
UNIVERSITY OF ZAGREB

FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS

Matej Jusup

NETWORK OPTIMIZATION IN
RAILWAY TRANSPORT PLANNING

Master thesis

Mentor:
Prof. dr. sc. Marko Vrdoljak

Co-mentor:
Prof. dr. sc. Andreas Dress

Zagreb, February, 2017.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Zagreb Repository

https://core.ac.uk/display/197900831?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Ovaj diplomski rad obranjen je dana pred ispitnim povjerenstvom
u sastavu:

1. , predsjednik

2. , član

3. , član

Povjerenstvo je rad ocijenilo ocjenom .

Potpisi članova povjerenstva:

1.

2.

3.

This work would not be done without prof. dr. sc. Marko Vrdoljak, who introduced me to
linear programming and operations research during his university courses. I am thankful

to him for accepting to be my mentor, helping me with finding an interesting topic,
recommending me a literature and reviewing this work. I am also thankful to prof. dr. sc.

Andreas Dress, who accepted to help me with this work during my Erasmus student
exchange at university of Bielefeld, reviewed first chapters of this work and gave me

excellent advices for improving my English. Nevertheless, without my family, parents and
brother, and all their support, my studies would not even be possible. Therefore, I am most

thankful to them for being with me from the beginning.
.

Ovaj rad ne bi bio moguć bez pomoći prof. dr. sc. Marka Vrdoljaka kod kojega sam
slušao prve kolegije vezane uz linearno programiranje i operacijska istraživanja. Veoma

sam mu zahvalan što je prihvatio biti mi mentor, pomogao mi prilikom odabira teme,
pronalasku literature te svakako na pregledavanju i ispravljanju rada. Takoder sam

zahvalan prof. dr. sc. Andreasu Dressu koji mi je pristao pomoći u izradi rada tijekom
moje Erasmus studentske razmjene na sveučilištu u Bielefeldu. Prof. Dress pomogao mi je
prilikom izrade uvodnih poglavlja, te sa savjetima za poboljšanje moga Engleskog jezika.

Medutim, bez moje obitelji, roditelja i brata, te njihove pomoći, ovaj rad nikada ne bih
imao prilike napisati. Ovom prilikom im se želim zahvaliti što su bili uz mene od samoga

početka.

Contents

Contents iv

Introduction 2

1 Basics of network flows 3
1.1 Introduction . 3
1.2 Brief introduction to graph theory . 3
1.3 Minimum cost flow problem . 6
1.4 Equivalent representation of network flows 12
1.5 Linear programming and simplex method 16

2 Multi-commodity flows 24
2.1 Introduction . 24
2.2 Solution approaches . 27
2.3 Lagrangian relaxation technique . 28
2.4 Column generation approach . 32

3 Train timetabling problem 40
3.1 Introduction . 40
3.2 Train timetabling problem . 41
3.3 Space-time graph representation . 42
3.4 Integer linear programming model . 44
3.5 Solution of linear programming relaxation 47
3.6 Column generation for linear programming relaxation 48
3.7 Separation . 49
3.8 Conclusion . 51

Bibliography 52

iv

Introduction

Motivation
During my studies, I got especially interested in the field of optimization immediately after
my first optimization course. It was held by prof. dr. sc. Marko Vrdoljak whom I asked
to be my master thesis mentor. After my first introductory optimization course, I took
Operations research course which was held by prof. Vrdoljak as well. I saw its potential
right from the beginning and after consulting with prof. Vrdoljak I decided what my topic
will be. First article I read about railway planning was [6], where one can have a brief look
at [1]. Problem with models introduced there is that they are mostly dealing with freight
transportation in U.S..On the other hand, European railway networks are mostly dealing
with a passenger transportation. Nevertheless, in [6] I found out that there are many things
we should take care of while modelling railway system, e.g. railway blocking problem,
yard location problem, train scheduling problem, locomotive scheduling problem, train
dispatching problem, crew scheduling problem etc. Design of a complete railway system is
highly complex and it is divided into sub-problems, some of which are mentioned above.
These problems are not independent, indeed they highly influence each other, and it turns
out that most of these problems are NP-hard (see [2], Appendix B: NP-completeness) and
have a huge size. Therefore, I decided to focus my attention on train scheduling problem
because, in my opinion, it is the most critical one. Solutions of the problems like railway
blocking problem or yard location problem are hard to implement in practice, even though
they can generate the biggest savings. This solutions would force countries to reallocate
infrastructure in the existing railway system but, more likely than not, none of them is really
willing for such a huge step (and often it is not even possible). On the other hand, crew
scheduling problem is important one but it does not generate that high savings compared
to some other problems. Thinking further one can conclude that train scheduling problem
is in the hearth of railway system planning nowadays. It can cause substantial savings, it is
not that hard to implement new timetables in the existing railway networks, most countries
have issues with timetabling and it does not affect other sub-problems that much.

1

INTRODUCTION 2

Pre-work assumptions
While looking for an appropriate model for describing train timetabling problem, we need
to make many decisions, e.g. are we going to use single or double line model, continuous or
discrete time variables, periodic or non-periodic timetable, in periodic case, which period
is appropriate for Croatia, is model for a passenger transport going to be good enough
to cover occurrence of freight trains etc. Decision about single line model is quite easy
because most of European countries, including Croatia, have single line railway systems.
Concerning time variable we will settle down for a discrete one because in practice arrival
and departure times are always rounded in whole minute. Or in the worst case, in half
a minute. We will work with periodic timetable because Croatian railways have one day
period, except during the weekend but that is not causing too much difficulties. It is worth
mentioning that periodical system offer faster computational time and therefore we have
a huge benefit from it. Freight trains are also quite easily included in the model because
in Croatia they usually have a fixed timetable like a passenger trains. Luckily for us there
already exists one model which covers our reasoning and it was designed and tested for
some of European railway systems. Details about this model (and much more), which we
will present after theoretical discussion, can be found in [3].

Chapter 1

Basics of network flows

1.1 Introduction
Our goal is to present a solution for train timetabling problem and before developing any
advanced mechanisms for doing that, we need to start from the basics. In this section, we
will introduce the ”minimum cost flow problem” which will be the first step in this process.
The minimum cost flow problem is the most fundamental of all network flow problems. Its
generalization, multi-commodity flow problem, which we will introduce later, is going to
be our model for representing railway network. The minimum cost flow problem is easy to
state: We wish to determine the least cost shipment of a commodity through a network
in order to satisfy demands at certain nodes from available supplies at other nodes.
We now present basic definitions of the graph theory, mathematical programming formu-
lation of the minimum cost flow problem and some other technical results. Even though
we will, at some point, say few words about linear programming and describe a simplex
method into some depth, it will be mostly due to the notational purposes and for the sake
of clarity and completeness of our work. Nevertheless, we are assuming that a reader is
having a good understanding of linear programming, especially duality theory which we
will not cover in this work.

1.2 Brief introduction to graph theory
Most of the theoretical results we are going to use in this work can be found in [2]. Partic-
ularly, this chapter is almost solely based on the following chapters:

1. Introduction

2. Paths, trees, and cycles

3

CHAPTER 1. BASICS OF NETWORK FLOWS 4

16. Lagrangian relaxation and network optimization

17. Multi-commodity flows

Ap. C Linear programming

Only a few minor results are taken from some other chapters.

In this work, we will stick to the notation used in the above-mentioned book (see [2]).
E.g. we will use arcs and nodes instead of edges and vertices, models with capacitated
arcs and with exogenous supplies and demands at the nodes etc. Nevertheless, some minor
adjustments were made because of [3] to have consistent notation through the whole work.
In this section we have few objectives. Firstly, we will bring together some basic defini-
tions of network flows and graph theory to have a brief summary of the full theoretical
discussion which can be found in [2]. Secondly, we will discuss one of the ways to trans-
form a network flow problem and obtain equivalent one. This equivalent model will be of a
great value while dealing with multi-commodity flow problem (see section 2). Thirdly, we
will describe a simplex method and its specialized version called a revised simplex method
which we will need at some point.

Definition 1.2.1 (Directed graphs and networks). A directed graph G = (N, A) consists
of a set N of nodes and a set A of arcs whose elements are ordered pairs of distinct nodes.
A directed network is a directed graph whose nodes and/or arcs have associated numeri-
cal values (typically costs, capacities and/or supplies and demands). We let n denote the
number of nodes and m denote the number of arcs in G.

From now on, we often make no distinction between graphs and networks, so we use terms
graph and network synonymously.

Definition 1.2.2 (Undirected graphs and networks). We define an undirected graph in
the same manner as we define a directed graph except that arcs are unordered pairs of
distinct nodes. In an undirected graph, we can refer to an arc joining the node pair i and j
either as (i, j) or (j, i).

One can imagine an undirected arc (i, j) as a two-way street. Following the analogy, a
directed arc (i, j) can be viewed as a one-way street with entering point being node i and
exit point node j. In this work, we assume that the underlying network is always directed
one. Therefore, we present our subsequent notation and definitions for directed networks.
The corresponding definitions for undirected networks should be transparent to a reader
and we will only have a brief note about it at the end of the section.

CHAPTER 1. BASICS OF NETWORK FLOWS 5

Definition 1.2.3 (Tails and heads). A directed arc (i, j) has two endpoints i and j. We refer
to node i as the tail of arc (i, j) and node j as its head. We say that the arc (i, j) emanates
from node i and terminates at node j. An arc (i, j) is incident to nodes i and j. The arc (i, j)
is an outgoing arc of node i and an incoming arc of node j. Whenever an arc (i, j) ∈ A, we
say that node j is adjacent to node i.

Definition 1.2.4 (Degrees). The indegree of a node is the number of incoming arcs of that
node and its outdegree is the number of its outgoing arcs. The degree of a node is the sum
of its indegree and outdegree.

It is easy to see that the sum of indegrees of all nodes equals the sum of outdegrees of all
nodes and both are equal to the number of arcs m in the network.

Definition 1.2.5 (Adjacency list). The arc adjacency list A(i) of a node i is the set of arcs
emanating from that node, i.e., A(i) = {(i, j) ∈ A : j ∈ N}. The node adjacency list A(i) is
the set of nodes adjacent to that node; in this case, A(i) = { j ∈ N : (i, j) ∈ A}.

Often, we shall omit the terms arc and node and simply refer to the adjacency list; in all
cases it will be clear from the context whether we mean arc adjacency list or node adjacency
list. We assume that arcs in the adjacency list A(i) are arranged so that the head nodes of
arcs are in increasing order. Notice that |A(i)| equals the outdegree of node i. Since the sum
of all node outdegrees equals m, we immediately obtain the following property:

Corollary 1.2.6.
∑

i∈N |A(i)| = m

Definition 1.2.7 (Subgraph). A graph G′ = (N′, A′) is a subgraph of G = (N, A) if N′ ⊆ N
and A′ ⊆ A. We say that G′ = (N′, A′) is the subgraph of G induced by N′ if A′ contains
each arc of A with both endpoints in N′. A graph G′ = (N′, A′) is a spanning subgraph of
G = (N, A) if N′ = N and A′ ⊆ A.

Definition 1.2.8 (Walk). A walk in a directed graph G = (N, A) is a subgraph of G con-
sisting of a sequence of nodes and arcs i1 − a1 − i2 − a2 − · · · − ir−1 − ar−1 − ir satisfying the
property that for all 1 ≤ k ≤ r − 1, either ak = (ik, ik+1) ∈ A or ak = (ik+1, ik) ∈ A. Alterna-
tively, we shall sometimes, for the sake of simplicity, refer to a walk as a set of (sequence
of) arcs (or of nodes) without any explicit mention of the nodes (arcs).

Definition 1.2.9 (Directed walk). A directed walk is an oriented version of a walk in the
sense that for any two consecutive nodes ik and ik+1 on the walk, (ik, ik+1) ∈ A.

Definition 1.2.10 (Path). A path is a walk without any repetition of nodes. We can partition
the arcs of a path into two groups: forward arcs and backward arcs. An arc (i, j) in the
path is forward arc if the path visits node i prior to visiting node j, and is a backward arc
otherwise.

CHAPTER 1. BASICS OF NETWORK FLOWS 6

Definition 1.2.11 (Directed path). A directed path is a directed walk without any repeti-
tion of nodes. In other words, a directed path has no backward arcs.

Definition 1.2.12 (Cycle). A cycle is a path i1 − i2 − . . . − ir together with the arc (ir, i1) or
(i1, ir). We shall often refer to a cycle using the notation i1 − i2 − . . .− ir − i1. Just as we did
for paths, we can define forward and backward arcs in a cycle.

Definition 1.2.13 (Directed cycle). A directed cycle is a directed path i1 − i2 − . . . − ir.
together with the arc (ir, i1).

Definition 1.2.14 (Acyclic network). A graph is acyclic if it contains no directed cycle.

Remark 1.2.15 (Definitions for undirected networks). Definitions for directed networks
easily translate into those for undirected networks. An undirected arc (i, j) has two end-
points, i and j, but its tail and head nodes are undefined. If the network contains the arc
(i, j), node i is adjacent to node j, and node j is adjacent to node i. The arc adjacency list
(as well as the node adjacency list) is defined similarly except that arc (i, j) appears in A(i)
as well as in A(j). Consequently,

∑
i∈N |A(i)| = 2m. The degree of a node is the number

of nodes adjacent to node i. Each of the graph theoretic concepts we have defined has
essentially the same definition for undirected networks except that we do not distinguish
between a path and a directed path, a cycle and a directed cycle, and so on.

Now we are ready to introduce the ”minimum cost flow problem”

1.3 Minimum cost flow problem
Let G = (N, A) be a directed network defined by a set N of n nodes and a set A of m
directed arcs. Each arc (i, j) ∈ A has an associated cost ci j that denotes the cost per unit
flow on that arc. We assume that the flow cost varies linearly with the amount of flow.
With each arc (i, j) ∈ A we also associate a capacity ui j that denotes the maximum amount
that can flow on the arc and a lower bound li j that denotes the minimum amount that must
flow on the arc. With each node i ∈ N we associate an integer number b(i) representing
its supply/demand. If b(i) > 0, node i is a supply node; if b(i) < 0, node i is a demand
node with a demand of −b(i); and if b(i) = 0, node i is a transshipment node. The deci-
sion variables in the minimum cost flow problem are arc flows and we represent the flow
on an arc (i, j) ∈ A by xi j. In the above formulation of network flow we defined flows on
arcs. In subsection 1.4 we will introduce equivalent, flows on paths and cycles formulation.

The minimum cost flow problem is an optimization model formulated as follows:

CHAPTER 1. BASICS OF NETWORK FLOWS 7

min
∑

(i, j)∈A

ci jxi j (1.1)

subject to ∑
j:(i, j)∈A

xi j −
∑

j:(j,i)∈A

x ji = b(i), ∀i ∈ N, (1.2)

li j ≤ xi j ≤ ui j, ∀(i, j) ∈ A, (1.3)

where
∑n

i=1 b(i) = 0. In matrix form, we represent the minimum cost flow problem as
follows:

min cx (1.4)

subject to
N x = b, (1.5)

l ≤ x ≤ u. (1.6)

In this formulation, N is an n×m matrix, called node-arc incidence matrix of the minimum
cost flow problem. Each column Ni j in the matrix corresponds to the variable xi j. The
column Ni j has a +1 in the ith row, a −1 in the jth row and the rest of its entries are 0.
We refer to the constraints (1.2) as a mass balance constraints. The first term in this
constraint for a node represents the total outflow of the node (i.e., the flow emanating from
the node) and the second term represents the total inflow of the node (i.e., the flow entering
the node). The mass balance constraint states that the outflow minus inflow must equal the
supply/demand of the node. If the node is a supply node, its outflow exceeds its inflow; if
the node is a demand node, its inflow exceeds its outflow; and if the node is a transshipment
node, its outflow equals its inflow. The flow must also satisfy the lower bound and capacity
constraints (1.3), which we refer to as flow bound constraints. In most applications, the
lower bounds on arc flows are zero and from this point on, we will assume that as well.
If not stated otherwise, we will assume integrality, i.e. all the data are integral (all arc
capacities, arc costs and supplies/demands of nodes). Nevertheless, it is always possible to
transform rational data to integer data by multiplying them by a suitably large number.

Remark 1.3.1. In the applications, we necessarily need to convert irrational numbers to
rational numbers to be able to save them in a database.

Remark 1.3.2. Biggest the network is, more zero coefficients node-arc incidence matrix
N will have. Furthermore, a ratio of nonzero and zero coefficients will be really small.
Therefore, the incidence matrix representation of a network flow is not space efficient for
saving in database. Because of its inefficiency, it rarely produces efficient algorithms and
there are a better ways of doing it in practice. Some introduction can be found in [2],

CHAPTER 1. BASICS OF NETWORK FLOWS 8

but nowadays with the improvement of technology, there are even more advanced ways of
doing it. Nevertheless, incidence matrix is of a great value when it comes to the theory
because it represents the constraint matrix of the minimum cost flow problem, as well as it
possesses some useful properties.

In [2], chapters 9. Minimum cost flows: Basic algorithms, 10. Minimum cost flows: Poly-
nomial algorithms and 11. Minimum cost flows: Network simplex algorithms, one can find
an in-depth discussion about the minimum cost flow problem.

Shortest path problem
The shortest path problem is perhaps the simplest of all network flow problems. For this
problem we wish to find a path of minimum cost (or length) from a specified source node
s to another specified sink node t, assuming that each arc (i, j) ∈ A has an associated
cost (or length) ci j. Some of the simplest applications of the shortest path problem are to
determine a path between two specified nodes of a network that has a minimum length,
or a path that takes the least time to traverse, or a path that has the maximum reliability.
Regardless its simplicity, this basic model will occur as a part of our algorithm for solving
multi-commodity flow problem (see section 2).
If we set b(s) = 1, b(t) = −1, and b(i) = 0 for all other nodes in the minimum cost flow
problem (see section 1.3), the solution to the problem will send 1 unit of flow from node s
to node t along the shortest path. The shortest path problem also models situations in which
we wish to send flow from a single-source node to a single-sink node in an uncapacitated
network. That is, if we wish to send v units of flow from node s to node t and the capacity
of each arc of the network is at least v, we would send the flow along the shortest path from
node s to node t. If we want to determine shortest paths from the source node s to every
other node in the network, then in the minimum cost flow problem we set b(s) = (n − 1)
and b(i) = −1 for all other nodes (we can set each arc capacity ui j to any number larger
than (n − 1)). The minimum cost flow solution would then send unit flow from node s to
every other node i along the shortest path. In [2] chapters 4. Shortest paths: Label-setting
algorithms and 5. Shortest paths: Label-correcting algorithms give a deeper look at this
important problem.
Before moving forward to the main results of this section, we will first describe three
techniques of network transformations which we will use on a few occasions later on.

Node splitting transformation
The node splitting transformation splits each node i into two nodes i′ and i′′ corresponding
to the node’s output and input functions. This transformation replaces each original arc
(i, j) by an arc (i′, j′′) of the same cost and capacity. It also adds an arc (i′′, i′) of zero

CHAPTER 1. BASICS OF NETWORK FLOWS 9

cost and with infitinite capacity for each i. The input side of node i (i.e., node i′′) receives
all the node’s inflow, the output side (i.e., node i′) sends all the node’s outflow, and the
additional arc (i′′, i′) carries flow from the input side to the output side. We define the
supplies/demands of nodes in the transformed network in accordance with the following
three cases:

1. If b(i) > 0, then b(i′′) = b(i) and b(i′) = 0.
2. If b(i) < 0, then b(i′′) = 0 and b(i′) = b(i).
3. If b(i) = 0, then b(i′) = b(i′′) = 0.

It is easy to show a one-to-one correspondence between a flow in the original network and
the corresponding flow in the transformed network; moreover, the flows in both networks
have the same cost.

Reduced costs
In many of the network flow algorithms, we measure the cost of an arc relative to ”imputed”
costs associated with its incident nodes. These imputed costs typically are intermediate
data that we compute within the context of an algorithm. Later on, in section 2.4, reduced
costs will play one of the main roles in our algorithm. Because of its importance for us, we
will introduce few basic results into some detail and whole discussion regarding reduced
costs one can find in [2].

Definition 1.3.3 (Reduced cost). Suppose that with each node i ∈ N we associate a num-
ber π(i), which we refer to as the potential of that node. With respect to the node potentials
π = (π(1), π(2), . . . , π(n)), we define the reduced cost cπi j of an arc (i, j) as

cπi j = ci j − π(i) + π(j). (1.7)

In our algorithm in section 2.4 and many others, we often work with reduced costs cπi j
instead of the actual cost ci j. Consequently, it is important to understand the relationship
between the objective function z(π) =

∑
(i, j)∈A cπi jxi j and z(0) =

∑
(i, j)∈A ci jxi j. Suppose,

initially, that π = 0 and we then increase the node potential of node k to π(k). (1.7)
implies that this change reduces the reduced cost of each unit of flow leaving node k by
π(k). Thus the total decrease in the objective function equals π(k) times the outflow of
node k minus π(k) times the inflow of node k. By definition, the outflow minus inflow
equals supply/demand of the node. Consequently, increasing the potential of node k by
π(k) decreases the objective function value by π(k)b(k) units. Repeating this argument
iteratively for each node establishes that

z(0) − z(π) =
∑
i∈N

π(i)b(i) = πb

CHAPTER 1. BASICS OF NETWORK FLOWS 10

For a given node potential π, πb is a constant. Therefore, a flow that minimizes z(π) also
minimizes z(0). We formalize this result.

Proposition 1.3.4. The minimum cost flow problems with arc costs ci j or cπi j have the same
optimal solutions. Moreover, z(π) = z(0) − πb

We next study the effect of working with reduced costs on the cost of cycles and paths. Let
W be a directed cycle in G. Then

∑
(i, j)∈W

cπi j =
∑

(i, j)∈W

(ci j − π(i) + π(j))

=
∑

(i, j)∈W

ci j +
∑

(i, j)∈W

(π(j) − π(i))

=
∑

(i, j)∈W

ci j.

The last equality follows from the fact that for any directed cycle W, the expression∑
(i, j)∈W (π(j) − π(i)) sums to a zero because for each node i in the cycle W, π(i) occurs

once with a positive sign and once with a negative sign. Similarly, if P is a directed path
from node k to node l, then

∑
(i, j)∈P

cπi j =
∑

(i, j)∈P

(ci j − π(i) + π(j))

=
∑

(i, j)∈P

ci j −
∑

(i, j)∈P

(π(i) − π(j))

=
∑

(i, j)∈P

ci j − π(k) + π(l),

because all π(·) corresponding to the nodes in the path, other than the terminal nodes k and
l, cancel each other in the expression

∑
(i, j)∈P (π(i) − π(j)). We record these results.

Proposition 1.3.5.

a) For any directed cycle W and for any node potentials π,
∑

(i, j)∈W cπi j =
∑

(i, j)∈W ci j.

b) For any directed path P from node k to node l and for any node potentials π,
∑

(i, j)∈P cπi j =∑
(i, j)∈P ci j − π(k) + π(l).

CHAPTER 1. BASICS OF NETWORK FLOWS 11

Residual networks
In designing, developing, and implementing network flow algorithms, it is often convenient
to measure flow not in absolute terms, but rather in terms of incremental flow about some
given feasible solution. Typically, the solution at some intermediate point in an algorithm.
Doing so leads us to define a new, ancillary network, known as the residual network, that
functions as a ”remaining flow network” for carrying the incremental flow. Here we will
just introduce basic idea behind residual networks, define it, and state the most important
result. Nevertheless, it can be shown that formulations of the problem in the original net-
work and in the residual network are equivalent in the sense that they give a one-to-one
correspondence between feasible solutions to two problems that preserve the value of the
cost of solutions. Details can be found in [2].
The concept of a residual network is based on the following intuitive idea. Suppose that
arc (i, j) carries x0

i j units of flow. Then we can send an additional ui j − x0
i j units of flow

from node i to node j along arc (i, j). Also notice that we can send up to x0
i j units of flow

from node j to node i over the arc (i, j), which amounts to cancelling the existing flow on
the arc. Whereas sending a unit flow from node i to j on arc (i, j) increases the flow cost
by ci j units, sending flow from node j to node i on the same arc decreases the flow cost by
ci j units (since we are saving the cost we used to incur in sending the flow from node i to
node j). Using these ideas, we (algorithmically) define the residual network with respect
to a given flow x0 as follows:

Definition 1.3.6 (Residual network). We replace each arc (i, j) in the original network
with two arcs, (i, j) and (j, i). The arc (i, j) has cost ci j and residual capacity ri j = ui j − x0

i j,
and the arc (j, i) has cost −ci j and residual capacity r ji = x0

i j. The residual network consists
only of the arcs with a positive residual capacity and we use the notation G(x0) to represent
the residual network corresponding to the flow x0.

We will next just state the most important result concerning residual networks and use it
without a proof.

Lemma 1.3.7. A flow x is a feasible flow in the network G if and only if its corresponding
flow x′, defined by x′i j − x′ji = xi j − x0

i j and x′i jx
′
ji = 0, is feasible in the residual network

G(x0). Furthermore, cx = c′x′ + cx0, where c′ is the price vector on arcs in the residual
network.

Remark 1.3.8. One important consequence of the lemma 1.3.7 is the flexibility it provides
us. Instead of working with the original network G, we can work with the residual network
G(x0) for some x0. Once we have determined an optimal solution in the residual network,
we can immediately convert it into an optimal solution in the original network.

Now we are ready to introduce flow on paths and cycles formulation of network flows.

CHAPTER 1. BASICS OF NETWORK FLOWS 12

1.4 Equivalent representation of network flows
In formulating network flows problems, we can adopt either of two equivalent modelling
approaches. We can define flow on arcs (as discussed in section 1.3) or define flow on paths
and cycles. The first approach is more common, more intuitive and easier to visualize but
while dealing with multi-commodity flow problem using column generation technique, the
second approach will play a central role. Therefore, in this section, we will state and prove
flow decomposition theorem. The proof is going to be algorithmic and using it, from flow
on arcs representation we can get flow on paths and cycles representation and vice versa.

In a discussion to follow, by an arc flow we mean a vector x = xi j which satisfies the
following constraints: ∑

j:(i, j)∈A

xi j −
∑

j:(j,i)∈A

x ji = −e(i) ∀i ∈ N, (1.8)

0 ≤ xi j ≤ ui j ∀(i, j) ∈ A. (1.9)

where
∑n

i=1 e(i) = 0. Notice that in this model we have replaced the supply/demand b(i)
of node i by another term, −e(i); we refer to e(i) as the node’s imbalance. Reasons for
this change would lead us outside the scope of this work. The main point being that some
of the algorithms for solving the minimum cost flow problem require this change because
sometimes we want to consider flows that are not feasible. Since, at some point, one might
need to use these algorithms we will stick to this notation while talking about flow on paths
and cycles representation. Details about it can be found in [2].
Term e(i) represents the inflow minus outflow of node i. If the inflow is more than outflow,
e(i) > 0 and we say that the node i is an excess node. If inflow is less than the outflow,
e(i) < 0 and we say that node i is a deficit node. If the inflow equals outflow, we say that
node i is a balanced node. Observe that if e = −b, the flow x is feasible for the minimum
cost flow problem.
In the arcs flow formulation discussed in section 1.3, the basic decision variables are flows
xi j on the arcs (i, j) ∈ A. The paths and cycles flow formulation start with an enumeration
of all directed paths P between any pair of nodes and all directed cycles W of the network.
We let P denote the collection of all paths and W the collection of all cycles. The decision
variables in the paths and cycles flow formulation are f (P), the flow on path P, and f (W),
the flow on cycle W; we define these variables for every directed path P ∈ P and every
directed cycle W ∈W .
Notice that every set of paths and cycles flow uniquely determines arcs flow in a natural
way. The flow xi j on arc (i, j) equals the sum of the flows f (P) and f (W) for all paths P
and cycles W that contain this arc. We formalize this observation by defining:

CHAPTER 1. BASICS OF NETWORK FLOWS 13

δi j(P) :=

1, if (i, j) ∈ P
0, otherwise

and

δi j(W) :=

1, if (i, j) ∈ W
0, otherwise

Now we can write:

xi j =
∑
P∈P

δi j(P) f (P) +
∑

W∈W
δi j(W) f (W)

Thus each paths and cycles flow determine arcs flow uniquely. The more complex question
is can we decompose any arcs flow into, i.e., represent it as, paths and cycles flow? Our
most important result so far is the following theorem which gives an affirmative answer to
this question.

Theorem 1.4.1 (Flow decomposition theorem). Every paths and cycles flow has a unique
representation as nonnegative arcs flow. Conversely, every nonnegative arcs flow x can
be represented as a paths and cycles flow (though not necessarily uniquely!) with the
following two properties:

a) Every directed path with positive flow connects a deficit node to an excess node.

b) At most n + m paths and cycles have nonzero flow; out of these, at most m cycles have
nonzero flow.

Proof. In the light of our previous observations, we need to establish only the converse
assertions.
As stated earlier, we give an algorithmic proof to show how to decompose any arcs flow x
into a paths and cycles flow. Suppose that i0 is a deficit node. Then some arc (i0, i1) carries
a positive flow. If i1 is an excess node, we stop; otherwise, the mass balance constraint (1.8)
of node i1 implies that some other arc (i1, i2) carries positive flow. We repeat this argument
until we encounter an excess node or we revisit a previously examined node. Note that one
of these two cases will occur within n steps. In the former case we obtain a directed path P
from the deficit node i0 to some excess node ik, and in the latter case we obtain a directed
cycle W. In either case the path or the cycle consists solely of arcs with positive flow. If
we obtain a directed path, we let f (P) = min{−e(i0), e(ik),min{xi j : (i, j) ∈ P}} and redefine
e(i0) = e(i0) + f (P), e(ik) = e(ik) − f (P), and xi j = xi j − f (P), ∀(i, j) ∈ P. If we obtain a
directed cycle W, we let f (W) = min{xi j : (i, j) ∈ W} and redefine xi j = xi j− f (W), ∀(i, j) ∈
W. We repeat this process with the redefined problem until all node imbalances are zero.
Then we select any node with at least one outgoing arc with a positive flow as the starting

CHAPTER 1. BASICS OF NETWORK FLOWS 14

node and repeat the procedure, which in this case must find a directed cycle. We terminate
when x = 0 for the redefined problem. Clearly, the original flow is the sum of flows on
the paths and cycles identified by this method. Now observe that each time we identify a
directed path, we reduce the excess/deficit of some node to zero or the flow on some arc to
zero; and each time we identify a directed cycle, we reduce the flow on some arc to zero.
Consequently, the path and cycle representation of the given flow x contains at most n + m
directed paths and cycles, and at most m of these are directed cycles. �

Let us consider a flow x for which e(i) = 0, ∀i ∈ N. We call such a flow a circulation.
When we apply the flow decomposition algorithm to a circulation, each iteration discovers
directed cycles consisting solely of arcs with a positive flow and subsequently reduces the
flow on at least one arc to zero. Consequently, a circulation decomposes into flows along
at most m directed cycles.

Corollary 1.4.2. A circulation x can be represented as cycle flow along at most m directed
cycles.

Remark 1.4.3. We can ask ourselves what is the time complexity of the flow decomposition
algorithm described in the proof of theorem 1.4.1? The answer is that it depends on data
structure we are using for storing our network. The most common method is by using
doubly linked list and in that case time complexity is O(nm). Details can be found in [2].

The flow decomposition theorem 1.4.1 has a number of important consequences. As one
example, it enables us to compare any two solutions of a network flows problem in a
particularly convenient way and to show how we can build one solution from another by
a sequence of simple operations. The augmenting cycle theorem, to be discussed next,
highlights these ideas.
We begin by introducing the concept of augmenting cycles with respect to a flow x.

Definition 1.4.4 (Augmenting cycle). A cycle W (not necessarily directed) in G is called
an augmenting cycle with respect to the flow x if by augmenting a positive amount of flow
f (W) around the cycle, the flow remains feasible.

The augmentation increases the flow on forward arcs in the cycle W and decreases the flow
on backward arcs in the cycle. Therefore, a cycle W is an augmenting cycle in G if xi j ≤ ui j

for every forward arc (i, j) and xi j ≥ 0 for every backward arc (i, j). We next extend the
notation of δi j(W) for cycles which are not necessarily directed. We define:

δi j(W) :=

1, if arc (i, j) is a forward arc in the cycle W
−1, if arc (i, j) is a backward arc in the cycle W

0, otherwise

CHAPTER 1. BASICS OF NETWORK FLOWS 15

Notice that in terms of residual networks 1.3, each augmenting cycle W with respect to a
flow x corresponds to a directed cycle W ∈ G(x), and vice versa. We define the cost of aug-
menting cycle W as c(W) =

∑
(i, j)∈W ci jδi j(W). The cost of an augmenting cycle represents

the change in the cost of a feasible solution if we augment 1 unit of flow along the cycle.
The change in flow cost for augmenting f (W) units along the cycle W is c(W) f (W). After
this preliminary discussion we are ready to introduce the following result:

Theorem 1.4.5 (Augmenting cycle theorem). Let x and x0 be any two feasible solutions
of a network flow problem. Then x equals x0 plus the flow on at most m directed cycles
in G(x0). Furthermore, the cost of x equals the cost of x0 plus the cost of flow on these
augmenting cycles.

Proof. We will use the flow decomposition theorem 1.4.1 to prove the above result in
terms of residual networks. Suppose that x and x0 are any two feasible solutions of the
minimum cost flow problem. We have seen earlier (lemma 1.3.7) that some feasible circu-
lation x1 ∈ G(x0) satisfies the property that cx = cx0 + cx1. Corollary 1.4.2 implies that we
can represent the circulation x1 as cycle flows f (W1), f (W2), . . . , f (Wr), with r ≤ m. No-
tice that each of the cycles W1, W2, . . . , Wr is an augmenting cycle in G(x0). Furthermore,
we see that ∑

(i, j)∈A

ci jxi j =
∑

(i, j)∈A

ci jx0
i j +

∑
(i, j)∈G(x0)

ci jx1
i j

=
∑

(i, j)∈A

ci jx0
i j +

∑
(i, j)∈G(x0)

ci j

 r∑
k=1

δi j(Wk) f (Wk)

=

∑
(i, j)∈A

ci jx0
i j +

r∑
k=1

c(Wk) f (Wk)

Thus we have our result. �

Augmenting cycle theorem permits us to obtain the following characterization of the opti-
mal solutions of the minimum cost flow problem:

Theorem 1.4.6 (Negative cycle optimality conditions). A feasible solution x∗ of the min-
imum cost flow problem is an optimal solution if and only if it satisfies the negative cycle
optimality conditions; namely, the residual network G(x∗) contains no negative cost (di-
rected) cycle.

Proof. Suppose that x is a feasible flow and that G(x) contains a negative cycle. Then
x cannot be an optimal flow since by augmenting positive flow along the cycle we can
improve the objective function value. Therefore, if x∗ is an optimal flow, then G(x∗) cannot

CHAPTER 1. BASICS OF NETWORK FLOWS 16

contain a negative cycle. Now suppose that x∗ is a feasible flow and that G(x∗) contains
no negative cycle. Let x0 be an optimal flow and x∗ , x0. The augmenting cycle property
stated in theorem 1.4.5 shows that we can decompose the difference vector x0 − x∗ into the
most m augmenting cycles with respect to the flow x∗ and the sum of the costs of flows on
these cycles equals cx0 − cx∗. Since the lengths of all the cycles in G(x∗) are nonnegative,
cx0 − cx∗ ≥ 0, or cx0 ≥ cx∗. Moreover, since x0 is an optimal flow, cx0 ≤ cx∗. Thus
cx0 = cx∗, and x∗ is also an optimal flow. This argument shows that if G(x∗) contains no
negative cycle, then x∗ must be optimal, and this conclusion completes the proof of the
theorem. �

Multi-commodity flow problem
The minimum cost flow problem models the flow of a single commodity over a network.
Multi-commodity flow problem arise when several commodities use the same underlying
network. The commodities may either be differentiated by their physical characteristics
or simply by their origin-destination pairs. Different commodities have different origins
and destinations, and commodities have separate mass balance constraints at each node.
However, the sharing of the common arc capacities binds the different commodities
together. In fact, the essential issue addressed by the multi-commodity flow problem
is the allocation of the capacity of each arc to the individual commodities in a way that
minimizes overall flow costs. We will dedicate whole next chapter to the multi-commodity
flow problem because it will play a central role in our modelling of a railway system.

1.5 Linear programming and simplex method
In this section, we will set a notation with respect to linear programming which we are go-
ing to use later on. Because revised simplex method will play a central role in the algorithm
which is going to be described in section 2.4, we will try to present the main ideas behind
it as concise as possible.

A linear program is an optimization problem with a linear objective function, a set of linear
constraints, and a set of nonnegativity restrictions imposed upon the underlying decision
variables; that is, it is an optimization model of the form

min
q∑

j=1

c jx j (1.10)

CHAPTER 1. BASICS OF NETWORK FLOWS 17

subject to
q∑

j=1

ai jx j = b(i), i = 1, 2, . . . , p, (1.11)

x j ≥ 0, j = 1, 2, . . . , q. (1.12)

Remark 1.5.1. In many texts, m denotes the number of equality constraints and n denotes
the number of decision variables. This notation, unfortunately, is the reverse of the con-
vention in network flows, since network flow system contains one constraint per node and
one variable per arc. For this reason, we do not use the notation of m and n to denote the
number of constraints and variables of a linear program.

We assume, by multiplying the ith constraint by −1, if necessary, that the right hand side
coefficient b(i) of each constraint i = 1, 2, . . . , p is nonnegative. We might note that we
could formulate a linear program in several alternative ways. Since linear programming
literature frequently refers to the formulation (1.10) as the standard form of a linear pro-
gram, we will stick to it.
We can write linear programming model (1.10) in more compact, matrix form, as follows:

min cx (1.13)

subject to
Ax = b, (1.14)

x ≥ 0 (1.15)

In this formulation, the matrix A = (ai j) has p rows and q columns, the vector c = (c j)
is a q-dimensional row vector, vectors x = (x j) and b = (b(i)) are q-dimensional and p-
dimensional column vectors, respectively. We let A j denote the column of A correspond-
ing to the variable x j. We assume that the rows of the matrix A are linearly independent.
For the special case of the minimum cost flow problem (see section 1.3), each component
of the decision variable x corresponds to the flow on an arc and the matrix A has one row
for each node of the underlying network. In this case the matrix A is the node-arc incident
matrix N .

During its execution, the simplex method modifies the original program stated in the stan-
dard form (1.13) by performing a series of one or more of the following elementary row
operations:

1. Multiplying a row (i.e., constraint) by a constant, or

2. Adding one row to another row or to the objective function.

CHAPTER 1. BASICS OF NETWORK FLOWS 18

Since we have stated all constraints in the equality form, row operations do not affect a set
of feasible solutions of a linear program.

Remark 1.5.2. To model an inequality constraint
∑q

j=1 ai jx j ≤ b(i) as an equality con-
straint, we could add a new nonnegative ”slack variable” yi, with zero cost, and write the
inequality as

∑q
j=1 ai jx j + yi = b(i).

Using the above stated operations, we want to transform a linear program so that its new,
equivalent, formulation satisfies the following property:

Definition 1.5.3 (Canonical property). Formulation has one decision variable isolated
in each constraint; a variable isolated in a given constraint has a coefficient of +1 in that
constraint and does not appear in any other constraint, nor does it appear in the objective
function.

Remark 1.5.4. A linear program typically has a large number of canonical forms since
there are many ways to isolate decision variables in the constraints.

Given a canonical form for any linear program, we obtain a basic feasible solution by set-
ting a variable isolated in constraint i, called ith basic variable, equal to the right hand side
of the ith constraint, and by setting all the remaining variables, called nonbasic variables,
to value zero. Collectively, basic variables are known as the basis. In general, we obtain
basic feasible solution as follows. We isolate a variable in each constraint. For simplicity,
assume that we have isolated the variable xi in the ith constraint. Let B = {1, 2, . . . , p} de-
note the index set of basic variables and let L = {p + 1, p + 2, . . . , q} denote the index set of
nonbasic variables. We refer to the pair (B,L) as a basis structure of a linear problem. For
a given basis structure (B,L), we can compatibly partition the columns of the constraint
matrix A. Let B =

[
A1,A2, . . . ,Ap

]
and L =

[
Ap+1,Ap+2, . . . ,Aq

]
. We refer to p × p ma-

trix B as a basis matrix. We also let xB = [xi : i ∈ B] and xL =
[
x j : j ∈ L

]
be a partitioning

of variables into subvectors corresponding to the index sets B and L. With this notation,
we can rewrite the constraint matrix Ax = b as

BxB + LxL = b. (1.16)

We convert (1.16) to the canonical form by premultiplying each term by B−1, the inverse
of a basis matrix, giving

xB + B−1LxL = B−1b. (1.17)

We obtain a basic solution from (1.17) by setting each nonbasic variable to value zero. The
resulting solution is

CHAPTER 1. BASICS OF NETWORK FLOWS 19

xB = B−1b and xL = 0. (1.18)

We refer to this solution as a basic feasible solution if the value of each basic variable is
nonnegative (i.e., xB ≥ 0). We also say that the basis structure (B,L) is feasible if its asso-
ciated basic solution is feasible. For some choices of the basis matrix, the corresponding
basic solution will be feasible, and for some other choices it will not.
Converting a linear program (1.13) to the canonical form (1.5.3) requires that we invert ba-
sis matrix, which is possible only if the columns associated with basic variables are linearly
independent. If the associated columns are linearly dependent, basis matrix is singular and
we cannot invert it. We shall therefore henceforth refer to a basis as a subset of p variables
whose corresponding columns are linearly independent.
During its execution, the simplex method requires information about B−1A j, the updated
column corresponding to nonbasic variable x j. We let Ā j = B−1A j and call this vector the
representation of A j with respect to the basis matrix B−1 (or, alternatively, basis B). For
notational convenience, ĀL denote the matrix B−1L containing the column representation
of all nonbasic variables and let b̄ = B−1b; we refer to the vector b̄ as the modified right
hand side. Finally, let cB = (c1, c2, . . . , cp) and cL = (cp+1, cp+2, . . . , cq) denote the cost
vectors associated with basic and nonbasic variables, respectively.
In a canonical form of a linear program, each basic variable has a zero coefficient in the
objective function. We can obtain this special form of the objective function by performing
a sequence of elementary row operations (i.e., multiplying constraints by some multipliers
and subtracting them from the objective function). Any sequence of elementary row oper-
ations is equivalent to the following: multiply each constraint i by a number π(i) and sub-
tract it from the objective function. This operation gives the equivalent objective function∑q

j=1 c jx j −
∑p

i=1 π(i)
[∑q

j=1 ai jx j − b(i)
]
, or, collecting terms and letting z0 =

∑p
i=1 π(i)b(i),

z(x) =

p∑
j=1

c j −

p∑
i=1

π(i)ai j

 xi j +

q∑
j=p+1

c j −

p∑
i=1

π(i)ai j

 xi j + z0. (1.19)

To obtain a canonical form, we select the vector π so that

c j −

p∑
i=1

π(i)ai j = 0 ,∀ j ∈ B. (1.20)

In the matrix notation we select π so that

πB = cB

In this expression, cB = (c1, c2, . . . , cp) is the cost vector associated with basic variables.
We refer to

CHAPTER 1. BASICS OF NETWORK FLOWS 20

π = cBB−1

as the simplex multipliers associated with the basis B and refer to cπj = c j−
∑p

i=1 π(i)ai j as the
reduced cost (see subsection 1.3) of the variable x j. Note that z0 = πb = cBB−1b = cBxB,
which (since xL = 0) is the value of the objective function corresponding to the basis B.
The simplex method maintains a basic feasible solution at every step. Given a basic feasible
solution, the method first applies the optimality criteria to test the optimality of the current
solution. If the current solution does not fulfill this condition, the algorithm performs
an operation, known as pivot operation, to obtain another basis structure with a lower or
identical cost. The simplex method repeats this process until the current basic feasible
solution satisfies the optimality criteria.

Optimality criteria
Let (B,L) denote a feasible basis structure of a linear program. Assume, for simplicity,
that B = {1, 2, . . . , p}. Consider the canonical form associated with this basic structure. In
this canonical form the objective function is

min z(x) = z0 +

q∑
j=p+1

cπj x j. (1.21)

The coefficient cπj = c j−
∑p

i=1 π(i)ai j is the reduced cost of the nonbasic variable x j with re-
spect to the current simplex multipliers π. We claim that if cπj ≥ 0 for all nonbasic variables
x j, the current basic feasible solution x is an optimal solution of the linear program. To see
this, observe that in any feasible solution of the linear program, x j ≥ 0, j ∈ L. Therefore,
if cπj ≥ 0 for all nonbasic variables x j, then z0 is a lower bound on the optimal objective
function value. Therefore, because the current solution x, which sets x j = 0, ∀ j ∈ L,
achieves this lower bound, it must be optimal.

Pivot operation
If cπj < 0 for some nonbasic variable x j, the current basic feasible solution might not
be optimal. The expression (1.21) implies that cπj is the rate of decrease in the objective
function value per unit increase in the value of x j. The simplex method selects one such
nonbasic variable, say xs, as the entering variable and tries to increase its value. As we
will see, when the simplex method increases xs, as much as possible while keeping all the
other nonbasic variables at value zero, some basic variable, say xr, reaches value zero. The
simplex method replaces the basic variable xr by xs, defining a new basis structure. It then
updates the inverse of the basis and repeats the computations.

CHAPTER 1. BASICS OF NETWORK FLOWS 21

If we increase the value of the entering variable xs, to value θ and keep all the other nonbasic
variables at zero value, expression (1.17) implies that the basic variables xB change in the
following manner:

xB + θĀs = b̄ (1.22)

In this expression b̄ = B−1b ≥ 0, Ās = B−1As, and xB =
[
x1, x2, . . . , xp

]
. Let Ās =[

ā1s, ā2s, . . . , āps

]
. We can restate (1.22) as

xi = b̄(i) − θāis ∀i = 1, 2, . . . , p. (1.23)

If āis ≤ 0 and we increase θ, then xi either remains unchanged or increases. If āis > 0, then
the scalar θ must satisfy the condition θ ≤ b̄(i)āis in order for xi to remain nonnegative. As
a result,

θ = min
1≤i≤p
{b̄(i)/āis : āis > 0}

is the largest value of θ that we can assign to xs while remaining feasible. What if āis ≤

0, ∀i = 1, 2, . . . , p? Then we can assign arbitrarily large values to the entering variable xs

and the solution remains feasible. Since cπs < 0, by setting xs as large as we like, we can
make the objective function arbitrarily small, and make it approach −∞. In this instance,
we say that the linear program has an unbounded solution.
We next focus on situations in which θ is finite. If we set xs = θ, one of basic variables, say
xr, becomes zero. Note that b̄(r)/ārs = θ. We refer to xr as the leaving variable and refer to
the rule we have described for identifying θ and the corresponding leaving variable as the
minimum ratio rule. Next, we designate xs a basic variable, xr a nonbasic variable, and up-
date the canonical form of the linear program so that it satisfies the canonical property with
respect to a new basis. We do so by performing a sequence of elementary row operations.

Updating the simplex tableau - pivot operation
Recall that in the canonical form with respect to the basis B, the equations of the linear
program assume the form xB + B−1LxL = B−1b. In a new basis, the entering variable xs

becomes the basic variable for the rth row, which requires that in a new canonical form the
variable xs should have a coefficient +1 in the rth row, and a coefficient 0 in all other rows.
We achieve this new canonical form by first dividing the rth row by ārs; the variable xr then
has a +1 coefficient in this row. Then, for each 1 ≤ i ≤ p, i , r, we multiply the rth row
by the constant −āis and add it to the ith row so that the updated values of āis becomes zero.
We also multiply the rth row by a constant −cπs and add it to the objective function so that
the objective function coefficient of xs becomes zero. We refer to this set of computations
as a pivot operation.

CHAPTER 1. BASICS OF NETWORK FLOWS 22

Revised simplex method
One way to perform the pivot operation is by updating the full matrix Ā, i.e., by performing
the explicit set of pivot computations iteratively on the matrix A. This set of computations
can be very expensive for a linear program that contains many variables (as will be the
case with our problem). The revised simplex method is a particular implementation of the
simplex method that permits us to avoid many of these computations. To describe a basic
approach of the revised simplex method, suppose that we (conceptually) append a set of
fictitious variables y to the original linear program and form a new linear program with the
constraints:

Ax + Iy = b,

x ≥ 0, y ≥ 0.

In this formulation, I is an identity matrix. Then to obtain the canonical form (1.22) with
respect to the basis B, we premultiply this system by the basis inverse B−1. With the
fictitious variables y, the system becomes

xB + B−1LxL + B−1y = B−1b.

As shown by this expression, if we were to perform a pivot operation on the entire matrix
A from step to step, the coefficients of fictitious variables y would be the basis inverse.
This observation shows that we need not carry out pivot operations on the entire matrix A.
Instead, we can perform these operations on the columns associated with the initial identity
matrix I (we do not formally introduce the variables y). Since the resulting computations
give us the basis inverse B−1, we can use this matrix to compute the simplex multipliers
π = cBB−1 and then use them to compute the reduced cost of each variable. Once we
have determined the variable xs to introduce into the basis, we compute its representation
Ās = B−1As and then use this information to perform the ratio test to identify the variable
xr to leave the basis. We next perform row elementary operations on the current basis B−1

matrix and obtain updated basis inverse.
The advantage of this approach is that we use only the original data A in computing the
reduced costs (using the formula cπj = c j −

∑p
i=1 π(i)ai j) and determine the modified data Ā

for only one column s of A and perform row elementary operations only on a basis inverse
matrix. This apparently modest change in the algorithm often has dramatic effects on its ef-
ficiency because the original data A for most problems met in practice is very sparse in the
sense that most (90% or more) of its coefficients are zero. On the other hand, the modified
matrix Ā typically becomes very dense as we perform the iterations of the simplex algo-
rithm. In the revised simplex method, by using appropriate data structures, we can avoid
all the computations corresponding to zero elements. As a consequence, by implementing
the revised simplex method, we usually achieve great savings in our computations.

CHAPTER 1. BASICS OF NETWORK FLOWS 23

With this result, we will finish our discussion about simplex method but we advise inter-
ested reader to check results about termination of simplex method and bounded variable
simplex method. Basic introduction, with respect to these methods, can be found in [2].

At this point, all of our preliminary work is done so we can move forward to describe
multi-commodity flow problem and introduce column generation approach for solving it.

Chapter 2

Multi-commodity flows

2.1 Introduction
If the commodities do not interact in any way, then to solve problems with several com-
modities, we would solve each single-commodity problem separately. However, in other
situations because the commodities do share common facilities, the individual single com-
modity problems are not independent, so to find an optimal flow, we need to solve problems
in concern with each other. In this section, we study one such model, known as multi-
commodity flow problem, in which individual commodities share common arc capacities.
That is, each arc has a capacity ui j that restricts a total flow of all commodities on that arc.

Let xk
i j denote a flow of the commodity k on the arc (i, j), and let xk and ck denote flow

vector and per unit cost vector for commodity k. Using this notation we can formulate
multi-commodity flow problem as follows:

min
∑

1≤k≤K

ckxk (2.1)

subject to ∑
1≤k≤K

xk
i j ≤ ui j, ∀(i, j) ∈ A, (2.2)

N xk = bk, k = 1, 2, . . . ,K, (2.3)

0 ≤ xk
i j ≤ uk

i j ∀(i, j) ∈ A, and k = 1, 2, . . . ,K. (2.4)

This formulation has a collection of K ordinary mass balance constraints (2.3), modelling
flow of each commodity k = 1, 2, . . . ,K. The bundle constraint (2.2) tie together commodi-
ties by restricting a total flow

∑
1≤k≤K xk

i j of all commodities on each arc (i, j) to at most ui j.
Note that we also impose individual flow bounds uk

i j on the flow of commodity k on the

24

CHAPTER 2. MULTI-COMMODITY FLOWS 25

arc (i, j). Many applications do not impose these bounds, so for these applications we set
each bound to +∞. Although we might formulate a variety of alternative multi-commodity
models with different assumptions, we will refer to this model as multi-commodity flow
problem.
Sometimes it is more convenient to state the bundle constraints (2.2) as equalities instead
of inequalities. In these instances we introduce nonnegative slack variables si j and write
the bundle constraints as ∑

1≤k≤K

xk
i j + sk

i j = ui j, ∀(i, j) ∈ A, (2.5)

The slack variable si j for the arc (i, j) measures unused bundle capacity on that arc.
Note that model (2.1) imposes capacities on arcs but not on nodes. This modelling assump-
tion imposes no loss of generality, since by using node splitting technique (see subsection
1.3), we can use this formulation to model situations with node capacities as well. Three
other features of this model are worth nothing.

Remark 2.1.1 (Homogeneous goods assumption). We are assuming that every unit flow
of each commodity uses 1 unit of capacity of each arc. A more general model would permit
the unit flow of each commodity k to consume a given amount ρk

i j of the capacity (or some
other resource) associated with each arc (i, j), and replace the bundle constraints with a
more general resource availability constraint

∑
1≤k≤K ρ

k
i jx

k
i j ≤ ui j. With minor modifications,

the solution techniques that we will be discussing here can be applied to this more general
model as well.

Remark 2.1.2 (No congestion assumption). We are assuming that we have a hard (i.e.,
fixed) capacity on each arc and that the cost on each arc is linear in the flow on that arc.
In some applications encountered in communication, transportation, and other problem
domains, commodities interact in a more complicated fashion in a sense that as the flow
of any commodity increases on an arc, we incur an increasing and nonlinear cost on that
arc. This type of model arises frequently, e.g., in traffic networks where the objective func-
tion is to find a flow pattern of all commodities that minimizes overall system delay. In
this setting, because of queuing effects, the greater the flow on an arc, the greater is the
queuing delay on that arc. For example, a ”congestion” model for multi-commodity flow
might contain the individual flow constraints and , no bundle constraints, but a nonlinear
objective function of the form

min
∑

(i, j)∈A

xi j

ui j − xi j
.

In this model ui j is the nominal capacity of the arc (i, j); as the total flow xi j =
∑

(i, j)∈A xk
i j

CHAPTER 2. MULTI-COMMODITY FLOWS 26

on any arc approaches the arc’s nominal capacity, the delay approaches +∞. Practitioners
often use this type of model in the context of ”performance modelling” to see how over-
all system delay, or performance, varies as a function of various system designs (e.g., in
response to change in the network topology).

Remark 2.1.3 (Indivisible goods assumption). Above model assumes that the flow vari-
ables can be fractional. In some applications encountered in practice, this assumption is
appropriate; in other contexts, however, the variables must be integer valued. In these
instances the model that we are considering might still prove to be useful, since linear pro-
gramming model might either be a good approximation of integer programming model (we
will deal with it later), or we can use linear programming model as linear programming re-
laxation of an integer program and embed it within branch-and-bound or some other type
of enumeration approach. We note that the integrality of solutions is one very important
distinguishing feature between single and multi-commodity flow problems. One very nice
feature of single-commodity network flow problems is that they always have integer solu-
tions, whenever the supply/demand and capacity data are integer valued. Multi-commodity
flow problems do not satisfy this integrality property.

CHAPTER 2. MULTI-COMMODITY FLOWS 27

2.2 Solution approaches
There are several approaches for solving multi-commodity flow problem, including:

1. Price-directive decomposition

2. Resource-directive decomposition

3. Partitioning methods

Price-directive decomposition methods place Lagrangian multipliers (or prices) on the bun-
dle constraints and bring them into the objective function so that the resulting problem
decomposes into the separate minimum cost flow problem for each commodity k. That is,
these methods remove the capacity constraint and instead ”charge” each commodity for the
use of the capacity of each arc. These methods attempt to find appropriate prices so that
some optimal solution to the resulting ”pricing problem” or Lagrangian subproblem also
solves the overall multi-commodity flow problem. Several methods are available for find-
ing appropriate prices. Details about finding correct prices applying Lagrangian relaxation
reader can find in [2].
Dantzig-Wolfe decomposition is another approach for finding a correct prices; that method
is general-purpose approach for decomposing problems that have a set of easy constraints
and also a set of hard constraints (i.e., constraints that make problem much more difficult
to solve). For multi-commodity flow problems, the network flow constraints are the easy
constraints and the bundle constraints are the hard constraints. The approach begins, like
Lagrangian relaxation, by ignoring or imposing prices on the bundle constraints and solv-
ing Lagrangian subproblems with only the single-commodity network flow constraints.
The resulting solutions need not satisfy the bundle constraints, and the method uses linear
programming to update the prices so that the solutions generated from the subproblems
satisfy the bundle constraints. The method iteratively solves two different problems: a
Lagrangian subproblem and a price-setting linear program. This method has played an
important role in the field of optimization both because the algorithm itself has proven
to be very useful, and also because it has stimulated many other approaches to problem
decomposition. Moreover, the algorithm and its associated underlying theory have had
a significant influence on the filed of economics since this type of price decomposition
formalizes ideas of transfer pricing and coordination that lie at the heart of planned eco-
nomics. Later on we will introduce and describe the related column generation technique
for solving multi-commodity flow problem.
An alternative way of viewing multi-commodity flow problem is as a capacity allocation
problem. All commodities are competing for the fixed capacity ui j of every arc (i, j) of the
network. Any optimal solution to multi-commodity flow will prescribe a specific flow on

CHAPTER 2. MULTI-COMMODITY FLOWS 28

each arc (i, j) for each commodity which is the appropriate capacity to allocate to that com-
modity. If we started by allocating these capacities to the commodities and then solved the
resulting (independent) single-commodity flow problems, we would be able to solve the
problem quite easily as a set of independent single-commodity flow problems. Resource-
directive methods provide a general solution approach for implementing this idea. They
begin by allocating capacities to commodities and then use information gleaned from the
solution to the resulting single-commodity problems to reallocate the capacities in a way
that improve the overall system cost.
Partitioning methods exploit the fact that multi-commodity flow problem is a specially
structured linear program with embedded network flow problems. To solve any single-
commodity flow problem, we can use the network simplex method. Using similar ap-
proach we can solve multi-commodity flow problem but trying to describe it any further
would lead us outside the scope of this work.

2.3 Lagrangian relaxation technique
Lagrangian relaxation procedure is together with linear programming relaxation technique,
one of the most widely used relaxation techniques. Linear programming relaxation re-
places constraints with the requirement that variables are integer by an appropriate con-
tinuous constraints. It usually serves as a good approximation to the integer programming
problem but it can be shown that Lagrangian relaxation technique offers even better ap-
proximation of the same problem. Furthermore, Lagrangian relaxation procedure can be
used in a wider range of the optimization problems. Nevertheless, Lagrangian relaxation
procedure is more complicated and in this section we will only introduce it because of no-
tational purposes, and state the results which we will need in subsection 2.4 to determine a
lower bounds of a column generation approach. These results are non trivial and to prove
them one need a lot of side results. A full length discussion about Lagrangian relaxation
technique can be found in [2].

To describe the general form of Lagrangian relaxation procedure, suppose that we consider
the following generic optimization model formulated in terms of the vector x of decision
variables:

z∗ = min cx

subject to
Ax = b, (P)

x ∈ X.

CHAPTER 2. MULTI-COMMODITY FLOWS 29

Model (P) has a linear objective function cx and a set Ax = b of explicit linear constraints.
The decision variables x are also constrained to lie in a given constraint set X which often
models embedded network flow structure. For example, the constraint set X = {x : N x =

q, 0 ≤ x ≤ u}might be all feasible solutions to network flow problem with a supply/demand
vector q. Furthermore, we assume that the set X is finite.
Lagrangian relaxation procedure uses the idea of relaxing the explicit linear constraints
by bringing them into the objective function with associated Lagrange multipliers µ (this
idea might be familiar one from calculus in the context of solving nonlinear optimization
problems): We refer to the resulting problem

min cx + µ(Ax − b)

subject to
x ∈ X,

as Lagrangian relaxation or Lagrangian subproblem of the original problem, and refer to
the function

L(µ) = min{cx + µ(Ax − b) : x ∈ X},

as Lagrangian function. Note that since in forming Lagrangian relaxation, we have elim-
inated the constraints Ax = b from the problem formulation, the solution of Lagrangian
subproblem need not be feasible for the original problem (P). Nevertheless, we can obtain
useful information about the original problem even when the solution to Lagrangian sub-
problem is not feasible in the original problem (P). The following elementary observation
is the key result that motivates use of Lagrangian relaxation technique in general.

Lemma 2.3.1 (Lagrangian bounding principle). For any vector µ of Lagrangian mul-
tipliers, the value L(µ) of Lagrangian function is a lower bound on the optimal objective
function z∗ of the original optimization problem (P).

To obtain the sharpest possible lower bound, we would need to solve the following opti-
mization problem

L∗ = max
µ

L(µ)

which we refer to as Lagrangian multiplier problem associated with the original optimiza-
tion problem (P). Lagrangian bounding principle has the following immediate implication:

Proposition 2.3.2 (Weak duality). The optimal objective function L∗ of Lagrangian mul-
tiplier problem is always a lower bound on the optimal objective function value of the
problem (P) (i.e., L∗ ≤ z∗).

CHAPTER 2. MULTI-COMMODITY FLOWS 30

Our preceding discussion provides us with valid bounds for comparing objective function
values of Lagrange multiplier and optimization (P) problems for any choice of Lagrange
multipliers µ and any feasible solution x of (P):

L(µ) ≤ L∗ ≤ z∗ ≤ cx.

These inequalities furnish us with a guarantee when Lagrange multiplier µ to Lagrange
multiplier problem or a feasible solution x to the original problem (P) are optimal.

Proposition 2.3.3 (Optimality test).

a) Suppose that µ is a vector of Lagrangian multipliers and x is a feasible solution of the
optimization problem (P) satisfying the condition L(µ) = cx. Then L(µ) is an optimal
solution of Lagrangian multiplier problem (i.e., L∗ = L(µ)) and x is an optimal solution
to the optimization problem (P).

b) If for some choice of Lagrangian multiplier vector µ, the solution x∗ of Lagrangian
relaxation is feasible in optimization problem (P), then x∗ is an optimal solution of
the optimization problem (P) and µ is an optimal solution to Lagrangian multiplier
problem.

As indicated by proposition 2.3.3, the bounding principle immediately implies one advan-
tage of the Lagrangian relaxation approach. The method can give us a certificate (in the
form of the equality L(µ) = cx for some Lagrange multiplier µ) for guaranteeing that a
given feasible solution x of the optimization problem (P) is an optimal solution. Even if
L(µ) < cx, having the lower bound permits us to state a bound on how far a given solution
is from optimality. Let say if

[
cx − L(µ)

]
/L(µ) ≤ 0.05, we know that the objective function

value of the feasible solution x is no more than 5% from optimality. This type of bound
is very useful in practice. It permits us to assess the degree of suboptimality of given so-
lutions and it permits us to terminate our search for an optimal solution when we have a
solution that we know is close enough to optimality (in objective function value) for our
purposes. This idea will prove very useful in our algorithm later on.

Remark 2.3.4. In the optimization model (P), constraints Ax = b are all equality con-
straints. In case with inequality constraints Ax ≤ b, Lagrangian multiplier problem is a
slight variant of the one we have just introduce. It becomes

L∗ = max
µ≥0

L(µ)

Later on it implies one substantial difference in optimality test (proposition 2.3.3). To be
optimal for an optimization problem (P), the solution x∗ of Lagrangian subproblem, in ad-
dition to being feasible, needs to satisfy complementary slackness condition µ(Ax∗ − b) =

CHAPTER 2. MULTI-COMMODITY FLOWS 31

0. Since proper discussion on this matter will just complicate and prolong our discussion
without any major benefits, we will move forward to state the results of our interest.

Suppose next that we apply Lagrangian relaxation to a discrete optimization problem (P)
defined as min{cx : Ax = b, x ∈ X}. We assume that discrete set X is specified as X = {x :
Dx ≤ q, , x ≥ 0 and integer} for an integer matrix D and an integer vector q. Consequently,
problem (P) becomes

z∗ = min{cx : Ax = b, Dx ≤ q, x ≥ 0 and integer}.

We incur essentially no loss of generality by specifying set X in this manner because we
can formulate almost all real-life discrete optimization problems as integer programming
problems. Let

z◦ = min{cx : Ax = b, Dx ≤ q, x ≥ 0}. (LP)

be the linear programming relaxation of the problem (P).
Clearly, z◦ ≤ z∗ because set of feasible solutions of (LP) lies within set of feasible solutions
of (P). Therefore, linear programming relaxation provides a valid lower bound on the op-
timal objective function value of (P). Proposition 2.3.2 says us that L∗ ≤ z∗. Next theorem
says which of these two lower bounds is sharper.

Theorem 2.3.5. When applied to an integer program stated in minimization form, the
lower bound obtained by the Lagrangian relaxation technique is always as large (or sharp)
as the bound obtained by linear programming relaxation of the problem; that is, z◦ ≤ Ł∗.

To be consistent with a notation in the discussion to follow, after these general observations,
we will now introduce notation connected with Lagrangian relaxation for multi-commodity
flow problem.

Lagrangian relaxation for multi-commodity flow problem
To apply Lagrangian relaxation to multi-commodity flow problem, we associate nonneg-
ative Lagrange multipliers wi j with the bundle constraints (2.1.2), creating the following
Lagrangian subproblem:

L(w) = min
∑

1≤k≤K

ckxk +
∑

(i, j)∈A

wi j

 ∑
1≤k≤K

xk
i j − ui j

 (2.6)

or, equivalently,

L(w) = min
∑

1≤k≤K

∑
(i, j)∈A

(ck
i j + wi j)xk

i j −
∑

(i, j)∈A

wi jui j (2.7)

CHAPTER 2. MULTI-COMMODITY FLOWS 32

subject to
N xk = bk, k = 1, 2, . . . ,K, (2.8)

xk
i j ≥ 0 ∀(i, j) ∈ A, and k = 1, 2, . . . ,K. (2.9)

Note that since the term −
∑

(i, j)∈A wi jui j in the objective function of Lagrangian subproblem
is a constant for any given choice of Lagrange multipliers, we can ignore it for any fixed
value of these multipliers. The resulting objective function for Lagrangian subproblem has
a cost of ck

i j+wi j associated with every flow variable xk
i j. Since none of the constraints in this

problem contains flow variables for more than one of commodities, problem decomposes
into separate minimum cost flow problems, one for each commodity.

Remark 2.3.6. At the end it is worth mentioning subgradient pptimization technique. It
is quite useful and reliable technique for solving Lagrange multiplier problem. Basic idea
behind this method comes from gradient method in nonlinear programming. The major
difference is that Lagrangian function need not be differentiable in every point.

2.4 Column generation approach
To simplify our discussion in this section, we consider a special case of multi-commodity
flow problem. We assume that each commodity k has a single source node sk, a single
sink node tk and a flow requirement of dk units between these source and sink nodes. We
also assume that we impose no flow bounds on the individual commodities other than
the bundle constraints (2.1.2). Therefore, for each commodity k, subproblem constraints
N xk = bk, xk ≥ 0 define a shortest path problem (see subsection 1.3). For this model, for
any choice wi j of Lagrange multipliers for the bundle constraints, Lagrangian relaxation
requires solution of a series of shortest path problems, one for each commodity.

Reformulation with path flows
To begin our discussion in this subsection, let us first reformulate multi-commodity flow
problem using paths and cycles flows instead of the arc flows. Recall from section 1.4 that
we can formulate any network flow problem using paths and cycles flows. To simplify our
discussion even further, let us assume that for every commodity cost of every cycle W in the
underlying network is nonnegative. For example, the problem satisfies this condition if the
arc flow costs are all nonnegative. If we impose this nonnegative cycle cost condition, then
in some optimal solution of the problem, flow on every cycle is zero, so we can eliminate
cycle flow variables. Therefore, throughout this section, we assume that we can represent
any potentially optimal solution as the sum of flows on directed paths. Let us recall our
notation from section 1.4 concerning paths and cycles decomposition, tailored a bit for

CHAPTER 2. MULTI-COMMODITY FLOWS 33

multi-commodity flow problem.
For each commodity k, let Pk denote a collection of all directed paths from the source node
sk to the sink node tk in the underlying network G = (N, A). In paths flow formulation, each
decision variable f (P) is the flow on some path P and for the kth commodity, we define this
variable for every directed path P ∈ Pk.
As in section 1.4, let δi j(P) be an arc-path indicator variable, i.e., δi j(P) equals 1 if arc
(i, j) is contained in the path P, and is 0 otherwise. Flow decomposition theorem 1.4.1 of
network flows states that we can always decompose some optimal arcs flow xk

i j into path
flows f (P) as follows:

xk
i j =

∑
P∈Pk

δi j(P) f (P), ∀(i, j) ∈ A

Let ck(P) =
∑

(i, j)∈A ck
i jδi j(P) =

∑
(i, j)∈P ck

i j denote per unit cost of flow on the path P ∈ Pk

with respect to the commodity k. Note that for each commodity k, if we substitute for arc
flow variables in the objective function, interchange the order of summations, and collect
terms, we find that

∑
(i, j)∈A

ck
i jx

k
i j =

∑
(i, j)∈A

ck
i j

∑
P∈Pk

δi j(P) f (P)

 =
∑
P∈Pk

ck(P) f (P).

This observation shows that we can express cost of any solution as either cost of arc flows
or the cost of path flows.
By substituting path variables in multi-commodity flow formulation, we obtain the follow-
ing equivalent paths flow formulation of the problem:

min
∑

1≤k≤K

∑
P∈Pk

ck(P) f (P) (2.10)

∑
1≤k≤K

∑
P∈Pk

δi j(P) f (P) ≤ ui j, ∀(i, j) ∈ A, (2.11)

∑
P∈Pk

f (P) = dk, k = 1, 2, . . . ,K, (2.12)

f (P) ≥ 0, ∀P ∈ Pk and k = 1, 2, . . . ,K. (2.13)

In formulating this problem we have invoked the flow decomposition theorem 1.4.1 stating
that we can decompose any feasible arcs flow of the system N xk = bk into a set of paths
and cycles in such a way that the paths flow satisfy the mass balance condition (2.12).
Note that paths flow formulation of multi-commodity flow problem as a very simple con-
straint structure. The problem has a single constraint for each arc (i, j) which states that
the sum of path flows passing throughout the arc is at most ui j, the capacity of the arc.

CHAPTER 2. MULTI-COMMODITY FLOWS 34

Moreover, the problem has a single constraint (2.12) for each commodity k which states
that the flow on all paths connecting the source node sk and sink node tk of commodity k
must equal the demand dk for this commodity.

Example 2.4.1. For a network with n nodes, m arcs, and K commodities, paths flow formu-
lation contains m + K constraints (in addition to nonnegativity restrictions imposed on the
path flow values). In contrast, the arcs flow formulation (2.1) contains m + nK constraints
since it contains one mass balance constraint for every node and commodity combination.
For example, a network with n = 1.000 nodes and m = 5.000 arcs and with a commod-
ity between every pair of nodes has approximately K ≈ n2 = 1.000.000 commodities.
Therefore, paths flow formulation contains about 1.005.000 constraints. In contrast, arcs
flow formulation (2.1) contains about 1.000.005.000 constraints. But the difference is even
more pronounced; because no path appears in more than one of the constraints (2.12), we
can apply a specialized version of a simplex method, known as generalized upper bound-
ing simplex method (see [2]), to solve paths flow formulation very efficiently. Even though
linear programming basis for our example has size 1.005.000 times 1.005.000, general-
ized upper bounding simplex method is able to perform all of its matrix computations on a
much smaller basis of size 5.000 times 5.000. This method essentially solves the problem
as though as it contained only m bundle constraints, which, for this sample data, means
that we can essentially solve a linear program with only 5.000 constraints instead of over
1 billion constraints in arcs flow formulation.
However, this savings in the number of constraints does come at a cost since paths flow
formulation has a variable for every path connecting a source and sink node for each of
the commodities. The number of variables will typically be enormous, growing exponen-
tially in size of a network. On the other hand, we might expect that only very few paths
will carry flow in the optimal solution of the problem. In fact, linear programming theory
permits us to show that at most K + m paths carry positive flow in some optimal solution
of the problem (see [2]). Therefore, for a problem with 1.000.000 commodities and 5.000
arcs we could, in principle, solve paths flow formulation using 1.005.000 paths. Since the
problem contains 1.000.000 commodities, this solution would use two or more paths for
at most 5.000 of them and one path for at least the 995.000 remaining ones. If we knew
the optimal set of paths, or a very good set of paths, we could obtain an optimal solution
(i.e., values for path flows) by solving a linear program containing just commodities with
two or more sets of paths. Generalized upper bounding linear programming procedure for
solving linear programs permits us to exploit this observation.

Optimality conditions
Since paths flow formulation (2.10) contains one bundle constraint (2.11) for each arc and
one demand constraint (2.12) for each node-commodity combination, dual linear program

CHAPTER 2. MULTI-COMMODITY FLOWS 35

has a dual variable wi j for each arc and another dual variable σk for each commodity
k = 1, 2, . . . ,K. With respect to these dual variables, the reduced cost cσ,wP for each path
flow f (P) is

cσ,wP = ck(P) +
∑

(i, j)∈P

wi j − σ
k.

and the complementary slackness conditions has the following form:

Proposition 2.4.2 (Path flow complementary slackness conditions). Commodity path
flows f (P) are optimal in the paths flow formulation (2.10) of multi-commodity flow prob-
lem if and only if for some arc prices wi j and commodity prices σk, the reduced costs and
arc flows satisfy the following complementary slackness conditions:

wi j

 ∑
1≤k≤K

∑
P∈Pk

δi j(P) f (P) − ui j

 = 0, ∀(i, j) ∈ A. (2.14)

cσ,wP ≥ 0 ∀k = 1, 2, . . . ,K and ∀P ∈ Pk. (2.15)

cσ,wP f (P) = 0 ∀k = 1, 2, . . . ,K and ∀P ∈ Pk. (2.16)

These optimality conditions have a very appealing and intuitive interpretation. Condition
(2.14) states that the price wi j of arc (i, j) is zero if the optimal solution f (P) does not
use all of the capacity ui j of the arc. That is, if optimal, a solution does not fully use the
capacity of that arc and we could ignore the constraints (place no price on it).
Since cost ck(P) of path P is just the sum of costs of arcs contained in that path, i.e.,
ck(P) =

∑
(i, j)∈P ck

i j, we can write the reduced cost of path P as

cσ,wP =
∑

(i, j)∈P

(ck
i j + wi j) − σk.

That is, the reduced cost of path P is just the cost of that path with respect to the modified
costs ck

i j+wi j minus the commodity costσk. The complementary slackness condition (2.15)
states that the modified path cost

∑
(i, j)∈P(ck

i j +wi j), for each path connecting the source node
sk and the sink node tk of commodity k, must be at least as large as the commodity cost
σk. The condition (2.16) implies that the reduced cost cσ,wP must be zero for any path P that
carries flow in the optimal solution (i.e., for which the flow f (P) is positive); that is, the
modified cost

∑
(i, j)∈P(ck

i j + wi j) of this path must equal the commodity cost σk. Therefore,
conditions (2.15) and (2.16) imply:

Corollary 2.4.3. σk is the shortest path distance from node sk to node tk with respect to
the modified costs ck

i j + wi j and in the optimal solution every path from node sk to node tk

that carries a positive flow must be the shortest path with respect to the modified costs.

CHAPTER 2. MULTI-COMMODITY FLOWS 36

This result shows that the arc costs wi j permit us to decompose multi-commodity flow
problem into a set of independent ”modified” cost shortest path problems.

Column generation solution procedure
Up to this point we have restated multi-commodity flow problem as a large-scale linear
program with an enormous number of columns, with one flow variable for each path con-
necting the source and the sink of any commodity. We have also shown how to characterize
any optimal solution of this formulation in terms of linear programming dual variables wi j

and σk, interpreting these conditions as shortest path conditions (subsection 1.3) with re-
spect to the modified arc costs ck

i j + wi j. We next show how to solve the problem by using
a solution procedure known as column generation.

The key idea in column generation is to never explicitly list all columns of the problem
formulation, but rather to generate them only ”as needed”. The revised simplex method
of linear programming is perfectly suited for carrying out this algorithmic strategy. Recall
from subsection 1.5 that the revised simplex method maintains a basis B at each iteration.
It uses this basis to define a set of simplex multipliers π via the matrix computation πB = cB

(in our application, the multipliers are w and σ). That is, the method defines simplex mul-
tiplier so that the reduced costs cπB of the basic variables are zero, i.e., cπB = cB − πB = 0.
To find simplex multipliers, the method requires no information about columns (variables)
which are not in the basis. It then uses the multipliers to price-out nonbasic columns, i.e.,
compute their reduced costs. If any reduced cost is negative (assuming a minimization
formulation), the method will introduce one nonbasic variable into the basis in place of
one of the current basic variables, recompute simplex multipliers π, and then repeat these
computations. To use column generation approach, columns should have structural proper-
ties that permit us to perform the pricing out operations without explicitly examining every
column.
When applied to paths flow formulation of multi-commodity flow problem, with respect
to the current basis at any step (which is composed of a set of columns, or path variables,
for the problem), the revised simplex method defines simplex multipliers wi j and σk so that
the reduced cost of every variable in the basis is zero. Therefore, if a path P connecting
the source sk and sink tk for commodity k is one of the basic variables, then cσ,wP = 0, or
equivalently,

∑
(i, j)∈P(ck

i j + wi j) = σk. Therefore, the revised simplex method determines
simplex multipliers wi j and σk so that they satisfy the following equations:∑

(i, j)∈P

(ck
i j + wi j) = σk for every path P in the basis.

Notice that since each basis consists of K + m paths, each basis gives rise to K + m of these
equations. Moreover, the equations contain K + m variables (i.e., m arc prices wi j and K

CHAPTER 2. MULTI-COMMODITY FLOWS 37

shortest path distances σk). The revised simplex method uses matrix computations to solve
K + m equations and determines the unique values of simplex multipliers.
The complementary slackness condition (2.16) dictates that cσ,wP f (P) = 0 for every path P
in the network. Since each path P in the basis satisfies the condition cσ,wP = 0, we can send
any amount of flow on it and still satisfy the condition (2.16). To satisfy this condition
for a path P which is not in the basis, we set f (P) = 0. Next consider the complementary
slackness condition (2.14). If the slack variable si j =

[∑
1≤k≤K

∑
P∈Pk δi j(P) f (P) − ui j

]
is

not in the basis, si j = 0, so the solution satisfies condition (2.14). On the other hand, if the
slack variable si j is in the basis, its reduced cost, which equals 0−wi j, is zero, implying that
wi j = 0 and the solution satisfies condition (2.14). We have thus shown that the solution
defined by the current basis satisfies conditions (2.14) and (2.16); it is optimal if it satisfies
condition (2.15) (i.e., the reduced cost of every path flow variable is nonnegative). How
can we check this condition? That is, how can we see if for each commodity k,

cσ,wP =
∑

(i, j)∈P

(ck
i j + wi j) − σk ≥ 0 ∀P ∈ Pk,

or, equivalently,
min
P∈Pk

∑
(i, j)∈P

(ck
i j + wi j) ≥ σk?

As we have noted, the left-hand side of this inequality is just the length of the shortest
path connecting the source and sink nodes, sk and tk, of commodity k with respect to the
modified costs ck

i j + wi j. Thus, to see whether the arc prices wi j together with current path
distances σk satisfy the complementary slackness conditions, we solve the shortest path
problem for each commodity k. If for all commodities k, the length of the shortest path for
that commodity is at least as large as σk, we satisfy the complementary slackness condition
(2.15).
Otherwise, if for some commodity k, Q denotes the shortest path with respect to the current
modified cost ck

i j + wi j and the modified cost of the path Q is less than the length σk of the
minimum cost path from the set Pk, then

cσ,wQ =
∑

(i, j)∈Q

(ck
i j + wi j) − σk < 0.

In terms of a linear program (2.10), the path Q has a negative reduced cost, so we can
profitably use it in the linear program in place of one of the paths P in the current basis
B. That is, using the usual steps of the simplex method, we would perform a basis change
introducing the path Q into the current basis. Doing so would permit us to determine a new
set of arc prices wi j and a new modified shortest path distance σk between the source and
sink nodes of commodity k. We choose the values of these variables so that the reduced

CHAPTER 2. MULTI-COMMODITY FLOWS 38

cost of every basic variable is zero. That is, using matrix operations, we would once again
solve the system cσ,wP =

∑
(i, j)∈P(ck

i j + wi j) − σk = 0 in the variables wi j and σk. We would
then, as before, solve the shortest path problem for each commodity k and see whether any
path has a shorter length than σk. If so, we would introduce this path into the basis and
continue by alternately (1) finding new values for the arc prices wi j and for the path lengths
σk, and (2) solving shortest path problems.
This discussion shows us how we would determine variable to introduce into the basis at
each step. The rest of the steps for implementing the simplex method (e.g., determining
the variable to remove from the basis at each step) are the same as those of the usual
implementation, so we do not specify any further details.

Determining lower bounds
Let z∗ denote the optimal objective function value of multi-commodity flow problem (2.10)
and let zlp denote the objective function value at any step in solving paths flow formulation
of the problem (2.10) by the simplex method. Since zlp corresponds to a feasible solution
to the problem, z∗ ≤ zlp. As we have noted in theorem 2.3.2, for any choice of the arc prices
w, the optimal value L(w) of Lagrangian subproblem is a lower bound on z∗. Therefore,
suppose that at any point during the course of the algorithm, we solve Lagrangian subprob-
lem with respect to the current arc prices wi j. That is, we solve for the shortest path lengths
lk(w) for all commodities k with respect to the modified costs ck

i j + wi j. (notice that this
is the same computation that we perform in pricing out columns for the simplex method).
Then from (2.7) the value L(w) of Lagrangian subproblem is

L(w) =

K∑
k=1

lk(w) −
∑

(i, j)∈A

wi jui j

and by the theory of Lagrangian relaxation,

L(w) ≤ z∗ ≤ zlp.

Therefore, as a by-product of finding the shortest path distances lk(w), as we are pricing
out columns in implementing column generation procedure, we obtain a lower bound on
the objective function value. This lower bound allows us to judge the quality of the cur-
rent solution in column generation technique and often terminate this procedure without
further computation if the difference between the solution value zlp and the lower bound
L(w) is sufficiently small. We might note that since at each step of the simplex method, the
objective value zlp of the problem stays the same or decreases, the upper bound is mono-
tonically nonincreasing from step to step. On the other hand, the objective function value
L(w) of Lagrangian subproblem need not decrease from step to step, so at any point in the

CHAPTER 2. MULTI-COMMODITY FLOWS 39

algorithm we would use the largest of the values L(w) generated in all previous steps as the
best lower bound.

After this theoretical discussion we are finally ready to move forward to introduce and
solve train timetabling problem.

Chapter 3

Train timetabling problem

3.1 Introduction
By this point we have all necessary results for introducing and solving train timetabling
problem, but before doing that we are going to present a motivation behind the introduced
model. This whole chapter is based on Ph. D. thesis written by Valentina Cacchiani (see
[3]). There she is dealing with, not only train timetabling problem, but with few other
railway planning problems as well. For each problem, she stated a model, offered few
different approaches for solving it, made computations and compared the results. In this
work, we will only deal with train timetabling problem and introduce solution based on
column generation technique.

The general aim of train timetabling problem is to provide a timetable for a number of
trains on a certain part of railway network. According to the current situation, an infras-
tructure manager is handling railway network and receiving requests from train operators,
concerning trains to be operated for a given time horizon. Each of these requests speci-
fies a path for a train along with the arrival and departure times for all stations along the
path. Given that these requests are mutually incompatible, the infrastructure manager has
to solve train timetabling problem, modifying the arrival and/or departure times of some
trains (and possibly cancelling some other trains), in order to come up with proposed fea-
sible scenario for train operators, who may either accept it (given that they will pay less for
the requests that were modified), or come up with a new proposals. The process is iterated
until the scenario proposed by the infrastructure manager is accepted by all train operators.

Remark 3.1.1. In Croatia this process is much simpler since trains are owned by the
company owned by the country. Nevertheless, we will introduce a general approach since
it might, and probably will, change at some point.

40

CHAPTER 3. TRAIN TIMETABLING PROBLEM 41

Given practical relevance of the problem and different organization rules of the various
infrastructure managers, some variants of the problem were formulated and solved. They
can be roughly classified according to the following criteria:

a) the method focuses on a single line or on a general network

b) the method takes advantage, or not, of the fact that the solution to be constructed is
periodic.

As to a), the reason for focusing on a single (main) line, often called corridor, is that, in
many cases, once the timetable for trains on the corridor has been determined, it is relatively
easy to find a convenient timetable for trains on the other lines of the network. On the
other hand, there are other situations in which there are few congested lines, and solving
problem on each line separately would be a too rough approach. As to b), in some real
cases (nearly) all trains are repeated every period (typically one hour or one day). When
this holds, not only the size of the problem is widely reduced by considering only one
period, but also mathematical formulation can be stronger. In this work, we will introduce
a model described in [3], chapter 2, and illustrate solution method for train timetabling
problem on a single line. This solution can be also used when the problem is non-periodic,
although the case on which we focus is periodic with period one day. The method uses
an integer linear programming formulation and is based on the explicit solution of linear
programming relaxation of integer the linear formulation. Before [3], decision variables
were almost exclusively associated with nodes/arcs. This new integer linear programming
associates variables with paths in a space-time graph, which we will introduce in section
3.3. Solution of its linear programming relaxation by separation and column generation
techniques will be described in sections 3.6 and 3.7, respectively.

3.2 Train timetabling problem
We consider a single, one-way track corridor linking two major stations, with a number
of intermediate stations in between, together with a set of trains that are candidates to be
run every day of a given time horizon along the corridor. Let S = {1, . . . , s} represent a
set of stations, numbered according to the order in which they appear along the corridor
for running direction considered, and T = {1, . . . , t} denote the set of candidate trains. For
each train j ∈ T , the first (departure) station f j and the last (destination) station l j (l j > f j)
are given. Let S j B { f j, . . . , l j} ⊆ S be ordered set of stations visited by train j (j ∈ T).
The track capacity constraints impose that overtaking between trains occurs only within a
station. Furthermore, for each station i ∈ S , there are lower bounds ai and di on the time
interval between two consecutive arrivals and two consecutive departures, respectively. A
timetable defines, for each train j ∈ T , departure time from f j, arrival time at l j, and arrival

CHAPTER 3. TRAIN TIMETABLING PROBLEM 42

and departure times for the intermediate stations f j + 1, . . . , l j − 1. Each train is assigned,
by train operator, an ideal timetable, representing the most desirable timetable for the train,
that may be modified in order to satisfy the track capacity constraints. In particular, with
respect to the ideal timetable, one is allowed to modify (anticipate or delay) departure time
of each train from its first station, and to increase (but not decrease) stopping time interval
at the intermediate stations. Moreover, one can also cancel the train. A timetable for train
j in the final solution will be referred to as the actual timetable.

Remark 3.2.1. Observe that, differently from most of other models, we consider version
of the problem in which a travel time between consecutive stations must be the same in the
ideal and actual timetables. In this new version one can write the overtaking constraints
in integer linear programming in a form that is much stronger for linear programming
relaxation than in the old versions. Interested reader can check [4] and [5] for models
where the time is not constant.

The objective is to maximize sum of the profits of scheduled trains, defined as follows. The
profit achieved for each train j ∈ T is given by π j −α jν j − γ jµ j, where π j is the ideal profit,
that is profit that is achieved if the train travels according to its ideal timetable, ν j is the
shift, that is the absolute difference between a departure times from station f j in the ideal
and actual timetables, µ j is the stretch, that is the (nonnegative) difference between a travel
time from f j to l j in the actual and ideal timetables (equal to the sum of the stopping time
increases over all intermediate stations), and α j, γ j are given nonnegative parameters.

Remark 3.2.2. Note that it would be easy to impose additional constraints on a train
timetables in the model, such as the requirement that a train does not arrive at a station
later than a certain time instant, to guarantee a connection with a train on a different line
whose timetable is fixed. However, we do not consider these constraints in our work.

For convenience, from now on, we will use the acronym TTP to denote train timetabling
problem, ILP to denote integer linear programming and LP to denote linear programming.

3.3 Space-time graph representation
We next outline the representation of the problem on a graph. Times are here discretized
and expressed as integers from 1 to q B 1440 (the number of minutes in a day), though
a finer discretization would also be possible (e.g., 1/2, 1/4 of a minute) without changing
the model, although time and space complexity of the associated algorithms could increase
considerably.

CHAPTER 3. TRAIN TIMETABLING PROBLEM 43

Let G = (N, A) be a (directed, acyclic) space-time multigraph in which nodes represent
arrivals/departures at a station in a given time instants, and paths represent feasible timeta-
bles for trains, defined as follows. The node set N has the form {σ, τ} ∪ (U2 ∪ . . . ∪ U s) ∪
(W1 ∪ . . . ∪W s−1), where σ and τ are an artificial source node and an artificial sink node,
respectively. Whereas sets U i, i ∈ S \ {1}, and W i, i ∈ S \ {1}, represent a set of time
instants in which some train can arrive at and depart from station i, respectively. We call a
nodes in U2 ∪ . . . ∪ U s and W1 ∪ . . . ∪W s−1 arrival and departure nodes, respectively.

Figure 3.1: An example of train paths in graph G (with s = 4, t = 3, f1 = 2, l1 = 4, f2 = 1,
l2 = 4, f3 = 1, l3 = 3)

Let θ(v) be time instant associated with a given node v ∈ N . Moreover, let

CHAPTER 3. TRAIN TIMETABLING PROBLEM 44

∆(u, v) B

θ(v) − θ(u), if θ(v) ≥ θ(u)
θ(v) − θ(u) + q, otherwise

Because of the ”cyclic” nature of time horizon, we say that node u precedes node v (i.e.,
u � v) if ∆(v, u) ≥ ∆(u, v) (i.e., if the cyclic time interval between θ(v) and θ(u) is not
smaller than the cyclic time interval between θ(u) and θ(v)).
Note that not all time instants correspond to possible arrivals/departures of train j at the
station i ∈ S j. Accordingly, let N j ⊆ {σ, τ} ∪ (U2 ∪ . . . ∪ U s) ∪ (W1 ∪ . . . ∪W s−1) denote
set of nodes associated with time instants corresponding to possible arrivals/departures of
train j in a positive-profit timetable. The arc set A is partitioned into sets A1, . . . , At, one
for each train j ∈ T . In particular, for every train j ∈ T , A j contains:

• a set of starting arcs (σ, v), for each v ∈ W f j ∩N j, whose profit is p(σ,v) B π j−α jν(v),
with ν(v) B min{∆(v∗, v),∆(v, v∗)}, where v∗ is node associated with a departure of
train j from station i in the ideal timetable;

• a set of station arcs (u, v), for each i ∈ S j \ { f j, l j}, u ∈ U i ∩ N j and v ∈ W i ∩ N j such
that ∆(u, v) is at least equal to the minimum stop time of train j in station i, whose
profit is p(u,v) B −γ jµ(u, v), with µ(u, v) B ∆(u, v)−∆(u∗, v∗), where u∗ and v∗ are the
nodes associated, respectively, with the arrival and departure of train j at station i in
the ideal timetable;

• a set of segment arcs (v, u), for each i ∈ S j \ {l j}, v ∈ W i ∩ N j and u ∈ U i+1 ∩ N j such
that ∆(v, u) is equal to the travel time of train j from station i to station i + 1, whose
profit p(v,u) B 0;

• a set of ending arcs (u, τ), for each u ∈ U l j ∩ N j , whose profit is p(u,τ) B 0.

By construction, for each train j ∈ T , any path from σ to τ in G which uses only arcs in A j

and has profit p, corresponds to a feasible timetable for train j having profit p.
To satisfy the track capacity constraints, one should impose that certain pairs of arcs, asso-
ciated with different trains, cannot be selected in the overall solution. This is discussed in
a detail in the following section.

3.4 Integer linear programming model
Solution approaches in the literature that are based on a graph representation of the pre-
vious section define ILP formulations in which variables are associated with nodes and/or
arcs of the graphs. As the associated LP relaxations turn out to be extremely expensive to
solve exactly, even by the state-of-the-art LP solvers, a heuristic solution of their dual is

CHAPTER 3. TRAIN TIMETABLING PROBLEM 45

obtained by combining Lagrangian relaxation of the track capacity constraints with sub-
gradient optimization. In this section we illustrate an alternative solution approach, based
on an alternative (and equally natural) ILP formulation in which variables are associated
with paths in G.
In a new ILP model there is a binary variable for each possible path for a train, indicat-
ing if the path is chosen or not in the solution. Considering that for each train j ∈ T the
corresponding path can be shifted and/or stretched with respect to the ideal path, i.e., the
path associated with the ideal timetable of train j, there is an exponentially large number
of possible paths for a train, as will be discussed next. Therefore, our solution approach
is based on column generation technique (see section 2.4), that is easy to apply as column
generation problem calls for an optimal path in the (acyclic) graph considered. Moreover,
we will have a very large number of constraints, as was the case for the previous ILP
formulations. These constraints will be handled by separation algorithms (introduced in
section 3.7), which in this case have to deal with fractional solutions, differently from the
case in which Lagrangian relaxation is used.
Before introducing ILP model we should extend definitions introduced in section 3.3.
Given two consecutive stations i and i + 1 along with two trains j and k such that i, i + 1 ∈
S j ∩ S k, let

b jk
i B max{di, ai+1 + r j − rk}

denote the minimum time interval between the departure of j from i and the departure of k
from i (in this order) in a feasible solution, where r j and rk are the travel times of j and k
from i to i + 1, respectively. Note that if j and k depart from i within a time interval smaller
than b jk

i , either their departures are too close in time, or their arrivals are too close in time,
or k overtakes j between i and i + 1.
For each j ∈ T , let P j be the collection of possible paths for train j, each associated with a
path from σ to τ in G containing only arcs in A j (paths are seen as arc subsets) and having
positive profit. Furthermore, let P B P1 ∪ . . . ∪ P t be the overall (multi-)collection of
paths, denoting by pP B

∑
a∈P pa the actual profit for path P ∈ P . Finally, let P j

w ⊆ P j be
a (possibly empty) subcollection of paths for train j that visit node w ∈ N. Now we have
notation needed for defining our ILP model.
Letting xP, P ∈ P , be a binary variable that is equal to 1 if and only if the path P ∈ P is
selected in an optimal solution, ILP model is the following:

max
∑
P∈P

pPxP (3.1)

subject to ∑
P∈P j

xP ≤ 1, j ∈ T, (3.2)

CHAPTER 3. TRAIN TIMETABLING PROBLEM 46

∑
w∈U i:w�u,∆(u,w)<ai

∑
P∈Pw

xP ≤ 1, i ∈ S \ {1}, u ∈ U i, (3.3)

∑
w∈W i:w�v,∆(u,w)<di

∑
P∈Pw

xP ≤ 1, i ∈ S \ {s}, v ∈ W i, (3.4)

∑
w∈W i∩N j:v1�w≺v2

∑
P∈P j

w

xP +
∑

w∈W i∩N j:w�v2,∆(v2,w)<bk j
i

∑
P∈P j

w

xP +

+
∑

w∈W i∩Nk:w�v2,∆(v1,w)<b jk
i

∑
P∈Pk

w

xP ≤ 1,

i ∈ S \ {s}, j, k ∈ T (with j , k; i, i + 1 ∈ S j ∩ S k),

v1, v2 ∈ W i(with v1 � v2,∆(v1, v2) < b jk
i),

(3.5)

xP ≥ 0, P ∈ P (3.6)

xP integer, P ∈ P . (3.7)

The interpretation of the objective function (3.1) and the constraints (3.2), that impose that
at most one path for each train is selected, poses no problem. The arrival time constraints
(3.3) and the departure time constraints (3.4), prevent two consecutive arrivals and depar-
tures at the same station i to be too close in time. The overtaking constraints (3.5) are
formally more complex. These constraints are defined by specifying a station i ∈ S \ {s},
two trains j, k ∈ T such that i, i + 1 ∈ S j ∩ S k, and two nodes v1, v2 ∈ W i such that v1 � v2

and ∆(v1, v2) < b jk
i . By definition of b jk

i , we must have xP1 + xP2 ≤ 1 for all P1 ∈ P j
v1

and P2 ∈ Pk
v2

, which would be the weakest possible form of overtaking constraints. A very
simple strengthening would be

∑
P∈P j

v1
xP +

∑
P∈Pk

v2
xP ≤ 1. By proceeding further, taking

also into account the arrival and departure constraints, one gets to the constraints (3.5),
which are maximal in the sense that no other variable xP for P ∈ P j∪Pk could be added to
the left-hand side maintaining validity. Specifically, nodes v1 and v2 represent the earliest
departure times from i for trains j and k, respectively, involved in the constraints (3.5).
Stated in words, constraints (3.5) forbid the simultaneous departure from station i of train j
at a time instant between θ(v1) and θ(v2) + bk j

i − 1 and of train k at a time instant between
θ(v2) and θ(v1) + b jk

i − 1. Since the departure of j at time θ(v2) + bk j
i is compatible with the

departure of k at time θ(v2), and the departure of k at time θ(v1) + b jk
i is compatible with the

departure of j at time θ(v1), the time windows in the constraint cannot be enlarged. Finally,
note that, although ILP model would be valid also without constraints (3.3) and (3.4), as
arrival/departures too close in time are forbidden also by constraints (3.5), the former lead
to a stronger LP relaxation and are also much faster to separate in practice, so it is much

CHAPTER 3. TRAIN TIMETABLING PROBLEM 47

better to keep them in the formulation.
Note that ILP model above is of set packing type, and is associated with the stable set prob-
lem defined on a graph with one node for each path P ∈ P , with associated profit pP, and
one edge joining each pair of nodes corresponding to paths that cannot be both selected in
the solution, i.e., that have both coefficient 1 in at least one of the inequalities.

3.5 Solution of linear programming relaxation
As already mentioned, a number of variables in the new ILP formulation can be very large.
Rough bounds on a number of paths associated with each train j ∈ T are the following, let-
ting νmax

j B max{ν : π j − α jν > 0} and µmax
j B max{µ : π j − γ jµ > 0} be the maximum shift

and stretch, respectively, in a timetable for train j that has positive profit. It is not difficult
to see that, once the shift for a path of train j is fixed, the number of paths that accumulate
a total stretch not larger than µmax

j in the m j B l j − f j − 1 intermediate stations for train j
is equal to the number of vectors with m j integer nonnegative components whose sum is at
most µmax

j , which is equal to
(
µmax

j +m j
m j

)
. Accordingly, we have that |P j| is at least equal to the

number of paths with zero shift and stretch not larger than µmax
j , i.e., |P j| ≥

(
µmax

j +m j
m j

)
and at

most equal to the number of paths with shift not larger than νmax
j and stretch not larger than

µmax
j , i.e., |P j| ≤ (2νmax

j + 1)
(
µmax

j +m j
m j

)
. In any case, |P j| may be exponential in m j, and for

any bigger network this makes it absolutely impractical to consider explicitly all paths in
P j.
The natural approach to tackle such a large number of variables is to use column genera-
tion technique for a solution of LP relaxation, working with an LP with only a subset of
the variables (at the beginning, e.g., only the variables associated with the ideal path for
each train), adding variables with positive reduced profit to the LP at each iteration. This
is illustrated in detail in section 3.6.
Although not exponential, also a number of constraints in a new ILP formulation is fairly
large. Specifically, we have O(|N |) arrival and departure constraints (3.3) and (3.4), and
O(t2|N|bmax) overtaking constraints (3.5) where bmax is the maximum value of b jk

i over all
stations i and train pair j, k. Accordingly, rather than imposing all these constraints since
the beginning, it is much better to handle them by using separation techniques, as illus-
trated in section 3.7.
Note that the column generation problem simply amounts to the computation of an opti-
mal path in an acyclic graph, and the effect of adding new constraints with nonnegative
dual variables simply corresponds to changing the ”penalties” of some nodes in this path
computation. Accordingly, the combination of separation and column generation poses
no serious problem in our case (i.e., the addition of new constraints does not destroy the
structure of the column generation problem, as opposed to what is frequently the case).

CHAPTER 3. TRAIN TIMETABLING PROBLEM 48

The general structure of our method to solve LP relaxation is the following:

1. We initialize a reduced LP with only t variables associated with the ideal paths for each
train, and constraints (3.2) and (3.6);

2. We solve the reduced LP, obtaining primal solution x∗ and dual solution y∗;

3. We apply column generation: if variables with positive reduced profit with respect to y∗

are found, we add them to the reduced LP and go to Step 2;

4. We apply separation for constraints (3.3) and (3.4): if constraints violated by x∗ are
found, we add them to the reduced LP and go to Step 2;

5. We apply separation for constraints (3.5): if constraints violated by x∗ are found, we
add them to the reduced LP and go to Step 2;

6. We terminate since x∗, y∗ is an optimal primal-dual pair for the whole LP. It satisfy all
the constraints, (3.1) to (3.6).

The reason for separating constraints (3.3) and (3.4) before constraints (3.5) is that the
former are stronger as well as faster to check for violation. On the other hand, the choice to
perform column generation before separation was motivated by experimental evidence (one
can check the results in [3]), showing that convergence is faster if we start separation only
when the current primal solution is optimal with respect to the constraints in the reduced
LP. Of course, in the first iteration there are no variables with positive reduced profit, and
separation amounts to checking feasibility of the solution defined by the ideal timetables.

3.6 Column generation for linear programming
relaxation

The column generation problem is solved by considering in turn each train j ∈ T and
checking if there exists a path P ∈ P j with positive reduced profit.
Let the dual variables associated with constraints (3.2), (3.3), (3.4) and (3.5) be γ j (j ∈
t), αu (i ∈ S \ {1}, u ∈ U i), βv (i ∈ S \ {s}, v ∈ W i), and δ j,k,v1,v2 (i ∈ S \ {s}, j, k ∈
T, v1, v2 ∈ W i) satisfying the requirements in (3.5). Moreover, for i ∈ S \ {1} and w ∈ U i,
let ζw B

∑
u∈U i:u�w,∆(u,w)<ai

αu, and, similarly, for i ∈ S \ {s} and w ∈ W i, let etaw B∑
v∈W i:v�w,∆(v,w)<di

βv. Finally, for l ∈ T, i ∈ S \ {ll, . . . , s} and w ∈ W i, let ξlw be the sum
of variables δ j,k,v1,v2 over all constraints for which l is either j or k and node w is one of
the nodes in the summations for train l in constraints (3.5) (i.e., the first two summations if

CHAPTER 3. TRAIN TIMETABLING PROBLEM 49

l = j and the third one if l = k).
For a path P ∈ P j, let UP and WP be, respectively, the set of arrival and departure nodes
visited by path P. The reduced profit of path P is given by:

pP − γ j −
∑
u∈UP

ζu −
∑
v∈WP

(ηv + ξ jv)

Accordingly, one may find path P ∈ P j with the maximum reduced profit by finding, in
O(|A j|) time, the path of the maximum profit from σ to τ in G that uses only arcs in A j,
proceeding in a completely analogous way as in the solution of Lagrangian relaxation in
[4], where the profit of a path P ∈ P j is now given by∑

a∈P

pa −
∑
u∈UP

ζu −
∑
v∈WP

(ηv + ξ jv)

Remark 3.6.1. Note that both in [4] and here profits are associated both with nodes and
arcs of G, and they can be handled in a way completely analogous to the case of arc profits
only.

If the maximum profit is not larger than γ j, then all variables xP, P ∈ P j, have nonpositive
reduced profit. Otherwise, the path found is associated with the variable with the most
positive reduced profit.

3.7 Separation
Separation of constraints (3.3), (3.4) and (3.5) is done by trivial enumeration, as it is the
case within the relax-and-cut procedure associated with Lagrangian relaxation, with the
difference that we have to deal with fractional variable values in this case. Specifically,
for constraints (3.3) and (3.4), for each node v ∈ N we initialize a value y∗w to 0. Then,
we consider in turn each positive variable x∗P in the reduced LP solution and increase the
value y∗w of all nodes w ∈ UP ∪ WP by x∗P. Finally, for each station i ∈ S \ {1} and node
u ∈ U i, we test if

∑
w∈U i:w�u,∆(u,w)<ai

y∗w > 1, in which case constraint (3.3) associated with
node u is violated. The computation of the node values can be carried out in O(sn) time,
where n is the number of positive variables in the reduced LP solution, and the subsequent
check is easily done in O(|N |) time by using accumulators to store, for each node u ∈ U i,
the sum of the values of consecutive nodes (i.e., of nodes associated with consecutive time
instants) in U i, starting from an (arbitrarily chosen) initial node and ending in u. The check
for constraints (3.4) is perfectly analogous.
For constraints (3.5), for each train j ∈ T and for each node v ∈ N j we first initialize a
value z∗jv to 0, and consider in turn each positive variable x∗P in the reduced LP solution for

CHAPTER 3. TRAIN TIMETABLING PROBLEM 50

P ∈ P j, increasing the value of all nodes in WP by x∗P. Then, we enumerate all pairs of
trains j, k ∈ T whose paths may be in conflict (by determining, for each train j ∈ T and
once for all, the set of trains whose paths may be in conflict with a path of j), and all stations
i ∈ { f j, . . . , l j−1}∩{ fk, . . . , lk−1}. For each pair of nodes v1, v2 ∈ W i, v1 � v2,∆(v1, v2) < b jk

i
we have that constraint (3.5) corresponding to j, k, v1, v2 is violated if and only if∑

w∈W i∩N j:v1�w≺v2

z∗jw +
∑

w∈W i∩N j:w�v2,∆(v2,w)<bk j
i

z∗jw +
∑

w∈W i∩Nk:w�v2,∆(v1,w)<b jk
i

z∗jw > 1.

The time complexity of the above procedure to separate constraints (3.5) is again O(sn) for
the computation of the values, and then O(t2|N|bmax) for the subsequent check, since, by
using accumulators similar to those used for the separation of constraints (3.3) and (3.4),
each constraint can be checked in constant time.

CHAPTER 3. TRAIN TIMETABLING PROBLEM 51

3.8 Conclusion
We have finally reached the goal of our work. After lot of preliminary theoretical results,
we introduced a model for representing train timetable problem. This model, as opposed
to the usual practice, has decision variables associated with paths instead of nodes/arcs.
In her Ph.D. thesis [3], Valentina Cacchiani together with her team, gave an algorithm for
solving it. Because of our results in sections 1 and 2 it is easy to understand each of the 6
steps in the algorithm. Furthermore, since the train timetable problem is ”broken” into a
lot smaller ones, today’s state of technology allows us to solve them efficiently. Key role in
our algorithm has column generation technique (see section 2.4) which can be solved quite
cheaply using revised simplex method. One can, understanding this work, very quickly
implement the algorithm for a single line network to get a periodic timetable. It is even
possible to use this model for a non-periodic case but there exist better models which deal
with it so we do not recommend it.
To conclude, even though there existed few models with decision variables associated with
paths, this new model represents a turnaround at the way we look at the train timetabling
problem. Especially because using column generation technique we can drastically reduce
the important information for solving it. Therefore, the problem is solved in more elegant,
understandable and efficient way.

Bibliography

[1] Ravindra K Ahuja, Claudio B Cunha, and Güvenç Sahin, Network models in railroad
planning and scheduling, TutORials in operations research 1 (2005).

[2] Ravindra K Ahuja, Thomas L Magnanti, and James B Orlin, Network flows: theory,
algorithms, and applications, Prentice hall, 1993.

[3] Valentina Cacchiani, Models and algorithms for combinatorial optimization problems
arising in railway applications, (2009).

[4] Alberto Caprara, Matteo Fischetti, and Paolo Toth, Modeling and solving the train
timetabling problem, Operations research 50 (2002), no. 5.

[5] Alberto Caprara, Michele Monaci, Paolo Toth, and Pier Luigi Guida, A lagrangian
heuristic algorithm for a real-world train timetabling problem, Discrete applied math-
ematics 154 (2006), no. 5.

[6] Institute for Operations Research, the Management Sciences. National Meeting, and J
Cole Smith, Tutorials in operations research: Emerging theory, methods, and applica-
tions, INFORMS, 2005.

52

Summary

This work is dealing with train timetabling problem. In the first chapter, one can find an
introduction to network flows which is needed for understanding deeper concepts later on.
Namely, basic graph theory definitions are stated as well as core problems like the mini-
mum cost flow and shortest path problem. Furthermore, two equivalent representations of
network flows are described, including some useful properties connected to each of them.
At the end of the chapter, linear programming and simplex method are introduced into
some detail.

In the second chapter more complex theory is introduced. At the beginning, multi-commodity
flow problem is stated and few solutions approaches are briefly described. Once we settled
for one of them, the rest of the chapter is dealing with Lagrangian relaxation and column
generation techniques. Since column generation is the main result needed for solving our
problem, some finer results, like determining lower and upper bounds, are stated.

In the last, third chapter, one can find a model for representing train timetabling problem
for a single line network. That model was introduced by Valentina Cacchiani in her Ph.
D. thesis. In this work, periodicity of timetable is assumed because it makes computations
way quicker, as well as it has some other benefits. At the end, one can find an algorithm
based on column generation technique for solving introduced model. That algorithm is
based on 6 steps, and after reading this work, one should be able to fully understand each
of them.

Sažetak

Ovaj rad bavi se problemom rasporeda vožnje u željezničkom prometu. U prvom poglavlju
nalazi se uvod u mrežne tokove koji je potreban za razumijevanje naprednijih koncepata.
Konkretno, iskazane su osnovne definicije teorije grafova kao i neki temeljni problemi
poput problema najjeftinijeg toka i problema najkraćeg puta. Nadalje, opisana su dva ek-
vivalenta prikaza mrežnih tokova, uključujući neka korisna svojsta za svaki od njih. Na
kraju poglavlja, linearno programiranje i simpleks metoda, objašnjeni su na razini razumi-
jevanja.

U drugom poglavlju nalazi se naprednija teorija koja se nadovezuje na prvo poglavlje. Na
početku poglavlja prikazan je problem više dobara, kao i nekoliko pristupa rješavanju nave-
denog problema. Nakon što smo se odlučili za jedan od pristupa, ostatak poglavlja bavi
se Lagrangeovom relaksacijom i metodom generacije stupaca. Kako je upravo metoda
generacije stupaca najvažniji rezultat za rješavanje našega problema, napredniji rezultati
vezani uz odredivanje donjih i gornjih granica su detaljno objašnjeni.

U posljednjem, trećem poglavlju, nalazi se model za prikazivanje problema rasporeda
vožnje za mreže s jednom tračnicom. Navedni model prvi puta je predstavljen u dok-
torskom radu Valentine Cacchiani. U ovom radu takoder pretpostavljamo periodičnost
rasporeda vožnje kako bismo, izmedu ostalih, ostvarili prednost poput bržeg vremena
računanja. Na kraju rada nalazi se algoritam, temeljen na metodi generacije stupaca, za
rješavanje predstavljenog modela. Navedeni algoritam sastoji se od 6 koraka, od kojih je
svaki detaljno opisan u ovome radu.

Biography

I was born in Našice on 15th of January, 1992. I finished primary school ”OŠ Ivane Brlić-
Mažuranić”, in my hometown Orahovica. After that, I went to mathematical gymnasium
”SŠ Izidora Kršnjavoga” in Našice. My education proceeded in 2010. when I became
student at University of Zagreb, Faculty of science, Department of mathematics, where I
achieved my bachelor’s degree in 2013. Somewhere during that period, in 2011., I became
runner up chess champion of Croatia under 20 years old. Immediately after having my
degree in 2013., I became student of masters of mathematical statistics at the same univer-
sity. In the winter semester of academic year 2013./14., prof. dr. sc. Mirko Polonijo gave
me an honour and pleasure to be officially appointed tutor for Euclidean spaces course.
From 2013. until 2016., I was an active member of a student association eSTUDENT. In
2015., I was an intern in PBZ Croatia Osiguranje, one of four Croatian compulsory pen-
sion funds. I spent there three months in Research department. In a meantime, I also
spent academic year 2015./16. as an Erasmus exchange student at University of Bielefeld
in Germany. After that I became part of Morgan Stanley technology analyst program in
New York and London. I finished it successfully, and am currently working as associate
software developer in Morgan Stanley Budapest office.

Životopis

Roden sam u Našicama 15-og siječnja 1992. godine. Odrastao sam u Orahovici, gdje
sam završio sam osnovnu školu ”OŠ Ivane Brlić-Mažuranić”. Nakon toga sam pohadao
matematičku gimnaziju u srednjoj školi ”SŠ Izidora Kršnjavoga” u Našicama. Obrazovanje
sam nastavio 2010. godine kada sam postao student Sveučilišta u Zagrebu, na Odjelu za
matematiku, Prirodoslovno-matematičkog fakulteta gdje sam 2013. godine postao prvos-
tupnik preddiplomskog studija matematike. U meduvremenu, 2011. godine, postao sam
vice-prvak Hrvatske u šahu u konkurenciji do 20 godina. Odmah nakon prvostupničke
diplome 2013. godine, upisao sam diplomski studij matematičke statistike na istom fakul-
tetu. U zimskom semestru akademske godine 2013./14., prof. dr. sc. Mirko Polonijo
dodijelio mi je čast i zadovoljstvo da budem demonstrator na kolegiju Euklidski prostori.
Od 2013. do 2016. godine, bio sam aktivni član studentske udruge eSTUDENT. Potom
sam 2015. godine pohadao praksu u PBZ Croatia Osiguranju, jednom od četiri obavezna
mirovinska fonda u Hrvatskoj. Praksu sam proveo u Istraživačkom odjelu u trajanju od
tri mjeseca. U meduvremenu sam akademsku godinu 2015./16. proveo na Erasmusovoj
razmjeni studenata na Sveučilištu u Bielefeldu u Njemačkoj. Nakon toga sam pristu-
pio technology analyst programu medunarodne kompanije Morgan Stanley u New Yorku i
Londonu. Navedeni program sam uspješno završio, i trenutno sam zaposlen kao associate
software developer u Morgan Stanleyevom uredu u Budimpešti.

	Contents
	Introduction
	Basics of network flows
	Introduction
	Brief introduction to graph theory
	Minimum cost flow problem
	Equivalent representation of network flows
	Linear programming and simplex method

	Multi-commodity flows
	Introduction
	Solution approaches
	Lagrangian relaxation technique
	Column generation approach

	Train timetabling problem
	Introduction
	Train timetabling problem
	Space-time graph representation
	Integer linear programming model
	Solution of linear programming relaxation
	Column generation for linear programming relaxation
	Separation
	Conclusion

	Bibliography

