v1.0
20140316

Programmazione Avanzata e Paradigmi
Ingegneria e Scienze Informatiche - UNIBO

a.a 2013/2014
Lecturer: Alessandro Ricci

'module 1.1]

PROGRAMMING PARADIGMS:
OVERVIEW

PAP ISI-LM - UNIBO

SUMMARY

« What's a programming paradigm
— basic terms
« Main programming paradigms
— imperative, functional programming, logic
programming, object-oriented programming
— multi-paradigm programming

« Taxonomy by Van Roy
— observable non determinism, state
— creative extension principle

PAP ISI-LM - UNIBO

WHAT'S A PARADIGM

« The Merriam-Webster's Collegiate dictionary:

— “A philosophical and theoretical framework of a scientific school
or discipline within which theories, laws, and generalizations and
the experiments performed in support of them are formulated”

e Programming paradigm:
— A programming paradigm is an approach to programming a

computer based on a mathematical theory or a coherent set of
principles (Van Roy, CTM)

» each paradigm supports a set of concepts that makes it the
best for a certain kind of problem.

— A programming paradigm is a fundamental style of computer
programming (Wikipedia, March 2013)

— A pattern that serves as a school of thoughts for programming of
computers (Kurt Ngrmark, Aalborg University, Denmark)

PAP ISI-LM - UNIBO

A PROGRAMMING PARADIGM IS

« ...how computation is expressed and works

« ...now a program is organized (program design
perspective)

— structure - what parts
— behaviour - how parts compute
— interaction - how parts interact

PAP ISI-LM - UNIBO

PARADIGMS & LANGUAGES

Each paradigm
Each language realizes consists of a set
one or more paradigms of concepts

Languages Paradigms Concepts

PAP ISI-LM - UNIBO

PARADIGMS &
ELEMENTS OF PROGRAMMING

* Programming languages as frameworks within which we
organise our ideas about processes
« 3 main mechanisms:

— primitive expressions, which represent the simplest
entities the language is concerned with

— means of combination, by which compound element
are built from the simpler ones

— means of abstraction, by which compound elements
can be named and manipulated as units

> a paradigm typically defines specific concepts and
mechanisms for these three dimensions

PAP ISI-LM - UNIBO

SEVERAL PARADIGMS
(...AND EVEN MORE LANGUAGES)

* Van Roy’s Taxonomy preview

Data structures only

Observable
nondeterminism?

+ unification
(equality)

record

Descriptive
declarative
programming

XML,
S—expression

+ procedure

Fir

functional
programming

st—order

The principal programming paradigms

"More is not better (or worse) than less, just different."

vl

+ cell (state)

.03 © 2007 by Peter Van Roy

Imperative

+ closure

Fu

logic prog

Deterministic

sramming

+ search

Relational & logic
programming

programming

nctional

+ by—need
synchron.

Scheme, ML \
+ continuation

Continuation
programming

Scheme, ML

+ thread
+ single assign.

Prolog, SQL
embeddings

Lazy
functional

+ solver

programming

Monotonic
dataflow
programming

+ name

(unforgeable constant)
)

ADT

ADT

functional
programming

imperative
programming

programming
Pascal, C

search

Imperative

programming

+ search

SNOBOL, Icon

+ port
(channel)

Haskell, ML, E

CLU, Oz

Event—loop
programming

+ thread

+ port

Multi—agent
programming

, Prolog

+ cell
(state)
Sequential
object—oriented
programming
Stateful
functional
programming
Java, OCaml

+ closure

Haskell Declarative + thread

+ nondeterministic
choice |

Constraint (logic) (channel) M

—passing

programming

+ thread
Concurrent

CLP, ILOG Solver

+ thread
+ single assignment

concurrent
programming

Unix pipes

+ by—need
synchronization

Nonmonotonic
dataflow
programming

Multi—agent
dataflow

programming

concurrent

Concurrent logic

01z, Alice, AKL

Erlang, AKL

Concurrent
object—oriented
programming

Shared—state
concurrent

| programming

constraint
programming
LIFE, AKL

+ by—need synchronization

+ local cell

Lazy
dataflow
programming

programming

Java, Alice,
Smalltalk, Oz

+ log

FGHC, FCP,
0z, Alice, AKL

Active object
programming
Object—capability
programming
E, Oz, Alice,
publish/subscribe,
tuple space (Linda)

+ synchronization

Lazy . .
on partial termination
|

declarative
concurrent
programming

0Oz, Alice

Lazy concurrent
constraint
programming
0z, Alice

Software
transactional
memory (STM)

SQL embeddings

Functional reactive
programming (FRP)

FrTime

Logic and

\ constraints

Functional Message passing Shared state

\ message passing

———
No state
- |

—~
Weak state Stateful
I [

|
|
i
!
!
i
i
|
|
|
I
T
!
i
i
|
|
|
|
|
|
|
|
i
: .
! programming
!
i
i
|
|
i
!
!
i
i
|
|
i
!
!
i
i
|
|
i
!
!
i
i
|
|
i
.

3 Dataflow and

Less declarative

More declarative

PAP ISI-LM - UNIBO

1936 - Turing Machine

1936 - Untyped Lambda Calculus by Alonzo Church

1940 - Typed Lambda Calculus by Alonzo Church

1945 - Von Neumann Architecture

1949 - EDSAC computer, has an assembly language

1957 - FORTRAN (First compiler)

1958 - LISP

1958 - ALGOL 58

1959 - COBOL

1961 - MULTI-PROGRAMMING & TIME-SHARING OS
(OS, INTERRUPT)

1962 - APL

1962 - Simula

1964 - BASIC

1965 - Dijkstra - Cooperating Seq. Processes + Semaphores

1968 - Logo

1970 - FIRST DEVELOPMENT OF UNIX OS

PAP ISI-LM - UNIBO

AdOLSIH OL MOO'1V

1970 - Pascal

1971 - Monitors

1972 - C

1972 - Smalltalk

1972 - Prolog

1973 - ACTOR MODEL

1973 - ML

1974 - Internet protocol

1975 - Scheme

1975 - Concurrent Pascal
1978 - SQL

1978 - Hoare introduces CSP

PAP ISI-LM - UNIBO

AdOLSIH OL MOO'1V

O01V

1980 - C++ (as C with classes, name changed in July 1983) A\
1980 - CCS - Calculus of Communicating Processes (Milner) —]
1982 - TCP/IP

1983 - Ada
1984 - Common Lisp

1984 - MATLAB
1985 - Eiffel

1986 - Objective-C
1986 - Erlang

1988 - Mathematica

AdOLSIH O

PAP ISI-LM - UNIBO

1990 - Haskell

1991 - Python

1991 - Visual Basic

1991 - Web & HTML (Mark-up Language)
1993 - pi-calculus

1993 - Ruby

1993 - Lua

1993 - Newton message pad

1994 - CLOS (part of ANSI Common Lisp)
1995 - Java

1995 - JavaScript

1995 - PHP

1998 - Google

AdOLSIH OL MOO'1V

PAP ISI-LM - UNIBO

2001 - C#

2001 - Visual Basic .NET

2002 - F#

2004 - IBM X10

2005 - Multi-core era / “the free lunch is over” begins
2007 - mobile with smart phone / mobile app begins

(iPhone, Android)
2007 - Clojure
2009 - Go
2010 - mobile with tablets
2011 - Dart
2012 - Typescript

AdOLSIH OL MOO'1V

PAP ISI-LM - UNIBO

MAIN PROGRAMMING PARADIGMS

* Four main paradigms
— the imperative paradigm
— the functional paradigm
— the logical paradigm
— the object-oriented paradigm

PAP ISI-LM - UNIBO

IMPERATIVE PARADIGM

"First do this and next do that"

Describes computation in terms of statements that
change a program state

Imperative programs define sequences of statements or
commands for the computer to perform

— command => measurable effect on the program state
— the order to the commands is important
Representative languages

— Fortran, Algol, Pascal, Basic, C

PAP ISI-LM - UNIBO

IMPERATIVE PARADIGM

 Origin/inspiration
— digital hardware technology and the ideas of Von
Neumann

» Reference computation model
— Turing Machine

PAP ISI-LM - UNIBO

IMPERATIVE PARADIGM

Incremental change of the program state as a function of time
Execution of computational steps in an order, governed by
control structures

Computational steps referred as (synonyms):

— “statement” - often used to refer to an elementary
iInstruction in a source language

— “Iinstruction” - to be preferred to explicitly refer to the
computational steps performed at the machine level.

— “command” - often used to refer to actions in imperative
programming language
« €.g. assignment, IO, procedure calls

PAP ISI-LM - UNIBO

IMPERATIVE PARADIGM

n := X;

a .= 1;

while n > 0 do

begin
a :=a * n;
n :=

end;

PAP ISI-LM - UNIBO

IMPERATIVE PARADIGM
- ABSTRACTIONS

 The natural abstraction is the procedure
— abstracts one or more actions to a procedure, which
can be called as a single action
* Procedural programming
— programs as collection of procedures
— state changes are localized to procedures or restricted
to explicit arguments and returns from procedures
« Structured, modular programming
— fundamental for the maintainability and overall quality
of imperative programs
 OOP is the next step

PAP ISI-LM - UNIBO

FUNCTIONAL PROGRAMMING

"Evaluate an expression and use
the resulting value for something"

Computation is carried on entirely through the evaluation
of expressions

— represented by functions without side effects
no state, no mutable data

Representative languages

— Haskell, F#, Erlang, ML, Scheme, Lisp

PAP ISI-LM - UNIBO

FUNCTIONAL PROGRAMMING

 Origin and inspiration

— mathematics and the theory of functions
« Reference computation model

— lambda calculus (A-calculus)

PAP ISI-LM - UNIBO

FUNCTIONAL PROGRAMMING

fac 0 = 1
fac n = n*fac(n-1)

map _ [] []

map f (X:xs) f X : map f xs

> map fac [2,5,3]
[2, 120, 6]

PAP ISI-LM - UNIBO

FUNCTIONAL PROGRAMMING
- ABSTRACTION

 The natural abstraction is the function

— abstracts a single expression to a function which can be
evaluated as an expression

* Functions are first class values
— functions are typed data just like numbers, lists, ...
— can be passed as arguments to other function
* high-order functions
« Applicative
— all computations are done by applying (calling) functions
— the values produced are non-mutable
— no loops, recursion!

PAP ISI-LM - UNIBO

LOGIC PROGRAMMING

"Answer a question via search for
a solution"

Programs consist of logical statements, and the program
executes by searching for proofs of the statements

Particularly effective for problem domains dealing with
the extraction of knowledge from basic facts and relations

— Al domain
Representative languages
— Prolog, Datalog

PAP ISI-LM - UNIBO

LOGIC PROGRAMMING

« QOrigins and inspiration

— automatic proofs within artificial intelligence
« Reference computation model

— first-order logic

PAP ISI-LM - UNIBO

LOGIC PROGRAMMING

female(Canna).

female(elettra).

male(vinicio).
parent(vinicio,anna).
parent(elettra,anna).

son(X,Y) :- male(X), parent(Y,X).
daughter(X,Y) :- female(X), parent(Y,X).

append([],L,L).
append([XIL1],L2,[XIL3]) :-
append(L1,L2,L3).

fac(0,1).
fac(N,F) :-
N1 is N-1, fac(N1l, F1), F is N*F1.

PAP ISI-LM - UNIBO

LOGIC PROGRAMMING
- ABSTRACTIONS

Based on axioms, inference rules, and queries

Program execution becomes a systematic search in a set
of facts making use of a set of inference rules

Algorithms = Logic + Control
— programs must specify only the logic side
— the control side is totally handled by the abstract
machine

PAP ISI-LM - UNIBO

DECLARATIVE
PROGRAMMING

Functional
Programming | ogic

Programming

Expresses the logic of a computation
without explicitly describing a control flow

PAP ISI-LM - UNIBO

OBJECT-ORIENTED PROGRAMMING

"Send messages between objects to simulate
the temporal evolution of a set of real world
phenomena"

Computation given by the exchange of messages among
self-contained computational objects with an identity and
state

— encapsulating a state and a behavior

Strong support of encapsulation

— key issues when programs become larger and larger.
Conceptual anchoring of the paradigm to problem domains
— objects represent concept of the problem domain

PAP ISI-LM - UNIBO

OBJECT-ORIENTED PROGRAMMING

« QOrigins and inspirations
— the theory of concepts, and models of human
Interaction with real world phenomena
* Representative Languages:

— Smalltalk/Squeak, C++, Java, Objective-C, C#, Scala,
Python, Ruby,...

PAP ISI-LM - UNIBO

OOP ROOTS

* Modeling and discrete-event simulations
— Simula language (1960s)

* Ole-Jdohan Dahl and Kristen Nygaard of the .
Norwegian Computing Center in Oslo

o Smalltalk
— Alan Kay and his group at Xerox PARC (1970s)

* introduced the term object-oriented programming =
use of objects and messages as the basis for
computation

— BYTE Special Issue on Smalltalk and OOP - August
1981

PAP ISI-LM - UNIBO

OBJECT-ORIENTED PROGRAMMING
- SOME KEY CHARACTERISTICS

Encapsulation
— data as well as operations are encapsulated in objects
Information hiding
— used to protect internal properties of an object
Objects interact by means of message passing
— a metaphor for applying an operation on an object
 ...but it was not meant to be a metaphor at the beginning...
In object-oriented languages objects are grouped in classes
— classes represent concepts whereas objects represent phenomena
— object-based or prototype based languages => no classes
» e.g. JavaScript, Self
Inheritance
— classes are organized in inheritance hierarchies
— provides for class extension or specialization

PAP ISI-LM - UNIBO

MULTI-PARADIGM APPROACHES

* Problem/Motivation

— no one paradigm solves all problems in the easiest or
most efficient way

* |dea
— more programming paradigms in the same language
— providing a framework in which programmers can
work in a variety of styles
* freely intermixing constructs from different
paradigms
« allowing programmers to use the best tool for a job

* Problems
— integrating different models of computation and
programming models

PAP ISI-LM - UNIBO

MULTI-PARADIGM APPROACHES

« Examples
— OOP + Functional
« JavaScript, Python, C#, Java 8, ...
« Scala
— Oz
* logic + functional + data-flow concurrent

— Alice, Curry, CIAO

PAP ISI-LM - UNIBO

POLYGLOT VIRTUAL MACHINES

« .NETCLR

— explicitly designed from scratch to support multiple
languages of different paradigms

— main languages: C#, VisualBasic, F#,
- JVM

— originally designed for a single OOP language

— however many JVM-based languages developed on
top
« Scala, Groovy, Clojure, JRuby, Jython, ...
— recent language extension to integrate functional
programming
 project Lambda - Java 8
 but without changing the JVM specification

PAP ISI-LM - UNIBO

POLYGLOT PROGRAMMER PYRAMID

Tightly coupled to a specific
part of the app domain
domain - Apache Camel DSL, Drools,

o Web templatin
specific PN

Rapid,productive, flexible
. development of functionality
Dynamic - Groovy, Jython, Clojure

Core functionality, stable,
well tested, performant
Stable - Java, Scala

(From “Well-Grounded Java Developer” - Evans, Verburg - Ch. 7 - Alternative JVM
languages)

PAP ISI-LM - UNIBO

POLYGLOT PROGRAMMER PYRAMID

Name

Example problem domain

Domain Specific

Build, continuous integration, continuous deployment
Dev-ops

Enterprise Integration Pattern modeling

Business Rule Modelling

Dynamic

Rapid Web Development

Prototyping

Interactive administrative and user consoles
Scripting

Tests

Stable

Concurrent code
Application containers
Core business functionalities

PAP ISI-LM - UNIBO

MULTI-PARADIGM APPROACHES

» Afurther approach: coordination models and languages
[Gelernter & Carriero]

— given a system as an ensemble of interacting entities,
then:

» each entity maybe designed and developed
according to some specific paradigm

« common language used to express and enable
iInteraction and coordination among entities

—e.g. Tuple Space model & Linda language

— based on the orthogonality between computation and
interaction/coordination

PAP ISI-LM - UNIBO

THE RISE OF CONCURRENT

AND ASYNCHRONOUS
PROGRAMMING

PAP ISI-LM - UNIBO

THE RISE OF CONCURRENCY

« What about concurrent programming? including...
... parallel programming
... asynchronous/event-driven programming
... distributed programming
... real-time/time-oriented programming
 Is it concurrent programming a paradigm? Are these

paradigms?
— can be conceived just as extensions of existing
paradigms?

PAP ISI-LM - UNIBO

TERMINOLOGY

« Concurrent programming

— building programs in which multiple computational activities
overlap in time and typically interact in some way

« without necessarily running on separate physical processors
— logical/abstract/programming level
« Parallel programming
— the execution of programs overlaps in time by running on

separate physical processors
— physical level
« Distributed programming
— when processors are distributed over a network
— no shared memory

PAP ISI-LM - UNIBO

CONCURRENCY “PARADIGMS”

 Multi-threaded programming
— shared state
— synchronization mechanisms
e semaphores, monitors
e Message-based programming
— no shared state

— interaction by means of message exchange
Event-driven programming
— the flow of the program is determined by events

 user actions (mouse clicks, key presses), sensors,
messages from other threads/process/apps

PAP ISI-LM - UNIBO

CONCURRENCY “PARADIGMS”

e Asynchronous programming

— designing programs featuring asynchronous actions
and requests

* never blocking dogma
 future mechanisms, callbacks
 Reactive programming

— the flow of the program is designed around data flows
and the propagation of change

PAP ISI-LM - UNIBO

IMPACT OF CONCURRENCY ON
PARADIGMS

» Existing paradigms + concurrency mechanisms
— multi-threaded programming
* e.g. Java

 Integrating concurrency within the paradigm => new
paradigm

— example: OOP + concurrency
=> actors & concurrent objects
=> active objects
=> other flavors of concurrent OOP
« SCOOP model in Eiffel
— example: Functional + actors
 Erlang

PAP ISI-LM - UNIBO

BEYOND TURING MACHINES

 New models of computation
— process algebra
— CSP, CCS, mr-calculus
— Petri-nets
— chemical abstract machines

— Key point: interaction [Milner,Wegner]
— which cannot be properly captured by pure

computational model such as A-calculus or Turing
machines

PAP ISI-LM - UNIBO

LANGUAGES vs. FRAMEWORKS/
LIBRARIES

 Languages
— first-class concurrent abstractions are first-class
constructs of the language
 Erlang
* Libraries/Frameworks

— first-class concurrent abstractions are represented by
existing abstractions of a host language

e e.g. Java/Scala + Actor Library

— frameworks define the general organization of a
program and its lifecycle

PAP ISI-LM - UNIBO

STATE-OF-THE-ART & RESEARCH
LANDSCAPE

 Active Objects and Actors
» Software Transactional Memory
* Reactive programming

* Agents

PAP ISI-LM - UNIBO

ACTOR MODEL

 Oiriginally introduced by Carl Hewitt and colleagues at
MIT in 70ies

— Al context

Developed by Gul Agha, Akinori Yonezawa et al. in 80ies
and 90ies as the unification of OOP and concurrency

— many languages & frameworks

« ACT++, Salsa, Kilim, ABCL family, E, AmbientTalk,
ActorFoundry,...

Playing a major role in the mainstream nowadays

— as an alternative model to multi-threaded
programming

— Erlang, Scala/Akka actors, HTMLS Web Workers,
DART isolates, etc.

PAP ISI-LM - UNIBO

ACTOR MODEL

« Asynchronous message passing among autonomous
purely reactive objects called actors

— everything is an actor

« with a unique identifier

e a unique mailbox where messages are enqueued
— every interaction takes place as async message

passing
* Few primitives
— send, create, become

» Everything - including traditional control structures, can
be modeled as patterns of messages among actors

PAP ISI-LM - UNIBO

ACTOR MODEL

create

State

Thread O ‘3
s

Method

Mailbox

PAP ISI-LM - UNIBO

State

Thread O ‘3
S

Method

Mailbox

State

Thread O ‘3
s

Method

Mailbox

UNDERSTANDING
PARADIGM
RELATIONSHIPS

=>

BUILDING A TAXONOMY

PAP ISI-LM - UNIBO

VAN ROY'S TAXONOMY

record

Desrpive The principal programming paradigms

declarative
programming " . . . "
XML, More is not better (or worse) than less, just different.

Data structures only S—expression

+ procedure v1.03 © 2007 by Peter Van Roy

First—order -

Observable functional Imperan.ve
nondeterminism? | programming programming
Pascal, C

+ cell (state)

+ closure Imperative

Functional search + search
programming

programming
+ unification Scheme, ML + name SNOBOL, Icon, Prolog
(equality) | (unforgeable constant)

Deterministic + continuation ‘ + cell
logic programmin Continuation ADT +celt] . ADT + port (stactee) + closure

gIC progi g ! functional : imperative (channel)
. " B0 SIS, programming programming — Sequential
searc vent—loo ; :

_ - Scheme, ML Haskell, ML, E CLU, Oz o rammirll) object—orlepted

Relational & logic + by—-need prog g programming
RIOSIaMIIN S synchron.

Stateful
Prolog, SQL + thread functional
embeddings

programming

Lazy Monotonic
functional dataflow
+ solver programming programming

Multi—agent
+ nondeterministic + port programming Java, OCaml
Constraint (logic) Haskell Declarative choice | (channel) + thread

programming concurrent

Message—passing
. Nonmonotonic Multi—agent concurrent Concurrent
CLP, ILOG Solver IO dataflow dataflow programming object—oriented

+ thread Unix pipes programming 3 programming Erlang, AKL programming

+ thread Concurrent logi Oz, Alice, AKL Shared—
R R L. gIC Z ice ared—state
%‘(’)ﬁ‘;‘:gg:t + single assignment synchronization programming ’ ’ + local cell concurrent
ocal ce ;
programming Lazy FGHC, FCP, - - programming
LIFE. AKL dataflow 0Oz, Alice, AKL Active object Java, Alice,
s o programming o programming Smalltalk, Oz
+ by—need synchronization Lazy + synchronization Object—capability
Lazy concurrent declarative on partial termination programming
constraint concurrent Functional reactive E. Oz. Alice Sioifiie
. : : y Vs H transactional
programming programming programming (FRP) publish/subscribe, memory (STM)
Oz, Alice Oz, Alice FrTime tuple space (Linda
’ ’ plespace (Linda) G mbeddings

+ log

Functional Message passing Shared state

\ constraints

\ /message passing

gl Weak state
No state

More declarative —= I

PAP ISI-LM - UNIBO

Logic and i Dataflow and

Vﬁ
Stateful
: = [¢ss declarative

OBSERVABLE NONDETERMINISM

The first key property of a paradigm is whether or not it can
express observable nondeterminism.

Non-determinism = when the execution of a program is not
completely determined by its specification

— at some point during the execution the specification allows
the program to choose what to do next.

Observable non-determinism => when a user can see
different results from executions that start at the same internal
configuration

— highly undesirable

« a typical effect is a race condition = where the result of
a program depends on precise differences in timing
between different parts of a program (a “race”)

Observable non-determinism should be supported only if its
expressive power is needed.

— especially true for concurrent programming.
PAP ISI-LM - UNIBO

NAMED STATE

The second key property of a paradigm is how strongly it
supports state

State is the ability to remember information, or more precisely,
to store a sequence of values in time

— its expressive power is strongly influenced by the paradigm
that contains it

Expressiveness of state Declarative paradigms (relational and functional)

L‘jfs unnamed, deterministic, sequential

/\

named, deterministic, sequential unnamed, deterministic, concurrent

Imperative programming lDeterministic concurrency

named, nondeterministic, sequential unnamed, nondeterministic, concurrent

Guarded command programmin\ /oncurrent logic programming

named, nondeterministic, concurrent

v
More

PAP ISI-LM - UNIBO

Message-passing and shared-state concurrency

COMPUTER PROGRAMMING &
SYSTEM DESIGN

« Van Roy’s diagram about the view of computer programming in the
context of general system design

— Weinberg’s diagram + computer programming

\\N}% \\\\
nr \\

T

lComputer programming

Randomness

I11. Organized complexity
(systems)

ar i :
A /Computer programming

simplicity

Complexity

PAP ISI-LM - UNIBO

COMPUTER PROGRAMMING &
SYSTEM DESIGN

« Axes => two main properties of systems:
— complexity
« the number of basic interacting components
— randomness
* how nondeterministic the system’s behavior is

» There are two kinds of systems that are understood by science:
— aggregates

* €.g., gas molecules in a box, understood by statistical
mechanics

— machines

* e.g., clocks and washing machines, a small number of
components interacting in mostly deterministic fashion

* The large white area in the middle is mostly not understood

PAP ISI-LM - UNIBO

COMPUTER PROGRAMMING &
SYSTEM DESIGN

« The science of computer programming is pushing
iInwards the two frontiers of system science

— computer programs can act as highly complex
machines and also as aggregates through simulation.

— computer programming permits the construction of the

most complex systems
 We would therefore like to understand them in a scientific
way

— by understanding the basic concepts that compose the
underlying paradigms and how these concepts are
designed and combined

PAP ISI-LM - UNIBO

WHEN A NEW PARADIGM IS NEEDED:
CREATIVE EXTENSION PRINCIPLE

* Question
— when a new paradigm is needed?
— when a new feature of a language brings a new
paradigm?
» Creative Extension Principle by Felleisen & Van Roy

— In a given paradigm, it can happen that programs
become complicated for technical reasons that have
no direct relationship to the specific problem that is
being solved

— this is a sign that there is a new concept waiting to be
discovered

PAP ISI-LM - UNIBO

CREATIVE EXTENSION PRINCIPLE
- EXAMPLE

« Starting point
— simple sequential functional programming paradigm

three scenarios of how new concepts can be discovered
and added to form new paradigms

— state
— concurrency
— exception

PAP ISI-LM - UNIBO

SECOND SCENARIO:
ADDING STATE

* Need
— modeling updatable memory
 entities that remember and update their past
« Solution
— adding two arguments to all function calls relative to

that entity

» the arguments represent the input and output
values of the memory

* this is unwieldy and it is also not modular because
the memory travels throughout the whole program

 New concept that wants to come out
— State

PAP ISI-LM - UNIBO

FIRST SCENARIO:
ADDING CONCURRENCY

* Need
— modeling several independent activities
« Solution

— adding several execution stacks, a scheduler, and a

mechanism for preempting execution from one activity
to another

 New concept that wants to come out
— concurrency

PAP ISI-LM - UNIBO

THIRD SCENARIO:
ADDING EXCEPTIONS

 Need
— modeling error detection and correction

— any function can detect an error at any time and
transfer control to an error correction routine

e Solution

— adding error codes to all function outputs and
conditionals to test all function calls for returned error
codes

* New concept that wants to come out
— exceptions

PAP ISI-LM - UNIBO

THIRD SCENARIO:
ADDING EXCEPTIONS

A program in a | proc{P1..E1} A program in a | proc {P1..}

language without f P2 ... B2} language with | try

. if E2 then ... end .
exceptions |_._ " exceptions | {P2..}

end v catch E then ... end

)) end
The error is proc {P2 ... E2} The erroris

handled here P3.. E3) handled here f ™

if E3 then ... end proc {P2 ...}
ol {P3..}

end end

> Unchanged

proc {P3 ... E3} roc {P3 ...
All the procedures {P4 ... E4} Only the procedures proc { ’

on the call path if E4 then ... end at the ends of the {P4 ..}
are modified E3=... call path are modified end _J
end

proc {P4 ...}
proc {P4 ... E4}

if (error) then
if (error) then E4=true .
The error ad elée E4)=false - The error _—"]| raise myError end
occurs here r occurs here d
end en

end

Ly

PAP ISI-LM - UNIBO

DISCOVERING NEW PARADIGMS

« The common theme in these three scenarios is that

we need to do pervasive (nonlocal) modifications of the
program in order to handle a new concept

— if the need for pervasive modifications manifests itself,
we can take this as a sign that there is a new concept
waiting to be discovered

By adding this concept to the language we no longer

need these pervasive modifications and we recover the

simplicity of the program.

— the only complexity in the program is that needed to
solve the problem

— no additional complexity is needed to overcome
technical inadequacies of the language.

PAP ISI-LM - UNIBO

BIBLIOGRAPHY

« Van Roy, Haridi. “Concepts, Techniques, Models of Computer Programming”,
MIT Press.

Van Roy. “Programming Paradigms for Dummies: What Every Programmer
Should Know” In G. Assayag and A. Gerzso (eds.) New Computational
Paradigms for Computer Music, IRCAM/Delatour, France.

“Overview of the main programming paradigms”, Kurt Ngrmark, Department of
Computer Science, Aalborg University, Denmark (http://people.cs.aau.dk/
~normark/prog3-03/html/notes/theme-index.html)

David Gelernter and Nicholas Carriero. 1992. Coordination languages and their

significance. Commun. ACM 35, 2 (February 1992), 97-107.

Herb Sutter and James Larus. 2005. Software and the Concurrency
Revolution. Queue 3, 7 (September 2005), 54-62

Robin Milner. 1993. Elements of interaction: Turing award lecture. Commun.
ACM 36, 1 (January 1993), 78-89

Peter Wegner. 1997. Why interaction is more powerful than algorithms.
Commun. ACM 40, 5 (May 1997), 80-91

Felleisen M., “On the Expressive Power of Programming Languages”, in 3rd
European Symposium on Programming (ESOP 1990), May 1990, pp. 134-151

PAP ISI-LM - UNIBO

http://people.cs.aau.dk/~normark/prog3-03/html/notes/theme-index.html

