
PAP ISI-LM - UNIBO ���1

Programmazione Avanzata e Paradigmi
Ingegneria e Scienze Informatiche - UNIBO
a.a 2013/2014
Lecturer: Alessandro Ricci

[module 1.1]
PROGRAMMING PARADIGMS:

OVERVIEW

v1.0
20140316

PAP ISI-LM - UNIBO

SUMMARY
• What’s a programming paradigm

– basic terms
• Main programming paradigms

– imperative, functional programming, logic
programming, object-oriented programming

– multi-paradigm programming
• Taxonomy by Van Roy

– observable non determinism, state
– creative extension principle

���2

PAP ISI-LM - UNIBO

WHAT’S A PARADIGM
• The Merriam-Webster's Collegiate dictionary:

– “A philosophical and theoretical framework of a scientific school
or discipline within which theories, laws, and generalizations and
the experiments performed in support of them are formulated"

• Programming paradigm:
– A programming paradigm is an approach to programming a

computer based on a mathematical theory or a coherent set of
principles (Van Roy, CTM)

• each paradigm supports a set of concepts that makes it the
best for a certain kind of problem.

– A programming paradigm is a fundamental style of computer
programming (Wikipedia, March 2013)

– A pattern that serves as a school of thoughts for programming of
computers (Kurt Nørmark, Aalborg University, Denmark)

���3

PAP ISI-LM - UNIBO

A PROGRAMMING PARADIGM IS
• ...how computation is expressed and works
• ...how a program is organized (program design

perspective)
– structure - what parts
– behaviour - how parts compute
– interaction - how parts interact

���4

PAP ISI-LM - UNIBO

PARADIGMS & LANGUAGES

���5

Peter Van Roy

Figure 1. Languages, paradigms, and concepts

origins in the 1970s. It uses sophisticated algorithms to find solutions that satisfy global
conditions. This means that it genuinely delivers on its ambitious claims.

Conclusions and suggestions for going further Section 8 concludes by reiterating
why programming languages should support several paradigms. To understand the“soul”
of each paradigm and to gain experience programming with di↵erent paradigms, we
recommend the use of a multiparadigm language. A multiparadigm language permits
programming in each paradigm without interference from other paradigms. The two
most extensive multiparadigm languages are the dynamically typed language Oz [50]
and the statically typed language Alice [38].

2 Languages, paradigms, and concepts

This section gives the big picture of programming paradigms, the languages that realize
them, and the concepts they contain. There are many fewer programming paradigms
than programming languages. That is why it is interesting to focus on paradigms rather
than languages. From this viewpoint, such languages as Java, Javascript, C#, Ruby, and
Python are all virtually identical: they all implement the object-oriented paradigm with
only minor di↵erences, at least from the vantage point of paradigms.

Figure 1 shows the path from languages to paradigms and concepts. Each program-
ming language realizes one or more paradigms. Each paradigm is defined by a set of
programming concepts, organized into a simple core language called the paradigm’s ker-
nel language. There are a huge number of programming languages, but many fewer
paradigms. But there are still a lot of paradigms. This chapter mentions 27 di↵erent
paradigms that are actually used. All have good implementations and practical applica-
tions. Fortunately, paradigms are not islands: they have a lot in common. We present a
taxonomy that shows how paradigms are related.

12

PAP ISI-LM - UNIBO

PARADIGMS &
ELEMENTS OF PROGRAMMING
• Programming languages as frameworks within which we

organise our ideas about processes
• 3 main mechanisms:

– primitive expressions, which represent the simplest
entities the language is concerned with

– means of combination, by which compound element
are built from the simpler ones

– means of abstraction, by which compound elements
can be named and manipulated as units

> a paradigm typically defines specific concepts and
mechanisms for these three dimensions

���6

PAP ISI-LM - UNIBO

SEVERAL PARADIGMS
(...AND EVEN MORE LANGUAGES)
• Van Roy’s Taxonomy preview

���7

nondeterminism?
Observable

Yes No

No state Stateful
More declarative Less declarative

programming
Active object

Object−capability
programming

publish/subscribe,
E, Oz, Alice,

tuple space (Linda)

Erlang, AKL

+ thread
Multi−agent
programming

Message−passing
concurrent

programming

Oz, Alice

Java, Alice,

Shared−state
concurrent

programming

object−oriented
Concurrent

programming

+ thread

Smalltalk, Oz

Oz, Alice

Dataflow and
message passing

+ log
Software

transactional
memory (STM)

+ cell
(state)

Lazy concurrent

Functional Message passing

Weak state

SQL embeddings

+ by−need
synchronization

Prolog, SQL

+ search

programming
Relational & logic

Deterministic
logic programming

record

(equality)

of Computer Programming" (MIT Press, 2004).

their kernel languages (the small core language in which all
the paradigm’s abstractions can be defined). Kernel languages
are ordered according to the creative extension principle: a new
concept is added when it cannot be encoded with only local
transformations. Two languages that implement the same

programmer, because they make different choices on what
programming techniques and styles to facilitate.

paradigm can nevertheless have very different "flavors" for the

The chart classifies programming paradigms according to

When a language is mentioned under a paradigm, it means that
part of the language is intended (by its designers) to support

does not mean that there is a perfect fit between the language
and the paradigm. It is not enough that libraries have been

kernel language should support the paradigm. When there is a
family of related languages, usually only one member of the

the paradigm without interference from other paradigms. It

written in the language to support the paradigm. The language’s

family is mentioned to avoid clutter. The absence of a language
does not imply any kind of value judgment.

completely orthogonal, since they are part of a program’s
specification. A domain−specific language should be definable
in any paradigm (except when the domain needs a particular
concept).

Axes that are orthogonal to this chart are typing, aspects, and

has some effect on expressiveness. Aspects should be
domain−specificity. Typing is not completely orthogonal: it

Metaprogramming is another way to increase the
expressiveness of a language. The term covers many different
approaches, from higher−order programming, syntactic
extensibility (e.g., macros), to higher−order programming
combined with syntactic support (e.g., meta−object protocols
and generics), to full−fledged tinkering with the kernel
language (introspection and reflection). Syntactic extensibility
and kernel language tinkering in particular are orthogonal to

enough to implement many paradigms in almost native
this chart. Some languages, such as Scheme, are flexible

fashion. This flexibility is not shown in the chart.

Lazy
functional

synchron.
+ by−need

programming

+ thread
+ single assign.

programming
concurrent

Haskell

Monotonic
dataflow

programming
Declarative

Unix pipes

Java, OCaml

Sequential
object−oriented
programming

Stateful
functional

programming

+ closure

constraint

embeddings
+ solver

Constraint (logic)
programming

Concurrent
+ thread

constraint
programming

LIFE, AKL

programming (FRP)

CLP, ILOG Solver

constraints
Logic and

programming

Shared state

Functional reactive

FrTime

+ by−need synchronization + synchronization
on partial termination

+ thread

declarative
Lazy

programming

dataflow
programming

+ single assignment
Lazy

concurrent

+ local cell

This chart is inspired by "Concepts, Techniques, and Models

programming
declarative

XML,
S−expression

ClarificationsThe principal programming paradigms
"More is not better (or worse) than less, just different."

+ nondeterministic

FGHC, FCP,

Nonmonotonic

programming
dataflow

Concurrent logic
programming

Oz, Alice, AKL

dataflow
programming

(channel)
+ port

Multi−agent
choice

Oz, Alice, AKL

+ name

ADT
functional

Haskell, ML, E

(unforgeable constant)

programming

ADT
imperative

programming

+ cell

CLU, Oz

Functional
programming

Scheme, ML

v1.03 © 2007 by Peter Van Roy+ procedure
First−order
functional

programming

+ closure

Data structures only
Turing equivalent

+ cell (state) Imperative
programming

Pascal, C

search
Imperative

programming
SNOBOL, Icon, Prolog

+ search

(channel)
+ port

Event−loop
programming

+ continuation
Continuation
programming
Scheme, ML

+ unification

Descriptive

PAP ISI-LM - UNIBO ���8

1936 - Turing Machine
1936 - Untyped Lambda Calculus by Alonzo Church
1940 - Typed Lambda Calculus by Alonzo Church
1945 - Von Neumann Architecture
1949 - EDSAC computer, has an assembly language
1957 - FORTRAN (First compiler)
1958 - LISP
1958 - ALGOL 58
1959 - COBOL
1961 - MULTI-PROGRAMMING & TIME-SHARING OS
 (OS, INTERRUPT)
1962 - APL
1962 - Simula
1964 - BASIC
1965 - Dijkstra - Cooperating Seq. Processes + Semaphores
1968 - Logo
1970 - FIRST DEVELOPMENT OF UNIX OS

A LO
O

K TO
 H

ISTO
RY

PAP ISI-LM - UNIBO ���9

1970 - Pascal
1971 - Monitors
1972 - C
1972 - Smalltalk
1972 - Prolog
1973 - ACTOR MODEL
1973 - ML
1974 - Internet protocol
1975 - Scheme
1975 - Concurrent Pascal
1978 - SQL
1978 - Hoare introduces CSP

A LO
O

K TO
 H

ISTO
RY

PAP ISI-LM - UNIBO ���10

1980 - C++ (as C with classes, name changed in July 1983)
1980 - CCS - Calculus of Communicating Processes (Milner)
1982 - TCP/IP
1983 - Ada
1984 - Common Lisp
1984 - MATLAB
1985 - Eiffel
1986 - Objective-C
1986 - Erlang
1988 - Mathematica

A LO
O

K TO
 H

ISTO
RY

PAP ISI-LM - UNIBO ���11

1990 - Haskell
1991 - Python
1991 - Visual Basic
1991 - Web & HTML (Mark-up Language)
1993 - pi-calculus
1993 - Ruby
1993 - Lua
1993 - Newton message pad
1994 - CLOS (part of ANSI Common Lisp)
1995 - Java
1995 - JavaScript
1995 - PHP
1998 - Google

A LO
O

K TO
 H

ISTO
RY

PAP ISI-LM - UNIBO ���12

2001 - C#
2001 - Visual Basic .NET
2002 - F#
2004 - IBM X10
2005 - Multi-core era / “the free lunch is over” begins
2007 - mobile with smart phone / mobile app begins
 (iPhone, Android)
2007 - Clojure
2009 - Go
2010 - mobile with tablets
2011 - Dart
2012 - Typescript

A LO
O

K TO
 H

ISTO
RY

PAP ISI-LM - UNIBO

MAIN PROGRAMMING PARADIGMS
• Four main paradigms

– the imperative paradigm
– the functional paradigm
– the logical paradigm
– the object-oriented paradigm

���13

PAP ISI-LM - UNIBO

IMPERATIVE PARADIGM

• Describes computation in terms of statements that
change a program state

• Imperative programs define sequences of statements or
commands for the computer to perform
– command => measurable effect on the program state
– the order to the commands is important

• Representative languages
– Fortran, Algol, Pascal, Basic, C

���14

"First do this and next do that"

PAP ISI-LM - UNIBO

IMPERATIVE PARADIGM
• Origin/inspiration

– digital hardware technology and the ideas of Von
Neumann

• Reference computation model
– Turing Machine

���15

PAP ISI-LM - UNIBO

• Incremental change of the program state as a function of time
• Execution of computational steps in an order, governed by

control structures
• Computational steps referred as (synonyms):

– “statement” - often used to refer to an elementary
instruction in a source language

– “instruction” - to be preferred to explicitly refer to the
computational steps performed at the machine level.

– “command” - often used to refer to actions in imperative
programming language

• e.g. assignment, IO, procedure calls

���16

IMPERATIVE PARADIGM

PAP ISI-LM - UNIBO

IMPERATIVE PARADIGM

���17

n := x;	
a := 1;	
while n > 0 do	
begin	
 a := a * n;	
 n := n - 1	
end;

PAP ISI-LM - UNIBO

IMPERATIVE PARADIGM
- ABSTRACTIONS

• The natural abstraction is the procedure
– abstracts one or more actions to a procedure, which

can be called as a single action
• Procedural programming

– programs as collection of procedures
– state changes are localized to procedures or restricted

to explicit arguments and returns from procedures
• Structured, modular programming

– fundamental for the maintainability and overall quality
of imperative programs

• OOP is the next step

���18

PAP ISI-LM - UNIBO

FUNCTIONAL PROGRAMMING

• Computation is carried on entirely through the evaluation
of expressions
– represented by functions without side effects

• no state, no mutable data
• Representative languages

– Haskell, F#, Erlang, ML, Scheme, Lisp

���19

"Evaluate an expression and use
the resulting value for something"

PAP ISI-LM - UNIBO

FUNCTIONAL PROGRAMMING
• Origin and inspiration

– mathematics and the theory of functions
• Reference computation model

– lambda calculus (λ-calculus)

���20

PAP ISI-LM - UNIBO

FUNCTIONAL PROGRAMMING

���21

fac 0 = 1	
fac n = n*fac(n-1)

map _ [] = []	
map f (x:xs) = f x : map f xs

> map fac [2,5,3]	
[2, 120, 6]

PAP ISI-LM - UNIBO

FUNCTIONAL PROGRAMMING
- ABSTRACTION

• The natural abstraction is the function
– abstracts a single expression to a function which can be

evaluated as an expression
• Functions are first class values

– functions are typed data just like numbers, lists, ...
– can be passed as arguments to other function

• high-order functions
• Applicative

– all computations are done by applying (calling) functions
– the values produced are non-mutable
– no loops, recursion!

���22

PAP ISI-LM - UNIBO

LOGIC PROGRAMMING

• Programs consist of logical statements, and the program
executes by searching for proofs of the statements

• Particularly effective for problem domains dealing with
the extraction of knowledge from basic facts and relations
– AI domain

• Representative languages
– Prolog, Datalog

���23

"Answer a question via search for
a solution"

PAP ISI-LM - UNIBO

LOGIC PROGRAMMING
• Origins and inspiration

– automatic proofs within artificial intelligence
• Reference computation model

– first-order logic

���24

PAP ISI-LM - UNIBO

LOGIC PROGRAMMING

���25

fac(0,1).	
fac(N,F) :- 	
 N1 is N-1, fac(N1, F1), F is N*F1.

append([],L,L).	
append([X|L1],L2,[X|L3]) :-	
 append(L1,L2,L3).

female(anna).	
female(elettra).	
male(vinicio).	
parent(vinicio,anna).	
parent(elettra,anna).	
son(X,Y) :- male(X), parent(Y,X).	
daughter(X,Y) :- female(X), parent(Y,X).

PAP ISI-LM - UNIBO

LOGIC PROGRAMMING
- ABSTRACTIONS

• Based on axioms, inference rules, and queries
• Program execution becomes a systematic search in a set

of facts making use of a set of inference rules
• Algorithms = Logic + Control

– programs must specify only the logic side
– the control side is totally handled by the abstract

machine

���26

PAP ISI-LM - UNIBO

DECLARATIVE
PROGRAMMING

���27

Functional
Programming Logic

Programming

Expresses the logic of a computation
without explicitly describing a control flow

PAP ISI-LM - UNIBO

OBJECT-ORIENTED PROGRAMMING

• Computation given by the exchange of messages among
self-contained computational objects with an identity and
state
– encapsulating a state and a behavior

• Strong support of encapsulation
– key issues when programs become larger and larger.

• Conceptual anchoring of the paradigm to problem domains
– objects represent concept of the problem domain

���28

"Send messages between objects to simulate
the temporal evolution of a set of real world
phenomena"

PAP ISI-LM - UNIBO

• Origins and inspirations
– the theory of concepts, and models of human

interaction with real world phenomena
• Representative Languages:

– Smalltalk/Squeak, C++, Java, Objective-C, C#, Scala,
Python, Ruby,...

���29

OBJECT-ORIENTED PROGRAMMING

PAP ISI-LM - UNIBO

OOP ROOTS

• Modeling and discrete-event simulations
– Simula language (1960s)

• Ole-Johan Dahl and Kristen Nygaard of the
Norwegian Computing Center in Oslo

• Smalltalk
– Alan Kay and his group at Xerox PARC (1970s)

• introduced the term object-oriented programming =
use of objects and messages as the basis for
computation

– BYTE Special Issue on Smalltalk and OOP - August
1981

���30

PAP ISI-LM - UNIBO

OBJECT-ORIENTED PROGRAMMING
- SOME KEY CHARACTERISTICS
• Encapsulation

– data as well as operations are encapsulated in objects
• Information hiding

– used to protect internal properties of an object
• Objects interact by means of message passing

– a metaphor for applying an operation on an object
• ...but it was not meant to be a metaphor at the beginning...

• In object-oriented languages objects are grouped in classes
– classes represent concepts whereas objects represent phenomena
– object-based or prototype based languages => no classes

• e.g. JavaScript, Self
• Inheritance

– classes are organized in inheritance hierarchies
– provides for class extension or specialization

���31

PAP ISI-LM - UNIBO

MULTI-PARADIGM APPROACHES

• Problem/Motivation
– no one paradigm solves all problems in the easiest or

most efficient way
• Idea

– more programming paradigms in the same language
– providing a framework in which programmers can

work in a variety of styles
• freely intermixing constructs from different

paradigms
• allowing programmers to use the best tool for a job

• Problems
– integrating different models of computation and

programming models

���32

PAP ISI-LM - UNIBO

• Examples
– OOP + Functional

• JavaScript, Python, C#, Java 8, …
• Scala

– Oz
• logic + functional + data-flow concurrent

– Alice, Curry, CIAO

���33

MULTI-PARADIGM APPROACHES

PAP ISI-LM - UNIBO

POLYGLOT VIRTUAL MACHINES
• .NET CLR

– explicitly designed from scratch to support multiple
languages of different paradigms

– main languages: C#, VisualBasic, F#,
• JVM

– originally designed for a single OOP language
– however many JVM-based languages developed on

top
• Scala, Groovy, Clojure, JRuby, Jython, ...

– recent language extension to integrate functional
programming

• project Lambda - Java 8
• but without changing the JVM specification

���34

POLYGLOT VIRTUAL MACHINES

PAP ISI-LM - UNIBO

POLYGLOT PROGRAMMER PYRAMID

���35

Stable

Dynamic

domain
specific

Tightly coupled to a specific
part of the app domain
- Apache Camel DSL, Drools,  

Web templating

Rapid,productive, flexible
development of functionality
- Groovy, Jython, Clojure

Core functionality, stable,
well tested, performant
- Java, Scala

(From “Well-Grounded Java Developer” - Evans, Verburg - Ch. 7 - Alternative JVM
languages)

PAP ISI-LM - UNIBO

POLYGLOT PROGRAMMER PYRAMID

���36

Name

Example problem domain

Domain Specific

Build, continuous integration, continuous deployment 
Dev-ops 
Enterprise Integration Pattern modeling
Business Rule Modelling

Dynamic Rapid Web Development
Prototyping
Interactive administrative and user consoles
Scripting
Tests

Stable Concurrent code
Application containers
Core business functionalities

PAP ISI-LM - UNIBO

MULTI-PARADIGM APPROACHES

• A further approach: coordination models and languages
[Gelernter & Carriero]
– given a system as an ensemble of interacting entities,

then:
• each entity maybe designed and developed

according to some specific paradigm
• common language used to express and enable

interaction and coordination among entities
– e.g. Tuple Space model & Linda language

– based on the orthogonality between computation and
interaction/coordination

���37

PAP ISI-LM - UNIBO ���38

THE RISE OF CONCURRENT
AND ASYNCHRONOUS
PROGRAMMING

PAP ISI-LM - UNIBO

THE RISE OF CONCURRENCY
• What about concurrent programming? including...

... parallel programming

... asynchronous/event-driven programming

... distributed programming

... real-time/time-oriented programming
• Is it concurrent programming a paradigm? Are these

paradigms?
– can be conceived just as extensions of existing

paradigms?

���39

PAP ISI-LM - UNIBO

TERMINOLOGY
• Concurrent programming

– building programs in which multiple computational activities
overlap in time and typically interact in some way

• without necessarily running on separate physical processors
– logical/abstract/programming level

• Parallel programming
– the execution of programs overlaps in time by running on

separate physical processors
– physical level

• Distributed programming
– when processors are distributed over a network
– no shared memory

���40

PAP ISI-LM - UNIBO

CONCURRENCY “PARADIGMS”
• Multi-threaded programming

– shared state
– synchronization mechanisms

• semaphores, monitors
• Message-based programming

– no shared state
– interaction by means of message exchange

• Event-driven programming
– the flow of the program is determined by events

• user actions (mouse clicks, key presses), sensors,
messages from other threads/process/apps

���41

PAP ISI-LM - UNIBO

CONCURRENCY “PARADIGMS”
• Asynchronous programming

– designing programs featuring asynchronous actions
and requests
• never blocking dogma
• future mechanisms, callbacks

• Reactive programming
– the flow of the program is designed around data flows

and the propagation of change

���42

PAP ISI-LM - UNIBO

IMPACT OF CONCURRENCY ON
PARADIGMS
• Existing paradigms + concurrency mechanisms

– multi-threaded programming
• e.g. Java

• Integrating concurrency within the paradigm => new
paradigm
– example: OOP + concurrency

=> actors & concurrent objects
=> active objects
=> other flavors of concurrent OOP

• SCOOP model in Eiffel
– example: Functional + actors

• Erlang

���43

PAP ISI-LM - UNIBO

BEYOND TURING MACHINES

• New models of computation
– process algebra

– CSP, CCS, π-calculus
– Petri-nets
– chemical abstract machines
– …

– Key point: interaction [Milner,Wegner]
– which cannot be properly captured by pure

computational model such as λ-calculus or Turing
machines

���44

PAP ISI-LM - UNIBO

LANGUAGES vs. FRAMEWORKS/
LIBRARIES

• Languages
– first-class concurrent abstractions are first-class

constructs of the language
• Erlang

• Libraries/Frameworks
– first-class concurrent abstractions are represented by

existing abstractions of a host language
• e.g. Java/Scala + Actor Library

– frameworks define the general organization of a
program and its lifecycle

���45

PAP ISI-LM - UNIBO

STATE-OF-THE-ART & RESEARCH
LANDSCAPE

• Active Objects and Actors
• Software Transactional Memory
• Reactive programming
• Agents
• ...

���46

PAP ISI-LM - UNIBO

ACTOR MODEL
• Originally introduced by Carl Hewitt and colleagues at

MIT in 70ies
– AI context

• Developed by Gul Agha, Akinori Yonezawa et al. in 80ies
and 90ies as the unification of OOP and concurrency
– many languages & frameworks

• ACT++, Salsa, Kilim, ABCL family, E, AmbientTalk,
ActorFoundry,...

• Playing a major role in the mainstream nowadays
– as an alternative model to multi-threaded

programming
– Erlang, Scala/Akka actors, HTML5 Web Workers,

DART isolates, etc.

���47

PAP ISI-LM - UNIBO

ACTOR MODEL
• Asynchronous message passing among autonomous

purely reactive objects called actors
– everything is an actor

• with a unique identifier
• a unique mailbox where messages are enqueued

– every interaction takes place as async message
passing

• Few primitives
– send, create, become

• Everything - including traditional control structures, can
be modeled as patterns of messages among actors

���48

PAP ISI-LM - UNIBO ���49

DRAFT
Actors

Rajesh K. Karmani, Gul Agha
Open Systems Laboratory

Department of Computer Science
University of Illinois at Urbana-Champaign

{rkumar8, agha}@illinois.edu

I. DEFINITION

Actors is a model of concurrent computation for devel-
oping parallel, distributed and mobile systems. Each actor
is an autonomous object that operates concurrently and
asynchronously, receiving and sending messages to other
actors, creating new actors, and updating its own local state.
An actor system consists of a collection of actors, some of
whom may send messages to, or receive messages from,
actors outside the system.

II. PRELIMINARIES

An actor has a name that is globally unique and a
behavior which determines its actions. In order to send
an actor a message, the actor’s name must be used; a
name cannot be guessed but it may be communicated in a
message. When an idle is idle, and it has a pending message,
the actor accepts the message, and does the computation
defined by its behavior. As a result the actor may take
three types of actions: send messages, create new actors,
and update its local state. An actor’s behavior may change
as it modifies its local state. Actors do not share state:
an actor must explicitly send a message to another actor
in order to affect the latter’s behavior. Each actor carries
out its actions concurrently (and asynchronously) with other
actors. Moreover, the path a message takes, as well as
network delays it may encounter, are not specified. Thus the
arrival order of messages is indeterminate. The key semantic
properties of the standard Actor model are encapsulation of
state and atomic execution of a method in response to a
message, fairness in scheduling actors and in the delivery
of messages, and location transparency enabling distributed
execution and mobility.

A. Advantages of the Actor Model:
In the object-oriented programming paradigm, an object

encapsulates data and behavior. This separates the interface
of an object (what an object does) from the its representation
(how it does it). Such separation enables modular reasoning
about object-based programs and facilitates their evolution.
Actors extend the advantages of objects to concurrent com-
putations by separating control (where and when) from the
logic of a computation.

msg

create

Figure 1. Actors are concurrent objects which communicate through
messages and may create new actors. An actor may be viewed as an
object augmented with its own control, a mailbox and a globally unique,
immutable name.

The Actor model of programming [1] allows programs to
be decomposed into self-contained, autonomous, interactive,
asynchronously operating components. Due to their asyn-
chronous operation, actors provide a model for the nonde-
terminism inherent in distributed systems, reactive systems,
mobile systems, and any form of interactive computing.

B. History:

The concept of actors has developed over three decades.
The earliest use of the term actors was in Carl Hewitt’s
Planner [2] where the term referred to rule-based active
entities which search a knowledge base for patterns to match,
and in response, trigger actions. For the next two decades,
Hewitt’s group worked on actors as agents of computation,
and it evolved as a model of concurrent computing. A brief
history of actor research can be found in [3]. The commonly
used definition of actors today follows the work of Agha
(1985) which defines actors using a simple operational
semantics [1].

ACTOR MODEL

PAP ISI-LM - UNIBO ���50

UNDERSTANDING
PARADIGM
RELATIONSHIPS
=>
BUILDING A TAXONOMY

PAP ISI-LM - UNIBO

VAN ROY’S TAXONOMY

���51

nondeterminism?
Observable

Yes No

No state Stateful
More declarative Less declarative

programming
Active object

Object−capability
programming

publish/subscribe,
E, Oz, Alice,

tuple space (Linda)

Erlang, AKL

+ thread
Multi−agent
programming

Message−passing
concurrent

programming

Oz, Alice

Java, Alice,

Shared−state
concurrent

programming

object−oriented
Concurrent

programming

+ thread

Smalltalk, Oz

Oz, Alice

Dataflow and
message passing

+ log
Software

transactional
memory (STM)

+ cell
(state)

Lazy concurrent

Functional Message passing

Weak state

SQL embeddings

+ by−need
synchronization

Prolog, SQL

+ search

programming
Relational & logic

Deterministic
logic programming

record

(equality)

of Computer Programming" (MIT Press, 2004).

their kernel languages (the small core language in which all
the paradigm’s abstractions can be defined). Kernel languages
are ordered according to the creative extension principle: a new
concept is added when it cannot be encoded with only local
transformations. Two languages that implement the same

programmer, because they make different choices on what
programming techniques and styles to facilitate.

paradigm can nevertheless have very different "flavors" for the

The chart classifies programming paradigms according to

When a language is mentioned under a paradigm, it means that
part of the language is intended (by its designers) to support

does not mean that there is a perfect fit between the language
and the paradigm. It is not enough that libraries have been

kernel language should support the paradigm. When there is a
family of related languages, usually only one member of the

the paradigm without interference from other paradigms. It

written in the language to support the paradigm. The language’s

family is mentioned to avoid clutter. The absence of a language
does not imply any kind of value judgment.

completely orthogonal, since they are part of a program’s
specification. A domain−specific language should be definable
in any paradigm (except when the domain needs a particular
concept).

Axes that are orthogonal to this chart are typing, aspects, and

has some effect on expressiveness. Aspects should be
domain−specificity. Typing is not completely orthogonal: it

Metaprogramming is another way to increase the
expressiveness of a language. The term covers many different
approaches, from higher−order programming, syntactic
extensibility (e.g., macros), to higher−order programming
combined with syntactic support (e.g., meta−object protocols
and generics), to full−fledged tinkering with the kernel
language (introspection and reflection). Syntactic extensibility
and kernel language tinkering in particular are orthogonal to

enough to implement many paradigms in almost native
this chart. Some languages, such as Scheme, are flexible

fashion. This flexibility is not shown in the chart.

Lazy
functional

synchron.
+ by−need

programming

+ thread
+ single assign.

programming
concurrent

Haskell

Monotonic
dataflow

programming
Declarative

Unix pipes

Java, OCaml

Sequential
object−oriented
programming

Stateful
functional

programming

+ closure

constraint

embeddings
+ solver

Constraint (logic)
programming

Concurrent
+ thread

constraint
programming

LIFE, AKL

programming (FRP)

CLP, ILOG Solver

constraints
Logic and

programming

Shared state

Functional reactive

FrTime

+ by−need synchronization + synchronization
on partial termination

+ thread

declarative
Lazy

programming

dataflow
programming

+ single assignment
Lazy

concurrent

+ local cell

This chart is inspired by "Concepts, Techniques, and Models

programming
declarative

XML,
S−expression

ClarificationsThe principal programming paradigms
"More is not better (or worse) than less, just different."

+ nondeterministic

FGHC, FCP,

Nonmonotonic

programming
dataflow

Concurrent logic
programming

Oz, Alice, AKL

dataflow
programming

(channel)
+ port

Multi−agent
choice

Oz, Alice, AKL

+ name

ADT
functional

Haskell, ML, E

(unforgeable constant)

programming

ADT
imperative

programming

+ cell

CLU, Oz

Functional
programming

Scheme, ML

v1.03 © 2007 by Peter Van Roy+ procedure
First−order
functional

programming

+ closure

Data structures only
Turing equivalent

+ cell (state) Imperative
programming

Pascal, C

search
Imperative

programming
SNOBOL, Icon, Prolog

+ search

(channel)
+ port

Event−loop
programming

+ continuation
Continuation
programming
Scheme, ML

+ unification

Descriptive

PAP ISI-LM - UNIBO

OBSERVABLE NONDETERMINISM
• The first key property of a paradigm is whether or not it can

express observable nondeterminism.
• Non-determinism = when the execution of a program is not

completely determined by its specification
– at some point during the execution the specification allows

the program to choose what to do next.
• Observable non-determinism => when a user can see

different results from executions that start at the same internal
configuration
– highly undesirable

• a typical effect is a race condition = where the result of
a program depends on precise differences in timing
between different parts of a program (a “race”)

• Observable non-determinism should be supported only if its
expressive power is needed.
– especially true for concurrent programming.

���52

PAP ISI-LM - UNIBO

NAMED STATE
• The second key property of a paradigm is how strongly it

supports state
• State is the ability to remember information, or more precisely,

to store a sequence of values in time
– its expressive power is strongly influenced by the paradigm

that contains it

���53

Programming Paradigms for Dummies

unnamed, deterministic, sequential!

unnamed, deterministic, concurrent!named, deterministic, sequential!

unnamed, nondeterministic, concurrent!named, nondeterministic, sequential!

named, nondeterministic, concurrent!

Declarative paradigms (relational and functional)!

Deterministic concurrency!

Concurrent logic programming!Guarded command programming!

Imperative programming !

Message-passing and shared-state concurrency!

Less!

Expressiveness of state!

More!

Figure 3. Di↵erent levels of support for state

adjacent boxes di↵er in one coordinate.2 One intriguing box shown is Dijkstra’s guarded
command language (GCL) [14]. It has named state and nondeterministic choice in a
sequential language. It uses nondeterministic choice to avoid overspecifying algorithms
(saying too much about how they should execute).

The paradigms in Figure 2 are classified on a horizontal axis according to how strongly
they support state. This horizontal axis corresponds to the bold line in Figure 3. Let us
follow the line from top to bottom. The least expressive combination is functional pro-
gramming (threaded state, e.g., DCGs in Prolog and monads in functional programming:
unnamed, deterministic, and sequential). Adding concurrency gives declarative concur-
rent programming (e.g., synchrocells: unnamed, deterministic, and concurrent). Adding
nondeterministic choice gives concurrent logic programming (which uses stream mergers:
unnamed, nondeterministic, and concurrent). Adding ports or cells, respectively, gives
message passing or shared state (both are named, nondeterministic, and concurrent).
Nondeterminism is important for real-world interaction (e.g., client/server). Named state
is important for modularity (see Section 4.4).

Both observable nondeterminism and named state are cases where it is important to
choose a paradigm that is expressive enough, but not too expressive (see epigram at the
head of the chapter). Each of these two concepts is sometimes needed but should be left
out if not needed. The point is to pick a paradigm with just the right concepts. Too few
and programs become complicated. Too many and reasoning becomes complicated. We
will give many examples of this principle throughout this chapter.

2.2 Computer programming and system design

Figure 4 gives a view of computer programming in the context of general system design.
This figure adds computer programming to a diagram taken from Weinberg [56]. The
two axes represent the main properties of systems: complexity (the number of basic
interacting components) and randomness (how nondeterministic the system’s behavior
is). There are two kinds of systems that are understood by science: aggregates (e.g., gas

2Two of the eight possible combinations are not shown in the figure. We leave it to the reader to
discover them and find out if they make any sense!

15

PAP ISI-LM - UNIBO

COMPUTER PROGRAMMING &
SYSTEM DESIGN!
• Van Roy’s diagram about the view of computer programming in the

context of general system design
– Weinberg’s diagram + computer programming

���54

Peter Van Roy

Computer programming

Computer programming

Figure 4. Computer programming and system design (adapted from Weinberg [56])

molecules in a box, understood by statistical mechanics) and machines (e.g., clocks and
washing machines, a small number of components interacting in mostly deterministic
fashion). The large white area in the middle is mostly not understood. The science of
computer programming is pushing inwards the two frontiers of system science: computer
programs can act as highly complex machines and also as aggregates through simulation.
Computer programming permits the construction of the most complex systems.

Modern programming languages have evolved over more than five decades of expe-
rience in constructing programmed solutions to complex, real-world problems. Modern
programs can be quite complex, reaching sizes measured in millions of lines of source
code, written by large teams of programs over many years. In our view, languages that
scale to this level of complexity are successful in part because they model some essential
factors of how to construct complex systems. In this sense, these languages are not just
arbitrary constructions of the human mind. They explore the limits of complexity in a
more objective way. We would therefore like to understand them in a scientific way, i.e.,
by understanding the basic concepts that compose the underlying paradigms and how
these concepts are designed and combined. This is the deep justification of the creative
extension principle explained below.

2.3 Creative extension principle

Concepts are not combined arbitrarily to form paradigms. They can be organized ac-
cording to the creative extension principle. This principle was first defined by Felleisen
[18] and independently rediscovered in [50]. It gives us a guide for finding order in the
vast set of possible paradigms. In a given paradigm, it can happen that programs be-
come complicated for technical reasons that have no direct relationship to the specific
problem that is being solved. This is a sign that there is a new concept waiting to be
discovered. To show how the principle works, assume we have a simple sequential func-
tional programming paradigm. Then here are three scenarios of how new concepts can
be discovered and added to form new paradigms:

16

PAP ISI-LM - UNIBO

COMPUTER PROGRAMMING &
SYSTEM DESIGN
• Axes => two main properties of systems:

– complexity
• the number of basic interacting components

– randomness
• how nondeterministic the system’s behavior is

• There are two kinds of systems that are understood by science:
– aggregates

• e.g., gas molecules in a box, understood by statistical
mechanics

– machines
• e.g., clocks and washing machines, a small number of

components interacting in mostly deterministic fashion
• The large white area in the middle is mostly not understood

���55

PAP ISI-LM - UNIBO

COMPUTER PROGRAMMING &
SYSTEM DESIGN
• The science of computer programming is pushing

inwards the two frontiers of system science
– computer programs can act as highly complex

machines and also as aggregates through simulation.
– computer programming permits the construction of the

most complex systems
• We would therefore like to understand them in a scientific

way
– by understanding the basic concepts that compose the

underlying paradigms and how these concepts are
designed and combined

���56

PAP ISI-LM - UNIBO

WHEN A NEW PARADIGM IS NEEDED:
CREATIVE EXTENSION PRINCIPLE
• Question

– when a new paradigm is needed?
– when a new feature of a language brings a new

paradigm?
• Creative Extension Principle by Felleisen & Van Roy

– in a given paradigm, it can happen that programs
become complicated for technical reasons that have
no direct relationship to the specific problem that is
being solved

– this is a sign that there is a new concept waiting to be
discovered

���57

PAP ISI-LM - UNIBO

CREATIVE EXTENSION PRINCIPLE
- EXAMPLE

• Starting point
– simple sequential functional programming paradigm

• three scenarios of how new concepts can be discovered
and added to form new paradigms
– state
– concurrency
– exception

���58

PAP ISI-LM - UNIBO

SECOND SCENARIO:
ADDING STATE
• Need

– modeling updatable memory
• entities that remember and update their past

• Solution
– adding two arguments to all function calls relative to

that entity
• the arguments represent the input and output

values of the memory
• this is unwieldy and it is also not modular because

the memory travels throughout the whole program
• New concept that wants to come out

– state

���59

PAP ISI-LM - UNIBO

FIRST SCENARIO:
ADDING CONCURRENCY

• Need
– modeling several independent activities

• Solution
– adding several execution stacks, a scheduler, and a

mechanism for preempting execution from one activity
to another

• New concept that wants to come out
– concurrency

���60

PAP ISI-LM - UNIBO

THIRD SCENARIO:
ADDING EXCEPTIONS

• Need
– modeling error detection and correction
– any function can detect an error at any time and

transfer control to an error correction routine
• Solution

– adding error codes to all function outputs and
conditionals to test all function calls for returned error
codes

• New concept that wants to come out
– exceptions

���61

PAP ISI-LM - UNIBO

THIRD SCENARIO:
ADDING EXCEPTIONS

���62

Programming Paradigms for Dummies

Figure 5. How adding exceptions to a language can simplify programs

• If we need to model several independent activities, then we will have to implement
several execution stacks, a scheduler, and a mechanism for preempting execution
from one activity to another. All this complexity is unnecessary if we add one
concept to the language: concurrency.

• If we need to model updatable memory, that is, entities that remember and update
their past, then we will have to add two arguments to all function calls relative to
that entity. The arguments represent the input and output values of the memory.
This is unwieldy and it is also not modular because the memory travels throughout
the whole program. All this clumsiness is unnecessary if we add one concept to the
language: named state.

• If we need to model error detection and correction, in which any function can detect
an error at any time and transfer control to an error correction routine, then we
need to add error codes to all function outputs and conditionals to test all function
calls for returned error codes. All this complexity is unnecessary if we add one
concept to the language: exceptions. Figure 5 shows how this works.

The common theme in these three scenarios (and many others!) is that we need to do
pervasive (nonlocal) modifications of the program in order to handle a new concept. If
the need for pervasive modifications manifests itself, we can take this as a sign that there
is a new concept waiting to be discovered. By adding this concept to the language we no
longer need these pervasive modifications and we recover the simplicity of the program.
The only complexity in the program is that needed to solve the problem. No additional
complexity is needed to overcome technical inadequacies of the language. Both Figure 2
and [50] are organized according to the creative extension principle.

3 Designing a language and its programs

A programming language is not designed in a vacuum, but for solving certain kinds of
problems. Each problem has a paradigm that is best for it. No one paradigm is best for all
problems. That is why it is important to choose carefully the paradigms supported by the

17

PAP ISI-LM - UNIBO

DISCOVERING NEW PARADIGMS
• The common theme in these three scenarios is that

we need to do pervasive (nonlocal) modifications of the
program in order to handle a new concept
– if the need for pervasive modifications manifests itself,

we can take this as a sign that there is a new concept
waiting to be discovered

• By adding this concept to the language we no longer
need these pervasive modifications and we recover the
simplicity of the program.
– the only complexity in the program is that needed to

solve the problem
– no additional complexity is needed to overcome

technical inadequacies of the language.

���63

PAP ISI-LM - UNIBO

BIBLIOGRAPHY
• Van Roy, Haridi. “Concepts, Techniques, Models of Computer Programming”,

MIT Press.
• Van Roy. “Programming Paradigms for Dummies: What Every Programmer

Should Know” In G. Assayag and A. Gerzso (eds.) New Computational
Paradigms for Computer Music, IRCAM/Delatour, France.

• “Overview of the main programming paradigms”, Kurt Nørmark, Department of
Computer Science, Aalborg University, Denmark (http://people.cs.aau.dk/
~normark/prog3-03/html/notes/theme-index.html)

• David Gelernter and Nicholas Carriero. 1992. Coordination languages and their
significance. Commun. ACM 35, 2 (February 1992), 97-107.

• Herb Sutter and James Larus. 2005. Software and the Concurrency
Revolution. Queue 3, 7 (September 2005), 54-62

• Robin Milner. 1993. Elements of interaction: Turing award lecture. Commun.
ACM 36, 1 (January 1993), 78-89

• Peter Wegner. 1997. Why interaction is more powerful than algorithms.
Commun. ACM 40, 5 (May 1997), 80-91

• Felleisen M., “On the Expressive Power of Programming Languages", in 3rd
European Symposium on Programming (ESOP 1990), May 1990, pp. 134-151

���64

http://people.cs.aau.dk/~normark/prog3-03/html/notes/theme-index.html

