Istraživanje aminokiselina petrovca (Crithmum maritimum L.) tankoslojnom kromatografijom

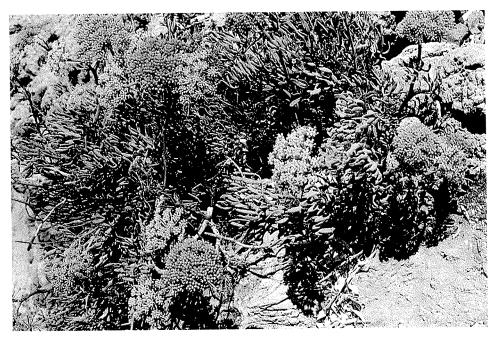
ŽELJAN MALEŠ¹, MIŠKO PLAZIBAT² i ROBERTA PETLEVSKI³ ¹Zavod za farmakognoziju Farmaceutsko-biokemijskog fakulteta Sveučilišta u Zagrebu, Zagreb

²Botanički zavod Prirodoslovno-matematičkog fakulteta Sveučilišta u Zagrebu, Zagreb

³Zavod za medicinsku biokemiju i hematologiju Farmaceutsko-biokemijskog fakulteta Sveučilišta u Zagrebu, Zagreb

Thin-layer chromatographic analysis of amino acids of Crithmum maritimum L.

Summary-The occurrence of various amino acids was investigated in Crithmum maritimum L., a halophyte known as an antiscorbutic and diuretic. The aerial parts of the plant were collected from the same locality in Croatia (near Zadar) but in different growth stages. Thin-layer chromatography was used for qualitative analysis of amino acids. The following 9 amino acids were recorded: leucine, phenylalanine, valine, tyrosine, proline, alanine, serine, lysine and histidine.


('Department of Pharmacognosy and 'Department of Medical Biochemistry and Haematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia, and Department of Botany, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia).

UVOD

Crithmum maritimum L. – petrovac, motar ili šćulac polugrmovita je halofilna trajnica iz porodice Apiaceae (=Umbelliferae), reda Araliales, razreda Magnoliopsida (1, 2). U Engleskoj je poznata pod nazivima rock samphire, crestmarine, sea fennel, pierce-stone, Peter's cress, a najčešći talijanski, njemački i francuski nazivi za ovu biljnu vrstu su: finocchio marino, critmo, cretamo, bacicci, erba di S. Pietro, Seefenchel, Bazillienkraut, Meerfenchel, fenouil marin, perce-pierre, criste marine, passe-pierre i herbe de St. Pierre (3-6).

Crithmum maritimum primorska je biljka koja raste na obalnim vapnenačkim grebenima i stijenama, a vrlo rijetko i na pješčanim prudovima i šljuncima. Petrovac je maleni, aromatični polugrm do 60 cm visine, u prizemnom dijelu drvenast, višestruko razgranjen, s krutim prugasto išaranim stabljikama koje nose rasperane, tamnozelene, mesnate i sočne listove, uglavnom s jednostruko ili dvostruko utrojenim duguljasto-suličastim liskama do

5 cm dužine. Cvjetovi se nalaze u sastavljenim štitcima s 8–36 ogranaka pri dnu kojih je ovoj (*involucrum*) od brojnih zalistaka dok se oko samih cvjetnih stapki nalazi ovojčić (*involucellum*) od sitnih pricvjetnih listića. Cvijet je dvospolan s ocvijećem od 5 žućkastozelenkastih latica vjenčića, dok lapovi čaške uopće nisu razvijeni. Oko tučka, koji ima dvogradnu, podraslu plodnicu s jednim sjemenim zametkom u svakom pretincu, nalazi se 5 prašnika. Plod je maslinasto do grimizno obojeni kalavac (merikarp) i raspada se na dva jednosjemena plodića, koji vise na zajedničkom nitastom nosiocu (karpoforu). Na površini plodića nalaze se uzdužna rebra, a u njihovu usplođu kanali s eteričnim uljem. Biljka cvjeta od kraja proljeća do rane jeseni, a plodovi joj dozrijevaju u kolovozu i rujnu (Slika 1.).

Slika 1. Crithmum maritimum L. - Petrovac

Petrovac je rasprostranjen u zapadnoj Europi uz obalu Atlantika, na sjever do Škotske, na Kanarskim otocima te uz obale Sredozemnog i Crnog mora. Često ga nalazimo na istočnoj obali Jadrana gdje raste u neposrednoj blizini mora (2–7).

Ova biljna vrsta odavno se upotrebljava kao antiskorbutik, diuretik te kao povrće i začin (8, 9).

Dosadašnjim istraživanjima dokazano je da petrovac sadrži aminokiseline (10), eterično ulje (9, 11–15), flavonoide (16, 17) i kumarine (17).

Cilj ovog rada bio je utvrditi prisutnost aminokiselina u nadzemnim dijelovima petrovca skupljenih u različitim vegetativnim razdobljima na istom nalazištu u Hrvatskoj.

EKSPERIMENTALNI DIO

Biljni materijal

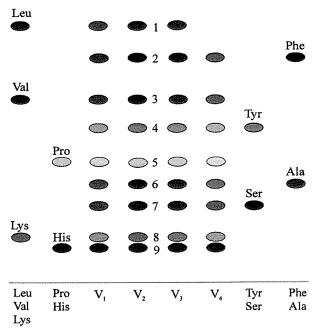
Materijal za ispitivanje sastojao se od nadzemnih dijelova petrovca – *Crithmum maritimum* L., skupljenih u okolici Zadra 1999. prije cvjetanja (lipanj), na početku cvjetanja (srpanj), tijekom pune cvatnje (kolovoz) i tijekom stvaranja plodova (rujan).

1. Identifikacija biljnog materijala

Identitet ispitivane biljne vrste izvršen je u Botaničkom zavodu i potvrđen je ispitivanjem vanjske i unutarnje građe skupljenog uzorka.

2. Ispitivanje prisutnosti aminokiselina tankoslojnom kromatografijom

Ispitivanju su podvrgnuti ekstrakti nadzemnih dijelova petrovca, koji su pripremljeni tako da je 1 g praškasto usitnjenog biljnog materijala ekstrahiran s 10 ml vode 30 minuta na vodenoj kupelji uz povratno hladilo. Bistri filtrat, nakon hlađenja, služio je kao otopina za kromatografsko ispitivanje. Kao poredbene supstancije uporabljene su 0,00001%-tne vodene otopine leucina (Leu), fenilalanina (Phe), valina (Val), tirozina (Tyr), prolina (Pro), alanina (Ala), serina (Ser), lizina (Lys) i histidina (His) (18).


Ispitivanje prisutnosti aminokiselina provedeno je na tankom sloju celuloze i 5%-tnog ionskog izmjenjivača Dowex 2-X8 (Schleicher-Schüll) u dvije smjese otapala: n-butanol-aceton-ledena octena kiselina-voda (35:35:10:20 V/V/V/V) i n-butanol-ledena octena kiselina-voda (50:10:40 V/V/V) (18).

Detekcija odijeljenih aminokiselina provedena je nakon prskanja kromatograma ninhidrin reagensom i grijanja 5–10 minuta na 100 °C (19).

REZULTATI I RASPRAVA

Vodeni ekstrakti nadzemnih dijelova petrovca skupljenih u različitim vegetativnim periodima (V_1 - V_4) ispitani su na prisutnost aminokiselina tankoslojnom kromatografijom. Nakon prskanja kromatograma ninhidrin reagensom i grijanja na $100~^{\circ}\mathrm{C}$ u ekstraktima su uočene ljubičaste, ljubičastoplave, ljubičastosive, žutosmeđe, ljubičastoružičaste te ljubičastocrne mrlje.

Odjeljivanjem pokretnom fazom n-butanol-aceton-ledena octena kiselina-voda (35:35:10:20 V/V/V/V) u ispitivanim vodenim ekstraktima (V_1 - V_4) uočava se 9 mrlja, koje odgovaraju aminokiselinama (Slika 2.). Mrlje 1, 3, 6 i 7 bile su ljubičasto obojene, a usporedbom njihovih R_F vrijednosti s poredbenim supstancijama vidljivo je da odgovaraju leucinu, valinu, alaninu i serinu. Ljubičastoplava mrlja 2 identificirana je kao fenilalanin, a ljubičastosiva mrlja 4 kao tirozin. Mrlja 5 nakon prskanja ninhidrin reagensom obojila se žutosmeđe, a prema R_F vrijednosti odgovarala je prolinu. U donjem R_F području vidljive su ljubičastoružičasta mrlja 8 te ljubičastocrna mrlja 9, za koje je utvrđeno da odgovaraju lizinu i histidinu (Tablica 1.).

Slika 2. Kromatogram aminokiselina nadzemnih dijelova petrovca

Nepokretna faza: celuloza + 5% Dowex 2-X8

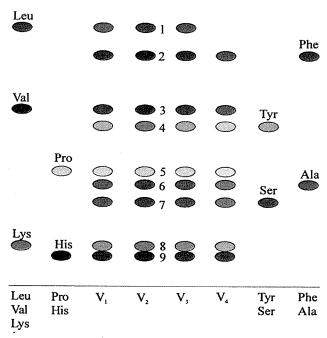
 $Pokretna\ faza:\ n-butanol-aceton-ledena\ octena\ kiselina-voda\ (35:35:10:20\ V/V/V/V)$

Detekcija: Ninhidrin reagens

 V_{1} = vodeni ekstrakt nadzemnih dijelova petrovca skupljenih prije cvjetanja,

 V_2 = vodeni ekstrakt nadzemnih dijelova petrovca skupljenih na početku cvjetanja,

 V_3 = vodeni ekstrakt nadzemnih dijelova petrovca skupljenih tijekom pune cvatnje,


 V_4 = vodeni ekstrakt nadzemnih dijelova petrovca skupljenih tijekom stvaranja plodova

Tablica 1. R_F vrijednosti odijeljenih aminokiselina

A i 1./ 1!		Pokretna faza	
Aminokiselina		l	[]
1 Leucin	(Leu)	0,66	0,64
2 Fenilalanin	(Phe)	0,59	0,57
3 Valin	(Val)	0,49	0,44
4 Tirozin	(Tyr)	0,41	0,40
5 Prolin	(Pro)	0,33	0,29
6 Alanin	(Ala)	0,27	0,26
7 Serin	(Ser)	0,22	0,21
8 Lizin	(Lys)	0,12	0,10
9 Histidin	(His)	0,11	0,09

I - n-butanol-aceton-ledena octena kiselina-voda (35:35:10:20 V/V/V/V)

II - n-butanol-ledena octena kiselina-voda (50:10:40 V/V/V)

Slika 3. Kromatogram aminokiselina nadzemnih dijelova petrovca

Nepokretna faza: celuloza + 5% Dowex 2-X8

Pokretna faza: n-butanol-aceton-ledena octena kiselina-voda (50:10:40 V/V/V)

Detekcija: Ninhidrin reagens

 V_I = vodeni ekstrakt nadzemnih dijelova petrovca skupljenih prije cvjetanja,

 $V_2 = vodeni\ ekstrakt\ nadzemnih\ dijelova\ petrovca\ skupljenih\ na\ početku\ cvjetanja,$

 $V_3 = vodeni\ ekstrakt\ nadzemnih\ dijelova\ petrovca\ skupljenih\ tijekom\ pune\ cvatnje,$

 V_4 = vodeni ekstrakt nadzemnih dijelova petrovca skupljenih tijekom stvaranja plodova

Slična kromatografska slika, ali slabije odjeljivanje dobiveno je u pokretnoj fazi n-butanol-ledena octena kiselina-voda (50:10:40 V/V/V) (Slika 3., Tablica 1.).

Ekstrakti uzoraka nadzemnih dijelova petrovca skupljenih prije cvjetanja (V_1) , na početku cvjetanja (V_2) i tijekom pune cvatnje (V_3) sadržavali su 9 navedenih aminokiselina, dok je u ekstraktu ispitivanog uzorka skupljenog tijekom stvaranja plodova (V_4) dokazano 8 aminokiselina (u odnosu na ostale ekstrakte nije dokazan leucin). Intenzitet obojenja mrlja opada u nizu V_2 - V_3 - V_1 - V_4 . S obzirom na taj intenzitet valin i lizin su najzastupljenije aminokiseline u svim ekstraktima.

ZAKLJUČAK

Metodom tankoslojne kromatografije dokazano je da nadzemni dijelovi petrovca – *Crithmum maritimum* sadrže ove aminokiseline: leucin, fenilala-

nin, valin, tirozin, prolin, alanin, serin, lizin i histidin. Aminokiselinski sastav uvjetovan je vegetativnim razdobljem u kojem se biljka nalazi.

Rezultati kvalitativne analize ukazuju na mogućnost utjecaja vremena sabiranja uzoraka i na količinu aminokiselina.

LITERATURA - REFERENCES

- 1. R. F. Thorne, Bot. Rev. 58 (1992) 258, 278.
- T. G. Tutin, V. H. Heywood, N. A. Burges, D. M. Moore, D. H. Valentine, S. M. Walters, D. A. Webb Eds., Flora Europaea, Volume 2, Cambridge University Press, Cambridge 1968, 222
- A. R. Clapham, T. G. Tutin, E. F. Warburg, Flora of the British Isles, 2nd ed., Cambridge University Press, Cambridge 1962, 521.
- I. Camarda, F. Valsecchi, Piccoli arbusti liane e suffrutici spontanei della Sardegna, Carlo Delfino editore, Sassari 1990, 179.
- 5. S. Pignatti, Flora d'Italia, Volume 2, Edagricole, Bologna 1982, 194.
- G. Bonnier, Flore complète illustrée en couleurs de France, Suisse et Belgique, comprenant la plupart des plantes d'Europe, Tome IV, Librairie Générale d l'Enseignement, Paris 1921, 100.
- 7. R. Domac, Flora Hrvatske, Školska knjiga, Zagreb 1994, 236.
- 8. F. Kušan, Ljekovito i drugo korisno bilje, Poljoprivredni nakladni zavod, Zagreb 1956, 381.
- 9. Ž. Maleš, N. Blažević, M. Plazibat, Acta Pharm. 51 (2001) 81.
- L. Coiffard, Y. De Roeck-Holtzhauer, Acta Bot. Gallica 142 (1995) 405.
- 11. G. Ruberto, D. Biondi, M. Piattelli, Flavour Fragr. J. 6 (1991) 121.
- J. G. Barroso, L. G. Pedro, A. C. Figueiredo, M. S. S. Pais, J. J. C. Scheffer, Flavour Fragr. J. 7 (1992) 147.
- 13. L. Coiffard, M. Piron-Frenet, L. Amicel, Int. J. Cosmet. Sci. 15 (1993) 15.
- 14. F. Senatore, V. De Feo, Flavour Fragr. J. 9 (1994) 305.
- L. Pateira, T. Nogueira, A. Antunes, F. Venâncio, R. Tavares, J. Capelo, Flavour Fragr. J. 14 (1999) 333.
- 16. J. B. Harborne, C. A. Williams, Phytochemistry 11 (1972) 1741.
- 17. L. Coiffard, Y. De Roeck-Holtzhauer, Ann. Pharm. Fr. 52 (1994) 153.
- 18. H. Wagner, S. Bladt, E. M. Zgainski, Drogenanalyse, Springer Verlag, Berlin 1983, 288.
- H. K. Berry, C. Leonard, H. Peters, M. Granger, N. Chunekahira, Clin. Chem. 14 (1968) 1033.

(Primljeno 1. III. 2001)