Jordan pair for infinite eigenvalue. This Jordan pair is
defined as the Jordan pair for the reversed matrix polynomial revP(λ ) = λ kP(λ−1) at eigenvalue
zero. Denote

X∞ =
(

ψ10 . . . ψ1,s1−1 ψ20 . . . ψ2,s2−1 . . . ψq0 . . . ψq,sq−1,
)

J∞ = diag(J∞1,J∞2, . . . ,J∞q),
(1.21)

where J∞ j is the Jordan block of size s j with eigenvalue zero. The pair (X∞,J∞) is called infinite

Jordan pair of P(λ ). The characterisation is given in the following theorem.

Theorem 1.8 ([32]). Let (X̂ , Ĵ) be a pair of matrices, where X̂ is n× p and Ĵ is a p× p Jordan

matrix with unique eigenvalue λ0 = 0. Then the following conditions are necessary and sufficient

in order that (X̂ , Ĵ) be an infinite Jordan pair of P(λ ) = ∑
k
i=0 λ iAi:

(i) det(λ kP(λ−1)) has a zero at λ0 = 0 of multiplicity p,

17



Chapter 1. The Polynomial Eigenvalue Problem

(ii) rank


X̂

X̂ Ĵ
...

X̂ Ĵk−1

= p,

(iii) A0X̂ Ĵk +A1X̂ Ĵk−1 + . . .+AkX̂ = 0.

1.2.4 Invariant Pairs

For given matrix polynomial P(λ ), a pair (X ,S) ∈ Cn×`×Cn×` is called invariant if

P(X ,S) := A0X +A1XS+A2XS2 + . . .+AkXSk = 0. (1.22)

The definition of invariant pair is independent of the choice of the basis for X . When working
with matrix polynomials we cannot define invariant subspace in the same way it was defined
for the single matrix because the set of all eigenvectors of matrix polynomials is not linearly
independent. Hence, given a full rank matrix X that is know to be a part of invariant pair for
some matrix polynomial P may not uniquely determine the matrix S such that equation (1.22)
holds. This is why we work with pairs instead of single matrices.

Simple Invariant Pair. In order to allow rank deficiencies in he matrix X of an invariant
pair (X ,S), Betcke and Kressner, in [6], introduced the notion of minimality. Namely, a pair
(X ,S) ∈ Cn×`×Cn×` is said to be minimal if there exists m ∈ N such that

Vm(X ,S) :=


XSm−1

...
XS

X

 (1.23)

has full column rank. The smallest such m is called minimality index of (X ,S).
They showed that it is always possible to extract the minimal pair from an invariant pair, thus it
is enough to work with minimal pairs.
As generalization of simple eigenvalue, [6] defined simple invariant pairs (X ,S) as invariant
pairs which are minimal and the algebraic multiplicities of the eigenvalues of S are identical to
the algebraic multiplicities of the corresponding eigenvalues of P.

Perturbation theory. Here we present the first order perturbation theory developed in [6].
The objective is to study the change of invariant pair (X ,S) under the small perturbations of the
coefficient matrices of the polynomial

(P+∆P)(λ ) = (A0 +E0)+λ (A1 +E1)+ . . .+λ
k(Ak +Ek), (1.24)
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for general matrices E0, . . . ,Ek. For given matrix polynomial P, define nonlinear matrix operator

P : Cn×`×C`×`→ Cn×`,

(X ,S) 7→ A0X +A1XS+ . . .+AkXSk.
(1.25)

By (1.22), a simple invariant pair satisfies P(X ,S)= 0. To this, we add "normalization condition",
W ∗Vm(X ,S) = I, where m is not smaller than the minimality index of (X ,S) and the columns of
W form an orthonormal basis of span(Vm(X ,S)). Now, we can formulate the problem as finding
the pair (X̃ , S̃) such that

(P+∆P)(X̃ , S̃) = 0, W ∗Vm(X̃ , S̃)− I= 0, (1.26)

where P+∆P is defined as in (1.25), but with perturbed coefficients.
The first order sensitivity of (X ,S) under the perturbation is given in the following theorem.

Theorem 1.9 ([6]). Let (X ,S) be a simple invariant pair for a regular matrix polynomial P. For

sufficiently small ‖∆P‖ := ‖(E0, E1, . . . , Ek)‖F the perturbed polynomial P+∆P has a simple

invariant pair (X̃ , S̃) satisfying

(X̃ , S̃) = (X ,S)− (I−Proj)◦L−1(∆P(X ,S),0)+O(‖∆P‖2), (1.27)

where Proj is the orthogonal projector onto the tangent space T(X ,S)M = {(XM,SM−MS) :
M ∈ C`×`} and

L : Cn×`×C`×`→ Cn×`×C`×`

(∆X ,∆S) 7→ (LP(∆X ,∆S),LV (∆X ,∆S)),
(1.28)

LP : (∆X ,∆S) 7→ P(∆X ,S)+
k

∑
j=1

A jXDS j(∆S), (1.29)

LV : (∆X ,∆S) 7→W H
0 ∆X +

m−1

∑
j=1

W H
j (∆XS j +XDS j

∆S)), (1.30)

DS j : ∆S 7→
j−1

∑
i=0

Si
∆SS j−i−1. (1.31)

Here, M = {(XT,T−1ST ) : T ∈Ck×k invertible} ⊂Cn×k×Ck×k is a manifold of invariant
pairs generated by (X ,S). Since we are evaluating the sensitivity of (X ,S) under perturbati-
ons, the components of the error term (X̃ , S̃)− (X ,S) that are contained in M are neglected,
and this is achieved by projecting out the components of L−1(∆P(X ,S),0) contained in T(X ,S)M .
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1.3 Applications of polynomial eigenvalue problem

The polynomial eigenvalue problem arises in a variety of applications in natural sciences
and engineering. The most common is the quadratic eigenvalue problem which appears in vibra-
tion analysis of mechanical systems, acoustics, fluid mechanics, and more. Moreover, quartic
eigenvalue problem occurs in calibration of the central catadioptric vision system and spatial
stability analysis of the Orr Sommerfeld equation. In this section we present two applications of
the quadratic eigenvalue problem, which is the main focus of the thesis, and one application of
the quartic eigenvalue problem.

1.3.1 Disk brake squeal

The quadratic eigenvalue problem arises in modelling and analysis of disk brakes [34]. In
particular, one is interested only in eigenvalues with positive real part to determine the possibility
of brake squeal.

The brake noise generation mechanisms are described in [1]. The ideal brake consists of
a pair of pads that squeezes a rotating disk with a constant friction coefficient, and there are
normal and tangential forces acting on the interface of pads and rotor. During the stationary
contact the forces are uniformly distributed. However, during the relative motion the forces
develop non-uniform distribution. The analysis of possible sources of instabilities is based
on lab experiments, on numerical simulations based on finite element models, or on idealized
minimal models mimicking the physics of a real brake [34]. We will consider here the finite
element model and macroscopic equation of motion arising from it, as in [34]:

MΩü+DΩu̇+KΩu = f . (1.32)

The terms in (1.32) are:

• MΩ ∈ Rn×n represents the mass matrix, collecting acceleration terms; it is symmetric
positive semidefinite;

• DΩ ∈ Rn×n collects damping and gyroscopic effects, collecting velocity terms, typically
nonsymmetric;

• KΩ ∈ Rn×n collects stiffness and circulatory effects, collecting displacement terms, typi-
cally nonsymmetric;

• Ω is parameter vector;

• f is external force, f ≡ 0 for self-excited vibrations;

• u : R→ Rn contains the coordinates in the FE basis of the displacements;
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1.3. Applications of polynomial eigenvalue problem

• u̇ contains components of the velocity;

• ü contains components of the acceleration.

The coefficient matrices can depend on one or more parameters represented by Ω, typically
including operating conditions (temperature, pad pressure, etc.), material properties (friction
coefficient, brake geometry and mass distribution, effects of wear and damping, etc.) and rotation
speed of the brake disk.

Above we mentioned that the brake squeal is a product of flutter-type instabilities. This type
of instabilities is indicated by the coalescing of eigenvalues on the real axis, or by eigenvalues
with positive real part of the quadratic eigenvalue problem

(λ 2MΩ +λDΩ +KΩ)x = 0. (1.33)

The quadratic eigenvalue problem (1.33) is obtained by considering the homogeneous system of
equations (1.32), i.e., f = 0. The general solution to the homogeneous problem can be written
as

u(t) =
2n

∑
k=1

αkxkeλkt ,

where (λk,xk) are eigenpairs of (1.33).

The eigenvalues with positive real part of the problem (1.33) are usually called unstable

eigenvalues, and the goal in this application is to determine those eigenvalues. It is important
to have an efficient algorithm for computing these eigenvalues mostly because our problem is
usually large scale and it has to be executed for many values of the parameter Ω.

Derivation of the model. Description of complicated dynamical systems, such as disk bra-
kes, is usually developed using the Langevin equation. In this approach, one observes collective,
macroscopic variables which are changing only slowly relative to other microscopic variables
of the system. Those variables are degrees of freedom. Now, the Langevin equation describes
the time evolution of a subset of the degrees of freedom. However, this kind of simulation is not
computationally feasible. This is why the linearized finite element (FE) model is usually used
in practice. It formulates the equations of motion assuming a very simplified description of the
forcing term arising from a macroscopic friction law, and the results obtained from this model
are useful [34].

In this model, one is interested in stability analysis of disk brakes which is done by computing
the eigenvalues and eigenmodes. In particular, if our model has eigenvalues with positive real
part then a self-excited vibration induced by friction may arise and in real model this can be
represented by audible squeal.

The "zeroth" step of the analysis is the initial state of the brake. At this point the brake is
stationary and unloaded. All possible contact zones are defined although they are not in contact
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yet. The rotation of the disk is neglected. Finally, the equation of motion is

Mü+DMu̇+KEu = 0. (1.34)

The matrix M represents mass, and is symmetric positive definite, the matrix DM represents
damping and it is symmetric positive semi-definite, the matrix KE represents elastic stiffness
and it is symmetric positive definite.

The first step is linear static analysis. One investigates the disk with the external load from
the brake pad. The goal of the linear static analysis is to provide a location of contact and the
normal and friction forces in the contact area. The disk is considered stationary, but to map the
friction force at the contact correctly, velocity field information is assigned to each FE node.
Further refinement of the model is obtained by considering the state of contact frozen and the
contact points constrained in normal direction with multi-point constraints (MPCs). Equations
of motion are

Mü+(DM +
1
Ω

DR)u̇+(KE +KR)u = f . (1.35)

Here KR is nonsymmetric matrix describing circulatory effects, Ω is a parameter representing
the rotational speed of the disk, and DR is symmetric matrix describing the friction induced
damping.

The second step is linear static analysis with centrifugal loads. One modifies the previous
model by introducing the rotation of the disk brake. Instead of moving the nodes, they are
applied with the load resulting from centrifugal forces. This analysis provides internal stress
conditions. Equations of motions are

Mü+(DM +
1
Ω

DR +ΩDG)u̇+(KE +KR +Ω
2Kg)u = f . (1.36)

DG is skew symmetric matrix (gyroscopic term) and Kg is symmetric matrix modelling the
geometric stiffness.

Notice that in this model, we have only one parameter Ω representing the disk speed. In
general, the coefficient matrices can depend on more than one parameter.

1.3.2 Regularized Total Least Squares

In [62], a new approach for solving regularized total least squares has been developed which
includes solving the quadratic eigenvalue problem several times. Precisely, the rightmost eigen-
value and the corresponding eigenvector of certain quadratic eigenvalue problem is computed.

Total least squares (TLS) is a technique for solving overdetermined linear system of equations

Ax≈ b, A ∈ Rm×n, b ∈ Rm, x ∈ Rn (m > n). (1.37)

Here, both the coefficient matrix A and the vector b are subject to errors. Problem (1.37) is
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actually an optimization problem

min
x,A,b
‖
(

A b
)
−
(

A b
)
‖2

F subject to Ax = b. (1.38)

When using the ordinary least squares (LS) method for solving (1.38) we assume that the coeffi-
cient matrix A is error free and that b contains all the errors. However, in practice, all data are
contaminated by noise and thus total least squares (TLS) approach should be used. Methods
developed for TLS are based on the SVD decomposition and they also deal with problems when
only some columns of A are contaminated by noise, and the remaining ones are noise free. When
the matrix A is ill conditioned, both of these methods, LS and TLS might give a solution that
is physically meaningless and certain regularization is needed in order to decrease the effect of
the ill conditioning and data noise. This is why the Regularized Total Least Squares (RTLS)
problem formulation is introduced. It imposes a quadratic constraint on the solution vector x in
(1.38). This new constrained problem cannot be solved using SVD, and in [62] the new approach
based on solution of a quadratic eigenvalue problem is developed. Here we present this method.
It is referred to as a quadratically constrained formulation.
RTLS is formulated as follows

min
x,A,b
‖
(

A b
)
−
(

A b
)
‖2

F , subject to Ax = b, ‖Lx‖2
2 ≤ δ

2, (1.39)

where L ∈ Rp×n, p ≤ n and δ > 0. It is known that the objective function in (1.39) can be
replaced by orthogonal distance ‖Ax−b‖2

2
1+‖x‖2

2
, so the problem reads as

min
x

‖Ax−b‖2
2

1+‖x‖2
2

subject to Ax = b, ‖Lx‖2
2 = δ

2, (1.40)

for δ small enough (i.e., δ < ‖LxTLS‖2). Since the norm ‖LxTLS‖2 can be large for ill conditioned
problem (1.37), the assumption that δ is small enough can be considered guaranteed in practice,
and thus the inequality in (1.39) can be replaced by equality. In practice, L is usually chosen to
be approximation of the first or second-order derivative operators in order to impose a certain
degree of smoothness in the solution.

So, where does the quadratic eigenvalue problem come from? Write the Lagrangean for the
RTLS problem (1.40)

L (x,λ ) =
‖Ax−b‖2

2
1+‖x‖2

2
+λ (‖Lx‖2

2−δ
2). (1.41)

The first order optimality conditions are

B(x)x+λLT Lx = d(x), ‖Lx‖2
2 = δ

2, (1.42)
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where

B(x) =
AT A

1+‖x‖2
2
−
‖Ax−b‖2

2
(1+‖x‖2

2)
2 In, d(x) =

AT b
1+‖x‖2

2
. (1.43)

This system (1.43) is solved iteratively, where in every iteration we find xk+1 and λk+1 which
solve the system

B(xk)x+λLT Lx = dk := d(xk), ‖Lx‖2 = δ
2, (1.44)

corresponding to the eigenvalue with the largest real part λ using an equivalent quadratic eigen-
value problem.

In order to derive the QEP formulation let us dismiss the index k from (1.44), and consider
that B is symmetric matrix. We distinguish two cases, when L is square and invertible, and when
L is nonsquare.

L square and invertible. Impose a change of variable z = Lx to get

L−T BL−1︸ ︷︷ ︸
=:W, symmetric

z+λ z = L−T d︸ ︷︷ ︸
=:h

, zT z = δ
2. (1.45)

Solving this system is equivalent to finding the rightmost eigenvalue and the corresponding
eigenvector for certain quadratic eigenvalue problem. Assuming that λ is large enough so that
W +λ I is positive definite, denote u = (W +λ I)−2h. Now, hT u = zT z = δ 2 and h = δ−2hhT u,
so we can write the condition (1.45) as (W +λ I)2u = h which can be written as QEP

(λ 2I +2λW +W 2−δ
−2hhT )u = 0. (1.46)

We are interested in the rightmost eigenvalue λ and the corresponding eigenvector u scaled
so that hT u = δ 2. Now, the solution of the original problem is recovered by first computing
z = (W +λ I)u and then x = L−1z.

Nonsquare L. In this case LT L is singular, because its rank is equal to the minimum of number
of columns and number of rows. We write eigenvalue decomposition LT L =USUT . Equivalent
form of (1.44) is

UT BU UT x︸︷︷︸
=:y

+λSy =UT d, yT Sy = δ
2. (1.47)

Let r = rank(S) and S1 = S(1 : r,1 : r). Partitioning elements of (1.47) with respect to r we getT1y1 +T2y2 +λS1y1 = d1,

T T
2 y1 +T4y2 = d2

, yT
1 S1y1 = δ

2. (1.48)

For the sake of simplicity, we will assume that T4 is invertible and thus we can express

y2 = T−1
4 (d2−T T

2 y1). (1.49)
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If we place (1.49) in first equation in (1.48) we get

(T1−T2T−1
4 T T

2 +λS1)y1 = (d1−T2T−1
4 d2),

which is the system of form (W + λ I)2u = h for W = S−1/2
1 (T1− T2T−1

4 T T
2 )S−1/2

1 and h =

S1/2
1 (d1−T2T−1

4 d2), as before.
The solution of (1.48) is given by

y =

(
y1

y2

)
=

(
S−1/2

1 z

T−1
4 (d2−T T

2 S−1/2
1 z)

)
. (1.50)

The final solution is x =Uy.

1.3.3 Orr-Sommerfeld equation

The quartic eigenvalue problem appears in the analysis of the stability of plane Poiseuille
flow in a channel. In the case of Poiseuille flow, the undisturbed stream velocity is U(y) = 1−y2

in the x direction. The side walls are at y = −1 and y = 1. The Reynolds number is R = 1/ν ,

x

y

y=1

y=-1

Figure 1.2: Poiseuille flow

where ν is the kinematic viscosity. The stability of the flow depends on the Reynolds number.
The goal is to find the critical Reynolds number for which the flow becomes unstable.
In this example, the y component of the perturbation velocity is considered to be, as in [10],
proportional to the real part of

Φ(x,y, t) = φ(y)ei(λx−ωt), (1.51)

where λ is the wavenumber and ω is the angular frequency. By the linearization of the Navier-
Stokes equations for the velocity perturbation (1.51), the Orr-Sommerfeld equation is obtained
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[(
d2

dy2 −λ
2
)2

− iR
{
(λU−ω)

(
d2

dy2 −λ
2
)
−λU ′′

}]
φ = 0, (1.52)

with the boundary conditions

φ(y) = 0, φ
′(y) = 0 at y =±1. (1.53)

Discretization of the equation (1.52) leads to a quartic eigenvalue problem. The eigenvalue
of interest are those closest to the real axis, and the system is stable if the imaginary part of
eigenvalue is positive. We will consider the discretization using the Chebyshev polynomials, as
in [55] and [5], that is φ is expanded in [−1,1] as

φ(y) =
∞

∑
n=0

anTn(y), (1.54)

where Tn(cos(θ)) = cos(nθ) and

an =
2

πcn

∫ 1

−1
φ(y)Tn(y)

√
1− y2dy, c0 = 2,cn = 1 for n > 0. (1.55)

The approximate solution is of form

φ(y) =
N

∑
n=0

anTn(y). (1.56)

Let DN represent the Chebyshev differentiation matrix. The entries of DN are given in [68]

(DN)11 =
2N2 +1

6
, (DN)N+1,N+1 =−

2N2 +1
6

,

(DN) j j =
−x j−1

2(1− x2
j−1)

, j = 2, . . . ,n,

(DN)i j =
ci

c j

(−1)i+ j

(xi−1− x j−1)
, i 6= j, i, j = 2, . . . ,N,

where ci =

2 i = 1,N +1

1 otherwise
, and x j = cos( jπ/N), j = 0, . . . ,N. The higher order derivatives

are obtained as powers of DN . By plugging in the derivative matrices D j
N instead of d j

dy j in (1.52)
we derive the quartic pencil λ 4A+λ 3B+λ 2C+λD+E with

A = I, B = iRdiag(1− x2
i ),

C =−(iωRI+2D2
N), D =−iRdiag(1− x2

i )D
2
N−2iRI,

E = D4
N + iRωD2

N .
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1.4 Linearizations of Matrix Polynomials

The most common approach when dealing with polynomial eigenvalue problem is to define
an equivalent linear problem, i.e. to linearize it, and then work with the larger linear matrix pencil.
The eigenvalues of the equivalent problems are the same, and there is an explicit connection
between the corresponding eigenvectors. In this section we present most used linearizations
and define the vector spaces of linearizations. Their most desirable property would be that the
Jordan structure of the eigenvalues is preserved, and we will emphasize the linearizations with
this property.

Definition 1.1. Let P(λ ) be an n×n matrix polynomial of degree k≥ 1. A pencil L(λ ) = λX +Y

with X ,Y ∈ Rkn×kn is called a linearization of P(λ ) if there exist matrix polynomials E(λ ) and

F(λ ), with constant nonzero determinant, so that

E(λ )L(λ )F(λ ) =

(
P(λ ) 0

0 I(k−1)n

)
. (1.57)

The most important and the most used linerizations in practice are the first companion form

C1(λ ) = λX1 +Y1 and the second companion form C2(λ ) = λX2 +Y2 where

X1 =


Ak

I
. . .

I

 , Y1 =


Ak−1 Ak−2 · · · A0

−I 0 · · · 0
... . . . . . . ...
0 · · · −I 0

 , (1.58)

X2 =


Ak

I
. . .

I

 , Y2 =


Ak−1 −I · · · 0

Ak−2 0 . . . ...
...

... . . . −I

A0 0 · · · 0

 . (1.59)

When all the eigenvalues of P(λ ) are finite, the Jordan structure can be recovered from any
linearization. However, when the infinite eigenvalues are present this is not the case. So we
define that the linearization L(λ ) for P(λ ) is a strong linearization if, in addition, revL(λ ) is a
linearization for revP(λ ).

Vector spaces of linearizations. In [50], Mackey et al. defined vector spaces of matrix pencils
which generalize the first and the second companion form. They proved that all pencils, which
are linearizations, from these spaces are also strong linearizations. Here, we present those spaces
and some of their important properties.
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The definitions are

L1(P) := {L(λ ) = λX +Y : X ,Y ∈ Rnk×nk,L(λ ) · (Λ⊗ In) ∈ VP}, (1.60)

L2(P) := {L(λ ) = λX +Y : X ,Y ∈ Rnk×nk,(ΛT ⊗ In) ·L(λ ) ∈WP}, (1.61)

where Λ(r) =
(

rk−1 rk−2 · · · r 1
)T

and

VP = {v⊗P(λ ) : v ∈ Rk}, (1.62)

Wp = {wT ⊗P(λ ) : w ∈ Rk}. (1.63)

Here ⊗ represents the Kronecker product, i.e., for matrices A ∈ Cm×n and B ∈ Cp×q the matrix
A⊗B ∈ Cmp×nq is the block matrix

A⊗B =


a11B . . . a1nB

... . . . ...
an1B . . . amnB

 .

It is proven [50] that (1.60) and (1.61) are vector spaces, and that they have the same dimension
k(k−1)n2 + k. In order to introduce the characterization of these definitions, from which it is
easier to construct the linearization, the column shifted sum for block matrices X and Y of the
form

X =


X11 . . . X1k

... . . . ...
Xk1 . . . Xkk

 , Y =


Y11 . . . Y1k

... . . . ...
Yk1 . . . Ykk

 , Xi j,Yi j ∈ Cn×n

is introduced as

X Y =


X11 . . . X1k 0n

... . . . ...
...

Xk1 . . . Xkk 0n

+


0n Y11 . . . Y1k
...

... . . . ...
0n Yk1 . . . Ykk

 , (1.64)

and the row shifted sum as

X Y =


X11 . . . X1k

... . . . ...
Xk1 . . . Xkk

0n . . . 0n

+


Y11 . . . Y1k

... . . . ...
Yk1 . . . Ykk

0n . . . 0n

 . (1.65)

Now, it can be proven that

L1(P) =
{

λX +Y : X Y = v⊗
(

Ak Ak−1 . . . A0

)
,v ∈ Ck

}
, (1.66)
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L2(P) =

λX +Y : X Y = wT ⊗


Ak
...

A0

 ,w ∈ Ck

 . (1.67)

In addition, the theorem which gives an algorithm for determining if a pencil is a linearization
is proven as well.
Finally, we state the theorems about recovery of both right and left eigenvectors.

Theorem 1.10 ([50]). Let P(λ ) be an n×n matrix polynomial of degree k, and L(λ ) any pencil

in L1 with nonzero right eigenvector z. Then x ∈ Cn is an eigenvector for P(λ ) with finite

eigenvalue λ ∈ C if and only if Λ⊗ x is an eigenvector for L(λ ) with eigenvalue λ . If, in

addition, P is regular and L ∈ L1(P) is a linearization for P, then every eigenvector of L with

finite eigenvalue λ is of the form Λ⊗ x for some eigenvector x of P.

Theorem 1.11 ([42]). Let L ∈ L1(P) be a linearization of P, with vector v in (1.66). If u is a left

eigenvector of L with eigenvalue λ then

y = (v∗⊗ I)u (1.68)

is a left eigenvector of P with eigenvalue λ . Moreover, any left eigenvector of P corresponding

to λ can be recovered from one of L from the formula (1.68).

Theorem 1.12 ([42]). Let L ∈ L2(P) be a linearization of P, with vector w in (1.67). If z is a

right eigenvector of L with eigenvalue λ then

x = (wT ⊗ I)z (1.69)

is a right eigenvector of P with eigenvalue λ . Moreover, any right eigenvector of P corresponding

to λ can be recovered from one of L from the formula (1.69).

Theorem 1.13 ([50]). Let P(λ ) be an n×n matrix polynomial of degree k, and L(λ ) any pencil

in L2 with nonzero left vector u. Then y ∈Cn is a left eigenvector for P(λ ) with finite eigenvalue

λ ∈ C if and only if Λ⊗ y is an eigenvector for L(λ ) with eigenvalue λ . If, in addition, P

is regular and L ∈ L2(P) is a linearization for P, then every left eigenvector of L with finite

eigenvalue λ is of form Λ⊗ y for some left eigenvector y of P.

Theorem 1.14 ([50]). Let P(λ ) be an n×n matrix polynomial of degree k, and L(λ ) any pencil

in L1 (resp., L2) with nonzero right (left) vector w. Then x ∈ Cn is a right (left) eigenvector

for P(λ ) with infinite eigenvalue if and only if e1⊗ x is a right (left) eigenvector for L(λ ) with

infinite eigenvalue. If, in addition, P is regular and L ∈ L1(P) (resp., L2(P) is a linearization

for P, then every right (left) eigenvector of L with infinite eigenvalue is of form e1⊗ x for some

right (left) eigenvector x of P with infinite eigenvalue.
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Chapter 1. The Polynomial Eigenvalue Problem

From these theorems we see that the right eigenvector recovery is straightforward for the
pencils in L1, and the left eigenvector is easy to recover for the pencils in L2. This is an attractive
feature, which is why [50] defined the vector space DL(P) := L1(P)∩L2(P), which has both
properties. They derived characterisation for this space. Another significant property is that for
symmetric P every pencil in DL(P) is also symmetric.
At the end, we present examples for two linearizations which will be used in the remaining
sections.

Example 1.5 (First companion form). Consider the first companion form linearization (1.58)
C1(λ ) ∈ L1(P). The corresponding vector v from the characterization (1.66) is v = e1. Let x be
the right eigenvector for P(λ ), and z the corresponding right eigenvector for C1(λ ). Then

z = Λ⊗ x =


λ k−1x

λ k−2x
...
x

 . (1.70)

Now, let y be the left eigenvector for P(λ ), and u corresponding left eigenvector for C1(λ ),
where λ is finite and nonzero. Then

u =


I

(λAk +Ak−1)
∗

. . .

(λ k−1Ak +λ k−2Ak−2 + . . .+A1)
∗

y. (1.71)

Example 1.6 (Second companion form). Consider the second companion form linearization
(1.59) C2(λ ) ∈ L2(P). The corresponding vector w from the characterization (1.67) is w = e1.
Let x be the right eigenvector for P(λ ), and z the corresponding right eigenvector for C1(λ ), λ

finite nonzero. Then

z =


I

(λAk +Ak−1)

. . .

(λ k−1Ak +λ k−2Ak−2 + . . .+A1)

x. (1.72)

Now, let y be the left eigenvector for P(λ ), and u corresponding left eigenvector for C2(λ ),
where λ is finite and nonzero. Then

u = Λ⊗ y =


λ k−1y

λ k−2y
...
y

 . (1.73)
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Linearization and invariant pairs. The connection between the invariant pairs of matrix
polynomial and its linearization is given in the following lemma

Lemma 1.1 ([6]). A minimal invariant pair (X ,S) for a regular matrix polynomial is simple if

and only if (Vk(X ,S),S) is a simple invariant pair for the corresponding companion linearization.

The recovery of invariant pairs from linearization analogous to theorem 1.10 is given in the
following theorem.

Theorem 1.15 ([6]). Let L(λ ) = λB+A ∈ L1(P) be a linearization of a regular matrix polyno-

mial P. Then for every simple invariant pair (Y,S) ∈ Ckn×`×C`×` of L there exists X ∈ Cn×`

such that Y =Vk(X ,S) and (X ,S) is a simple invariant pair of P.

1.5 Localization of eigenvalues of nonlinear eigenvalue pro-
blem

In this section we present the localization theorems, pseudospectral inclusion theorems and
Bauer-Fike theorem for general nonlinear eigenvalue problems developed by Bindel and Hood
in [7].

They study the nonlinear eigenvalue problem

T (λ )v = 0, v 6= 0, (1.74)

where T : Ω→ Cn×n is analytic on the simply connected domain Ω⊂ C, and regular, meaning
that det(T (z)) 6≡ 0. The emphasis is only on finite eigenvalues.

We define the number of eigenvalues inside Γ, for Γ⊂ C, a simple closed contour, and T (z)

nonsingular for all z ∈ Γ, by the winding number

WΓ (detT (z)) =
1

2πi

∫
Γ

[
d
dz

logdet(T (z))
]

dz =
1

2πi

∫
Γ

tr(T (z)−1T ′(z))dz. (1.75)

Now, the main lemma for the proofs of the localization theorems is the following:

Lemma 1.2 ([7]). Suppose T : Ω→ Cn×n and E : Ω→ Cn×n are analytic and that Γ⊂Ω is a

simple closed contour. If T (z)+ sE(z) is nonsingular for all s ∈ [0,1] and all z ∈ Γ, then T and

T +E have the same number of eigenvalues inside Γ, counting the multiplicities.

The nonlinear generalization of Gershgorin theorem states

Theorem 1.16 ([7], Nonlinear Gershgorin theorem). Suppose T (z) = D(z)+E(z), where D,E :
Ω→ Cn×n are analytic and D is diagonal. Then for any 0≤ α ≤ 1,

Λ(T )⊂
n⋃

j=1

Gα
j , (1.76)
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where Gα
j is the jth generalized Gershgorin region

Gα
j = {z ∈Ω : |d j j(z)| ≤ r j(z)αc j(z)1−α}, (1.77)

and r j and c j are jth absolute row and column sums of E, i.e.,

r j(z) =
n

∑
k=1
|e jk(z)|, c j(z) =

n

∑
i=1
|ei j(z)|. (1.78)

Moreover, suppose that U is a bounded connected component of the union ∪ jGα
j such that

U ⊂ Ω. Then U contains the same number of eigenvalues of T and D, and if U includes m

connected components of the Gershgorin regions, it must contain at least m eigenvalues.

1.5.1 Pseudospectrum

The spectrum of a matrix A is a set of all z∈Cn such that resolvent operator R(z)= (zI−A)−1

is not defined. The ε-pseudospectrum can be equivalently defined as [69]:

Λε = {z ∈ C : ‖(zI−A)−1‖2 > ε
−1} (1.79)

=
⋃

‖E‖2<ε

Λ(A+E) (1.80)

= {z ∈ C : ‖(z−A)v‖2 < ε,v ∈ Cn,‖v‖2 = 1}. (1.81)

The motivation for the first definition in (1.79) is that asking if z is eigenvalue of the matrix A is
the same as asking if the matrix zI−A is singular. However, determination of the singularity of
a matrix is not numerically robust, because arbitrary small perturbation can change the matrix
from singular to regular. The better approach is to check if the norm ‖(zI−A)−1‖2 is large, and
thus the first definition of pseudospectrum.

The second definition in (1.80) is motivated by the eigenvalue perturbation theory. Namely,
by this definition, ε-pseudospectrum is the set of all eigenvalues of all perturbed matrices A+E

with ‖E‖2 < ε .

The usual definition of ε-pseudospectrum for nonlinear eigenvalue problem is generalization
of (1.80). For the space F consisting of some set of analytic matrix-valued functions of interest,
the ε-pseudospectrum for T ∈F is

Λε(T ) =
⋃

E∈F ,‖E‖glob<ε

Λ(T +E), (1.82)

where ‖E‖glob is a global measure of the size of the perturbing function E. In [7], F is the space
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of all analytic matrix-valued functions Cω(Ω,Cn×n) with the global measure

‖E‖glob ≡ sup
z∈Ω

‖E(z)‖2. (1.83)

In this setting, three equivalent definitions of pseudospectrum, similar to (1.79)-(1.81) are
provided in [7]

Theorem 1.17 ([7]). Let E = {E : Ω→Cn×n, E analytic, supz∈Ω ‖E(z)‖2 < ε} and E0 = {E0 ∈
Cn×n : ‖E0‖2 < ε}. Then the following definitions are equivalent:

Λε(T ) = {z ∈Ω : ‖T (z)−1‖2 > ε
−1} (1.84)

=
⋃

E∈E
Λ(T +E) (1.85)

=
⋃

E0∈E0

Λ(T +E0). (1.86)

Another generalization of ε-pseudospectrum theory for linear problem is stated in the follo-
wing proposition.

Proposition 1.3 ([7]). Suppose T : Ω→ Cn×n is analytic and U is a bounded connected com-

ponent of Λε(T ) with U ∈Ω. Then U contains an eigenvalue of T .

Connection with backward error is given in proposition

Proposition 1.4 ([7]). Suppose T (λ̂ )x = r and ‖r‖2/‖x‖2 < ε . Then λ̂ ∈ Λε(T ).

The comparison between eigenvalue problems via pseudospectra is given in the next theorem

Theorem 1.18 ([7]). Suppose T : Ω→ Cn×n and E : Ω→ Cn×n are analytic, and let

Ωε ≡ {z ∈Ω : ‖E(z)‖2 < ε}.

Then

(Λ(T +E)∩Ωε)⊂ (Λε(T )∩Ωε) .

Furthermore, if U is a bounded connected component of Λε(T ) such that U ⊂ Ωε , then U

contains exactly the same number of eigenvalues of T and T +E.

1.6 Diagonalizable quadratic matrix polynomials

In this section we investigate under what assumptions we can diagonalize quadratic matrix
polynomial. The diagonalization is done by congruence or direct equivalence transformation.
We will also present the approach from Lancaster and Zaballa in [46] where the diagonalization
is obtained by applying congruence or strict equivalence transformation to a linearization, while
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Chapter 1. The Polynomial Eigenvalue Problem

preserving the structure of the original problem.
The pencil (λ 2M+λC+K) is said to be diagonal or decoupled if M,C,K are diagonal matrices.
Two pencils are isospectral if they have the same Jordan form, that is if they have the same
eigenvalues and the same partial multiplicities. Finally, a pencil is diagonalizable if it admits an
isospectral diagonal system.

Diagonalization without linearization. Here we list the quadratic pencils that allow diago-
nalization by congruence (Hermitian pencils) and by strict equivalence (no symmetry) without
linearization. Before stating the theorem we must introduce the notion of sign characteristic.
Hermitian pencils A+λB are congruent to pencil

r⊕
j=1

η j(λ −α j)⊕
s⊕

j=r+1

η j

(
1 λ −α j

λ −α j 0

)
⊕

t⊕
j=s+1

(
0 λ − (µ j + iω j)

λ − (µ j− iω j) 0

)
,

where α1, . . . ,αr are the real eigenvalues with partial multiplicities equal to one, αr+1, . . . ,αs

are the real eigenvalues with partial multiplicities equal to two, and µs+1± iωs+1, . . . ,µt ± iωt

are complex conjugate pairs with partial multiplicities one. The numbers η1, . . . ,ηs take values
±1 end represent the sign characteristic of the pencil.

Theorem 1.19 (Hermitian pencils,[46]). Let M,C,K ∈Cn×n with det(M) 6= 0, M∗ = M,C∗ =C

and K∗ = K. Assume that λM+K is semisimple with all eigenvalues real and of definite type,

and define

Λ = diag(λ1I1,λ2I2, . . . ,λsIs), S = diag(±I1,±I2, . . . ,±Is),

where the size of the identity matrix I j is a partial multiplicity of the eigenvalue λ j for each

j, and the sign of each term in S is determined by the corresponding +1 or −1 in the sign

characteristic. Then there exists a nonsingular U ∈ Cn×n such that U∗MU,U∗CU and U∗KU

are diagonal if and only if CM−1K = KM−1C. If, in addition, M,C,K are real and symmetric,

then there is a corresponding U ∈ Rn×n.

Theorem 1.20 (No symmetry, [46]). Let M,C,K ∈ Rn×n with det(M) 6= 0 and assume that

λM+K has n distinct eigenvalues. Then there exist nonsingular U,V ∈Cn×n such that UMV = I
and UCV,UKV are diagonal if and only if CM−1K = KM−1C.

Diagonalization by linearization. In the above theorems we saw that the certain commutati-
vity conditions must be satisfied in order for pencil to be diagonalizable. Here, we are interested
in the procedure for computing that diagonal pencil, and this is developed using the linearization

A =

(
C M

M 0

)
, B =

(
−K 0
0 M

)
, (1.87)
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which is structure preserving.
Before the diagonalization of the original pencil we will first study the Jordan form of the desired
diagonal pencil.

Definition 1.2 ([46]). Let Jn,C and Jn,R be the classes of 2n× 2n canonical Jordan matrices

for n×n diagonal pencils, and n×n real diagonal pencils, respectively (so that Jn,R ⊂ Jn,C ⊂
C2n×2n).

Denote by ⊕x j the direct diagonal sum of scalars or matrices x1, . . . ,xk.
Let λ1, . . . ,λt ∈ C,1 6= t 6= 2n be distinct eigenvalues, and let λi have partial multiplicities κi1 ≥
. . . ≥ κi,µg,i > 0 for each i. Then the eigenvalue λi has geometric multiplicity µg,i ≤ n and the
algebraic multiplicity µa,i = ∑

µg,i
j=1 κi j ≤ 2n. It holds that

t

∑
i=1

µg,i

∑
j=1

κi j = 2n. (1.88)

Write diagonal pencil Q(λ ) =
n⊕

i=1
[miλ

2 + ciλ + ki], where ∏
n
i=1 mi 6= 0. Then each diagonal

entry has a linearization

λ I2−

[
0 1

−ki/mi −ci/mi

]
, i = 1,2, . . . , t,

and Q(λ ) has the tridiagonal linearization λ I−A where

A =
n⊕

i=1

[
0 1

−ki/mi −ci/mi

]
.

The elementary divisors of λ I−A are the disjoint unions of those of (1.87) and we have

1≤ κi j ≤ 2, for 1≤ i≤ t,1≤ j ≤ µg,i. (1.89)

For each distinct eigenvalue λi, i = 1,2, . . . , t we define the integers si ≥ 0 by

κi j =

2, j = 1,2, . . . ,si

1, j = si +1, . . . ,µg,i,
(1.90)

µg,i− si ≤ n− p, i = 1,2, . . . , t. (1.91)

Theorem 1.21 (Jordan form for diagonal pencil, [46]). A Jordan matrix with partial multiplici-

ties {κi j}
i=t, j=µg,i
i=1, j=1 is in Jn,C if and only if conditions (1.88), (1.89) and (1.91) hold where, for

i = 1,2, . . . , t the integers si ≥ 0 appearing in (1.91) are defined by (1.90).
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Theorem 1.22 (Jordan form for real diagonal pencil, [46]). A Jordan matrix J with partial

multiplicities {κi j}
i=t, j=µg,i
i=1, j=1 is in Jn,R is and only if there is and n0, 0 ≤ n0 ≤ n, such that

J = diag(Jn0,Jn−n0) for Jordan matrices Jn0,Jn−n0 with σ(Jn0)⊂ R and σ(Jn−n0)∩R= /0 and

(a) conditions (1.88), (1.89) and (1.91) (with n replaced by n0) hold for Jn0 and

(b) σ(Jn−n0) consists of conjugate pairs of nonreal semisimple eigenvalues λ j,λ j.

Now we consider the generalization of an isospectral diagonal system to our system Q(λ ) by
the application of congruence or strict equivalence on the linearization λA−B in (1.87). First we
define the transformation which will be used. They are all structure preserving transformations.

Definition 1.3. (a) A system is DEC (diagonalizable by strict equivalence over C) if there

exist nonsingular U,V ∈ C2n×2n such that

U(λA−B)V = λ Â− B̂,

where λ Â− B̂ is the linearization of a (generally complex) diagonal system Q̂(λ ) =

λ 2M̂+λĈ+ K̂.

(b) A real system is DER if there exist nonsingular U,V ∈ C2n×2n such that

U(λA−B)V = λ Â− B̂,

where λ Â− B̂ is the linearization of a real diagonal system Q̂(λ ) = λ 2M̂+λĈ+ K̂.

(c) A system is DCR (diagonalizable by congruence) if there exist nonsingular U ∈ C2n×2n

such that

U(λA−B)U∗ = λ Â− B̂,

where λ Â− B̂ is the linearization of a real diagonal system Q̂(λ ) = λ 2M̂+λĈ+ K̂.

Finally, we state the main theorem for this section

Theorem 1.23 ([46]). (a) A system Q(λ ) with Jordan form J is DEC if and only if J ∈ Jn,C.

(b) A real system Q(λ ) with Jordan form J is DER if and only if J ∈ Jn,R.

(a) An Hermitian system Q(λ ) with Jordan form J is DCR if and only if J ∈ Jn,R.

1.7 Minimax theory

In [28] Duffin considered heavily damped dynamical systems. The aim of his work was to
develop variational principles for overdamped systems analogous to variational principles for
Hermitian matrices, i.e.
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Theorem 1.24. Let A be an n×n Hermitian matrix with eigenvalues λ1 ≤ . . .≤ λk ≤ . . .≤ λn.

Then

λk = min
U

dimU=k

max
x∈U
x 6=0

(Ax,x)
(x,x)

. (1.92)

The main tool for the theory is Rayleigh coefficient, which is replaced by the Rayleigh
functional in he case of overdamped dynamical systems.
For given matrices M,C and K of order n and the associated quadratic forms

m(v) = (Mv,v), c(v) = (Cv,v), k(v) = (Kv,v), (1.93)

we assume that

(i) M,C and K are symmetric,

(ii) m(v)≥ 0, c(v)≥ 0, and k(v)≥ 0, which is later replaced by weaker hypothesis c(v)≥ 0,

(iii) c2(v)−4m(v)k(v)> 0, overdamping condition.

If r is the rank of matrix M, then there are precisely n+ r roots of the equation

det(λ 2M+λC+K) = 0, (1.94)

which represent the eigenvalues of the quadratic eigenvalue problem

(λ 2M+λC+K)x = 0. (1.95)

Duffin divided these eigenvalues into two groups, the primary and the secondary eigenvalues.
Namely, h1 ≤ h2 ≤ . . . ≤ hr, the r smallest roots of (1.94), are called secondary eigenvalues,
and k1 ≤ k2 ≤ . . .≤ kn, the n largest roots, are called primary eigenvalues. The corresponding
eigenvectors are called the secondary eigenvectors and primary eigenvectors, respectively.

1.7.1 The primary functional

The primary functional is defined as

p(v) =
−2k(v)

c(v)+d(v)
, (1.96)

where
d(v) =

√
c2(v)−4m(v)k(v)> 0. (1.97)
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In order to state the main theorem, we introduce the number P(Y ) associated with each subspace
Y of dimension one or greater by

P(Y ) = sup
y∈Y

p(y). (1.98)

The ith primary minimax value ki is then defined as

ki = inf
dimY=i

P(Y ). (1.99)

The first important theorem states that the eigenvectors of the primary eigenvalues are linearly
independent, more precisely:

Theorem 1.25 ([28]). There is an independent set of n primary eigenvectors u1,u2, . . . ,un. The

corresponding eigenvalues are the minimax values k1,k2, . . . ,kn. Any other primary eigenvector

u is a linear combination of vectors of the set having the same eigenvalue as u.

The minimax theorem reads as follows.

Theorem 1.26 ([28]). If Y is a subspace of dimension ≥ 1, let

P(Y ) = max
y∈Y

p(y).

Then, for i = 1,2, . . . ,n, the primary minimax value ki is given by

ki = minP(Y ),

for all subspaces of dimension i.

1.7.2 The secondary functional

The secondary functional s(v) is defined for a vector v if and only if m(v) 6= 0 as

2s(v)m(v)+ c(v) =−d(v). (1.100)

A primary and a secondary eigenvectors can coincide, but the primary and secondary eigenvalues
cannot. More precisely

Theorem 1.27 ([28]). Let r be the rank of M. Then there is an independent set of r vectors

w1,w2, . . . ,wr. Each vector of the set is a secondary eigenvector. Any other secondary eigenvec-

tor is a linear combination of vectors of the set with the same eigenvalue.

Theorem 1.28 ([28]). The range of the primary functional and the range of the secondary

functional have no common value.
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Consider the reversed quadratic eigenvalue problem which satisfies the conditions (i), (ii)
and (iii). The primary functional for the reversed problem is

p0(v) =
−2m(v)

c(v)+d(v)
.

Thus, if m 6= 0, then s = 1/p0. So one can prove an analogous theorem to Theorem 1.26 for the
secondary functional.
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Chapter 2

Backward error

Backward error analysis provides an elegant way to justify the computed output: if the
initial data is slightly perturbed (this perturbation is called backward error), then the computed
(inexact) output can be reproduced by exact computation with this new data. This, of course,
does not guarantee that the computed result is close to the exact one - the error depends on
the sensitivity of the function we are trying to compute. If the size of the backward error is of
the comparable size as the estimated uncertainty in the initial data, then we may say that the
computed results is as good as warranted by te data.

In Section 2.2, we show that optimal Hermitian backward error (of the same minimal norm
as in the unconstrained case) is possible for any eigenpair; this is an extension od the existing
theory in which such optimal Hermitian backward error was established only for the case of real
eigenvalue. The result is extended to allow both Hermitian and skew Hermitan perturbations in
the coefficient matrices. Further, we derive a new more intrinsic proof of the explicit formula
for the component-wise backward error.

2.1 Optimal backward error for a given eigenpair

In the case of matrix polynomial P(λ ) and its approximate eigenpair (x,λ ), with λ finite, the
minimal size of the normwise backward error, measured e.g. in the spectral norm ‖ · ‖2, is
defined by

ηP(x,λ ) = min{ε : (P(λ )+∆P(λ ))x = 0, ‖∆Ai‖2 ≤ ε‖Ai‖2, i = 0, . . . ,k}, (2.1)

where ∆P(λ ) = ∑
k
i=0 λ i∆Ai is the backward error in P(λ ), and

P(λ )+∆P(λ ) =
k

∑
i=0

λ
i(Ai +∆Ai).
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Chapter 2. Backward error

In other words, we seek small perturbations ∆Ai of the coefficients Ai, that will render the
computed pair (x,λ ) an exact eigenpair of P(λ )+∆P(λ ).

Using the backward error to justify the computed result is usually illustrated by a commuta-
tive diagram as in Figure 2.1.

P(λ ) = ∑
k
i=0 λ iAi (x,λ ); (P(λ )+∆P(λ ))x = 0

P(λex)xex = 0

P(λ )+∆P(λ )

computed
approximation

backward
error ∆P(λ ) = ∑

k
i=0 λ iAi

exact computation of the
eigenvalues and eigenvectors

Figure 2.1: Commutative diagram for a backward perturbation in the computation of a right
eigenpair (x,λ ) of the matrix polynomial P(λ ) = ∑

k
i=0 λ iAi.

The optimal backward error (2.1) corresponds to the residual, and in practical computation
it can be obtained using the explicit formula, derived in [66]:

ηP(x,λ ) =
‖P(λ )x‖2(

∑
k
`=0 |λ `|‖A`‖2

)
‖x‖2

. (2.2)

If only the eigenvalue λ is of interest, we can always assume that the optimal eigenvector is
available so that ηP(λ ,x) is minimal. Clearly, the ‖P(λ )x‖2/‖x‖2 factor in (2.2) is minimized
if x is the right singular vector that corresponds to the smallest singular value of P(λ ). Hence,

ηP(λ )≡min
x 6=0

‖P(λ )x‖2(
∑

k
`=0 |λ `|‖A`‖2

)
‖x‖2

=
σmin(P(λ ))(

∑
k
`=0 |λ `|‖A`‖2

) = 1(
∑

k
`=0 |λ `|‖A`‖2

)
‖P(λ )−1‖2

,

where σmin(·) denotes the minimal singular value of a matrix. This trick of involving the singular
vector of the smallest singular value is also at the core of the eigenvector refinement technique
of Jia and Sun [45].

Remark 2.1. It is instructive to consider the special case λ = 0. Obviously, if we set

∆A` = 0, `= 0, . . . ,k; ∆A0 =−A0x
x∗

‖x‖2
2

(
note that here

‖∆A0‖2

‖A0‖
=
‖A0x‖2

‖A0‖‖x‖2

)
, (2.3)

then (P(0)+∆P(0))x = (A0 +∆A0)x = 0. Recall that this ∆A0 corresponds to the optimal bac-
kward error for A0x≈ 0.

Remark 2.2. If the computed approximate eigenvalue is λ = ∞, then we can try to interpret it
as a zero eigenvalue of a backward perturbed reversed problem. Using P(λ ) = λ k revP(1/λ ),
µ = 1/λ , the expression (2.2) can be interpreted as

ηP(x,λ ) =
‖λ k

∑
k
`=0(λ

−`Ak−`)x‖2

|λ k|(∑k
`=0 |λ |−`‖Ak−`‖2)‖x‖2

=
‖∑

k
`=0 µ`Ak−`x‖2(

∑
k
`=0 |µ`|‖Ak−`‖2

)
‖x‖2

≡ ηrevP(x,µ).
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Hence, for infinite λ , the backward error can be defined analogously to (2.3) as ∆A` = 0, ` =
0, . . . ,k− 1, and ∆Ak = −Akxx∗/‖x‖2

2. Clearly, ‖∆Ak‖2/‖Ak‖2 = ‖Akx‖2/(‖Ak‖2‖x‖2), and
(Ak +∆Ak)x≡ (revP(0)+∆ revP(0))x = 0.

2.2 On Hermitian and skew–Hermitian backward error

A backward error analysis is reassuring – it allows us to claim the computed result can be
used with confidence because it corresponds almost to the given input data. However, in this
interpretation of having solved a nearby problem, for many applications not only the size but
also the structure of the backward perturbation matters. Suppose that the coefficient matrices
A` are Hermitian (or real symmetric), where the symmetry is a result of the underlying physics
of a concrete engineering application. In such cases non-hermitian/non-symmetric backward
perturbed data A`+∆A` make the interpretation of backward stability in terms of the original
problem difficult.

Hence, it is of interest to determine the optimal backward error under the constraint that the
backward errors in the coefficients A` are Hermitian:

η
(H)
P (x,λ ) = min{ε : (P(λ )+∆P(λ ))x = 0, ∆A∗i = ∆Ai, ‖∆Ai‖2 ≤ ε‖Ai‖2, i = 0, . . . ,k}.

(2.4)
Note that in the definition (2.4) we do not require the coefficients Ai of P(λ ) to be Hermitian,
although such Hermitian case is usually tacitly assumed if we are interested in η

(H)
P (x,λ ). The

existence of optimal Hermitian backward error for Hermitian pencil, that matches the size of
ηP(x,λ ), is established by Tisseur [66], but only for real eigenvalues.

Theorem 2.1 ([66]). If all coefficient matrices of P(λ ) are Hermitian, and if λ is real, then

ηP(x,λ ) = η
(H)
P (x,λ ).

In the next theorem, we extend the result of Tisseur to the entire finite spectrum, i.e. we now
show that a Hermitian backward error is possible for any finite eigenvalue.

Theorem 2.2. Let (x,λ ) be an approximate eigenpair of P(λ ). Then ηP(x,λ ) = η
(H)
P (x,λ ).

Proof. Let P(λ )x = r 6= 0, and let λ = ρeiϕ be the polar form of λ . (For λ = 0, set ρ = ϕ = 0
and λ 0 = 1.) For j = 0, . . . ,k, we can construct Householder reflectors H j = H∗j = H−1

j such
that

H jx =−
r
‖r‖2
‖x‖2e−i jϕ .

If we set S j = (‖r‖2/‖x‖2)H j, then S∗j = S j, S jx = −re−i jϕ , and ‖S j‖2 = ‖r‖2/‖x‖2. Define
backward errors

∆A j =
1

∑
k
`=0 |λ |`‖A`‖2

‖A j‖2S j (note that ∆A∗j = ∆A j) (2.5)
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and check that

λ
j
∆A jx =

−λ je−i jϕ‖A j‖2

∑
k
`=0 |λ |`‖A`‖2

r =
−|λ | j‖A j‖2

∑
k
`=0 |λ |`‖A`‖2

r,

and

∆P(λ )x =
k

∑
j=0

λ
j
∆A jx =−r, (P(λ )+∆P(λ ))x = 0.

Finally, note that the norm of ∆A j matches the unconstrained optimal value, i.e.

‖∆A j‖2 =
‖r‖2

‖x‖2 ∑
k
`=0 |λ |`‖A`‖2

‖A j‖2 = ηP(x,λ )‖A j‖2.

The trick used in Theorem 2.2 can be slightly modified to analogously construct a skew–
Hermitian perturbation.

Theorem 2.3. Let σ = (σ0, . . . ,σk) ∈ {−1,1}k+1 and

η
(H,σ)
P (x,λ ) = min{ε : (P(λ )+∆P(λ ))x = 0, ∆A∗i = σi∆Ai, ‖∆Ai‖2 ≤ ε‖Ai‖2, i = 0, . . . ,k},

(2.6)
i.e. the backward errors are required to be Hermitian or skew–Hermitian, as indicated in the

prescribed signature σ = (±1, . . . ,±1). Then η
(H,σ)
P (x,λ ) = ηP(x,λ ).

Proof. Follow the proof of Theorem 2.2. For each σ j = 1 define H j as in (2.9) with S j =

(‖r‖2/‖x‖2)H j. If σ j =−1, define the Householder reflector H j so that

H jx = i
r
‖r‖2
‖y‖2e−i jϕ ,

and set S j = i(‖r‖2/‖x‖2)H j. Then S∗j =−S j, S jx =−re−i jϕ . If we define ∆A j as in (2.5), then
∆A∗j = σ j∆A j and the rest of the proof follows as in Theorem 2.2.

2.2.1 The left eigenpair

If we have an approximate left eigenpair (y∗,λ ) with finite λ , its backward error is defined
analogously as

ηP(y∗,λ ) = min{ε : y∗(P(λ )+∆P(λ )) = 0, ‖∆Ai‖2 ≤ ε‖Ai‖2, i = 0, . . . ,k}, (2.7)

and the corresponding explicit formula in terms of the residual reads

ηP(y∗,λ ) =
‖y∗P(λ )‖2(

∑
k
`=0 |λ `|‖A`‖2

)
‖y‖2

. (2.8)
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Of interest is, as discussed above, to determine minimal Hermitian backward error η
(H)
P (y∗,λ ),

where

η
(H)
P (y∗,λ ) = min{ε : y∗(P(λ )+∆P(λ )) = 0, ∆A∗i = ∆Ai, ‖∆Ai‖2 ≤ ε‖Ai‖2, i = 0, . . . ,k}.

(2.9)
Clearly, we can use, mutatis mutandis, Theorems 2.2 and 2.3 to prove existence of the optimal
Hermitian/skew-Hermitian backward error. For the sake of completeness, we provide the details.

Theorem 2.4. Let (y∗,λ ) be an approximate left eigenpair of P(λ ). Then η
(H)
P (y∗,λ ) =

ηP(y∗,λ ).

Proof. Let y∗P(λ ) = r∗ 6= 0, and let λ = ρeiϕ be the polar form of λ . (For λ = 0, set ρ = ϕ = 0
and λ 0 = 1.) For j = 0, . . . ,k, we can construct Householder reflectors H j = H∗j = H−1

j such
that

H jy =−
r
‖r‖2
‖y‖2ei jϕ ,

so that
y∗H j =−

r∗

‖r‖2
‖y‖2e−i jϕ .

If we set S j = (‖r‖2/‖y‖2)H j, then S∗j = S j, y∗S j =−r∗e−i jϕ , and ‖S j‖2 = ‖r‖2/‖y‖2. Define
backward errors

∆A j =
1

∑
k
`=0 |λ |`‖A`‖2

‖A j‖2S j (note that ∆A∗j = ∆A j) (2.10)

and check that

λ
jy∗∆A j =

−λ jei jϕ‖A j‖2

∑
k
`=0 |λ |`‖A`‖2

r∗ =
−|λ | j‖A j‖2

∑
k
`=0 |λ |`‖A`‖2

r∗,

and

y∗∆P(λ ) =
k

∑
j=0

λ
jy∗∆A j =−r∗, y∗(P(λ )+∆P(λ )) = 0.

Finally, note that the norm of ∆A j matches the unconstrained optimal value, i.e.

‖∆A j‖2 =
‖r‖2

‖y‖2 ∑
k
`=0 |λ |`‖A`‖2

‖A j‖2 = ηP(y∗,λ )‖A j‖2.

Corollary 2.1. Let σ = (σ0, . . . ,σk) ∈ {−1,1}k+1 and

η
(H,σ)
P (y∗,λ ) = min{ε : y∗(P(λ )+∆P(λ )) = 0, ∆A∗i = σi∆Ai,‖∆Ai‖2 ≤ ε‖Ai‖2, i = 0, . . . ,k},

(2.11)
i.e. the backward errors are required to be Hermitian or skew–Hermitian, as indicated in

σ = (±1, . . . ,±1). Then η
(H,σ)
P (y∗,λ ) = ηP(y∗,λ ).
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Proof. Follow the proof of Theorem 2.4. For each σ j = 1 define H j as in (2.2.1) with S j =

(‖r‖2/‖y‖2)H j. If σ j =−1, define the Householder reflector H j so that

H jy =−i
r
‖r‖2
‖y‖2ei jϕ ,

so that
y∗H j = i

r∗

‖r‖2
‖y‖2e−i jϕ ,

and set S j = i(‖r‖2/‖y‖2)H j. Then S∗j =−S j, y∗S j =−r∗e−i jϕ . If we define ∆A j as in (2.10),
then ∆A∗j = σ j∆A j and the rest of the proof follows as in Theorem 2.4.

Backward error for an approximate triple. The backward error for a triple (x,y∗,λ ), com-
puted by a numerical algorithm, is defined as

η(x,y∗,λ )=min{ε : (P(λ )+∆P(λ ))x= 0,y∗(P(λ )+∆P(λ ))= 0, ‖A`‖2≤ ε‖A`‖2, `= 0, . . . ,k}.
(2.12)

The explicit formula for (2.12) is given in the following theorem

Theorem 2.5 ([66]). The normwise backward error for eigentriple is given by

η(x,y∗,λ ) =
1
α

max
{
‖r‖2

‖x‖2
,
‖s‖2

‖y‖2

}
, (2.13)

where r = P(λ )x, s∗ = y∗P(λ ) and α = ∑
k
`=0 |λ |`‖A`‖2.

Notice that (2.13) actually says that η(x,y∗,λ ) = max(η(x,λ ),η(y∗,λ )).

2.3 Backward error for a homogeneous form of P(λ )

As we emphasized in Section 1.4, the first step in most numerical methods for solving po-
lynomial eigenvalue problems is linearization – the nonlinearity is traded for linear eigenvalue
problem of higher dimension. Then, the next step is just direct deployment of the methods for
the linear problem, and straightforward reconstruction of approximate eigenvalues and eigen-
vectors of the original nonlinear problem. In practice, it has been noticed that, although the
backward error for a computed eigenpair for linear problem is small, the backward error of the
corresponding approximation for the original polynomial problem can be much larger. It turns
out that the relations between the norms of the coefficient matrices A` of P(λ ) affect the quality
of the computed solution. This should be intuitively clear – if the norms ‖Ai‖2 vary widely over
several orders of magnitude, and if some of those matrices are blocks in the coefficient matrix B

of the linearization, then small ‖δB‖2/‖B‖2 does not ensure small ‖δAi‖2/‖Ai‖2.
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In some cases it is more convenient to define the backward errors for the homogeneous form
of the matrix polynomial, where the homogeneous form is defined as

P(α,β ) =
k

∑
`=0

α
`
β

k−`A` (≡ β
k

k

∑
`=0

(α/β )`A`).

The backward errors are then in forms of ∆P(α,β ) defined as

ηP(x,α,β ) = min{ε : (P(α,β )+∆P(α,β ))x = 0, ‖∆Ai‖2 ≤ ε‖Ai‖2, i = 0, . . . ,k}, (2.14)

ηP(y∗,α,β ) = min{ε : y∗(P(α,β )+∆P(α,β )) = 0, ‖∆Ai‖2 ≤ ε‖Ai‖2, i = 0, . . . ,k}. (2.15)

An advantage of this representation of the backward error is that it uniformly applies to both
finite and infinite eigenvalues. Using P(α,β ) = β kP(α/β ) for β 6= 0, and (2.2) and (2.8) we
get explicit formulas for homogeneous form

ηP(x,α,β ) =
‖P(α,β )x‖2

(∑k
i=0 |α i||β k−i|‖Ai‖2)‖x‖2

, (2.16)

ηP(y∗,α,β ) =
‖y∗P(α,β )‖2

(∑k
i=0 |α i||β k−i|‖Ai‖2)‖y‖2

. (2.17)

Equivalent formulas for backward errors for the eigenpairs of a generalized (linear) eigenvalue
problem in homogeneous form, L(α,β ) = βX +αY , are obtained by replacing k = 1, A0 := X

and A1 := Y in (2.16) and (2.17)

ηL(z,α,β ) =
‖L(α,β )z‖2

(|α|‖X‖2 + |β |‖Y‖2)‖z‖2
, (2.18)

ηL(u∗,α,β ) =
‖u∗L(α,β )‖2

(|α|‖X‖2 + |β |‖Y‖2)‖u‖2
. (2.19)

2.3.1 Backward error bounds for the homogeneous form

In [42], Higham, Li and Tisseur derived the bound for the backward error of an approximate
eigenpair of P(λ ) in the terms of the backward error for the corresponding approximate eigenpair
of L, from which is clear how the norms of the coefficient matrices affect the unevenness of the
backward errors.

Let L(α,β ) be a linearization of P(α,β ), and let z be an approximate eigenvector for L and
x an approximate eigenvector for P, both corresponding to the same eigenvalue (α,β ). In order
to compare ηP(x,α,β ) and ηL(z,α,β ), some well-defined relation between x and z is needed.
The key assumption for deriving the backward error bounds is that there exists an n× kn matrix
polynomial G(α,β ) such that

G(α,β )L(α,β ) = gT ⊗P(α,β ), (2.20)

47



Chapter 2. Backward error

for some nonzero g ∈ Ck. Let gT =
(

g1 . . . gk

)
. Then we can write

gT ⊗P(α,β ) =
(

g1P(α,β ) . . . gkP(α,β )
)
= P(α,β )(gT ⊗ In).

Now, if z is an eigenvector of L then

G(α,β )L(α,β )z = P(α,β )(gT ⊗ In)z

implies that
x = (gT ⊗ In)z (2.21)

is an eigenvector of P. Now, if (2.20) is satisfied, and z is an approximate eigenvector of L, then
x defined by (2.21), satisfies (see [42])

ηP(x,α,β )≤ ‖G(α,β )‖2‖L(α,β )z‖2

(∑k
j=0 |α| j|β |k− j‖A j‖2)‖x‖2

≤ |α|‖X‖2 + |β |‖Y‖2

∑
k
j=0 |α| j|β |k− j‖A j‖2

· ‖G(α,β )‖2‖z‖2

‖x‖2
·ηL(z,α,β ).

(2.22)

Similarly, for a left eigenvector y∗, the assumption analogous to (2.20) requires existence of an
kn×n matrix polynomial H(α,β ) such that

L(α,β )H(α,β ) = h⊗P(α,β ), (2.23)

for some nonzero h ∈ Ck. The connection between the left eigenvectors u for L and y for P is
then

y = (h∗⊗ I)u, (2.24)

and the corresponding backward error is bounded by

ηP(y∗,α,β )≤ |α|‖X‖2 + |β |‖Y‖2

∑
k
j=0 |α| j|β |k− j‖A j‖2

· ‖H(α,β )‖2‖u‖2

‖y‖2
·ηL(u∗,α,β ). (2.25)

In the particular case of the first companion form (L =C1), the ratio of the two backward errors
can be bounded as shown in the following two theorems.

Theorem 2.6 ([42]). Let z be an approximate right eigenvector of C1, corresponding to the

approximate eigenvalue (α,β ). Then for zk = z((k−1)n+1 : kn),k = 1, . . . ,k, we have

1
k1/2 ≤

ηP(zk,α,β )

ηC1(z,α,β )
≤ k5/2 max(1,maxi ‖Ai‖2)

2

min(‖A0‖2,‖Ak‖2)

‖z‖2

‖zk‖2
. (2.26)

Theorem 2.7 ([42]). Let u be an approximate left eigenvector of C1 corresponding to the ap-
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proximate eigenvalue (α,β ). Then for u1 = u(1 : n), we have

1
k1/2 ≤

ηP(u∗1,α,β )

ηC1(u,α,β )
≤ k3/2 max(1,maxi ‖Ai‖2)

min(‖A0‖2,‖Ak‖2)

‖u‖2

‖u1‖2
. (2.27)

Since C2(P) =C1(PT )T , we can conclude that these bounds apply to the second companion
form as well, but so that (2.26) applies to a left eigenpair, and (2.27) holds for the corresponding
right eigenpair.
From both of these theorems we see that the backward errors of the initial nonlinear problem
and its linearization differ only by a modest factor of the degree k, provided that the norms of
the coefficient matrices Ai are close to one. To illustrate how unbalanced ‖Ai‖2’s influence the
ratio between the two kinds of backward errors we present the following example.

Example 2.1. We consider the power_plant example from the NLEVP benchmark library [5].
It is a QEP (λ 2M +λC+K)x = 0 of order 8, representing a reduced order model of dynamic
behaviour of a nuclear power plant. The norms of the coefficient matrices are:

M = 235000000,

C = 4.350043895953605e+010,

K = 1.692005328941397e+013.

The backward errors for the eigenvalue problem for the linearization

A−λB =

(
C −I
K 0

)
−λ

(
−M 0

0 −I

)
, (2.28)

and for the original problem are shown in Figure 2.2.
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Figure 2.2: Backward errors for the eigenvalue problem of the linearization (2.28) of the test
example power_plant, and for the original problem (λ 2M+λC+K)x = 0.
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It is clear from Figure 2.2 that there is a substantial gap between the backward error for the origi-
nal quadratic problem and the error of the corresponding second companion form linearization.
It is instructive to compare the gap between the two errors and the ratios of the norms of the
coefficient matrices in the quadratic problem.

2.3.2 Parameter scaling

In order to solve the problem of non equilibrated norms of the coefficient matrices of matrix
polynomial P(λ ), the parameter scaling is proposed by several authors, see e.g. [30],[31],[37].
The idea is to use two new parameters γ and δ to change the variables and define a new polyno-
mial matrix P̃(µ) = ∑

k
`=0 µ`Ã` as

λ = γµ, P̃(µ) := P(λ )δ = µ
k (γk

δAk)︸ ︷︷ ︸
=:Ãk

+µ
k−1 (γk−1

δAk−1)︸ ︷︷ ︸
=:Ãk−1

+ . . .+(δA0)︸ ︷︷ ︸
=:Ã0

. (2.29)

The free parameters γ and δ are then determined so that the ratio

max(1,maxi ‖Ai‖2)
2

min(‖A0‖2,‖Ak‖2)
, (2.30)

from the bounds (2.26) and (2.27) is as small as possible. Betcke proved in [4] that the optimal
γ for minimizing

ρ(γ) :=
maxi γ i‖Ai‖2

min(‖A0‖2,γk‖Ak‖2)
(2.31)

is

γ =

(
‖A0‖2

‖Ak‖2

)1/k

. (2.32)

δ is then defined so that the norms of scaled matrices are close to 1. Fan, Lin and Van Dooren
derived the parameters for quadratic eigenvalue problem in [30]. This type of scaling is used
in quadeig algorithm for computing all eigenvalues and eigenvectors of quadratic eigenvalue
problem [37]. The parameters will be presented in Subsection 3.3.1.

Finally, Gaubert and Sharify [31] proposed scaling using the tropical roots. Tropical algebra
is relatively new and rarely present in the research in numerical linear algebra. For that reason,
we briefly review the elementary notions from tropical algebra, that will be needed in the rest of
the thesis.

Tropical scaling. The tropical algebra, or max–plus algebra is a semiring (R∪{−∞},⊕,⊗)
with operations defined as follows

x⊕ y = max(x,y),
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2.3. Backward error for a homogeneous form of P(λ )

x⊗ y = x+ y.

The zero element 0 of the tropical semiring, for which 0⊗ a = a holds, is 0 = −∞. The unit
element of the tropical semiring 1, for which 1⊗a = a⊗1 = a holds, is 1 = 0.
The max–times semiring is another variant of the tropical semiring. It is a set of nonnegative
real numbers R+ equipped with the max operation as addition and the usual multiplication as
multiplication. The tropical polynomial in max–times algebra is t×p(x) = max0≤k≤n akxk. The
max–times and max–plus semirings are isomorphic by the map x 7→ logx.
The tropical polynomial tp of degree n, written as

tp =
n⊕

k=0
ak⊗ x⊗k, ak ∈ R∪{−∞}, (2.33)

corresponds to p(x) = max0≤k≤n(ak+kx) in the classical algebra. The finite tropical roots of the
polynomial (2.33) are defined as the points at which the maximum max0≤k≤n(ak+kx) is attained
at least twice. There are n tropical roots, counting the multiplicities for the tropical polynomial
of degree n. The analogue of the fundamental theorem of algebra for the tropical polynomials is
that p(x) can be uniquely written as p(x) = an +∑

n
k=1 max(x,ck), where c1, . . . ,cn ∈ R∪{−∞}

are the tropical roots. They are computed using the Newton polygons.

For tropical polynomial (2.33) we define the corresponding Newton polygon as the upper
boundary of the convex hull of the set of points (k,ak), k = 1, . . . ,n. It consists of a number
of linear segments. Now, the roots are the opposites of the slopes of these segments, and the
multiplicities are the width of the segments, that is the difference of the abscissae of its endpoints.
Let k0 = 0 < .. . < kq = n be the abscissae of the vertices of the Newton polygon. Then (2.33)
has q distinct roots

α j =−
ak j −ak j−1

k j− k j−1
, j = 1, . . . ,q, (2.34)

with multiplicities m j = k j− k j−1, j = 1, . . . ,q, respectively.
On the other hand, the tropical roots of tropical polynomial t×p(x) in max–times semiring are
the exponentials of the tropical roots of the max–plus polynomial tp(x) =max0≤k≤n(logak+kx)

γ j =

(
ak j−1

ak j

)1/(k j−k j−1)

, (2.35)

and the multiplicites m j = k j− k j−1 are the same.
The tropical roots can be computed in linear time, as shown in [31].

Example 2.2 ([54]). Consider the tropical polynomial

t×p(x) = max(7.5e-5︸ ︷︷ ︸
=a0

,8.9e+2︸ ︷︷ ︸
=a1

x,8.6e+2︸ ︷︷ ︸
=a2

x2,8.8e+8︸ ︷︷ ︸
=a3

x3,7.7e+7︸ ︷︷ ︸
=a4

x4). (2.36)
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Chapter 2. Backward error

The Newton polygon corresponding to a max–plus tropical polynomial tp(x) =
⊕4

`=0 a`⊗ x⊗`

is presented in Figure 2.3.
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Figure 2.3: Newton polygon corresponding to tp(x)

Now, the tropical roots, and their multiplicities, of (2.36) are

γ1 =

(
a0

a1

)1/(k1−k0)

= 8.426966292134831e-008, m1 = 1,

γ2 =

(
a1

a3

)1/(k3−k1)

= 1.005665767719890e-003, m2 = 2,

γ3 =

(
a3

a4

)1/(k4−k3)

= 1.142857142857143e+001, m3 = 1.

For verification, let us compute tp(γi), i = 1,2,3:

tp(γ1) = max(7.5000e-005,7.5000e-005,6.1072e-012,5.2662e-013,3.8831e-021),

tp(γ2) = max(7.5000e-005,8.9504e-001,8.6977e-004,8.9504e-001,7.8760e-005),

tp(γ3) = max(7.5000e-005,1.0171e+004,1.1233e+005,1.3136e+012,1.3136e+012).

We can see that the maximum is attained twice for every γi, i = 1,2,3, as it is required by the
definition of the tropical roots.

For our purpose of scaling a matrix polynomial ∑
k
`=0 λ `A`, define the tropical polynomial

tp(x) =
k⊕

`=0
‖A`‖2⊗ x⊗`, (2.37)

where A` are the coefficients of the matrix polynomial.
The tropical roots of (2.37) are used for scaling of the polynomial eigenvalue problem in order to
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2.4. Componentwise backward error

improve backward error for the eigenpairs computed using the linearization. Let P̃(µ) = P(λ )δ

be the scaled polynomial, where λ = γµ . Let α1 ≤ α2 ≤ . . .≤ αk be the tropical roots of tp(·),
counted with multiplicities. The scaling parameters are defined as

γi = αi, δi = (tp(αi))
−1, i = 1, . . . ,k. (2.38)

Notice that there are as many distinct scaling parameters as the number of distinct tropical roots
of the polynomial tp(·). The small backward error is expected only for those eigenvalues that
are close to some root αi. This is why [31] proposes the following procedure:

• Define the tropical polynomial tp

• Find the k tropical roots α1 ≤ α2 ≤ . . .≤ αk counting the multiplicities

• For each distinct tropical root αi define the corresponding tropical scaling (2.38). Compute
the eigenvalues of the scaled problem (2.29) by using the QZ algorithm for the correspon-
ding linearization. Sort the computed eigenvalues by the magnitude λ1, . . . ,λkn, and divide
them into k groups of n elements. The ith group would be λ(i−1)n+1, . . . ,λin. For each αi

choose ith group of the eigenvalues as the approximation.

2.4 Componentwise backward error

The componentwise backward error for a matrix polynomial P(λ ) and its approximate ei-
genpair (x,λ ), with λ finite is defined by

ωP(x,λ ) = min{ε : (P(λ )+∆P(λ ))x = 0, |∆Ai| ≤ ε|Ai|, i = 0, . . . ,k}, (2.39)

where ∆P(λ ) = ∑
k
`=0 λ `∆A` is, as before, the backward error in P(λ ). An explicit formula

for component-wise backward error for the generalized eigenvalue problem Ax = λx and the
corresponding approximate eigenpair (x,λ ) is derived in [39] as

ωL(x,λ ) = max
i

|ri|
((|A|+ |λ ||B|)|x|)i

, (2.40)

where r = Ax− λBx, and ξ/0 is interpreted as zero if ξ = 0, and infinity otherwise. In the
following theorem we derive explicit formula for (2.39) for the quadratic eigenvalue problem
Q(λ ) = λ 2M +λC+K using the component-wise backward error for the corresponding first
companion form linearization. We provide a different proof, using the linearization of the
quadratic problem and the corresponding explicit formula for component-wise backward error
of generalized eigenvalue problem (2.40).
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Chapter 2. Backward error

Theorem 2.8. The componentwise backward error for the quadratic matrix polynomial Q(λ ),

corresponding to an approximate eigenpair (x,λ ) is given by

ωQ(x,λ ) = max
i

|ri|
((|λ |2|M|+ |λ ||C|+ |K|)|x|)i

, (2.41)

where r = (λ 2M+λC+K)x, and ξ/0 is interpreted as zero if ξ = 0, and infinity otherwise.

Proof. Let (x,λ ) be an approximate eigenpair for Q(λ ). Then (
(

λx
x
)
,λ ) is an approximate

eigenpair for the corresponding first companion form linearization

(A−λB)

(
λx

x

)
=

{(
C K

−I 0

)
−λ

(
−M 0

0 −I

)}(
λx

x

)

=

(
(λ 2M+λC+K)x

0

)
=

(
r

0

)
= rL.

(2.42)

(2.41) applied on equation (2.42) implies that there exists ∆A and ∆B so that (A+∆A−λ (B+

∆B))
(

λx
x
)
= 0, and |∆A| ≤ ε|A|, |∆B| ≤ ε|B|, with ε = ωL

((
λx
x
)
,λ
)
. Since this bound is

component-wise, we conclude that there exist ∆M, ∆C, ∆K, E1, E2 so that{(
C+∆C K +∆K

−(I+E1) 0

)
−λ

(
−(M+∆M) 0

0 −(I+E2)

)}(
λx

x

)
=

(
0
0

)
, (2.43)

and |∆M| ≤ ε|M|, |∆C| ≤ ε|C|, |∆K| ≤ ε|K|, |E1| ≤ ε|I|, |E2| ≤ ε|I| (notice that E1 and E2 are
diagonal matrices.) By equating the corresponding block rows on the left and right side of the
equation (2.43) we get

(λ 2(M+∆M)+λ (C+∆C)+(K +∆K))x = 0, (2.44)

−λE1x+λE2x = 0. (2.45)

Since E1 and E2 are diagonal, (2.45) reads (E1)iixi = (E2)iixi. Now, if xi 6= 0 (E1)ii = (E2)ii.
Otherwise, any (E1)ii,(E2)ii such that |(E1)ii|, |(E2)ii| ≤ ε satisfies the equation, so we take
(E1)ii = (E2)ii. From this reasoning we conclude that E1 = E2. Finally, by multiplying the
equation (2.43) with

(
I 0
0 (I+E1)

−1

)
from the left we derive

{(
C+∆C K +∆K

−I 0

)
−λ

(
−(M+∆M) 0

0 −I

)}(
λx

x

)
=

(
0
0

)
. (2.46)

Moreover, notice that |rL|=
(
|r|
0

)
and that

(|A|+ |λ ||B|)

(
|λ ||x|
|x|

)
=

(
|λ |2|M||x|+ |λ ||C||x|+ |K||x|

2|λ ||x|

)
.
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2.4. Componentwise backward error

Finally, we express ωL in terms of the original data as

ωL

((
λx

x

)
,λ

)
= max

i

|(rL)i|(
(|A|+ |λ ||B|)

(
|λ ||x|
|x|

))
i

= max
i

(
|r|
0

)
i(

|λ |2|M||x|+ |λ ||C||x|+ |K||x|
2|λ ||x|

)
i

= max
i

|ri|
((|λ |2|M|+ |λ ||C|+ |K|)|x|)i

.

Hence (2.41) holds.

Another, more intrinsic, proof is be to directly define ∆M, ∆C, ∆K analogously to proof for
the linear matrix pencil in [39]. Since the construction of the backward error directly in terms
of the original problem is more insightful, we provide the details.

A more intrinsic proof of Theorem 2.8. Let ω̃ be the minimal ε such that |∆M| ≤ ε|M|, |∆C| ≤
ε|C|, |∆K| ≤ ε|K|, and (λ 2(M+∆M)+λ (C+∆C)+(K+∆K))x = 0. If r = (λ 2M+λC+K)x,
then

|r|= |− (λ 2
∆M+λ∆C+∆K)x| ≤ ε(|λ |2|M|+ |λ ||C|+ |K|)|x|,

that is, ω̃ ≤ ωQ(x,λ ). On the other hand, this bound is attainable by the following perturbations

∆M =−sign(λ 2)D1|M|D2, ∆C =−sign(λ )D1|C|D2, ∆K =−D1|K|D2,

where
D1 = diag

(
ri

((|λ |2|M|+ |λ ||C|+ |K|)|x|)i

)
, D2 = diag(sign(xi)).

To see this, check that

∆Q(λ )x =−λ
2 sign(λ 2)diag

(
ri

|α|i

)
|M|diag(sign(xi))x

−λ sign(λ )diag
(

ri

|α|i

)
|C|diag(sign(xi))x−diag

(
ri

|α|i

)
|K|diag(sign(xi))x

=−r,

and

|∆M|= diag
|ri|
|α|i
|M|= ωQ(x,λ )|M|,

|∆C|= diag
|ri|
|α|i
|C|= ωQ(x,λ )|C|,

|∆K|= diag
|ri|
|α|i
|K|= ωQ(x,λ )|K|,
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Chapter 2. Backward error

where |α|= (∑k
`=0 |λ |`|A`|)|x|.

The following example demonstrates the difference between the normwise and the compo-
nentwise backward error. There can be a gap between these errors suggesting that the computed
eigenpair is not as good as we could conclude by just looking at the normwise backward error.

Example 2.3. Consider the speaker_box example from the NLEVP library. We computed all
214 eigenvalues and corresponding right eigenvectors using the algorithm quadeig which will
be explained in Chapter 3. The normwise and the componentwise backward errors for all right
eigenpairs are presented in the following figure
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Figure 2.4: speaker_box, normwise and componentwise backward errors for all right eigen-
pairs

In order to prove the analogous theorem for a left eigenpair, we have to use the second
companion form linearization.

Theorem 2.9. The componentwise backward error for quadratic matrix polynomial Q(λ ) for

approximate left eigenpair (y∗,λ ) is given by

ωQ(y∗,λ ) = max
i

|r∗i |
(|y∗|(|λ |2|M|+ |λ ||C|+ |K|))i

, (2.47)

where r∗ = y∗(λ 2M+λC+K), and ξ/0 is interpreted as zero if ξ = 0, and infinity otherwise.

Proof. Let (y∗,λ ) be an approximate left eigenpair for Q(λ ). Then (
(

λy∗ y∗
)
,λ ) is an ap-

proximate left eigenpair for the corresponding second companion form linearization

(
λy∗ y∗

)
(A−λB) =

(
λy∗ y∗

){(C −I
K 0

)
−λ

(
−M 0

0 −I

)}
=
(

y∗(λ 2M+λC+K) 0
)
=
(

r∗ 0
)
= r∗L.

(2.48)
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2.4. Componentwise backward error

(2.47) applied on (2.48) implies that there exists ∆A and ∆B so that
(

λy∗ y∗
)
(A+∆A−λ (B+

∆B)) = 0, and |∆A| ≤ ε|A|, |∆B| ≤ ε|B|, with ε = ωL

((
λy∗ y∗

)
,λ
)

. Since this bound is
componentwise, we conclude that there exist ∆M, ∆C, ∆K, E1, E2 so that

(
λy∗ y∗

){(C+∆C −(I+E1)

K +∆K 0

)
−λ

(
−(M+∆M) 0

0 −(I+E2)

)}
=
(

0 0
)
, (2.49)

and |∆M| ≤ ε|M|, |∆C| ≤ ε|C|, |∆K| ≤ ε|K|, |E1| ≤ ε|I|, |E2| ≤ ε|I| (notice that E1 and E2 are
diagonal matrices.) By equating the corresponding block rows on the left and the right side of
the equation (2.49) we get

y∗(λ 2(M+∆M)+λ (C+∆C)+(K +∆K)) = 0, (2.50)

−λy∗E1 +λy∗E2 = 0. (2.51)

Since E1 and E2 are diagonal, (2.51) reads (E1)iiyi = (E2)iiyi. Now, if yi 6= 0 (E1)ii = (E2)ii.
Otherwise, any (E1)ii,(E2)ii such that |(E1)ii|, |(E2)ii| ≤ ε satisfies the equation, so we take
(E1)ii = (E2)ii. Form this reasoning we conclude that E1 = E2. Finally, by multiplying the

equation (2.49) with

(
I 0
0 (I +E1)

−1

)
from the right we derive

(
λy∗ y∗

){(C+∆C −I
K +∆K 0

)
−λ

(
−(M+∆M) 0

0 −I

)}
=
(

0 0
)
. (2.52)

Moreover, notice that |r∗L|=
(
|r∗| 0

)
and

(
|λ ||y∗| |y∗|

)
(|A|+ |λ ||B|) =

(
|λ |2|y∗||M|+ |λ ||y∗||C|+ |y∗||K| 2|λ ||y∗|

)
.

Finally, putting all together, we obtain

ωL

((
λy∗ y∗

)
,λ
)
= max

i

|(r∗L)i|((
|λ ||y∗| |y∗|

)
(|A|+ |λ ||B|)

)
i

= max
i

(
|r∗| 0

)
i(

|λ |2|y∗||M|+ |λ ||y∗||C|+ |y∗||K| 2|λ ||y∗|
)

i

= max
i

|ri|
(|y∗|(|λ |2|M|+ |λ ||C|+ |K|))i

.

Hence (2.47) holds.

Theorem 2.8 and 2.9 can be generalized for arbitrary polynomial eigenvalue problem of
order k. The only difference in the proof of the theorem is that the linerization will be the pencil
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Chapter 2. Backward error

of order kn, and there will additional perturbations Ei, j, i = 1, . . . ,k− 1, j = 1,2 on identity
matrices

(A+∆A) =


Ak−1 +∆Ak−1 Ak−2 +∆Ak−2 . . . A0 +∆A0

−(I+E1,1) 0 . . . 0
... . . . . . . ...
0 . . . −(I+Ek−1,1) 0

 , (2.53)

(B+∆B) = diag(Ak +∆Ak,−(I+E1,2), . . . ,−(I+Ek−1,2)). (2.54)

By the same reasoning as in the proof of Theorem 2.8, we can conclude that Ei,1 = Ei,2, i =

1, . . . ,k−1. The rest of the proof is analogous.
Similarly, for the left eigenpair we will have

(A+∆A) =


Ak−1 +∆Ak−1 −(I+E1,1) . . . 0

Ak−2 +∆Ak−2 0 . . .
...

... . . . . . . −(I+Ek−1,1)

A0 +∆A0 0 . . . 0

 , (2.55)

(B+∆B) = diag(Ak +∆Ak,−(I+E1,2), . . . ,−(I+Ek−1,2)). (2.56)

Here, we state the theorem for the sake of completeness

Theorem 2.10. For the matrix polynomial P(λ ) of order k, the component-wise backward error

for an approximate eigenpair (x,λ ) is given by

ωP(x,λ ) = max
i

|ri|(
(∑k

`=0 |λ `||A`|)|x|
)

i

, (2.57)

where r = (∑k
`=0 λ `A`)x, and ξ/0 is interpreted as zero if ξ = 0, and infinity otherwise.

Theorem 2.11. For the matrix polynomial P(λ ), the component-wise backward error for an

approximate left eigenpair (y∗,λ ) is given by

ωP(y∗,λ ) = max
i

|r∗i |(
|y∗|(∑k

`=0 |λ `||A`|)
)

i

, (2.58)

where r∗ = y∗(∑k
`=0 λ `A`), and ξ/0 is interpreted as zero if ξ = 0, and infinity otherwise.
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Chapter 3

Complete solution of the quadratic
eigenvalue problem

In this chapter we study numerical methods for computing all eigenvalues with the corre-
sponding eigenvectors of the n×n quadratic eigenvalue problem

Q(λ )x = (λ 2M+λC+K)x = 0. (3.1)

This problem is at the kernel even of the methods for computing only selected eigenpairs of a
large scale problem; in such cases Q(λ ) is restricted/projected on a small dimensional subspace
(constructed by some algorithm) and full solution of the projected problem is required to advance
an iterative method and/or to construct an approximate solution for the original problem.

The core of the state of the art methods is computation of the eigenvalues and eigenvectors
of a particularly chosen linearization. The linearized problem is usually solved with the QZ
method. In some cases, this may lead to difficulties, in particular if M is exactly or nearly rank
deficient, which leads to (numerically) infinite eigenvalues. Even if QZ is not too much troubled
by the presence of the infinite eigenvalues [72], it would be advantageous to deflate them early
in the computational scheme. Similarly, if K is rank deficient, then its null space provides
eigenvectors for the eigenvalue λ = 0 and removing it in a preprocessing phase facilitates more
efficient computation of the remaining eigenvalues. In both cases a nontrivial decision about the
numerical rank has to be made.

These issues have been addressed by Hammarling, Munro and Tisseur [37] who used the
structure of the linearization pencil (3.2) to deflate certain number of zero and infinite eigenvalues
using the rank revealing decompositions of the coefficient matrices M and K of the original
quadratic eigenvalue problem (3.1). The resulting algorithm, designated as quadeig is shown
to be more robust as e.g. the polyeig() function used in Matlab.

In this chapter we propose a new algorithm, following the philosophy of quadeig, but
with more attention to fine numerical details that ensure numerically more robust and reliable
computational procedure. Our supporting numerical analysis and numerical evidence indicate
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that the new proposed algorithm can be recommended as method of choice for solving (3.1).
The Chapter is organized as follows. In Section 3.1 we present several rank revealing decom-

positions, and the corresponding error analysis. In Section 3.2, we introduce the Kronecker’s
canonical form and the Van Dooren’s algorithm for computing the complete structure of zero
eigenvalue, i.e. the number and the sizes of the associated Jordan blocks. The material of these
two introductory sections is essential for the development of the new algorithm.

Section 3.3 provides details about the quadeig algorithm from Hammarling, Munro and
Tisseur [37]. It is based on the second companion form

C2(λ ) =

(
C −I
K 0

)
−λ

(
−M 0

0 −I

)
. (3.2)

The main steps of the algorithm is the parameter scaling and deflation process that removes
certain number of zero and infinite eigenvalues. We supplement the description of the main steps
of quadeig with the analysis of backward stability; this, in turn, will reveal important issues
that will guide the modification introduced in the rest of the chapter.

In Section 3.4 we tackle another problem of scaling. While the parameter scaling, success-
fully used in quadeig, removes the balance in norms of the coefficient matrices, it cannot remove
different scaling of the matrix entries. Such imbalance between the entries of a particular matrix
may be source of artificial ill-conditioning that causes to numerical algorithms that are sensitive
to scaling. We propose to modify and deploy the balancing process [9], for problems in which
the range of the elements of the coefficient matrices is high in absolute value. We provide brief
review of the method and numerical examples to demonstrate the benefits of balancing.

Our main result is presented in Section 3.5. We first point out an interesting fact that the de-
flation process in quadeig algorithm is actually just the first step of the Van Dooren’s algorithm
for determining the canonical structure of the zero eigenvalue. We then present an interesting
case study example where quadeig fails to determine all zero eigenvalues. The key problem is
that there may be more than one Jordan block of the eigenvalue zero, and the deflation process
in quadeig detects only one. After deflation, the QZ algorithm is unable to detect the remaining
zeros.

We develop a test for the existence of Jordan blocks in terms of the original coefficient
matrices. In addition, we develop a full deflation algorithm, which uses the structure of the line-
rization in the first two steps of the deflation. Finally, we present examples which demonstrates
the power of the proposed method.

In Section 3.6, we develop the LU based quadeig, that is we derive the transformation matri-
ces for deflation process when complete LU factorization is used for rank determination (instead
of the QR factorization). Furthermore, we present an algorithm for computing the structure
of the zero eigenvalue using the rank revealing LU factorization; this is a non–orthogonal (but
numerically well founded analogon of the Van Dooren’s algorithm).

In §3.7 we present examples that demonstrates the difference between the rank revealing
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3.1. Rank revealing decompositions

factorizations used in the deflation process. Also, we illustrate the importance of the choice of
truncation strategy for rank determination in the first step of the preprocessing. It is clear from
these examples that the norm-wise backward error can be misleading, and we propose to use the
component-wise backward error instead.

3.1 Rank revealing decompositions

Since detecting zero or infinite eigenvalues is based on numerical rank decision, we briefly
discuss rank revealing decompositions (RRD, see [19]). For a general m×n matrix A, we say
that A = XDY ∗ is a rank revealing decomposition if both X and Y are of full column rank and
well conditioned, and D is diagonal nonsingular (for example, the SVD and the pivoted LDU
decmposition).

=A X

D
Y ∗

In finite precision computation, such a decomposition is computed only approximately and
we have A+δA = X̃D̃Ỹ ∗, where δA denotes initial uncertainty and/or the backward error that
corresponds to the numerically computed X̃ , D̃ and Ỹ . Hence, any decision on the rank actually
applies to A+δA.

Since the full rank matrices are open dense set in Cm×n (Rm×n), it is unlikely that, in general,
the rank will be determined correctly using a finite precision computation. Furthermore, in many
applications the matrix has been already contaminated by errors (previous computational steps,
measurement errors on the input etc.) and a firm statement about its rank is illusory.

The structure and the size of δA depends on a particular algorithm for computing a RRD. In
some special cases, it is possible to compute such a rank revealing decomposition in a forward
stable way so that the rank is determined exactly. For instance, Demmel [18] showed that the
pivoted LU decomposition P1CP2 = LDU of any Cauchy matrix C =C(x,y) (Ci j = 1/(xi + y j))
can be computed so that each entry of L, D, U is computed to high relative accuracy, that all
zeros are computed exactly and that L and U are well conditioned.

We refer to [19], [18], [33] for a more in depth discussion and definition of a numerical rank.

3.1.1 Singular Value Decomposition (SVD)

The ultimate rank revealing decomposition is the singular value decomposition (SVD), in
particular because it provides not only the information on the rank, but also exact distances to
matrices of lower ranks.
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Theorem 3.1. (Eckart-Young [29], Mirsky [52]) Let the SVD of A ∈ Cm×n be

A =UΣV ∗, Σ = diag(σi)
min(m,n)
i=1 , σ1 ≥ ·· · ≥ σmin(m,n) ≥ 0.

For k ∈ {1, . . . , rank(A)}, define Uk =U(:,1 : k), Σk = Σ(1 : k,1 : k), Vk =V (:,1 : k), and Ak =

UkΣkV ∗k . The optimal rank k approximations in ‖ · ‖2 and the Frobenius norm ‖ · ‖F are

min
rank(N)≤k

‖A−N‖2 = ‖A−Ak‖2 = σk+1, min
rank(N)≤k

‖A−N‖F = ‖A−Ak‖F =

√√√√min(n,m)

∑
i=k+1

σ2
i .

The above theorem allows us to say something about the ranks of the matrices in the vicinity
of A, and to estimate what change is needed to lower the rank. In a framework of numerical
computation with noisy data, this kind of information is more proper than simply claiming the
rank to be r.

State of the art packages for matrix computation such as LAPACK [2] provide several su-
broutines for computing the SVD:

• xGESVD, which implements the zero shift QR method [20] on the bidiagonal matrix.

• xGESDD, which implements the divide and conquer scheme on the bidiagonal matrix [35].

• xGESVJ, xGEJSV are the implementations of the Jacobi SVD, [25], [26].

In some cases we resort to less expensive tools, that usually perform well – the pivoted QR
factorization and LU decomposition.

3.1.2 QR factorization with column and complete pivoting

QR factorization with column pivoting is a tool of trade in many applications, in particular
when the numerical rank of a matrix plays an important role. Particularly successful is the
Businger–Golub [12] pivot strategy which, for A ∈ Cm×n, computes a permutation matrix P, a
unitary Q and an min(m,n) upper triangular (trapezoidal if m < n) matrix R such that

AP = Q

(
R

0

)
, where |Rii| ≥

√√√√ j

∑
k=i
|Rk j|2, for all 1≤ i≤ j ≤ n. (3.3)

Here, for the sake of brevity, we consider only the case m ≥ n. If m < n, then R is m× n

upper trapezoidal and the zero block in (3.3) is void. If rA = rank(A), then ∏
rA
i=1 Rii 6= 0 and

R(rA+1 : n,rA+1 : n) = 0. In general, if k ∈ {1, . . . ,n}, and if we introduce the block partition

R =

(
R[11] R[12]

0 R[22]

)
, R[11] ∈ Ck×k, (3.4)
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then matrix

(
R[11] R[12]

0 0

)
can be interpreted as upper triangular matrix in QR decomposition

of singular matrix A+∆A, i.e.

(A+∆A)P≡ (A−Q

(
0 0
0 R[22]

)
PT )P = Q

(
R[11] R[12]

0 0

)
, ∆A≡−Q

(
0 0
0 R[22]

)
PT . (3.5)

Hence, if k is such that R[11] is of full rank, then A+∆A is of rank k and

‖∆A‖F = ‖R[22]‖F ≤
√

n− k|Rk+1,k+1|.

Hence, if γ > 0 is a given threshold, and if we can find an index k (1≤ k < n) such that

√
n− k|Rk+1,k+1|/‖A‖F ≤ γ, (3.6)

then A is γ-close to the rank k matrix A+∆A, whose pivoted QR factorization (3.5) is obtained
from (3.3) by setting in the partition (3.4) the block R[22] to zero. Of course, we would take the
smallest possible k that satisfies (3.6).

The essence of rank revealing capability of the factorization is in the fact that such a rA will
very likely be visible on the diagonal of R if A is close to a rank rA matrix. This is due to the fact
that the |Rii|’s mimic the distribution of the singular values of A, and to the fact that the SVD
gives the exact distances to the lower rank approximations to A (see Theorem 3.1).

Example 3.1. To illustrate this discussion, we generate 200× 200 matrix A as A = XY T +E,
where X and Y are 200×100 pseudo-random matrices generated in Matlab using the function
randn(), and E is a pseudo-random matrix with entries bounded by 10−7. In Figure 3.1, we
display the singular values of A (as computed by the function svd()) and the absolute values of
the diagonal entries of R, which is computed using the Businger-Golub pivoting.

0 20 40 60 80 100 120 140 160 180 200
10-10

10-8

10-6

10-4

10-2

100

102

104
QRCP reveals the trend of the singular values

svd(A)
abs(diag(R))

Figure 3.1: Comparison of the absolute values of the diagonal entries of R from (3.3) and the
singular values of A. Note that the QR factorization correctly detects that A is O(10−7) close to
a matrix of rank 100.
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Remark 3.1. The rank–k approximation A+∆A defined in (3.5) in general does not share the
optimality property of the matrix Ak from Theorem 3.1, but it has one distinctive feature: it
always matches A exactly at the selected k columns, while Ak in general does not match any part
of A.

An efficient and numerically reliable implementation of (3.3) is available e.g. in LAPACK
[2] in the function xGEQP3, which is also under the hood of the Matlab’s function qr; for the
numerical and software details we refer to [23].

Computation of the QR factorization in finite precision arithmetic is backward stable [41]:
for the computed factors P̃, Q̃, R̃, there exists a backward error δA and a unitary matrix Q̂ such
that

(A+δA)P̃ = Q̂

(
R̃

0

)
, ‖δA‖F ≤ ε1‖A‖F , ‖Q̃− Q̂‖F ≤ ε2. (3.7)

In fact, the backward stability can be stated in a stronger form – the backward error in each
column is small relative to its norm,

‖δA(:, i)‖2 ≤ ε3‖A(:, i)‖2, i = 1, . . . ,n. (3.8)

This is an important feature if some columns of A are, by its nature, much smaller than the largest
ones (different weighting factors, different physical units); (3.8) assures that the computed
factorization contains the information carried by small columns of A. While (3.7, 3.8) hold
independent of pivoting, pivoting is important for the accuracy of the computed factorization,
and for the rank revealing. The error bounds ε j are a moderate functions of the matrix dimensions
times the machine roundoff unit u.

If, for a suitable partition of R̃, analogous to (3.4), we can determine k such that R̃[22] can be
chopped off, we have

(A+δA+∆A)P̃ = Q̂

R̃[11] R̃[12]

0 0
0 0

 , ‖δA‖F ≤ ε1‖A‖F , ‖Q̃− Q̂‖F ≤ ε2, (3.9)

where

∆A≡−Q̂

0 0
0 R̃[22]

0 0

P̃T . (3.10)

Note that (∆AP̃)(:,1 : k) = 0, so that the overall backward error of the computation of the factori-
zation and truncation of R̃[22] in the most important columns (as determined by pivoting) remains
as in (3.8). Notice that in (3.9) we have additional δA from computation of QR decomposition
in comparison with (3.5).
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Complete pivoting. In some applications (e.g. weighted least squares) the rows of the data
matrix may vary over several orders of magnitude, and it is desirable to have backward error
that can be bounded row-wise analogously to (3.8). A pioneering work is done by Powell and
Reid [58], who introduced QR factorization with complete pivoting. More precisely, in a j-th
step, before deploying the Householder reflector to annihilate below-diagonal entries in the j-th
column, row swapping is used to bring the absolutely largest entry to the diagonal position:

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
~ ∗ ∗
∗ ∗ ∗


As any pivoting, this precludes efficient blocking and using BLAS 3 level primitives.

Björck [8] noted that the dynamic complete pivoting can be replaced with an initial sorting
of the rows of A to obtain them in monotonically decreasing order with respect to the `∞ norm.
If Pr is the corresponding row permutation matrix, and if we set A := PrA, then

‖A(1, :)‖∞ ≥ ‖A(2, :)‖∞ ≥ . . .≥ ‖A(m, :)‖∞, (3.11)

and we proceed with the column pivoted factorization (3.3). An error analysis of this scheme
and Householder reflector based QR factorization is given by Cox and Higham [15].

max
i=1:m

‖δA(i, :)‖∞

‖A(i, :)‖∞

≤ ε4 max
i=1:m

αi

‖A(i, :)‖∞

, where αi = max
j,k
|Ã(k)

i j |, (3.12)

and Ã(k) is the kth computed (in finite precision arithmetic) intermediate matrix in the House-
holder QR factorization. As a result of initial row ordering and the column pivoting, [15] shows
that

αi ≤

{ √
m− i+1(1+

√
2)i−1‖A(i, :)‖∞, i≤ n

(1+
√

2)n−1‖A(i, :)‖∞, i > n
. (3.13)

It is worth mentioning that the factor (1+
√

2)n−1 is almost never experienced in practice.

An advantage of replacing the dynamic complete pivoting of Powell and Reid with the initial
pre-sorting (3.11) followed by column pivoted QRF (3.3) is more efficient software implemen-
tation.

Remark 3.2. If we write the completely pivoted factorization as

PrAPc = Q

(
R

0

)
, then APc = (PT

r Q)

(
R

0

)

is the column pivoted QR factorization (since Pr is orthogonal) and the row pivoting brings
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nothing new to the rank revealing property that is encoded in the triangular factor (this is because
of the essential uniqueness of the factorization). However it makes difference in the backward
stability because of (3.12) and (3.13).

Strong rank revealing pivoting. In some rare cases the column pivoting can miss small
singular value of A, i.e. the structure of R may not reveal that A is close to rank deficiency. The
most well known example is the Kahan matrix

K(n;c,s) =



1 0 0 0 0 0
0 s 0 0 0 0
0 0 s2 0 0 0
0 0 0 s3 0 0

0 0 0 0 . . . 0
0 0 0 0 0 sn−1





1 −c −c −c −c −c

0 1 −c −c −c −c

0 0 1 −c −c −c

0 0 0 1 −c −c

0 0 0 0 . . . −c

0 0 0 0 0 1


, c2 + s2 = 1,

which, for c approaching one, has one small singular value and in the factorization (3.3), |Rnn|
overestimates σmin(K(n;c,s)) by the factor 2n−1; see e.g. [40, §6.2], [74].

In the strong rank revealing decomposition, the task is to find the permutation P so that the
gap (i.e. sharp drop) in the singular values of A is revealed by the gap between the singular
values of the diagonal blocks R[11] and R[22] in the partition (3.4); the partition parameter r is
also determined in the process. The key idea is, for given r, to iteratively reshuffle the columns
(thus updating the pivoting) with the goal to increase the singular values of R[11] as much as
possible, and, at the same time, to decrease the singular values of R[22]. The error factor between
the singular values of A and the diagonal blocks of R is expected to be a moderate function of
the dimensions n and r.

In the strong rank revealing pivoting in [36, Algorithms 4 and 5], an additional parameter
η > 1 balances the trade-off between the sharpness of the estimate and the computational cost.
The algorithm guarantees the following enclosures of the singular values

σ j(A)√
1+η2r(n− r)

≤ σ j(R[11])≤ σ j(A), 1≤ j ≤ r

σr+ j(A) ≤ σ j(R[22])≤
√

1+η2r(n− r)σr+ j(A), 1≤ j ≤ n− r,

at the cost of O
(
(m+n logη n)n2) arithmetic operations [36, Section 4.4].

3.1.3 The complete orthogonal factorization (URV)

Suppose that in the QR factorization (3.3), the matrix A is of rank k < n, so that in the block
partition (3.4) R[22] = 0. In many instances, it is convenient to compress the trapezoidal matrix
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(R[11] R[12]) to triangular form by an additional LQ factorization.

This LQ is equivalent to computing the QR factorization(
R∗[11]

R∗[12]

)
= Z∗R

(
T ∗[11]

0

)
,

where T11 ∈ Ck×k is lower triangular and nonsingular. By a composition of these two steps we
get the so called complete orthogonal decomposition of A

A = Q

(
T[11] 0

0 0

)
Z, where Z = ZRPT . (3.14)

The above described process for computing the complete orthogonal decomposition can be
summarized in Algorithm 3.1.1.

Algorithm 3.1.1 Complete orthogonal decomposition of A

INPUT: A ∈ Cm×n

OUTPUT: Q, T[11], Z, so that A = Q
(

T[11] 0
0 0

)
Z∗

1: Optional: Compute permutation P2 such that ‖eT
i P2A‖∞ ≥ ‖eT

i+1P2A‖∞, i = 1, . . . ,n−1.

2: Compute the QR factorization with column pivoting (PT
2 A)P = Q

(
R
0

)
.

3: Compute the QR factorization with complete pivoting of the truncated matrix

R∗Π1 =

(
T ∗[11]
T ∗[12]

)
Π1 = Π

T
2 ZR

(
T ∗[11]

0

)
.

4: Z = PΠT
2 ZR.

5: if P2 6= I then
6: Q = PT

2 Q
7: end if
8: Q = Q

(
Π1 0
0 I

)

Backward error analysis. In the QR factorization, the matrix A is multiplied from the left by
a sequence of unitary transformations. Hence, there is no mixing of the columns; we can analyse
the process by following the changes of each column separately; that is why the column-wise
backward error bound (3.8) is natural and straightforward to derive. The transformations from
the right in the pivoted QR factorization are the error free column interchanges.

On the other hand, (3.14) involves nontrivial two–sided transformations of A, and more
careful implementation and error analysis are needed to obtain backward stability similar to

67



Chapter 3. Complete solution of the QEP

the one described in §3.1.2. The following theorem provides a backward error bound for the
Algorithm 3.1.1:

Theorem 3.2. Let Q̃, T̃[11] and Z̃ be the computed factors of complete orthogonal decomposition

of A. Then they correspond to the exact complete orthogonal decomposition of matrix

A+δA+∆A+ Q̂

δ R̃[11] δ R̃[22]

0 0
0 0

 P̃T = Q̂

(
Π1 0
0 I

)T̃[11] 0
0 0
0 0

 Ẑ∗Π2P̃T ,

where Q̂≈ Q̃ and Ẑ ≈ Z̃ are orthogonal (unitary) and

‖δA‖F ≤ ε1‖A‖F , ∆A =−Q̂

0 0
0 R̃[22]

0 0

 P̃T , ‖δ R̃(:, i)‖ ≤ ε3‖R̃(:, i)‖.

Proof. For the first step we have the relation (3.9). Set R̃ =
(

R̃[11] R̃[12]

)
and compute the QR

factorization of R̃∗. We use the complete pivoting, and the the computed factors Z̃, T̃ ∗[11] satisfy

(R̃+δ R̃)∗Π1 = Π
T
2 Ẑ

(
T̃ ∗[11]

0

)
, (3.15)

where Ẑ is unitary, ‖Z̃− Ẑ‖F ≤ ε2 and, by (3.12, 3.13), ‖δ R̃(:, i)‖ ≤ ε3‖R̃(:, i)‖. Including (3.15)
in (3.9), we obtain

(A+δA+∆A+ Q̂

δ R̃[11] δ R̃[22]

0 0
0 0

 P̃T ) = Q̂

(
Π1 0
0 I

)T̃[11] 0
0 0
0 0

 Ẑ∗Π2P̃T ,

where δA is from (3.7, 3.8), ∆A is as in (3.10)

Hence, the k pivotal columns of A (as selected by P̃) have, individually, small backward
errors of the type (3.8). Note that the complete pivoting in (3.15) is essential for column-wise
small backward error in R̃ and thus is A.

3.1.4 Rank revealing LU and Cholesky factorizations

Using Gaussian eliminations, every matrix A ∈ Rn×n with all its leading principal minors
different from zero can be factored as a product of a lower triangular matrix L and an upper
triangular matrix U , that is A = LU . In every step k of Gaussian elimination the goal is to zero
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out the elements below the diagonal in the k-th column by the following elementary operations

a(k+1)
i j = a(k)i j −mika(k)k j (3.16)

= a(k)i j −
a(k)ik

a(k)kk

a(k)k j , i = k+1, . . . ,n, j = k+1, . . . ,n, (3.17)

where a(k)i j are the elements of the matrix A(k) =

(
A(k)
[11] A(k)

[12]

0 A(k)
[22]

)
in the kth step. It is clear from

equations (3.16)-(3.17) that the problem occurs when a(k)kk = 0. Also mik can be large (if the
pivot a(k)kk is small) and this may result in loss of significant digits in finite precision arithmetics.
This is why the following pivoting strategies are introduced:

• partial pivoting. in k-th step, the k-th and the r-th rows are interchanged where r is such
that

|a(k)rk |= max
k≤i≤n

|a(k)ik |.

The resulting LU is PA = LU , where P is the corresponding permutation matrix.

• complete pivoting. in k-th step, the k-th and the r-th row, and the k-th and the s-th column
are interchanged, where r and s are such that

|a(k)rs |= max
k≤i, j≤n

|a(k)i j |.

The resulting LU is PAQ = LU , where P, Q are the corresponding permutation matrices.

Moreover, if partial pivoting is turned on, every square matrix A admits LU factorization PA =

LU .

Let A ∈ Rm×n and m≥ n; clearly the elimination process applies in the rectangular case as
well. It is shown in [41] that, if the Gaussian eliminations run to completion, the computed
factors L̃ ∈ Rm×n and Ũ ∈ Rn×n satisfy

L̃Ũ = A+∆A, |∆A| ≤ γn|L̃||Ũ |, γn =
nu

1−nu
.

It is usually said that partial pivoting is good and reliable enough, so that the complete pivoting
is not needed. However, there is a whole collection of problems for which Gaussian eliminations
with partial pivoting are unstable, see e.g. [73].

The important difference between LU and QR factorization is discussed and exploited in
[22]. The difference is that the LU factorization is invariant under row and column scaling. More
precisely, assume that matrix A is permuted so that A≡ QAP = LU is the LU factorization with
complete pivoting. Moreover, assume that A can be written as A = D1ZD2, where the elements
of the diagonal matrix D1 are sorted in the increasing order by the element magnitude, and Z
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admits an accurate LU factorization Z = LZUZ with moderate ‖LZ‖2. Then the computed matrix
L̃ for A has a columnwise small relative error

‖(L− L̃)ei‖2

‖Lei‖2
≤max

j>i

∣∣∣∣(D1) j j

(D1)ii

∣∣∣∣‖(LZ− L̃Z)ei‖2.

In exact arithmetics, LU factorization with complete pivoting is rank revealing factorization, that
is if rank(A) = r < n we have

PAQ = LU =

(
L[11] 0
L[21] In−r

)(
U[11] U[12]

0 0

)
.

However, there are examples where LU factorization with complete pivoting fails to detect the
nearly singular matrix, that is there are no small pivots in the factorization although matrix
contains a small singular value. This matrix is of the following form

W =


1 −1 −1 . . . −1

1 −1 . . . −1
. . . ...

...
1

 .

Pan proved in [56] that there exists a rank revealing LU factorization, and obtained the bounds
similar to those for the strong rank revealing QR. Before we state the result, we recall the notion
of matrix volume, and the local µ-maximum volume.

Definition 3.1. Let A ∈ Rm×n and σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0, p = min(m,n), be the singular

values of A. The volume of A is defined as

vol(A) = σ1σ2 . . .σp.

Definition 3.2. Let A ∈ Rm×n and B be a submatrix of A formed by any k columns (rows) of A.

vol(B) 6= 0 is said to be a local µ-maximum volume in A, µ ≥ 1 if

µ vol(B)≥ vol(B′), (3.18)

for any B′ that is obtained by replacing one column (row) of B by a column (row) of A which is

not in B.

The µ ≥ 1 in (3.18) is user supplied parameter; its role is critical in a volume maximizing
iterative scheme to avoid infinite loop that may be caused by rounding errors. Pan proposes to
choose µ = 1+u, where u is the machine precision. Pan [56] proved that, for a matrix A∈Rm×n
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and any integer 1≤ k ≤ n there exists permutation matrices Γ and Π such that

Γ
T AΠ =

(
B[11] B[12]

B[21] B[22]

)
=

(
Ik 0
Z In−k

)(
B[11] B[12]

0 U[22]

)
,

where Z = B[21]B
−1
[11], U[22] = B[22]−ZB[12] and

σk(A)≥ σmin(B[11])≥
1

k(n− k)µ2 +1
σk(A),

σk+1(A)≤ ‖U[22]‖2 ≤
(
k(n− k)µ2 +1

)
σk+1(A).

The permutation Π is determined so that the volume of the first k columns of AΠ is a local
µ-maximum in A, and Γ is determined so that the volume of the first k rows, vol(B[11]), is a local
µ-maximum in the first k columns of AΠ.

Cholesky factorization. Let A be real symmetric positive definite, and let A = LU be the
corresponding LU factorization. Note that both L and U are nonsingular. Since A = AT we have

UT LT = LU =⇒ L−1UT︸ ︷︷ ︸
lower triangular

= UL−T︸ ︷︷ ︸
upper triangular

=⇒ L−1UT =UL−T =: D, where D is diagonal matrix

=⇒ U = DLT .

Hence, we can write A = LDLT . Since A is positive definite, i.e. xT Ax = xT LDLT x > 0, x 6= 0 we
can conclude that D is positive definite, and we can write D =

√
D
√

D. By denoting R =
√

DLT ,
we obtain Cholesky factorization A = RT R, where R is upper triangular matrix. If we in addition
require that the diagonal of R is positive, the factorization is unique.

There is a similar result of backward stability for Cholesky factorization to that for LU
factorization proven in [41]. Namely, if Cholesky factorization runs to completion then the
computed factor R satisfies

R̃T R̃ = A+∆A, |∆A| ≤ γn+1|R̃T ||R̃|, γn+1 =
(n+1)u

1− (n+1)u
.

For symmetric positive definite matrix there is a unique Cholesky factorization. On the other
hand, if A is only positive semidefinite, generally we do not have uniqueness. For example(

0 0
0 1

)
=

(
0 0

cosθ sinθ

)(
0 cosθ

0 sinθ

)
.

However, we know that there exists a permutation Π such that ΠT AΠ has a unique Cholesky
decomposition
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Π
T AΠ = RT R, R =

(
R[11] R[12]

0 0

)
,

where R[11] is r× r upper triangular with positive definite diagonal elements. The pivoting
strategy ensures that at each step k

a(k)j j = max
k≤i≤n

a(k)ii , (3.19)

and it is equivalent to complete pivoting in Gaussian elimination. In exact arithmetics, the
Cholesky factorization with pivoting (3.19) is a rank revealing decomposition.
For 1≤ k ≤ r partition A

A =

(
A[11] A[12]

AT
[12] A[22]

)
,

so that A[11] ∈ Rk×k. Denote by Sk(A) = A[22]−AT
[12]A

−1
[11]A[12] the Schur complement of A[11]

in A, and note that Sr(A) = 0. It is proven in [41] how the Sk(A) changes when A is perturbed.
Assume for symmetric E that ‖A−1

[11]E[11]‖2 < 1 holds. Then

Sk(A+E) = Sk(A)+E[22]− (ET
[12]W +W T E[12])+W T E[11]W +O(‖E‖2

2),

where W = A−1
[11]A[12]. This means that the sensitivity of Sk(A) to the perturbation in A essentially

depends on the matrix W . If the pivoting strategy (3.19) is used, the following inequality holds

‖A−1
[11]A[12]‖2 ≤

√
1
3
(n− r)(4r−1). (3.20)

If no pivoting is used, the norm in (3.20) can be arbitrary large. Since in the practice, when the
pivoting strategy (3.19) is used, ‖A−1

[11]A[12]‖2 rarely exceeds 10 [41] we can conclude that the
Cholesky algorithm with this pivoting is stable algorithm for the semi–definite matrices.

3.2 Kronecker’s canonical form for general pencils

Canonical (spectral) structure of a matrix pencil A−λB is, through linearization, an extre-
mely powerful tool for the analysis of quadratic pencils Q(λ ) = λ 2M+λC+K. In particular,
since the second companion form

A−λB =

(
C −I
K 0

)
−λ

(
−M 0

0 −I

)

is strong linearization, the partial multiplicities, and thus the structure of all eigenvalues (inclu-
ding infinity), are preserved. In a numerical algorithm for the QEP, it is desirable to remove the
zero and infinite eigenvalues as early as possible and, thus, canonical structure can be used to
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guide such a preprocessing step.
In this section, we briefly review the numerical algorithm by Van Dooren [21], developed

for the computation of the structure of eigenvalue λ for a general m×n pencil A−λB, i.e. the
number and the orders of the Jordan blocks for λ . The final goal is the Kronecker’s Canonical
Form, that is a factorization of the form

P(A−λB)Q = diag(Lε1, . . . ,Lεp,L
P
η1
, . . . ,LP

ηq
, I−λN,J−λ I), (3.21)

where P, Q are constant invertible matrices and

Lµ =


λ −1

. . . . . .

λ −1

 ∈ Cµ×(µ+1), LP
µ =


−1

λ
. . .
. . . −1

λ

 ∈ C(µ+1)×µ .

N is nilpotent Jordan matrix, and J is in Jordan canonical form. Here, however, we focus
our attention only on computing the structure of the eigenvalue 0. Notice that for the infinite
eigenvalue one can reverse the pencil. For an arbitrary finite eigenvalue, a suitably shifted pencil
is used; see [21] for more details.

For the sake of completeness and later references, we briefly describe the main steps of the
staircase reduction for the zero eigenvalue. The pencil A−λB is assumed regular (thus square,
n×n), and λ = 0 is assumed to be among its eigenvalues.

1. Compute the singular value decomposition of A:

A =UAΣAV ∗A , (3.22)

and let s1 = n− rank(A). (Since zero is assumed to be an eigenvalue of A−λB, A must be
column rank deficient.) Note that AVA =

(
A2 0n×s1

)
, where A2 is of full column rank

n− s1. Partition BVA =
(

B2 B1

)
in the compatible manner. If we multiply the pencil

by VA from the right we get

(A−λB)VA =
(

A2−λB2 −λB1

)
. (3.23)

2. Compute the singular value decomposition of B1

B1 =UBΣBV ∗B . (3.24)

The rank of B1 is s1 (full column rank) since the initial matrix pencil is assumed regular,

and U∗BB1 =

(
B1,1

0n−s1×s1

)
, detB1,1 6= 0. Multiply the pencil (3.23) by U∗B from the left to
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get

U∗B(A−λB)VA =

(
A2,1−λB2,1 −λB1,1

A2,2−λB2,2 0n−s1×s1

)
. (3.25)

3. Let PB be the permutation matrix that swaps the row blocks in the above partition. Thus,
we have unitary matrices P1 = PBU∗B , Q1 =VA so that

P1(A−λB)Q1 =

(
A2,2−λB2,2 0n−s1×s1

A2,1−λB2,1 −λB1,1

)
, (3.26)

where (
A2,2

A2,1

)
= P1A2 ∈ Cn×(n−s1)

is of full column rank.

This concludes the first step of the algorithm. Note that

|detP1 det(A−λB)detQ1|= |det(A−λB)|= |λ |s1| |detB1,1|︸ ︷︷ ︸
6=0

|det(A2,2−λB2,2)|,

which clearly exposes s1 copies of zero in the spectrum, and reduces the problem to the pencil
A2,2− λB2,2 of lower dimension n2 = n− s1. Clearly, if A22 is nonsingular, zero has been
exhausted from the spectrum of A−λB. Otherwise, in the next step, we repeat the described
procedure on the n2×n2 pencil A2,2−λB2,2 to obtain unitary matrices P̂2, Q̂2 so that

P2P1(A−λB)Q1Q2 =

 A3,3−λB3,3 0n3×s2 0n3×s1

A3,2−λB3,2 −λB2,2 0s2×s1

A3,1−λB3,1 A2,1−λB2,1 −λB1,1

 ,

where P2 = diag(P̂2, Is1),Q2 = diag(Q̂2, Is1), and s2 = n2− rank(A22), n3 = n2− s2. As in the
first step, B2,2 is s2× s2 nonsingular, and

(
A3,3
A3,2

)
is of full column rank. Furthermore, since(

0n3+s2,s2
A2,1

)
is a column block in the full column rank matrix, A2,1 must have full column rank as

well.

This procedure is repeated until in an `th step we obtain

P(A−λB)Q =



A`+1,`+1−λB`+1,`+1 0n`+1×s` . . . 0n`+1×s2 0n`+1×s1

A`+1,`−λB`+1,` −λB`,` . . . 0s`×s2 0s`×s1

...
...

. . .
...

...

A`+1,2−λB`+1,2 A`,2−λB`,2
. . . −λB2,2 0s2,s1

A`+1,1−λB`+1,1 A`,1−λB`,1
. . . A2,1−λB2,1 −λB1,1


, (3.27)
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with nonsingular A`+1,`+1. Then, by design, Bi,i has full rank si for i = 1, . . . , `, and Ai,i−1 has
full column rank si for i = 2, . . . , `.

This procedure is formally described in Algorithm 3.2.1.

Algorithm 3.2.1 Deflation of eigenvalue 0 using SVD [21]
1: j = 1; A1,1 = A; B1,1 = B; n1 = n;
2: Compute the SVD: A1,1 =UAΣAV ∗A
3: s1 = n1− rank(A1,1)
4: while s j > 0 do
5: Partition matrices:

(
A j+1 0

)
= A j, jVA,

(
B j+1 B j

)
= B j, jVA

6: Update and partition blocks in row j
7: for i = 1 : j−1 do
8:

(
Ai, j+1 Ai, j

)
= Ai, jVA;

(
Bi, j+1 Bi, j

)
= Bi, jVA;

9: end for
10: Compute the SVD of s j×n j matrix B j: B j =UBΣBV ∗B
11: Compress B j to full column rank, permute and partition:

12:

(
A j+1, j+1
A j, j+1

)
= PBU∗BA j+1;

(
B j+1, j+1
B j, j+1

)
= PBU∗BB j+1;

13:

(
0

B j, j

)
= PBU∗BB j

14: n j+1 = n j− s j, j = j+1
15: Compute the SVD: A j, j =UAΣAV ∗A
16: s j = n j− rank(A j, j)
17: end while

It has been proven that this algorithm completely determines the structure of the zero eigen-
value of the matrix pencil A−λB.

Proposition 3.1 ([21]). The indicies si given by Algorithm 3.2.1 completely determine the struc-

ture at 0 of the pencil A−λB, i.e. A−λB has s j− s j+1 elementary divisors λ j, j = 1, . . . , `.

Finally, we can conclude that this algorithm also determines the structure of zero eigenvalue
for the quadratic eigenvalue problem via a (strong) linearization.

Theorem 3.3. Algorithm 3.2.1 applied to pencil (3.2) completely determines the structure of the

eigenvalue zero for the quadratic eigenvalue problem Q(λ ) = (λ 2M+λC+K)x = 0.

Proof. Every regular quadratic matrix polynomial Q(λ ) can be represented in the Smith form,
that is

Q(λ ) = E(λ )D(λ )F(λ ), (3.28)

where D(λ ) = diag(d1(λ ), . . . ,dn(λ )) is a diagonal polynomial matrix with monic scalar polyno-
mials di(λ ) such that di(λ ) is divisible by di−1(λ ), and E(λ ),F(λ ) are n×n matrix polynomials
with constant nonzero determinants.
The elements d1(λ ), . . . ,dr(λ ) in the Smith form are called invariant polynomials and they are
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uniquely determined by Q(λ ). Recall that, for an eigenvalue λ0 of Q(λ ), we can represent the
invariant polynomials as

di(λ ) = (λ −λ0)
αi pi(λ ), αi ≥ 0, pi(λ0) 6= 0, (3.29)

where the numbers (α1,α2, . . . ,αn) represent partial multiplicities of eigenvalue λ0. The ele-
ments (λ −λ0)

αi are the elementary divisors for the eigenvalue λ0, and αi represents the dimen-
sion of the ith Jordan block for the eigenvalue λ0.

Now, since the second companion form is a strong linearization, this means that the partial
multiplicities of all eigenvalues of Q(λ ), including infinity, are preserved. Proposition 3.1 states
that h indices {si} computed by the Algorithm 3.2.1 completely determine the structure of the
eigenvalue zero for the given pencil. In our case the pencil is the second companion form
the linearization, and thus they completely determine the structure of the eigenvalue zero for
Q(λ ).

3.3 The algorithm quadeig

As we discussed in the introduction of this chapter, zero and infinite eigenvalues are difficult
to detect in finite precision arithmetic, and their presence may impair convergence of an algo-
rithm for solving the linearized problem. Since those eigenvalues are related to the null spaces
of M and K, and since non-singularity is a generic matrix property (holds on the open dense set),
the distinction finite–infinite, or zero–nonzero, is numerically delicate issue. On the other hand,
if we could remove at least some of them in a numerically safe way, that would save the QZ
algorithm the trouble of dealing with zeros and infinities in the spectrum. Besides, removing
those eigenvalues early in a computational scheme facilitates efficient iterations with reduced
problem’s dimension.

This motivated [37] to develop a new deflation scheme that removes n− rM infinite and
n− rK zero eigenvalues, where rM = rankM and rK = rankK. The remaining generalized
linear eigenvalue problem is of the dimension rM + rK; it may still have some infinite and zero
eigenvalues, and their detection then depends on the performance of the QZ algorithm. The
computation is done in the framework of the linearization (3.2).

In this section, we analyze quadeig in detail. For the sake of the completeness, we first give
a detailed algebraic description of the reduction in quadeig. In addition, we provide a backward
error analysis of the deflation process.

3.3.1 Parameter scaling

The main feature of quadeig is the introduction of parameter scaling in order to equilibrate
the backward errors for the original problem and the corresponding second companion form
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linearization C2 as described in Subsection 2.3.2, i.e. we consider the scaled quadratic eigenvalue
problem

λ = γµ, Q̃(µ) = Q(λ )δ = µ
2(γ2

δM)+µ(γδC)+(δK),

where γ and δ are defined so that the norms of the coefficient matrices M, C and K are approxi-
mately equal and close to one.

In [37], two types of scaling are used:

Fan, Lin and Van Dooren scaling. γ and δ are defined as the solution of the minimization
problem

min
γ,δ

max{‖K‖2−1,‖C‖2−1,‖M‖2−1}, (3.30)

that is,

γ =

√
‖K‖2

‖M‖2
, δ =

2
‖K‖2 +‖C‖2γ

. (3.31)

Tropical scaling. γ and δ are defined as tropical roots of max-times scalar quadratic polyno-
mial

qtrop(x) = max(‖M‖2x2,‖C‖2x,‖K‖2), x ∈ [0,∞〉. (3.32)

Define τQ = ‖C‖2√
‖M‖2‖K‖2

. If τQ ≤ 1, (3.32) has the double root

γ
+ = γ

− =

√
‖K‖2

‖M‖2
,

and if τQ > 1 there are two distinct roots

γ
+ =

‖C‖2

‖M‖2
> γ
− =
‖K‖2

‖C‖2
.

Hence, when τQ > 1, scaling with the parameters

γ = γ
+, δ = (qtrop(γ

+))−1

is used to compute the eigenvalues outside of the unit circle, and scaling using the parameters

γ = γ
−, δ = (qtrop(γ

−))−1

is used to compute those eigenvalues inside the unit circle. With this choice, the denominator in
the bound

1√
2
≤

ηQ(z1,α,β )

ηC2(z,α,β )
≤ 23/2 max(1,max(‖M‖2,‖C‖2,‖K‖2))

|α|2‖M‖2 + |α||β |‖C‖2 + |β |‖K‖2

‖z‖2

‖z1‖2
(3.33)
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is O(1).

Example 3.2. Recall the Example 2.1. If we use the Fan, Lin and Van Dooren scaling on this
problem, the maximum backward error for QEP is 1.793925004288704e-016. We added the
backward errors for the eigenpairs obtained from the scaled problem Q̃(λ ) to Figure 2.2 for
better illustration of the importance of parameter scaling.
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−20
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ηQ(z1, λ)

ηC2
(z,λ)

ηQ̃(z1, λ)

Figure 3.2: Backward errors for the linearization C2, the original problem quadratic problem
and the scaled pencil Q̃(λ ), for the test problem power_plant.

3.3.2 Deflation process in quadeig

Before introducing the deflation procedure, we analyze the backward error induced by trun-
cation, which will be used in the analysis of the backward error for the deflation process.

Backward error in rank revealing QR factorizations of M and K

The procedure starts with the pivoted (rank revealing) factorizations

(Pr,MM)ΠM = QMRM, RM =

(∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 0 0
0 0 0 0 0

)
=

(
R̂M

0n−rM ,n

)
, (3.34)

(Pr,KK)ΠK = QKRK, RK =

(∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

)
=

(
R̂K

0n−rK ,n

)
. (3.35)

The initial (optional) row sorting before the column pivoted QR factorization is indicated by the
matrices Pr,M, Pr,K . Since the sorting is in the `∞ norm, it is exact even in finite precision. In the
absence of row sorting both Pr,M, Pr,K are implicitly set to the identity In.

In finite precision (see §3.1.2) the computed matrices Q̃M, R̃M, Π̃M satisfy, independent of
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the choice of the permutation matrix Pr,M,

Pr,M(M+δM)Π̃M = Q̂MR̃M, (3.36)

where Q̂M = Q̃M +δ Q̃M is exactly unitary with

‖δ Q̃M‖F ≡ ‖Q̂M− Q̃M‖F ≤ ε2, and ‖δM(:, i)‖2 ≤ ε3‖M(:, i)‖2, i = 1, . . . ,n,

where ε2,ε3 are as in (3.7), (3.8).

If Pr,M is the row sorting permutation, then, in addition,

‖δM(i, :)‖2 ≤ ε
⇒
qr ‖M(i, :)‖2, i = 1, . . . ,n,

where ε
⇒
qr is defined using (3.12) and (3.13) in §3.1.2. Since Pr,M is unitary, we can absorb it

into Q̃M and Q̂M and redefine Q̃M := PT
r,MQ̃M, Q̂M := PT

r,MQ̂M and write, instead of (3.36),

(M+δM)Π̃M = Q̂MR̃M. (3.37)

Analogous statements (3.36–3.37) hold for the factorization (3.35).

Backward error induced by the truncation

However, if we truncate the triangular factor in an attempt to infer the numerical rank, we
must push the truncated part into the backward error, as in (3.5). This changes the backward
error structure, and the new error bounds depend on the truncation strategy and the threshold.
Assume in (3.37) that we can partition R̃M as

R̃M =

(
(R̃M)[11] (R̃M)[12]

0n−k,k (R̃M)[22]

)
, where the (n− k)× (n− k) block (R̃M)[22] "is small".

Then we can write a backward perturbed rank revealing factorization

(M+δM+ Q̂M

(
0 0
0 −(R̃M)[22]

)
Π̃

T
M︸ ︷︷ ︸

∆M

)Π̃M = Q̂M

(
(R̃M)[11] (R̃M)[12]

0n−k,k 0n−k,n−k

)
. (3.38)

Obviously, ∆M is zero at the k "most linearly independent" columns of M selected by the
pivoting, (∆M)Π̃M(:,1 : k) = 0n,k. At the remaining n− k columns we have

‖(∆M)Π̃M(:,k+ j)‖2 = ‖(R̃M)[22](:, j)‖2 ≤ |((R̃M)[22])k+1,k+1|.

Consider the following choices of k, for a given threshold parameter τ:
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1. k is the first index for which |((R̃M)[22])k+1,k+1| ≤ τ|((R̃M)[22])k,k|. In that case

max
j=1:n−k

‖(∆M)Π̃M(:,k+ j)‖2 ≤ τ|((R̃M)[22])k,k| ≤ τ min
i=1:k
‖(M+δM)Π̃M(:, i)‖2, (3.39)

2. k is the first index for which |((R̃M)[22])k+1,k+1| ≤ τ · computed(‖M‖F). In that case

max
j=1:n−k

‖(∆M)Π̃M(:,k+ j)‖2 ≤ τ · computed(‖M‖F),

3. k is the first index for which

|((R̃M)[22])k+1,k+1| ≤ τ · computed(max{‖M‖F ,‖C‖F ,‖K‖F}).

In that case

max
j=1:n−k

‖(∆M)Π̃M(:,k+ j)‖2 ≤ τ · computed(max{‖M‖F ,‖C‖F ,‖K‖F}).

This strategy (3.) is used in quadeig with τ = nu. Here it is necessary to assume that
the coefficient matrices have been scaled so that their norms are nearly equal. Otherwise,
such a truncation strategy may discard a block in R̃M because it is small as compared e.g.
to ‖C‖F or ‖K‖F .

Remark 3.3. It is important to emphasize that in quadeig, scaling the matrices is optional,
and if the (also optional) deflation procedure is enabled, the truncation strategy opens
a possibility for catastrophic error (severe underestimate of the numerical ranks) if the
matrices are not scaled and if their norms differ by orders of magnitude. A user may not
be aware of this situation, which can cause large errors.

We now go to the details of the deflation procedure, whose decision tree depends on the
numerical ranks of the key matrices M and K.

The case of nonsingular M or nonsingular K

This case can be considered simple; it allows avoiding infinite eigenvalues by simply rever-
sing the pencil.

Both matrices nonsingular. In the simplest case rank(M)= rank(K)= n, the linearized pencil
is transformed by the following equivalence transformation:(

Q∗M 0
0 In

){(
C −In

K 0

)
−λ

(
−M 0

0 −In

)}(
ΠM 0
0 In

)
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=

 Q∗MCΠM −Q∗M

KΠM 0

−λ

 −Q∗MMΠM 0

0 −In


=

 Q∗MCΠM −Q∗M

KΠM 0

−λ

 −RM 0

0 −In

≡ A−λB. (3.40)

Proposition 3.2. Let Ã−λ B̃ the computed linearization (3.40). Then it corresponds to an exact

linearization of a quadratic pencil λ 2(M+δM)+λ (C+δC)+K, where, for all i = 1, . . . ,n,

‖δC(:, i)‖2 ≤ εC‖C(:, i)‖2, ‖δM(:, i)‖2 ≤ εqr‖M(:, i)‖2.

Further, if the row sorting is used in the QR factorization of M then, in addition,

‖δM(i, :)‖2 ≤ ε
⇒
qr ‖M(i, :)‖2

Proof: The proof can be read off as the special case of the proof of the Proposition 3.3 below.
�

Only one of M and K nonsingular. On the other hand, if e.g. rank(K)< rank(M) = n, then
the transformation reads(

Q∗M 0
0 Q∗K

){(
C −In

K 0

)
−λ

(
−M 0

0 −In

)}(
ΠM 0
0 QK

)

=

 Q∗MCΠM −Q∗MQK

Q∗KKΠM 0

−λ

 −Q∗MMΠM 0

0 −In



=


Q∗MCΠM −Q∗MQK

R̂KΠT
KΠM

0n−rK ,n
0

−λ

 −RM 0

0 −In



≡


X11 X12 X13

X21

0n−rK ,n

0rK ,rK 0rK ,n−rK

0n−rK ,rK 0

−λ


−RM 0

0
−IrK 0

0 −In−rK

 . (3.41)

The reduced (n+ rK)× (n+ rK) pencil is

A−λB =

 X11 X12

X21 0rK ,rK

−λ

 −RM 0

0 −IrK

 . (3.42)

Consider now the backward stability of the reduction. We assume that the rank truncation is of
type 1. (see §3.3.2) with the corresponding backward error as in (3.39), with τ = nu.
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Proposition 3.3. Let

Ã−λ B̃ =

 X̃11 X̃12

X̃21 0r̃K ,r̃K

−λ

 −R̃M 0

0 −Ir̃K

 (3.43)

be the computed linearization (3.42). Then it corresponds to exact reduced linearization of a

quadratic pencil λ 2(M+δM)+λ (C+δC)+(K +δK +∆K +∆′K), where, for all i = 1, . . . ,n,

‖δM(:, i)‖2 ≤ εqr‖M(:, i)‖2, ‖δC(:, i)‖2 ≤ εC‖C(:, i)‖2, ‖δK(:, i)‖2 ≤ εqr‖K(:, i)‖2; (3.44)

‖∆′K(:, i)‖2 ≤ ηK‖K(:, i)‖2, (3.45)

and the truncation error is

max
j=1:n−k

‖(∆K)Π̃K(:,k+ j)‖2 ≤ τ min
i=1:k
‖(K +δK)Π̃K(:, i)‖2; (∆K)Π̃K(:,1 : k) = 0n,k

Further, if the row sorting is used in the QR factorization of M then, in addition,

‖δM(i, :)‖2 ≤ ε
⇒
qr ‖M(i, :)‖2. (3.46)

Proof:

(i) Using R̃M in the computed pencil (3.43) can be justified by introducing δM as in (3.36–
3.37). This will be the only backward error in M and it can be always estimated as in (3.44), and
in the case of complete pivoting as in (3.46).

(ii) It holds that X̃11 = computed(Q̃∗MCΠ̃M) = Q̂∗M(C+ δC)Π̃M. To estimate δC, we start
with the fact that

computed(Q̃∗MC) = Q̃∗MC+G, |G| ≤ ε∗|Q̃∗M||C|, 0≤ ε∗ ≤ 2nu.

Since Q̃M = (I+E)Q̂M, ‖E‖2 ≤ εqr, we have

computed(Q̃∗MC) = Q̂∗M(I+E∗)C+G= Q̂∗M(C+E∗C+ Q̂MG)≡ Q̂∗M(C+δC).

Since |G| ≤ ε∗|Q̃∗M||C|, it follows that

‖G‖2 ≤ ‖G‖F ≤ ε∗‖Q̃∗K‖F‖C‖F ≤ ε∗n‖(I+E)Q̂K‖2‖C‖2 ≤ ε∗n(1+‖E‖2)‖C‖2.

Using this, we get column-wise estimates ‖δC(:, i)‖2 ≤ (‖E∗‖2 + ε∗n(1+ ‖E∗‖2))‖C(:, i)‖2,
and (3.44) follows with εC = (εqr + ε∗n(1+ εqr)). Note that the column permutation by Π̃M is
error free.
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(iii) In the same way, using Q̃K = (I+F)Q̂K(
X̃12 X̃13

)
= computed(Q̃∗MQ̃K) = Q̂∗M(I+E∗)Q̃K +H (here |H| ≤ ε∗|Q̃∗M||Q̃K|)

= Q̂∗M(Q̂K +FQ̂K +E∗Q̃K + Q̂MH)≡ Q̂∗M(Q̂K +δ Q̂K),

with ‖δ Q̂K‖2 ≤ εqr + εqr(1+ εqr)+nε∗(1+ εqr)
2.

(iv) Note that in this moment the backward error in K contains both the floating point error
δK and the truncation error ∆K analogous to (3.38), i.e. (K +δK +∆K)Π̃K = Q̂KR̃K . Now, the
δ Q̂K that helped us justify the error in X̃12, X̃13 must be pushed back into the initial data. If we
add it to Q̂K , then we can write

(Q̂K +δ Q̂K)R̃K = (K +δK +∆K +∆
′K)Π̃K, where ∆

′K = δ Q̂KR̃KΠ̃
T
K. (3.47)

This is not the QR factorization as Q̂K + δ Q̂K need not be unitary. However, it will be of full
rank and (3.47) is a rank revealing decomposition. If we set ∆ΣK = δK +∆K +∆′K, then we
can represent the computed linearization as

(
Q̂∗M 0
0 (Q̂K+δ Q̂K)

−1

){(
C+δC −In

K +∆ΣK 0

)
−λ

(
−M−δM 0

0 −In

)}(
Π̃M 0

0 Q̂K+δ Q̂K

)

=


X̃11 X̃12 X̃13

X̃21

0n−r̃K ,n

0r̃K ,r̃K 0r̃K ,n−r̃K

0n−r̃K ,r̃K 0

−λ


−R̃M 0

0
−Ir̃K 0

0 −In−r̃K

 .

�

If rank(M)< n and rank(K) = n, we proceed with the linearization of the reversed pencil.

Rank deficient case: both M and K rank deficient

We now consider the case when rK ≤ rM < n or rM < rK < n. In this case, quadeig deploys
the following transformation of the linear pencil (optionally, depending on rK/rM we may reverse
the pencil):

(
Q∗M 0
0 Q∗K

){(
C −In

K 0

)
−λ

(
−M 0

0 −In

)}(
In 0
0 QK

)

=


Q∗MC −Q∗MQK

R̂KΠT
K 0rK ,n

0n−rk,n 0n−rK ,n

−λ


−R̂MΠT

M 0rM ,n

0n−rM ,n 0n−rM ,n

0n,n −In
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≡


(Q∗MC)11 (Q∗MC)12

(Q∗MC)21 (Q∗MC)22
−Q∗MQK

(R̂KΠT
K)11 (R̂KΠT

K)12

0 0
0 0
0 0

−λ


−(R̂MΠT

M)11 −(R̂MΠT
M)12

0 0
0 0
0 0

0 0
0 0

−I 0
0 −I



≡


X11 X12

X21 X22

X13 X14

X23 X24

X31 X32

0 0
0 0
0 0

−λ


Y11 Y12

0n−rM ,rM 0n−rM ,n−rM

0rM ,rK 0rM ,n−rK

0n−rM ,rK 0n−rM ,n−rK

0rK ,rM 0rK ,n−rM

0n−rK ,rM 0n−rK ,n−rM

−IrK 0rK ,n−rK

0n−rK ,rK −In−rK


≡ X−λY. (3.48)

Note the difference in the transformation from the right: instead of ΠM, we now have In, so that
Q∗MM = RMΠT

M is not upper triangular. Preserving the triangular form in this moment does not
seem important because it is likely that it will be destroyed in subsequent steps.

In the next step, quadeig computes the complete orthogonal decomposition (i.e. URV
decomposition, using unitary matrices QX and ZX )

( rM n− rM rK

n− rM X21 X22 X23

)
= QX

(
RX 0n−rM ,rM+rK

)
ZX , RX ∈ C(n−rM)×(n−rM). (3.49)

It will be convenient to write this decomposition as

Q∗X
(

X21 X22 X23

)
Z∗X

(
0 In−rM

IrM+rK 0

)
=
(

0n−rM ,rM+rK RX

)
.

Then (3.48) can be further transformed as follows:
IrM 0 0 0
0 0 IrK 0
0 Q∗X 0 0
0 0 0 In−rK




X11 X12

X21 X22

X13 X14

X23 X24

X31 X32

0 0
0 0
0 0


 Z∗X

(
0 In−rM

IrM+rK 0

)
0

0 In−rK



=


X̃11 X̂12

X̃21 X̂22

X̂13 X14

X̂23 0

0 0
0 0

RX X̃24

0 0

 , where

(
X̃11 X̃12 X̃13
X̃21 X̃22 X̃23

)
=
(

X11 X12 X13
X31 X32 0

)
Z∗X
(

0 In−rM
IrM+rK 0

)
X̃24=Q∗X X24 ,

.

The (1,1) diagonal block in the new partition (=‖=) is (rM + rK)× (rM + rK), and

• n− rM = rK: X̂i j = X̃i j, i = 1,2, j = 2,3;

• n− rM > rK: X̂12 = X̃12(:,1 : rK), X̂13 = (X̃12(:,rK +1 : n− rM), X̃13),

X̂22 = X̃22(:,1 : rK), X̂23 = (X̃22(:,rK +1 : n− rM), X̃23)
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• n− rM < rK: X̂12 = (X̃12, X̃13(:,1 : rK + rM−n)), X̂13 = X̃13(:,rK + rM−n+1 : rK),

X̂22 = (X̃22, X̃23(:,1 : rK + rM−n)), X̂23 = X̃23(:,rK + rM−n+1 : rK)

On the right hand side, the transformation reads, analogously,
IrM 0 0 0
0 0 IrK 0
0 Q∗X 0 0
0 0 0 In−rK

Y

 Z∗X

(
0 In−rM

IrM+rK 0

)
0

0 In−rK

 (3.50)

=


Ỹ11 Ŷ12

Ỹ21 Ŷ22

Ŷ13 0rM ,n−rK

Ŷ23 0rK ,n−rK

0n−rM ,rM 0n−rM ,n−rM

0n−rK ,rM 0n−rK ,n−rM

0n−rM ,rK 0n−rM ,n−rK

0 −In−rK

 (3.51)

where

(
Ỹ11 Ỹ12 Ỹ13

Ỹ21 Ỹ22 Ỹ23

)
=

(
Y11 Y12 0rM ,rK

0rk,rM 0rK ,n−rM −IrK

)
Z∗X

(
0 In−rM

IrM+rK 0

)
, (3.52)

and

• n− rM = rK: Ŷi j = Ỹi j, i = 1,2, j = 2,3;

• n− rM > rK: Ŷ12 = Ỹ12(:,1 : rK),Ŷ13 = (Ỹ12(:,rK +1 : n− rM), Ỹ13),

Ŷ22 = Ỹ22(:,1 : rK),Ŷ23 = (Ỹ22(:,rK +1 : n− rM), Ỹ23)

• n− rM < rK: Ŷ12 = (Ỹ12, Ỹ13(:,1 : rK + rM−n)),Ŷ13 = Ỹ13(:,rK + rM−n+1 : rK),

Ŷ22 = (Ỹ22, Ỹ23(:,1 : rK + rM−n)),Ŷ23 = Ỹ23(:,rK + rM−n+1 : rK).

Hence, the equivalent pencil is
X̃11 X̂12

X̃21 X̂22

X̂13 X14

X̂23 0

0 0
0 0

RX X̃24

0 0

−λ


Ỹ11 Ŷ12

Ỹ21 Ŷ22

Ŷ13 0
Ŷ23 0

0 0
0 0

0 0
0 −I

 ,

and it immediately reveals that the original quadratic pencil is singular if det(RX) = 0. Otherwise,
we first identify the n− rK zero eigenvalues and the n− rM infinite ones, and the remaining ones
are computed from the linear generalized eigenvalue problem of the (rM +rK)×(rM +rK) pencil

A−λB≡

(
X̃11 X̂12

X̃21 X̂22

)
−λ

(
Ỹ11 Ŷ12

Ỹ21 Ŷ22

)
. (3.53)

Remark 3.4. In the important moment of computing the rank revealing decomposition (3.49),
quadeig uses the same truncation strategy and with the same threshold used to infer the nu-
merical ranks of M and K. In our opinion, this is fundamentally wrong strategy that may lead
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to catastrophically wrong results. Our new algorithm will determine the numerical rank more
carefully.

3.3.3 Eigenvectors in quadeig

Once the deflated linearized problem is solved, we need to transform the variables to the
original problem, i.e. to assemble the requested eigenvectors of the original quadratic pencil.
Before giving the formulas, let us first briefly review the process of computing eigenvalues and
corresponding eigenvectors for quadratic eigenvalue problems that is solved via the linearization
by the second companion form. The eigenvalues are the same, and the right eigenvectors z and
left eigenvectors w of the linearization are of the forms, respectively,

z =

 z1

z2

=



 λx

−Kx

 , λ 6= 0

 λx

Cx

 , λ = 0

, (3.54)

w =

 w1

w2

=

 λy

y

 , (3.55)

where x,y are the right and left eigenvector of quadratic eigenvalue problem. From the first
relation we see that, when the matrix K is nonsingular, we have two choices for a right eigen-
vector, namely z1 and K−1z2. If K is singular (or highly ill-conditioned), we choose z1. For a
left eigenvector we have two choices in both cases. We can either choose w1 or w2. In quadeig
the eigenvector with smallest backward error is chosen in the case of both the right and the left
eigenvector.

However, the deflation process in quadeig introduces an orthogonal transformation which
is used to transform linearization C2(λ ) to generalized eigenvalue problem QC2(λ )V . The
eigenvalues of the transformed problem are the same, but the right eigenvector z̃ and the left
eigenvector w̃ are transformed in the following way z̃1

z̃2

= z̃ =V z, (3.56)

 w̃1

w̃2

= w̃ = Q∗w, (3.57)

where z,w are as in (3.54) and (3.55). So, the process of extraction of the eigenvectors goes
from the bottom to the top. We first obtain the eigenvectors for the linearization C2(λ ), and then
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choose the eigenvector for the quadratic problem.

Now we provide explicit reconstruction formulas for the eigenvectors.

The right eigenvectors

The case: rank(M) = rank(K) = n. The matrix K is nonsingular, and we have two choices for
the right eigenvector. Let z̃ be the right eigenvector for the transformed GEP. The corresponding
right eigenvector for C2(λ ) is

z =

 z1

z2

=

(
ΠM 0
0 In

) z̃1

z̃2

=

 ΠM z̃1

z̃2

 .

Hence, the two candidates for the eigenvector x are ΠM z̃1 and K−1z̃2. Now, the candidate with
the smallest normwise backward error is chosen as the output.

The second case: rank(K)< rank(M) = n. The matrix K is singular, and n− rK zero eigenva-
lues have been deflated. The eigenvectors corresponding to those eigenvalues span the nullspace
of the matrix K. The basis for the nullspace is computed via the orthogonal complement of the
range of K∗, using the QR decomposition of the upper triangular matrix R̂∗K:

PKR̂∗K = QR̂∗K
RR̂∗K

.

The wanted vectors are the last n− rK columns of the orthogonal matrix QR̂∗K
.

The remaining eigenvalues and the corresponding eigenvectors z̃ ∈ Cn+rK are computed from
the (n+ rK)× (n+ rK) GEP (3.42). Partition z̃T =

(
z̃T

1 z̃T
2

)
, where z̃1 ∈ Cn and z̃2 ∈ CrK . The

corresponding eigenvector for C2(λ ) is

 z1

z2

=

(
ΠM 0
0 QK

)
z̃1

z̃2

0n−rK

=


ΠM z̃1

QK

(
z̃2

0n−rK

)  .

The only choice for the right eigenvector x is ΠM z̃1.

The third case: rank(K)≤ rank(M)< n. Both matrices M and K are singular, and n− rM

infinite and n− rK zero eigenvalues have been deflated. The eigenvectors for the zero eigenvalue
are obtained as in the previous case, whilst the eigenvectors for the infinite eigenvalue form the
basis for the nullspace of the matrix M. The basis for the nullspace is obtained as the orthogonal
complement of the range of M∗ represented by the last n− rM columns of the orthogonal matrix
QR̂∗M

PMR̂∗M = QR̂∗M
RR̂∗M

.
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The remaining eigenvalues with the corresponding eigenvectors z̃ ∈ CrK+rM are obtained from
the (rK + rM)× (rK + rM) GEP (3.53). The corresponding eigenvector for C2(λ ) is

 z1

z2

=

(
In 0
0 QK

)(
Z∗X 0
0 In−rK

) 0 In−rM 0
IrK+rM 0 0

0 0 In−rK




z̃

0n−rM

0n−rK


=

(
In 0
0 QK

)Z∗X

(
0n−rM

z̃

)
0n−rK

 .

The only candidate for the right eigenvector x is Z∗X

(
0n−rM

z̃

)
(1 : n) = Z∗X

(
0n−rM

z̃(1 : rM)

)
.

The left eigenvectors

We now describe how to assemble the left eigenvectors of the quadratic pencil.

The first case: rank(M) = rank(K) = n. Let w̃ be the left eigenvector for the transformed GEP
QC2(λ )V . The corresponding left eigenvector for the linearization C2(λ ) is w w1

w2

=

(
QM 0
0 In

) w̃1

w̃2

=

 QMw̃1

w̃2

 .

The two candidates for the left eigenvector y of the quadratic eigenvalue problem are QMw̃1

and w̃2. The next step is to compute corresponding normwise backward errors and choose the
candidate with the smallest one as the output.

Te second case: rank(K)< rank(M) = n. The left eigenvectors for the zero eigenvalue are the

last n− rK columns of the matrix QK . Let

 w̃1

w̃2

 ∈ Cn+rK be the eigenvector for the deflated

(n+ rK)× (n+ rK) pencil (3.42), where w̃1 ∈ Cn and w̃2 ∈ CrK . The corresponding eigenvector
for the 2n×2n pencil, before truncation satisfies

(
w̃∗1 w̃∗2 w̃∗3

)


X11 X12 X13

X21

0n−rK ,n

0rK ,rK 0rK ,n−rK

0n−rK ,rK 0

−λ


−RM 0

0
−IrK 0

0 −In−rK


=


w̃∗1X11 + w̃∗2X21 +λ w̃∗1RM

w̃∗1X12 +λ w̃∗2
w̃∗1X13 +λ w̃∗3

= 0,
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therefore, w̃3 = X∗13w̃1/λ . The vector z for C2(λ ) is

 w1

w2

=

(
QM 0
0 QK

)
w̃1

w̃2

w̃3

=


QMw̃1

QK

(
w̃2

w̃3

)  .

The candidates for the left eigenvector y for the quadratic eigenvalue problem are QMw̃1 and
QK

(
w̃2
w̃3

)
. Again, the eigenvector with the smaller normwise backward error is chosen as the

approximation.

The third case: rank(K)≤ rank(M)< n. The left eigenvectors for the zero eigenvalue are the
last n− rK columns of QK , and for the infinite eigenvalue are the last n− rM columns of QM. Let(

w̃1
w̃2

)
∈ CrK+rM be a left eigenvector for the truncated (rK + rM)× (rK + rM) pencil (3.53). The

corresponding eigenvector for the pencil QC2(λ )V satisfies

(
w̃∗1 w̃∗2 w̃∗3 w̃∗4

)



X̃11 X̂12

X̃21 X̂22

X̂13 X14

X̂23 0

0 0
0 0

RX X̃24

0 0

−λ


Ỹ11 Ŷ12

Ỹ21 Ŷ22

Ŷ13 0
Ŷ23 0

0 0
0 0

0 0
0 −I


=

=


0
0

w̃∗1X̂13 + w̃∗2X̂23 + w̃∗3RX −λ w̃∗1Ŷ13−λ w̃∗2Ŷ23

w̃∗1X̂14 + w̃∗3X̃24 +λ w̃∗4

= 0.

The components w̃∗3, w̃
∗
4 are thus computed as

w̃∗3 =
(

λ w̃∗1Ŷ13 +λ w̃∗2Ŷ23− w̃∗1X̂13− w̃∗2X̂23

)
R−1

X ,

w̃∗4 =
(
−w̃∗1X̂14− w̃∗3X̃24

)
/λ .

The left eigenvector for C2(λ ) is

w =

(
QM 0
0 QK

)
IrM 0 0 0
0 0 QX 0
0 IrK 0 0
0 0 0 In−rK




w̃1

w̃2

w̃3

w̃4

=


QM

(
w̃1

QX w̃3

)

QK

(
w̃2

w̃4

)
 ,

and the candidates for the left eigenvector y are QM

(
w̃1

QX w̃3

)
and QK

(
w̃2
w̃4

)
. The eigenvector with

the smaller normwise backward error is chosen as the approximation.
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3.4 Balancing by two-sided diagonal scalings

As mentioned in the introduction, along with having the coefficient matrices with unbalanced
norms, their elements can be highly unbalanced too, for example as a result of particular choice
of physical units and/or different physical nature of the involved coupled variables. This results
in badly conditioned coefficient matrices, and backward error may simply wipe out small but
physically relevant parameters.

In order to improve the deflation process, we propose balancing of the coefficients as in [9],
where the coefficient matrices A, E, B of a descriptor linear time invariant dynamical system
Eẋ = Ax+Bu are balanced for more numerically robust reduction. It is a generalization of
Ward’s balancing algorithm [70] for two matrices. Bosner’s algorithm produces two diagonal
matrices Dl and Dr such that the range of magnitude orders of all elements in the scaled matrices
DlADr, DlEDr and DlB is small. We extend that algorithm so that the third matrix is also scaled
from the right; in means that we go over to a new equivalent QEP:

Q̂(λ ) = λ
2(DlMDr)+λ (DlCDr)+(DlKDr). (3.58)

For a computed (e.g. right) eigenpair (λ ,x) of (3.58), the corresponding eigenpair for the original
problem is (λ ,Drx).

3.4.1 The algorithm

Define the range of elements in a matrix as the ratio of the element of the largest and the
one with smallest (nonzero) magnitude. The matrices Dl and Dr are computed so that the
ranges of the elements in DlMDr,DlCDr and DlKDr are moderate. The main idea is that the
exponents in the exponential notation of all nonzero elements in DlMDr,DlCDr and DlKDr

should be close to zero. The diagonal matrices are defined as Dl = diag(10l1, . . . ,10ln) and
Dr = diag(10r1, . . . ,10rn).

The problem of balancing is then equivalent to minimization problem

min
l,r∈Rn

ϕ(l,r) =

min
l,r∈Rn

n

∑
i=1

 n

∑
j=1

mi j 6=0

(li + r j + log |mi j|)2 +
n

∑
j=1

ci j 6=0

(li + r j + log |ci j|)2 +
n

∑
j=1

ki j 6=0

(li + r j + log |ki j|)2

 ,
(3.59)

where l =
(

l1, . . . , ln
)

and r =
(

r1, . . . ,rn

)
. This is a linear least square problem with the
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following system Lx = p of normal equations

L =

(
F1 G

GT F2

)
, p =

(
−c

−d

)
, x =

(
l

r

)
,

where F1 = diag(nr1, . . . ,nrn) ∈ Rn×n with

nri =
n

∑
j=1

mi j 6=0

1+
n

∑
j=1

ci j 6=0

1+
n

∑
j=1

ki j 6=0

1

being the number of nonzero elements in the i-th rows of M, C and K, F2 = diag(nc1 , . . . ,ncn) ∈
Rn×n with

nc j =
n

∑
i=1

mi j 6=0

1+
n

∑
i=1

ci j 6=0

1+
n

∑
i=1

ki j 6=0

1

being the total number of nonzero elements in the j− th columns of M, C and K, G ∈ Rn×n is
the sum of incidence matrices of M, C and K:

gi j =

{
1, if mi j 6= 0
0, if mi j = 0

}
+

{
1, if ci j 6= 0
0, if ci j = 0

}
+

{
1, if ki j 6= 0
0, if ki j = 0

}
,

the vector c ∈ Rn has elements

ci =
n

∑
j=1

mi j 6=0

log |mi j|+
n

∑
j=1

ci j 6=0

log |ci j|+
n

∑
j=1

ki j 6=0

log |ki j|,

and the vector d ∈ Rn has elements

d j =
n

∑
i=1

mi j 6=0

log |mi j|+
n

∑
i=1

ci j 6=0

log |ci j|+
n

∑
i=1

ki j 6=0

log |ki j|.

The system is solved as in [9], using the preconditioned conjugate gradient method. In order to
demonstrate the importance of balancing in computation of eigenvalues and eigenvectors, we
will use the componentwise backward error (see Section 2.4) for the eigenpair (x,λ ):

ωQ(x,λ ) = max
i

|((λ 2M+λC+K)x)i|
((|λ |2|M|+ |λ ||C|+ |K|)|x|)i

. (3.60)

Example 3.3. In Table 3.1, we show the maximum component-wise backward errors for non-
zero finite eigenvalues for selected examples from the NLEVP library, computed with and
without balancing. In Table 3.2, we show the ranges in M,C and K for these examples with and
without balancing. It is clear from these results that there is significant improvement in maxωQ

after the balancing took place. There is large improvement in the range of elements is in the
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Table 3.1: Comparison of component-wise backward errors

No balancing Balancing
Problem minωQ maxωQ minωQ maxωQ

damped_beam 3.4787e-015 3.2404e-009 7.6779e-016 8.0865e-013
power_plant 7.7532e-014 1.5799e-010 2.1702e-015 1.0789e-013
speaker_box 2.2373e-008 6.9832e-006 1.3051e-010 3.2287e-008

Table 3.2: Comparison of range of elements in M,C,K

No balancing
Problem M C K

damped_beam 1.0400e+006 1.2000e+005 1
power_plant 4.3519e+007 1.6131e+009 4.3473e+009
speaker_box 1.3017e+010 3.5943e+010 3.7253e+017

Balancing
Problem M C K

damped_beam 240 100 1
power_plant 74.7664 849.2321 761.9298
speaker_box 1.3017e+008 3.5943e+008 2.2146e+017

first and the second example, which is followed by the smaller maximal component-wise error.
However, in the third example balancing did not made significant improvement in the range of
matrices, especially for matrix K. Nevertheless, the component-wise backward error is improved
by two orders of magnitude.

We strongly believe that this balancing at the matrix elements level is an important prepro-
cessing technique that will prove its value in the design of iterative methods as well. It is a
subject of our ongoing and the future work.

3.5 Improved deflation process. New algorihm – KVADeig

After preprocessing by parameter scaling and diagonal balancing, both optional, the task is
to detect and remove (deflate) the zero and the infinite eigenvalues. We have already discussed
the importance of such deflation. From the design of quadeig, it is clear that it cannot guarantee
removal of all zeros/infinites from the spectrum; in fact it can only deflate one Jordan block of
these eigenvalues.

In this section, we go through the details of this initial deflation, and we propose to supple-
ment it with additional steps. To motivate the need for the improvement of the deflation process,
we use an example from the NLEVP collection [5].
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3.5.1 A case study example

This is a 10×10 quadratic eigenvalue problem for the pencil I (λ ) = λ 2M+λC+K, whose
real eigenvalues and the corresponding eigenvectors give the intersection points of a sphere, a
cylinder and a plane.

Figure 3.3: Intersection points of a sphere, a cylinder and a plane (intersection in NLEVP)

Although of small dimension and very simple structure, this example is an excellent illustra-
tion of difficulties in solving nonlinear eigenvalue problems.

It has been shown in [53], [51] that this problem has only four finite eigenvalues: two real
ones and a complex conjugate pair. We take this example as a case study and compute the
spectrum by several mathematically equivalent methods; all computation is done in Matlab
8.5.0.197613 (R2015a). If one plainly applies the QZ to a linearization of I (λ ), such as the
first or the second companion form with the Fan-Lin-Van Dooren scaling, the spectrum appears
as

C1(λ ) :



λ1 = 2.476851749893558e+01
λ2 = 2.476851768196165e+01
λ3 = -5.581844429198920e+08 - 1.628033679447590e+09i
λ4 = -5.581844429198920e+08 + 1.628033679447590e+09i
λ5 = 2.570601782117493e+18
λ6 = . . .= λ14 = Inf, λ15 = . . .= λ20 = -Inf,

(3.61)

C2(λ ) :


λ1 = 2.476851749893561e+01
λ2 = 2.476851768196167e+01
λ3 = -2.653302084597818e+09
λ4 = . . .= λ17 = Inf, λ18 = . . .= λ20 = -Inf.

(3.62)

If we use the same method, but with the reversed pencil µ2K +µC+M, (λ = 1/µ) then from
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the first companion form QZ has computed 12 finite eigenvalues (8 real and 2 complex conjugate
pairs), and from the second 10 (6 real and 2 complex conjugate pairs).

If we run the Matlab’s solver polyeig(), we obtain

polyeig(Y (λ )) :



λ1 = 2.476851768196161e+01
λ2 = 2.476851749893561e+01
λ3 = 1.426603361688555e+08
λ4 = -1.353812777123886e+08
λ5 = . . .= λ18 = Inf, λ19 = λ20 = -Inf,

(3.63)

and if we scale the coefficient matrices then

polyeig(Yscaled(λ )) :



λ1 = 2.476851768196165e+01
λ2 = 2.476851749893559e+01
λ3 = -3.020295324523709e+08 + 1.229442619245432e+09i
λ4 = -3.020295324523709e+08 - 1.229442619245432e+09i
λ5 = . . .= λ18 = Inf, λ19 = λ20 = -Inf.

(3.64)
Almost perfect match in λ1 and λ2 is reassuring, but there is an obvious disagreement in the
total number and the nature (real or complex) of finite eigenvalues. With an earlier version of
Matlab, the results that correspond to (3.61), (3.62), (3.63), and (3.64) coincide in the numbers
of finite eigenvalues; λ1 and λ2 are close up to machine precision, but the remaining computed
finite eigenvalues are substantially different.

The rank of the matrix M is exactly 3, and it will be correctly determined numerically due
to a particularly simple sparsity structure of M. The matrix K is also sparse with κ2(K) ≈
4.09+03, so there is no numerical rank issue. In this situation, a preprocessing procedure such
as in quadeig will reverse the pencil and deflate 7 zero eigenvalues (infinite eigenvalues of the
original problem) at the very beginning. The remaining eigenvalues are then computed (e.g.
using quadeig) as1

λ1 = 2.4769e+001 λ8 = -1.4660e+007 - 6.9064e+006i
λ2 = 2.4769e+001 λ9 = -1.4660e+007 + 6.9064e+006i
λ3 = 1.1194e+006 λ10 = -4.5822e+015
λ4 = -5.5674e+005 -1.0143e+006i λ11 = -3.9134e+015
λ5 = -5.5674e+005 + 1.0143e+006i λ12 = -2.3047e+019
λ6 = 1.4679e+007 - 1.9395e+007i λ13 = 3.0862e+020
λ7 = 1.4679e+007 + 1.9395e+007i

(3.65)

After the deflation of the 7 zero eigenvalues, in the thus obtained linearization A−λB, the rank
of the matrix A is 7, and it can be determined exactly because of sparsity (A has 6 zero columns,

1Here, to save the space, we display the computed values only to five digits.
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and the remaining 7 ones build a well conditioned 13×7 submatrix of A). The matrix B is well
conditioned 5.550831520847275e+003. This means that at least 6 more zero eigenvalues are
present in the reversed problem (infinities in the original problem); those are not detected by the
QZ algorithm running on A−λB.

Remark 3.5. It should be noted that the successful removal of many infinite eigenvalues in
(3.61), (3.62), (3.63), and (3.64) is due to the sparsity that is successfully exploited by the
preprocessing to the QZ algorithm. Recall, before the reduction to the triangular - Hessenberg
form the matrices are scaled and permuted, as described in [70] in order to get equivalent pencil
Â−λ B̂ of form

Â =

 A[11] A[12]D2G2 A[13]

0 G1D1A[22]D2G2 G1D1A[23]

0 0 A[33]

 , B̂ =

 B[11] B[12]D2G2 B[13]

0 G1D1B[22]D2G2 G1D1B[23]

0 q0 B[33]

 ,

where A[11],A[33],B[11],B[33] are upper triangular, and

P1AP2 =

 A[11] A[12] A[13]

0 A[22] A[23]

0 0 A[33]

 , P1BP2 =

 B[11] B[12] B[13]

0 B[22] B[23]

0 0 B[33]

 .

Original problem. First row: balanced second
companion form linearization pencil. Second
row: Balanced truncated pencil after the deflation
process.

Reversed problem. First row: balanced second
companion form linearization pencil. Second row:
Balanced truncated pencil after the deflation
process.

Figure 3.4: Sparsity structure of the linearization pencil before and after deflation

The matrices D1 and D2 are computed so that the elements of D1A[22]D2 and D1B[22]D2

have magnitudes as close to one. G2 is permutation matrix determined so that the ratio of the
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column norms of D1A[22]D2G2 to the corresponding columns norms of D1B[22]D2G2 appear
in decreasing order. G1 is determined so that the ratios of the row norms of G1D1A[22]D2G2

to those of G1D1B[22]D2G2 appear in decreasing order. On the other hand, the transformation
(3.41) (designed to expose the zero eigenvalues of the reversed pencil, that correspond to the
null space of M) has introduced fill-in. This is illustrated in Figure 3.4.

3.5.2 Deflation process revisited

Recall the deflation process in the quadeig algorithm in the case of one singular matrix.
There, the QR factorization of the matrix M is used to reduce the matrix B to upper triangular
form. However, if we define the transformation matrices to maintain the identity in the upper
right block of the matrix A in the linearization pencil A−λB, we get:

P1(A−λB)Q1 =

 Q∗K 0

0 Q∗K

(

(
C −In

K 0

)
−λ

(
−M 0

0 −In

)
)

 In 0

0 QK



=


Q∗KC −In

R̂KPT
K 0

0 0

−λ

 −Q∗KM 0

0 −In

 .

Note that rank(A) = n+ rank(K), so A and K have null spaces of equal dimensions. In essence,
multiplication from the left with Q∗K ⊕Q∗K (or with Q∗M⊕Q∗K , or In⊕Q∗K) is a rank revealing
transformation of A. We now truncate the s1 = n−rK copies of the eigenvalue λ = 0 and proceed
with the truncated (n+ rK)× (n+ rK) pencil

A22−λB22 =


Q∗K,1C −IrK

Q∗K,2C 0

R̂KPT
K 0

−λ

 Q∗KM 0

0 −IrK

 . (3.66)

Note that using the definition (3.66) of A22−λB22 in (3.66) yields

P1(A−λB)Q1 =

(
A22−λB22 �

0 A11−λB11

)
, A11 = 0n−rK , B11 =−In−rK . (3.67)

With A11 :=A and B11 :=B, this procedure can be understood as the first step of the Van Dooren’s
algorithm (actually its transposed version, see §3.2) for the determination of the elementary
divisors of the eigenvalue zero.

Using this modified transformation defined by P1 and Q1, for a rank revealing factorization of
A22 it suffices to compute the rank revealing QR factorization of its n×n submatrix A22(rK +1 :
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n+ rK,1 : n), (
Q∗K,2C

R̂KPT
K

)
PA22 = QA22RA22. (3.68)

This can be used to transform the pencil A22−λB22 to

P̂2(A22−λB22) =

(
Q∗K,1C −IrK

RA22PT
A22

0

)
−λ P̂2

 Q∗KM 0

0 −IrK

 , P̂2 =

(
IrK 0
0 Q∗A22

)
.

(3.69)
If the factorization (3.68) shows no rank deficiency, there are no zeros in the spectrum of
A22−λB22. Otherwise, A22(rK + 1 : n+ rK,1 : n) is rank deficient; assume its rank to be r22,
r22 < n, and s2 = n+ rK− r22. Then

RA22 =

(
R̂A22

0n−r22,n

)
, R̂A22 ∈ Cr22×n,

P̂2A22 =

 Q∗K,1C −IrK

R̂A22PT
A22

0
0n−r22,n 0n−r22,rK

 , P̂2B22 =

 Q∗K,1M 0rK

� N

� 4

 . (3.70)

The next step is to transform matrix P̂2B22 so that the block� is zero. This is done by computing
the complete orthogonal decomposition (for the analysis see §3.1.3)

P̂2B22 =UBRBV ∗B . (3.71)

The column rank of P̂2B22 is s2 (otherwise, the matrix pencil is singular), and P̂2B22VB =(
B22 0

)
(here we abuse notation for B22, for the sake of simplicity, as in Algorithm 3.5.1).

Let PB represent the permutation of the first s2 and the last n− s2 column blocks. The wanted
structure is now obtained by multiplying the pencil (3.70) from the right with VBPV :

P̂2A22VBPB−λ P̂2B22VBPB =

(
A33−λB33 ♠

0 −λB22

)
. (3.72)

The ext proposition shows that the existence of a second Jordan block for the zero eigenvalue
depends on the relationship between the matrices K and C.

Proposition 3.4. Assume that the matrix K from the quadratic pencil λ 2M+λC+K has rank

rank(K) = rK < n. There exists more than one Jordan block for the eigenvalue zero if

(ker(C)∪X )∩ker(K) 6= {0}, X = {y ∈ Cn : Cy ∈ Im(K)}.

Analogously, if the matrix M has rank rank(M) = rM < n, there is more than one Jordan block
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for the infinite eigenvalue if

(ker(C)∪Y )∩ker(M) 6= {0}, Y = {y ∈ Cn : Cy ∈ Im(M)}

Proof. From Theorem 3.3 we know that the partial multiplicities, and thus the dimensions of
the Jordan blocks for a quadratic eigenvalue problem can be obtained using Algorithm 3.2.1
for a corresponding strong linearization. If we use the second companion form, the very first
step of the deflation yields the pencil (3.66). Now, if Ã22 is singular, we will have another
Jordan block for the eigenvalue zero. The rank of the matrix Ã22 can be determined by the

rank of the matrix

(
Q∗K,2C

R̂KPT
K

)
. This matrix is rank deficient if its kernel is nontrivial, that is

if ker

(
Q∗K,2C

R̂KPT
K

)
= ker(QK,2C)∩ker(R̂KPT

K ) 6= {0}. The matrix QK,2 represents the basis for

ker(K∗), and thus

ker

(
Q∗K,2C

R̂KPT
K

)
= (ker(C)∪X )∩ker(K),

where X = {y ∈ Cn : Cy = z, z ∈ Im(K)}.

From these two steps we see that, for this choice of linearization, the upper triangular form
for (3.27) would be more fitting. This is why we propose the modification of Algorithm 3.2.1
using the rank revealing QR factorization, see §3.5.3 below.

Backward error

The following proposition states the backward stability for the first step od the deflation
process (3.66) as in Subsection 3.3.2.

Proposition 3.5. Let

Ã−λ B̃ =

 X̃11 −Ir̃K

R̃KΠ̃T
K 0r̃K ,r̃K

−λ

 −Ỹ11 0

0 −Ir̃K


be the computed linearization (3.66). Then it corresponds to an exact reduced linearization of a

quadratic pencil λ 2(M+δM)+λ (C+δC)+(K +δK +∆K), where, for all i = 1, . . . ,n,

‖δM(:, i)‖2 ≤ εM‖M(:, i)‖2, ‖δC(:, i)‖2 ≤ εC‖C(:, i)‖2, ‖δK(:, i)‖2 ≤ εqr‖K(:, i)‖2; (3.73)

and the truncation error is

max
j=1:n−k

‖(∆K)Π̃K(:,k+ j)‖2 ≤ τ min
i=1:k
‖(K +δK)Π̃K(:, i)‖2; (∆K)Π̃K(:,1 : k) = 0n,k. (3.74)
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Proof. (i) Let P̃K , Q̃K , R̃K be the computed factors of QR decomposition of K, i.e. (K+δK)P̃K =

Q̂K

(
R̃K

0

)
, ‖Q̃K− Q̂K‖F ≤ ε2. It holds that X̃11 = computed(Q̃∗KC) = Q̂∗K(C+δC). To estimate

δC, we start with the fact that

computed(Q̃∗KC) = Q̃∗KC+GC, |GC| ≤ ε∗|Q̃∗K||C|, 0≤ ε∗ ≤ 2nu.

Since Q̃K = (I+EC)Q̂K , ‖EC‖2 ≤ εqr, we have

computed(Q̃∗KC) = Q̂∗K(I+E∗C)C+GC = Q̂∗K(C+E∗CC+ Q̂KGC︸ ︷︷ ︸
:=δC

)≡ Q̂∗K(C+δC),

with column-wise estimates ‖δC(:, i)‖2 ≤ (‖E∗C‖2 + ε∗n(1+‖E∗C‖2))‖C(:, i)‖2, and (3.73) fol-
lows with εC = (εqr + ε∗n(1+ εqr)) (derived as in Proposition 3.3).

(ii) By the same reasoning we get Ỹ11 = Q̂K(M + δM), where ‖δM(:, i)‖2 ≤ εM‖M(:, i)‖2,
and εM = (εqr + ε∗n(1+ εqr)).

(iii) Note that in this moment the backward error in K contains both the floating point error
δK and the truncation error ∆K analogous to (3.38), i.e. (K +δK +∆K)Π̃K = Q̂KR̃K . If we set
∆ΣK = δK +∆K, then we can represent the computed linearization as

(
Q̂∗K 0
0 Q̂∗K

){(
C+δC −In

K +∆ΣK 0

)
−λ

(
−M−δM 0

0 −In

)}(
In 0
0 Q̂K

)

=


X̃11 −Ir̃K 0n−r̃K

R̃KΠ̃T
K

0n−r̃K ,n

0r̃K ,r̃K 0r̃K ,n−r̃K

0n−r̃K ,r̃K 0

−λ


−Ỹ11 0

0
−Ir̃K 0

0 −In−r̃K

 .

It is hard to say something about the backward stability of the second step of the deflation
process in terms of the original coefficient matrices M,C and K since the transformation (3.70)
destroys the block structure. However, we can say something about the rank revealing QR
factorization for the block matrix(

Q̂∗K,2(C+δC)

R̃KΠ̃T
K

)
ΠA = QARA,

which is used to determine whether there are more Jordan blocks for the quadratic eigenvalue
problem.

For the computed factors Π̃A, Q̃A, R̃A it holds that[(
Q̂∗K,2(C+δC)

R̃KΠ̃T
K

)
+

(
C

K

)]
Π̃A = Q̂AR̃A,
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where ∥∥∥∥∥
(
C

K

)
(:, i)

∥∥∥∥∥
2

≤ εqr

∥∥∥∥∥
(

Q̂∗K,2(C+δC)

R̃KΠ̃T
K

)
(:, i)

∥∥∥∥∥
2

.

However, the norm of block vector x =

(
x1

x2

)
is ‖x‖2 =

√
‖x1‖2

2 +‖x2‖2
2, which means that

above inequality holds for both ‖C(:, i)‖2 and ‖K(:, i)‖2. On the other hand, we can estimate
‖x‖2 ≤

√
2max(‖x1‖2,‖x2‖2). Using these bounds we get

‖C(:, i)‖2 ≤ εqr
√

2max
(
‖Q̂∗K,2(C+δC)(:, i)‖2,‖R̃KΠ̃

T
K(:, i)‖2

)
,

‖K(:, i)‖2 ≤ εqr
√

2max
(
‖Q̂∗K,2(C+δC)(:, i)‖2,‖R̃KΠ̃

T
K(:, i)‖2

)
.

Moreover, if C = QCRC is the exact QR factorization of the matrix C, we have

‖Q̂∗K,2(C+δC)(:, i)‖2 ≤ ‖Q̂∗K,2C(:, i)‖2 +‖Q̂∗K,2δC(:, i)‖2 ≤ (1+ εC)‖Q̂∗K,2C(:, i)‖2,

= (1+ εC)‖Q̂∗K,2QCRC(:, i)‖ ≤ (1+ εC)‖Q̂∗K,2QC‖2‖C(:, i)‖2

= (1+ εC)cos^(Ker(K), Im(C))‖C(:, i)‖2,

and ‖R̃KΠ̃T
K(:, i)‖2 ≤ (1+ εqr)‖K(:, i)‖2. Altogether we have

‖C(:, i)‖2 ≤ εqr
√

2
max

(
(1+ εC)cos^(Ker(K), Im(C))‖C(:, i)‖2,(1+ εqr)‖K(:, i)‖2

)
‖C(:, i)‖2

‖C(:, i)‖2,

‖K(:, i)‖2 ≤ εqr
√

2
max

(
(1+ εC)cos^(Ker(K), Im(C))‖C(:, i)‖2,(1+ εqr)‖K(:, i)‖2

)
‖K(:, i)‖2

‖K(:, i)‖2,

i.e.

‖C(:, i)‖2

‖C(:, i)‖2
≤ εqr

√
2max

(
(1+ εC)cos^(Ker(K), Im(C)),(1+ εqr)

‖K(:, i)‖2

‖C(:, i)‖2

)
(3.75)

‖K(:, i)‖2

‖K(:, i)‖2
≤ εqr

√
2max

(
(1+ εC)cos^(Ker(K), Im(C))

‖C(:, i)‖2

‖K(:, i)‖2
,(1+ εqr)

)
. (3.76)

Notice that the bounds (3.75,3.76) can blow up if there is a large difference in the norms of
columns K(:, i), C(:, i) of the coefficient matrices K and C. This once more shows the importance
of scaling and balancing.

3.5.3 Computing the Kronecker’s Canonical form using rank revealing
QR factorization

From the previous section, we know that, in order to exploit the structure of the second
companion form linearization as much as possible, it is more convenient to deflate the (zero)
eigenvalue by the transformations which lead to upper triangular forms (3.67),(3.72). This is
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done by using the rank revealing QR factorization of the current matrix Ai,i from the linearization
pencil, instead of using the SVD. In this subsection, we derive such an algorithm. We will
describe the first step in detail, and then formulate the complete algorithm.
Let A,B ∈ Cn×n. Denote by ni the size of the current working matrix in step i, and si the defect
of the working matrix in step i. Consider the following procedure.

1. Compute the rank revealing factorization of A1,1 = A

A1,1PA = QARA, (3.77)

and denote s1 = n1− rank(A) = n− rank(A). Now, Q∗AA1,1 =

(
A2

0s1×n

)
, where A2 is of

full row rank n− s1. Partition Q∗AB =

(
B2

B1

)
in compatible manner. Multiply the pencil

(A−λB) by Q∗A on the left to get

Q∗A(A−λB) =

(
A2−λB2

λB1

)
. (3.78)

2. Compute the complete orthogonal decomposition of B1

B1 =UBRBV ∗B . (3.79)

The column rank of B1 is s1, if the matrix pencil is regular, and B1VB =
(

B1,1 0s1,n−s1

)
,

where B1,1 is upper triangular. Multiply the pencil (3.78) by VB on the right to get

Q∗A(A−λB)VB =

(
A1,2−λB1,2 A2,2−λB2,2

λB1,1 0

)
.

3. Let PB be the permutation matrix for permuting the first s1 and the last n− s1 columns.
Define P1 = Q∗A and Q1 =VBPB. The first Jordan block for the eigenvalue 0 is deflated by
the following orthogonal transformation:

P1(A−λB)Q1 =

(
A2,2−λB2,2 A1,2−λB1,2

0 λB1,1

)
, (3.80)

with (
A2,2 A1,2

)
= A2Q1 ∈ C(n−s1)×n.

Since |detP1 det(A−λB)detQ1|= |det(A−λB)|= |λ |s1 |detB1,1 det(A2,2−λB2,2)| holds,
it is clear that finding the additional zero eigenvalues reduces to the problem A2,2−λB2,2.
If A2,2 is regular, there are no more zero eigenvalues, and the process stops. If A2,2 is
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singular, the process continues, that is, we find unitary matrices P̂2 and Q̂2 so that

P2P1(A−λB)Q1Q2 =

 A33−λB3,3 A2,3−λB2,3 A1,3−λB1,3

0 −λB2,2 A1,2−λB1,2

0 0 −λB11

 ,

where P2 = diag(P̂2,Is1),Q2 = diag(Q̂2,Is1).

The complete algorithm is described below

Algorithm 3.5.1 Deflation of eigenvalue 0
1: j = 1; A1,1 = A; B1,1 = B; n1 = n;
2: Compute rank revealing QR: A1,1PA = QARA
3: s1 = n1− rank(A1,1)
4: while s j > 0 do

5: Partition matrices:
(

A j+1
0

)
= Q∗AA j, j,

(
B j+1
B j

)
= Q∗AB j, j

6: Update and partition blocks in row j
7: for i = 1 : j−1 do

8:

(
Ai, j+1
Ai, j

)
= Q∗AAi, j;

(
Bi, j+1
Bi, j

)
= Q∗ABi, j;

9: end for
10: Compute complete orthogonal decomposition of s j×n j matrix B j: B j = ABRBV ∗B
11: Compress B j to full column rank, permute and partition:
12:

(
A j+1, j+1 A j, j+1

)
= A j+1VBPB;

(
B j+1, j+1 B j, j+1

)
= B j+1VBPB;

13:
(

0 B j, j
)
= B jVBPB

14: n j+1 = n j− s j, j = j+1
15: Compute rank revealing QR A j, jPA = QARA
16: s j = n j− rank(A j, j)
17: end while

This algorithm results in

P(A−λB)Q =

A`+1,`+1−λB`+1,`+1 A`,`+1−λB`,`+1 . . . A2,`+1−λB2,`+1 A1,`+1−λB1,`+1

0 −λB`,` . . . A2,`−λB2,` A1,`−λB1,`
...

... . . . ...
...

0 0 . . . −λB2,2 A1,2−λB1,2

0 0 . . . 0 −λB1,1


.

(3.81)

The deflation of the infinite eigenvalue can be done by the same algorithm, but with the reversed
pencil B−λA.
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Remark 3.6. Algorithm 3.5.1 can be used to determine the structure of an arbitrary eigenvalue
α . The only difference is that the starting matrix A1,1 = A−αB is shifted. The matrix B1,1 = B

stays the same. Consider the shifted second companion form linearization

A1,1 =

(
C −I
K 0

)
−α

(
−M 0

0 −I

)
=

(
C+αM −I

K αI

)
.

The first step of the algorithm is to determine the rank of 2n×2n matrix A1,1. However, if we

multiply A1,1 with

(
αI I
0 I

)
from the right we get

(
αI I
0 I

)
A1,1 =

(
α2M+αC+K 0

K αI

)
,

meaning that the rank(A1,1) = n+ rank(α2M+αC+K), and thus it is enough to compute the
rank of the n×n matrix α2M+αC+K.

3.5.4 Putting it all together: Deflation process in KVADeig

We now describe the global structure of the new procedure. We assume that the initial scaling
and balancing are done as requested by an expert user.

The first step of the deflation process is the computation of the rank revealing decomposition
of the matrices M and K.
After the determination of the numerical ranks, we have three main cases:

1. both matrices are regular,

2. one of the matrices is singular,

3. both matrices are singular.

1. Both matrices M and K are regular We proceed as in quadeig algorithm, that is we use
the rank revealing decomposition of the matrix M to reduce matrix B to an upper triangular form
(3.40).

2. One of the matrices is singular We can assume, without loss of generality, that K is
singular, because in the case of singular M we just consider the reversed problem.
Before we continue with deflation process of the n− rK zero eigenvalues, we check whether
there are Jordan blocks for this eigenvalue, that is, we compute the numerical rank of the n×n

block matrix (3.68). As we mentioned before, the nullity of this matrix is equal to the nullity of
the matrix Ã22, and the next step depends on it.
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2.1. Regular matrix A22 In this case we proceed as in quadeig algorithm. That is, the
n− rK zero eigenvalues are deflated, and the matrix B is reduced to the upper triangular form
(3.42).

2.2. Singular matrix A22 In the notation of Algorithm 3.5.1, this means that s2 6= 0, mea-
ning that there exists more than one Jordan block for the zero eigenvalue. In this case, reduction
of the matrix B to upper triangular form will not be conducted. Using the structure of the matrix
A, the deflation of the first two blocks is done as in (3.66) and (3.69). For possible further
deflation steps, Algorithm 3.5.1 is applied to the pencil A33−λB33.

3. Both matrices are singular In this case, before any deflation process, we check the ranks
of both block matrices (

Q∗K,2C

R̂KPT
K

)
,

(
Q∗M,2C

R̂MPT
M

)
. (3.82)

The ranks of these matrices determine whether there exist more than one Jordan block for the
zero eigenvalue and the infinite eigenvalue, respectively. There are three possible outcomes:

3.1. Both matrices in (3.82) are regular This means that there are exactly n− rM infinite,
and n− rK zero eigenvalues, which are deflated as in quadeig algorithm.

3.2. One of the matrices in (3.82) is singular In any case, we use the structure to deflate

two Jordan blocks of eigenvalue zero, meaning that if

(
Q∗M,2C

R̂MPT
M

)
is singular, i.e if there are

at least two Jordan block for infinite eigenvalues, the reversed problem is considered. Now,
Algorithm 3.5.1 is used to compute the complete structure of the zero eigenvalue. The first two
steps are as in (3.66) and (3.69), that is, the structure of original problem is used. After the
deflation of the zero eigenvalue, we get new reduced pencil Ã−λ B̃. Now, Algorithm 3.5.1 is
used to deflate the infinite eigenvalue of the generalized eigenvalue problem. We already know
that the number of infinite eigenvalues is n− rM, and this is used as a test when the rank of the
matrix B̃ is determined numerically. Namely, the rank of B̃ is equal to the rank of M. We also
know that only one step of Algorithm 3.5.1 is enough to deflate all infinite eigenvalues.

3.3. Both matrices in (3.82) are singular We consider the original problem, if the number
of the detected zero eigenvalues is larger than the number of the detected infinite eigenvalues, and
the reversed problem otherwise. That is, we want to use the structure to deflate zero eigenvalue,
and we are considering either original or reversed problem, whichever has more zero eigenvalues.
The first step is to deflate all zero eigenvalues, using Algorithm 3.5.1 (the first two steps are done
using the structure of the matrix A). After that, we get the reduced pencil ˜̃A−λ

˜̃B. The next step is
to deflate the infinite eigenvalues, using the Algorithm 3.5.1 on the reversed pencil. Its structure

104



3.5. Improved deflation process. New algorihm – KVADeig

is determined by the numbers si. From the previous computation we know s1 = n− rM < n, and

s2 = n− rank(

(
Q∗M,2C

R̂MPT
M

)
), and this is used as a test for rank determination in Algorithm 3.5.1.

The decision tree for the described process is sketched in Figure 3.5

MΠM = QMRM

KΠK = QKRK

(
Q∗K,2C
R̂KPT

K

)
PA = QARA(

Q∗M,2C
R̂MPT

M

)
PB = QBRB

full deflation step
of 0 and inifinite

both singular

full deflation of 0
one deflation step

for infinite

one singular

w.l.o.g, K

one step of
deflation

(0 and infinite)

both regular

both singular

(
Q∗K,2C
R̂KPT

K

)
PA = QARA

full deflation
process

singular

One step of
deflationregular

one singular

w.l.o.g., rK < n

Reduce B
to upper triangular

both reg
ular

Figure 3.5: Deflation process in KVADeig – decision tree

Example 3.4 (continuation of the example intersection). The deflation process described
above deflates all 16 eigenvalues in 4 steps. The defects of the intermediate matrices Aii are
s1 = 7,s2 = 6,s3 = 2,s4 = 1. The computed finite eigenvalues are:

λ1 =-5.581811074974700e+008 -1.628029358197346e+009i,
λ2 =-5.581811074974700e+008 +1.628029358197346e+009i,
λ3 =2.476851768196167e+001 ,
λ4 =2.476851749893556e+001,

that is, two real, and a complex conjugate pair, as expected. The corresponding backward
errors are given in Figure 3.6 below. The backward errors for the real eigenvalues computed
by quadeig algorithm are also included. Note how this example shows that norm-wise small
backward error can be completely misleading.
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Figure 3.6: Backward errors for finite eigenvalues, sorted by magnitude, for the benchmark
problem intersection.

Eigenvector recovery

There are two levels of the eigenvector recovery. First, we compute the eigenvectors of the
transformed pencil Q(A−λB)V , and we must recover the eigenvectors for the original pencil
A−λB. Second, we must recover the eigenvectors for the quadratic eigenvalue problem from
the corresponding linearization.

The recovery of the eigenvectors in the cases when both M and K are regular, and when we
have only one Jordan block to deflate for zero or/and infinite eigenvalues goes as explained in
§3.3.3. In addition, we present the recovery in the case of the existence of more Jordan blocks.

Assume that more than one Jordan block is deflated for either zero or/and infinite eigenvalue.
Let k be the dimension of the truncated pencil Ã− λ B̃. Let z ∈ R2n and w1 ∈ R2n be the
computed right and left eigenvectors of Ã−λ B̃. If k > n, the right eigenvector is recovered as
x = Q(1 : n,1 : n)z(1 : n), and if k < n then x = Q(1 : n,1 : k)z.
For the left eigenvector, write the transformed pencil as

Q(A−λB)V =

(
Ã−λ B̃ X

0 Y

)
.

Now, the left eigenvector w ∈ R2n for the transformed pencil Q(A−λB)V is

w =

(
w1

w2

)
, w2 =−w∗1XY−1,

and w1 is computed left eigenvector of Ã−λ B̃. For the left eigenvector we always have two
choices for the original problem, and for the right eigenvector we have two choices only if K is
nonsingular. By default we choose the eigenvector with smaller backward error.
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3.5.5 Numerical examples

Experiment 1. mobile_manipulator. This example is also from the NLEVP library. It is a
5×5 quadratic matrix polynomial arising from modeling a two-dimensional three-link mobile
manipulator as a time invariant descriptor control system. The matrices are of the form

M =

(
M0 0
0 0

)
, C =

(
C0 0
0 0

)
, K =

(
K0 −FT

0

F0 0

)
,

with

M0 =

18.7532 7.94493 7.94494
7.94493 31.8182 26.8182
7.94494 26.8182 26.8182

 , C0 =

1.52143 1.55168 1.55168
3.22064 3.28467 3.28467
3.22064 3.28467 3.28467

 ,

K0 =

67.4894 69.2393 69.2393
69.8124 1.68624 1.68617
69.8123 1.68617 68.2707

 , F0 =

(
1 0 0
0 0 1

)
.

This quadratic problem is known to be close to singular problem [13]. The matrix K has full
rank, and the matrix M has rank rM = 3. This means that there are at least n− rM = 2 infinite
eigenvalues amongst the total of 10 eigenvalues. We compute the eigenvalues of this problem
using the quadeig algorithm, and these are the computed eigenvalues:

λ1 = -5.1616e-002 -2.2435e-001i λ6 = -1.0770e+006 -1.8660e+006i
λ2 = -5.1616e-002 +2.2435e-001i λ7 = -1.0770e+006 +1.8660e+006i
λ3 = -2.7707e+005 -4.7991e+005i λ8 = 2.1551e+006
λ4 = -2.7707e+005 +4.7991e+005i λ9 = Inf
λ5 = 5.5416e+005 λ10 = Inf

We also compute the eigenvalues of this problem using the QZ algorithm directly on the second
companion form linearization, without any prior deflation. The QZ algorithm found 8 infinite
and two finite eigenvalues. Our algorithm deflated 8 zero eigenvalues from the pencil for the
reversed problem. The two finite eigenvalues computed from the reduced pencil are:

λ1 = -5.161621336216381e-002 -2.243476109085836e-001i
λ2 = -5.161621336216381e-002 +2.243476109085836e-001i.

The problem in quadeig is in the reduction of the matrix B to the upper triangular form in the
deflation process. In the QZ algorithm this step is done after the balancing algorithm [70] of the
matrices A and B. Also this algorithm permutes rows and columns of matrices in order to use
the sparsity structure to deflate possible zero or infinite eigenvalues before the main steps of the
algorithm. The reduction to upper triangular form in quadeig algorithm destroys the structure
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and QZ is unable to detect more infinite eigenvalues. Notice that the computed eigenvalues do
not have big absolute values either. Finally, we conclude that only the scaling of the matrices
M, C and K is not enough. For the interesting discussion regarding the balancing in eigenvalue
computation, refer to [71].

Recall that quadeig works with reversed problem when the matrix M is singular, that is it
deflates the zero eigenvalues. So, in this case, the algorithm deflated 2 zero eigenvalues. We
computed the rank of matrix A after the deflation, and the rank was 6, meaning that there were
at least two more zero eigenvalues which the QZ algorithm could not detect.

Experiment 2. Here, we present more examples from the NLEVP library where our algorithm
detects more zero or/and infinite eigenvalues than quadeig:

Table 3.3: Number of deflated eigenvalues

quadeig KVADeig
Problem zero infinite zero infinite

bilby 1 2 1 3(2+1)
omnicam1 11(8+3) 0 12(8+4) 0
omnicam2 14 0 23(14+9) 0
relative_pose_6pt 0 4 0 5(4+1)
shaft 0 201 0 402(201+201)

The numbers inside parentheses represent the numbers of deflated eigenvalues per deflation
step. In the quadeig case, for the omnicam1 problem, the QZ algorithm deflated additional 3
zero eigenvalues in addition to the 8 from the deflation process.

3.6 LU based deflation

Instead of the QR factorization, we can use the LU factorization with complete pivoting for
determining the rank of the coefficient matrices in order to deflate zero and infinite eigenvalues.
The transformation matrices Q and V in the deflation process now depend on the triangular
matrices L and U , and on the inverse of the matrix L. However, L is triangular matrix, meaning
that the inverse multiplication is actually just solution of lower triangular system of equations.
Du to pivoting, it is expected to be well conditioned with respect to linear system solution.
In this section we develop a quadeig–type algorithm and the deflation Algorithm 3.5.1 using
the LU factorization with complete pivoting as rank revealing factorization (see §3.1.4).
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Let

LKUK = PKKQK, UK =

(
ÛK

0n−rK ,n

)
,

LMUM = PMMQM, UM =

(
ÛM

0n−rM ,n

)

be the LU factorizations with complete pivoting for the coefficient matrices of the quadratic
pencil λ 2M + λC +K. In the following subsection we present the deflation process of one
Jordan block of zero eigenvalue using the rank revealing LU factorization.

3.6.1 The case of nonsingular M

First, if rank(K) = rank(M) = n, the equivalence transformation is(
L−1

M PM 0
0 In

){(
C −In

K 0

)
−λ

(
−M 0

0 −In

)}(
QM 0
0 In

)

=

(
L−1

M PMCQM −L−1
M PM

KQM 0

)
−λ

(
−L−1

M PMMQM 0

0 −In

)

=

 L−1
M PMCQM −L−1

M PM

KQM 0

−λ

 −UM 0

0 −In

 . (3.83)

If rank(K)< rank(M) = n we have following transformation:

(
L−1

M PM 0
0 L−1

K PK

){(
C −In

K 0

)
−λ

(
−M 0

0 −In

)}(
QM 0
0 PT

K LK

)

=

(
L−1

M PMCQM L−1
M PMPT

K LK

L−1
K PKKQM 0

)
−λ

(
L−1

M PMMQM 0

0 −In

)

=

(
L−1

M PMCQM L−1
M PMPT

K LK

L−1
K PKKQM 0

)
−λ

(
−UM 0

0 −In

)

≡


X11 X12 X13

X21

0n−rK ,n

0rK ,rK 0rK ,n−rK

0n−rK ,rK 0

−λ


−UM 0

0
−IrK 0

0 −In−rK

 . (3.84)

The reduced (n+ rK)× (n+ rK) pencil is

A−λB =

 X11 X12

X21 0rK ,rK

−λ

 −RM 0

0 −IrK

 . (3.85)
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3.6.2 Rank deficient cases

In the case when rK ≤ rM < n transformation is(
L−1

M PM 0
0 L−1

K PK

){(
C −In

K 0

)
−λ

(
−M 0

0 −In

)}(
In 0
0 PT

K LK

)

=


L−1

M PMC −L−1
M PMPT

K LK

ÛKQT
K 0rK ,n

0n−rk,n 0n−rK ,n

−λ


−ÛMQT

M 0rM ,n

0n−rM ,n 0n−rM ,n

0n,n −In



≡


(L−1

M PMC)11 (L−1
M PMC)12

(L−1
M PMC)21 (L−1

M PMC)22
−L−1

M PMPT
K LK

(ÛKQT
K)11 (ÛKQT

K)12

0 0
0 0
0 0

−λ

 −(ÛMQT
M)11 −(ÛMQT

M)12

0 0
0n

0n −In



≡


X11 X12

X21 X22

X13 X14

X23 X24

X31 X32

0 0
0 0
0 0

−λ


Y11 Y12

0n−rM ,rM 0n−rM ,n−rM

0rM ,rK 0rM ,n−rK

0n−rM ,rK 0n−rM ,n−rK

0rK ,rM 0rK ,n−rM

0n−rK ,rM 0n−rK ,n−rM

−IrK 0rK ,n−rK

0n−rK ,rK −In−rK


≡ X−λY. (3.86)

In the next step, we compute the complete orthogonal decomposition (i.e. URV decomposi-
tion, using unitary matrices QX and ZX )

( rM n− rM rK

n− rM X21 X22 X23

)
= QX

(
RX 0n−rM ,rM+rK

)
ZX , RX ∈ C(n−rM)×(n−rM). (3.87)

The remaining steps are analogous to those in §3.3.2.

3.6.3 Eigenvectors

Assume that the right eigenvectors z and the left eigenvectors w of the transformed pencil
QC2(λ )V are computed. The transformations are defined as in the previous sections, depending
on the ranks of the matrices M and K. The corresponding right eigenvector z̃ and the left
eigenvector w̃ for the original linearization pencil C2(λ ) are z̃1

z̃2

= z̃ =V z,

 w̃1

w̃2

= w̃ = Q−1w.
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Notice that, in opposite to deflation process using the QR factorization, the left eigenvector is
obtained by solving the system of equations. However, this can be reduced to solving triangular
systems. The candidates for the right and the left eigenvectors for the original quadratic eigen-
value problem are derived next. If there are two choices for the eigenvector, the algorithm picks
the one with the smaller (e.g. norm-wise) backward error.

The right eigenvectors

The first case: rank(M) = rank(K) = n. The matrix K is nonsingular, and we have two choi-
ces for the right eigenvector. Let z̃ be the right eigenvector for the transformed GEP. The
corresponding right eigenvector for C2(λ ) is

z =

 z1

z2

=

(
QM 0
0 In

) z̃1

z̃2

=

 QM z̃1

z̃2

 .

Hence, the two candidates for the eigenvector x are QM z̃1 and K−1z̃2.

The second case: rank(K)< rank(M) = n. The matrix K is singular, and n− rK zero eigenva-
lues are deflated. The eigenvectors corresponding to those eigenvalue span the nullspace of the
matrix K. The basis for the nullspace is computed using orthogonal complement of the range of
K∗ using the QR decomposition of the matrix Û∗KQK:

Û∗KQK = QÛ∗K
RÛ∗K

.

The wanted vector are the last n− rK columns of the orthogonal matrix QÛ∗K
.

The remaining eigenvalues and eigenvectors z̃∈Cn+rK are computed from the (n+rK)×(n+rK)

GEP (3.85). The corresponding eigenvector for C2(λ ) is

 z1

z2

=

(
QM 0
0 PT

K LK

)
z̃1

z̃2

0n−rK

=


QM z̃1

PT
K LK

(
z̃2

0n−rK

)  .

The only candidate for the right eigenvector x is QM z̃1.

The third case: rank(K)≤ rank(M)< n. Both matrices M and K are singular, and n− rM

infinite and n− rK zero eigenvalues are deflated. The eigenvectors for zero eigenvalues are
obtained as in the previous case, whilst the eigenvectors for infinite eigenvalues form the basis
for the nullspace of the matrix M. As before, the basis is obtained as the orthogonal complement
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of the range of M∗ represented by the last n− rM columns of the orthogonal matrix QÛ∗M

Û∗MQM = QÛ∗M
RÛ∗M

.

The remaining eigenvalues and eigenvectors z̃ ∈CrK+rM are obtained from the (rK + rM)× (rK +

rM) GEP (3.53). The corresponding eigenvector for C2(λ ) is

 z1

z2

=

(
In 0
0 PT

K LK

)(
Z−1

X 0
0 In−rK

) 0 In−rM 0
IrK+rM 0 0

0 0 In−rK




z̃

0n−rM

0n−rK


=

(
In 0
0 QK

)Z−1
X

(
0n−rM

z̃

)
0n−rK

 .

The wanted eigenvector x is Z−1
X

(
0n−rM

z̃

)
(:,1 : n).

The left eigenvectors

The first case: rank(M) = rank(K) = n. Let w̃ be the left eigenvector for the transformed GEP
QC2(λ )V . The corresponding left eigenvector for the linearization C2(λ ) is w w1

w2

=

(
PT

MLM 0
0 In

) w̃1

w̃2

=

 PT
MLMw̃1

w̃2

 .

The two candidates for the left eigenvector y of the quadratic eigenvalue problem are PT
MLMw̃1

and w̃2.

The second case: rank(K)< rank(M) = n. The left eigenvectors for the zero eigenvalue are

the last n− rK columns of the matrix PT
K LK . Let

 w̃1

w̃2

 ∈ Cn+rK be the eigenvector for the

deflated n+ rK × n+ rK pencil (3.85). The corresponding eigenvector for the 2n× 2n pencil,
before truncation, is

(
w̃∗1 w̃∗2 w̃∗3

)


X11 X12 X13

X21

0n−rK ,n

0rK ,rK 0rK ,n−rK

0n−rK ,rK 0

−λ


−UM 0

0
−IrK 0

0 −In−rK


=
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w̃∗1X11 + w̃∗2X21 +λ w̃∗1UM

w̃∗1X12 +λ w̃∗2
w̃∗1X13 +λ w̃∗3

= 0,

therefore, w̃3 = X∗13w̃1/λ . The vector z for C2(λ ) is

 w1

w2

=

(
PT

MLM 0
0 PT

K LK

)
w̃1

w̃2

w̃3

=


PT

MLMw̃1

PT
K LK

(
w̃2

w̃3

)  .

The left eigenvector y for the QEP is now picked between PT
MLMw̃1 and PT

K LK

(
w̃2

w̃3

)
.

The third case: rank(K)≤ rank(M)< n. The left eigenvectors for zero eigenvalues are the
last n− rK columns of PT

K LK , and for infinite eigenvalues are the last n− rM columns of PT
MLM.

Let

(
w̃1

w̃2

)
∈ CrK+rM be a left eigenvector for truncated rK + rM× rK + rM pencil (3.53). The

corresponding eigenvector for the pencil QC2(λ )V is then

(
w̃∗1 w̃∗2 w̃∗3 w̃∗4

)



X̃11 X̂12

X̃21 X̂22

X̂13 X14

X̂23 0

0 0
0 0

RX X̃24

0 0

−λ


Ỹ11 Ŷ12

Ỹ21 Ŷ22

Ŷ13 0
Ŷ23 0

0 0
0 0

0 0
0 −I


=

=


0
0

w̃∗1X̂13 + w̃∗2X̂23 + w̃∗3RX −λ w̃∗1Ŷ13−λ w̃∗2Ŷ23

w̃∗1X̂14 + w̃∗3X̃24 +λ w̃∗4

= 0.

The components w̃∗3, w̃
∗
4 are thus computed as

w̃∗3 =
(

λ w̃∗1Ŷ13 +λ w̃∗2Ŷ23− w̃∗1X̂13− w̃∗2X̂23

)
R−1

X ,

w̃∗4 =
(
−w̃∗1X̂14− w̃∗3X̃24

)
/λ .

The left eigenvector for C2(λ ) is

w =

(
PT

MLM 0
0 PT

K LK

)
IrM 0 0 0
0 0 QX 0
0 IrK 0 0
0 0 0 In−rK




w̃1

w̃2

w̃3

w̃4

=


PT

MLM

(
w̃1

QX w̃3

)

PT
K LK

(
w̃2

w̃4

)
 ,
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and the candidates for the left eigenvector y are PT
MLM

(
w̃1

QX w̃3

)
and PT

K LK

(
w̃2

w̃4

)
.

3.6.4 Computing the Kronecker’s Canonical form using rank revealing
LU factorization

In this subsection, we derive an algorithm for deflating the eigenvalue zero, using the rank
revealing LU factorization instead of the SVD or the QR factorization with column pivoting. We
will describe the first step in moe detail, and then formulate the algorithm.
Let A,B ∈Cn×n. Denote by ni the size of a working matrix in step i, and si the defect of working
matrix in step i.

1. Compute the rank revealing factorization of A1,1 = A

QAA1,1PA = LAUA, (3.88)

and denote s1 = n1− rank(A) = n− rank(A). Now, L−1
A QAA1,1 =

(
A2

0s1×n

)
. Partition

L−1
A QAB =

(
B2

B1

)
in compatible manner. Multiply the pencil (A−λB) by L−1

A QA on

the left to get

L−1
A QA(A−λB) =

(
A2−λB2

λB1

)
. (3.89)

2. Compute the complete orthogonal decomposition of B1

B1 =UBRBV ∗B . (3.90)

The column rank of B1 is s1, if the matrix pencil is regular, and B1VB =
(

B1,1 0s1,n−s1

)
.

Multiply the pencil (3.89) by VB from the right to get

L−1
A QA(A−λB)VB =

(
A1,2−λB1,2 A2,2−λB2,2

λB1,1 0

)
. (3.91)

3. Let PB be the permutation matrix for permuting the s1 and n− s1 column blocks. Define
P1 = L−1QA and Q1 = ZBPB. The first Jordan block for the eigenvalue 0 is deflated by the
following orthogonal transformation:

P1(A−λB)Q1 =

(
A2,2−λB2,2 A1,2−λB1,2

0 λB1,1

)
. (3.92)

Complete algorithm is described below
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Algorithm 3.6.1 Deflation of eigenvalue 0
1: j = 1; A1,1 = A; B1,1 = B; n1 = n;
2: Compute rank revealing LU: QAA1,1PA = LAUA
3: s1 = n1− rank(A1,1)
4: while s j > 0 do

5: Partition matrices:
(

A j+1
0

)
= L−1

A QAA j, j,
(

B j+1
B j

)
= L−1

A QAB j, j

6: Update and partition blocks in row j
7: for i = 1 : j−1 do

8:

(
Ai, j+1
Ai, j

)
= L−1

A QAAi, j;
(

Bi, j+1
Bi, j

)
= L−1

A QABi, j;

9: end for
10: Compute the complete orthogonal decomposition B j =UBRBV ∗B
11: Compress B j to full column rank, permute and partition:
12:

(
A j+1, j+1 A j, j+1

)
= A j+1VBPB;

(
B j+1, j+1 B j, j+1

)
= B j+1VBPB;

13:
(

0 B j, j
)
= B jVBPB

14: n j+1 = n j− s j, j = j+1
15: Compute rank revealing LU: QAA j, jPA = LAUA
16: s j = n j− rank(A j, j)
17: end while

This algorithm results in

P(A−λB)Q =



A`+1,`+1−λB`+1,`+1 A`,`+1−λB`,`+1 . . . A2,`+1−λB2,`+1 A1,`+1−λB1,`+1

0 −λB`,` . . . A2,`−λB2,` A1,`−λB1,`

...
...

. . .
...

...

0 0 . . . −λB2,2 A1,2−λB1,2

0 0 . . . 0 −λB1,1


.

(3.93)

The deflation of infinite eigenvalues can be done by the same algorithm, but with reversed pencil
B−λA.

Numerical examples

Experiment 1. intersection. Recall the case study example from Subsection 3.5.1. We used
Algorithm 3.6.1 to compute the structure of zero eigenvalues in the reversed problem. This
algorithm also deflated 16 zero eigenvalues, 7 in the first, 6 in the second, 2 in the third and 1 in
the fourth step of the process, just as Algorithm 3.5.1. The computed real eigenvalues are

λ1 = 2.476851749893558e+001,
λ2 = 2.476851768196165e+001,
λ3 = -5.581818959997490e+008 -1.628030389374511e+009i,
λ4 = -5.581818959997490e+008 +1.628030389374511e+009i.
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Chapter 3. Complete solution of the QEP

The following figure shows the backward error for the computed finite eigenvalues for all three
algorithms, quadeig, KVADeig, and LU based KVADeig.
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Figure 3.7: Backward errors for the finite eigenvalues sorted by magnitude for the
intersection problem

Experiment 2. mobile_manipulator. In this example, Algorithm 3.6.1 deflated 8 zero eigen-
values in the reversed problem. There where 4 steps of deflation, and two zero eigenvalues were
deflated in every step. The two finite computed eigenvalues after the deflation are

λ1 = -5.161621336216380e-002 -2.243476109085838e-001i,
λ2 = -5.161621336216380e-002 +2.243476109085838e-001i.

Figure representing the backward errors for finite eigenvalues computed by quadeig, KVADeig,
and LU KVADeig is presented below.
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Figure 3.8: Comparison of the backward errors for the finite eigenvalues, sorted by magnitude,
for the mobile_manipulator problem
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3.7. Numerical examples. Comparison of rank revealing decompositions

3.7 Numerical examples. Comparison of rank revealing de-
compositions

The goal of this section is to present the difference in computed results using different
rank revealing decompositions. The emphasize is not on the deflation process, but on the
transformation of the pencil when no zero or infinite eigenvalues are detected. We will use three
rank revealing decompositions:

• QR factorization with column pivoting (QR)

• QR factorization with column pivoting and initial sorting of rows so that (3.11) holds
(QRrs) (default in KVADeig)

• LU factorization with complete pivoting (LUcp).

In addition, we will illustrate the importance of rank determination in the first step of deflation
process. Our algorithm offers two types of criteria for rank determination:

1. rank of matrix A is equal to k−1, where k is the first index for which Rk,k > τ‖A‖F holds,
where AΠ = QR is rank revealing factorization (F-norm);

2. rank of matrix A is equal to k−1, where k is the last index for which |Rk,k|/|Rk−1,k−1| ≥ τ ,
where AΠ = QR is rank revealing factorization, and τ is prescribed threshold (drop-off).

It will be clear from all examples that component-wise backward error gives better insight
into the accuracy of computed solutions than the norm-wise backward error. This stresses the
importance of the techniques such as parameter scaling and diagonal balancing (advocated in
this chapter).

3.7.1 Example 1. cd_player.

This a example from NLEVP library [5]. It is a quadratic eigenvalue problem arising in the
study of a CD player control task. The dimension of the problem is n = 60; the matrix M is the
identity.

Original problem

We computed the eigenvalues for this problem using three different rank revealing decompo-
sitions in the deflation process: the QR with column pivoting, the QR with complete pivoting
(presorting of rows followed by column pivoting), and the LU with complete pivoting. For the
last two we used KVADeig implementation, and for the first one we used quadeig. The compu-
ted eigenvalues are sorted by magnitude in ascending order. The norm-wise and component-wise
backward errors forthe eigenvalues are given in Figures 3.9a and 3.9b.
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(a) Normwise backward errors
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(b) Componentwise backward errros

Figure 3.9: Comparison of the normwise and componentwise backward errors for the right
eigenpair for the problem cd_player

From Figure 3.9a we see that the normwise backward errors for KVADeig and LU based
KVADeig are similar, and the backward errors for quadeig are bit higher for the first 60 eigenva-
lues. However, the real difference is seen in the Figure 3.9b of component-wise backward errors.
Precisely, for quadeig, the error is equal to 1 for most of the first 60 eigenvalues. We explain
the reason for this below.
The matrix M is identity, so we do not have any transformation of the linearization pencil in the
deflation process. However, when choosing eigenvector, we have two choices: x1 and K−1x2,

where x =

(
x1

x2

)
is the corresponding eigenvector for the linear pencil. In quadeig, the system

K−1x2 is solved using the computed rank revealing factorization of the matrix K. Next figures
represent the structure of the matrix K and the corresponding rank revealing factorizations.
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Figure 3.10: Sparsity structure of the matrix K and the corresponding components in the rank
revealing factorizations

In the case of the first 60 eigenvalues in quadeig, the block K−1x2 is chosen because its
norm-wise backward error is smaller, however, solving the system using the QR factorization has
bigger component-wise error. It is clear from the figures that the QR factorization does not inherit
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3.7. Numerical examples. Comparison of rank revealing decompositions

the sparsity of the original matrix, in contrast to the LU factorization. In our algorithm, K−1x is
computed using the LU factorization. Together with intersection and mobile_manipulator
examples, this is another example where the norm-wise backward error can be misleading. In
this case, quadeig had access to the better solution, but the criteria for choosing the approximate
solution lead to the wrong one.

Reversed problem If we consider the reversed problem, the leading matrix will be K, so the
first step will be the reduction to upper triangular form of the matrix B in the linearization pencil.
Thereby, the rank revealing factorization from the previous paragraph will be used. Norm-wise
and component-wise backward errors in this case are presented in the Figures 3.11a and 3.11b.
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(a) Normwise backward error
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(b) Componentwise backward error

Figure 3.11: Comparison of the normwise and backward errors for the right eigenpair for the
reversed cd_player problem

In this case, the component-wise backward errors are equally high for all eigenvalues when
the QR factorizations are used, because sparsity is disturbed in the first step of the algorithm.
However, when we use the LU factorization, the error is satisfactory.
There is the difference between the norm-wise backward errors as well, and this is due to
computation of the block K−1x, as in the original case.

3.7.2 Example 2. Scaled dirac.

We analyze another examples from the NLEVP library. It is a quadratic eigenvalue problem
that originates from the Dirac operator. The matrix M is identity, and the condition number of the
matrix K is 367.4304. There is no significant difference between the methods either for original
or reversed problem. However, if we scale the original problem, to increase the condition of the
matrices, there is essential difference. Note that this creates a synthetic example and the goal is
to illustrate the importance of scaling.

We created diagonal matrices SL and SR of conditions 108 and 109, respectively. The equiva-
lent scaled quadratic problem is (λ 2SLMSR +λSLCSR +SLKSR)x = 0. The singular values for
the matrices M and K are shown in Figures 3.12a, 3.12b.
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Figure 3.12: Singular values of the coefficient matrices M and K in the scaled dirac example
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(a) Componentwise backward error
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(b) Normwise backward error
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(d) Zoomed part of the spectrum

Figure 3.13: Comparison of the componentwise backward error, normwise backward errors,
and the spectrum for the scaled dirac problem

There is a difference in result depending on the rank determination. In the first case, quadeig
will deflate 1 zero and 1 infinite eigenvalue, just as LU based KVADeig, because it will be
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3.7. Numerical examples. Comparison of rank revealing decompositions

determined that the matrices M and K have rank 79. In addition, KVADeig will deflate one
more zero and infinite eigenvalue in the second step of the deflation process. This results
in smaller norm-wise backward error in Figure 3.13b, compared to the other algorithms. In
the second case, when we change the rank determination criteria to "drop-off", KVADeig and
LU based KVADeig will not detect any zero or infinite eigenvalues. By looking just the norm-
wise backward error, there is no big difference between the methods, however component-wise
backward error represents the difference very well.

To see the importance of row sorting before the QR factorization, we scale only the matrix
K so that the rows vary in norm, and we observe the reversed problem. There is a difference in
rank determination as well. The first criterion deflates one infinite eigenvalue, that is the rank
of M is declared as 79. For the second criterion, M is declared regular matrix. The singular
values are presented in Figure 3.14. There is a difference in the component-wise error for rank
revealing factorizations as well. This is presented in Table 3.4.

Table 3.4: Rank revealing factorization error, scaled reversed dirac

Method Normwise error Componentwise error
LU complete pivoting 1.8958e-018 2.6949e-004
QR column pivoting 1.3928e-016 1.1128
QR row sorting 4.2503e-016 7.6146e-014

The following figure shows the singular values of the scaled matrix
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Figure 3.14: Singular values of leading coefficient matrix in scaled reversed dirac example

Again, the component-wise backward error in Figure 3.15a gives better insight in the diffe-
rence and accuracy of the presented methods
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Figure 3.15: Comparison of the componentwise backward error, normwise backward errors,
and the spectrum for the scaled reversed dirac problem

3.7.3 Constrained least squares problem

Quadratically constrained least square problem

min
x
‖Ax−b‖2

2, ‖x‖2
2 = δ

2, (3.94)

can be solved by the following quadratic eigenvalue problem

(λ 2I +2λH +H2−δ
−2ggT )y = 0, (3.95)

where H = AT A and g = AT b. We will consider the reversed problem of order 100, so that
we can compare various factorizations in the deflation process. The example deriv2 is taken
from the Regularization Tools: A MATLAB package for Analysis and Solution of Discrete Ill-

Posed Problems. Version 4.1. In this example, the problem is the determination of the rank of
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3.7. Numerical examples. Comparison of rank revealing decompositions

the matrix H2−δ−2ggT . LU KVADeig will deflate 917 infinite eigenvalues, and KVADeig will
deflate total 906+30+6+2+2+1 = 947 infinite eigenvalues. If the second criterion for rank
determination is used, then no infinite eigenvalue will be detected. The singular values of the
leading coefficient matrix M are presented in Figure 3.17.

There is significant difference between quadeig and our methods, however the main diffe-
rence in rank determination is detected by the componentwise backward error.
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(a) Componentwise backward error
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Figure 3.16: Comparison of the componentwise backward errors, and normwise backward
errors for the deriv2 problem
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Figure 3.17: Singular values of the leading matrix coefficient in deriv2 example
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Chapter 4

Complete solution of the quartic
eigenvalue problem

In this chapter we consider the polynomial eigenvalue problem of order 4, i.e. the quartic

eigenvalue problem

(λ 4A+λ
3B+λ

2C+λD+E)x = 0, (4.1)

where A,B,C,D,E ∈ Cn×n. A important application of the quartic eigenvalue problem, as
illustrated in §1.3.3, is in solving the Orr–Sommerfeld equation which appears in the analysis
of the stability of the Poiseuille flow. Our goal is an efficient and numerically robust algorithm
for the complete solution of the problem (4.1).

The idea is to try to use the algebraic tool of quadratification introduced by De Terán, Dopico
and Mackey [17]. Quadratification is a equivalence relation that allows us to reduce the quartic
problem (4.1) to an equivalent quadratic eigenvalue problem, which is then solved following the
development from the previous chapters. Moreover, in our proposed approach, we try to use
the original matrix coefficients as much as possible. Also, we develop a test for the existence
of Jordan blocks for zero and infinite eigenvalues, and develop an algorithm for the complete
determination of the structure of these eigenvalues.

The numerical experiments, presented in §4.5, show the power of our method in comparison
to the MATLAB’s function for the computation of the polynomial eigenvalue problem, poyleig,
and to the quadeig as well. For instance, polyeig completely fails to find the solution of the
quartic eigenvalue problem obtained from Orr–Sommerfeld equation of the dimension n = 1000,
whereas our algorithm provides the solution with acceptable backward error.

4.1 Quadratification

Let us first briefly introduce the quadratification [17], and the notions of unimodulary equi-
valent matrix polynomials, and spectrally equivalent matrix polynomials.
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Chapter 4. Complete solution of the quartic eigenvalue problem

Definition 4.1. Suppose P and Q are two matrix polynomials of degrees g and h, respectively,

not necessarily of the same size.

• P and Q are said to be extended unimodularly equivalent, denoted P ^ Q, if for some

r,s≥ 0 we have diag(P, Ir)∼ diag(Q, Is).

• P and Q are said to be spectrally equivalent, denoted P� Q, if P ^ Q and revP ^ revQ.

Notice that unimodular equivalence corresponds to "being linearization", and spectral equi-
valence to "being strong linearization". This is clearer if we define these notions in the terms of
the previous Definition (4.1).

Definition 4.2. Let P(λ ) be an m×n matrix polynomial of degree g.

• A matrix pencil L(λ ) is said to be a linearization of P(λ ) if L(λ )^ P(λ ). A linearization

is said to be strong if, in addition, revL(λ )^ revP(λ ). Equivalently, a pencil L(λ ) is a

strong linearization for P(λ ) if

L(λ )� P(λ ).

• A quadratic matrix polynomial Q(λ ), i.e. a polynomial of degree 2, is said to be a

quadratification of P(λ ) if Q(λ ) ^ P(λ ). A quadratification is said to be strong if, in

addition, revQ(λ )^ revP(λ ). Equivalently, a pencil L(λ ) is a strong quadratification

for P(λ ) if

Q(λ )� P(λ ).

We will be interested in the strong quadratification because they preserve the structure of
both finite and infinite eigenvalues (Theorem 4.1. in [17]).

4.1.1 Companion form of grade 2

Analogously to the linearization by companion form, the first and the second companion
form of grade 2 are introduced in [17] as follows. First, define matrix polynomials

B1(λ ) = λ
2C+λD+E, (4.2)

B2(λ ) = λ
2A+λB. (4.3)

The first companion form of grade 2 is defined as

C2
1(λ ) =

(
B2(λ ) B1(λ )

−In λ 2In

)
=

(
λ 2A+λB λ 2C+λD+E

−In λ 2In

)

= λ
2

(
A C

0 In

)
+λ

(
B D

0 0

)
+

(
0 E

−In 0

)
.

(4.4)
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4.2. Scaling

We will use the second companion form of grade 2, because its structure is more convenient for
the deflation process:

C2
2(λ ) =

(
B2(λ ) −In

B1(λ ) λ 2In

)
=

(
λ 2A+λB −In

λ 2C+λD+E λ 2In

)

= λ
2

(
A 0
C In

)
+λ

(
B 0
D 0

)
+

(
0 −In

E 0

)
= λ

2M+λC+K.

(4.5)

It can be proved that these quadratifications are strong in the sense of Definition 4.2 (see [17]).
The quadratic eigenvalue problem (4.5) can be solved by a corresponding algorithm, based on
e.g. the second companion form linearization. In that case, the final matrix pencil of size 4n×4n,
that represents a linearization of the quartic problem 4.1, is

A−λB=


B 0n −In 0n

D 0n 0n −In

0n −In 0n 0n

E 0n 0n 0n

−λ


−A 0n 0n 0n

−C −In 0n 0n

0n 0n −In 0n

0n 0n 0n −In

 . (4.6)

By the same reasoning as before, we can conclude that the deflation Algorithm 3.2.1 completely
determines the structure for zero and infinite eigenvalues of the quartic problem. The key is that
the quadratification (4.5) is strong, meaning that the partial multiplicities for these eigenvalues
are preserved. Moreover, the linearization (4.6) for the obtained quadratic problem is also strong,
hence the conclusion follows by transitivity.

Theorem 4.1. Algorithm 3.2.1 applied to pencil (4.6) completely determines the structure of

eigenvalue zero for quartic eigenvalue problem (λ 4A+λ 3B+λ 2C+λD+E)x = 0.

4.2 Scaling

In order to equilibrate the norms for the coefficient matrices in (4.1), we propose two types
of scalings, to be applied directly to the coefficient matrices A,B,C,D and E. The first one is
tropical scaling, as described in §2.3.2, and the second one is a generalization of the Fan, Lin
and Van Dooren’s scaling for the quadratic eigenvalue problem. Here, we use the result from
[4], which provides a unique minimizer of the coefficient

max(1,maxi ‖Ai‖2)
2

min(‖A0‖2,‖Ak‖2)
,

in the bound for the backward error of the matrix polynomial and the corresponding linearization.
In addition, the parameter δ is defined as proposed in [14].
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4.2.1 Tropical scaling.

The corresponding tropical polynomial for the quartic problem reads

t p(x) = ‖A‖2x4⊕‖B‖2x3⊕‖C‖2x2⊕‖D‖2x⊕‖E‖2. (4.7)

For the computation of the tropical roots of (4.7) we use the algorithm provided in [61].

The maximal number of distinct tropical roots is 4. Every root αi defines one set of scaling
parameters

γi = αi, δi = (p(αi))
−1, i = 1,2,3,4. (4.8)

Every set of the parameters improves the backward error for certain part of the spectrum, and the
other eigenvalues do not have to be computed as accurately. This is why, for this type of scaling,
the complete quartic eigenvalue problem would have to be solved four times, in order to deliver
all 4n eigenvalues with small backward errors. However, if n is large, this is not very efficient,
especially because we are in fact solving the generalized eigenvalue problem of size 4n four
times. Thus, this type of scaling is practical only in the case of problems of small dimension n.

4.2.2 Fan, Lin, Van Dooren generalization scaling.

The second option is a generalization of the Fan, Lin and Van Dooren’s scaling for the
quadratic eigenvalue problem. For γ , we choose

γ = 4

√
‖E‖2

‖A‖2
, (4.9)

which is the optimal γ for minimizing the factor

max(1,‖A‖2,‖B‖2,‖C‖2,‖D‖2,‖E‖2)
2

min(‖E‖2,‖A‖2)
, (4.10)

in the backward error ratio bounds (2.26) and (2.27).

For δ , we choose
δ =

4
‖E‖2 +‖γD‖2 +‖γ2C‖2 +‖γ3B‖2

. (4.11)

This scaling is used in all our experiments.

4.3 Deflation process

If the leading coefficient matrix A has rank rA = rank(A)< n, then there are at least n− rA

infinite eigenvalues of the quartic eigenvalue problem (4.1). Similarly, if the coefficient matrix
E has rank rE = rank(E)< n there are at least n−rE zero eigenvalues. We want to remove those
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4.3. Deflation process

eigenvalues from the linearization pencil before calling the QZ algorithm. The first step would
is determination of the numerical rank by some rank revealing factorization. Let

AΠA = QARA, RA =

(
R̂A

0n−rA,n

)
, (4.12)

EΠE = QERE , RE =

(
R̂E

0n−rE ,n

)
. (4.13)

be the rank revealing QR factorizations for A and E. We would like to use the transformation
matrices from the deflation process as in KVADeig, described in Section 3.5, applied to the
quadratic problem (4.5). These include the rank revealing factorizations of matrices M and K
of order 2n.

Consider the matrix M of order 2n from the quadratification (4.5)

M=

(
A 0
C In

)
. (4.14)

From its structure, it is clear that rank(M) = n+ rank(A), meaning that it is enough to determine
the singularity of the matrix A of order n to determine the singularity of M. Moreover, by
interchanging n×n block columns and rows we get

ΠMΠ =

(
0 In

In 0

)(
A 0
C In

)(
0 In

In 0

)
=

(
In C

0 A

)
. (4.15)

Now, we can use (4.12) to get the rank revealing decomposition of the matrix M.(
In 0
0 Q∗A

)
ΠMΠ

(
In 0
0 PA

)
=

(
0 In

Q∗A 0

)
M

(
0 PA

In 0

)
=

(
In CPA

0 RA

)
. (4.16)

Finally, the rank revealing factorization of M is given by

MΠM = QMRM, QM =

 0 QA

In 0

 , ΠM =

 0 PA

In 0

 , RM =

 −In −CPA

0 −RA

 .

(4.17)
Next, consider the matrix K of the quadratification (4.5)

K=

(
0 In

E 0

)
. (4.18)

Again, we conclude that rank(K) = n+ rank(E), that is, to check the singularity of K of order
2n, it is enough to check the singularity of the n×n matrix E. If we permute the n×n column
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blocks we get

KΠ =

(
0 In

E 0

)(
0 In

In 0

)
=

(
In 0
0 E

)
. (4.19)

Hence, we can use (4.13) to determine the rank revealing decomposition of the matrix K(
In 0
0 Q∗E

)
KΠ

(
In 0
0 PE

)
=

(
In 0
0 RE

)
. (4.20)

Finally, the rank revealing factorization of the matrix K is

KΠK = QKRK, QK =

 In 0

0 QE

 , ΠK =

 0 In

ΠE 0

 , RK =

 In 0

0 RE

 . (4.21)

However, notice that the permutation of the column blocks only ensures that the matrix RK is
upper triangular. If this structure is not important for the process, we can skip the permutation
step and just make the following transformation(

In 0
0 Q∗E

)
K

(
ΠE 0
0 In

)
=

(
0 In

RE 0

)
. (4.22)

Now, we can use the deflation process form KVADeig algorithm. The first step is the determi-
nation of the ranks of the matrices A and E to determine whether there are zero and infinite
eigenvalues. Of course, there can be more than one Jordan block for both of these eigenvalues,
and in that case we want to deflate all of them, and not only the first block as in quadeig. We
will have a nice characterization for the existence of the Jordan blocks in terms of the matrices
of the original problem, as for the quadratic eigenvalue problem.
Again, as in the KVADeig, there are three standard cases: both A and E regular; only one matrix
is singular; and both A and E are singular.

Both matrices A and E regular. If both matrices are regular, we can use the factorization
(4.17) to reduce the matrix B from (4.6) to upper triangular form, since this is already the first
step of the QZ algorithm.(

Q∗M 0
0 In

){(
C −In

K 0

)
−λ

(
−M 0

0 −In

)}(
ΠM 0
0 In

)

=


0 DPA

0 Q∗ABPA

0 −In

−Q∗A 0

−In 0

0 EPA

02n

−λ

 −In −CPQ

0 −RA

02n

02n −I2n

. (4.23)
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Only one matrix is singular. Assume first that E is singular, meaning that there are at least
n− rE zero eigenvalues which must to be deflated. If there is only one Jordan block of zero
eigenvalues, then only one step of deflation is needed, and we can use the structure of the
linearization pencil to transform the matrix B to upper triangular form. This is done by the same
transformation matrices as in (3.40)(

Q∗M 0
0 Q∗K

){(
C −In

K 0

)
−λ

(
−M 0

0 −In

)}(
ΠM 0
0 QK

)

=


0 DPA

0 Q∗ABPA

0 −QE

−Q∗A 0

−In 0

0 REP∗EPA

02n

−λ


−In −CPQ

0 −RA

02n

02n −I2n

. (4.24)

In order to derive the condition for the existence of multiple Jordan blocks for zero eigenvalue,
we must consider different transformation, as in (3.66)(

Q∗K 0
0 Q∗K

){(
C −In

K 0

)
−λ

(
−M 0

0 −In

)}(
I2n 0
0 QK

)

=



B 0

Q∗ED 0
−I2n

0 −In

R̂EP∗E 0
0 0

02n


−λ


−A 0

−Q∗EC −Q∗E
02n

02n −I2n

. (4.25)

The deflated pencil of order 3n+ rE reads

A22−λB22 =



B 0

Q∗E,1D 0
Q∗E,2D 0

−In

−IrE

0 0

0 −In

R̂EP∗E 0
0n+rE


−λ


−A 0

−Q∗EC −Q∗E
0(2n)×(n+rE)

0(n+rE )×(2n) −In+rE

,

(4.26)
where Q∗E,1 = Q∗E(1 : rE , :) and Q∗E,2 = Q∗E(rE +1 : n, :). The next step in the deflation process
is to determine the rank of the matrix A22. From the structure of the matrix, we conclude that
the rank of A22 is equal to 2n+ rE+ the rank of the n×n matrix(

Q∗E,2D

R̂EP∗E

)
. (4.27)
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Chapter 4. Complete solution of the quartic eigenvalue problem

Therefore, the test for the existence of Jordan blocks for the quartic problem (4.1) is to determine
the rank of the n×n matrix (4.27) which is defined in terms of the coefficient matrices A and E

of the original problem.

Notice that, if the matrix A is rank deficient, we can consider the reversed problem (µ4E +

µ3D+µ2C+µB+A)x = 0, µ = 1/λ , and the corresponding truncated linearization pencil of
order 3n+ rA reads

A22−λB22 =



D 0

Q∗A,1B 0
Q∗A,2B 0

−In

−IrA

0 0

0 −In

R̂AP∗A 0
0n+rA


−λ


−E 0

−Q∗AC −Q∗A
0(2n)×(n+rA)

0(n+rA)×(2n) −In+rA

 ,

(4.28)
and the rank of matrix A22 is now 2n+ rA+ the rank of the n×n matrix(

Q∗A,2B

R̂AP∗A

)
. (4.29)

Finally, we can prove proposition analogous to Proposition (3.4) for quadratic case

Proposition 4.1. Assume that matrix E in the quartic pencil λ 4A+λ 3B+λ 2C+λD+E has

rank rank(E) = rE < n. There exists more than one Jordan block for eigenvalue zero if

(ker(D)∪X )∩ker(E) 6= {0}, X = {y ∈ Cn : Dy = z, z ∈ Im(E)}. (4.30)

Analogously, if the matrix A has rank rank(A) = rA < n, there are more than one Jordan block

for infinite eigenvalue if

(ker(B)∪Y )∩ker(A) 6= {0}, Y = {y ∈ Cn : By = z, z ∈ Im(A)}. (4.31)

Proof. From Theorem 4.1 we know that the partial multiplicities, and thus the dimensions of
Jordan blocks for a quartic eigenvalue problem can be obtained using Algorithm 3.2.1 for a
corresponding strong linearization 4.6. The very first step of the deflation yields the pencil
(4.26). Now, if A22 is singular, we will have another Jordan block for the eigenvalue zero.
The rank of the matrix A22 can be determined by the rank of matrix

(
Q∗E,2D
R̂E PT

E

)
. This matrix is

rank deficient if its kernel is nontrivial, that is if ker
(

Q∗E,2D
R̂E PT

E

)
= ker(QE,2D)∩ker(R̂EPT

E ) 6= {0}.
Matrix QE,2 represents the basis for ker(E∗), and thus

ker

(
Q∗E,2C

R̂EPT
E

)
=
(

ker(D)∪ (Im(D)∩ker(E∗)⊥)
)
∩ker(E). (4.32)
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Denote the left and the right transformation matrices from (4.25) with P1 and Q1 respectively,
and the linearization pencil with A−λB= A11−λB11. After the first deflation step we have

P1(A11−λB11)Q1 =

(
A22−λB22 ♠

0 −λB11

)
. (4.33)

Compute the rank revealing factorization(
Q∗E,2D

R̂EP∗E

)
ΠA22 = QA22RA22. (4.34)

If this matrix is singular, in order to deflate additional zeros, the first step is to permute the rows
to get this matrix in the lower left corner of the matrix A22. This is done by the permutation
π =

(
1 : n+ rE 2n+1 : 3n n+ rE +1 : 2n 3n+1 : 4n

)
(denote with Π the corresponding

permutation matrix). Now, the transformation matrix P̂2 is given by

P̂2 =

(
I2n+rE

Q∗A22

)
Π, (4.35)

and the transformed pencil is

P̂2A22 =



B 0
Q∗E,1D 0

0 −In

−In

−IrE

0 0

R̂A22ΠT
A22

0
0 0

0n×(n+rE)


, P̂2B22 =


−A 0
−Q∗E,1C −Q∗E,1

0n+rE

0
�

In 0
4 N

 .

(4.36)
To be able to deflate additional zeros, we have to reduce the blocks � and 4 to zero. This is
done by the complete orthogonal decomposition

P̂2B22 =UBBRBBV ∗BB, (4.37)

so that P̂2B22VBB =
(
B22 0

)
. Denote by Π the permutation matrix for these column blocks.

Finally, the deflated pencil is

P̂2A22VBBΠ−λ P̂2B22VBBΠ =

(
A33−λB33 �

0 −λB22

)
. (4.38)

Since we have lost the structure of the original linearization, the potential further deflation
process is done by Algorithm 3.5.1 on the pencil A33−λB33.
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Both matrices A and E are singular. When both matrices A and E are rank deficient, and we
determined that there are no more Jordan blocks for zero and infinite eigenvalues by computing
the numerical rank of block matrices(

Q∗E,2D

R̂EP∗E

)
,

(
Q∗A,2B

R̂AP∗A

)
, (4.39)

we can deflate them in one step, as done in quadeig algorithm. The transformation matrices
would be (

Q∗M 0
0 Q∗K

){(
C −In

K 0

)
−λ

(
−M 0

0 −In

)}(
In 0
0 QK

)

=


0 D

0 Q∗AB

0 −QE

−Q∗A 0

−In 0

0 REP∗E
02n

−λ


−In −C

0 −RAP∗A
02n

02n −I2n

 . (4.40)

Notice that, in terms of the quadratic problem, we have rM = n+ rA, and rK = n+ rE , so if we
want to make the partition (3.48) as before, we will have (in previous notation):

(
X11 X12

X21 X22

)
=

 0n D(:,1 : rA) D(:,rA +1 : n)

0rA,n Q∗A(1 : rA,1 : rA) Q∗A(1 : rA,rA +1 : n)

0n−rA,n Q∗A(rA +1 : n,1 : rA) Q∗A(rA +1 : n,rA +1 : n)

 , (4.41)

(
X13 X14

X23 X24

)
=

 0n −QE(:,1 : rE) −QE(:,rE +1 : n)

−Q∗A(1 : rA, :) 0rA,rE 0rA,n−rE

−Q∗A(rA +1 : n, :) 0n−rA,rE 0n−rA,n−rE

 , (4.42)

(
X31 X32

)
=

(
−In 0n,rA 0n,n−rA

0rE ,n R̂EPE(:,1 : rA) R̂EPE(:,rA +1 : n)

)
, (4.43)

(
Y11 Y12

)
=

(
−In −C(:,1 : rA) −C(:,rA +1 : n)

0rA,n −R̂APA(:,1 : rA) −R̂APA(:,rA +1 : n)

)
. (4.44)

The rest of the process goes as in Subsection 3.3.2.

4.3.1 Backward error analysis for the deflation process

In this section, we develop a backward error analysis for the first two steps of the deflation
process, described in the previous section. The following proposition deals with the first step,
that is, the deflation of the first n− rE zero eigenvalues.
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Proposition 4.2. Let

Ã−λ B̃=



B 0

X̃11 0

−In 0

0 −Ir̃E

0 0

0 −In

R̃EΠ̃T
E 0

0n+r̃E


−λ


−A 0

−Ỹ12 −Q̂T
E

02n×(n+r̃E)

0(n+r̃E)×2n −In+r̃E


(4.45)

be the computed linearization (4.25). Then it corresponds to exact reduced linearization of

a quartic pencil λ 4A+λ 3B+λ 2(C+ δC)+λ (D+ δD)+ (E + δE +∆E), where, for all i =

1, . . . ,n,

‖δC(:, i)‖2 ≤ εC‖C(:, i)‖2, ‖δD(:, i)‖2 ≤ εD‖D(:, i)‖2, ‖δE(:, i)‖2 ≤ εqr‖E(:, i)‖2; (4.46)

and the truncation error is

max
j=1:n−k

‖(∆E)Π̃E(:,k+ j)‖2 ≤ τ min
i=1:k
‖(E +δE)Π̃E(:, i)‖2; (∆E)Π̃E(:,1 : k) = 0n,k, (4.47)

with τ is prescribed threshold parameter.

Proof: (i) It holds that X̃11 = computed(Q̃∗ED) = Q̂∗E(D+ δD). To estimate δD, we start
with the fact that

computed(Q̃∗ED) = Q̃∗ED+D, |D| ≤ εD|Q̃∗E ||D|, 0≤ εD ≤ 2nu

Since Q̃E = (I+E)Q̂E , ‖E‖2 ≤ εqr, we have

computed(Q̃∗ED) = Q̂∗E(I+E∗)D+D= Q̂∗E(D+E∗D+ Q̂ED)≡ Q̂∗E(D+δD)

with column-wise estimates ‖δD(:, i)‖2 ≤ (‖E∗‖2 + εDn(1+ ‖E∗‖2))‖D(:, i)‖2 (derived as in
Proposition 3.3), and (4.46) follows with εD = (εqr + εDn(1+ εqr)).

(ii) By the same reasoning we get Ỹ21 = Q̂E(C+δC), where ‖δC(:, i)‖2 ≤ εC‖C(:, i)‖2, and
εC = (εqr + εM

√
n(1+ εqr)).

(iii) Note that in this moment the backward error in E contains both the floating point error
δE and the truncation error ∆E analogous to (3.38), i.e. (E +δE +∆E)Π̃E = Q̂E R̃E . If we set
∆ΣE = δE +∆E, then we can represent the computed linearization as In 0 0 0

0 Q̂∗E 0 0
0 0 In 0
0 0 0 Q̂∗E

{( B 0n −In 0
D+δD 0n 0n −In

0 −In 0n 0n
E+∆ΣE 0n 0n 0n

)
−λ

( −A 0n 0n 0n
−(C+δC) −In 0n 0n

0n 0n −In 0n
0n 0n 0n −In

)}( In 0 0 0
0 In 0 0
0 0 In 0
0 0 0 Q̂E

)
.

135



Chapter 4. Complete solution of the quartic eigenvalue problem

�

The next step is computation of the rank revealing factorization of the block matrix(
Q̂∗E(D+δD)

R̃EΠ̃T
E

)
ΠA22 = QA22RA22. (4.48)

For the computed factors Π̃A22 , Q̃A22 , R̃A22 it holds that[(
Q̂∗E(D+δD)

R̃EΠ̃T
E

)
+

(
D

E

)]
Π̃A22 = Q̂A22R̃A22, (4.49)

where ∥∥∥∥∥
(
D

E

)
(:, i)

∥∥∥∥∥
2

≤ εqr

∥∥∥∥∥
(

Q̂∗E(D+δD)

R̃EΠ̃T
E

)
(:, i)

∥∥∥∥∥
2

. (4.50)

By an analogous procedure to the one in Subsection 3.5.2 we get the final estimate

‖D(:, i)‖2

‖D(:, i)‖2
≤ εqr

√
2max

(
(1+ εD)cos^(ker(E)+ Im(D)),(1+ εqr)

‖E(:, i)‖2

‖D(:, i)‖2

)
,

‖E(:, i)‖2

‖E(:, i)‖2
≤ εqr

√
2max

(
(1+ εD)cos^(ker(E)+ Im(D))

‖D(:, i)‖2

‖E(:, i)‖2
,(1+ εqr)

)
.

4.3.2 Eigenvector recovery

The right and the left eigenvectors of the original problem (4.1) and the final linearization
pencil (4.6) are related as follows. Let z ∈ C4n and w ∈ C4n be the right and left eigenvector
for the linearization, and x ∈ Cn, y ∈ Cn the right and left eigenvector for the original problem,

and λ ∈ C the corresponding eigenvalue. If we partition z =
(

zT
1 zT

2 zT
3 zT

4

)T
and w =(

wT
1 wT

2 wT
3 wT

4

)T
, where wi,zi ∈ Cn, i = 1,2,3,4, we have

z =


z1

z2

z3

z4

=


λx

λ 2(λA+B)x

λ (λA+B)x

λEx

 , (4.51)

w =


w1

w2

w3

w4

=


λ 3x

λ 2x

λx

x

 . (4.52)

For both the right and the left eigenvector there are four choices to recover x and y. Namely,
for the right eigenvector we can choose z1,(λA+B)−1z2,(λA+B)−1z3 or E−1z4. Notice that,
for the last three choices we have to solve the system of the equations in order to compute the
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wanted vector. Reconstruction of the left eigenvector is easier, though. We just choose one of
the block components w1,w2,w3 or w4.
Let z̃ ∈ Cn and w̃ ∈ Cn be the computed right and left eigenvector for the linearization pencil
(4.6). Both right and left eigevectors will have 4n elements if no deflation occurred, otherwise the
number of elements will be 4n−d, where d is the total number of zero and infinite eigenvalues
deflated. 4n−d is also the dimension of the truncated pencil Ã−λ B̃= P(A−λB)Q which is
passed to the QZ algorithm for computation of finite nonzero eigenvalues.

No deflation occurred. The right and the left eigenvectors for the original linearization pencil
are z = Qz̃ and w = PT w̃. Now we choose x and y form the four choices. The criterion can be
the smallest backward error.

Deflation occurred. In order to be able to recover eigenvectors we must have the full 4n vec-
tors for the transformed problem. For the right eigenvector this is easy; we just add d zeros to

the z̃, that is z = Q

(
z̃

0d×1

)
. However, in the case of the deflation E and/or A is singular, so we

just take the first n block as the right eigenvector of the original problem to avoid solving the
system with a singular matrix.
Getting the he left eigenvector is more tricky. To obtain the full 4n eigenvector for the lineariza-
tion, we first have to compute the missing d components of w̃. Denote with w̃1 the eigenvector
of the truncated problem, and let w̃2 be the missing part. From

(
w̃T

1 w̃T
2

)
P(A−λB) =

(
w̃T

1 w̃T
2

)(Ã−λ B̃ X

0 Y

)
(4.53)

we conclude that w̃2 =−w̃∗1XY−1. Now, w=PT w̃, and we choose one of the 4 block components
as a left eigenvector for the original problem.
The right eigenvectors for zero (infinite) eigenvalues are computed as the last n− rE (n− rA)
columns of orthogonal matrix from the QR factorization of E∗ (A∗), and the left as the last n−rE

(n− rA) columns of QE (QA).

Remark 4.1. Recall the Remark 3.6, where we stated that the structure of any eigenvalue α

can be determined by the Algorithm 3.5.1 but with the shifted starting matrix A1,1 = A−αB.
Consider the linearization for the quartic eigenvalue problem (4.6). The shifted matrix A1,1 is of
form

A1,1 =


B 0 −I 0
D 0 0 −I
0 −I 0 0
E 0 0 0

−α


−A 0 0 0
−C −I 0 0

0 0 −I 0
0 0 0 −I

=


B+αA 0 −I 0
D+αC αI 0 −I

0 −I αI 0
E 0 0 αI

 .
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The first step in the Algorithm 3.5.1 is to determine the rank of A1,1. Similarly as in Remark 3.6,
we can conclude that the rank of the 4n×4n matrix A1,1 can be determined by the rank of the
n×n matrix α4A+α3B+α2C+αD+E as rank(A) = 3n+ rank(α4A+α3B+α2C+αD+E).
This follows from the following transformation

α3I αI α2I I
0 I 0 0

0 0 I 0
0 0 0 I

A1,1 =


α4A+α3B+α2C+αD+E 0 0 0

D+αC αI 0 −I
0 −I αI 0
E 0 0 αI

 .

4.4 Deflation process in KVARTeig algorithm

We will refer to our algorithm for the complete solution of quartic eigenvalue problem (4.1)
as KVARTeig. In this section we develop full deflation algorithm depending on the number of
Jordan blocks that need to be deflated for both zero and infinite eigenvalues.
The first step is rank determination for the matrices A and E. Let rA = rank(A) and rE = rank(E).
We have three main cases

1. Both matrices A and E are regular, i.e. rA = rE = n. In this case there is no deflation,
we just use the rank revealing factorization for M (4.17) to reduce the matrix B to upper
triangular form as in (4.23).

2. One of the matrices is singular. First assume that rE < n. Then, before any deflation

step, we determine the rank of the block n× n matrix A22 :=

(
Q∗E,2D

R̂EP∗E

)
. However, if

the matrix A is singular, we will consider the reversed problem, and the matrix A22 will

be A22 :=

(
Q∗A,2B

R̂AP∗A

)
. Nevertheless, the next step depends on the rank of A22. In the

continuation of this step we will talk only about deflation of the zero eigenvalue, because
the infinite eigenvalues of our problem are the zero eigenvalues of the reversed problem.

2.1 Regular A22. If A22 is regular, there is just one Jordan block of zeros, and it is
deflated as in (4.24), that is we also reduce the matrix B to upper triangular form.

2.2 Singular A22. In this case there is at least one more Jordan block for the zero eigen-
value. The first two blocks are deflated using the structure of the linearization pencil,
as described in (4.25) and (4.36). At this point, we cannot use the structure of the
pencil any more, and thus we send the derived pencil to Algorithm 3.5.1 to check
whether there are more Jordan blocks and to deflate them.

3. Both matrices A and E are singular. Again, before any transformations of the lineariza-
tion pencil, we must check whether there exist more Jordan blocks for the zero and the
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4.4. Deflation process in KVARTeig algorithm

infinite eigenvalues. This is done by determining the rank of the n×n matrices(
Q∗A,2B

R̂AP∗A

)
,

(
Q∗E,2D

R̂EP∗E

)
. (4.54)

After that, there are three possible outcomes

3.1 Both matrices in (4.54) are regular. In this case there is just one Jordan block of
both zero and infinite eigenvalues, and they are deflated by one transformation as in
(4.40).

3.2 Only one matrix in (4.54) is singular. This means that there are more than one
Jordan blocks for zero or infinite eigenvalue. In either case, we deflate two Jordan
blocks for the zero eigenvalue using the structure described in (4.25) and (4.36),
meaning that the reversed problem is considered if there are more Jordan blocks for
the infinite eigenvalues. After that, the pencil is sent to Algorithm 3.5.1 to check
whether there are more Jordan blocks of zero and to deflate them. Finally, when all
zeros are deflated, we send the reversed truncated linearization pencil to Algorithm
3.5.1 to deflate one Jordan block of the infinite eigenvalues. We do not check the
rank for the number of infinite eigenvalues, but we use the information that there are
exactly n− rA, or n− rE if reversed pencil is considered, infinite eigenvalues.

3.3 Both matrices in (4.54) are singular. In this case there is more than one Jordan
block for both zero and infinite eigenvalues. Depending which total sum of the
dimensions of the first two Jordan blocks is greater, we consider original or the
reversed problem. In either case, we use the structure to deflate two Jordan blocks
of zero eigenvalue. After that, the truncated pencil is sent to Algorithm 3.5.1 to
deflate possible remaining Jordan blocks of zero eigenvalues. Finally, when all zeros
are deflated, we send the reversed truncated linearization pencil to Algorithm 3.5.1
together with the information about the size of the first two Jordan blocks, for which
we know to exist, and need to be deflated. Any additional Jordan blocks will be
determined by the algorithm.

At the end, we present the diagram for the decision three of the described algorithm
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AΠA = QARA

EΠE = QERE

(
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Figure 4.1: Decision tree for the deflation process in KVARTeig

4.5 Numerical experiments

In this section, we provide numerical examples that clearly illustrate the superiority of the
new proposed algorithm, as compared with the two state of the art methods, the polyeig and
quadeig.

Experiment 1. We tested our algorithm for three examples from NLEVP benchmark library
for quartic eigenvalue problems: butterfly: n = 64; orr_sommerfeld: n = 64; and planar
waveguide: n = 129.

We also computed the eigenvalues using the function polyeig from MATLAB, and the
quadeig. The maximal backward errors are given in Table 4.1:
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Table 4.1: Comparison of backward errors for polyeig, quadeig and KVARTeig

polyeig quadeig KVARTeig
Problem minη maxη minη maxη minη maxη

butterfly 2.0432e-016 8.6189e-016 2.5525e-016 2.0389e-015 5.8418e-017 1.1377e-015
orr_sommerfeld 1.3618e-017 8.0176e-006 2.1743e-014 4.0733e-004 6.3789e-021 1.7600e-015
planar waveguide 1.6060e-016 3.0879e-012 4.9977e-016 2.0346e-009 4.3288e-016 1.7554e-013

From Table 4.1 we can conclude that our algorithm is convincingly better for th second
problem. In other two cases is either slightly better or there is no significant difference between
the methods. It is interesting to notice that quadeig algorithm has greater maximal backward
error in every example.

Experiment 2. In this experiment we present the power of our deflation process. It is another
example from NLEVP library, so called mirror, that originates from the calibration of cadioptric
vision system. The order is n = 9.
Both A and E matrices are rank deficient, with the rank rE = rA = 2, which means that there
are at least 7 zero and 7 infinite eigenvalues. They are deflated by the deflation process in
quadeig algorithm. The QZ algorithm founds an additional zero eigenvalue, and two more
infinite eigenvalues. Polyeig identified 2 zero eigenvalues, and 9 infinite eigenvalues. However,
our deflation process found additional two zero and two infinite eigenvalues, making the total
number of both zero and infinite eigenvalues equal to 9.
The smallest nonzero real eigenvalue computed by the quadeig is -7.520795255755492e-014.
The seven smallest nonzero eigenvalues computed by the polyeig are

λ1 = 2.658653684986126e-028 λ5 = -8.144083812492196e-016
λ2 = -3.730521707731879e-024 λ6 = -1.057366058524636e-015
λ3 = 4.343895348238823e-017 λ7 = -3.036244175050749e-014
λ4 = -4.135304334627443e-016

(4.55)
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Figure 4.2: Norm-wise backward error for finite nonzero eigenvalues, mirror
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Chapter 4. Complete solution of the quartic eigenvalue problem

Figure 4.2 presents (for all three algorithms) the backward errors for the finite nonzero
eigenvalues, sorted by the magnitude.

The backward errors for the first seven finite eigenvalues for polyeig are of order 10−28

because they are small (4.55) and should be declared zero. It is clear form this figure that by
just looking at the norm-wise backward error we cannot conclude that polyeig and quadeig
did not find all zero eigenvalues because the backward errors are satisfying. Therefore this
example shows the importance of checking whether there are more Jordan blocks for zero and
infinite eigenvalue and then deflating them. If we look at the structure of matrices A and E for
this particular problem, we see that their rank can be determined exactly because there are 7
zero columns in both matrices. On the other hand, the block matrices (4.54) which are used to
determine the existence of more than one Jordan block for zero and infinite eigenvalues also
have two zero columns each, and the rest 9×7 submatrices are well conditioned. Thus we can
conclude that our algorithm determined the accurate number of zero and infinite eigenvalues.

Experiment 3: orr_sommerfeld of order 1000. Here, we specifically analyse the example
or_sommerfeld, but now with much higher dimension, namely n = 1000. This means that
corresponding quadratic problem has dimension 2000, and the corresponding generalized eigen-
value problem has dimension 4000. When using MATLAB function polyeig, all computed
eigenvalues are of the form ± Inf± Inf i. With our algorithm, the result depends on the rank
determination of the matrix A, as described in Section 3.7. If we use the first criterion (F-norm),
the rank is 988, meaning that 12 infinite eigenvalues are deflated. In the case of drop-off strategy,
the matrix A is not rank deficient. The singular values of the matrix A are presented in Figure
4.3.
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Figure 4.3: Singular values of leading
matrix coefficient A, orr_sommerfeld
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Figure 4.4: The ratio σ1(A)/σi(A)
u–machine precision

We also use quadeig algorithm to compute the eigenvalues of the corresponding quadratifi-
cation by the second companion form. 1144 infinite eigenvalues are computed. We present the
computed finite eigenvalues, and the corresponding norm-wise and component-wise backward
errors in Figures 4.6b, 4.5a, 4.5c.
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(b) Componentwise backward error in KVARTeig
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(c) Normwise backward error in quadeig
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(d) Normwise backward error in KVADeig

Figure 4.5: Comparison of the normwise and componentwise backward errors for the finite
right eigenpairs for orr_sommeferld example of order n = 1000
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Once again we see the importance of careful rank determination. The component-wise
backward error from Figure 4.5 shows that the second rank determination criterion gives better
results.
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Figure 4.6: Computed finite eigenvalues for orr_sommerfeld example of order n = 1000
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Iterative methods

The objective of this section is the development of Arnoldi like methods for computation of
the part of a spectrum for quadratic eigenvalue problem. In particular, we are only interested to
find the prescribed number k of eigenvalues and corresponding right eigenvectors with a given
property (for example, those of the largest magnitude, largest real part, closest to the real axis,
etc.). Usually, the number of the wanted eigenvalues k is much smaller than the dimension of
the problem n.

As we saw in the previous Chapters 3 and 4, the first step in solving the polynomial eigen-
value problems is the linearization. After that, we use well developed methods for the linear
problem. However, a naive straightforward usage of these methods, without keeping in mind
that the original problem is nonlinear, can produce poor results.

In this chapter, we will show, with the examples, the problem that occurs when using the Ar-
noldi algorithm for the quadratic eigenvalue problem. We will propose several improvements of
the two level orthogonal Arnoldi algorithm. The main difference will be that the approximation
for the wanted eigenpairs is obtained from the projected quadratic problem, and not projected
linear problem. In addition, we will propose new shifts for restart for overdamped quadratic
eigenvalue problems, and demonstrate its benefits through the numerical examples. We will
propose a new selection method for starting vectors by approximating the original problem with
a proportionally damped problem.

In the second part of the chapter the Krylov–Schur algorithm for the linear eigenvalue pro-
blem is introduced. We discuss the Krylov–Schur algorithm for the quadratic eigenvalue pro-
blem, and generalize the 4R procedure proposed in [11] when the TOAR algorithm is used to
build the starting factorization. The importance of the usage of arbitrary shifts is presented with
the numerical example.
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Chapter 5. Iterative methods

5.1 Arnoldi algorithm

Consider the linear eigenvalue problem

Hy = λy, (5.1)

where H ∈ CN×N . Instead of computing all N eigenpairs (λ ,y), we want to find only k� N

eigenvalues with certain property, e.g. smallest absolute value, closest to the imaginary axis,
belonging to a given Ω⊂ C.
The idea is to find a good k–dimensional subspace spanned by an orthonormal V ∈ CN×k, in the
sense that it has a good information about the wanted part of the spectrum, and that is nearly
H–invariant. Then, we compute the eigenpairs for the smaller projected problem of order k

(V ∗HV )︸ ︷︷ ︸
∈Ck×k

z = λ z, (5.2)

and if (λ ,z) is an eigenpair for the projected problem (5.2), then (λ ,V z) is an approximate
eigenpair for the original problem (5.1).
The goal of this Section is to explain, in more details, the Arnoldi type methods for finding V

that nearly spans the subspace corresponding to the wanted eigenvalues. Here, V is chosen as
the orthogonal basis Vk =

(
v1 . . . vk

)
of the Krylov subspace

Kk(H,v1) = span{v1,Hv1, . . . ,Hk−1v1} (5.3)

of order k. The basis is computed using the Gramm-Schmidt orthogonalization process. The
algorithm is called Arnoldi algorithm and it is given below:

Algorithm 5.1.1 Arnoldi algorithm

1: v1 = v1/‖v1‖2
2: for j = 1 : k do
3: r j = Hv j
4: for i = 1 : j do
5: ti j = v∗i r j;
6: r j = r j− viti j
7: end for
8: t j+1, j = ‖r j‖

9: if t j+1, j = 0 then
10: ` = j; V = [v1, . . . ,v`]; T =

(ti j)(`+1)×`;
11: STOP
12: end if
13: vi+1 =

r j
t j+1, j

14: end for
15: `= k; V = [v1, . . . ,vk]; T = (ti j)(k+1)×k;

In a kth step of Algorithm 5.1.1, we get the so called Arnoldi factorization

HVk =VkTk + rke∗k , (5.4)

where Tk ∈ Ck×k is upper Hessenberg, and the columns of the orthonormal matrix Vk represent
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5.1. Arnoldi algorithm

an orthonormal basis for the Krylov subspace Kk(H,v1).

Notice that, if the norm in the line 8 of the Algorithm 5.1.1 is zero, it means that HV` =V`T`,
or more precisely that V` spans an invariant subspace for H, and the eigenvalues of T` are the
eigenvalues of H. Geometrically, it means that r j is in the span of the previously computed
orthogonal vectors v1, . . . ,v j−1. This is called the breakdown, and it is desirable for it to happen,
because then we know that we have found an invariant subspace of H and the extracted spectral
data is error-free.
However, if the breakdown did not occur, then we can only use approximate eigenpairs for H of
the form (λ ,Vkz) =: (λ ,y) where (λ ,z) is a computed eigenpair for the projected matrix Tk of
order k. The corresponding residual is r = Hy−λy, and its norm is

‖r‖2 = ‖Hy−λy‖2 = ‖(HVk−VkTk)z‖2 = ‖rk‖2|e∗kz|. (5.5)

If we define δH = −ry∗
y∗y we have that (λ ,y) is an exact eigenpair of the matrix H +δH. Hence,

with sufficiently small residual, we can consider the computation of (λ ,y) as backward stable.
Moreover, this norm depends on the choice of the first vector v1 and the following theorem says
when can we expect for ‖rk‖ to be equal to zero.

Theorem 5.1 ([63]). Let HVk−VKTk = rke∗k be a k-step Arnoldi factorization of H, with Tk

unreduced, i.e. (Tk)i,i−1 6= 0, i = 2, . . . ,k. Then rk = 0 if and only if v1 = Qy where HQ = QR

with Q∗Q = Ik and R upper triangular of order k.

In essence, Theorem 5.1 states that, if the starting vector v1 is a linear combination of
k eigenvectors of H, the breakdown will occur in kth step of the Arnoldi algorithm, i.e. an
invariant subspace of dimension k will be found.
Since we are interested in the specific eigenvalues, we would like the starting vector to be a
linear combination of the corresponding (wanted) eigenvectors. Then, the eigenvalues of the
Hessenberg matrix Tk would be exactly those that we are looking for. So the main question is,
how to define a good starting vector when we do not know anything about the wanted part of the
spectrum. The original idea is to use the polynomial filters and it was proposed by Saad in [59].
Suppose that the matrix H is diagonalizable, and let xi, i = 1, . . . ,N be the eigenbasis. Then, the
starting vector v1 is represented in this basis as

v1 =
N

∑
i=1

ξixi. (5.6)

Let the eigenvalues be enumerated so that the first k represent the wanted ones. Split the sum in
(5.6) in two parts

v1 =
k

∑
i=1

ξixi +
N

∑
i=k+1

ξixi,

so that the first sum belongs to the wanted eigenvectors. In order to obtain the wanted invariant
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subspace by using the Arnoldi algorithm, the first sum should prevail the second one (in vector
norm). Saad’s idea is to define a matrix function f which is large on the wanted part of the
spectrum and small on the unwanted part. This matrix function is called polynomial filter. Then,
if we apply it to our starting vector, we get

f (H)v1 =
N

∑
i=1

f (λi)ξixi =
k

∑
i=1

f (λi)ξixi +
N

∑
i=k+1

f (λi)ξixi. (5.7)

Thus, if we define a new starting vector as f (H)v1, where f is a polynomial filter, our starting
vector will be better than the previous one.
In [59], Saad proposed to define f as polynomial ps for which the minimum

min
p∈Ps

max
λ∈E
|p(λ )| (5.8)

is achieved. This is difficult to solve for the arbitrary domain E. However, if E = E(d,c,a) is an
ellipse with real center d, foci d + c, d− c and major semiaxis a, which contains the unwanted
eigenvalues then the best minimax polynomial is

ps(λ ) =
Ts((λ −d)/c)
Ts((λ1−d)/c)

, (5.9)

where Ts is the Chebyshev polynomial of degree s of the first kind which can be computed using
the three–term recurrence

T1(λ ) = λ , T0(λ ) = 1,

Tn+1(λ ) = 2λTn(λ )−Tn−1(λ ), n≥ 1.

The following algorithm computes zi = pi(H)v0 which can be used to define a new starting
vector in Arnoldi procedure

Algorithm 5.1.2 Chebyshev iteration

1: For given z0, λ1 and E(d,c,a), compute σ1 =
c

λ1−d , v1 =
σ1
c (H−dI)z0

2: for j = 1 : s do
3: σ j+1 =

1
2/σ1−σ j

4: z j = 2σ j+1
c (H−dI)v j−σ jσ j+1z j−1

5: end for

The full process is as follows:

• build the Arnoldi factorization of order m > k with the starting vector v1.

• Compute the eigenvalues of he Hessenberg matrix Tm. These are the approximations for
the eigenvalues of H. Select the k wanted eigenvalues λ1, . . . ,λk, with the corresponding
eigenvectors x1, . . . ,xk.
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• Find an ellipse E(d,c,a) that contains the unwanted eigenvalues (of Tk). Define z0 =

∑
k
i=1 xi as a linear combination of the eigenvectors corresponding to the approximation of

the wanted eigenvalues. Use Algorithm 5.1.2 to obtain zs.

• Define new starting vector v1 = zs/‖zs‖2.

• Repeat these steps until convergence.

The implicit realization of this process is proposed by Sorensen in [63] and it is described in the
next section.

5.1.1 Implicitly restarted Arnoldi (IRA)

Consider the linear filter
f (H) = H−µI. (5.10)

If µ is an eigenvalue of H and xµ is the corresponding eigenvector, we have that f (H)xµ =

0. Moreover, if x is an arbitrary vector, f (H) applied on x will remove the direction of the
eigenvector xµ from x. Recall the idea of the polynomial filter in (5.7). If, in addition, we define

f (H) =
N

∏
i=k+1

(H−λiI), (5.11)

we get

f (H)v1 =
k

∑
i=1

f (H)ξixi +0,

that is, the directions of the unwanted eigenvectors in the representation of v1 will be removed.
However, we do not have any information about the spectrum of H, and thus we must use the
approximations of λi to define the filter (5.10). The following figure illustrates one example
of the filter (5.10). The goal was to determine 4 eigenvalues with the largest magnitude of the
matrix of order n = 500 produced by MATLABs function rand.
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Figure 5.1: Polynomial filter in the first restart of IRA iterations
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Sorensen [63] developed an implicit algorithm for applying this filter to the starting vector
in the Arnoldi algorithm. The process goes as follows:

Building the starting factorization. As the first step, we build an mth order Arnoldi factori-
zation, where m is larger than the number of the wanted eigenvalues k:

HVm =VmTm + rme∗m. (5.12)

For example, in MATLAB’s implementation of Implicitly Restarted Arnoldi (IRA) algorithm,
eigs, the default value for m is 3k.

Iterative part. Now, until convergence, repeat the following steps:

1. Compute the eigenvalues of Tm: The eigenvalues of the Hessenberg matrix Tm represent
approximations for the eigenvalues of the original problem. However, among m of them
we must choose those k which best correspond to the wanted ones. The remaining m− k

eigenvalues are then used to define the filter of the form (5.11). These are referred to as
the unwanted eigenvalues. The partition in wanted and unwanted sets is done by sorting
the computed eigenvalues by the prescribed criteria. For example, if we want to find
the eigenvalues with the largest magnitude, we will just sort the approximations by the
magnitude and choose k largest as the wanted ones, and the rest as the unwanted.
Let λ1, . . . ,λm denote the eigenvalues of Tm, and assume that they are already enumerated
so that λ1, . . . ,λk are the wanted ones.

2. Implicit QR iterations. The next step is an application of p(= m− k) implicitly shifted
QR iterations on Tm:

Tm−µiI= QiRi, i = 1, . . . , p, (5.13)

resulting in Q∗mTmQm = T+
m , where Qm = Qp . . .Q1. Since Tm is upper Hessenberg, the

matrices Qi, i = 1, . . . , p are upper Hessenberg as well, and the matrix Qm is such that
Qm(i, j) = 0 for i > j+ p, as a product of p Hessenberg matrices.
If the matrix H is real, we want to keep the Arnoldi factorization real as well. In that case,
a complex shift appear as conjugate pair µ j = α j + iβ j, and one uses the double shift in
(5.13)

(Tm−α jI)2 +β
2
j I= Q jR j. (5.14)

If we use the unwanted Ritz values (eigenvalues of Tm) as shifts µi, they are called the
exact shifts.

3. Truncation to the factorization of order k: Multiply the factorization (5.12) by Qm from
the right to get

HVmQm =VmQm(Q∗mTmQm)+ rme∗mQm. (5.15)
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Now, since Qm is product of p orthogonal Hessenberg matrices the row vector e∗mQm =(
0 . . . 0 β b∗

)
has its first nonzero element on the kth position. Thus, if we equate

the first k columns of the (5.15) we get the k order Arnoldi factorization

HV+
k =V+

k T+
k + r+k e∗k , (5.16)

where V+
k = VmQm(:,1 : k), T+

k = T+
m (1 : k,1 : k) and r+k = VmQm(:,k+ 1)T (k+ 1,k)+

rmQm(m,k).
This is equivalent to Arnoldi decomposition obtained using the starting vector v+1

v+1 =
m

∏
j=k+1

(H−λ jI)v1. (5.17)

4. Expand to factorization of order m: Using the Arnoldi process, without having to com-
pute first k steps, we obtain the Arnoldi factorization of order m from (5.16).

Implicitly restarted Arnoldi algorithm is implemented ARPACK [48] which is used by the
MATLABs function eigs.

5.2 Second Order Arnoldi (SOAR)

Suppose that we want to use the Implicitly Restarted Arnoldi (IRA) algorithm for computing
a part of the spectrum for the quadratic eigenvalue problem

Q(λ )x = (λ 2M+λC+K)x = 0,

by applying it to the first companion form linearized problem

Hy =

(
−M−1C −M−1K

I 0

)
y = λy, y =

(
λx

x

)
. (5.18)

Already with the linearization the structure of the problem is lost, and, in addition, we use a
small linear problem for the approximation of the large nonlinear eigenvalue problem.

Example 5.1. Consider the quadratic eigenvalue problem (λ 2M + λC + K)x = 0 with the
following coefficient matrices

M =

1 0 0
0 1 0
0 0 1

 , C =

 7 −5 0
10 −8 0
0 0 −1

 , K =

 0 1 0
−2 3 0
0 0 −1

 ,
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and the corresponding first companion form linearization

H =



−7 5 0 0 −1 0
−10 8 0 2 −3 0

0 0 1 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0


. (5.19)

Suppose we want to compute the eigenvalue with the largest magnitude. We use MATLAB’s
eigs(H,k), where k = 1. If we define that the maximal dimension m of the Arnoldi factoriza-
tion is 3 (meaning that p = 2 shifts are used at restart), the algorithm fails to find the wanted
eigenvalue in the first 300 restarts, producing the following error

??? Error using ==> eigs>processEUPDinfo at 1453 Error with ARPACK
routine dneupd: dnaupd did not find any eigenvalues to sufficient

accuracy.

We see that, even for the small problems the state of the art algorithm can fail.

One of the drawbacks of the direct application of the Arnoldi algorithm to the linearization
is that the computed Rayleigh quotient destroys the structure of the original quadratic problem.
The idea of Bai and Su in [3] is to find a good subspace, rich with the information of the wanted
part of the spectrum, and then use the smaller projected quadratic problem to approximate the
eigenvalues. Furthermore, if the projection is orthogonal, the structure, and therefore the specific
properties of the original problem, are preserved. For example, if Q is an orthonormal basis for
such a subspace, then the projected pencil is λ 2(Q∗MQ)+λ (Q∗CQ)+(Q∗KQ) and if, e.g., M

is Hermitian, then so is Q∗MQ as well.
The proposed wanted subspace would be the basis of the generalized Krylov subspace, which

was introduced in [3]. In contrast to standard Krylov subspace, their definition depends on two
matrices of the same order n and one vector.

Definition 5.1. Let A,B ∈ Cn and u ∈ Cn \{0}. The sequence r0,r1, . . . ,rk−1, where

r0 = u,

r1 = Ar0,

r j = Ar j−1 +Br j−2, j ≥ 2

(5.20)

is called a second order Krylov sequence based on A,B and u. The space

Gk(A,B;u) = span{r0,r1, . . . ,rk−1} (5.21)

is called a second order Krylov subspace of order k.
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Definition (5.1) is a generalization of the standard Krylov subspace definition, in the sense
that Gk(A,0;u) = Kk(A,u).
The algorithm for computing an orthogonal basis of (5.21) is given below.

Algorithm 5.2.1 [P,Q,H, `] =SOAR(A,B,u,k)

1: q1 = u/‖u‖2
2: p1 = 0
3: for j = 1,2, . . . ,k do
4: r = Aq j +Bp j
5: s = q j
6: for i = 1,2, . . . , j do
7: ti j = qT

i r
8: r = r−qiti j
9: s = s− piti j

10: end for
11: t j+1 j = ‖r‖2
12: if t j+1 j = 0 then

13: `= j
14: P= [p1, . . . , p`], Q= [q1, . . . ,q`], T =

(ti j)(`+1)×`
15: STOP
16: end if
17: q j+1 = r/t j+1 j
18: p j+1 = s/t j+1 j
19: end for
20: `= k
21: P = [p1, . . . , pk], Q = [q1, . . . ,qk], T =

(ti j)(k+1)×k

After k steps of Algorithm 5.2.1, we get the second order Arnoldi factorization

AQk +BPk = QkTk +qk+1eT
k tk+1,k, (5.22)

Qk = PkTk + pk+1eT
k tk+1,k, (5.23)

where Qk has orthogonal columns and it represents the basis for the second order Krylov sub-
space of order k; Tk is upper Hessenberg, and Pk contains auxiliary vectors. The factorization
(5.22)-(5.23) can be also written in compact form

H

(
Qk

Pk

)
=

(
A B

I 0

)(
Qk

Pk

)
=

(
Qk

Pk

)
Tk +

(
qk+1

pk+1

)
eT

k tk+1,k. (5.24)

This is similar to the Arnoldi factorization (5.4), except that the block matrix
(

Qk
Pk

)
is not

orthogonal.

To further explore the connection between the Arnoldi and the second order Arnoldi factori-
zation, we make a distinction between the two key events: deflation and breakdown, which are
associated with the norm in line 11 in Algorithm 5.2.1 being zero.

In the Arnoldi Algorithm 5.1.1, we concluded that breakdown means that the current vector
r j is in the span of the previously computed vectors, implying that we have found an invariant
subspace. This is regarded as a good thing. However, in the SOAR procedure, the vectors r j in
(5.20), which are being orthogonalized, depend on two previous vectors. Thus, when in the jth
step we get that the norm in line 11 is equal to zero, we can conclude that r j is in the span of
the previously computed vectors, i.e. G j−1(A,B,u) = G j(A,B,u). However, this does not have
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to be true for all subsequent vectors rk, k > j. This means that, when this happens, we cannot
say that we have found an orthogonal basis for the second order Krylov subspace. To be able
to claim this, we have to check whether the block vector

( r j
r j−1

)
is in the span of the previously

computed ( ri
ri−1 ), i = 1, . . . , j−1. If that is the case, then we call it a breakdown and we know

that we found the basis. If not, we call it deflation and the process continues. The full algorithm,
which deals with the deflation phenomena is given below:

Algorithm 5.2.2 [P,Q,H, `] =SOAR(A,B,u,k)

1: q1 = u/‖u‖2
2: p1 = 0
3: for j = 1,2, . . . ,k do
4: r = Aq j +Bp j
5: s = q j
6: for i = 1,2, . . . , j do
7: ti j = qT

i r
8: r = r−qiti j
9: s = s− piti j

10: end for
11: t j+1 j = ‖r‖2
12: if t j+1 j = 0 then
13: if s ∈ span{pi|i : qi = 0,1 ≤ i ≤ j}

then
14: breakdown

15: `= j
16: P = [p1, . . . , p`], Q = [q1, . . . ,q`],

T = (ti j)(`+1)×`
17: else
18: deflation
19: t j+1 j = 1, q j+1 = 0, p j+1 = s
20: end if
21: else
22: q j+1 = r/t j+1 j
23: p j+1 = s/t j+1 j
24: end if
25: end for
26: `= k
27: P = [p1, . . . , pk], Q = [q1, . . . ,qk]
28: T = (ti j)(k+1)×k

Now, in [3], Bai and Su proved the following theorem, which gives the connection between
the SOAR and the Arnoldi algorithm.

Theorem 5.2 ([3]). The SOAR procedure with the matrices A and B, and the starting vector u

breaks down at a certain step j if and only if the Arnoldi procedure with the matrix
(

A B
I 0
)

and

the starting vector ( u
0n ) breaks down at the same step j.

It is instructive to note here that, when the breakdown occurs in the SOAR algorithm, the
matrix

(
Q j
Pj

)
spans an invariant subspace for the matrix

(
A B
I 0
)
, but it is not an orthonormal basis,

and we know that the computation of a nonorthonormal basis may not be a numerically stable
process.

To see an application for solving the partial quadratic eigenvalue problem, we define A =

−M−1C and B =−M−1K. Now, the matrix
(

A B
I 0
)

represents the first companion form lineari-
zation for the quadratic eigenvalue problem. Compute the orthogonal basis Qk for the second
order Krylov subspace Gk(A,B;u). To find an approximation for the eigenpairs we now compute
the eigenvalues of the smaller projected problem of order k:

(λ 2 (Q∗kMQk)︸ ︷︷ ︸
=:Mk

+λ (Q∗kCQk)︸ ︷︷ ︸
=:Ck

+(Q∗kKQk)︸ ︷︷ ︸
=:Kk

)z = 0. (5.25)
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Notice that the structure of the original quadratic eigenvalue problem is preserved, for example,
if M, C and K are Hermitian so are Mk,Ck and Kk as well. We will see later that this will be an
important property for defining a new way of choosing the shifts for the quadratic eigenvalue
problem with certain property.

5.3 Two level orthogonal Arnoldi factorization

As we mentioned before, the SOAR algorithm can be interpreted as an algorithm for finding
a nonorthogonal basis for the Krylov subspace Kk(H,v), where H is of the form (5.24), and
uT =

(
vT 0n

)
. Therefore, the SOAR algorithm has tendency to be numerically unstable ([49]).

This is why Lu, Su and Bai [49] developed the Two level Orthogonal Arnoldi (TOAR) procedure,
which preserves the orthogonality of the block matrix

(
Qk
PK

)
as well.

In order to develop the TOAR procedure, a slightly modified definition of the second order
Krylov subspace is introduced. Here, the second order Krylov subspace Gk(A,B;r−1,r0) depends
on two starting vectors of order n, and it is a generalization of (5.21) in the sense that in the case
of Definition 5.1, r−1 is always a null vector.

Definition 5.2. Let A,B ∈Cn×n and r−1,r0 ∈Cn such that
(

rT
−1 rT

0

)T
6= 0. Then the sequence

r−1,r0,r1, . . . ,rk with

r j = Ar j−1 +Br j−2, j ≥ 1 (5.26)

is called a second order Krylov sequence based on A,B,r−1 and r0. The subspace

Gk(A,B;r−1,r0) = span{r−1,r0, . . . ,rk−1} (5.27)

is called a second order Krylov subspace of order k.

Consider the second order Krylov subspace Gk(A,B;r−1,r0), and let Qk be its orthogonal
basis. Furthermore, let Kk(H,v) be the standard Krylov subspace, with H ∈ C2n×2n as in (5.24)
and v =

( r0
r−1

)
, and Vk its orthogonal basis. From the definition of the sequence (5.26) it holds

Kk(H,v) = span{v,Hv, . . . ,Hk−1v}= span

{(
r0

r1

)
,

(
r1

r0

)
, . . . ,

(
rk−1

rk−2

)}
. (5.28)

Now,

span{Vk(1 : n, :)}= span{r0,r1, . . . ,rk−1}, (5.29)

span{Vk(n+1 : 2n, :)}= span{r−1,r0, . . . ,rk−2}, (5.30)

that is
span{Qk}= span{Vk(1 : n, :),Vk(n+1 : 2n, :)}. (5.31)
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This connection can be written as

Vk =

(
Vk(1 : n, :)

Vk(n+1 : 2n, :)

)
=

(
QkUk,1

QkUk,2

)
. (5.32)

Therefore, the basis Qk can be computed from Vk using the rank revealing QR factorization of
either Vk(1 : n, :) or Vk(n+1 : 2n, :). Without loss of generality we can assume that Vk ∈ C2n×k.
However, the number of columns of Qk ∈ Cn×ηk can be smaller than ηk < k, which would
correspond to the deflation.

Instead of building the Arnoldi factorization for the first companion form linearization and
then computing the QR factorization to obtain the basis for the second order Krylov subspace,
TOAR computes Qk by maintaining the orthogonality of the basis for the standard Krylov
subspace. This is why it is called two level orthogonal. One Gram-Schmidt process is used to
compute orthogonal basis Qk and another for Vk. The full algorithm is presented below.

Algorithm 5.3.1 [Qk,Uk,1,Uk,2,Hk] =TOAR(A,B,r−1,r0,k)

1:
(
r−1 r0

)
= QX (Rank revealing QR fac-

torization, η1 is the rank)

2: γ =

∥∥∥∥( r0
r−1

)∥∥∥∥
2

3: Q1 =Q, U1,1 =X(:,2)/γ , U1,2 =X(:,1)/γ .

4: for j = 1 : k−1 do
5: r = A(Q jU j,1(:, j))+B(Q jU j,2(:, j))
6: for i = 1 : η j do
7: si = qT

i r
8: r = r− siqi
9: end for

10: α = ‖r‖2
11: s = [s1, . . . ,sη j ]

T , u =U j,1(:, j)
12: for i = 1 : j do
13: ti j =U j,1(:, i)T s+U j,2(:, i)T u
14: s = s− ti jU j,1(:, i), u = u− ti jU j,2(:, i)
15: end for

16: t j+1, j = (α2 +‖s‖2
2 +‖u‖2

2)
1/2

17: if t j+1, j = 0 then
18: stop (breakdown)
19: end if
20: if α = 0 then
21: η j+1 = η j (deflation)
22: Q j+1 =Q j, U j+1,1 =

(
U j,1 s/t j+1, j

)
,

U j+1,2 =
(
U j,2 u/t j+1, j

)
23: else
24: η j+1 = η j +1
25: Q j+1 =

(
Q j r/α

)
26: U j+1,1 =

(
U j,1 s/t j+1, j

0 α/t j+1, j

)
27: U j+1,2 =

(
U j,2 u/t j+1, j

0 0

)
28: end if
29: end for

Remark 5.1. The Arnoldi algorithm, as well as SOAR, and TOAR use the Gramm–Schmidt
orthogonalization process. However, in finite precision arithmetic this procedure does not have
to produce numerically orthogonal vectors. To insure the numerical orthogonality, for example
in Algorithm 5.3.1, after the α = ‖r‖2 is computed, one should check if α ≤ τ‖A(Q jU j,1(:
, j))+B(Q jU j,2(:, j))‖2, for the threshold parameter τ ≤ 1. If the inequality holds, additional
orthogonalization of r against Q j is performed. This procedure is known as the twice–is–enough
algorithm [57].
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After k steps of Algorithm 5.3.1 we get the TOAR factorization(
A B

In 0n

)(
QkUk,1

QkUk,2

)
=

(
QkUk,1

QkUk,2

)
Tk + rkeT

k tk+1,k, (5.33)

where

rk =

(
Qk(s/tk+1,k)+qk+1(α/tk+1,k)

Qk(u/tk+1,k)

)
,

if no deflation occurred in the last step, and

rk =

(
Qk(s/tk+1,k)

Qk(u/tk+1,k)

)
,

otherwise. Numerical stability of the Algorithm 5.3.1 is proved in [49].

5.3.1 Implicitly restarting the TOAR procedure

In this subsection we give a review of the implicit restarting procedure for the TOAR algo-
rithm analogous to the implicitly restarted Arnoldi. That is, we want to apply the polynomial
filter of the form

f (H) =
p

∏
i=1

(H−µiI), (5.34)

to the starting block vector
( r0

r−1

)
, where µi, i = 1, . . . , p are the shifts which are determined in

some prescribed manner. Since the factorization (5.33) is also an Arnoldi factorization for the
matrix H, we can modify the process described in Subsection 5.1.1. Suppose that we have a
TOAR factorization of order m > k, and we want to truncate it to the order k. First, we compute
p steps of the shifted QR factorization on Tm with the given shifts µ1, . . . ,µp to get

Tm =V T+
m V ∗. (5.35)

T+
m is again upper Hessenberg, and V is orthogonal with Vi, j = 0 for i > j + p. Multiply the

decomposition (5.33) with V from the right to get(
A B

I 0

)(
QmUm,1V

QmUm,2V

)
=

(
QmUm,1V

QmUm,2V

)
V ∗TmV + rmeT

mVtm+1,m. (5.36)

Now, the truncated factorization is(
A B

I 0

)(
QmU+

k,1

QmU+
k,2

)
=

(
QmU+

k,1

QmU+
k,2

)
T+

k + r+k eT
k t+k+1,k, (5.37)
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where U+
k,1 =Um,1V (:,1 : k),U+

k,2 =Um,2V (:,1 : k),T+
k = T+

m (1 : k,1 : k), and

s+ =Um,1V (:,k+1)T+
m k+1,k+ stm+1,mV (m,k), (5.38)

α
+ = αtm+1,mV (m,k), (5.39)

u+ =Um,2V (:,k+1)T+
m (k+1,k)+utm+1,mV (m,k), (5.40)

t+k+1,k =
√

(‖u+‖2 +‖s+‖2 +(α+)2). (5.41)

However, we are not done yet. Notice that (5.37) is not a TOAR factorization because Qm still
has ηm ≤ m+ 1 columns and it does not represent the basis of the blocks QmU+

k,1 and QmU+
k,2.

To make it a legitimate TOAR factorization we compute the compact SVD factorization, as
proposed in [65] (

U+
k,1 s+/t+k+1,k U+

k,2 u+/t+k+1,k

0 α+/t+k+1,k 0 0

)
= PΣG∗, (5.42)

P ∈Cηm+1×ηk+1 , Σ ∈Cηk+1×ηk+1 and G =
(

G1 G2

)
∈Cηk+1×((k+1)+(k+1)). The rank ηk+1 is at

least k+2. Now, the final factorization, written in compact form, of order k is(
A B

I 0

)(
Q+

k+1U+
k+1,1

Q+
k+1U+

k+1,2

)
=

(
Q+

k+1U+
k+1,1

Q+
k+1U+

k+1,2

)
T̂+

k , (5.43)

where Q+
k+1 = Qm+1P, U+

k+1,1 = ΣG1 and Uk+1,2 = ΣG2. The updating algorithm is presented in
Algorithm 5.3.2.

Algorithm 5.3.2 [Qm,Um,1,Um,2,Hm] =TOAR_Update(A,B,Qk+1,Uk+1,1,Uk+1,2,Tk,m)

1: for j = k+1 : m do
2: r = A(Q jU j,1(:, j))+B(Q jU j,2(:, j))
3: for i = 1 : η j do
4: si = qT

i r
5: r = r− siqi
6: end for
7: α = ‖r‖2
8: s = [s1, . . . ,sη j ]

T , u =U j,1(:, j)
9: for i = 1 : j do

10: ti j =U j,1(:, i)T s+U j,2(:, i)T u
11: s = s− ti jU j,1(:, i), u = u− ti jU j,2(:, i)
12: end for
13: t j+1, j = (α2 +‖s‖2

2 +‖u‖2
2)

1/2

14: if t j+1, j = 0 then
15: stop (breakdown)

16: end if
17: if α = 0 then
18: η j+1 = η j (deflation)
19: Q j+1 =Q j, U j+1,1 =

(
U j,1 s/t j+1, j

)
,

U j+1,2 =
(
U j,2 u/t j+1, j

)
20: else
21: η j+1 = η j +1
22: Q j+1 =

(
Q j r/α

)
23: U j+1,1 =

(
U j,1 s/t j+1, j

0 α/t j+1, j

)
24: U j+1,2 =

(
U j,2 u/t j+1, j

0 0

)
25: end if
26: end for
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5.4 TOAR revisited

In this subsection we present a new interpretation of the deflation and breakdown phenomena
in the TOAR algorithm, in the terms of the invariant pair for the quadratic eigenvalue problem.
We present two interpretations of the TOAR algorithm, namely as a linear solver, and as a
quadratic solver. In this regard, we propose several improvements of the restarting procedure
presented in §5.3.1.

5.4.1 Deflation and breakdown

Recall the defining relation for an invariant pair (X ,S) ∈ Cn×k×Ck×k (see Section 1.1):

MXS2 +CXS+KX = 0. (5.44)

Now, assume that in the kth step of the Algorithm 5.3.1 we have tk+1,k = 0. It means that

AQkUk,1 +BQkUk,2 = QkUk,1Tk, (5.45)

QkUk,1 = QkUk,2Tk. (5.46)

If we substitute (5.46) into (5.45), and use the fact that A =−M−1C and B =−M−1K we get

MQkUk,2T 2
k +CQkUk,2Tk +KQkUk,2 = 0, (5.47)

or,
MQkUk,1T 2

k +CQkUk,1Tk +KQkUk,1 = 0, (5.48)

from Uk,2 = Uk,1T−1
k . This means that (QkUk,1,Tk) and (QkUk,2,Tk) are invariant pairs for the

quadratic problem. On the other hand, tk+1,k = 0 implies

H

(
QkUk,1

QkUk,2

)
=

(
QkUk,1

QkUk,2

)
Tk, (5.49)

meaning that we have found an invariant pair
((

QkUk,1
QkUk,2

)
,Tk

)
for the linear problem. If deflation

occurred, the matrices QkUk,1 and QkUk,2 are not of full rank, which means that there is linear
dependence between eigenvectors for the eigenvalues of Tk. However, the block matrix

(
QkUk,1
QkUk,2

)
is always orthogonal of full rank.

Remark 5.2. From the reasoning above we can conclude that the TOAR algorithm can be
interpreted as an algorithm for computing the minimal invariant pair for the quadratic pencil, i.e.,
if the breakdown occurred at the kth step of the algorithm, (QkUk,1,Tk) and (QkUk,2,Tk) satisfy
(5.44), and

(
QkUk,1
QkUk,2

)
=
(

QkUk,2Tk
QkUk,2

)
is of full rank.
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We want to use TOAR algorithm to compute a part of the spectrum of the quadratic eigen-
value problem. However, instead of approximating the eigenvalues of quadratic problem with
eigenvalues of smaller linear problem we would like to use the basis Qk for the second order
Krylov subspace for defining the smaller projected problem (5.25), and then solve the smaller
quadratic problem with the same structure.

There are two ways to look at the TOAR algorithm. The first way is that the TOAR procedure
(5.3.1) computes a basis for the standard Krylov subspace Kk(H,v) and by implicitly restarting
it will be closer to an invariant subspace of the matrix H. On the other hand, we use it to
compute an orthogonal basis for the second order Krylov subspace Gk(A,B,r−1,r0), and, by
implicit restart, we want it to find a better subspace that will be used to project our quadratic
problem. More precisely, the implicitly restarted TOAR algorithm is both a linear solver, and a
quadratic solver. To construct a robust algorithm, we must keep in mind the specifics of both of
these problems, and adjust our algorithm to it, always keeping in mind that the main goal is to
solve the quadratic eigenvalue problem.

5.4.2 TOAR as a linear eigenvalue problem solver

The key improvement of the TOAR algorithm over SOAR is that the basis for the Krylov
subspace Kk(H,v) remains orthogonal as well, thus making the process numerically stable.

As we explained before, the upper Hessenberg matrix represents an approximation for the
invariant pairs for both the quadratic problem and the corresponding linear problem. Although
we use the projected quadratic problem to compute the approximation, the procedure to obtain
the basis is still done on the linear problem, and breakdown means that we have found an
invariant pair for the linear problem with the matrix H. However, we already discussed that the
backward error for computed eigenpairs can be sufficiently small for the linearization, but much
higher for the original problem. A solution to this problem is offered in the quadeig algorithm,
which scales the matrices before using the algorithms for the linear problem.

Remark 5.3. The scaling is also important in the TOAR algorithm, because if the norms of the
coefficient matrices are not equilibrated, the breakdown will occur before we find a good enough
approximation for the quadratic problem.

This is why, as a first step, we propose scaling as described in Subsection 3.3.1.

5.4.3 TOAR as a quadratic solver

Choice of the approximation for the eigenpairs. The first exploitation of the fact that we are
solving quadratic eigenvalue problem is that the approximation is obtained from the projected
problem

(λ 2(Q∗kMQk)+λ (Q∗kCQk)+(Q∗kKQk))z = 0. (5.50)
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For the solution of this small QEP we use our KVADeig algorithm described in the Section 3.5.
It is important to solve this small problem correctly for it to be a better approximation for the
original problem.

Eigenvector refinement. During the restarts, the subspace spanned by Qk can have better
information, however the approximate eigenvectors do not necessarily converge. This is why Jia
proposed the eigenvector refinement in [45]. Let θ be the computed eigenvalue of (5.50). Then
the corresponding vector z is computed to minimize the residual:

z = arg min
z∈Ck

‖z‖2=1

‖(θ 2M+θC+K)Qkz‖2. (5.51)

Notice that (5.51) involves the original matrices, and that Qkz represents an approximation for
an eigenvector of the original problem. The proposed procedure for computing z in (5.51) is via
the eigenvector of the matrix Bk

Bk = X∗k Xk = (θ 2MQk +θCQk +KQk)
∗(θ 2MQk +θCQk +KQk), (5.52)

associated with the smallest eigenvalue. It is important to underline the following facts regarding
this procedure. First, as the process converges, Xk becomes increasingly ill-conditioned. The
condition number is κ2(Bk) = κ2(Xk)

2. Secondly, because of ill-conditioning, there is no gua-
rantee that the eigenvalue algorithm will compute the smallest eigenvalue and the corresponding
eigenvector of Bk sufficiently accurately.

As an alternative to Jia’s approach, [24] proposes another procedure which does not use the
matrix Bk. It uses the QR factorization

(
MQk CQk KQk

)
= QR, R =


R11 R12 R13

0 R22 R23

0 0 R33

0 0 0

, Rii ∈ Ck×k, (5.53)

and the refinement is reduced to computing the smallest singular value with the corresponding
right singular vector of the 3k× k matrix

θ
2

R11

0
0

+θ

R12

R22

0

+

R13

R23

R33

 . (5.54)

Shift and invert. Suppose that we want to compute the eigenvalues closest to some σ , or we
have an approximation for the wanted eigenvalue and we want to use that information to improve
our iterative process. Then, we can define shifted and inverted quadratic eigenvalue problem in
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the following way. Let λ = ξ +σ . Define

Qσ (ξ ) = ξ
2Mσ +ξCσ +K, Mσ = σ

2M+σC+K, Cσ = 2σM+C, Kσ = M. (5.55)

Now, computing the eigenvalues with largest magnitude of QEP (5.55) corresponds to compu-
ting the eigenvalues of the original problem closest to σ . The eigenvectors are the same, and
for the eigenvalues we have λ = 1/(ξ +σ). This transformation is important for computing
the eigenvalues close to some target σ , because they become dominant and thus more easily
computed by an iterative method.

Polynomial filter. By implicit restart described in Subsection 5.3.1 the polynomial filter
f (H) = ∏

p
i=1(H − µiI) is applied to the starting vector. The idea is, if the µi’s represent the

unwanted eigenvalues, then this polynomial filter will remove the directions of the unwanted
eigenvectors from the starting vector.
The most used shifts in implicitly restarted Arnoldi algorithms are the eigenvalues of the Hes-
senberg matrix Tm which are the approximation of the unwanted eigenvalues. These shifts are
referred to as exact shifts. In practice, they work well for an arbitrary linear eigenvalue problems.
However, in the quadratic eigenvalue problem, we can have two eigenvalues sharing the same

eigenvector. Therefore, this can pose a problem when applying a filter. We do not want to remove

the directions of the wanted eigenvalues by removing the directions of the unwanted eigenvalues.

Let us look at this situation more closely.

Example 5.2. Suppose that two eigenvalues λ1 and λ2 share the same eigenvector x, and suppose
that we chose λ1 as the shift. The eigenvectors for the linearization H are different for these two
eigenvalues; they are

(
λ1x
x

)
and

(
λ2x
x

)
respectively. This suggests that, by using this shift, the

direction of the wanted eigenvector will not be removed, since it is not the same eigenvector for
the linearization. Let us see what happens when f (H) = (H−λ1I) is applied to the eigenvector(

λ2x
x

)
[(

A B

I 0

)
−λ1I2n

](
λ2x

x

)
=

(
λ2Ax+Bx−λ1λ2x

λ2x−λ1x

)
=

(
λ 2

2 x−λ1λ2x

(λ2−λ1)x

)

= (λ2−λ1)

(
λ2x

x

)
.

Hence, this polynomial filter will not remove the eigenvector
(

λ2x
x

)
, however the factor (λ2−λ1)

can be e.g. very small or very big. If it is small, and λ2 is wanted eigenvalue, then this shift
will reduce the direction of this eigenvector in starting vector. On the other hand, if the factor is
big, and λ2 is also unwanted eigenvalue, this will increase the contribution of another unwanted
eigenvector in the starting vector.

These are the things that need to be considered when choosing shifts in TOAR as quadratic
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solver. Another thing is that we choose the shifts from the information we get from the projected
problem (5.50). The number of eigenvalues is 2m, and amongst them we must determine k

approximations for the wanted eigenvalues, and p approximations for the unwanted ones. Also,
some of them can be meaningless for our original problem. For example, consider the projection
onto one eigenvector x, λ 2x∗Mx + λx∗Cx + x∗Kx = 0. This is a quadratic equation, which
means that there are two solutions λ1,λ2. However, only in special cases both of these roots
are eigenvalues. Usually, only one of the roots represents a valid eigenvalue. If x is a common
eigenvector, then both roots are eigenvalues.

These described phenomena are nicely seen in the special class of quadratic eigenvalue
problems called overdamped problems.

5.4.4 Polynomial filter for overdamped problems

We introduced the overdamped quadratic eigenvalue problems in Section 1.7. The matrices
M,C and K are symmetric, M and C are positive definite, and K is positive semidefinite. The
overdamping condition

min
‖x‖2=1

[
(x∗Cx)2−4(x∗Mx)(x∗Kx)

]
> 0 (5.56)

is satisfied. The eigenvalues are divided into two sets. The n largest eigenvalues are called
primary, and the n smallest are called secondary. An important property is that the n eigenvectors
corresponding to the primary eigenvalues form a linearly independent set, and the n eigenvectors
corresponding to secondary eigenvalues also form a linearly independent set.

Here, we propose a new strategy for choosing the shifts for the polynomial filter in the
implicitly restarted TOAR algorithm. We present numerical examples which demonstrate the
power of the new proposed shift selection strategy.

Recall that, if the starting vector in the Arnoldi procedure is a linear combination of k

eigenvectors, the breakdown will occur at the kth step, and the eigenvalues of the matrix Tk will
match k eigenvalues of the original problem, corresponding to those eigenvectors. Suppose that

the starting vector for the Arnoldi and TOAR algorithm is

(
x

0

)
, where x is an eigenvector for

two eigenvalues λ1 and λ2. Now,(
x

0

)
= τ

[(
λ1x

x

)
−

(
λ2x

x

)]
= τ

(
(λ1−λ2)x

0

)
, (5.57)

where τ is a normalizing factor. By the Theorem 5.1 we conclude that the breakdown will
occur in the second step of the Arnoldi/TOAR procedure because the starting vector is a linear
combination of two eigenvectors, corresponding to λ1 and λ2, and they will be the eigenvalues
of the Hessenberg matrix T2. This shows that it is natural for the eigenvalues which share the
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same eigenvector to appear together, and therefore if they are unwanted, they should be used as
shifts together, and if one of them is wanted, the other one cannot be used as a shift. Also, if
we use both eigenvalues as shifts, we avoid the possible increase by the factor (λ1−λ2) of the
another unwanted vector or decreasing of the wanted eigenvector.

The process of choosing the shifts we propose goes as follows:

1. Compute 2m eigenvalues of the projected problem

(λ 2Q∗mMQk +λQ∗mCQm +Q∗mKQm)x = 0.

The structure of the problem is preserved by the orthogonal projection, meaning that this
problem is also overdamped.

2. The structure of the eigenvalues is as described, we have a set of m primary and a set
of m secondary eigenvalues. Sort the eigenvalues by magnitude. The first m belong to
the primary, and the last m to the secondary eigenvalues. Choose k eigenvalues with the
largest magnitudes as approximations for the wanted eigenvalues (assuming this as the
selection criterion). The eigenvectors are computed from the SVD decomposition of the
matrix (5.54).

3. The number of the shifts will always be even, let us say 2p. First, choose the p eigenvalues
farthest from the wanted k eigenvalues in the primary part. We know for sure that these
eigenvalues do not share eigenvectors with the wanted eigenvalues.

4. Now, if there are eigenvalues sharing the eigenvector with these p shifts, we want to
choose them. If they exist, they will be the roots of the quadratic polynomial λ 2x∗Mx+

λx∗Cx+ x∗Kx, where x is the eigenvector. This is why, for every eigenvalue amongst
already chosen shifts from the primary part we compute the eigenvector by refinement
(5.51). Then we compute the roots of the mentioned quadratic polynomial, and these roots
are now the shifts. So, at the end, we have 2p shifts, for which we are sure that do not
share the eigenvector with the wanted eigenvalues. This step can be also understood as a
refinement step for computing the unwanted eigenvalues.

Here, we described how to choose shifts if the eigenvalue with the largest magnitude are of
interest. This can work for any other feature prescribed for the wanted eigenvalue, we just a
adjust the sorting criteria.

Tropical roots for shift and invert. In this section we propose a new selection of approxima-
tion for defining the shifted and inverted problem in order to get the better approximation for the
wanted eigenvalues.

When we discussed the parameter scaling for equilibration of the backward errors for the
quadratic problem and the corresponding linearization, we mentioned roots of the tropical poly-
nomial as one of the options.
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Another interesting fact is that the tropical roots can be good approximations for the moduli of
the eigenvalues of the quadratic problem, as investigated in [54].

For the overdamped problems, we know that all eigenvalues are real and in the left half
plane. Therefore, if we want to find eigenvalues with largest magnitudes, an upper bound on
their moduli is the larger tropical root, and therefore we propose them to be used as shifts to
define shifted and inverted QEP (5.55).1

We already said that scaling must be done before calling TOAR to avoid early breakdown,
therefore the norms of matrices will be computed in any case. We can use it then to compute the
larger tropical root

γ =
‖C‖2

‖M‖2
, (5.58)

if τ = ‖C‖2√
‖M‖2‖K‖2

> 1. Then σ =−γ is a good shift for shifted and inverted problem.

5.4.5 Numerical examples for overdamped problems

Example 1. First example is from Bai and Su’s first paper on the Second Order Arnoldi
algorithm [3]. The problem is of order n = 50 and the matrices M,C and K are defined as

M = 0.1 · I, C = I, K = tridiag(−0.1,0.2,−0.1). (5.59)

Here, the kth largest and the kth smallest eigenvalues share the same eigenvector. In Figure 5.2,
we show all 100 eigenvalues.

Figure 5.2: All eigenvalues of QEP (5.102)

The eigenvalues marked by the same color share the eigenvector. We compared our algorithm
with MATLAB’s eigs which is an implementation of the implicitly restarted Arnoldi algorithm.

1It is noted in [54] that the tropical roots are also used as the starting point in the Ehrlich–Aberth method.
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The shifts are the exact shifts, that is some of the eigenvalues of the Hessenberg matrix in the
Arnoldi factorization.

The goal was to find m = 2 eigenvalues with largest magnitudes. The number of shifts in
both cases was p = 4, and the maximal dimension of the factorization was k = 6. The tolerance
for the backward error was n×u where u is the machine precision.

eigs did not find the requested eigenpairs for which the backward error is small enough,
even after 300 restarts, producing the error message

??? Error using ==> eigs>processEUPDinfo at 1453 Error with ARPACK
routine dneupd: dnaupd did not find any eigenvalues to sufficient

accuracy.

We plotted the residuals for the first 23 restarts in Figure 5.3 for better illustration of the superior
performance of our new method. After the first 23 restarts, the backward error produced by
TOAR with our new filtering is already below 10−8, while in eigs the error is around 10−3 and
it does not improve during the remaining 277 iterations.

We also called TOAR on the shifted and inverted QEP with the shift σ = −10, which is a
greater tropical root for this problem. With the same setting, approximations where found in just
3 iterations. The backward errors are present in Figure 5.4.
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Figure 5.3: Backward errors for first
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Figure 5.4: Backward errors for shift and invert
with tropical root

Example 2. The next example is of order n = 400. The matrices are

M = I, C = tridiag(−10,30,−10), K = tridiag(−5,15,−5). (5.60)

We want to compute k = 6 eigenvalues using p = 6 shifts with the maximal dimension m =

12. We used eigs and our new implementation of the implicitly restarted TOAR (we will
refer to it as mTOAR). Depending on the starting vector, eigs sometimes finds good enough
approximations, and sometimes not, in 300 iterations. On the other hand, mTOAR always finds
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the approximations with a smaller number of restarts. For one example where eigs did not
converge, mTOAR found satisfactory approximation in the first 177 restarts. The tolerance for
the backward error was 10−12.

When we used the tropical root as a shift, mTOAR needed only 13 restarts. For this example
we provide figures with backward errors in every restart for every wanted eigenvalue.
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Figure 5.5: Normwise backward errors in every restart for all computed eigenvalues

5.5 Locking in IRA

When an element on the subdiagonal of the Hessenberg matrix Tk in the Arnoldi process
is small, we know that we have found a good enough approximation for some eigenvalue of
the original problem. However, a Ritz value may be close to an eigenvalue of the original
problem without small elements appearing on the subdiagonal of Tk. Lechoucq and Sorenesen
[47] developed the so called locking procedure, which applies a certain orthogonal change of
basis so that the appropriate subdiagonal element of Tk is (close to) zero. The following lemma
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is important for the derivation of this process.

Lemma 5.1 ([47]). Let Tkz = θz where Tk ∈Rk×k is an unreduced upper Hessenberg matrix and

θ ∈R with ‖z‖2 = 1. Let W be a Householder matrix such that Wz = e1τ where τ =−sign(eT z).

Then

eT
k W = eT

k +wT , (5.61)

where ‖w‖ ≤
√

2|eT
k z| and

W T HWe1 = θe1. (5.62)

Suppose that we have the Arnoldi factorization of order k as in (5.4). Let (θ ,z) be an
eigenpair for Tk with |eT

k z| small enough so that the residual (5.5) for (θ ,Vkz) is small enough.
Define W as in Lemma 5.1, and multiply the factorization (5.4) to get

HVkW =VkW (W T HW )+ rkeT
k W. (5.63)

Using (5.61) and (5.62) we get

HVkW =VkW

(
θ tT

0 T k−1

)
+ rkeT

k + rkwT . (5.64)

For (5.64) to be an Arnoldi factorization, the matrix T k−1 must be upper Hessenberg, and the
term rkwT must be dropped. When restoring T k−1 to Hessenberg form, we must be careful not
to change the matrix rkeT

k . The transformation matrix Y is thus defined as Y =
(

1 0
0 Y1Y2...Yk−3

)
where Y1 is such that

Y T
1 T k−1Y1 =

(
G g

β keT
k−2 γ

)
, (5.65)

and eT
k−1Y1eT

k−1 = 1. The matrices Y2, . . . ,Yk−3 are defined analogously. Since ‖rkwTY‖2 =

‖rk‖2‖Y T w‖2 = ‖rk‖2‖w‖2, the size of ‖rkwT‖2 remains the same. By updating

Vk =VkWY, Hk = Y TW T HkWY, wT = wTY,

and by discarding the term rkwT , we get a factorization in which the eigenvalue θ is locked.
The following theorem shows that this process constructs the Arnoldi factorization of an nearby
matrix.

Theorem 5.3 ([47]). Let HVk =VkTk + rkeT
k + rkwT be an Arnoldi factorization where Tkz = θz

and
√

2|eT z|‖rk‖2 ≤ ε‖H‖2 for some ε > 0. Then there exists a matrix E ∈ Rn×n such that

(H +E)Vk =VkTk + rkeT
k , (5.66)

where ‖E‖2 ≤ ε‖A‖2.
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The general algorithm is then as follows. Suppose that we have already locked j eigenvalues,
and that the partitioned Arnoldi factorization is

H
(

Vj V k− j

)
=
(

Vj V k− j

)(Tj G j

0 T k− j

)
+ rkeT

k + rkwT . (5.67)

The matrix Tj ∈R j× j contains previously locked eigenvalues, and T k− j is unreduced upper Hes-
senberg matrix. The columns of Vj represent the Schur basis for the locked invariant subspace.
Let the columns of Xi ∈ R(k− j)×i represent the eigenvectors corresponding to the new i eigenva-
lues which we want to lock. The new factorization is obtained in the following 4 steps:

1. Compute the orthogonal factorization

Q

(
Ri

0k− j−i

)
= Xi,

where Q ∈ R(k− j)×(k− j).

2. Update the factorization (5.67): T k− j = QT T k− jQ, V k− j =V k− jQ, G j = G jQ.

3. Compute an orthogonal matrix P ∈ R(k− j−i)×(k− j−i) that restores T k− j−i to Hessenberg
form.

4. Update the factorization: T k− j−i = PT T k− j−iP,V k− j−i =V k− j−iP,G j+i = G j+iP.

5.5.1 Locking in TOAR

In this subsection we develop and analyze, analogously, a locking procedure in the new
implicitly restarted TOAR algorithm.

Assume that we built TOAR factorization of order m

AQmUm,1 +BQmUm,2 = QmUm,1Tm + seT
mtm+1,m, (5.68)

QmUm,1 = QmUm,2Tm +ueT
mtm+1,m, (5.69)

and that an eigenpair (θ ,Qmz) from the projected problem (θ 2QT
mMQm+θQT

mCQm+QT
mKQm)z=

0 is a good approximation for the original problem. We would like to lock this eigenpair in the
similar way to locking for the standard eigenvalue problem. That is, we want to introduce a
small element onto the subdiagonal of the Hessenberg matrix Tm.

The first problem is that the eigenpair (θ ,Qmz) is obtained from the projected quadratic
problem, and not from the matrix Tm. In order to proceed with locking, we first need to make
sure that θ is an eigenvalue of Tm. The eigenvector for the corresponding linearization H for
the eigenvalue θ is

(
θQmz
Qmz

)
. This means that, if θ is an eigenvalue of Tm, the corresponding
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eigenvector would be

y =

(
QmUm,1

QmUm,2

)T (
θQmz

Qmz

)
=

(
Um,1

Um,2

)T (
θz

z

)
. (5.70)

Since (5.68)-(5.69) represents the Arnoldi factorization for the matrix H, the residual for the
eigenpair (θ ,

(
QmUm,1
QmUm,2

)
y) (5.5) is small enough if |eT

my| is small. Finally, we conclude that θ can
be regarded as an eigenvalue of Tm if the last component of (5.70) is small. If this is the case,
we can continue with locking. Suppose that W is as in Lemma 5.1. The transformed TOAR
factorization is

AQmUm,1W +BQmUm,2W = QmUm,1WW T TmW + seT
mtm+1,m + sw(1 : n)T , (5.71)

QmUm,1W = QmUm,2WW T TmW +ueT
mtm+1,m +uw(n+1 : 2n)T , (5.72)

and

W T TmW =

(
θ tT

0 T m−1

)
. (5.73)

As described in the linear case, W T TmW must be returned to upper Hessenberg form, making
sure that we do not change the terms seT

m and ueT
m. Denote with Y the transformation matrix. By

removing the terms swT and uwT and by updating

Um,1 =Um,1WY, Um,2 =Um,2WY, Tm = Y TW T TmWY, wT = wTY,

we have locked the eigenvalue θ .
However, with this procedure we did not change the matrix Qm. And the next time we compute
the approximation, we must again compute 2m eigenvalue from the projected problem, and thus,
we will again compute the locked eigenvalue. With this locking we have only assured that the
implicit restart will not affect the locked part of the Hessenberg matrix Tm in the factorization.

5.6 Rayleigh damping

Consider the quadratic eigenvalue problem (λ 2M+λC+K)x= 0 with proportional damping
C = αM+βK, also known as Rayleigh damping. This problem reduces to the linear pencil

Kx = µMx, µ =−λ 2 +λα

λβ +1
. (5.74)

The eigenvalues for the original quadratic problem are restored as

λ1,2 =
−(α +β µ)±

√
(α +β µ)2−4µ

2
, for µfinite and nonzero, (5.75)
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λ1 = 0, λ2 =−α, for µ = 0, (5.76)

λ1 = ∞, λ2 =−
1
β
, for µ = ∞. (5.77)

Since the proportional damping is easier to handle numerically, we would like to exploit the
information about the wanted part of the spectrum for the problems which are close to pro-
portionally damped. Namely, for given quadratic problem (λ 2M +λC+K)x = 0 we want to
determine the smallest ∆C so that (λ 2M+λ (C+∆C)+K)x = 0 is proportionally damped. This
is done by minimizing

‖C− (αM+βK)‖F →min, |α|2 + |β |2→min, (5.78)

over α,β . By application of the projection theorem in Cn×n, equipped with the Frobenius inner
product 〈A,B〉F = Tr(B∗A), in [24] the following normal equations were derived(

〈M,M〉F 〈K,M〉F
〈M,K〉F 〈K,K〉F

)(
α

β

)
=

(
〈C,M〉F
〈C,K〉F

)
. (5.79)

Now, the algorithm for using the approximation of the quadratic problem by proportionally
damped one would go as follows:

• Suppose that we want to compute k eigenvalues with largest magnitude

• Compute α,β from (5.79).

• Call implicitly restarted Arnoldi to compute k eigenpairs (λi,xi) with largest magnitude
for (5.74)

• Define new starting vectors r−1 = ∑
m
i=1 λixi, r0 = ∑

m
i=1 xi and call implicitly restarted

mTOAR on the original problem with these starting vectors.

We will refer to this algorithm as mTOAR NRD. The numerical examples are presented in the
following subsection.

5.6.1 Numerical examples

Experiment 1. The first example is Path crossing, from [44]. M and K are given as
BCSSTM12 and BCSSTK12 from the Harwell–Boeing collection [27], and C is a block combi-
nation of M and K. The matrices are of order 1473. Define M1 = M(1 : 600,1 : 600) and
M2 = M(540 : 1473,540 : 1473), and K1,K2 in the same way. Then C = [ci j] is defined as

ci j =


a11mi j +a12ki j, when i < 540 or j < 540,

(a11 +a21)mi j +(a12 +a22)ki j, when 540≤ i, j ≤ 600,

a21mi j +a22ki j, when i > 600 or j > 600,
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where (ai1
ai2 ) =

2ξi
ω1+ω2

(
ω1ω2

1

)
with ξ1 = 0.05, ξ2 = 0.10, and ω1 and ω2 are the first and tenth

natural frequencies for the undamped problem (µ2M+K)x = 0.

We want to compute k = 6 eigenvalues of largest magnitudes. The maximal dimension of
TOAR and Arnoldi factorizations is set to m = 18. The number of shifts in TOAR is set to
2p = 8, and the number of shifts in eigs is always m− k = 12.

We started TOAR and eigs with the same starting vectors r−1 = rand(n,1) and r0 =

rand(n,1). In addition, we called TOAR with starting vector as described in Section 5.6. More
precisely, we computed α = 0.340395988262736 and β = 0.340395988262736 so that (5.79)
holds. We called eigs on Kx = µMx. The tolerance on the normwise backward error was

√eps,
where eps is the machine precision. Algorithm found the wanted eigenvalues with prescribed
tolerance in 7 restarts. The tolerance for the normwise backward error of the original problem
was n×eps = 3.2707e-013. The following table presents the number of restarts needed to find
the eigenpairs with prescribed tolerance

Table 5.1: Number of restarts, Path crossing

Algorithm IRmTOAR IRmTOAR NRD eigs
No. restarts 68 56 = (7+49) 118

The following figure represents the final backward errors for all 6 wanted eigenvalues obtai-
ned by all three methods
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Figure 5.6: Final normwise backward errors, Path crossing

At last, we present the backward errors during the restarts for mTOAR, and mTOAR NRD
for 3 complex conjugate pairs of wanted eigenvalues.
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Figure 5.7: Normwise backward errors in every restart for all computed eigenvalues

Experiment 2. Next example is cd_player from NLEVP library. We started the algorithm
with the same parameters as in previous example, except the number of wanted eigenvalues and
shifts, which are k = 4, m = 10, 2p = 2. The following table presents the number of restarts
needed to find the eigenpairs with prescribed tolerance n×eps = 1.3323e-014

Table 5.2: Number of restarts, cd_player

Algorithm IRmTOAR IRmTOAR NRD eigs
No. restarts 22 8 = (5+3) 23

The following figure represents the final backward errors for all 4 wanted eigenvalues obtai-
ned by all three methods
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Figure 5.8: Final normwise backward errors, cd_player

At last, we present the backward errors during the restarts for TOAR, and TOAR with
Rayleigh Damping approximation for 4 wanted eigenvalues.
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Figure 5.9: Normwise backward errors in every restart for all computed eigenvalues, cd_player

5.7 Krylov–Schur algorithm for the linear eigenproblem

In [64] Stewart defined the Krylov decomposition of order k for the an n×n matrix H as

HUk =UkBk +uk+1b∗k+1, (5.80)

where Bk is k×k matrix, Uk ∈Cn×k, uk+1,bk+1 ∈Cn, and the columns of (Uk uk+1) are linearly
independent. The idea of this decomposition is to weaken the constraints on the matrices Uk

and Bk prescribed by the Arnoldi decomposition, where Uk has to be orthogonal, and Bk has
to be upper Hessenberg. Due to this constraints, we always have to be careful when restarting,
locking or purging Arnoldi process in order to maintain its structure.

It is proven in [64] that the Krylov decomposition is closed under translation, i.e. for γ ũk+1 =

uk+1−Ukg, γ 6= 0
HUk =Uk(Bk +gb∗k+1)+ ũk+1(γbk+1)

∗

is a Krylov decomposition with the same space as (5.80). Moreover, the Krylov decomposition
is closed under the similarity as well, i.e. for nonsingular W

H(UkW−1) = (UkW−1)(WBkW−1)+uk+1(b∗k+1W−1)

is a Krylov decomposition whose space is the same as (5.80).

This makes Krylov decomposition equivalent to Arnoldi decomposition (i.e., the Rayleigh
quotients are similar). In addition, using these elementary transformations, we can reduce Kry-
lov decomposition into a form that is the most convenient for the truncation step in the implicit
restart. Namely, we can keep the columns of Uk orthonormal, and reduce Bk to Schur form. The
resulting decomposition is called Krylov–Schur decomposition.
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Implicitly restarted Krylov–Schur algorithm. Just like in the implicitly restarted Arnoldi
algorithm, the Krylov–Schur method consists of the expansion phase and the contraction phase.
In the expansion phase, the Krylov–Schur decomposition of order k is constructed, using the
Arnoldi algorithm 5.1.1. The contraction phase purges the unwanted eigenvalues from the
decomposition. An advantage of the Krylov–Schur scheme is that it can be truncated at any
point. Suppose we partitioned the Kyrlov–Schur decomposition in the form

H
(

U1 U2

)
=
(

U1 U2

)(S11 S12

0 S22

)
+u
(

b∗1 b∗2
)
, (5.81)

then
HU1 =U1S11 +ub∗1 (5.82)

is a Krylov–Schur decomposition of order k. Moreover, this truncation step is equivalent to
applying the shifted QR to the Hessenberg matrix Tm in the implicitly restared Arnoldi algorithm
in order to get a new decomposition with better starting vector. The shifts are the eigenvalues of
the matrix S22. This is summarized in the following theorem.

Theorem 5.4 ([11]). Let the Krylov decomposition HU =UB+ub∗ be partitioned as

H
(

U1 U2

)
=
(

U1 U2

)(B11 B12

0 B22

)
+u
(

u∗1 u∗2
)
, (5.83)

where U1 ∈ Cn×k, B11 ∈ Ck×k, u1 ∈ Ck and the columns of U =
(

U1 U2

)
∈ Cn×m, m = k+ `,

span a Krylov subspace Km(H,v) which is not H–invariant. Then,

Im(U1) = Kk(H,κB22(H)v), κB22(ξ ) = det(ξ I−B22). (5.84)

Further, if Im(U1) = Kk(H,π(H)v), for some monic polynomial π of degree `, then π =

κB22 . Thus, AU1 =U1B11 +ub∗1 is an implicitly restarted Krylov decomposition with Im(U1) =

Kk
(
H,∏`

i=1(H−σiI)v
)

if and only if σ1, . . . ,σ` are the eigenvalues of B22.

Thus, in order to apply the shifts which are approximations of the unwanted eigenvalues,
the eigenvalues of the matrix S11 must be the wanted ones. This is accomplished by using the
ordered Schur form. In the ordered Schur form the cluster of eigenvalues appears in the leading
elements on the diagonal of the upper triangular matrix [2].

Let (5.81) represent the desired form, that is, let the eigenvalues of S11 represent the approx-
imation of wanted eigenvalues. The truncation step is illustrated in the following figure
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Figure 5.10: Truncation step in Krylov–Schur algorithm

It is clear that the truncation process in the Krylov–Schur algorithm is more elegant and
easier that in the implicitly restarted Arnoldi algorithm, since we are not limited by the structure
of the matrices. However, the flaw of this approach is that the only shifts which can be used are
the exact ones, i.e., the eigenvalues of Bm in (5.80); on the other and, in the Arnoldi algorithm
we can use arbitrary shifts. Since the number of iterations in the Arnoldi like algorithms depends
on the shifts used in restart, it would be convenient if we could choose any shifts for the restart
in the Krylov–Schur algorithm as well.

The Krylov–Schur method is implemented in the Scalable Library for Eigenvalue Problem
Computations (SLEPc) [38].

5.7.1 Using the arbitrary shifts in Krylov–Schur algorithm

Bujanović and Drmač developed a new restarting procedure for Krylov–Schur algorithm
using the arbitrary shifts in [11], using Theorem 5.4. We briefly outline the main steps; for more
details we refer to [11].

Suppose we have an orthogonal Krylov decomposition

HUm =UmBm +um+1b∗m, (5.85)

and let σ1, . . . ,σm−k be the shifts that we want to apply. We now preform the 4R-procedure
proposed in [11].

1. Reassign
Apply an eigenvalue assignment algorithm to compute the vector f so that the spectrum
of Bm + f b∗m contains the shifts σ1, . . . ,σm−k; then use f to translate (5.85) to

HUm =Um(Bm + f b∗m)+(um+1−Um f )b∗m. (5.86)

Re-assignment of the eigenvalues of Bm is possible if and only if the pair (B∗m,bm) is
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controllable, i.e. if

µ(B∗m,bm)≡ inf
ζ∈C

σmin ((ζ I−B∗m, bm))≡ inf
ζ∈C

σmin

((
ζ I−Bm

b∗m

))
> 0. (5.87)

f is determined in two steps. First, compute unitary W such that W ∗B∗mW =H is upper Hes-
senberg and W ∗bm = βe1, β = ‖bm‖2. This is called a reduction to Controller–Hessenberg
form. The second step is computing the vector g such that σ1, . . . ,σm−k are eigenvalues
of H + e1g∗. This can be done by using an eigenvalue assignment algorithm described in
e.g. [16]. The wanted f is f = 1

β
g∗W ∗.

2. Reorder
In this step we compute the ordered Schur decomposition of Bm + f b∗m, so that the shifts
σ1, . . . ,σm−k appear as the eigenvalues of the S22 block in the Schur form S

Bm + f b∗m = (Q1 Q2)

(
S11 S12

0 S22

)
(Q1 Q2)

∗ . (5.88)

3. Restart
Multiply (5.86) with Q1 to get the restarted Krylov–Schur decomposition

HÛk = ÛkS11 + ũk+1b∗mQ1,

where Ûk =UmQ1, ũk+1 = um+1−Um f .

4. Restore
Another translation is needed to restore the orthogonal Krylov decomposition. Let ûk+1 =
ũk+1−Q̂kg1

γ
be the result of the Gram–Schmidt orthogonalization of the vector ũk+1 against

Im(Ûk), with normalizing factor γ = ‖ũk+1−Ûkg1‖2. Then

HÛk = Ûk

(
S11 +g1b̂∗k

)
+ γ ûk+1b̂∗k , (5.89)

where b̂k = Q∗1bm.

5.8 Implicitly restarted Krylov–Schur algorithm for the QEP

Campos and Roman [14] extended the Krylov–Schur algorithm for the solution of poly-
nomial eigenvalue problems. In order to build the starting factorization they use the TOAR
Algorithm 5.3.1 with the first companion form linearization. Here, we give details of the algo-
rithm for the quadratic eigenvalue problem Q(λ ) = λ 2M+λC+K.
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Let H be the linearization matrix

H =

(
−M−1C −M−1K

−I 0

)
=

(
A B

I 0

)
. (5.90)

Let
HVm =VmSm + vm+1b∗m+1 (5.91)

be the Krylov–Schur decomposition for H, of order m, i.e. Bm ∈ Cm×m, and
(

Vm vm+1

)
∈

C2n×m+1 has linearly independent columns. Partition the decomposition (5.91) to get(
A B

I 0

)(
Vm,1

Vm,2

)
=

(
Vm,1

Vm,2

)
Sm + vm+1b∗m+1. (5.92)

Stewart proved that the decomposition (5.91) is equivalent to Arnoldi decomposition. Let

HV m =V mTm + vm+1eT
m (5.93)

be the corresponding Arnoldi decomposition. We can thus conclude that (5.91) is also equivalent
to TOAR factorization by extracting Qm+1 by the rank revealing decomposition of(

V m(1 : n, :) vm+1(1 : n) V k(n+1 : 2n, :) vm+1(n+1 : 2n)
)
.

Hence, we can build the Krylov decomposition for H in (5.90) using the TOAR algorithm as
well

H

(
QmUm,1

QmUm,2

)
=


Qm+1

(
Um,1 um+1,1

0 βm+1

)

Qm+1

(
Um,2 um+1,2

0 0

)

(

Tm

tm+1,meT
m

)
. (5.94)

The corresponding Krylov–Schur decomposition is then obtained by computing the Schur form
Tk = XSkX∗ and transforming

H

(
QmUm,1X

QmUm,2X

)
=


Qm+1

(
Um,1X um+1,1

0 βm+1

)

Qm+1

(
Um,2X um+1,2

0 0

)

 =Sm︷ ︸︸ ︷

X∗TmX

tm+1,meT
mX

 . (5.95)

Now, the truncation process goes as described for the linear case, and illustrated in Figure 5.10.
Let Sk be partitioned as

(
S11 S12
0 S22

)
, and without loss of generality suppose that the eigenvalues

of S11 ∈ Ck×k approximate the wanted eigenvalues, and the eigenvalues of S22 ∈ C(m−k)×(m−k)

approximate the unwanted eigenvalues. Partition X =
(

X1 X2

)
. Then the truncated decompo-
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sition (5.95) of order k is

H

(
QmUm,1X1

QmUm,2X1

)
=


Qm+1

(
Um,1X1 um+1,1

0 βm+1

)

Qm+1

(
Um,2X1 um+1,2

0 0

)

(

S11

tm+1,meT
mX1

)
. (5.96)

However, as in the case of implicitly restarted TOAR, notice that Qm+1 ∈ Cn×ηm+1 is not
truncated. We solve this as in the case of TOAR, i.e., compute the compact SVD factorization of(

Um,1X1 um+1,1 Um,2X1 um+1,2

0 βm+1 0 0

)
= PΣG∗.

Partition G =
(

G1 G2

)
∈ Cηk+1×((k+1)+(k+1)) and define Qk+1 = Qm+1P, Uk+1,1 = ΣG1 and

Uk+1,2 = ΣG2 to obtain fully truncated decomposition of order k.

Although this procedure is more elegant and simpler in comparison to the implicitly restarted
TOAR, the problem of the shifts remains, i.e., the only shifts one can use in the restarts are the
eigenvalues of the Hessenberg matrix Tm. We already saw the examples in which the implicit
procedure fails to find good enough approximations when the exact shifts are used. This is
why we extend the idea of arbitrary shifts in Krylov–Schur algorithm derived by Bujanović and
Drmač [11] for the quadratic eigenvalue problem.

5.8.1 Using arbitrary shifts in the Krylov–Schur algorithm for the qua-
dratic eigenvalue problem

Here, we extend the 4R procedure form the Subsection 5.7.1 to the case of the quadratic
eigenvalue problem.

Let

H

(
QmUm,1

QmUm,2

)
=


Qm+1

(
Um,1 um+1,1

0 βm+1

)

Qm+1

(
Um,2 um+1,2

0 0

)

(

Tm

tm+1,meT
m

)
(5.97)

be the compact TOAR decomposition of order m. Let µ1, . . . ,µm−k be the shifts for the implicit
restart. Our procedure has and additional step, and it goes as follows

1. Reassign
Apply an eigenvalue assignment algorithm to compute the vector f so that the spectrum
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of Tm + f eT
mtm+1,m contains the shifts µ1, . . . ,µm−k. The translated factorization (5.97) is

H

(
QmUm,1

QmUm,2

)
=


Qm+1

(
Um,1 um+1,1−Um,1 f

0 βm+1

)

Qm+1

(
Um,2 um+1,2−Um,2 f

0 0

)

(

Tm− f eT
mtm+1,m

tm+1,meT
m

)
. (5.98)

THe Eigenvalue assignment is possible if and only if the pair (T ∗m,e
T
mtm+1,m) is controllable,

i.e. if (5.87) holds.

As in Subsection 5.7.1, f is determined in two steps:

– compute the Controller–Hessenberg form of (T ∗m,e
T
mtm+1,m), i.e. compute unitary W

so that W ∗T ∗mW = T̃m is upper Hessenberg, and W ∗eT tm+1,m = e1t̃m+1,m.

– Compute g such that µ1, . . . ,µm−k are the eigenvalues of T̃m + e1g∗. The wanted
vector f is f = 1

t̃m+1,m
g∗W ∗.

2. Reorder
Compute the ordered Schur form of Tm + f eT

mtm+1,m so that the shifts µ1, . . . ,µm−k appear
as the eigenvalues of the (m− k)× (m− k) block S22

Tm + f eT
mtm+1,m =

(
X1 X2

)(S11 S12

0 S22

)(
X1 X2

)∗
. (5.99)

3. Restart
Multiply the decomposition (5.98) with X1 to obtain the decomposition of order k

H

(
QmUm,1X1

QmUm,2X1

)
=


Qm+1

(
Um,1X1 um+1,1−Um,1 f

0 βm+1

)

Qm+1

(
Um,2X1 um+1,2−Um,2 f

0 0

)

(

S1,1

tm+1,meT
mX1

)
. (5.100)

Denote Ûk,1 = Um,1X1,Ûk,2 = Um,2X1 and ûk+1,1 = um+1,1 −Um,1 f , ûk+1,2 = um+1,2 −
Um,2 f .

4. Restore

Another translation is used to restore the orthogonality of the matrix

Ûk,1 ûk+1,1
0 βm+1

Ûk,2 ûk+1,2
0 0

 . Let

g = Û∗k,1ûk+1,1 +Û∗k,2ûk+1,2,

and
ũk+1,1 = ûk+1,1−Ûk,1g, ũk+1,2 = ûk+1,2−Ûk,2g.
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Compute the norm γ =
√

β 2
m+1 +‖ũk+1,1‖2

2 +‖ũk+1,2‖2
2 to get

ũk+1,1 =
ũk+1,1

γ
, ũk+1,2 =

ũk+1,2

γ
, β̃k+1 =

βm+1

γ
.

5. Reduce
To get the full restarted decomposition of order k, we must truncate the orthogonal matrix
Qm+1 as well. In the first step compute the SVD decomposition(

Ûk,1 ũk+1,1 Ûk,2 ũk+1,2

0 β̃m+1 0 0

)
= PΣG∗. (5.101)

Let ηk+1 be the rank of the above matrix. Partition G =
(

G1 G2

)
so that G1,G2 ∈

Cηk+1×(k+1). The new decomposition is determined with Qk+1 = Qm+1P, Uk+1,1 = ΣG1,
Uk+1,1 = ΣG2.

Numerical example. Recall the quadratic eigenvalue problem Q(λ ) = λ 2M +λC+K with
matrix coefficients

M = 0.1I, C = I, K = tridiag(−0.1,0.2,−0.1). (5.102)

from Subsection 5.4.5. We compute the k = 2 eigenvalues with the largest magnitude with the
same parameters as in Experiment 1 of the same Subsection.
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Figure 5.11: Normwise backward errors for the eigenpair during the restarts

The implicitly restarted Krylov–Schur algorithm with arbitrary shifts described in Subsection
5.4.4 found the wanted eigenvalues in 51 restart. We implemented the Krylov–Schur algorithm
with the exact shifts, i.e. the eigenvalues of the matrix Bm in (5.97). The eigenpairs with
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the wanted normwise backward error were not found in the first 300 restarts. The normwise
backward errors of the eigenvalues during the restarts are presented in Figures 5.11a and 5.11b.
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This thesis offers new algorithms for the complete solution of the quadratic and the quartic
eigenvalue problems, as well as several improvements of the implicitly restarted Arnoldi like
methods for the partial solution of the quadratic eigenvalue problems. Although the basis of
these methods is the solution of the equivalent linear problem, considering the particularities of
the original nonlinear problem is essential for the computation of the good final approximation.

The contributions of the thesis are:

A new procedure for detecting and deflating of the zero and infinite eigenvalues of the
quadratic eigenvalue problem (λ 2M +λC+K)x = 0, before calling the QZ algorithm for the
linearized problem. It is known that the current methods, despite the prior deflation, cannot
remove all zero and infinite eigenvalues; the problem is that, if there exist more Jordan blocks
for these eigenvalues, current methods, such as the quadeig, deflate only one of them, and, in
the subsequent steps, the QZ algorithm may not detect the additional zero or infinite eigenvalues.
We developed a test for determining the existence of the Jordan blocks in the terms of the
original quadratic problem. In addition we propose the new deflation algorithm, based on the
Van Dooren’s algorithm for the Kronecker canonical form of linear pencils. Moreover, we
analyze different rank revealing strategies, as well as rank determination criteria, and show how
they impact the output. Finally, we provide numerical experiments to illustrate the advantages
of the new developed method.

An algorithm for the complete solution of the quartic eigenvalue problem (λ 4A+ λ 3B+

λ 2C+λD+E)x = 0 is proposed. It follows the ideas and the guiding principles from the deve-
lopment of the quadratic solver. In fact, instead of the direct linearization, it uses an algebraic
trick called quadratification to define an equivalent quadratic eigenvalue problem. However, the
original coefficient matrices of the problem are used for the definition of scaling and develop-
ment of the full deflation process of the zero and infinite eigenvalues. Numerical experiments
prove that our algorithm is much better than direct application of the state of the art methods
quadeig and polyeig (MATLAB).

The methods for the partial solution of the quadratic eigenvalue problems are also analyzed.
New contributions to the implicit restarting of the two level orthogonal Arnoldi algorithm are
developed and tested to demonstate their effectiveness in practical computations. In particular,
the important class of the overdamped problems is considered in more details and a new strategy,
based on tropical roots, is shown to deliver superior performance. Moreover the new starting
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vectors for these methods are proposed as well. Finally, the thesis show a direction in which one
can develop an efficient Krylov-Schur based method for the quadratic eigenvalue problem; for
start it is shown how to enable using arbitrary shifts in a restarting procedure.
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