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Stellingen (Claims) 

1) QALYs (Quality Adjusted Life Years) describe the preferences of a 

representative agent well. Previously observed violations were probably due to 

violations of expected utility rather than to violations of the QALY model 

itself. 

2) Generalized statements about preferences are possible even if a sample is not 

representative and the number of observations is limited. 

3) In many everyday situations, people do not optimize a classical utility 

function, but rather they decide based on similarities. 

4) Geographical vicinity is more important than the type of dwelling (house 

versus apartment) in forming expectations about the price development of real 

estate. 

5) Distributions are as important as averages. Estimating social welfare functions 

of individuals is therefore as crucial for applications of decision theory in 

practical policy making as estimating preferences of a representative agent. 

6) A QALY is not a QALY. There are other important considerations at play. 

7) Low numbers of transactions in real estate market downturns can be attributed 

to loss aversion and the endowment effect. Prospect theory can explain why it 

makes sense to use a lottery rather than a straightforward sale in a bear real 

estate market. 

8) Revealed preference is an important principle in both scientific research and 

real life. 

9) Most people, in most settings, exhibit other-regarding preferences. 

10) Estate tax is a fair and efficient means of raising government revenue. 

11) Polygraph is an unreliable means of establishing a person’s general 

trustworthiness or specific truth telling. It is easy to cheat. 
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mo•men•tous  [mōˈmentəs] 

Adjective 

(of a decision, event, or change) Of great importance or significance,  

especially in its bearing on the future. 

Synonyms 

important – weighty – significant – grave – serious 
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Chapter 1 

Introduction 

During more than half a century, several strands of research contributed to the 

development of decision theory. The standard normative model for choice under 

uncertainty – expected utility – was given a foundation by von Neumann and 

Morgenstern (1944) and Savage (1954). It advised – and expected – reasonable actors 

to evaluate the consequences of their actions by the weighted sum of their utility, 

using probabilities of these consequences as weights. Utilities were derived from the 

choices made by actors themselves, and together with probabilities should be 

evaluated in a simple linear fashion. It can be shown that under certain reasonable 

conditions, behavior resulting from the theory is rational. 

Economists traditionally assumed that the standard model is also valid descriptively 

(Arrow, 1951). They assumed that, even though individual human beings can err and 

deviate from the theory, these deviations are not systematic, and the theory’s 

predictions for the consequences of economics action hold well (e. g., the as-if 

hypothesis, Friedman, 1953). However, with the advent of decision research in 

psychology, the building began to crack. Allais (1953) showed that reasonable people 

could make a series of choices violating expected utility. And, interestingly, stick with 

them even after the violations are pointed out. Even more fundamentally, Ellsberg 

(1961) showed that people may not be able to assign subjective probabilities to 

events. 

Mathematical psychologists Kahneman and  Tversky went beyond simple cataloging 

the quirks of human decisions. Their prospect theory (Kahneman and Tversky, 1979) 

was an extension of the standard model, simple enough to be used in both economic 

theorizing and interdisciplinary discussions, and powerful enough to explain some of 

the most striking paradoxes of human choice. It was also based on three intuitive 

notions – that people give more weight to small probabilities of extreme outcomes, 

that people evaluate consequences as changes from the reference point rather than as 

static states of the world, and that losses looms larger than gains. Importantly, it 

showed that Allais’ and Ellsberg’s findings were not an oddity for extreme choice 
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situations of minor importance, but were central in economics, affecting central 

questions there. 

In the meantime, applications of decision research began to flourish. Medical decision 

making was one of the domains where applications of descriptively adequate decision 

models come naturally, given the importance – both economic and human – of the 

decisions being made. Limitations to using standard cost-benefit models based on life-

expectancy as an outcome measure were partially overcome by the development of 

utility-based outcome indicators such as the QALY (Quality-Adjusted Life Years) 

model (Pliskin, Shepard and Weinstein, 1980). QALYs, a product of health quality 

and life duration if health is static, or the sum of health qualities over the specific 

time-points in general, turned out to be both intuitive enough for policy makers and 

tractable enough to be used in theory.  

To explain actual choices that humans make, some researchers took a route different 

to tinkering with the standard states-of-nature model of Savage (1954). Gilboa and 

Schmeidler (1995) noticed that some decision situations lend themselves to thinking 

in analogies, rather than in terms of probabilities. In their case-based decision theory 

(CBDT), outcomes resulting from actions are still being evaluated in utility terms. 

Nonetheless, they are being weighted by their similarity to the previous situations 

rather than by their probabilities. 

In the coming chapters of this thesis, I will draw heavily from the research streams 

described above. Some of the questions raised by a theoretical research in 

nonstandard decision making will be investigated empirically, especially in an applied 

context of health and real estate. 

One of the more general questions in health decision making is whether life quality 

and life duration are separable. Utility independence is a central condition in 

multiattribute utility theory, where attributes of outcomes are aggregated in the 

context of risk. The aggregation of attributes in the absence of risk is studied in 

conjoint measurement. In conjoint measurement, standard sequences have been 

widely used to empirically measure and test utility functions, and to theoretically 

analyze them. Chapter 2 of this thesis shows that utility independence and standard 

sequences are closely related: Utility independence is equivalent to a standard 
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sequence invariance condition when applied to risk. This simple relation between two 

widely used conditions in adjacent fields of research is surprising and useful. It 

facilitates the testing of utility independence because standard sequences are flexible 

and can avoid cancellation biases that distort direct tests of utility independence. 

Extensions of our results to non-expected utility models such as prospect theory can 

now be provided easily. We discuss applications to the measurement of quality-

adjusted life-years (QALY). 

The QALY model has been mostly refuted for chronic health states (for an overview 

see Bleichrodt and Pinto-Prades, 2006), but what if this was caused by violations of 

the confounding assumption of expected utility rather than of the additive QALY 

model itself? Chapter 3 performs new tests of the QALY model when health varies 

over time. These tests do not involve confounding assumptions and are robust to 

violations of expected utility. The results support QALYs at the aggregate level, i.e. in 

economic evaluations of health care. At the individual level, there is less support for 

QALYs. The individual data are, however, largely consistent with a more general 

QALY-type model that remains tractable for applications.  

The paper constituting Chapter 3 has been criticized by Gandjour and Gafni (2010) on 

two counts. First, they argue that it is possible that the condition tested, generalized 

marginality, is not sufficient to imply the QALY model. In other words, subjects may 

simultaneously satisfy generalized marginality and violate the QALY model. Second, 

Gandjour and Gafni argue that we cannot make generalized statements about 

preferences because our sample is not representative. Related to this, they argue that 

we cannot conclude in support of a particular model based on a limited number of 

tests because the variety of health profiles is essentially endless. In Chapter 4, I show 

that Gandjour and Gafni’s first point of criticism is wrong. Their arguments contain 

many mathematical mistakes implying that their counterexamples are wrong and, 

therefore, that all their corresponding speculations are irrelevant. Their other points of 

criticism are completely standard (Popper, 1934, 1963) and reflect a lack of 

understanding of the general principles underlying all empirical studies in all fields of 

science. Moreover, these points have actually been acknowledged and discussed in 

our original paper as they are in Chapter 4. 
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In Chapter 5, I turn my attention to an alternative explanation of human decision 

making. What if people do not optimize a classical utility function, but rather decide 

based on similarities? The latter is a natural approach in many circumstances. If we 

choose a dish from a menu then we think of similar experiences in the past. Gilboa & 

Schmeidler’s case-based decision theory (CBDT) is an alternative to Savage’s state-

space model for uncertainty. Preferences are determined by similarities with cases in 

memory. A difficulty in experimental implementations of CBDT has so far been that 

not only the income effect, well known from classical theories, but also interaction 

between different memories assumed in different experimental questions, has to be 

avoided, and no way was known hitherto to avoid such interactions. Chapter 5 

introduces such a method to elicit CBDT, requiring no commitment to parametric 

families and relating directly to decisions. An experiment on real estate investments 

demonstrates the feasibility of the method. I confirm CBDT’s predictions with 

however one violation, being separability of cases in memory. I conclude that CBDT 

gives plausible predictions and new insights into (real estate investment) decisions. 
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Chapter 2
1
 

Utility Independence of Multiattribute Utility Theory  

is Equivalent to Standard Sequence Invariance  

of Conjoint Measurement 

 

Summary 

 

Utility independence is a central condition in multiattribute utility theory, where 

attributes of outcomes are aggregated in the context of risk. The aggregation of 

attributes in the absence of risk is studied in conjoint measurement. In conjoint 

measurement, standard sequences have been widely used to empirically measure and 

test utility functions, and to theoretically analyze them. This chapter shows that utility 

independence and standard sequences are closely related: Utility independence is 

equivalent to a standard sequence invariance condition when applied to risk. This 

simple relation between two widely used conditions in adjacent fields of research is 

surprising and useful. It facilitates the testing of utility independence because standard 

sequences are flexible and can avoid cancellation biases that affect direct tests of 

utility independence. Extensions of our results to nonexpected utility models can now 

be provided easily. We discuss applications to the measurement of quality-adjusted 

life-years (QALY) in the health domain. 

Keywords: Utility independence, standard sequences, multiattribute utility, conjoint 

measurement, nonexpected utility. 

                                                 

1
 This chapter was published as Bleichrodt, H., Doctor, J. N., Filko, M., Wakker, P. P. (2011). Utility 

Independence of Multiattribute Utility Theory is Equivalent to Standard Sequence Invariance of 

Conjoint Measurement. Han Bleichrodt’s research was made possible by a grant from the Netherlands 

Organisation for Scientific Research (NWO). Martin Filko’s research was made possible by a grant 

from DSW health insurance. 
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2.1 Introduction 

Utility independence is widely used in decision analysis (Keeney & Raiffa, 1976; 

Guerrero & Herrero, 2005; Engel & Wellman, 2010). In medical decision making, 

utility independence underlies the health utility index, a widely used method to derive 

utilities for multiattribute health states (Feeny, Furlong, Torrance, Goldsmith, Zhu, 

Depauw, Denton, & Boyle, 2002; Feeny, 2006). Analyses of utility independence are 

usually based on the normatively convincing, but descriptively problematic, expected 

utility theory for choices between risky prospects (probability distributions over 

outcomes). Then the condition usually implies that multiattribute utility is additive, 

multiplicative, or multilinear. 

Utility independence concerns situations where the levels of some attributes are fixed 

deterministically. The condition then requires that preferences between prospects over 

the remaining attributes should be independent of the fixed deterministic levels. This 

requirement has often been tested directly (Miyamoto & Eraker, 1988; Bleichrodt & 

Johannesson, 1997; Bleichrodt & Pinto, 2005; Spencer & Robinson, 2007). One 

problem with direct tests of utility independence is that they induce subjects to ignore 

the common fixed values, not because this is their true preference but rather as a 

heuristic to simplify the task before any consideration of true preference (Kahneman 

& Tversky, 1979, the cancellation heuristic). That such distorting heuristics can 

sometimes increase consistency, misleadingly suggesting verification of preference 

conditions, was emphasized by Loomes, Starmer, & Sugden (2003). For direct tests of 

utility independence the cancellation heuristic will indeed create artificial support for 

the condition. 

A second problem with traditional analyses of utility independence is that they have 

been based on expected utility maximization. There is, however, much evidence that 

expected utility is violated empirically (Allais, 1953; Ellsberg, 1961; Kahneman and 

Tversky 1979; Starmer, 2000). Extensions of utility independence to nonexpected 

utility models include Bier & Connell (1994), Bleichrodt, Schmidt, & Zank (2009), 

Bouyssou & Pirlot (2003), Dyckerhoff (1994), and Miyamoto & Wakker (1996). 
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The aggregation of attributes is also studied in conjoint measurement (Krantz, Luce, 

Suppes, & Tversky, 1971). Unlike multiattribute utility theory and decision analysis, 

conjoint measurement does not assume risk to be present. However, one can still use 

the techniques of conjoint measurement in the presence of risk. This is the approach 

to multiattribute utility taken in this chapter. A common technique underlying many 

results in conjoint measurement is the construction of standard sequences.
2
  These are 

sequences of attribute levels that are equally spaced in utility units, endogenously 

derived from preferences without using the utility function. In marketing, standard 

sequences are used in the saw-tooth method (Fishburn, 1967; Louviere, Hensher, & 

Swait, 2000). Krantz et al. (1971) explain the importance of standard sequences in 

great detail. Many preference conditions amount to invariance of particular standard 

sequences. By imposing such specific invariance conditions, specific functional forms 

of the multiattribute utility function can be derived.
3
 

This chapter shows that there exists a surprisingly simple relation between 

multiattribute utility and conjoint measurement: utility independence is equivalent to a 

version of standard sequence invariance. This opens new and useful ways to analyze 

utility independence. Standard sequence techniques are flexible and efficient and they 

can avoid the aforementioned cancellation bias. Further, they give direct quantitative 

measurements of utility, which is useful in its own right. They do not directly appeal 

to risk, as does utility independence, but they focus on tradeoffs between attributes, 

avoiding the complications of risky decisions. Finally, they can easily be extended to 

nonexpected utility models, offering the possibility to design tests of utility 

independence that are robust to violations of expected utility. 

                                                 

2
 See Abdellaoui (2000), Baron (2008, Chs. 10 and 14), Booij & van de Kuilen (2009), Fishburn & 

Rubinstein (1982, pp. 682-3 and Figure 1), Loewenton & Luce (1966), von Winterfeldt & Edwards 

(1986, p. 267). 

3
  See Bouyssou & Pirlot (2004), Ebert (2004), Fishburn & Edwards (1997, Axiom 8), Gilboa, 

Schmeidler, & Wakker (2002) Harvey (1986, p. 1126), Casadesus-Masanell, Klibanoff, & Ozdenoren 

(2000), Krantz et al. (1971), Nau (2006, Axiom 4), Schmidt (2003), Skiadas (1997) , Stigler (1950), 

Tversky & Kahneman (1992), Tversky, Sattath, & Slovic (1988), Wakker (1984), Wakker (2010), 

Wakker & Tversky (1993). 
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2.2 Notation 

We start by assuming a simple model on a simple domain (a rank-ordered set of 

binary prospects) that is present as a substructure in expected utility but also in most 

nonexpected utility models. In all these models, the theorems that we obtain within 

the simple model immediately extend to the whole model. Consequently, our main 

result, Observation 5.2, applies to all these (non)expected utility models. Miyamoto 

and Wakker (1996) similarly used rank-ordered binary prospects to obtain results for 

many nonexpected utility theories. 

We consider decision under uncertainty with one event E. E is uncertain in the sense 

that the decision maker does not know for sure if it is true (“will happen”) or not. An 

objective probability p of E may (the case of risk) or may not (the case of uncertainty 

and ambiguity) be given. Our analysis applies to either case. We consider prospects 

x E y yielding outcome x if E is true and outcome y otherwise. If an objective 

probability p is given for E, then we can also write x p y. X denotes the outcome set. 

A preference relation  is given over the outcomes. The domain of prospects is rank-

ordered: We assume without further mention that always  x  y in prospects x E y. 

The resulting rank-ordered
4
 set of prospects is denoted X

2


. A preference relation ´ is 

given on X
2


. Constant prospects, x E x, yielding outcome x for sure are identified with 

that outcome x. The preference relation ´ generated over outcomes is assumed to 

agree with . Thus ´ defined over prospects is an extension of  defined over 

outcomes. We will therefore write  instead of ´ henceforth. Strict preference and 

indifference are defined as usual, and are denoted  and ~. 

We assume that the outcome set X is a two-attribute product set Q  T, with generic 

element x = (Q,T). Q designates the first attribute and T designates the second, and Q 

and T are attribute sets. For example, if outcomes are chronic health states then Q 

designates a health state and T designates a time period (life duration). The extension 

of our results to cases of more than two attributes will be presented in §5. 

                                                 

4
 Another widely used term in the literature is comonotonic. 
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We assume throughout that preferences over prospects (Q1,T1) E (Q2,T2) can be 

represented by 

 U(Q1,T1) + (1)U(Q2,T2). (2.1) 

Here U: QT   is the utility function, whose particular form is the central topic of 

multiattribute utility and of this chapter. The decision weight of event E is 0 <  < 1. 

Equation (2) includes virtually all decision theories known today. Well-known 

examples are: (a) Expected utility where  = P(E) is the probability of event E, 

objective in the case of risk and subjective in the case of uncertainty; (b) rank-

dependent utility for risk (Quiggin, 1982) where  = w(p) with p the objective 

probability of event E and w a probability weighting function; (c) rank-dependent 

utility for uncertainty (also called Choquet expected utility) or prospect theory where 

 = W(E) with W a nonadditive weighting function or capacity (for gains under 

prospect theory); (d) maxmin expected utility (Gilboa & Schmeidler, 1989). Further 

details are in the footnote to Observation 5.2, and in Wakker (2010, §§6.11 and 10.6). 

2.3 Utility independence 

The second attribute T is utility independent if 

    (Q,T1) E (Q,T2)    (Q,T3) E (Q,T4) 

                             

    (Q,T1) E (Q,T2)  (Q,T3) E (Q,T4) (3.1) 

for all Q,Q and for all T1,T2,T3,T4. That is, preferences do not depend on the 

particular deterministic level at which Q is fixed. As throughout, it is implicitly 

assumed that all prospects are contained in X
2


. Preferential independence is utility 

independence restricted to constant prospects: 

    (Q,T1)  (Q,T3) 

               

    (Q,T1)  (Q,T3). (3.2) 
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In economic consumer theory, preferential independence is known as separability of 

T, and in conjoint measurement (Krantz et al., 1971) it is part of joint independence. 

Preferential independence implies that we can define preferences over the second 

attribute T independently from the first attribute. It is naturally satisfied if T is an 

interval and monotonicity holds. A convenient implication of preferential 

independence is that changing Q in Eq. 3.1 does not affect rank-ordering. That is, the 

upper two prospects in Eq. 3.1 are contained in X
2


 if and only if the lower two are. 

Utility independence of T holds if U is additive (U(Q,T) = V(Q) + W(T)) or 

multiplicative (U(Q,T) = V(Q)W(T)) with all values V(Q) of the same sign, which can 

then be taken positive. Under additional conditions, utility independence is not only 

necessary, but also sufficient for U being additive or multiplicative (Miyamoto and 

Wakker, 1996, Theorem 3). Then, in Eq. 3.3 below, f or g has to be constant. The 

following theorem extends a well known result from classical setups to our domain  

X
2


. 

THEOREM 3.1. Assume that the image of the function T  U(Q,T) is an interval for all 

Q. Then T is utility independent if and only if 

 U(Q,T) = f(Q)V(T) + g(Q) (3.3) 

for some functions f, V, g with f positive.  

2.4 Standard sequence invariance 

A convenient feature of the standard sequence technique introduced next is that it is 

directly related to the empirical measurement of utility. T0, …, Tn is a (Q-)standard 

sequence if there exist Q*, Tg, and TG such that, for i = 0,…, n1, 

 (Q*,Tg) E (Q,Ti+1) ~ (Q*,TG) E (Q,Ti) . (4.1) 

(Q*,Tg) and (Q*,TG) are called gauge outcomes. They serve as a measuring rod to peg 

out the standard sequence. For later purposes, it is of interest to note that Q* and Q 
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can be different. The proof of the following lemma is given in the main text because it 

may be clarifying. 

LEMMA 4.1. Under Eq. 2.1, a Q-standard sequence is equally spaced in utility units 

(U(Q,Ti+1)  U(Q,Ti) is independent of i). 

PROOF. By Eq. 2.1, the (1) weighted differences U(Q,Ti+1)  U(Q,Ti) all match 

exactly the same  weighted difference U(Q*,TG)  U(Q*,Tg).  

We now turn to comparisons of standard sequences for different values of Q. A Q-

standard sequence T0, T1, T2,… and a Q´-standard sequence T0´, T1´, T2´, … are 

inconsistent if they satisfy T0 = T0´ and T1 = T1´, but, for some i > 1, Ti and Ti´ are not 

equivalent in the sense that (Q, Ti) /~ (Q, Ti´) or (Q´, Ti)  /~ (Q´, Ti´).
5
  Under Eq. 2.1, 

inconsistencies are possible because equal spacedness for U(Q,.) need not correspond 

with equal spacedness for U(Q´,.). Standard sequence invariance on T means that 

such inconsistencies are excluded for all Q, Q´  Q. 

THEOREM 4.2. Assume Eq. 2.1, with the image of the function T  U(Q,T) an interval 

for each Q. Preferential independence of T and standard sequence invariance on T 

hold if and only if 

 U(Q,T) = f(Q)V(T) + g(Q) (4.2) 

for some functions f, V, g with f positive.  

The comparison of Theorems 3.1 and 4.2 establishes an interesting connection 

between conjoint measurement and multiattribute utility because the necessary and 

sufficient form in Eq. 3.3 is identical to that in Eq. 4.2: Under preferential 

independence and richness, standard sequence invariance on T is equivalent to utility 

independence of T!  That is, we can test utility independence by testing standard 

sequence invariance. We can now for instance reduce the cancellation heuristic by 

taking different Q and Q* in Eq. 4.1. This way, we can avoid biases that have 

distorted traditional tests of utility independence. We will state the relations between 

                                                 

5
 It can be seen that Eq. 2.1 implies Q´  Q.  
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utility independence and standard sequence invariance formally in the following 

section. 

We next provide an axiomatization of multiplicative utility, useful for QALY 

measurement in health (§6). We call T0T a null element if (R,T0) ~ (R´,T0) for all R 

and R´. 

OBSERVATION 4.3. Assume that Eqs. 2.1 and 4.2 hold. If T contains a null element 

then g(Q) is constant and can be taken equal to 0, giving a multiplicative 

representation 

 U(Q,T) = f(Q)V(T) . (4.3) 

 

For similar results, see Miyamoto, Wakker, Bleichrodt, & Peters (1998, Theorem 3.1) 

and Bleichrodt and Pinto (2005, Theorem 2). A remarkable implication of the above 

result is that Q then also is utility independent on the subdomain where V is positive 

(which excludes the null element). 

We have defined standard sequences for outcomes under not-E, that is, outcomes 

ranked worst and less preferred than the gauge outcomes. Standard sequences can 

equally well be defined for outcomes under E, when they are ranked best and are 

preferred to the gauge outcomes, using the following indifferences: 

 (Q,Ti+1) E (Q*,Tg) ~ (Q,Ti) E (Q*,TG). (4.4) 

For representation theorems, the topic of this chapter, it is desirable to use weak 

preference conditions in order to obtain the logically strongest theorems. For 

empirical investigations it can be interesting to consider more restrictive preference 

conditions, to obtain more possibilities to falsify a theory or to measure its concepts. 

Hence, for empirical purposes it may be interesting to also consider standard 

sequences defined in Eq. 4.4 and to investigate consistency properties between such 

larger classes of standard sequences. It easily follows that we should also have 

invariance here under Eq. 4.2. 
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Remark A.2 will indicate a mathematical generalization of our theorems that we do 

not present in the main text because it loses the empirically attractive reduction of the 

cancellation heuristic. An interesting feature of the weaker preference condition used 

there is that it is a common weakening of utility independence and standard sequence 

invariance. Thus the two conditions are different strengthenings of a common 

underlying necessary and sufficient condition. This observation clarifies the 

mathematical nature of our results. 

2.5 Generalizations and main result 

We first extend our results to n-attribute utility. Assume that X is X1  ...  Xn for a 

natural number n  2, with generic element (x1, …, xn). Let I  {1,…,n} and write T 

= iIXi and Q = iIXi. We can write X = Q  T. Utility independence of I is defined 

as utility independence of T (Eq. 3.1). That is, if the attribute levels outside of I are 

kept fixed at deterministic levels, then the preferences generated over prospects over 

T are independent of the deterministic levels chosen. We can define standard 

sequences on iIXi exactly as in Eq. 4.1, where now Tg, Ti+1, TG, Ti jIXj, and Q*, 

Q  iIXi. Standard sequence invariance on iIXi requires consistency between 

standard sequences in iIXi for all Q and Q in iIXi. The following theorem 

immediately follows from Theorems 3.1 and 4.2. 

THEOREM 5.1. Assume a preference  on X
2


, with X = X1  ...  Xn, and I  {1,…,n}. 

Let T = iIXi and Q = iIXi. Preferences are represented by Eq. 2.1 (with T = (xi)iI 

and Q = (xi)iI). The image of (xi)iI  U((xj)jI,(xi)iI) is an interval for each (xj)jI. 

Then I is utility independent if and only if iIXi is preferentially independent and 

standard sequence invariance on iIXi holds.  

We next consider decision theories defined on general domains of prospects, leading 

to our main result. Now prospects can be probability distributions over outcomes with 

more than one probability involved, or mappings from multi-element state spaces to 

outcomes, and prospects need not all have the same rank-ordering. The definition of 

utility independence needs no adaptation: On all subproduct domains, preference is 

independent of the deterministic level at which outside attributes are kept fixed. We 
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define standard sequence invariance by defining standard sequences on all subsets 

isomorphic to X
2


 (two outcomes and a fixed event or probability, always with the 

same rank ordering). No inconsistencies should result both within sets X
2


 and across 

different sets X
2


.  In many theories, this definition can be extended. For example, 

under rank-dependent utility it can be extended to all multi-event sets of prospects 

that are comonotonic (defined in Wakker 2010, §10.12). For brevity, we do not 

elaborate on this point. 

OBSERVATION 5.2. Let X = X1  ...  Xn be a set of outcomes, and let  be a 

preference relation on a set of prospects. Prospects can be probability distributions 

over X (risk), or functions from a state space S to X (uncertainty). The set of 

prospects is rich enough to contain a set of the form X
2


. Preferences are represented 

by a model that implies Eq. 2.1 on X
2


 with the same utility function U as in Eq. 2.1 

used throughout the domain. The utility function is an interval scale, i.e. preferences 

are not affected if a constant is added to utility or if utility is multiplied by a positive 

constant.
6
  If, for a set I  {1,…,n}, the utility image of iIXi is an interval whenever 

the attributes outside of I are kept fixed, then utility independence of I is equivalent to 

preferential independence and standard sequence invariance on iIXi.  

2.6 An application to health 

This section applies the above results to medical decision making. Outcomes (Q,T) 

are chronic health states, with Q describing the constant health state and T the life 

                                                 

6
 The requirements in our observation hold for most theories that are popular today. These include 

expected utility for risk (von Neumann & Morgenstern, 1944) and for uncertainty (Savage, 1954), 

rank-dependent utility for risk (Quiggin, 1982) and for uncertainty (Gilboa, 1987; Schmeidler, 1989), 

prospect theory if there are only gains (Luce & Fishburn, 1991; Tversky and Kahneman, 1992), 

disappointment aversion theory (Gul, 1991), maxmin expected utility (Gilboa and Schmeidler 1989; 

Wald, 1950) and the -maxmin model (Hurwicz, 1951; Jaffray, 1994), contraction expected utility 

(Gajdos, Hayashi, Tallon, & Vergnaud, 2008), and binary rank-dependent utility (Luce, 2000, Ch. 3; 

Ghirardato & Marinacci, 2001; Wakker, 2010, §§6.11, 10.6). Observation 5.2 applies to all these 

theories. 
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duration spent in this health state, followed by death. Unlike in economics or 

psychology, statistical probabilities of risks are often available in the health domain. 

We will assume that prospects are probability distributions over chronic health states. 

The utility of life duration T is described by a function V. The commonly found 

subjective time preferences and discounting imply that V is concave, with future life 

years contributing less to V than the first life years to come. Since the 1980s it has 

become customary to correct life duration for quality of life, leading to the QALY 

model f(Q)V(T), where f designates the correction factor due to the subjective quality 

of life of health state Q. The QALY model is widely used in health policy. 

Preference axiomatizations can serve to justify the use of QALYs as outcome measure 

(Pliskin, Shepard, & Weinstein, 1980; Miyamoto & Eraker, 1988; Bleichrodt & 

Quiggin, 1997; Bleichrodt, Wakker, & Johannesson, 1997; Miyamoto et al., 1998; 

Miyamoto, 1999; Bleichrodt & Miyamoto, 2003; Doctor & Miyamoto, 2003; Doctor, 

Bleichrodt, Miyamoto, Temkin, & Dikmen, 2004; Bleichrodt and Pinto, 2005). 

Observation 4.3, combined with Theorem 4.2, provides a new foundation of the 

QALY model with standard sequence invariance instead of utility independence. Here 

T = 0 life years naturally serves as the null element required by Observation 4.3. 

Standard sequence invariance entails that tradeoffs between life-years (discounting) 

are not different under different health states. This condition will sometimes be more 

intuitive than utility independence, which appeals to risk attitudes for life-years rather 

than to direct tradeoffs between life-years and intertemporal preferences. 

Obviously, if standard sequence invariance is prescriptively objectionable then 

Observation 4.3 shows that the QALY model is prescriptively objectionable. Standard 

sequence invariance can also be used to test the descriptive (rather than prescriptive) 

validity of the QALY model. A tractable way of testing is as follows. First elicit a Q-

standard sequence T0,T1,…Tk through indifferences 

 (Q*,Tg) p (Q,Ti+1) ~ (Q*,TG) p (Q,Ti) . 

as in Eq. 4.1, where the new value to be elicited in each indifference has been printed 

bold. Next take a health state Q´  Q and a health state Q**, which can be but need 

not be different from Q*. Then use a “bridge” question 
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 (Q**,Tg) p (Q´,T1) ~ (Q**,TG´) p (Q´,T0) 

to find new gauge outcomes (Q**,Tg)
7
 and (Q**,TG´) that should provide the same 

standard sequence starting with T0 and T1. Then elicit a second standard sequence T0, 

T1,…,Tk: 

 (Q**,Tg) p (Q´,T 
i+1) ~ (Q**,TG´) p (Q´,Ti). 

We can then test whether the two standard sequences agree, as required by standard 

sequence invariance and the QALY model. A useful spinoff of these measurements is 

that they directly measure the utility functions (i.e., discounting) for life duration 

under Q and Q´ (Wakker & Deneffe, 1996). If these are different under Q than under 

Q´ then the QALY model is violated. 

The measurements proposed above are chained, with answers to one question serving 

as input of next questions. A drawback of chaining is that errors propagate. Our 

consistency questions indicated that the errors in most responses were modest. 

Simulation studies for standard sequences have suggested that the problem of error 

propagation is not very serious (Bleichrodt & Pinto, 2000, p. 1495; Abdellaoui, 

Vossmann, & Weber, 2005, p. 1394, §5.3 end; Bleichrodt, Cillo, & Diecidue, 2010, p. 

164; van de Kuilen & Wakker, 2011; Conte, Hey, & Moffatt, 2011). 

2.7 Conclusion 

We have demonstrated that standard sequences, a tool commonly used in conjoint 

measurement (where no risk is assumed), can also be used in multiattribute utility 

theory (where risk is assumed). They provide convenient tools to characterize and 

analyze utility independence, the most widely used preference condition in 

multiattribute utility theory. In particular, they facilitate the study of the QALY model 

for health decisions. 

                                                 

7
 Tg can but need not be equal to Tg.  
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Appendix. Proofs 

PROOF OF THEOREM 3.1. That the functional form implies utility independence follows 

from substitution. Hence we assume utility independence, and derive the functional 

form. 

Fix a Q*. If the corresponding utility interval is one-point, then by utility 

independence preference is independent of T, V is constant, and everything follows. 

Hence, assume that the interval is nonpoint. Then with V(T) = U(Q*,T), this function 

is an interval scale in the representation (T1,T2)  V(T1) + (1)V(T2), which 

means that it is unique up to level and unit. This uniqueness is well known if we have 

an expected utility representation on the full, nonrank-ordered, product set T
2
 

(resulting from X
2
 by keeping Q = Q* fixed), which is a special case of an additive 

conjoint representation with Krantz et al.´s (1971) restricted solvability satisfied.
8
  It 

is also well known if we have a rank-dependent representation on the full product set 

T
2
 (Wakker, 1991). That it also holds when restricted to the rank-ordered set T

2


 

(resulting from X
2


 by keeping Q = Q* fixed) as in our setup follows from 

Chateauneuf & Wakker (1993, Theorem 2.2 and Lemma C.4). 

By utility independence the same preferences hold over pairs (T1,T2) with Q fixed at 

every other level Q´  Q*. By interval scaling, we have U(Q´,T) = f(Q´)V(T) + g(Q´) 

with f(Q´) positive. This way we obtain the functions f and g.  

PROOF OF THEOREM 4.2. If the functional form in the theorem holds, then all Ts are 

ordered by V, implying preferential independence. Further, then all standard 

sequences are equally spaced in V units, and they must be consistent. This implies 

standard sequence invariance on T. 

In the rest of this proof we assume standard sequence invariance on T and preferential 

independence and derive Eq. 4.2. By preferential independence we can define a 

                                                 

8
 Here, and in what follows, we have continuity with respect to the product topology of the order 

topology generated over T, where the crucial point is that this topology is connected (it is also 

topologically separable). The result can be seen in more elementary terms if we transform all values T 

into V(T), giving a weighted additive representation with linear value functions. 
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preference relation over T independently of Q, that we will denote . Thus T  T´ if 

(Q,T)  (Q,T´) for some Q, which then holds for all Q. 

Take some Q  Q*. Define V(T) = U(Q,T) and V*(T) = U(Q*,T). By preferential 

independence, V and V* both represent  over T and V* = V for a strictly 

increasing  that is continuous because it maps an interval onto an interval. 

Take a T with V(T) in the interior of V(T). Hence, T is not maximal in T. T will be 

fixed until the last lines in the proof. Define an open interval S around V(T) so small 

that there is a “dominating” interval D in V(T) above the interval S large enough to 

imply, for all T1 and T0 in V
1

(S), existence of Tg and TG in V
1

(D) such that 

 (Q,Tg) E (Q,T1) ~ (Q,TG) E (Q,T0). (A.1) 

In words: each (1) weighted V difference in S can be matched by a -weighted V 

difference in D. 

We similarly define an open interval S* around V*(T) so small that there is a 

dominating interval D* in V*(T) above the interval S* large enough to imply, for all 

T1 and T0 in V*
1

(S*), existence of Tg* and TG* in V*
1

(D*) such that 

 (Q*,Tg*) E (Q*,T1) ~ (Q*,TG*) E (Q*,T0). (A.2) 

That is, each (1) weighted V* difference in S* can be matched by a -weighted V* 

difference in D*. 

Take a T
+
  T so close to T that both V(T

+
)  S and V*(T

+
)  S*. Similarly, take a T


 

 T so close to T that both V(T

)  S and V*(T


)  S*. We consider the preference 

interval {T´T: T

  T´  T

+
} around T and two of its elements T0  T2. We can find 

T1 such that T0, T1, and T2 are equally spaced in V units, and T1* such that T0, T1* 

and T2 are equally spaced in V* units. 
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LEMMA A.1. T1 ~ T1*. 

PROOF. (The end of the proof of this lemma will be indicated by QED.)  For 

contradiction, assume T1  T1* (the case with  is similar and is not discussed). 

Because the V values of T0, T1, and T2 are contained in V
1

(S), there exist Tg and TG 

in V
1

(D) such that, for i = 0: 

 (Q,Tg) E (Q,Ti+1) ~ (Q,TG) E (Q,Ti). (A.3) 

Because T2 and T1 have the same V difference as T1 and T0, Eq. A.3 also holds for i = 

1. That is, T0, T1, T2 is a Q-standard sequence. 

Because T1  T1*, we can find T2*  T2 such that T0, T1, T2* are equally spaced in 

V* units. 

Similar to Eq. A.3, because the V* values of T0, T1, and T2* are contained in 

V*
1

(S*), there exist Tg* and TG* in V*
1

(D*) such that 

 (Q*,Tg*) E (Q*,T1) ~ (Q*,TG*) E (Q*,T0) (A.4) 

and 

 (Q*,Tg*) E (Q*,T2*) ~ (Q*,TG*) E (Q*,T1). (A.5) 

Eqs. A.4 and A.5 imply that T0, T1, T2* is a Q*-standard sequence. Because T2*  T2, 

a contradiction results with standard sequence invariance on T. QED 

Because T1 ~ T1*, T1 (and also T1*) is both the V and the V* midpoint of T0 and T2. 

Hence, on {T´T: T

  T´  T

+
}, V and V* midpoints are the same. With V* = V, 

the continuous function  satisfies ((v1 + v2)/2) = ((v1) + (v2))/2 on the interval 

(V(T

), V(T

+
)) around V(T). It must be affine on this interval (Aczel, 1966 §2.1.3) 

and have second derivative 0 there, including at T. 

The continuous and strictly increasing  has second derivative 0 at all T in the interior 

of its domain V(T). This implies that it is affine everywhere. Hence V*(T) = U(Q*,T) 

= f(Q*)V(T) + g(Q*) for a positive f(Q*). This implies Eq. 4.2. 
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REMARK A.2. In this proof, we only used standard sequences in Eq. 4.1 with Q* = Q. 

Hence the theorem remains valid if we define standard sequences only for Q* = Q in 

Eq. 4.1, and impose standard sequence invariance only for those standard sequences. 

The resulting condition is mathematically interesting because it is a common 

weakening of utility independence and standard sequence invariance, implying that 

the resulting modification of Theorem 4.2 is an immediate generalization of the 

theorems with utility independence in the literature. We chose the stronger version of 

standard sequence invariance in our main text because it is empirically more useful.  

PROOF OF OBSERVATION 4.3. Substituting the null element in Eq. 4.2 shows that g(Q) 

must be constant. It can be taken 0 because U is an interval scale.  

PROOF OF OBSERVATION 5.2. Assume utility independence on a set of the form X
2


. 

This implies Eq. 3.3 for utility. This, in turn, implies utility independence on the 

whole domain of prospects because changing the deterministic level of some 

attributes amounts to an interval rescaling of utility, which does not affect preference. 

Utility independence on the whole domain trivially implies utility independence on 

the set X
2


. Hence Eq. 3.3 and the two versions of utility independence are equivalent. 

Next assume standard sequence invariance on a set of the form X
2


. This implies Eq. 

4.2 for utility. This, in turn, implies standard sequence invariance on every set 

isomorphic to a set X
2


. Hence Eq. 4.2 and the two versions of standard sequence 

invariance are equivalent. 

REMARK A.3. Although we did not formally define standard sequences on larger 

domains, it can readily be seen that such versions are easy to obtain. Replacing the 

deterministic level of some attributes amounts to an interval rescaling of utility, which 

does not alter equal spacedness of utility on, for instance, comonotonic subsets under 

rank-dependent utility.  
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Chapter 3
9
 

 New Tests of QALYs when Health Varies over Time 

 

Summary 

 

This chapter performs new tests of the QALY model when health varies over time. 

Our tests do not involve confounding assumptions and are robust to violations of 

expected utility. The results support the use of QALYs at the aggregate level, i.e. in 

economic evaluations of health care. At the individual level, there is less support for 

QALYs. The individual data are, however, largely consistent with a more general 

QALY-type model that remains tractable for applications. 

 

Keywords: QALYs, economic evaluation of health care, decision under risk, 

nonexpected utility. 
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3.1 Introduction 

Quality-adjusted life-years (QALYs) are the most widely used measure of health in 

economic evaluations of health care. According to the QALY model, the utility of a 

health profile equals the sum of the utilities of its constituent health states. The 

popularity of QALYs can be explained by their tractability and intuitive appeal: 

QALYs are easy to use and easy to explain to policy makers. A drawback of QALYs 

may be that they are too simple and do not represent people’s preferences for health in 

a reliable manner. An obvious danger of using an unreliable measure in economic 

evaluations of health care is that treatment recommendations and reimbursement 

decisions are made that do not represent people’s interests. 

Several studies have tested the validity of QALYs when health states are chronic (for 

an overview see Bleichrodt and Pinto-Prades, 2006). Less evidence exists on the 

validity of QALYs for the more realistic case where health varies over time. Most of 

the existing studies tested the validity of QALYs by comparing the directly elicited 

utility of a health profile with the indirect utility that is obtained by adding the utilities 

of the independently rated constituent health states. The evidence from these studies is 

mixed with some studies finding large and significant differences (e.g. Richardson, 

Hall, and Salkeld, 1996) and others finding only small and typically insignificant 

differences (Mackeigan, O'Brien, and Oh, 1999, Brazier et al., 2006). The 

performance of the QALY model is better at the aggregate level than at the individual 

level (e.g. Kuppermann et al., 1997) although Krabbe and Bonsel (1998) found that 

only a small proportion of their subjects violated additivity. 

There are several problems with the above method for testing the validity of QALYs. 

A first problem is that confounding assumptions must be made, in particular about the 

discounting of future health. All the above studies assumed constant discounting. 

Empirical evidence abounds, however, that the descriptive record of constant 

discounting is poor and that people deviate from it systematically (Frederick, 

Loewenstein, and O'Donoghue, 2002, van der Pol and Cairns, 2002). The problem of 

confounding assumptions is that when a difference between the direct and the indirect 
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valuation of a profile is observed we do not know what is causing this difference and, 

hence, no information is obtained on how QALYs might be improved. 

A second problem is that the valuation of health profiles and the valuation of health 

states involve different experimental stimuli and may, therefore, invoke different 

cognitive processes. Consequently, they may be susceptible to different decision 

biases. In particular, a cognitively demanding task such as the valuation of health 

profiles may induce the use of simplifying heuristics.  

A third problem arises if the measured health utilities are biased. Many of the 

abovementioned studies used the standard gamble. It is well known that the standard 

gamble leads to utilities that are too high (van Osch et al., 2004, Bleichrodt et al., 

2007, Doctor, Bleichrodt, and Lin, forthcoming). This upward bias is only present 

once in the direct valuation of the health profiles, but affects the valuation of each of 

the constituent health states and, hence, it is present more than once in the indirect 

valuation of the health profiles based on the utilities of their constituent health states. 

Consequently, we would expect that the estimation of the utility of a health profile 

from its constituent health states exceeds the direct valuation of the profile when the 

standard gamble is used and this is indeed what is typically observed.  

The above problems can be avoided by testing the preference conditions on which 

QALYs are based. This approach was adopted by Treadwell (1998), who tested 

preference independence, and Spencer and Robinson (2007), who tested utility 

independence. Preference independence and utility independence are implied by the 

QALY model, i.e. they are necessary conditions for the QALY model. Both 

Treadwell (1998) and Spencer and Robinson (2007) found that the condition they 

tested was generally supported. The support for these conditions does not imply, 

however, that the QALY model holds as the conditions are also consistent with other, 

more general, decision models. To obtain conclusive evidence on the validity of 

QALYs, conditions must be tested that are both implied by the QALY model and that 

imply the QALY model, i.e. conditions that are both necessary and sufficient. 

Spencer (2003) tested such a condition. She observed a violation of this condition at 

the individual level, but the violation was not systematic and might just be due to 

noise. Spencer’s test is only valid if people behave according to expected utility. It is 



 38 

well known, however, that people systematically deviate from expected utility 

(Starmer, 2000). Hence, it cannot be excluded that the violations of the QALY model 

that Spencer observed reflected violations of expected utility rather than violations of 

the QALY model. To wit, while many studies observed violations of the QALY 

model for chronic health states under expected utility, Doctor et al. (2004) found no 

violations of the QALY model when violations of expected utility were taken into 

account.  

In this chapter we provide new tests of the QALY model when health varies over 

time. Like Treadwell, (1998), Spencer (2003), and Spencer and Robinson (2007) we 

test preference conditions and, hence, our tests are not affected by the problems 

surrounding the comparison between direct and indirect valuations of health profiles. 

We test two conditions. The first condition, generalized marginality, is the central 

condition underlying the QALY model and implies that health profiles can be 

evaluated additively. Hence, like Spencer (2003) our test is both necessary and 

sufficient for the QALY model. An important difference with Spencer (2003) is that 

our test does not assume expected utility but is valid under a more general utility 

model that includes many of the theories of decision under risk that exist today. 

Hence, our tests are robust to violations of expected utility. 

As generalized marginality is a restrictive condition and we could well imagine 

people violating it, we also tested utility independence. Utility independence is less 

restrictive than generalized marginality and it does not imply the QALY model. As 

will be explained in Section 2, utility independence still implies a model that is 

tractable and that can be used in practical applications. Spencer and Robinson (2007) 

also tested utility independence. Our experimental protocol differed in several 

respects from the protocol used by Spencer and Robinson (2007) and, hence, our data 

on utility independence complement Spencer and Robinson’s analysis. Taken together 

the two studies provide insight into the validity of utility independence, an important 

condition for preference modeling and utility measurement. 

The chapter is structured as follows. Section 2 provides theoretical background and 

explains generalized marginality and utility independence. Section 3 describes the 
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design of an experiment that aimed to test these conditions and Section 4 its results. 

Section 5 discusses the results and concludes. 

3.2 Background 

Let q = (q1,…,qT) denote a health profile where qt stands for the health state at period 

t and T denotes the number of periods of survival. We assume that all health states are 

better than death. In our experiment we will only consider health profiles consisting of 

three periods and, hence, we will take T=3 in what follows. A prospect (p:q; r) gives 

health profile q with probability p and health profile r with probability 1  p.
10

 

Throughout the chapter we will only use prospects involving at most two different 

health profiles.  

A preference relation  is given over the set of prospects. The conventional notation 

 and ~ is used to denote strict preference and indifference. By restricting attention to 

constant prospects, i.e. prospects for which q = r or for which p = 0 or p = 1, a 

preference relation over health profiles can be defined, which we also denote by . It 

is implicit in the notation (p:q;r) that health profile q is at least as good as health 

profile r (q  r), i.e. all prospects are rank-ordered. 

We assume that a prospect (p:q;r) can be evaluated through  

U(q) + (1U(r)        (1) 

and choices and preferences correspond with this evaluation. In Eq.1,  is the decision 

weight assigned to the health profile q that obtains with probability p. This decision 

weight is entirely general. It depends on the probability p but we assume nothing 

about the way in which it depends on p. We will refer to Eq.1 as general rank-

dependent utility (GRU). Equation 1 is consistent with many theories of decision 

under risk. For example, if  = p then Eq.1 reduces to expected utility. If  = w(p), 

                                                 

10
 This means that there is an event E with probability p such that x obtains under E and y obtains under 

the complement of E. That is, we assume richness of the set of events. 
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with w a probability weighting function
11

 then Eq.1 reduces to rank-dependent utility 

(Quiggin, 1981). If  = 0 then all weight is given to the worst health profile and Eq.1 

corresponds to maximin. Eq. 1 was first suggested by Miyamoto (1988) and was 

subsequently used by Miyamoto and Wakker (1996) and Bleichrodt and Quiggin 

(1997). 

Under the QALY model the function U() in Eq.1 is additive: 

U(q) = 
T

t=1
Vt(qt)        (2) 

where the functions Vt can be period-specific. Often a more restrictive QALY model 

is used where the functions Vt are common for all periods and a constant discount 

factor is applied to all periods: 

U(q) = 
T

t=1


t1
V(qt).        (3) 

The focus in this chapter is on Eq.2, which captures the essential idea of QALYs of 

additivity over time. Bleichrodt and Gafni (1996) showed how Eq.3 can be obtained 

from Eq.2 by adding one preference condition. 

Let aivjq denote the health profile q with health state qi replaced by ai and health state 

qj replaced by vj, i,j {1,2,3}, ij. For example, if i =1, j = 2, then aivjq = (a1,v2,q3). 

Consider the following condition: 

Definition 1: the preference relation  satisfies generalized marginality when for all  

i,j {1,2,3}, ij, and for all health profiles q, health states a,b,c,d,v,w,x,y, and for all 

p: 

(p:aivjq; biwjq) ~ (p:civjq; diwjq)  (p:aixjq; biyjq) ~ (p:cixjq; diyjq). 



Consider first the indifference (p:aivjq; biwjq) ~ (p:civjq; diwjq). In terms of marginal 

probabilities the two prospects are almost identical except that the first one gives a 

                                                 

11
 That is, w is increasing (if p>q then w(p) > w(q)) and satisfies w(0)=0 and w(1)=1. 
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probability p of health state a in period i and a probability (1p) of health state b in 

period i and the second a probability p of health state c in period i and a probability 

1p of health state d in period i. Both prospects give a probability p of health state v 

in period j and a probability 1p of health state w in period j and a probability 1 of 

getting q in the remaining period k. Hence, in terms of marginal probabilities the 

indifference implies that getting ai with probability p and bi
 
with probability 1p is 

just sufficient to offset getting ci with probability p and di
 
with probability 1p.  

The only difference in the second indifference, (p:aixjq; biyjq) ~ (p:cixjq; diyjq), is that 

there is a change in what happens in time period j: health state v is replaced by health 

state x and health state w by health state y. The latter change is such that the two 

prospects still yield the same marginal probability distribution over what happens in 

time period j: in both prospects there is a probability p of obtaining health state x in 

period j and a probability 1p of obtaining health state y. Generalized marginality 

says that this change should not affect indifference. Getting ai with probability p and 

bi
 
with probability 1p should still be just sufficient to offset getting ci with 

probability p and di
 
with probability 1p. Essentially, generalized marginality says 

that preferences depend only on marginal probabilities (hence the term marginal in 

generalized marginality) and not on the joint probability distribution. 

An example may clarify the restrictiveness of generalized marginality. Let there be 

four health states: good health, fair health, poor health, and very poor health. Suppose 

that a decision maker is indifferent between:  

(½: (good, good, poor);  (poor, fair, poor)) and (½: (fair, good, poor);  (fair, 

fair, poor)).  

In both prospects there is a possibility of good health. In the first one the probability 

of good health is higher but there is also a higher probability of poor health. 

Generalized marginality then implies that the decision maker should also be 

indifferent between: 

(½: (good, poor, poor); (poor, very poor, poor)) and (½: (fair, poor, poor); (fair, 

very poor, poor)).
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It is, however, conceivable that a decision maker is not indifferent between these 

latter two prospects. For example, he may prefer the first prospect because this gives 

at least some time in good health, whereas in the second prospect both health profiles 

are pretty bad. The example shows that there are no a priori reasons why people 

should or would behave according to generalized marginality. 

It is easy to show that under the GRU model, the QALY model (Eq.2) implies 

generalized marginality. To improve the understanding of what generalized 

marginality entails, we give the proof in the main text. Let k  i,j. Under GRU and the 

QALY model, (p:aivjq; biwjq) ~ (p:ciwjq; dixjq) implies that 

(Vi(ai) + Vj(vj) + Vk(qk)) + (1)(Vi(bi) + Vj(wj) + Vk(qk)) = 

(Vi(ci) + Vj(vj) + Vk(qk)) + (1)(Vi(di) + Vj(wj) + Vk(qk))       (4a) 

or 

Vi(a1) + (1)Vi(bi) = Vi(ci) + (1)Vi(di)     (4b) 

Eq. 4b implies that 

(Vi(ai) + Vj(xj) + Vk(qk)) + (1)(Vi(bi) + Vj(yj) + Vk(qk)) = 

(Vi(ci) + Vj(xj) + Vk(qk)) + (1)(Vi(di) + Vj(yj) + Vk(qk)).    

and substitution of Vi(a1) + (1)Vi(bi) = Vi(ci) + (1)Vi(di) implies (p:aixjq; 

biyjq) ~ (p:cixjq; diyjq). 

Bleichrodt and Quiggin (1997, Theorem 4) showed that under GRU, the QALY 

model not only implies generalized marginality, but generalized marginality also 
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implies the QALY model.
12

 Hence, generalized marginality is the central condition of 

the QALY model. 

We next define utility independence. Let J be a subset of {1,2,3} and let q and k be 

two health profiles. By kJq we denote the health profile q with health state qj replaced 

by health state kj for all j in J. For example, if J = {1,3} then kJq = (k1,q2,k3).  

Definition 2:  The preference relation  satisfies utility independence if for all subsets 

J of {1,2,3}, for all health profiles k,l,m,n,q,r, and for all probabilities p: 

(p:kJq; lJq) ~ (p:mJq; nJq)  (p:kJr; lJr) ~ (p:mJr; nJr). 

That is, if all health profiles in the prospects under comparison have common health 

states outside J preferences do not depend on what these common health states are.  

Consider, again, the example given before. If the decision maker is indifferent 

between 

(½: (good, good, poor);  (poor, fair, poor)) and (½: (fair, good, poor);  (fair, fair, 

poor)) 

then utility independence says that he should alsvvo be indifferent between 

(½: (good, good, good);  (poor, fair, good)) and (½: (fair, good, good);  (fair, fair, 

good)), 

where we changed the common outcome in the third period from poor to good. It is, 

however, conceivable that the decision maker is not indifferent between the second 

pair of prospects. He may now, for instance, prefer the second prospect because it 

does not carry the risk of spending time in poor health. Like generalized marginality, 

utility independence is not a priori obviously fulfilled. 

                                                 

12
 This result requires richness of the set of health states, i.e. indifferences can be obtained by variations 

in the health states. For empirical testing it is easier to vary probabilities and, therefore, we assumed a 

rich set of events (see footnote 1). Whether the presence of a rich set of events implies that  the result 

of Bleichrodt and Quiggin (1997) still hold without richness of the set of health states assumed is an 

open question. 
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Utility independence is less restrictive than generalized marginality: generalized 

marginality implies utility independence but the reverse is not true. Miyamoto and 

Wakker (1996, Theorem 4) showed that if utility independence holds but generalized 

marginality is violated then 

U(q) = 
T

t=1
Vt(qt),        (5) 

i.e., utility is multiplicative. Equation 5 is still tractable. Consequently, not all is lost 

when generalized marginality is violated and, in the face of possible violations of 

generalized marginality, it is important to test utility independence.  

Guerrero and Herrero (2005) further relaxed utility independence and only imposed it 

for initial health states. They showed that even then a reasonably tractable model 

results. Their condition is hard to test empirically because it involves dynamic 

decisions and tests of their model require the comparison of choices made at different 

points in time. We do not consider their model in this chapter. 

3.3 Experiment 

Test The aim of the experiment was to test generalized marginality and utility 

independence. The general structure of our tests of generalized marginality was as 

follows. First we elicited the probability pvw such that a subject was indifferent 

between prospects of the type (pvw:aivjq; biwjq) and (pvw:civjq; diwjq). Then we 

elicited the probability pxy such that subjects were indifferent between (pxy:aixjq; biyjq) 

and (pxy:cixjq; diyjq) with x and y different from v and w. Under generalized 

marginality we should observe that pvw = pxy except for random error.  

 

To test for utility independence we first elicited the probability pq such that subjects 

were indifferent between (pq:kJq; lJq) and (pq:mJq; nJq) for a given subset J. Then we 

elicited the probability pr such that subjects were indifferent between (pr:kJr; lJr) and 

(pr:mJr; nJr) with r different from q. Under utility independence we should observe 

that pq = pr except for random error. 
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SubjectsSubjects were 60 students (30 female, median age of all subjects 22 years) 

from Erasmus University. They were paid a flat fee of  €10. Prior to the actual 

experiment, the experimental design was tested and fine-tuned in several pilot 

sessions. 

ProcedureThe experiment was run on a computer in personal interview sessions. 

To reduce errors and to ensure that subjects could focus entirely on the experimental 

questions, all responses were entered into the computer by the interviewer. Subjects 

were told that there were no right or wrong answers and that we were only interested 

in their preferences. Experimental sessions lasted 40 minutes on average and 

consisted of three parts: instructions and practice questions, data collection for the 

experiment reported here, and data collection for an unrelated experiment. Subjects 

took approximately 15-20 minutes to answer the questions for this experiment. 

 

All indifference probabilities were elicited through a series of choices. Each choice 

question corresponded to an iteration in a bisection process, which is described in 

Appendix B. A choice-based elicitation procedure was used because previous studies 

observed that inferring indifferences from a series of choices leads to fewer 

inconsistencies than asking subjects directly for their indifference value (see Luce 

(2000) for a review). The iterative process ended when the absolute difference in 

probability between successive steps in the iteration was less than 5 percentage points. 

We learned from the pilot sessions that it was unrealistic to determine the 

probabilities with more precision. At the end of each iteration process we repeated the 

first question of the iteration process. If subjects gave the same answer to this 

repeated choice question then we moved on to the next elicitation. If not, the iteration 

process for this elicitation was started anew. The aim of repeating the first choice in 

the iteration process was to reduce the impact of decision errors. 

Stimuli Subjects were asked to make a choice between two prospects consisting of 

two health profiles, neutrally labeled A and B. Figure 1 shows the way the prospects 

were displayed on the computer screen.  
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Figure 1: Example of an experimental question 
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Health profiles consisted of three periods of 20 years each. Hence, the total length of 

the profiles was 60 years, which corresponded to the life-expectancy of our subjects. 

We used only three periods to keep the tasks as simple as possible. We used periods 

of 20 years because these more or less correspond to different life stages. The health 

states constituting the health profiles were selected from a set of four EuroQol health 

states. We selected only moderate health states because these can be imagined more 

easily by a healthy population like our subjects. Another reason to use moderate 

health states was to avoid considerations of maximal endurable time (Stalmeier, 

Wakker, and Bezembinder, 1997). Health states were labeled using capital letters 

from the middle of the alphabet, minimizing potential distorting associations (for 

example using the letter D might be associated with the outcome death). The ordering 

of the health states was obvious in the sense that more preferred health states scored at 

least as good on each EuroQol dimension as less preferred health states and strictly 

better on at least one dimension. The ordering of the health states corresponded with 

the alphabetical order.  

 

 

Table 1: Description of health states used in the experiment 

 

Label Color EQ code EQ utility 

K Green 11111 1.000 

L Yellow 11121 0.850 

M Orange 11122 0.722 

N Red 12222 0.551 
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Health states were printed on separate cards and were assigned colors in an intuitive 

order (green the best, red the worst, etc.). The use of color-coding aimed to facilitate 

decision making by reminding the subjects of the relative attractiveness of the health 

states. The EuroQoL system was introduced in the initial instructions and, throughout 

the experiment, subjects had the cards describing the health states in front of them. 

Health states are summarized in Table 1 and the cards that were handed to the 

subjects are reproduced in Appendix A. The final column of Table 1 displays the 

utility of the health states according to the EuroQol algorithm (Dolan, 1997).  

It is crucial for our tests that the prospects are rank-ordered. To ensure this we 

selected the prospects such that one profile yielded in each period a health state that 

was always at least as good as the other profile. To help subjects understand the 

ranking of health profiles in each of the choices they faced, we asked them - before 

the bisection procedure for a particular question started - to rank the four health 

profiles involved in the question from the best to the worst with ties allowed. No 

violations of rank-ordering were observed. 

We performed three tests of generalized marginality and four tests of utility 

independence. The tests of generalized marginality are displayed in Table 2, those of 

utility independence in Table 3. All tests consisted of two parts. The first part of a test 

is indicated with the Roman number I in the tables, the second part with the number 

II. The prospect mentioned first was displayed to the subjects as option A, the other as 

option B. KMN denotes a profile that gives health state K for the first 20 years, health 

state M for the next 20 years and health state N for the final 20 years. Outcomes that 

were varied between the two parts of each test are underlined. Note that in the fourth 

test of utility independence two common outcomes were changed.  
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Table 2: Tests of generalized marginality 

Test Part Question 

1 

 

I (p:MMN; MNN) vs. (p:KMN; NNN)  

II (p:MKN; MMN) vs. (p:KKN; NMN) 

2 I (p:KLM; KMN) vs. (p:KKM; KNN) 

II (p:KLL; KMM) vs. (p:KKL; KNM) 

3 I (p:KLM; LLM) vs. (p:KLL; LLN) 

II (p:KLM; MLL) vs. (p:KLL; MLN) 

 

The order in which the questions were asked was arbitrary with the restriction that the 

two parts of a given test were never offered consecutively. Interspersing trials were 

implemented to prevent subjects from forming a match that would guide answers.  

The experiment ended with two consistency tests in which subjects repeated the first 

part of the first test of generalized marginality (GM1-I) and the second part of the 

third test of utility independence (UI3-II).  
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Table 3: Tests of utility independence 

Test Part Question 

  1 

 

I (p:LLM; MNM) vs. (p:LMM; MMM)  

II (p:LLN; MNN) vs. (p:LMN; MMN)  

2 I (p:KKL; KNN) vs. (p:KML; KMN) 

II (p:LKL; LNN) vs. (p:LML; LMN) 

3 I (p:LKN; LNN) vs. (p:LMN; LMN) 

II (p:NKN; NNN) vs. (p:NMN; NMN) 

4 I (p:KML; KMN) vs. (p:KMM; KMM) 

II (p:MLL; MLN) vs. (p:MLM; MLM) 

 

Spencer and Robinson (2007) also tested utility independence and found support for it 

in 6 out of 8 tests. The main difference between their study and ours is that they asked 

directly for indifferences whereas we used a choice-based elicitation method.
13

 It is 

well known from the literature that matching and choice invoke different cognitive 

processes (Tversky, Sattath, and Slovic, 1988). If the two studies were to give similar 

results in spite of the different response modes used then this would offer convincing 

evidence in favor of utility independence. 

                                                 

13
 Other differences are that they used group sessions of 10-20 subjects whereas we used personal 

interviews, they used pen and paper whereas our experiment was computer-run, they used five periods 

of five years whereas we used three periods of 20 years, and they used health states ranging from 

normal health to death whereas we used only moderate health states. Finally, they asked the two parts 

of the tests of utility independence consecutively in their first experiment, but not in their second 

experiment, which randomized the three tests that were used. 
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AnalysisWe used both parametric (t-test) and nonparametric (Wilcoxon) tests to 

test for significance of differences. Unless a difference was observed we only report 

the parametric results. Because we performed many different tests, there is a danger 

of finding significant differences just by chance. To reduce this danger we used a 

significance level of 1% in the statistical tests reported below. Using 5% instead did 

not affect our conclusions much. 

Our sample size with a standard deviation of 0.15 would have enough power to detect 

a difference in aggregate values of 0.08 ( = 0.01, 1   = 0.90). In the literature a 

difference of 0.10 is often considered meaningful and important in decision-making 

contexts (O'Brien and Drummond, 1994). Hence, the power of our study was 

satisfactory. 

3.4 Results 

ConsistencyThree subjects were excluded either for not cooperating or for targeting 

towards 0% and 100% in each question. This left 57 subjects in the final analysis. The 

consistency tests yielded mixed results. In the test for GM1-I the median probabilities 

were 0.54 in the original test and 0.58 in the retest. The difference was not significant 

(p = 0.064). The median of the individual absolute differences between test and retest 

was 0.06. In the test for UI3-II the median probabilities were 0.62 in the original 

experiment and 0.60 in the retest. In this case, the difference was significant, however 

(t-test p = 0.005 and Wilcoxon test p = 0.011). The median of the individual absolute 

differences between test and retest was 0.04. The Pearson correlation coefficients 

between test and retest were in both cases 0.63. 

Few subjects had to restart the iteration process because they reversed their first 

choice. For the median subject this happened in just 1 out of 16 tests. In total, the 

proportion of reversals was 11.3%. This suggests that errors were rare when 

probabilities differed substantially from their indifference values, which was usually 

the case in the initial choices. By comparison, reversals up to 33% are common in 

choice experiments (Stott, 2006). 
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Aggregate resultsFigure 2 displays the medians of the elicited indifference 

probabilities. The means were similar. The figure shows support for generalized 

marginality: for all three tests the median probabilities for both parts of the test were 

very close. None of the differences was significant (p > 0.60 in all three tests). The 

correlation coefficients between the two parts were, however, rather low. Correlation 

was only fair for GM1 (0.27) and GM2 (0.30) and was moderate (0.52) for GM3.  

Figure 2 shows that the differences between the median probabilities were generally 

larger in the tests of utility independence than in the tests of generalized marginality. 

There appears to be no systematic pattern in the medians, however. In the first test of 

utility independence (UI1), the indifference probability was larger in the second part, 

in UI2 and UI3 it was larger in the first part and in UI4 there was no difference. We 

could not reject utility independence in three out of four tests (UI1, UI3, and UI4). 

The only exception is the second test. Here the difference in elicited probabilities is 

significant (t-test p= 0.008) and Wilcoxon test p = 0.016). Correlations between the 

two parts of the tests are higher than for generalized marginality and are moderate in 

all tests (0.44 in UI1, 0.46 in UI2, 0.51 in UI3, and 0.55 in 

UI4).
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Figure 2: Median probabilities in the two parts of the tests

Individual results Figure 3 shows the means and the medians of the individual 

absolute differences between the elicited probabilities in the two parts of each test. It 

should be kept in mind when interpreting these results that our choice-based 

procedure was terminated when the absolute difference in probabilities between 

successive iterations was less than 0.05 and the indifference value was set equal to the 

midpoint of the elicited interval (see Appendix B for details). This implies that there 

could be a maximum difference of 0.04 between the elicited probability and the true 

probability. Hence, when we compare the probabilities between the two parts of a test 

a difference of 0.08 might in theory have been caused by our elicitation procedure.  
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Figure 3: Mean and median absolute difference
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Table 4 shows the probabilities of observing a given absolute difference under our 

elicitation method when in reality no difference exists. The table was constructed 

under the assumption that any value from the elicited indifference interval was as 

likely to be the true indifference value. Table 4 displays that observing a difference of 

0.08 due to our elicitation method alone was very unlikely: the chance of it happening 

was less than 0.001. The chance that our elicitation method led to an observed 

difference larger than 0.04 was, in fact, only 0.077. Differences up to 0.04 were 

however plausible. To illustrate this, we have plotted the value of 0.04 by a dotted line 

in Figure 3. Up to this line differences might reasonably be attributed to our elicitation 

method. Above it they cannot be explained by our elicitation method alone. The 

figure shows that both for utility independence and, in particular, for generalized 

marginality the observed absolute differences are clearly larger than 0.04 and, hence, 

they are not just products of imprecision in our elicitation method. 
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Table 4: Probability of a difference in probability being caused by elicitation 

method 

Difference Probability 

0 0.148 

0.01 0.276 

0.02 0.226 

0.03 0.166 

0.04 0.106 

0.05 0.053 

0.06 0.019 

0.07 0.004 

0.08 <0.001 

 

Another thing to take into account when considering Figure 3 is that subjects’ 

preferences are likely to be imprecise (Dubourg, Jones-Lee, and Loomes, 1994, Butler 

and Loomes, 2007). The choices we asked our subjects to make were not easy and 

subjects had to compare probabilities, health states, and the timing and sequence of 

the health states simultaneously. When faced with complex choices it seems 

unrealistic to expect that subjects always have clear preferences between the two 

options. If subjects were, for instance, only able to distinguish between probabilities 

when they differed by at least 0.05 then an observed difference of 0.14 between the 

two parts of the tests could in theory be entirely caused by our elicitation method and 

preference imprecision. This value was however extremely unlikely: it had a 

probability of 0.0002. Of course we do not know exactly how much of the differences 
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that we observed were actually caused by preference imprecision but it is likely to 

have played at least some role in the observed differences. The medians of the 

individual differences between the test and retest for GM1-I and UI3-II may give 

some indication of this imprecision. They were 0.06 and 0.04 respectively and the 

value of 0.05 that we used in the above example was selected because it is the 

midpoint of these two values. It was also the median imprecision that was observed 

by Bleichrodt and Johannesson (1997) who made an attempt to quantify preference 

imprecision in health utility measurement. 

Table 5: Classification of subjects based on the number of times  

they violated generalized marginality using different thresholds 

 

Number of 

violations 

Threshold 

          0.08                         0.13                             

0 4 12  

1 12 13  

2 22 21  

3 19 11  

 

Table 5 presents a classification of our subjects based on the number of times that 

their responses exceeded a given threshold in the tests of generalized marginality. To 

account for the possibility of differences due to the elicitation procedure and due to 

preference imprecision we report the results for two different thresholds: 0.08 and 

0.13. The table shows, for example, that there were only 4 subjects for whom the 

difference between the two parts of the tests was less than 0.08 in all three tests of 

generalized marginality. The conclusions drawn from the table depend on the 

threshold that is deemed plausible. Regardless of the threshold used, it seems safe to 
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conclude that a substantial proportion of our subjects violated generalized marginality 

and, consequently, the QALY model. 

Table 6: Classification of subjects based on the number of times  

they violated utility independence using different thresholds 

 

Number of 

violations 

Threshold 

          0.08                         0.13                             

0 4 14  

1 16 21  

2 23 15  

3 12 7  

4 2 0  

 

Table 6 presents the same classification for the tests of utility independence. A 

comparison between Tables 5 and 6 reveals that there is more support for utility 

independence than for generalized marginality at the individual level. If we use a 

threshold of 0.13, over 60% of the subjects satisfied utility independence in at least 

three out of four tests. There were hardly any subjects who violated utility 

independence in each test, whereas the proportion of subjects violating generalized 

marginality in each test was substantial. 

Figure 4 shows the number of subjects violating a particular test. The figure confirms 

that violations were more common in the tests of generalized marginality than in the 

tests of utility independence. The figure also shows that violations were not confined 

to one particular test but occurred in all tests. 
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3.5 Discussion 

Main findingsWe have performed new tests of the QALY model and a 

generalization thereof. Our tests do not require additional confounding assumptions, 

for example about discounting, and take account of violations of expected utility. At 

the aggregate level we observed support for the QALY model as we could not reject 

generalized marginality, the central condition of the QALY model. At the individual 

level there is much less support for the QALY model: a sizeable proportion of our 

subjects violated generalized marginality and the observed deviations were too large 

to be caused by elicitation and preference imprecisions alone.  

 

We also tested for utility independence, a less restrictive preference condition than 

generalized marginality, which still implies a tractable model. Utility independence 

was supported at the aggregate level. At the individual level we found more support 

for utility independence than for generalized marginality. For a substantial proportion 

of our subjects the observed deviations from utility independence can reasonably be 
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attributed to the elicitation procedure and preference imprecision. Our aggregate 

findings on utility independence are consistent with the findings of Spencer and 

Robinson (2007) in spite of the differences in response mode and experimental design 

between their and our study. The data in Spencer and Robinson (2007) and in our 

study reinforce each other and provide a strong case for utility independence at the 

aggregate level. Spencer and Robinson do not report individual-level results. 

 

CaveatsThe decision tasks used in our experiment were cognitively demanding. 

Subjects had to take into consideration several dimensions simultaneously 

(probability, quality of life, and duration and sequence of the health states). We took 

several precautions to try and keep the experimental tasks as simple as possible by 

using just four easily imaginable color-coded health states, by using only three time 

periods of equal length, and by using a computer-run choice-based questionnaire. 

Nevertheless, subjects may have adopted simplifying heuristics to facilitate 

responding. Two such heuristics might a priori be particularly plausible. 

 

First, subjects may have made the tasks easier by targeting towards probability 0.50. 

We had no indication that subjects indeed used this heuristic. First, most elicited 

probabilities differed significantly from 0.50. Second, there was no subject for whom 

all elicited indifference probabilities fell between 0.40 and 0.60. The data do not 

suggest that subjects were towards another probability either. When we compared 

differences in elicited probabilities across unrelated decision tasks (e.g. compare 

GM1-I with GM3-II) then many significant differences were observed. The latter 

observation also shows that the fact that we could not reject generalized marginality 

and utility independence at the aggregate level was not due to a lack of power in our 

study. Empirically meaningful differences in elicited probabilities can be elicited in 

our sample. 

A second heuristic that subjects could have employed in the utility independence 

questions was to cancel out the common health states. For example, in the comparison 

between (p:LLM; MNM) and (p:LMM; MMM), task UI1-I, subjects may have made 

the task easier by eliminating the common health state M in the third period. Adopting 

such a strategy would make the two parts of each test of utility independence identical 

and would create artificial support for utility independence. The experimental design 
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took care to avoid that subjects would use this heuristic. In particular, we randomized 

the order of the tests so that subjects never faced the two parts of a test consecutively. 

It cannot be excluded though that at least some subjects adopted this cancellation 

heuristic in spite of the precautions we took. 

We used students as subjects. We do not believe that this limits the generalizability of 

our findings. Empirical evidence on health utility measurement has shown that there 

exist no significant differences between the patterns of responses obtained from 

convenience samples and those obtained from representative samples from the general 

population. For a review see de Wit, van Busschbach, and de Charro (2000) and for a 

more recent comparison Bleichrodt, Doctor, and Stolk (2005). 

Our results show that many subjects deviate from generalized marginality casting 

doubt on the descriptive appeal of the QALY model. These results say nothing about 

the normative validity of generalized marginality. One might argue that it is desirable 

for normative reasons to accept generalized marginality and interpret the deviations 

that we observed as irrationalities that reflect biases in time aggregation that we 

should seek to correct. We do not agree with this view. We do not consider 

generalized marginality normative and, as we explained in Section 2, there are good 

reasons why people may deviate from it. 

We implicitly assumed that QALYs should reflect individual preferences for health. 

There is an alternative, extra-welfarist, strand in tthe literature, which takes QALYs as 

a measure of health and not necessarily as a reflection of people’s preferences for 

health. The two approaches are not necessarily incompatible. Extra-welfarists use 

preference-based quality weights to quantify QALYs which suggests that even in the 

extra-welfarist approach individual preferences are important. Further, even if one 

takes the position that QALY are only a measure of health then one would expect that 

people’s preferences are increasing in QALYs (better health is desirable). Given the 

uniqueness properties of utility, this essentially means that QALYs should reflect 

individual preferences. Hence, even in the extra-welfarist approach people’s 

preferences and consequently our tests are important. 
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Our tests are robust to many violations of expected utility. As we explained in Section 

2, the utility model that we assumed includes as special cases many of the theories of 

decision under risk that are available today. Hence, our results are not affected by the 

deviations from expected utility modeled by these theories. This is not to say that our 

results are robust to all deviations from expected utility. Our results depend on the 

validity of the general utility model and, even though very general, the model is not 

consistent with any preference pattern. For instance, the model makes no distinction 

between gains and losses and, hence, it is not robust to loss aversion. Developing tests 

that are robust to loss aversion is an important challenge. That said, our method 

corrects for more biases than any previous study and, hence, our tests are the most 

powerful tests of the QALY model available today. 

ImplicationsOur results provide support for the QALY model at the aggregate 

level. It should be pointed out though that this conclusion is based on three tests only. 

It should also be kept in mind that we only used mild to moderate health states to 

avoid considerations like maximal endurable time. Our conclusions may no longer 

hold when more severe health states are involved. More evidence is needed and we 

invite other researchers to try and replicate our findings using other experimental 

designs.  

At the individual level, the support for QALYs appears weaker. Our data suggest that 

QALYs cannot be applied in individual medical decision making without some 

additional tests of the decision maker’s preference structure. The tests developed in 

this chapter may be helpful in doing so. In interpreting our results at the individual 

level, one should keep in mind though that the tasks were demanding and that there 

was a possibility of substantial imprecision in subjects’ responses. Hence, this single 

study should not be taken as conclusive evidence of the validity of QALYs at the 

individual level. 

Even when QALYs are found not to hold, not all is lost. Our results, suggest that there 

is more support for utility independence at the individual level. Utility independence 

still implies a tractable model that can be applied in practice. Hence, in contrast with a 

frequently voiced belief that QALYs are not consistent with people’s preferences for 
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health, the overall message of this chapter is supportive of the use of QALY-type 

models in health economics. 
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Appendix A: Description of health states used in the experiment 
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Appendix B: Explanation of the bisection method 

The bisection method used to generate the iterations is illustrated in Table A1 for task 

GM1I. The option that is chosen is printed in bold. The starting probability in the 

iterations was determined randomly. Depending on the choice made, the probability 

was increased or decreased. The size of change in the second iteration was half the 

difference between the probability in the first question and 0 or half the difference 

between the probability in the first question and 1. Which one was chosen depended 

on the subject’s choice. The size of the change in the remaining iterations was half the 

size of the change in the previous question. The iteration process ended when the 

difference between the probability and the previous probability was less than 0.05. 

The iteration process resulted in an interval within which the indifference value 

should lie. The midpoint of this interval was taken as the indifference value. For 

example, in Table A1 the indifference value for p should lie between 0.63 and 0.68. 

Then we took as the indifference value 0.66.  

Table A1: An illustration of the bisection method. 

Iteration Offered choices 

1 (0.72:MMN; MNN) ~ (0.72:KMN; NNN) 

2 (0.36:MMN; MNN) ~ (0.36:KMN; NNN) 

3 (0.54:MMN; MNN) ~ (0.54:KMN; NNN) 

4 (0.63:MMN; MNN) ~ (0.63:KMN; NNN) 

5 (0.68:MMN; MNN) ~ (0.68:KMN; NNN) 

Indifference value 0.66 

 

 

 



 65 

References 

 

Bleichrodt, H., Abellan J. M., Pinto J. L., Mendez I. (2007). Resolving inconsistencies 

in utility measurement under risk: Tests of generalizations of expected utility. 

Management Science 53, 469-482. 

Bleichrodt, H., Doctor J. N., Stolk E. A. (2005). A nonparametric elicitation of the 

equity-efficiency trade-off in cost-utility analysis. Journal of Health 

Economics 24, 655-678. 

Bleichrodt, H., Gafni A. (1996). Time preference, the discounted utility model and 

health. Journal of Health Economics 15, 49-66. 

Bleichrodt, H., Johannesson M. (1997). The validity of QALYs: An empirical test of 

constant proportional tradeoff and utility independence. Medical Decision 

Making 17, 21-32. 

Bleichrodt, H., Pinto-Prades J.-L. (2006). Conceptual foundations for health utility 

measurement. In: Jones, A. M. (Eds.), The Elgar companion to health economics. 

Edward Elgar, Aldershot, 347-358. 

Bleichrodt, H., Quiggin J. (1997). Characterizing QALYs under a general rank 

dependent utility model. Journal of Risk and Uncertainty 15, 151-165. 

Brazier, J., Dolan P., Karampela K., Towers I. (2006). Does the whole equal the sum 

of the parts? Patient-assigned utility scores for ibs-related health states and 

profiles. Health Economics 15, 543-551. 

Butler, D., Loomes G. (2007). Imprecision as an account of the preference reversal 

phenomenon. American Economic Review 97, 277-297. 

de Wit, G. A., van Busschbach J. J., de Charro F. T. (2000). Sensitivity and 

perspective in the valuation of health status. Health Economics 9, 109-126. 

Doctor, J. N., Bleichrodt H., Lin J. H., forthcoming. Health utility bias: A meta-

analytic evaluation. Medical Decision Making  



 66 

Doctor, J. N., Bleichrodt H., Miyamoto J., Temkin N. R., Dikmen S. (2004). A new 

and more robust test of QALYs. Journal of Health Economics 23, 353-367. 

Dolan, P. (1997). Modeling valuations for Euroqol health states. Medical Care 35, 

1095-1108. 

Dubourg, W. R., Jones-Lee M. W., Loomes G. (1994). Imprecise preferences and the 

WTP-WTA disparity. Journal of Risk and Uncertainty 9, 115-133. 

Frederick, S., Loewenstein G. F., O'Donoghue T. (2002). Time discounting and time 

preference: A critical review. Journal of Economic Literature 40, 351-401. 

Guerrero, A. M., Herrero C. (2005). A semi-separable utility function for health 

profiles. Journal of Health Economics 24, 33-54. 

Krabbe, P. F. M., Bonsel G. J. (1998). Sequence effects, health profiles, and the 

QALY model: In search of realistic modeling. Medical Decision Making 18, 

178-186. 

Kuppermann, M., Shiboski S., Feeny D., Elkin E. P., Washington A. E. (1997). Can 

preference scores for discrete states be used to derive preference scores for 

entire paths of events? Medical Decision Making 17, 42-55. 

Luce, R. D. (2000). Utility of gains and losses: Measurement-theoretical and 

experimental approaches. Lawrence Erlbaum Associates, Inc., Mahwah, New 

Jersey. 

Mackeigan, L. D., O'Brien B. J., Oh P. I. (1999). Holistic versus composite 

preferences for lifetime treatment sequences for type 2 diabetes. Medical 

Decision Making 19, 113-121. 

Miyamoto, J. M. (1988). Generic utility theory: Measurement foundations and 

applications in multiattribute utility theory. Journal of Mathematical 

Psychology 32, 357-404. 

Miyamoto, J. M., Wakker P. P. (1996). Multiattribute utility theory without expected 

utility foundations. Operations Research 44, 313-326. 



 67 

O'Brien, B. J., Drummond M. F. (1994). Statistical versus quantitative significance in 

the socioeconomic evaluation of medicines. PharmacoEconomics 5, 389-398. 

Quiggin, J. (1981). Risk perception and risk aversion among Australian farmers. 

Australian Journal of Agricultural Economics 25, 160-169. 

Richardson, J., Hall J., Salkeld G. (1996). The measurement of utility in multiphase 

health states. International Journal of Technology Assessment in Health Care 

12, 151-162. 

Spencer, A. (2003). A test of the QALY model when health varies over time. Social 

Science and Medicine 57, 1697-1706. 

Spencer, A., Robinson A. (2007). Test of utility independence when health varies 

over time. Journal of Health Economics 26, 1003-1013. 

Stalmeier, P. F. M., Wakker P. P., Bezembinder T. G. G. (1997). Preference reversals: 

Violations of unidimensional procedure invariance. Journal of Experimental 

Psychology: Human Perception and Performance 23, 1196-1205. 

Starmer, C. (2000). Developments in non-expected utility theory: The hunt for a 

descriptive theory of choice under risk. Journal of Economic Literature 28, 

332-382. 

Stott, H. P. (2006). Cumulative prospect theory's functional menagerie. Journal of 

Risk and Uncertainty 32, 101-130. 

Treadwell, J. R. (1998). Tests of preferential independence in the QALY model. 

Medical Decision Making 18, 418-428. 

Tversky, A., Sattath S., Slovic P. (1988). Contingent weighting in judgment and 

choice. Psychological Review 95, 371-384. 

van der Pol, M. M., Cairns J. (2002). A comparison of the discounted utility model 

and hyperbolic discounting models in the case of social and private 

intertemporal preferences for health. Journal of Economic Behavior and 

Organization 49, 79-96. 



 68 

van Osch, S. M. C., Wakker P. P., van den Hout W. B., Stiggelbout A. M. (2004). 

Correcting biases in standard gamble and time tradeoff utilities. Medical 

Decision Making 24, 511-517. 

 



 69 

 Chapter 4
14

 

A Reply to Gandjour and Gafni 

 

Summary 

Gandjour and Gafni (2010) criticize our paper (Bleichrodt and Filko, 2008)) on two 

counts. Their first point of criticism is ill-founded and results from many 

mathematical mistakes. The second is due to a lack of understanding of the general 

principles of empirical research. 

Keywords: QALYs; Utility Theory 
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In Bleichrodt and Filko (2008) we performed new tests of the QALY model when 

health varies over time. The novelty of our tests is that they control for violations of 

expected utility. It is well known that people do not behave according to expected 

utility (Starmer, 2000) and these violations may have confounded previous tests of the 

QALY model. Our experimental data supported QALYs at the aggregate level, but 

not at the individual level. 

In a comment, Gandjour and Gafni (2009) criticize our paper on two grounds. First, 

they argue that it is possible that the condition we tested, generalized marginality, is 

not sufficient to imply the QALY model. In other words, subjects may simultaneously 

satisfy generalized marginality and violate the QALY model. Second, Gandjour and 

Gafni argue that we cannot make generalized statements about preferences because 

our sample is not representative. Related to this, they argue that we cannot conclude 

in support of a particular model based on a limited number of tests because the variety 

of health profiles is essentially endless. In this reply we will show that Gandjour and 

Gafni’s first point of criticism is wrong. Their arguments contain many mathematical 

mistakes implying that their counterexamples are wrong and, therefore, that all their 

corresponding speculations are irrelevant. Their other points of criticism are 

completely standard (Popper, 1934, 1963) and reflect a lack of understanding of the 

general principles underlying all empirical studies in all fields of science. They also 

reflect poor reading as these points have actually been acknowledged and discussed in 

our paper. 
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4.1 First criticism: Support for generalized marginality and violations of the 

QALY model can coexist 

There are three principal problems with Gandjour and Gafni’s first point of criticism, 

which we will outline below.  

First problem: Eq. (1) is ambiguous and ill-defined
15

 

The first fundamental problem is that the model of Gandjour, 2008), which underlies 

Gandjour and Gafni’s (2009) analysis and is stated in their Eq.(1), is not well-defined. 

A problem that recurs throughout their comment is that even though Gandjour and 

Gafni (2009) use mathematical derivations, they do not follow the rules and logic of 

mathematics (Suppes, 1957).  

According to the left hand side of Eq.(1) u depends only on health states a,b, and c. 

However, on the right hand side of Eq.(1) the distributions L(b) and L(c) also appear. 

If these distributions play a role then they should also appear in the argument of the 

function. Then the utility of an outcome depends not only on the outcome itself, but 

on the whole distribution that it is part of. The model then loses all its tractability and 

becomes completely general without any predictive power. In particular, it is unclear 

how the formula should be applied when computing probability weighted averages 

such as in expected utility or its generalizations. Gandjour (2008) claims that expected 

utility should not be used to compute probability weighted averages but in Eq.(4) of 

their comment Gandjour and Gafni (2009) do use expected utility to compute 

probability weighted averages. 

It is further a complete mystery where the functions L come from. Are these 

population statistics, marginal distributions or are they specific to the prospects that 

are being considered? Moreover, given the many parameters in Eq. (1) and their 

unclear nature identifiability of the model is also a problem.  

There are two additional inaccuracies related to Eq.(1). Gandjour and Gafni (2009) 

call Eq.(1) additive, which it is not. A function is normally called additive if it is 
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additively decomposable, which implies strong separability. It is obvious that Eq. (1) 

does not satisfy strong separability. Apparently the authors use the term additive each 

time they discern an additive operation amidst other mathematical operations. We will 

ignore their claims about additivity in what follows.  

A second inaccuracy is that Gandjour and Gafni use the same symbol u for several 

different things. In Eq.(1) u is used both as a function of a sequence of health states, 

as a function of the single-period health states, and as a function of the function L, 

representing the distribution of the health states within a period. This ambiguity about 

what the functions represent makes it hard to discuss the theory. 

Because Gandjour’s (2008) model is ill-defined and ambiguous, it is impossible to 

understand exactly what Gandjour and Gafni mean. Nevertheless we will try our best 

to interpret their writings as good as we can. 

Second problem: Eq. (2) is wrong. 

The second problem is that their claims made in Eq.(2) are unsubstantiated and 

wrong. Gandjour and Gafni claim that if strong separability, or additive utility 

independence as they call it, is imposed on top of Eq.(1) then Eq. (2) results. No proof 

is given for this claim and we will show that it is wrong. Gandjour and Gafni claim 

that additive separability implies that all ’s must be equal to zero. Suppose, in 

contrast with Gandjour and Gafni’s claim, that at least one of the ’s is unequal to 

zero. Say (a) =1. Suppose also that u(L(b)) = u(L(c)) = 0 for all b and c. Then Eq.(1) 

in Gandjour and Gafni becomes 

u(a,b,c) = u(a) + u(b) + u(c) + u(b) + u(c) = u(a) + 2u(b) + 2u(c),  

which is an additively decomposable form and which satisfies strong separability and 

additive utility independence. Hence, it is not true that strong separability or additive 

utility independence implies Eq.(2). This simple counterexample shows that Eq.(2) in 

Gandjour and Gafni (2009) is wrong, that their claims about the ’s being equal to 

                                                                                                                                            

15
 Throughout this reply, the equation numbers refer to the equations in Gandjour and Gafni (2009). 
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zero are wrong, and that all the claims made later in the paper about generalized 

marginality and Eq.(2) are wrong. 

 

Third problem: Eq.(4) and, hence, Gandjour and Gafni’s counterexample against 

generalized marginality, is wrong. 

We finally show that Eq.(4) in which Gandjour and Gafni (2009) derive what they 

believe generalized marginality tests is wrong. Before we do so, we must correct two 

mistakes in their Eq.(3), which describes our test of generalized marginality. A first 

problem with Eq.(3) is that Gandjour and Gafni, once again, violate the rules of logic 

and use different symbols to denote identical things. According to the rules of logic it 

is possible, for example, that aI and aII in Ganjour and Gafni’s Eq.(3) are different. In 

the definition of generalized marginality they have to be identical. We will therefore 

ignore subscripts in what follows and simply write aI = aII = a, cI = cII = c etc.  

A second problem with Eq.(3) is that in the prospects on the right hand sides of the 

two indifference signs a appears twice. This is wrong. In each of these two 

prospects, the second term a has to be different from the first. We assume that this is 

a typo and that the authors had in mind to write a for the second terms. 

Let us now explain the problems with Eq.(4). A first problem is that Gandjour and 

Gafni use expected utility. In our paper we use a much more general model than 

expected utility and Gandjour and Gafni should have shown that their conclusion 

holds under this more general model. A second problem is that Eq.(4) contains a term 

L(bI  bII). Why does bII suddenly appear within brackets? This can only be if L, 

whatever it is, is linear (Aczel, 1966, Theorem 1, p.34). But such linearity has never 

been assumed. Moreover, bII does not appear in Eq.(3) so where does it come from? 

However, the fundamental problem with Eq.(4) is that it is wrong. Assuming Eq.(1) 

and expected utility as Gandjour and Gafni do, and following the same line of 

analysis as they do we obtain that the difference between the prospects on the left 

hand sides of the indifference signs is equal to: 
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p[u(b)  u(b) + (a)(u(b)  u(b)) + u(c)((b)  (b)) + (a)(u(L(b))  u(L(b))) + 

u(L(c))((b)  (b))] + (1p)[u(b)  u(b) + (a)(u(b)  u(b)) + u(c)((b)  

(b)) + (a)(u(L(b))  u(L(b))) + u(L(c))((b)  (b))].

And the difference between the prospects on the right hand sides of the indifference 

signs is equal to: 

p[u(b)  u(b) + (a)(u(b)  u(b)) + u(c)((b)  (b)) + (a)(u(L(b))  u(L(b))) 

+  u(L(c))((b)  (b))] + (1p)[u(b)  u(b) + (a)(u(b)  u(b)) + u(c)((b)  

(b)) + (a)(u(L(b))  u(L(b))) + u(L(c))((b)  (b))]. 

Deleting common terms this implies that generalized marginality tests whether 

p[(a)(u(b)  u(b) + u(L(b))  u(L(b)))] + (1p)[(a)(u(b)  u(b) + u(L(b))  

u(L(b)))]

= 

p[(a)(u(b)  u(b) + (u(L(b))  u(L(b)))] + (1p)[(a)(u(b)  u(b)) + u(L(b)) 

 u(L(b)))]. 

This is clearly different from what Gandjour and Gafni obtain. Contrary to what 

Gandjour and Gafni claim the terms involving L() do not cancel. Having shown that 

Gandjour and Gafni’s derivations and, hence, their counterexample, are wrong, all 

their speculations that follow Eq.(4) become irrelevant and we can safely ignore them. 

4.2 Second Criticism: No General Statements are Possible 

Regarding their second point of criticism we can be short: their expressed concerns 

are completely standard and are actually acknowledged in our paper.  

The issue of representativeness is discussed in the third paragraph on page 1247. It is 

common to use convenience samples such as students to first test new decision 
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concepts. Consider, for example, Kahneman and Tversky (1979), the second most 

cited paper in economics since 1970 (Kim, Morse, and Zingales, 2006), which 

introduced prospect theory, the theory for which Kahneman was awarded the Nobel 

prize in economics in 2002. Kahneman and Tversky (1979) is entirely based on the 

responses of students and university faculty. Later studies then tested these new 

concepts in more general samples. In our case the new decision principle was 

generalized marginality. Because the test was new it made sense to first employ a 

convenience sample. Future studies should try to replicate our findings in more 

general samples. 

Regarding the limited number of tests, it is well-known @(Popper, 1934, 1963) that a 

hypothesis can never be proved right and can only be shown to be false. The classical 

example is the hypothesis “all swans are white.” This hypothesis can never be proved 

right but can be falsified by observing one single black swan. Gandjour and Gafni 

have nothing new to add here. According to Popper data that are in line with the 

theory “corroborate” the theory. Our general conclusion, repeated below, is entirely 

consistent with Popper (1934, 1963):  

“Our results provide support for the QALY model at the aggregate level. It should be 

pointed out though that this conclusion is based on three tests only. It should also be 

kept in mind that we only used mild to moderate health states to avoid considerations 

like maximal endurable time. Our conclusions may no longer hold when more severe 

health states are involved. More evidence is needed and we invite other researchers to 

try and replicate our findings using other experimental designs.” (p.1247) 

Let us end by correcting one final mistake in Gandjour and Gafni’s (2009) comment. 

They imply that we cite Spencer and Robinson (2007) as providing support for 

generalized marginality at the aggregate level. Once again, they did not read carefully. 

On page 1246 we wrote: “our aggregate findings on utility independence [emphasis 

added] are consistent with the findings of Spencer and Robinson (2007).” As we point 

out in our paper, if utility independence holds but generalized marginality is violated 

then period-specific utilities can still be defined and utility remains tractable.  
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4.3 Conclusion 

Gandjour and Gafni (2009) criticize our paper on two counts. Their first point of 

criticism is ill-founded and results from many mathematical mistakes that they make. 

The second is due to a lack of understanding of the general principles of empirical 

research.  
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Chapter 5 

Making Case-Based Decision Theory Directly Observable 

 

Summary 

 

Gilboa & Schmeidler’s case-based decision theory (CBDT) is an alternative to 

Savage’s state-space model for uncertainty. Preferences are determined by similarities 

with cases in memory. This chapter introduces a nonparametric method to elicit 

CBDT, requiring no commitment to parametric families and relating directly to 

decisions. An experiment on real estate investments demonstrates the feasibility of 

our method. Our implementation of real incentives avoids not only the income effect, 

but also interaction between different memories. We confirm CBDT’s predictions 

with however one violation of separability of cases in memory. CBDT gives plausible 

predictions and new insights into (real estate investment) decisions. 

 

Keywords: case-based decision theory, similarity weights, random incentive system, 

nonexpected utility, ambiguity, real estate investments 
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Case-based decision theory (CBDT) was introduced as an alternative to Savage’s 

(1954) classical state-space model for decision under uncertainty. In Savage’s model, 

acts map states to outcomes and preferences are expressed over acts. Savage's model 

is commonly used today and forms the basis for generalizations of expected utility 

that incorporate ambiguity, especially in the version of Anscombe & Aumann (1963). 

In CBDT, preferences are determined by cases in the decision maker’s memory and 

their similarity with the decision problem at hand. CBDT has several advantages over 

the classical model. No counterfactual events or outcomes need to be considered 

(Gilboa & Schmeidler 2001, henceforth GS, pp. 43, 93-95), and CBDT naturally fits 

with our everyday thinking.
16

  The primary achievement of GS was to connect case-

based models of information processing, widely used in artificial intelligence (Aha, 

Marling, & Watson 2005; Hüllermeier 2007; Riesbeck & Schank 1989) and other 

fields (Dubois et al. 1999; Greco, Matarazzo, & Slowinski 2008; Hertwig et al. 2004; 

Stewart, Chater, & Brown 2006), with economic decision making. 

Gilboa & Schmeidler (1995, and many followups) and Eichberger & Guerdjikova 

(2011) provided preference foundations of CBDT, demonstrating its theoretical 

soundness. There is, however, a dearth of empirical applications and those that exist 

have as yet focused on direct introspective judgments (Lovallo, Clarke, & Camerer 

2012) or on parametric fittings (Gayer, Gilboa, & Lieberman 2007; Golosnoy & 

Okhrin 2008; see also Guerdjikova 2008 p. 112, and Pape & Kurtz 2012). Such 

fittings require a commitment to particular parametric families of similarity weights, 

usually based on a particular distance function, and to particular error theories. These 

commitments introduce distortions when the parametric assumptions do not 

correspond with people’s preferences. They are extra problematic for new concepts 

such as CBDT’s similarity weights, because we do not know much about their 

properties (Guerdjikova 2008; Pape & Kurtz 2012). Similarity judgments may even 

                                                 

16
 Greenspan (2004, p. 38) wrote: “how … the economy might respond to a monetary policy initiative 

may need to be drawn from evidence about past behavior during a period only roughly comparable to 

the current situation.”  Charness & Levin (2005) consider situations where naïve case-based reasoning 

leads to opposite, inferior, decisions than Bayesian reasoning, but still find that about half of their 

subjects follow the case-based reasoning. 



 80 

violate basic properties of distance measures (Grosskopff, Sarin, & Watson 2008 

§1.2). 

We will introduce a nonparametric method to measure similarity weights that avoids 

all parametric assumptions. It is a close analog of de Finetti’s (1931) betting odds 

system for measuring subjective probabilities, a well-known nonparametric 

measurement method in classical decision theory.
17

  Nonparametric measurements 

provide correct results in full generality, revealing the right properties whatever they 

are. The required measurements are elementary and can be carried out using only 

paper and pencil. They immediately reveal the empirical meaning of the concepts 

measured in terms of preferences without complex computer fitting intervening. They 

can be used in prescriptive and interactive sessions to determine optimal values of 

parameters (Keeney & Raiffa 1976). They are also useful in preference 

axiomatizations, which often amount to excluding inconsistencies in nonparametric 

measurements (Wakker 2010 p. 8). 

We demonstrate the feasibility of our measurement technique in two experiments on 

real estate investment, a domain that is particularly prone to case-based reasoning 

(Gayer, Gilboa, & Lieberman 2007). A complication in experimentally testing CBDT 

is that it not only entails a deviation from Savage’s uncertainty model but, more 

fundamentally, from the classical revealed preference paradigm: It varies information 

in memory rather than available choice alternatives. Consequently, we need a new 

mechanism to implement incentives in experiments. The popular random incentive 

system serves to avoid income effects (interactions between different outcomes 

received), but for CBDT, we additionally have to avoid interactions between the 

different memories that are used in the different decision problems. A complication in 

designing such an incentive mechanism is that people cannot deliberately forget 

information. Hence we developed an adaptation of the random incentive system to 

CBDT, which is explained in Section 4. 

Our experimental findings confirmed most of the predictions of CBDT. Yet we did 

find some evidence of interactions between different cases in a memory. This 

                                                 

17
 The decision-theoretic term nonparametric should not be confused with the statistical term, as 

discussed by Gilboa, Lieberman, & Schmeidler (2011) in the context of CBDT. 



 81 

suggests that CBDT’s assumption that cases are separable is too restrictive and that 

generalizations of this assumption are desirable (Eichberger & Guerdjikova 2011; 

Peski 2011). Our findings on real estate investments are plausible. They underscore 

that CBDT is a viable alternative to classical revealed preference for obtaining new 

insights into (real estate investment) decisions. 

 

5.1 Case-based decision theory versus classical revealed preference: varying 

memory instead of available choice options 

In classical decision theory, choices are usually derived from other decisions (Gilboa, 

Schmeidler, & Wakker 2002, GSW henceforth, beginning of §3; Jahnke, Chwolka, & 

Simons 2005 pp. 20-21; Manski 2011; Starmer & Sugden 1991). In the revealed 

preference approach these other decisions concern variations in the set of available 

choice options. For example, in consumer demand theory, choice options are 

commodity bundles and sets of available options are budget sets. Usually, choices 

maximize a preference relation that describes all choices from pairs, and this 

preference relation is used as primitive. Savage’s (1954) decision uncertainty model is 

one of many examples. Exceptions notwithstanding,
18

 variations in the set of available 

choice options are the almost exclusively used tool in decision theory today. 

CBDT entails a fundamental departure from classical decision theory. Instead of  

varying the available choice options, CBDT varies the information available, termed 

memory (GS §4.2 and p. 94; GSW p. 485). A memory M contains cases. A case is a 

triple (p,a,r)  P  A  R, where pP is a problem encountered in the past, aA is the 

act chosen there, and rR is the outcome that resulted. The pair (p,a) is a 

circumstance. If a particular act a is chosen in a given problem, there is no need to 

specify which other acts were available (they were all less preferred than a, 

obviously.)  In contrast with the classical paradigm (Savage 1954), there is no need to 

specify counterfactual events and/or outcomes in CBDT. For discussions about the 

                                                 

18
 One exception is social choice theory (Arrow 1951) where the set of choice options is kept fixed and 

instead the preferences of the individuals in society vary. 
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weaknesses  of the classical paradigm see Aumann 1971; Gilboa 2009; GS; Karni & 

Vierø 2011; Luce 2000 §1.1.6.1. 

CBDT assumes a utility function u mapping outcomes to the reals, and a nonnegative 

similarity function s((p,a),(q,b)). The latter function, which is the new subjective 

parameter introduced by CBDT, describes for each pair of circumstances (p,a) and 

(q,b) how similar they are. We assume that the actual problem faced is p, that an act 

(= choice option) a is to be chosen from a set D of available acts, and that the act a 

chosen is the one maximizing 

  U(a) = (q,b,r)Ms((p,a),(q,b))u(r). (1.1) 

The similarity weights determine the exchange rate between utility units under 

different circumstances. Under CBDT, preferences depend on the memory M. Hence 

we denote the preference relation over acts by M. Strict preference and indifference 

are denoted M and ~M, respectively. 

We use a general version of CBDT with act similarity (GS p. 51). Other versions are 

discussed in the discussion section. The following example illustrates the procedures 

of CBDT, and its most critical condition, separability of cases (GS p. 66, A2, 

combination). 

EXAMPLE 1.1 [separability of different cases]. Assume that: 

(1) Dish (act) a is chosen from menu D = {a,b} if the agent’s memory contains the 

following four cases: A choice of dish a´ during the last three Fridays gave a 

moderately positive outcome each time. A choice of dish b´ on Friday a month 

ago gave a very positive outcome. 

(2) Dish a is chosen from D = {a,b} if the agent’s memory contains the following 

four cases: A choice of dish a´ during the last two Tuesdays gave a moderately 

positive outcome each time. A choice of dish b´ the two Tuesdays before did so 

too. 

Then 
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(3) Dish a is also chosen from D = {a,b} if the agent’s memory contains both the four 

cases in  (1) and the four cases (2). 

The example illustrates the departure of CBDT from the classical paradigm. The set 

of choice alternatives to choose from, D = {a,b}, is kept fixed and for the cases in 

memory the available acts are not even specified. Hence, variations in the set of 

available choice options is not used. What varies is the information upon which the 

actual choice is to be based. All outcomes considered have really been experienced 

and, hence, no use is made of hypothetical situations.  

Variations in available information and experience are often central when we make 

decisions under uncertainty. Gilboa and Schmeidler (2001) provide many examples. 

Hence, CBDT primarily serves as a paradigm that is alternative to the classical 

paradigm for uncertainty of Savage (1954) and Anscombe & Aumann (1963).
19

 

The following uniqueness result holds for CBDT. 

OBSERVATION 1.2. In Eq. 1.1, preferences are not affected if  

i. u is multiplied by a positive factor
20

; 

ii. circumstance-dependent constants
21

 are added to the similarity weights; 

iii. all similarity weights are multiplied by a common positive factor.  

 

                                                 

19
 The new paradigm of CBDT can also serve as a new approach for consumer theory (Gilboa & 

Schmeidler 1997b), adaptive optimization (Gilboa & Schmeidler 1996; Golosnoy & Okhrin 2008; 

Guerdjikova 2008; Jahnke, Chwolka, & Simons 2005), social structures (Blonski 1999), and inductive 

reasoning and probability assessment (Eichberger & Guerdjikova 2010; Gayer 2010; Gilboa, 

Lieberman, & Schmeidler 2010). 

20
 See GSW, Theorem 2.1. 

21
 See GSW, Theorem 2.1, or Gilboa & Schmeidler (1997a the Theorem). Adding the same constant 

c(q,b) to all s((p,a),(q,b)) increases the utility of all acts by the same constant c(q,b)u(r), which does not 

affect preference. Section 3 gives a derivation when there are two acts in D. The constants added 

cannot depend on the acts a in D for otherwise preference would be affected. 
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Under minimal richness assumptions, only the invariance described in Observation 

1.2 is permitted. Then the similarity weights are a kind of joint interval (cardinal) 

scales
22

 and u is a ratio scale. Thus, in general, the outcome with utility 0 is 

empirically meaningful and cannot be chosen arbitrarily. This follows because the 

sum of the similarity weights may differ from 1 or another constant and can depend 

on the memory under consideration (GS pp. 40, 43). 

The outcome with utility 0 is called neutral. As we will explain in the next section, in 

our method we need not know the neutral outcome to be able to measure the 

similarity weights. We achieve this by a design where the terms corresponding to the 

unknown neutral outcome drop from the equations. Further discussions of neutral 

outcomes include GS (pp. 133, 148 ff.) and many other papers. 

5.2 Direct (nonparametric) measurements of utility and similarity weights: 

Theory 

This section presents a theoretical analysis showing how the parameters of CBDT, 

utility and the similarity weights, can be measured nonparametrically. The basic 

procedure for similarity weights is the analog of de Finetti’s betting odds system for 

measuring subjective probabilities. In short, if in a given situation improving a result 

for circumstance 1 by 5 leads to indifference, and improving a result for circumstance 

2 by 3 also leads to indifference, then the proportion of the similarity weights of these 

two circumstances is 3:5. We now explain the procedure in more detail. 

It suffices to consider only two acts to choose from. We therefore focus on this simple 

case and assume D = {a0,a1} for a problem p. Here, and in what follows, we use 

notation that will be convenient for the experiment reported later. For each 

circumstance (qj,bj), we define the difference between the similarity weights of the 

two acts considered: 

                                                 

22
 See Guerdjikova (2008 pp. 109-110). In many applications of CBDT, further scaling conventions are 

imposed on the similarity weights that determine their 0 level, such as being 0 whenever the acts 

involved in the two circumstances are different (Blonski 1999; Gilboa & Schmeidler 1995 Theorems 1, 

2; Gilboa & Schmeidler 1996, 1997a; Jahnke, Chwolka, & Simons 2005 pp. 17, 23). Then the 
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 dj = s((p,a1),(qj,bj))  s((p,a0),(qj,bj)). (2.1) 

We call dj the decision weight of the corresponding circumstance. Eq. 1.1 leads to the 

following decision criterion: 

 a1 
~


 a0   (qj,bj,rj)Mdju(rj) <
=
>

 0 . (2.2) 

We call circumstance (qj,bj) favorable if dj > 0, neutral if dj = 0, and unfavorable if dj 

< 0. Throughout this chapter it is understood that these terms are for a1 versus a0 

(GSW p. 487). Eq. 2.2 illustrates the uniqueness results of Observation 1.2: We 

cannot observe more of similarity weights than the generated decision weights, and, 

further, decision weights are unique up to a common positive factor. This invariance 

is similar to ratio scales. A difference is that decision weights can be of either sign, 

whereas common ratio scales are usually only positive. Decision weights can also be 

zero. 

We can also observe the signs of decision weights. That is, we can observe whether 

improving a result of a case changes preference favorably or unfavorably. Hence, for 

a given memory we can distinguish  the pair of decision weights 1, 2 from the pair 1, 

2 even though they have the same ratio. This aspect complicates the mathematical 

and statistical analysis of similarity weights, in the same way as it complicates  the 

analysis of sign-dependent ratios in general (Koerkamp et al. 2007). 

GSW present two ways to measure utility that we discuss in Appendix A. The central 

topic of our chapter is the measurement of similarity weights. We assume that utilities 

are known. They may have been obtained using Appendix A, or they may be assumed 

linear, as in our experiment. We take a pair of default outcomes (r0,r1) for which the 

acts a1 and a0 are not indifferent and then consider two changes r0  r
0

2
 and r1  r

1

1
, 

each of which leads to indifference between a1 and a0. Gilboa and Schmeidler have 

usually analyzed CBDT under the assumption that such outcomes r
0

2
 and r

1

1
 exist. To 

ensure their existence they used various diversity axioms or solvability/continuity 

                                                                                                                                            

similarity weights are ratio scales. The requirement that similarity weights are nonnegative restricts the 

constants that can be added. 
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axioms (for the latter, see Gilboa & Schmeidler 1995 pp. 635-636 Axiom A2´, or 

GSW p. 489: solvability). In the following theorem we also assume that r
0

2
 and r

1

1
 

exist. The results of the Theorem are stated in theoretical terms that are not directly 

observable, but they will provide the groundwork for the observable results presented 

later. 

THEOREM 2.1. Assume D = {a0,a1} for problem p, and memories M = Ma  Mp with 

Ma = {(q0,c0,r0), (q1,c1,r1)}. We denote M = (r0,r1) because all else is fixed here. 

Assume  

 a0 /~(r0
,r1) a1, a0 ~(r

0
2, r1) a1, and a0 ~(r0

, r
1
1) a1   (2.3) 

for some r
0

2
 and r

1

1
. Then 

 
d1

d0
  =  

u(r
0

2
)u(r0)

u(r
1

1
)u(r1)

   (2.4) 

with both ratios well-defined and nonzero. Regarding the sign of a decision weight, 

i.e. the favorability of the corresponding circumstance, each line below gives a triple 

of equivalent statements:
23

 

 (1): d0 > 0;  (2): [u(r0´) > u(r
0

2
)  a1 (r0´,r1) a0];  (3): [u(r0´) < u(r

0

2
)  a1 (r0´,r1) 

a0]; 

 (1): d0 < 0;  (2): [u(r0´) > u(r
0

2
)  a1 (r0´,r1) a0];  (3): [u(r0´) < u(r

0

2
)  a1 (r0´,r1) 

a0]; 

 (1): d1 > 0;  (2): [u(r1´) > u(r
1

1
)  a1 (r0

,r1´) a0];  (3): [u(r1´) < u(r
1

1
)  a1 (r0

,r1´) 

a0]; 

 (1): d1 < 0;  (2): [u(r1´) > u(r
1

1
)  a1 (r0

,r1´) a0];  (3): [u(r1´) < u(r
1

1
)  a1 (r0

,r1´) 

a0].  
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The proof of Theorem 2.1 is in Appendix B. The theorem shows that, starting from 

memory (r0,r1), a change from u(r0) to u(r
0

2
), which is weighted by d0, has the same 

nonzero effect as a change from u(r1) to u(r
1

1
) weighted by d1. This leads to Eq. 2.4. 

Given that we can observe utility (Eqs. A.2 and A.3), Theorem 2.1 gives all the 

information that can be obtained about d0 and d1 and the underlying similarity 

weights. This follows from Observation 1.2, the subsequent discussion there, and the 

discussion following Eq. 2.2. The theorem shows that only the degree to which cases 

in memory are more favorable for a1 than for a0 is relevant for the choice between 

acts. To derive Eq. 2.4, we need not know which outcome is neutral, i.e. what the 

level of utility is, because this level drops from the equation. 

We will assume linear utilities, which is reasonable for the moderate amounts used in 

the experiment. This way we avoid having to measure utility (see Appendix A), thus 

reducing the number of tasks that the subjects had to perform. We included several 

tests of linear utility and these supported our assumption. Linear utility was also 

assumed by Gilboa and Schmeidler in several papers (Gilboa & Schmeidler 1995 p. 

613 and Axiom A4, and p. 635 and Axiom A4´; Gilboa & Schmeidler 1997a p. 50 

and Axiom A3). For linear utility we obtain from Eq. 2.4: 

 
d1

d0
  =  

r
0

2
r0

r
1

1
r1

  . (2.5) 

In our experiment we used negative weights d0. We therefore normalized Eq. 2.5. by 

division by |d0| = d0, so that larger d1 weights correspond with larger normalized 

weights. We then have 

 
d1

d0
  =  

r0r
0

2

r
1

1
r1

  .  (2.6) 

                                                                                                                                            

23
 We added primes in r0´ and r1´ below to distinguish them from r0 and r1. The latter variables usually 

are no free variables but they play particular roles, such as true values in our experiments. 
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Eq. 2.6. forms the basis of the measurements reported below. 

5.3 A CBDT version of the random incentive system 

The implementation of incentives in experiments on CBDT raises a subtle issue, not 

present in traditional decision experiments based on classical revealed preference. In 

traditional experiments, subjects are typically asked to make many choices to obtain 

as much information as possible within the constraints of the experiments. Yet each of 

these choices has to be taken in isolation to avoid income effects due to interactions 

between outcomes.
24

  Illuminating early discussions are in Savage (1954 p. 29) and 

Ramsey (1931 pp. 169-174). Hence the random incentive system (RIS) was 

introduced to implement incentive compatibility.
25

  Subjects are asked to make many 

choices, but only one randomly selected choice is played out for real. Under some 

plausible assumptions, it is in the subjects’ best interest to take each choice as isolated 

(Holt 1986; Starmer & Sugden 1991). 

To measure CBDT, we have to consider choices under several memories. As in the 

classical RIS, we can play out one randomly selected choice for real at the end of the 

experiment, avoiding income effects. However, this procedure only works if in each 

choice the new memory replaces previous memories, rather than being added to them. 

Simply asking subjects to forget or ignore the information provided at previous 

choices may be possible in hypothetical choices with cooperative subjects (Gilboa & 

Schmeidler 1995 p. 621 points I and II), but it is impossible with real incentives and 

self-interested subjects. 

To our knowledge, the only study that succeeded in implementing real decisions for 

CBDT is Grosskopff, Sarin, & Watson (2008). They used abstract cases so as to avoid 

prior memory effects, and told subjects that the different decisions (which were all 

implemented for real and income effects were therefore not excluded) did not affect 

                                                 

24
 If repeated purchases and multiple consumptions are relevant for the actual decision problem, then 

they have to be explicitly modelled that way. Then a choice option should describe combinations of 

purchases and of consumption bundles. A choice option is by definition what is to be chosen once. 

25
 The first proposal that we are aware of is Savage (1954 p. 29). 
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each other and were independent. Subjects may however have figured that the 

randomizations all came from the same experimental implementation, using the same 

payoff function, and may still have perceived relations and similarities. We therefore 

opted for a different and more radical way to separate information in different 

decision situations, by developing a case-based version of the RIS. We also excluded 

income effects. 

We told subjects that they would be asked many decisions, each with a different piece 

of information (= memory). One of these pieces was true. The others were made up 

by us (possibly still partly true). This was apparent in the experiment because 

different memories were usually mutually incompatible. Subjects did not know what 

the true information was. At the conclusion of the experiment, the decision 

implemented for real was based on the true information. It was explained to the 

subjects that to have their best choice implemented in the actual decision implemented 

at the end (and based on the true information), they should take every memory 

provided at a choice as the only true one for that choice. The memories provided 

before and after were irrelevant for the choice considered. Rational subjects should 

follow this advice. It is possible that subjects still thought that the information that 

was made up provided clues about the true information, or that subjects perceived a 

meta-lottery over pieces of information. These risks are similar to those in the 

traditional RIS. Isolated processing is in a subject’s best interest in our design as it is 

in the traditional RIS. 

5.4 Experiment 1 to measure similarity weights and to test CBDT 

This section shows how we implemented the measurement of decision weights in our 

first experiment. 

5.4.1  Stimuli 

Our stimuli were based on the development of the prices of real estate in different 

provinces (states) of the Netherlands. Figure 4.1 depicts a map of the Netherlands 

with the different provinces indicated. In what follows, we will use a notation that 

makes the text easily accessible to readers unfamiliar with the Dutch geography so 

that knowledge of Figure 4.1 is not needed. 
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Subjects had to choose between two acts, a0 and a1. Act a0 yielded  

 €3 + 10x  (4.1) 

if the price of a single-family house in the province of South-Holland increased by x% 

in the month after the experiment. The other act, a1, yielded the same payoff, but with 

x now referring to the percentage increase of an apartment in the Dutch province of 

North-Brabant. Figure 4.2 give two screenshots from the experiment.
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FIGURE 4.1: Map of the Netherlands 
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FIGURE 4.2. Stimuli in experiment: three cases in memory 
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The cases in memory that we manipulated experimentally all concern one of the 

following three acts, being past gambles on related but different types of dwelling in 

different provinces in the Netherlands: 

c0 (house in North-Holland); 

c1 (house in Limburg); 

c2 (apartment in Utrecht). 

We have numbered cases according to our prior expectation of their favorability for a1 

against a0, with c2 most favorable and c0 least favorable (which was later confirmed 

by the experiment). Thus readers need not know the Dutch conditions.. In particular, 

a0 and c0 will be perceived as very similar, and favorable outcomes under c0 will 

enhance a preference for a0 over a1.
26

  

Our subjects probably have more information than the information provided in the 

experiment: they entered the lab with some prior knowledge about real estate prices. 

We call this information their prior memory, and it is modeled through extra cases Mp 

= {qj,bj,rj}j>4, which are assumed subject-dependent and unobservable for us.
27

    The 

added memory refers to the set of additional cases, which was manipulated in the 

experiment, and is denoted Ma. The complete memory is M = Ma  Mp. Because Mp 

is fixed, we can ignore it and equate the memory with Ma. The terms related to Mp 

will always drop from the equations in what follows.
28

  This implies that biases in 

retrieving cases from memory such as the availability heuristic (Lovallo, Clarke, & 

Camerer 2012), do not affect our measurements. 

Because each act cj in memory corresponds with a different problem qj in our 

application, we will usually refer to circumstances by only denoting the relevant acts 

in memory. The latter uniquely determining the corresponding problems. That is, 

problems are suppressed and circumstances are identified with acts in memory 

(Guerdjikova 2008 p. 109). From now on we use the term act only for a0 and a1, the 

                                                 

26
 Our subjects, like almost everyone else, are unlikely to be finance specialists believing in a reversal 

(good past performance implies bad future performance) for real estate prices. 

27
 We use indexes j > 4 because the indexes j = 3,4 will be used in Experiment 2. 
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acts to be chosen from, and the term circumstance for c0-c2 in memory. This is also 

why we use the symbol c in c0-c2. We define decision weights dj as in Eq. 2.1. Thus, 

dj indicates to what extent a good result for cj supports the choice of a1 rather than of 

a0. As explained, we expected that d2 > d1 > d0; d0 will usually be negative. Because 

we assume that utility is linear, we have u(rj) = rc, with c the subject-dependent and 

unobserved neutral outcome. As can be seen from Eq. 2.6. on which our 

measurements are based, we need not know the neutral outcome because it drops from 

the equation. A plausible neutral outcome in our experiment may be the risk-free 

interest rate (Golosnoy & Okhrin 2008).  

The real outcomes r0, r1, and r2 of the three circumstances c0, c1, and c1 were 0.159, 

0.06, and 0.147, respectively. These values are depicted in Figure 4.2. In other words, 

the annual rise in the price of a house in South-Holland over the past 3 years was 

15.9%, it was 6% for a house in Limburg, and it was 14.7% for an apartment in 

Utrecht. These real values played a role similar as r0 and r1 in Theorem 2.1. That is, 

we considered departures from these values that produced indifferences between the 

acts a0 and a1. 

The indifferences were determined through an iteration process illustrated in Table 

4.1. The table displays the answers of one of the subjects (Subject 35) in the 

experiment. The first row shows that we first asked the subject to choose between a0 

and a1 for r0 = 15.9% and r1 = 100%.
29

  Not surprisingly, the subject chose a1. We 

then decreased r1 to 0% and now he chose a0. By varying r1 depending on the 

subject’s choices we zoomed in on the value of r1 for which the subject was 

indifferent between a0 and a1. The recorded indifference value was the midpoint 

between the two outcomes where preference switched. In the table it is 19.8% (the 

midpoint between 19.1% and 20.6%). 

                                                                                                                                            

28
 It is very unlikely that one of the cases in the added memory was already present in the prior 

memory. Hence we assume that Ma and Mp are disjoint. 

29
 That is we asked them to choose between a house in South-Holland and an apartment in North-

Brabant when it was given that the annual increase in house prices in North-Holland over the past 3 

years was 15.9% and the annual increase in house prices in Limburg was 100% over the past 3 years. 
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TABLE 4.1 

Iteration r0 r1 Choice 

1 15.9% 100% a1 

2 15.9% 0% a0 

3 15.9% 6% a0 

4 15.9% 53% a1 

5 15.9% 29.5% a1 

6 15.9% 17.7% a0 

7 15.9% 23.6% a1 

8 15.9% 20.6% a1 

9 15.9% 19.1% a0 

 

Table 4.2 gives an overview of the questions that we asked in Experiment 1. There 

were 8 questions and the table entries denote the stimuli that were included. An empty 

cell means that that circumstance was not present in a memory. For example, we can 

see from Table 4.2 that circumstance c2 (apartment in Utrecht) was not included in the 

second question. The outcomes printed in bold are those that were varied to produce 

indifference between a0 and a1. The other outcomes, those not in bold, were always 

equal to their real values. The choice process shown in Table 4.1 corresponds to the 

second question. 

The true value of the bold outcome was always presented as one of the choices. 

Hence, there was always one choice situation in which all outcomes were true, but 

subjects did not know in which situation this happened. For example, the choice 

situation for M
6
 with real values is in Figure 4.2.
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TABLE 4.2 

 M
1
 M

2
 M

3
 M

4
 M

5
 M

6
 M

7
 M

8
 

c0 r0 r
0

2
 r

0

2
+5 r

0

4
 r0 r0 r

0

7
 r0 

c1 r
1

1
 r1 r

1

3
   r

1

6
 r1 r1 

c2    r2 r
2

5
 r2 r2 r

2

8
 

Each memory Ma = M
j
 is specified by the outcomes below it, referring to the 

circumstances in the corresponding row. Thus M
1
 = {(c0,r0), (c1,r1

1
)} and M

7
 = {(c0,r0

7
), 

(c1,r1), (c2,r2)}. In each case except c0 at M
3
, the outcomes not in bold were the real 

outcomes. The bold outcome was varied to produce indifference between a0 and a1. 

5.4.2  Similarity weights in our design 

We saw before that Subject 35 was indifferent between a0 and a1 for r
1

1
 = 19.8% in the 

first choice question. For this value of r
1

1
 the information for or against a1 relative to a0 

provided by case (c1,r1

1
) exactly offsets the information provided by (c0,r0) joint with 

Mp. The decision weight d1 is positive for this subject because a1 is preferred for 

larger values than r
1

1
 and a0 is preferred for smaller values than r

1

1
. 

 In general, the outcomes r
1

1
 and r

0

2
 are such that 

 a1 ~MaMp a0 for Ma = M
1
 = {(c0,r0), (c1,r1

1
)} and (4.2) 

 a0 ~MaMp a1 for Ma = M
2
 = {(c0,r0

2
), (c1,r1)}. (4.3) 

As another example, outcome r
2

8
 is such that 

 a0 ~MaMp a1 for Ma = M
8
 = {(c0,r0), (c1,r1), (c2,r2

8
)}. (4.4) 

By Theorem 2.1 we have the following results, where following each statistic we 

define a shorthand notation for it. For example, 
d

1

1

d
0

2 denotes the statistic estimating 
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d1/(d0) that can be derived from M
1
 and M

2
, and 

d
1

3

d
0

2 denotes the statistic estimating 

d1/(d0) that can be derived from M
1
 and M

3
, with division by d0 explained in Eq. 

2.6. 
30

 

 
d1

d0
  =  

r0r
0

2

r
1

1
r1

   =:  
d

1

1

d
0

2   (M
1
 & M

2
). (4.5) 

 
d1

d0
  =  

r0(r
0

2
+5)

r
1

1
r

1

3   =: 
d

1

3

d
0

1  (M
1
 & M

3
). (4.6) 

 
d1

d0
  =  

r0r
0

7

r
1

6
r1

  =:  
d

1

6

d
0

7  (M
6
 & M

7
). (4.7) 

 
d2

d0
  =  

r0r
0

4

r
2

5
r2

  =:  
d

2

5

d
0

4  (M
4
 & M

5
). (4.8) 

 
d2

d0
  =  

r0r
0

7

r
2

8
r2

  =:  
d

2

8

d
0

7  (M
7
 & M

8
). (4.9) 

By Theorem 2.1, our observations also reveal the signs of all dj. Observation 1.2 then 

shows that our measurements reveal all the information that can be obtained about the 

similarity weights. 

5.4.3  Sample and procedure 

Subjects. N = 53 (26 female) undergraduate students from Erasmus University 

coming from diverse academic backgrounds signed up for the experiment. We 

decided not to drop any subject for erratic behavior (although we did treat zero 

decision weights as missing, as explained later in §4.5). Given the novelty of CBDT, 

                                                 

30
 Whenever the two relevant memories contain two cases, we can immediately apply Theorem 

2.1When both memories contain three cases (M
6
-M

8
), there is one case that has the same outcome 

throughout; e.g.. for M
6
 and M

7
 this concerns c2. We then apply Theorem 2.1 with this common case 

included in Mp. For example, to obtain Eq. 4.7, we take the Mp of Theorem 2.1 equal to our Mp  

{(c2,r2)}. 
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it is not clear to what extent deviations from the model (such as nonmonotonicity in 

outcomes) can be interpreted as erratic or as a valid violation. Keeping all subjects 

increases the noise in our data and makes our tests conservative. 

Stimuli. Table 4.2 describes the choices faced by the subjects. They were presented as 

in Figure 4.2. 

Procedure. Subjects were seated in front of personal computers in groups of four or 

three. After receiving experimental instructions (see Appendices C and D), subjects 

answered the experimental questions. They were asked two practice choice questions 

to familiarize them with the experimental procedure. Subjects indicated their choice 

by clicking on the appropriate button. They could answer at their own pace. The 

experiment took 20 minutes on average. 

Motivating subjects. Each subject received a flat fee of €3 for participation at the end 

of the experiment, plus a performance contingent payment (Eq. 4.1). The latter 

depended on the development of the prices for real estate in the next month. We told 

subjects that some of their choices concerned real data, and that the decision 

implemented at the end would concern the real data. There were in fact six choices 

with real data (in M
1
, M

2
, M

4
, M

5
, M

6
, and M

8
), but subjects did not know which or 

how many these were. At the start of the experiment each subject was handed an 

envelope, which contained one of the memories with real data. The envelope was 

opened at the end of the experiment and the choice the subject had made in the 

question in the envelope was implemented. Implementation meant that we waited 

until next month’s real estate appreciation had become known, after which the 

resulting outcome was transferred to the subjects’ bank accounts. Given that the 

experimenters are professors at the same university where the students are, this 

procedure is trustworthy. 

Table 4.1 shows that our questions were chained and an answer to one question might 

influence the next questions asked. However, the choice implemented for real was the 

one with the real values and this was independent of answers given by the subject. 

Hence subjects could understand that they could not benefit from strategic answering, 

and that it was in their interest to truthfully reply to all questions. 
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Consistency checks. The choices with real data were the same in M
1
 and M

2
, in M

4
 

and M
5
, and in M

6
 and M

8
 (see Table 4.2). We used these three repeated choices to 

check the consistency of subjects’ choices and to obtain an estimate of the error in 

their choices. 

5.4.4  Predictions of CBDT 

 We next list three predictions of CBDT regarding comparisons of decision 

weights. In each prediction, part (a) is a prediction about the ratio of decision weights 

and the other parts are predictions about favorability, i.e. about the sign of the 

decision weights. We will, therefore, refer to Predictions 1a, 2a, and 3a as ratio 

predictions and to the other predictions as sign predictions. 

 The first prediction follows from a comparison between Eqs. 4.5. and 4.6, and 

tests linearity of utility. If utility is linear then the two ratios defined there should be 

equal. The other conditions of CBDT are less critical here because the memories M
1
 

and M
3
 contain only c0 and c1. 

PREDICTION 1 OF CBDT (LINEAR UTILITY W.R.T. d1): (a) 
d

1

1

d
0

2 = 
d

1

3

d
0

1  (Eqs. 4.5 and 4.6). (b) 

r
1

1
 and r

1

3
 imply the same sign (favorability) of d1.  

The next two predictions test CBDT’s assumption of separable cases (GSW Condition 

A5, GS Condition A2 p. 66, combination, and many related conditions). Prediction 2 

follows from a comparison between Eqs. 4.5 and 4.7. If cases are separable then the 

common value of r2 is irrelevant and the statistics defined in these equations should be 

the same. In memories M
1
 and M

2
, r2 is not specified, and in memories M

6
 and M

7
 it 

equals r2. In both cases, CBDT'’s separability implies that r2 can be ignored, from 

which the predicted equality follows. 

PREDICTION 2 OF CBDT (SEPARABILITY W.R.T. A COMMON r2): (a)  
d

1

1

d
0

2  = 
d

1

6

d
0

7  (Eqs. 4.5 

and 4.7);  (b) r
0

2
 and r

0

7
 imply the same sign of d0. (c) r

1

1
 and r

1

6
 imply the same sign of 

d1.  
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Prediction 3 follows from a comparison between Eqs. 4.8 and 4.9. Here the common 

value is r1. In memories M
4
 and M

5
, r1 is not specified. In memories M

7
 and M

8
 it is 

equal to r1. Now CBDT'’s separability implies that r1 can be ignored, from which the 

predicted equality follows. According to separability of cases, the ratios defined in 

Eqs. 4.8 and 4.9 should be the same. 

PREDICTION 3 OF CBDT (SEPARABILITY W.R.T. A COMMON r1): (a) 
d

2

5

d
0

4  = 
d

2

8

d
0

7 (Eqs. 4.8 

and 4.9);  (b) r
0

4
 and r

0

7
 imply the same sign of d0. (c) r

2

5
 and r

2

8
 imply the same sign of 

d2.  

5.4.5  Analysis 

If a decision weight is (close to) 0, then the subject never changes preference. 

Unfortunately, such choices may also arise due to a lack of attention on the subjects’ 

part. In either case we cannot determine the sign of d1. In theoretical papers, such 

difficulties are usually avoided by assuming that all or at least several circumstances 

are nonneutral, often through various diversity axioms (for another condition, see 

GSW condition C5). We will treat zero values as missing. 

Testing ratios is problematic if the denominator can be 0 or can change sign between 

subjects (Koerkamp et al. 2007). For example, the ratio (1)/(2) is not to the same as 

the ratio 1/2. Fortunately, d0 was negative for nearly all subjects, as expected, ( 82% 

for every measurement of d0). We could, therefore, test the ratio predictions 

restricting them to the subjects for whom d0 was negative. It is plausible that the few 

positive observations of d0 were mostly due to error. The rate of positive weights d0 

was approximately equal to the observed inconsistency rates. Thus we could use the 

negative d0’s to normalize the other decision weights, avoiding the complexities of 

analyzing ratios for which the denominator changes sign. 

Because the signs of d1 and d2 were less consistent between subjects than those of d0, 

we did not use these for normalization purposes. That is, we did not compare the 

values of d0 normalized by means of either d1 or d2. We only compared the absolute 

strength of d0 versus d1 and d2 by testing whether the absolute values |dj/d0| were 

above or below 1 (j = 1,2). 
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All tests are two-sided. We used sign-tests to statistically test ratio predictions
31

. 

Within-subject (dependent samples) tests were used whenever possible. The rest of 

this paragraph explains our choice. Sign tests are conservative (have little power) but 

have the advantage of being applicable to the most general scales. Kolmogorov-

Smirnov tests showed that we could not use t-tests. Wilcoxon signed-rank tests 

require comparability of differences of the scale between subjects. Given the novelty 

of the sign-dependent ratios of decision weights, little is known about their statistical 

properties, and the required comparability is questionable. Hence we chose to use the 

sign tests. The sign tests had enough power to detect differences in our data. When 

testing signs of similarity weights we used the usual binomial tests, within subjects 

whenever possible. 

5.4.6  Results: Tests of CBDT 

The consistency checks gave similar results for all three tests, averaging 23% 

inconsistencies for all choices, and 15% if zero decision weights were excluded. Such 

inconsistency rates are common in decision theory (Abdellaoui 2000; Camerer 1989; 

Harless & Camerer 1994; Hey & Orme 1994). The result is reassuring given that the 

stimuli for CBDT are more complex than those used in classical decision tasks. 

Subjects should not only consider the two acts to choose from but they should also 

consider varying memories containing multiple circumstances (Guerdjikova 2008 p. 

115 l.3). 

Consistency of signs was generally confirmed. The null of random signs could be 

rejected in favor of consistent signs (p < 0.01) in all but one case (d
1

6
 in Prediction 2c). 

In Predictions 1b, 2b, 3b, and 3c the null of no sign changes could be accepted 

(always p > 0.3). This null could only be rejected in Prediction 2c (d
1

1
 > d

1

6
; p = 0.01). 

For the ratio predictions, Predictions 1a and 3a were accepted (p > 0.5), but Prediction 

2a was rejected (p = 0.007). That is, linear utility was accepted, and separability of 

cases was accepted when (c1, r1) was added to memory, but not when (c2,r2) was 

added to memory. 

                                                 

31
 By the sign test we mean the well know distribution-free statistical test, it has nothing to do with 
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5.4.7  Results: Explorations regarding real estate investments 

Our expectations about the signs and the strengths of the decision weigths were 

confirmed by the data. We anticipated that c2 would be maximally favorable for a1, 

that c0 would be maximally unfavorable for a1, and that c1 would be in between. We 

did not have a clear expectation about the sign of c1. We indeed observed d0 < 0, d2 > 

0, and d2 > d1 (
d

2

5

d
0

4  > 
d

1

1

d
0

2 ; p = 0.02; 
d

2

8

d
0

7  > 
d

1

6

d
0

7 (p = 0.05). As explained, we could not 

directly compare d0 with d1 and d2, but we could compare the strength of d0 with the 

strengths of the other weights. We found that |d1/d0| < 1 (|
d

1

1

d
0

2 | < 1,|
d

1

3

d
0

1 | < 1, and |
d

1

6

d
0

7 | < 

1, all with p < 0.001), but |d2/d0| = 1 (p = 1, both for |
d

2

5

d
0

4 | and |
d

2

8

d
0

7 ). Thus c0 and c2 had 

similarly strong effects (although in opposite directions) and both had more effect 

than c1 did. The sign of d1 was positive (although not significant in M
6
). Apparently 

geographical vicinity (Limburg borders North-Brabant) was more important than the 

difference in the type of dwelling (house versus apartment). 

5.4.8  Discussion of Experiment 1 

The predictions of CBDT were accepted with one exception: separability of cases for 

d1 if (c2,r2) is added to memory (M
1
 versus M

6
), in Prediction 2. This violation means 

that the effect of prices of a house in Limburg is affected by information about the 

result of an apartment in Utrecht. This violation of separability is not surprising. In M
1
 

the only other circumstance in memory is c0, which is similar to a0 and favors it. It 

then is natural that c1 is taken to favor a1. In M
6
, c2 is also present in memory. It 

concerns the same type of dwelling (apartment) as a1 making it more questionable 

whether c1, which concerns a different type of dwelling (a house), should favor a1. 

The inclusion of c2 weakens the support of c1 for a1. This concerns a plausible 

interaction between circumstances in memory, which violates the separability of 

CBDT. 

                                                                                                                                            

testing the signs of decision weights. 
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Despite the one violation of CBDT, its measurements give useful insights into real 

estate investment decisions. The preference for a1 over a0 is primarily affected by 

negative results for c0, a bit less (although not significantly so) by positive results for 

c2, and the least strongly by positive results for c1. These findings are plausible. For c1 

we learned from the experiment that subjects relate it more to a1 than to a0. Using the 

terminology of GS (p. 78), the attribute of geographic similarity plays a bigger role 

than the attribute of type-of-dwelling similarity does. 

5.5 Experiment 2 to measure similarity weights and to test CBDT 

In Experiment 1, circumstance c1 was complex to process for subjects because type of 

dwelling and geography had opposite effects. This may have contributed to the 

observed violation of separability and to the inconsistencies in choice. Hence, 

Experiment 2 used cases that were easier to process. Favorability was always 

unquestionable and geography and type of dwelling always had the same effect. In 

addition, there were fewer subjects per session. Both changes reduced noise and 

increased statistical power. Unfortunately, because this experiment had to be done in 

the same month as Experiment 1, we could only obtain a limited number of subjects. 

In what follows, we will focus on the differences between the two experiments. 

5.5.1  Stimuli to measure similarity weights 

We used the same acts a0 and a1 to choose from and the same payment scheme. The 

circumstances in memory were:  

c0 (house in North-Holland); 

c3 (apartment in Limburg); 

c4 (apartment in Gelderland). 

The decision weights d0, d3, and d4 are as in Eq. 2.1. Circumstance c3 more clearly 

support a1 against a0 than c1 did in Experiment 1: c3 concerns the same type of 

dwelling as a1 did, whereas c1 concerned a different type. It is also easier for subjects 

to compare c3 and c4 in the three-circumstance memories (M
14

, M
15

, M
16

), because 

they only differ geographically and not regarding type of dwelling,. The real annual 

price increases of c0, c3, and c4 over the past 3 years were 15.9%, 4.1%, and 6.0%. 
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Table 5.1 depicts the design of the second experiment, which is of the same for as in 

Experiment 1. As in Experiment 1, the outcomes in bold were varied to produce 

indifference and the outcomes not in bold were set equal to their real values. 

TABLE 5.1 

 M
9
 M

10
 M

11
 M

12
 M

13
 M

14
 M

15
 M

16
 

c0 r0 r
0

10
 r

3

9
+5 r

0

12
 r0 r0 r

0

15
 r0 

c3 r
3

9
 r3 r

3

11
   r

3

14
 r3 r3 

c4    r4 r
4

13
 r4 r4 r

4

16
 

M
9
 = {(c0,r0), (c3,r3

9
)} and M

16
 = {(c0,r0), (c3,r3), (c4,r 4

16
)}. 

A difference with Experiment 1 was that in M
11

 we added 5 to r
3

9
 rather than to r

0

10
, to 

test linear utility for other differences in outcomes. By Theorem 2.1 we have the 

following results, using the same shorthand notation as in Experiment 1. 

 
d3

d0
  =  

r0r
0

10

r
3

9
r3

   =:  
d

3

9

d
0

10   (M
9
 & M

10
). (5.1) 

 
d3

d0
  =  

r0(r
3

9
+5)

r
3

9
r

3

11   =:  
d

3

11

d
0

9   (M
9
 & M

11
). (5.2) 

 
d3

d0
  =  

r0r
0

15

r
3

14
r3

  =:  
d

3

14

d
0

15 (M
14

 & M
15

). (5.3) 

 
d4

d0
  =  

r0r
0

12

r
4

13
r4

  =:  
d 4

13

d
0

12 (M
12

 & M
13

). (5.4) 

 
d4

d0
  =  

r0r
0

15

r
4

16
r4

  =:  
d 4

16

d
0

15 (M
15

 & M
16

). (5.5) 
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5.5.2  Sample and procedure 

Subjects. N = 23 (12 female) undergraduate students from Erasmus University signed 

up for the experiment. The subjects had various academic backgrounds. 

Procedure. The experiment was administered through individual interviews or in 

sessions involving 2 students. Thus, there were fewer subjects per session than there 

were in Experiment 1. 

Consistency checks. The real choices are the same in M
9
 and M

10
, in M

12
 and M

13
, and 

in M
14

 and M
16

. We used these pairs to test consistency. 

5.5.3  Predictions of CBDT 

We could again derive three predictions from CBDT, one testing linearity of utility 

and the other two testing separability of cases. 

PREDICTION 4 OF CBDT (LINEAR UTILITY W.R.T. d3): (a) (a) 
d

3

9

d
0

10  = 
d

3

11

d
0

9   (Eqs. 5.1 and 

5.2)  (b) r
3

9
 and r

3

11
 imply the same sign of d3.  

PREDICTION 5 OF CBDT (SEPARABILITY W.R.T. A COMMON r4): (a) 
d

3

9

d
0

10  = 
d

3

14

d
0

15  (Eqs. 5.1 

and 5.3). (b) r
0

10
 and r

0

15
 imply the same sign of d0. (c) r

3

9
 and r

3

14
 imply the same sign of 

d3.  

 

PREDICTION 6 OF CBDT (SEPARABILITY W.R.T. A COMMON d3): (a) 
d

4

13

d
0

12  = 
d

4

16

d
0

15  (Eqs. 5.4 

and 5.5). (b) r
0

12
 and r

0

15
 imply the same sign of d0. (c) r

4

13
 and r

4

16
 imply the same sign 

of d4.  
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5.5.4  Results: Tests of CBDT 

The consistency checks gave similar results on the three tests, averaging 7% 

inconsistencies overall. This is considerably better than in Experiment 1. 

All predictions of CBDT were accepted. The null of random signs could always be 

rejected in favor of consistent signs. The sign and ratio predictions of CBDT were 

always accepted, with always p > 0.15. 

5.5.5  Results: Explorations regarding real estate investments 

 All results in Experiment 2 are plausible and are as anticipated. We have d0 < 0, 

d3 > 0, and d4 > 0 (always p < 0.01). We find no difference of strength between d3 and 

d4, with 
d

4

13

d
0

12  = 
d

3

9

d
0

10  and 
d

4

16

d
0

15  = 
d

3

14

d
0

15  (always p > 0.6). We found |d3/d0| < 1 and |d4/d0| < 1 

(|
d

3

14

d
0

15 | < 1, p = 0.02; |
d

4

16

d
0

15 | < 1, p = 0.02), indicating that c0 provided more support for 

a0 than both c3 and c4 did for a1, although the inequalities were not significant for (|
d

3

9

d
0

10 

|) and (|
d

4

13

d
0

12 |). 

5.5.6  Discussion of Experiment 2 

All predictions of CBDT were accepted in the second experiment. One might worry 

that this could be due to lack of power, because the number of subjects was less than 

half the number in Experiment 1. However, in this experiment we made a special 

effort to have clear cases in memory with clear predictions, and to reduce noise, 

reducing inconsistency by a factor 3. All findings are plausible. The signs of the 

decision weights were significantly different than 0, and the strengths (irrespective of 

direction) of c3 and c4 were smaller than c0’s strength, with no other significant 

differences. The equality of d3 and d4 suggests that Limburg and Gelderland are to the 

same extent more similar to Brabant than to South-Holland. The preference of a1 over 

a0 was most affected by negative results for c0 and then, and in equal measure, by 

positive results for c3 and c4. 
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5.5.7  A Comparison Between Experiment 2 and Experiment 1 

We compared all ratios dj/d0 of Experiment 2 with those of Experiment 1 and found 

the following significant differences. 

d3 > d1 (
d

3

9

d
0

10  > 
d

1

1

d
0

2 , p = 0.02; 
d

3

14

d
0

15  > 
d

1

6

d
0

7 , p = 0.005). 

d4 > d1 (
d

4

16

d
0

15  > 
d

1

6

d
0

7 , p = 0.005). 

These differences are plausible. In c3 and c4 the type of dwelling was the same as in a1 

while it was different in c1, and geographical differences with a1 were identical or 

comparable for c1, c3, and c4.All other ratios dj/d0 did not differ significantly between 

the two experiments. Again, this was according to expectation because the differences 

in type of dwelling and geography were always the same. 

Combining the two experiments, we find that the preference for a1 over a0 was most 

affected by negative results for c0, then by positive results for c2, then by positive 

results for c3 and c4, and, finally, to the least extent by positive results for c1. 

5.6  General discussion 

Most assumptions of CBDT were corroborated by our tests. The only exception was a 

violation of separability of different cases in memory: The informational value of a 

house in Limburg (c1) was affected by that of an apartment in Utrecht (c2). As pointed 

out by Gilboa & Schmeidler (1995, p. 631; 1997a p. 52), such a violation is similar to 

the violations of separability over disjoint events (the sure-thing principle, or 

independence) found for expected utility, and is equally unsurprising in retrospect. 

Further violations of separability are discussed by GS (p. 74). 

Although our violation of separability was found under a change of memory size, it 

reflects an interaction between cases that will also generate violations when memories 

are of the same size. This could, for instance, be tested by adding neutral cases to the 

smallest memories. Eichberger & Guerdjikova’s (2010, 2011) developed restrictions 

of separability to memories of equal size, and imposed mixture versions of 
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independence for such cases (generalizing the concatenation axiom of Billot et al. 

2005). We conjecture that the interaction of cases that we found can also lead to 

violations of those weakened axioms of separability, but leave the actual investigation 

of this claim to future studies. 

Gayer, Gilboa, & Lieberman (2007) found that case-based reasoning played a bigger 

role in the rental market than in the more speculative sales market. This suggests that 

we have put CBDT to a hard test, investigating it in a domain, the market for real-

estate, where its effects were previously found to be rather weak. We nevertheless 

observed clear support for the predictions of CBDT. Our finding does not contradict 

Gayer Gilboa, & Lieberman (2007) because our subjects were price takers, unlike 

those involved in the sales market, and the gains for our subjects depended on the 

market price. They were not involved in price negotiations. 

We, finally, discuss the implications of our results for some versions of CBDT that 

are alternative to the one used in our chapter. Special cases of the act similarity 

version in Eq. 1.1 arise if similarity s depends only on the problems p and q (GS p. 

35; Gilboa & Schmeidler 1995 p. 610), if s is 0 whenever b  a (GS p. 38; Gilboa & 

Schmeidler 1995 p. 610), and if each q appears at most once in M (GS pp. 37-38; 

Gilboa & Schmeidler 1995). Because these are special cases of Eq. 1.1 our 

measurements are also valid under them. Further generalizations occur when 

circumstances in memory are not decomposed into problems and acts (to which our 

analysis applies with no modification), and when similarity can also depend on the 

result (GS p. 52). The latter dependency is too general for its parameters to be 

measurable unless we can use in the repetitions approach where each circumstance 

(q,b) can occur any finite number of times in memory (GS Ch. 3). The data set in our 

experiment is not rich enough for the repetitions approach, and we do not consider it 

in this chapter. 

A final alternative version of CBDT arises if the similarity weights are normalized, 

leading to an average rather than a (weighted) sum of utility. This approach is 

appropriate if we decide infinitely often, using the present choice merely to find the 

long-term highest average. Our chapter and experiment consider one-off choices. 
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Then maximizing the sum in Eq. 1.1, and not the average, is appropriate (GS pp. 74, 

158 ff.; Pape & Kurtz 2012). 

5.7. Summary and Conclusion 

This chapter has introduced a parameter-free method to measure similarity weights, 

the main new components of case-based decision theory (GS p. 35). This method 

directly shows the relation between the weights and decisions, without imposing any 

restrictions on either. We assumed linear utility, which is reasonable for the moderate 

amounts used in our experiment. An extensions to nonlinear utility is in the appendix. 

Our measurement method works as follows. If a preference for a1 over a0 can be 

turned into an indifference by increasing the outcome (appreciation) under ci by €x, 

and also by increasing the outcome under cj by €y, then the ratio di/dj of decision 

weights is y/x. It is a case-based analog of de Finetti’s betting odds for 

nonparametrically measuring subjective probabilities. 

Decision weights are differences of similarity weights and only their ratios and signs 

can be observed. CBDT generally requires information on several unknows (the 

neutral utility level and the cases in memory prior to the experiment), which may be 

hard to obtain. An advantage of our method is that we do not need this information 

because these unknowns dropped from our equations.  

We developed a case-based analog of the random incentive system. Thus we could 

manipulate memories in an incentive-compatible manner without requiring subjects to 

forget information once given. We resolved the statistical complication of testing 

ratios with changing signs by separating sign- and ratio predictions. An experiment 

showed that our method is implementable. Case-based decision theory was generally 

supported by our data, although generalizations of separability of cases in memory 

may be desirable. 

We found the predictions of CBDT reasonably well confirmed, although 

generalizations of separability of cases in memory are desirable. Case-based decision 

theory is a viable alternative to classical revealed preference. It agrees with intuitive 

similarity judgments (based on Dutch conditions in our experiment), and gives new 
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insights where intuitive judgments are inconclusive. Thus it gave new insights into 

(real estate investment) decisions. Our experiment is easy to implement and 

transparently shows the empirical meaning of similarity weights. We hope that this 

chapter will encourage further empirical investigations into CBDT. 

 

Appendix A:  Utility measurement under CBDT 

GSW proposed two methods for measuring utility. One (their §3) adopts the 

repetitions approach, where circumstances can be repeated and thus weighted 

differently.
32

  Since we do not have such data available in this study, we do not 

discuss it further. For the second method, we consider variations of outcomes of two 

fixed circumstances in memory, an assumption made in the rest of this section. We 

thus consider 

  M = {(q0,c0,r0), (q1,c1,r1)}  Mp, denoted (r0,r1), (A.1) 

for various (r0,r1). The notation (r0,r1), called a context in GSW and used only in this 

appendix, can work because all other variables are kept fixed here. Under some 

nondegeneracy assumptions, indifferences 

 a0 ~{0
,1} a1, a0 ~{0

,1} a1, a0 ~{0
,1} a1, a0 ~{0

,1} a1,  (A.2) 

imply  

 u(0)  u(0) = u(0)  u(). (A.3) 

This can be derived from substitution of Eq. 1.1, as was demonstrated by GSW (Eq. 

6). The indifferences in Eq. A.2 are such that all unknowns from the equations, such 

as decision/similarity weights and the terms referring to Mp, drop. Under usual 

richness assumptions, equalities of utility differences suffice to measure utility u up to 

level and unit. To completely measure utility, we should also determine its level (i.e., 

where utility is 0), which can be inferred by verifying the neutrality condition. 

                                                 

32
 Another, distribution-based, way of weighting cases unequally is proposed in similarity-based 

forecasting (Lovallo, Clarke, & Camerer (2012). 
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However, this is not needed for the measurement of similarity weights, the new 

parameters of CBDT. 

 

Appendix B: Proof 

PROOF OF THEOREM  2.1. The first indifference in Eq. 2.3 implies 

s((p,a1),(q0,c0))u(r
0

2
) + s((p,a1),(q1,c1))u(r1) +  (q,b,r)Mp

s((p,a1),(q,b))u(r) =  

s((p,a0),(q0,c0))u(r
0

2
) + s((p,a0),(q1,c1))u(r1) +  (q,b,r)Mp

s((p,a0),(q,b))u(r). 

Substituting Eq. 2.1 and writing K = (q,b,r)Mp
s((p,a1),(q,b))u(r)  

(q,b,r)Mp
s((p,a0),(q,b))u(r), we get 

 d0u(r
0

2
) + d1u(r1) + K = 0. (B.1) 

The second indifference in Eq. 2.3 similarly implies 

 d0u(r0) + d1u(r
1

1
) + K = 0. (B.2) 

Subtracting Eq. B.2 from Eq. B.1 gives  

 d0(u(r
0

2
)u(r0))  d1(u(r

1

1
)u(r1)) = 0. (B.3) 

This implies Eq. 2.4, where both numerators and denominators are nonzero because 

of Eq. 2.3. The results on the signs of d0 and d1 follow from Eq. 1.1.  

 

Appendix C:  Instructions for subjects 

You are participating in an experiment on decision making. During the experiment, 

we will provide you with information about the development of prices of some real 

estate types in different regions of the Netherlands in the last three years. Based on the 

information presented in each of the questions, you have to choose between two types 

of property to gamble on: either a single-family house (in Dutch: eengezinswoning) in 
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the province of Zuid-Holland or an apartment (in Dutch: appartement) in the province 

of Noord Brabant.  

You have just chosen a computer. Next to this computer lies an envelope. This 

envelope will be opened by the experimenter at the end of the experiment. It contains 

true information about the development of real estate prices in the Netherlands 

between 2005 and 2008 (from the Dutch Cadaster Index). It also offers you a choice 

between two types of property to gamble on. You will face this particular choice at 

some point during the experiment. You will receive a payment that is based on your 

choice during the experiment and on the actual movements of real estate prices 

(houses or apartments) in the month of the experiment (March 2009). It should be 

emphasized that neither you nor the experimenters know at this moment how the 

housing market will evolve in this month and, therefore, what your payment will be in 

a month. 

Because we are interested in your choices in many situations, we will ask you several 

questions. In each question, you receive a piece of information and you will be asked 

to make a what-would-you-gamble-on-if choice, based on this piece of information. 

Often this information is hypothetical and made up by us. But, as mentioned before, 

one of the questions asked during the experiment is the one contained in the envelope 

and is based on real data. 

For each question, only the piece of information provided there is relevant, and you 

best decide assuming that this is the only piece of information you got. After all, if 

this question turns out to be the one contained in your envelope, then all the pieces of 

information provided in the other questions are not true and are irrelevant for the 

payment you will receive. That is, best for you to do at each question is to forget all 

information provided in previous questions, and to focus only on the information 

provided at that question now faced. 

Your payment is determined as follows. In addition to a show-up fee of €3, you will 

get another €3 + 10 times the monthly appreciation rate (in percentage) of the 

property you chose in the question contained in the envelope. In case the property 

value will decrease, we will subtract it from these additional €3, but not from the 

original show-up fee. You will always receive at least the show-up fee. Please bear in 
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mind that despite the slowdown of the economy, real estate prices in the Netherlands 

still went up during the last months. 

EXAMPLE: 

For example, assume that you choose an apartment in Zuid-Holland in the real 

question. If the prices of apartments in Zuid-Holland go up by 0.6% in March, you 

receive €3 + 0.6%  10 = €3 + €6 = €9, plus the original show-up fee of €3. If the 

prices go down by 0.2%, you get €3  0.2%  10 = €3  €2 = €1 for your investment, 

plus the original show-up fee of €3. If the prices go down by 0.3% or more, you get 

€0 for your investment but you still keep the show-up fee of €3. 

Once the Cadaster makes the information about the real estate prices in March public 

(in April 2009), we will inform you by e-mail and either deposit the money in your 

bank account, or you can collect it in the office of the experimenter, L3-121. 
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Chapter 6 

Conclusion 

This thesis tests several nonstandard decision theories in health and real estate 

domains. In general, once deviations from the standard expected-utility model are 

accounted for, the investigated conditions pass these tests on an aggregate level. Both 

the additive model for health sequences and similarity-based models for housing 

market decisions provide very good approximations of human decision making. For 

individual decision making, there are more deviations. 

Tests of the QALY model and a generalization thereof do not require additional 

confounding assumptions because they reckon with violations of constant discounting 

and expected utility. At the aggregate level I observed support for the QALY model 

as its critical condition, generalized marginality, could not be rejected. At the 

individual level there was less support for the QALY model: a sizeable proportion of 

the subjects violated generalized marginality. The observed deviations were too large 

to be caused by elicitation and preference imprecisions alone. 

I also evaluated utility independence empirically. It is a less restrictive preference 

condition than generalized marginality, but still implies a tractable model. Utility 

independence was supported well at the aggregate level. At the individual level, 

I found more support for utility independence than for generalized marginality. For a 

substantial proportion of our subjects the observed violations of utility independence 

can be attributed to the elicitation procedure and preference imprecision. 

The results just mentioned suggest that QALYs cannot be applied in individual 

medical decision-making without some additional tests of the decision maker’s 

preference structure. Laying out this preference structure is an interesting topic for 

further research.  

Even though we found violations of the QALY model at the individual level, not all is 

lost. There was more support for utility independence not only at the aggregate, but 
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also at the individual level. Utility independence still implies a tractable model that 

can be applied in practice. 

Most assumptions of Case-Based Decision Theory (CBDT) were corroborated by our 

tests. The only exception was separability of different cases in memory, which was 

violated on one occasion: the informational value of a house in one of the Dutch 

provinces was affected by that of an apartment in the other. Such a violation is similar 

to the violations of separability over disjoint events (the sure-thing principle, or 

independence) found for expected utility. 

The research outlined in this thesis raises some questions – both philosophical and 

practical – about feasibility and appropriateness of laboratory experiments in testing 

axiomatic foundations of human decision making. The results show that important 

insights can be obtained by letting subjects answer seemingly simple questions. 
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