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Introduction

In corpus linguistics, part-of-speech tagging (POS tagging) is the process of marking up a
word in a text (also called corpus) as corresponding to a particular part of speech, based on
both its definition and its context. For example, we can observe the relationship between
adjacent and related words in a phrase, sentence, or paragraph. One of the main challenges
in POS tagging is ambiguity since one word can take several possible parts of speech.
Another problem is words or parts of speech which are complex or unspoken. Both of
these problems are not rare in natural languages.

Certain languages are called low-resourced for a few reasons. One of them is that
they are actually low-density languages, meaning they are not spoken by a large number of
people in the world. Examples include Inuit or Sindhi. On the other hand, we have tech-
nologically low-resource languages. For example, until 2004 Hindi was considered to be a
low-resource language since it was really difficult to find Hindi corpora anywhere online.
Another example is Urdu, which falls under the same category although its resourcefulness
increased over the last few years.

Natural-language processing (NLP) is a field of computer science, artificial intelligence
concerned with the interactions between computers and human (natural) languages. Chal-
lenges in NLP frequently involve speech recognition, natural-language understanding, and
natural-language generation, although the most famous problem is POS tagging.

There are different approaches to this problem, but when the previous work is consid-
ered, it all comes down to cross-lingual projections and machine learning. Most of the
previous work done in NLP has been limited to training and evaluating on no more than a
dozen languages, typically all from the major Indo-European languages (with emphasis on
Romance and Germanic families).

In contrast, this paper presents an effort to learn POS taggers for truly low-resource
languages, with minimum assumptions about the available language resources. Most low-
resource languages are non-Indo-European, and typically, their typological and geographic
neighbors have sparse resources as well. Our experiments showed that word dictionar-
ies allow us to create very powerful semi-supervised learning technique. A bidirectional
long short-term memory (bi-LSTM) network was created. Bi-LSTMs have recently proven
successful for various NLP sequence modeling tasks, although little is known about their
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reliance to input representations, target languages, data set size, and label noise. We ad-
dress these issues and evaluate bi-LSTMs with word and character embeddings for POS
tagging.

The obtained results were competitive with approaches that assume the availability of
larger volumes of tag dictionaries and also, representation of parallel corpora (cross-lingual
methods) or a perfectly tokenized monolingual corpora for our target languages.

I would like to thank professor Željko Agić, my other mentor, for making this paper
possible. You are a true inspiration as a lecturer, a mentor, and a friend. Thank you for
everything you taught me, for presentations which encouraged me, and for dealing with
me during my internship. For this, and everything else, I will forever be grateful.



Chapter 1

Data

For the multilingual experiments, we used the data from the Universal Dependencies project
v1.2 (Nivre et al., 2015) (17 POS) with the canonical data splits which we converted to 12
POS using standard mappings which can be found at https://github.com/slavpetrov/
universal-pos-tags. If there was more than one treebank per language, we use the
treebank that has the canonical language name (e.g., Finnish instead of Finnish-FTB). We
consider all languages that have at least 60k tokens and are distributed with word forms
which resulted in 24 languages. For each language, four different files were provided: train
file, test file, dictionary file and dev file.
Each of files is either given or converted into following form:

• each line of a file is structured as ”word” < tab > ”tag” < \n >,

• all sentences are divided by the blank line.

Train file is the largest file used for the network training. We consider tags from train file as
unreliable and we focus on tags from the dictionary file which contains hand tagged words.
Dictionary tags are considered the most reliable for POS tagging. Test file is considered to
carry ”golden” tags, tags used to measure the accuracy of our neural network. Similarly to
test file, dev file is used for testing the network after each iteration. Due to accuracy form
testing dev file testing, we can easily spot over or underfitting of a network.

Dictionary files
To improve comparison with the related work the dictionaries for nine languages were
changed: Danish, German, English Greek, English, Spanish, Italian, Dutch, Portuguese
and Swedish. For them, Wiktionary, a freely available, high coverage and constantly grow-
ing dictionary for a large number of languages, was used. The Wiktionary dictionaries
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CHAPTER 1. DATA 4

with corresponding dictionary mappings are available at: https://code.google.com/
archive/p/wikily-supervised-pos-tagger/downloads/.

1.1 Word classes
As already mentioned, focus was on tagging words into 12 word classes which are given
and explained on a Figure 1.1. Some of word classes are considered as open, which means
that new words can be added to the class as the need arises. For instance, the class of nouns
is potentially infinite, since it is continually being expanded as new scientific discoveries
are made, new products are developed, and new ideas are explored.
Examples: Internet, website, URL, CD-ROM, email, newsgroup, bitmap, modem, multi-
media. [11]. Similary, new verbs have been introduced, i.e., download, upload, reboot,
right-click, double-click, which makes verbs also an open class. The adjective and adverb
classes can also be expanded by the addition of new words, though less prolifically.
On the other hand, new prepositions, determiners, or conjunctions are never invented.
Hence, they are called closed word classes and are made of finite sets of words which
are never expanded. The subclass of pronouns, within the open noun class, is also closed.
Words in an open class are known as open-class items and words in a closed class are
known as closed-class items.

Figure 1.1: List of 12 universal tags with the examples for English. The division of word
classes is given in the last column.

 https://code.google.com/archive/p/wikily-supervised-pos-tagger/downloads/
 https://code.google.com/archive/p/wikily-supervised-pos-tagger/downloads/
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1.2 Language Families
According to Ethnologue, there are 7 472 known languages out of which 7 099 of them are
living human languages distributed in 141 different language families. A ”living language”
is one used as the primary form of communication of a group of people. There are also
many dead and extinct languages, as well as some that are still insufficiently studied to be
classified or are even unknown outside their respective speech communities.

The most numerous is the family of Niger-Congo languages counting 1 524 languages
and approximately 437 000 000 speakers, although the most ”spoken” family is the Sino-
Tibetan languages with 1 268 000 000 speakers. A full list can be found in [12].

Figure 1.2: Map of language families that show the difference between the languages and
how they are spread across the world. Since we are focusing on seven language fami-
lies and two isolated languages, the legend is intentionally left out. Colors used in all
graphs correspond to this figure, meaning: green color represents Slavic, red Germanic,
blue Romance, brown Hellenic, orange Semitic, grey Uralic, yellow Isolated languages,
and turquoise Indo-Iranian languages.

As already mentioned, our data has 24 different languages which are members of seven
different families (Slavic, Germanic, Romance, Hellenic, Semitic, Uralic and Indo-Iranian)
and two isolated languages (Basque and Irish). The full list of our languages and their
belonging families is presented in the Table 1.1.
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Language Families
Language Short Family Language Short Family
Bulgarian bg Slavic Czech cs Slavic
Danish da Germanic German de Germanic
Greek el Hellenic English en Germanic
Spanish es Romance Basque eu Language isolate
Persian fa Indo-Iranian Finnish fi Uralic
French fr Romance Irish ga Language isolate
Ancient Greek grc Hellenic Hebrew he Semitic
Hindi hi Indo-Iranian Croatian hr Slavic
Hungarian hu Uralic Italian it Romance
Latin la Romance Dutch nl Germanic
Polish pl Slavic Portuguese pt Romance
Romanian ro Romance Swedish sv Germanic

Table 1.1: The table of our data languages and their belonging families.
Short columns in Table 1.1 represent names of languages codes by a universal ISO 639-2
Code standard [7].

1.3 Data features
There are two kinds of coverage of interest: type coverage and token coverage. We
define type coverage as the proportion of word types in the corpus that simply appear in
the dictionary. Token coverage is defined similarly as the portion of all word tokens in the
corpus that appear in the dictionary.
These statistics reflect two aspects of the usefulness of a dictionary that affect learning
in different ways: token coverage increases the density of a supervised signal while type
coverage increases the diversity of word shape supervision. At one extreme, with 100%
word and token coverage, we recover the POS tag disambiguation scenario and, on the
other extreme of 0% coverage, we recover the unsupervised POS induction scenario.
Type and token coverages for each of the languages we are using for evaluation which
is shown in 1.3. We should accentuate that we used Wiktionary dictionaries for Danish,
German, English Greek, English, Spanish Italian, Portuguese and Swedish and Universal
Dependencies project v1.2 dictionaries for other languages. On the Figure 1.3 we can see
that even for languages whose type coverage is relatively low, such as Greek (el), the token
level coverage is still quite good (more than half of the tokens are covered). The reason for
this is likely the bias of the contributors towards more frequent words.
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(a) Type coverage diagram. (b) Token coverage diagram.

Figure 1.3: On (a) and (b) diagrams we can see percentages of type and token coverage
for each of our 24 languages. We can notice that the Germanic languages have the highest
(both) type and token coverage out of all families. The languages are sorted according to
the belonging families and colored respectfully by 1.2.



Chapter 2

Method

2.1 Feed Forward NN
In this chapter, the construction of our network will be described. In order to do so, some
simpler models of neural networks must be defined. This will enable us to build our final
bi-LSTM neural network. Let’s start with the simplest neuron network called perceptron.

Definition 1. Let’s assume that din, dout ∈ N are fixed numbers, W ∈ Rdin×dout , b ∈ Rdout .
A function NNPerceptron : Rdin −→ Rdout defined with:

NNPerceptron(x) = xW + b,

is called perceptron.
Commonly, vector x is called an input vector, vector y is called an output vector, the

matrix W is called a weight matrix, and a vector b is called a bias term of a neural network.
The network can be divided into layers, meaning an input vector creates so-called input

layer and an output vector creates output layer. All other layers are considered to be
hidden.

Going beyond linear functions, a non-linear hidden layer must be introduced. The first
step is adding a new hidden layer, resulting in multi-layer perceptron with one hidden layer
(the simplest non-linear neural network).

Definition 2. Let’s assume din, dout, d1 ∈ N are fixed numbers, W1 ∈ R
din×d1 , b1 ∈

Rd1 ,W2 ∈ R
d1×dout , b2 ∈ R

dout , g : Rd1 −→ Rd1 is non-linear function. A function NNMLP1 :
Rdin −→ Rdout defined with:

NNMLP1(x) = g(xW1 + b1)W2 + b2,

is called multi-layer perceptron with one hidden-layer (MLP1).
Same as before, vector x is called an input vector and vector y is called an output

vector. W1 and b1 are a weight matrix and a bias term for the first linear transformation of
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the input, and W2 and b2 are a weight matrix and bias term for the second linear function.
The function g is applied element-wise and is called an activation function. The non-
linear activation function g has a crucial role in the network’s ability to represent complex
functions. Without the non-linearity in g, the neural network can only represent linear
transformations of the input. More detailed description of activation functions can be found
in [4] (sigmoid function, th, hard-th, and ReLU must be mentioned as the most commonly
used activation functions).

Next step in building networks would be adding a new layer of linear-transformations
and non-linearities, resulting in an MLP with two hidden-layers.

Definition 3. Let’s assume din, dout, d1, d2 ∈ N are fixed numbers, W1 ∈ R
din×d1 , b1 ∈

Rd1 ,W2 ∈ R
d1×d2 , b2 ∈ R

d2 ,W3 ∈ R
d2×dout , b3 ∈ R

dout , g1 : Rd1 −→ Rd1 , g2 : Rd2 −→ Rd2 . A
function NNMLP2 : Rdin −→ Rdout defined with:

NNMLP2(x) = (g2(g1(xW1 + b1)W2 + b2))W3 + b3

is called multi-layer perceptron with two hidden-layers (MLP2).
A graphical representation of MLP2 can be seen on Figure 2.1.

Figure 2.1: Simple sketch of a feed-forward neural network with two hidden layers. Each
arrow carries a weight, reflecting its importance (not shown). Weights are forming weight
matrices.

Obviously, we can continue building multi-layer perceptron in order to get more and
more hidden layers. Networks with multiple hidden layers are called deep networks.
Deeper networks are usually defined by using intermediary variables for each layer. For
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example, in MLP2 one can introduce variables h1 and h2 as:

NNMLP2(x) = y,
y = h2W3 + b3,

h2 = g2(h1W2 + b2),
h1 = g1(xW1 + b1),

where x, y, b1, b2, b3,W1,W2,W3, g1,and g2 are same as in definition 3.
Naturally follows the definition of a multi-layer perceptron with an arbitrary number of
hidden layers.

Definition 4. Let’s assume m, din, dout, d1, ..., dm ∈ N are fixed numbers, W1 ∈ R
din×d1 ,

Wm+1 ∈ R
dm×dout ,Wi ∈ R

di×d j , where j = i+1, gi : Rdi −→ Rdi , bi ∈ R
di ,∀i ∈ {1, ...,m}, bm+1 ∈

Rdout . A function NNMLPm : Rdin −→ Rdout defined with:

NNMLPm(x) = y,
y = hmWm+1 + bm+1

hi = gi(hi−1Wi + bi),∀i ∈ {2, ...,m}
h1 = g1(xW1 + b1),

is called a multi-layer perceptron with m hidden-layers (MLPm).

Neural networks output interpretation
Networks with dout = k > 1 can be used for k-class classification, by associating each
dimension with a class, and looking for the dimension with maximal value. Similarly, if
the output vector entries are positive and sum to one, the output can be interpreted as a
distribution over class assignments.

In our tagging problem, a 12-class classification was used (k = 12 since there are 12
classes of possible word tags). Meaning, each class of tags was associated with one dimen-
sion. The network was designed to give output vector entries as both positive and sum to
one, which meant we could interpret output as a distribution over tags.

2.2 Recurrent Neural Network
To go from multi-layer networks to recurrent networks, we need to take advantage of shar-
ing parameters across different parts of a model. Parameter sharing makes it possible to
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extend and apply the model to examples of different lengths and generalize across them.
That brings us to the introduction of so-called recurrent neural networks (RNN). Unlike
multi-layered perceptron which computes over fixed size input vectors, RNN computes
over arbitrarily sized inputs of fixed-size vectors. Meaning, instead of input vector x ∈ Rdin

RNN takes a sequence of vectors x1:n = (x1, ..., xn), where xi ∈ R
din ,∀i ∈ {1, ..., n}, while

preserving a same type of output (a vector y ∈ Rdout . With xi: j a sequence of vectors
(xi, ..., x j) will be denoted in further text.

Definition 5. Let’s assume that n, din, dout are fixed numbers, x1:n ∈ R
n×din ,W1 ∈

Rdin×dout ,U,W2 ∈ R
dout×dout , b1, b2 ∈ R

dout , g1, g2 : Rdout −→ Rdout . A function RNN :
Rn×din −→ Rdout , defined with RNN(x1:n) = yn, where yn is defined recursively for i ∈
{1, ..., n} with:

yi = g2(hiW2 + b2),
hi = g1(xiW1 + hi−1U + b1),

we call a reccurent neural network.
Definition 6. Let’s assume that n, din, dout ∈ N are given. We define a n-sequence

of RNN as a function RNN∗ : Rn×din −→ Rn×dout with RNN∗(x1:n) = y1:n, where yi =

RNN(x1:i),∀i ∈ {1, ..., n}.
Each layer of the RNN representation can be thought of as the state of the computer’s

memory after executing a set of instructions in parallel. Networks with greater depth can
execute more instructions in sequence. Sequential instructions offer great power because
later instructions can refer back to the results of earlier instructions. This is why we are in-
venting a state signal between each layer of an RNN. For each vector xi in vector sequence
x1:n we invent a state signal si ∈ R, creating a set of states S = {s1, ..., sn}. With this, RNNs
are often denoted a tuple RNN = (R,O) where R stand for a RNN computation given by
definition 5. and O is a function O : S −→ S ′ ⊂ P(S ), defined with O(si) = {s1, ..., si−1}.
On Figure 2.2 the graphical representation can be seen.

Figure 2.2: Graphical representation of an RNN.

For a finite sized input sequence (i.e. all of our input sequences) the recursion can
be unrolled, resulting in the structure in Figure 2.3. Different initializations of R and O
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Figure 2.3: Graphical representation of an RNN (unrolled).

will result in different network structures, and will exhibit different properties in terms of
their running times and their ability to be trained effectively using gradient-based methods.
Thus, sn and yn can be thought of as encoding the entire input sequence. The network trains
parameters of R and O to be set such that the state conveys useful information for the task
we are trying to solve.

2.3 Bidirectional RNNs
A useful elaboration of an RNN is a bidirectional-RNN (bi-RNN) [Graves, 2008]. Consider
the task of sequence tagging over a sentence (x1, ..., xn). Unlike RNN which allows us to
compute a function of the ith word xi based on the past words (x1:i−1), bi-RNN allows us to
use both past and the following words (xi+1:n) for computation.

Let’s suppose RNNs are given, bi − RNN f , bi − RNNb with their outputs vectors y f
n

and yb
n. With bi − RNN we denote a concatenation of vectors y f

n and yb
n, marked with

yn = [y f
n , yb

n], and we are introducing a notation:

bi − RNN = [bi − RNN f , bi − RNNb].

If we consider an input sequence x1:n, the bi-RNN clearly maintains two separate states, s f
i

and sb
i for each input position i ∈ {1, ..., n}. The forward state s f

i is based on x1, x2, ..., xi,
while the backward state sb

i is based on xn, xn−1, ..., xi. The forward and backward states are
generated by two different RNNs (bi−RNN f and bi−RNNb). The first bi−RNN f = (R f ,O f )
is fed the input sequence x1:n, while bi − RNNb = (Rb,Ob) is fed the input sequence in
reverse. The state representation si is then composed of both the forward and backward
states. Meaning, the output at position i is based on the concatenation of the two output
vectors

yi = [y f
i , y

b
i ] = [O f (s f

i ),Ob(sb
i )].
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In other words, the bi-RNN’s encoding yi of the ith word in a sequence is the concatenation
of two RNNs, one reading the sequence from the beginning, and the other reading it from
the end. We can calculate a bi − RNN(x1:n, i) as the output vector corresponding to the ith
sequence position of bi − RNN:

bi − RNN(x1:n, i) = yi = [RNN f (x1:i),RNNb(xn:i)]

The vector yi can then be used directly for prediction or fed as part of the input to a
more complex network. While the two RNNs are run independently of each other, the
error gradients at position i will flow both forward and backward through the two RNNs.
Feeding the vector yi through an MLP prior to prediction will further mix the forward and
backward signals. Visual representation of the bi-RNN architecture is given in Figure 2.4.

Figure 2.4: Computing the bi-RNN representation of the word jumped in the sentence Juli
loves cats..

As in RNN, with bi − RNN∗(x1:n) we denote a the sequence of vectors y1:n:

bi − RNN∗(x1:n) = yi:n = [bi − RNN(x1:n, 1), ..., bi − RNN(x1:n, n)]

The n output vectors yi:n can be efficiently computed in linear time by first running the
forward and backward RNNs, and then concatenating the relevant outputs. This architec-
ture is depicted in Figure 2.5.

The bi-RNN is very effective for tagging tasks, in which each input vector corresponds
to one output vector.
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Figure 2.5: Computing the bi − RNN∗ for the sentence Juli loves cats. .

2.4 Multi-Layer RNNs
RNNs can be stacked in layers, forming a grid [Hihi and Bengio, 1996]. Consider k RNNs:
RNN1, ...,RNNk, where the jth RNN has states s j

1:n and outputs y j
1:n. The input for the first

RNN are x1:n, while the input of the jth RNN ( j ≥ 2) are the outputs of the RNN below it,
y j−1

1:n . The output of the entire formation is the output of the last RNN, yk
1:n. Such layered

architectures are called deep RNNs. A visual representation of a 3-layer RNN is given in
Figure 2.6. Let us denote that bi-RNNs can be stacked in a similar way, which has been
done in our tagger.

Figure 2.6: A 3-layer RNN architecture for 4-dimensional input vector. This architecture
can be applied on our example Juli loves cats. for character embedding layer.
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2.5 Long Term Dependencies Problem
The idea that RNNs might be able to connect previous information to the present task is
extremely appealing. Sometimes, we only need to look at recent information to perform
the present task. For example, consider similar language model to our own: a model that is
trying to predict the last word based on the previous words in the context. In simple cases,
i.e., The grass is green, we do not need any further context. It is obvious that the last word
would have been green. In such cases, where the gap between the relevant information and
the place that it is needed is relatively small, RNNs can learn to use the past information.
But if we consider an example I grew up in Italy, which is the reason why I speak fluent
Italian., in which we are trying to predict a word Italian. Recent information suggests that
the next word is probably the name of a language, but we need the context of Italy (from
further back) to be able to narrow down on exactly which language. From this example, we
can see that it is possible for the gap between the relevant information and the point where
it is needed to become very large. Unfortunately, as a gap grows, RNN becomes unable to
learn to connect the information. Thankfully, LSTMs solve this problem.

2.6 Gated architectures
Considering RNN as a general purpose computing device, where the state si represents a
finite memory results in following: every time we apply the function R it reads in an input
xi+1, reads in the current memory si, operates on them (in some way), and writes the result
into memory, resulting in a new memory state si+1. Viewed this way, an apparent problem
with the simple RNN architectures because the memory access is not controlled. At each
step of the computation, the entire memory state is read, and the entire memory state is
written.

The memory access can be controlled by gates. A simple example of a gate is a
binary vector g ∈ {0, 1}n, n ∈ N. Such vector can act as a gate for controlling access
to n-dimensional vectors, using the element-wise product multiplication of two vectors:
x = u � v where x[i] = u[i] · v[i] operation x � g. Let us denote a memory s ∈ Rd, an input
vector x ∈ Rd, and a gate g ∈ {0, 1}d. The computation s′ ←− g � x + (1 − g) � s reads
the entries in x that correspond to the 1 values in g, and writes them to the new memory s′.
Then, locations that were not read to are copied from the memory s to the new memory s′

through the use of the gate (1 − g).
The gating mechanism described above can serve as a building block in our RNN: gate vec-
tors can be used to control access to the memory state si. However, we are still missing two
important (and related) components: the gates should not be static but be controlled by the
current memory state and the input, and their behavior should be learned. A solution to the
above problem is called a differentiable gating mechanism. Changing requirements for
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gates and allowing arbitrary real numbers, meaning g′ ∈ Rn, which are then pass through
a sigmoid function σ(g′). This bounds the value in the range (0, 1), with most values near
the borders. When using the gate σ(g′) � x, indices in x corresponding to near-one values
in σ(g′) are allowed to pass, while those corresponding to near-zero values are blocked.
The gate values can then be conditioned on the input and the current memory, and trained
jointly as a part of a network.

Long Short-Term Memory neural networks
The Long Short-Term Memory (LSTM) architecture [Hochreiter and Schmidhuber, 1997]
was designed to solve the vanishing gradients problem while using the gating mechanism.
The LSTM architecture explicitly splits the state vector si into two halves, where one half
is treated as memory cells and the other as working memory. The memory cells are de-
signed to preserve the memory, and also the error gradients, across time, and are controlled
through differentiable gating components. At each input state, a gate is used to decide how
much of the new input should be written to the memory cell, and how much of the current
content in the memory cell should be forgotten.

Definition 9. Let’s suppose n, din, dout ∈ N are fixed, x1:n ∈ R
n×din , S = {s0, s1, ..., sn} ⊂

R, gq, gσ, g f , gs : Rdout −→ Rdout , Uq,Uσ,U f ,U s ∈ Rdin×dout ,Wq, Wσ,W f ,W s ∈ Rdout×dout .
Neural network with a LSTM architecture is a function NNLS T M : Rn×din×S −→ Rdout×S ,
defined with NNLS T M(x1:n, s0) = (yn, sn), where yn = hn and hn and si are defined recursively
for i ∈ 1, ..., n:

hi = th(si)qi,

qi = gq(bq
i + xiU

q
i + hi−1Wq),

si = fisi−1 + σigs(bs
i + xiU s + hi−1W s),

σi = gσ(bσi + xiUσ + hi−1Wσ),

fi = g f (b f
i + xiU f + hi−1W f ).

The state at time j is composed of two vectors, s j and h j, where s j is the state signal
representing the memory component and h j is the hidden state component. Function f is
called forget gate which controls what to forget, function σ is called input gate and is
controlling the input and function q is called output gate and in controlling output. The
gate values are computed based on linear combinations of the current input x j and the
previous state h j−1, passed through a sigmoid activation function.



CHAPTER 2. METHOD 17

2.7 Tagging with bi-LSTMs
Our model for POS tagging refers to two related bi-LSTM architectures which we call the
context bi-RNN (bi−RNNctx) and the sequence bi-RNN (bi−RNNseq). In a bi−RNNseq,
the input is a sequence of vectors x1:n and the output is a concatenation of a forward and
backward RNN each reading the sequence in a different direction:

y = bi − RNNseq(x1:n) = [RNN f (x1:n),RNNb(xn:1)]

In a bi − RNNctx, we get an additional input i indicating a sequence position, and the
resulting vectors yi result from concatenating the RNN encodings up to i:

yi = bi − RNNctx(x1:n, i) = RNN f (x1:i) ◦ RNNb(xi:1)

Thus, the state vector yi in our bi-RNN encodes an information at position i and its en-
tire sequential context. Another view of the bi − RNNctx is of taking a sequence x1:n and
returning the corresponding sequence of state vectors y1:n.

Our basic bi-LSTM tagging model is a bi−LS T Mctx that takes word embedding vector
w as input. We incorporate subtoken information using a hierarchical bi-LSTM architecture
(Ling et al., 2015; Ballesteros et al., 2015). The subtoken level computed (character vectors
c) embeddings of words using a bi−LS T Mseq at the lower level. This representation is then
concatenated with the (learned) word embeddings vector w which forms the input to the
bi − LS T Mctx at the next layer. This model, illustrated in 2.7 (lower part in left figure), is
inspired by Ballesteros et al. (2015). Models in which only subtoken information was kept
were also being tested. In our novel model, Figure 2.7 left, we train the bi-LSTM tagger to
predict both the tags of the sequence, as well as a label that represents the log frequency of
the token as estimated from the training data.
Our combined cross-entropy loss is now:

L(ŷt, yt) + L(ŷa, ya), (2.1)

where t stands for a POS tag and a is the log frequency label. We calculated the log
frequency a as following:

a = int(log( f reqtrain f ile(w)) (2.2)

Combining this log frequency objective with the tagging task can be seen as an instance of
multi-task learning in which the labels are predicted jointly. The idea behind this model
is to make the representation predictive for frequency, which encourages the model to not
share representations between common and rare words, thus benefiting the handling of rare
tokens.
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Figure 2.7: Right: bi-LSTM, illustrated with character and word embeddings. Left: bi −
LS T M f req, a multi-task bi-LSTM that predicts at every time step the tag and the frequency
class for the token.
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Experiments

All bi-LSTM models were implemented in CNN/pycnn neural network library. For all
models we use the same hyperparameters, which were set in English dev, i.e., SGD training
with cross-entropy loss, no mini-batches, 20 epochs, default learning rate (0.1), 128 dimen-
sions for word embeddings, 100 for character and byte embeddings, 100 hidden states and
Gaussian noise with σ = 0.2. Embeddings are not initialized with pre-trained embeddings,
except when reported otherwise. To simplify, our LSTMs was able to calculate run the data
with a possibility of:

• including or excluding character embedding,

• including or excluding word embedding,

• including or excluding auxiliary task,

which led up to 3 × 23 = 24 combinations for each of 24 languages. We should mention
that each experiment was done three times, hence all the results given were a mean out of
them.

Character embedding
In a character embedding model, the vector for a word is constructed from the character
n grams that composed it. Since character n grams are shared across words, these models
do better than word embedding models for out of vocabulary words - they can generate
an embedding for an OOV word. Word embedding models (i.e. word2vec) cannot since
they treat a word atomically. Character embedding models tend to do better than word
embedding models, for words that occur infrequently, since the character n grams that are
shared across words can still learn good embedding.

19
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Word embedding
A popular notion in NLP states ”A word is characterized by the company it keeps!” (Firth).
This is exactly what the word embedding means, or more precisely said: word embedding
is the collective name for a set of language modeling and feature learning techniques in
NLP where words or phrases from the vocabulary are mapped to vectors of real numbers.
Conceptually it involves a mathematical embedding from a space with one dimension per
word to a continuous vector space with much lower dimension. Methods to generate this
mapping include neural networks, dimensionality reduction on the word co-occurrence
matrix, probabilistic models, and explicit representation in terms of the context in which
words appear. Related studies have shown that when used as the underlying input, word
embeddings boost the neural network performance.

In linguistics, word embeddings aim to quantify and categorize semantic similarities
between linguistic items based on their distributional properties in large samples of lan-
guage data. We should mention the most famous word embeddings tool, word2vec, which
is basically a group of related models used to produce word embeddings. These models
are shallow, two-layer neural networks that are trained to reconstruct linguistic contexts of
words. Word2vec was designed by Mikolov in Google (2013).
We must emphasize that when used, word embeddings were off-the-shelf Polyglot embed-
dings (Al-Rfou et al.,2013) which can be found at www.let.rug.nl/bplank/bilty/
embeds.tar.gz.

Auxiliary task
In Machine Learning, we typically care about optimizing for a particular metric, whether
this is a score on a certain benchmark. In order to do so, we generally train a single
model or an ensemble of models to perform our desired task. We then fine-tune and tweak
these models until their performance no longer increases. While we can generally achieve
acceptable performance this way, by being laser-focused on our single task, we ignore in-
formation that might help us do even better on the metric we care about. Specifically, this
information comes from the training signals of related tasks. By sharing representations
between related tasks, we can enable our model to generalize better on our original task.
This approach is called Multi-Task Learning (MTL). MLT learning has been used suc-
cessfully across all applications of machine learning, from natural language processing and
speech recognition to computer vision and drug discovery. MTL comes in many guises:
joint learning, learning to learn, and learning with auxiliary tasks are only some names that
have been used to refer to it. We will be using the last method. As mentioned in 2.7 our
bi-LSTM was designed as a learning with the auxiliary task. We at every time step predict
the tag and the frequency class for the token using hard parameter sharing, which resulted
in calculating loss as described in (2.1).

www.let.rug.nl/bplank/bilty/embeds.tar.gz
www.let.rug.nl/bplank/bilty/embeds.tar.gz
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Figure 3.1: We used model of a hard parameter sharing for our MLT part (which greatly
reduces the risk of overfitting).

For each language, the auxiliary task file was constructed. As all other files, it was
structured as ”word” < tab > ” f requency class” < \n >, where the frequency class was
calculated using (2.2).

3.1 Tag handling
As we focused on low-resource languages using primarily dictionaries as our tool we
had to create an algorithm for undeclared words (words not tagged by the dictionary or
wrongly tagged words). No restrictions were made on words outside the dictionary, hence
we needed to handle three situations:

1. a word is in a dictionary with the corresponding tag

2. a word is in a dictionary but the corresponding tag is not allowed by the dictionary

3. a word is not in a dictionary
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The last two cases were our main problem, so we designed two different solutions:

1. Algorithm Random Tag

2. Algorithm Blank Tag

As illustrated in the Figure 3.2, this was done during the so-called preparation phase, mean-
ing we recreated our train data by assigning new tags provided by our two algorithms.

Figure 3.2: Sketch of a process for our example Juli loves cats.. Our tag assignment a part
of the preparation phase after which the data is used as an input for our bi-LSTM neural
network.

3.2 Algorithm Random Tag
First idea was to create an algorithm using a random tag assignment. This meant for each
word not correctly tagged we assign a random tag (out of 12 possible tags).
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for (word, tag) from train file do
if word in dictionary then

if tag as in dictionary then
pass;

end
else

assign word random tag;
end

end
else

assign word random tag;
end

end
Algorithm 1: Algorithm Random Tag

After reviewed results in several languages, our assumptions were confirmed: ”The
words belonging to the closed class are in most cases correctly tagged by the tagger”.
Hence, if we assume that words from the dictionary are correctly tagged, and the data is
big enough that the tagger can learn with the high accuracy to tag a word from the closed
class, the advantage should be given to tags from open class (while randomly assigning the
tags).
To simplify, the random tag was chosen with a probability distribution of 1/4 for open class
tags and minimum non-negative float number for the others.

3.3 The Blank Tag Algorithm
The second idea was to assign a new tag (blank tag, marked with O) instead of assigning a
random tag to undeclared words. This now meant there were 13 possible tags (instead of
initial 12). This is how the second algorithm was created:
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for (word, tag) from train file do
if word in dictionary then

if tag as in dictionary then
pass;

end
else

assign word O tag;
end

end
else

assign word O tag;
end

end
Algorithm 2: Algorithm Blank Tag

The input of the neural network is a whole sentence and the output is a sequence of
corresponding tags, which means that regardless the train data manipulations, the output
still has to contain only tags provided by the Figure 1.1. But how to choose these tags? For
each word in the sentence, our bi-LSTM gave us a list of 13 values whose sum adds up to
1, meaning they are probabilities that a word should have a corresponding tag. Now, we
simply take a tag with:

1. the best probability when it is not equal to the O tag

2. the second best probability when it is equal to the O tag

Selection of tags can be done in several ways out of which the softmax function is the most
commonly used. In our paper, both sotfmax function and approach using Viterbi algorithm
were used and results were compared.

Softmax function
Definition 10. Let’s suppose we k ∈ N is fixed. The softmax function, or normalized
exponential function, is a function so f tmax : Rk −→ [0, 1]k, defined with:

so f tmax(x) j =
ex j∑k
i=1 exi

, ∀ j = 1, ..., k.

In NLP, the output of the softmax function can be used to represent a categorical distri-
bution over classes of tags. If we set k to 13, we can interpret the probability distribution
over our 13 possible tags. The most likely tag can then be easily chosen as the maximum
element of the outcome of the softmax function. To recall, we need to calculate the most
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probable tag out of our initial 12 tags using the probability distribution over the 13 tags, so
the final tag is chosen to correspond to:

• the maximum of the probability distribution, if the maximum corresponds to one of
12 initial tags

• the second highest probability of the distribution, if the maximum corresponds to the
O tag

Viterbi algorithm
Viterbi algorithm is popularly used for finding the most likely sequence of hidden states —
called the Viterbi path - that results in a sequence of observed events. In many NLP prob-
lems, we would like to model pairs of sequences, and our part-of-speech tagging is one of
them. The tag sequence is the same length as the input sentence and therefore specifies a
single tag for each word in the sentence.

More thoroughly explained: Viterbi algorithm takes a sequence of arbitrary length
n ∈ N, x1:n = (x1, ..., xn), where xi ∈ W = {w1, ...,ws} and generates a path y1:n = (y1, ..., yn),
where yi ∈ {1, ..., k}n, k ∈ N. In our tagging problem, the sequence x1:n represents a se-
quence of words, a sentence. Our set W is simply a set of all words appearing in train
file hence s = |W |. For a sequence x1:n, Viterbi algorithm will generate a path y1:n where
yi ∈ {1, ..., k}n for k = 13 represents a sequence of tags.
Beside an input vector, the Viterbi algorithm takes in two matrices called transition and
emission matrices:

• a transition matrix A ∈ R13×13 stores the probabilities of one tag transiting to another,
meaning Ai, j is a probability that tagi is followed by tag j,

• an emission matrix B ∈ R13×12 stores the probabilities of from one tag emitting
another, meaning Bi, j is a probability that tagi is emitting by tag j.

Together with A and B, Viterbi algorithm takes in another matrix called initialization ma-
trix Π ∈ Rn×13.
During computation, two additional matrices T1,T2 ∈ R

13×n are constructed:

• each element T1[i, j] stores the probability of the most likely path so far X̂ = (x̂1, x̂2,
..., x̂ j), where x̂i = tag j,

• each element T2[i, j] stores x̂ j−1 of the most likely path so far X̂ = (x̂1, x̂2, ..., x̂ j),
where x̂i = tag j.
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Matrices T1 and T2 are initialized as zeros, and filled during computations as following:

• T1[i, j] = max
l

(T1[l, j − 1] · Al,i · Bi,x j)

• T2[i, j] = argmax
l

(T1[l, j − 1] · Al,i · Bi,x j)

Viterbi algorithm can be written with pseudo code:
Data: x, A, B, Π

Result: y
for i ∈ {1, ..., 13} do

T1[i, 1]←− ΠiBi,xi

T2[i, 1]←− 0
end
for i ∈ {1, ..., n} do

for j ∈ {1, ..., 13} do
T1[i, 1]←− max

l
(T1[l, j − 1] · Al,i · Bi,x j

T2[i, 1]←− argmax
l

(T1[l, j − 1] · Al,i · Bi,x j)

end
end
zn ←− argmax

l
(T1[l, n])

yn ←− tagzn

for i −→ n, n − 1, ..., 2 do
zi−1 ←− T2[zi, i]
yi−1 ←− tagzi−1

end
Algorithm 3: Viterbi algorithm

Our emission matrix was simply created from outputs of our bi-LSTM. To recall, for
each word in a sentence 13 probabilities are given as an output. Transition matrix was
created by counting pairs (tagi, tag j),∀i, j ∈ {1, ..., 13} in train file, and then divided by
sum of the row. 3.3 we can see the example of how the Viterbi algorithm works for POS
tagging.
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Figure 3.3: Graphical representation of Viterbi algorithm for POS tagging. If the input in
Viterbi algorithm is a sentence Juli loves cats. than the output should be NOUN VERB
NOUN . . Arrows represent transitions between states and as such they have weights equal
to transition probabilities.
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Results

Since our work was based on low-resource languages we needed a neural network which
would have an exponential dependency on the accuracy of network tagging and a coverage
of train file with the dictionary. We succeeded, and as can be seen on a Figure 4.1, we have
an exponential growth for all cases in each experiment. The dependency test was done by
creating five new dictionaries from Danish train file with coverages of 10, 25, 50, 75 and
100 %. These results were taken for the first version of the network, algorithm Random

Figure 4.1: Dependency between the accuracy of network tagging and a coverage of train
file with the dictionary for Danish.

28
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Tag (and without any additional rules). We should mention that with the improvements,
the growth rate of the curve increased.
Results will be given for each method in a separate table and compared later. The structure
of a bi-LSTM version can be given by a triple (w, a, c) ∈ {0, 1}3 where w stands for word
embeddings, a for the auxiliary task, and c for character embeddings. If were are using one
of the possibilities w, a, or c, its place will be marked with 1, and with 0 otherwise.
Since Polyglot word embeddings (see page 20) were not provided Greek, Ancient Greek,
Hungarian, Latin, and Romanian, we have not run tests for including them and as such
their results will be marked with 7 in the tables.
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4.1 Random Tag algorithm results
Algorithm Random Tag

ISO (0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1) (1, 0, 0) (1, 0, 1) (1, 1, 0) (1, 1, 1)
bg 53.81 41.05 53.50 61.73 53.46 56.66 47.07 61.88
cs 46.22 31.40 28.47 30.11 34.25 25.95 49.45 45.64
da 75.31 72.44 75.11 71.27 76.36 74.87 69.08 67.69
de 78.63 81.71 78.35 80.38 77.13 74.89 76.93 74.61
el 61.38 57.84 60.88 66.26 7 7 7 7

en 85.15 86.71 84.86 85.19 85.00 86.94 84.75 85.42
es 81.10 81.10 83.17 82.96 83.83 81.36 82.44 81.17
eu 32.20 21.68 23.28 27.43 46.59 42.79 47.21 21.69
fa 51.02 41.48 26.35 33.10 46.07 41.45 41.66 52.94
fi 36.70 33.45 57.24 36.82 57.55 38.22 62.89 62.40
fr 21.14 18.29 20.18 35.70 35.78 31.85 32.46 35.85
ga 49.42 31.93 21.14 22.07 49.31 48.48 45.29 45.85
grc 27.43 35.90 25.01 32.69 7 7 7 7

he 27.73 25.90 27.84 26.00 32.47 30.73 31.52 33.21
hi 14.69 38.33 10.52 9.60 18.06 38.74 13.86 15.47
hr 45.55 48.03 58.35 58.07 57.78 52.34 46.55 38.93
hu 45.03 45.77 49.48 41.36 7 7 7 7

it 81.08 81.77 81.47 80.67 81.75 80.99 81.22 84.74
la 25.93 24.28 39.10 39.01 7 7 7 7

nl 83.40 81.34 83.22 84.07 83.62 80.07 83.63 81.41
pl 35.20 28.89 35.22 35.27 48.79 28.97 29.59 24.10
pt 71.18 76.89 70.42 60.31 64.28 65.89 67.42 62.47
ro 62.78 74.06 59.88 69.96 7 7 7 7

sv 83.17 86.24 83.59 82.95 84.91 85.93 85.18 85.21

Table 4.1: The table of results for algorithm Random Tag.
From the Table 4.1 we can see there two configurations gave the best results:

1. configuration with only character embedding included

2. configuration with character embedding, auxiliary task and word embeddings in-
cluded

If we carefully look at the results, we can conclude that method is not really reliable since
the difference in results are big. Also, one has to notice that for train files that have low
dictionary coverage, the oscillations between a tagging accuracies for each run are big.
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Hence, we can say the lower the percentage of dictionary coverage of a training file, the
bigger the oscillations between results of each run. The biggest difference is definitely for
Finnish (29,44%).

4.2 Results of method Blank Tag

Method Blank Tag with Softmax
Method Blank Tag with Softmax

ISO (0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1) (1, 0, 0) (1, 0, 1) (1, 1, 0) (1, 1, 1)
bg 67.65 65.81 67.26 67.65 73.87 69.74 71.82 67.32
cs 47.13 49.33 42.13 46.67 52.05 63.26 67.01 68.92
da 78.12 79.85 77.35 78.75 80.69 82.08 80.86 81.63
de 80.56 85.24 80.79 83.26 83.43 85.31 83.26 85.57
el 70.23 72.14 71.71 72.96 7 7 7 7

en 85.47 87.47 86.07 86.98 87.07 88.29 87.30 88.11
es 85.87 87.35 85.95 87.30 87.27 87.14 86.76 87.50
eu 38.61 52.21 40.37 50.93 52.41 39.92 54.75 45.84
fa 51.22 52.94 50.25 52.39 57.38 61.00 54.44 59.63
fi 59.89 50.71 58.70 49.21 58.67 52.65 53.42 52.90
fr 39.70 42.47 40.31 42.57 43.33 41.99 44.38 42.41
ga 50.33 35.98 50.41 49.41 59.59 51.45 60.53 50.85
grc 37.02 37.10 36.85 36.96 7 7 7 7

he 31.66 39.12 40.96 39.78 42.81 43.52 45.61 45.74
hi 36.95 36.65 20.06 37.58 40.30 48.10 39.08 42.94
hr 60.89 64.79 59.41 55.56 61.79 61.14 58.12 59.92
hu 54.13 62.96 52.44 63.00 7 7 7 7

it 82.52 85.58 83.27 85.39 84.21 85.35 84.74 85.73
la 39.05 41.54 41.65 35.54 7 7 7 7

nl 85.21 88.67 86.04 89.66 86.62 85.80 88.89 88.75
pl 46.08 49.14 46.91 48.49 53.09 54.86 54.71 54.61
pt 71.69 79.94 73.57 79.78 77.44 79.31 74.39 78.37
ro 73.25 72.86 70.50 75.72 7 7 7 7

sv 85.68 87.73 85.56 88.37 87.26 88.73 87.27 88.02

Table 4.2: The table of results for Blank Tag Method with Softmax function.
From the table 4.2 we can see that the best configuration was different from the best con-
figuration of algorithm Random Tag. Configuration using word embeddings and character
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embeddings and without auxiliary task gave the best results. Almost all results were im-
proved (except for Finnish) and the the differences between results of each run have shorten
and stabilized (9.16% on average).

Method Blank Tag with Viterbi algorithm
Method Blank Tag with Viterbi

ISO (0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1) (1, 0, 0) (1, 0, 1) (1, 1, 0) (1, 1, 1)
bg 65.67 65.53 65.56 66.33 68.22 72.51 70.61 70.29
cs 48.01 50.43 48.55 42.80 58.37 61.91 68.16 68.83
da 76.09 76.88 76.62 77.79 79.49 78.93 79.56 81.61
de 80.33 85.74 80.73 87.04 85.27 87.41 84.47 88.29
el 75.94 77.46 75.33 77.87 7 7 7 7

en 85.53 87.29 84.43 86.45 87.91 87.43 87.47 87.67
es 83.16 83.70 82.82 85.00 84.98 85.60 85.91 86.78
eu 43.67 48.06 43.22 30.32 52.63 47.17 50.90 44.33
fa 52.56 52.41 51.23 44.40 56.42 59.14 59.11 56.21
fi 62.35 47.14 62.44 48.90 60.99 57.65 57.89 52.38
fr 39.65 44.19 40.02 41.03 45.33 45.67 40.86 42.27
ga 50.02 49.31 49.96 48.96 57.43 60.11 58.61 58.51
grc 36.56 37.27 37.62 37.74 7 7 7 7

he 40.66 39.79 37.99 39.86 44.32 44.70 42.98 45.14
hi 38.46 39.48 23.78 39.35 38.50 42.27 44.50 43.93
hr 60.83 52.05 60.17 57.92 61.90 60.50 59.64 62.13
hu 57.17 63.70 50.77 61.15 7 7 7 7

it 81.93 83.99 80.93 84.48 84.14 86.05 83.14 86.85
la 40.46 24.55 40.91 44.78 7 7 7 7

nl 86.10 89.71 86.37 89.12 87.78 89.44 86.54 88.96
pl 47.08 48.07 47.52 49.10 56.06 53.48 54.72 55.34
pt 82.32 86.04 83.21 85.94 83.47 88.46 86.64 88.19
ro 73.64 75.01 69.32 76.20 7 7 7 7

sv 80.62 83.45 82.55 81.67 82.94 84.72 82.39 83.66

Table 4.3: The table of results for Blank Tag Method with Viterbi algorithm.
From the table 4.3 we see the best configuration was different from both best configurations
from algorithm Random Tag and the algorithm Blank Tag with softmax function. Configu-
ration (1, 1, 1) (word embeddings, character embeddings and auxiliary task included) gave
the best results. Although the most stable version (since the maximum difference between
results of each run has dropped on the 26.03%) it did not give the best results for all the
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languages.

4.3 Results per Families
The results for each family are displayed on the following figures. We calculated the max-
imum results for each configuration in both algorithms and calculated the average results
per each language family.

(a) Final results for Romance family. (b) Final results for Germanic family.

Figure 4.2: From (a) we can see that Spanish was the most and French the worst accurately
tagged from Romance family. Although the average accuracy is good (72-78%), the French
language really lowers it down. On (b) we can see Dutch is the best and Danish is the worst
tagged language from the Germanic family. The average accuracy is the highest out off all
families (83-87%).

From Figures 4.2, 4.3 and 4.4 we notice that for Germanic languages we have achieved
the highest accuracy compared to other families. The average accuracy exceeds 82% for
each configuration. The Dutch language reached our total best accuracy (89.71%) for the
algorithm Blank Tag using the Viterbi algorithm for a configuration (0, 0, 1), meaning
only word embeddings were included. The Romanian languages were also very accurately
tagged, except for French which had the maximum accuracy of only 44,38%. This is in-
teresting finding since the Romance languages are known to be the most used language
family in NLP researches. We looked at type coverage (9.5%) and token coverage (7.65%)
for French, and although are not as low as expected, we compared them to our finest tagged
language, Dutch which has a type coverage of 38.5% and token coverage of 69%. We also
looked at the dictionary data: French added up to 17 863 tokens while Dutch almost four
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(a) Final results for Slavic family. (b) Final results for Hellenic and Uralic families.

Figure 4.3: (a) Bulgarian was the best and Czech the worst accurately tagged from Slavic
family. Although the average accuracy remained good (54-63%), the differences between
the best and the worst accuracy were more than 25%((0,1,0) configuration). On (b) are
results for Hellenic and Uralic languages for the first four configurations (absence of Poly-
glot word embeddings). There are only two languages per each family, but we can see that
although Hellenic languages have big and Uralic languages have small accuracy difference,
the average accuracies are pretty similar for all of the configurations.

times as much. Training files were also checked and resulted in Dutch having the train file
two times bigger than French.
The lowest maximum accuracy of 37.74% was achieved for Ancient Greek language (Hel-
lenic family) which had type coverage of only 2.64% and token coverage of 9.43%.
We also established that if the token coverage was higher than type coverage, the results
were slightly lower than expected by Figure 4.1. This scenario usually appeared for lan-
guages with a small number of tokens in train files.
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(a) Final results for Semitic language and two iso-
lated language.

(b) Final results for Indo-Iranian family.

Figure 4.4: (a) are the final results for Hebrew (our only Semitic language) plus Basque and
Irish (both language isolate so the results are not comparable). (b) presents Indo-Iraninan
languages which have the lowest average accuracy out off all out off families (36-52%).

4.4 Related work
We compared our results to two different papers:

1. Supervised learning (Li, 2012.)

2. Unsupervised learning (Agić, 2015.)

Unsupervised and supervised methods use different setups, which greatly increased the
degrees of freedom of the model allowing it to capture more fine-grained distinctions.
The best-supervised system we are aware of that evaluate the Wiktionary is definitely (Li,
2012.). They presented four models (HMM, SHMM, HMM-ME, and SHMM-ME) for
supervised learning which lie upon first and second order Hidden Markov Models plus
feature-based max-ent emission. Agić also presented four models but for unsupervised
learning, only these models rely on projection methods for parallel corpora.
We note that the results are not directly comparable since using a diverse data, the com-
parison with the first research is more accurate since using the Wikitionary dictionaries for
our nine languages.
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ISO Random Blank Tag
& Softmax

Blank Tag
& VIterbi

Supervised Unsupervised

bg 61.88 73.87 72.51
cs 49.45 68.92 68.83
da 76.36 82.08 81.61 83.3 78.6
de 81.71 85.57 88.29 85.8 80.5
el 66.26 72.96 77.87 79.2 59.0
en 86.94 88.29 87.91 87.1 72.4
es 83.83 87.50 86.78 86.4 82.6
eu 47.21 54.75 52.63
fa 52.94 61.00 59.14
fi 62.89 59.89 62.44
fr 35.85 44.38 45.67
ga 49.42 60.53 60.11
grc 35.90 37.10 37.74
he 33.21 45.74 45.14
hi 38.74 48.10 44.50
hr 58.35 64.79 62.13 67.8
hu 49.48 63.00 63.70
it 84.74 85.73 86.85 86.5 76.5
la 39.10 41.65 44.78
nl 84.07 89.66 89.71 86.3
pl 48.79 54.86 56.06
pt 76.89 79.94 88.46 84.5 54.5
ro 74.06 75.72 76.20
sv 86.24 88.73 84.72 86.1 74.7

Table 4.4: Maximum results compared to supervised and unsupervised methods.
From Table 4.4 we see improved accuracy for almost all languages (except for Danish and
Greek). When comparing to the unsupervised learning, we improved accuracy for all ex-
cept for Croatian (although the results are not fully comparable due different data).
Out of all of our models, bi-LSTM using algorithm Blank Tag with softmax function and
(1, 0, 1) configuration had the most maximum scores out of 24 languages. It achieved
maximum accuracies for Danish, English, Persian, Hindi and Swedish. We should men-
tion, that this model includes word embeddings, which we not provided for Greek, Ancient
Greek, Hungarian, Latin and Romanian, so it was not tested for them.



Chapter 5

Conclusion

We extent an (Plank, 2016.) approach to learning POS taggers with simply using Wik-
tionary dictionaries. We designed multiple bi-LSTM models which perform well across
the 24 languages. The bi-LSTM tagger without lower-level bi-LSTM for subtokens falls
short, although outperforms the on four languages (Irish, Finnish, Ancient Greek and Pol-
ish), hence we conclude bi-LSTM model clearly benefits from character representations.
These stands for all (0, a,w), where a,w ∈ {0, 1} configurations. The combined configura-
tion with word and character embeddings included ((1, 0, 1) configurations) gave in average
the best representation, outperforming the baseline on all except for German and Italian.
By creating semi-supervised learning technique, we enabled ourselves to compare our re-
sults to both supervised and unsupervised methods. The methods outlined in the paper
are standard and easy to replicate, yet highly accurate and should serve as baselines for
more complex proposals. These encouraging results show that using free, collaborative
NLP resources can in fact produce results of the same level or better than using expensive
annotations for many languages. It would be very interesting and to arise across an even
larger number of language types, especially non-European languages.
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[1] Zeljko Agić, Dirk Hovy, Anders Søgaard. If all you have is a bit of the Bible: Learning
POS taggers for truly low-resource languages. Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics and the 7th International Joint
Conference on Natural Language Processing, pages 268-272, Beijing, China, 2015.
http://aclweb.org/anthology/P/P15/P15-2044.pdf

[2] D. Das, S. Petrov. Unsupervised Part{of{Speech Tagging with Bilingual
Graph-Based Projections

http://aclweb.org/anthology/P/P11/P11\OT1\textendash1061.pdf

[3] D. Garrette, J. Mielens, J. Baldridge. Real–World Semi–Supervised Learning of
POS–Taggers for Low–Resource Languages
http://aclweb.org/anthology/P/P13/P13\OT1\textendash1057.pdf

[4] Yoav Goldberg. Neural Network Methods in Natural Language Processing Bar-Ilan
University, Synthesis lectures on human language technologies, MorganClaypool pub-
lishers, 2017.

[5] Ian Goodfellow, Yoshua Bengio, Aaron Courville. Deep Learning MIT Press, 2016.

[6] Shen Li, Joao V. Graca, Ben Taskar. Wiki-ly Supervised Part-of-Speech Tagging. Pro-
ceedings of the 2012 Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning, pages 1389–1398, Jeju Is-
land, Korea, 2012.
http://aclweb.org/anthology/D/D12/D12-1127.pdf

[7] List of Names of Languages represented by ISO 639-2 standard codes.
https://www.loc.gov/standards/iso639-2/php/code_list.php

[8] Christopher Olah. Neural Networks, Types, and Functional Programming Blog post,
2015.
http://colah.github.io/posts/2015-09-NN-Types-FP/

38

http://aclweb.org/anthology/P/P15/P15-2044.pdf
http://aclweb.org/anthology/P/P11/P11\OT1\textendash 1061.pdf
http://aclweb.org/anthology/P/P13/P13\OT1\textendash 1057.pdf
http://aclweb.org/anthology/D/D12/D12-1127.pdf
https://www.loc.gov/standards/iso639-2/php/code_list.php
http://colah.github.io/posts/2015-09-NN-Types-FP/


[9] Christopher Olah. Understanding LSTM Networks Blog post, 2015.
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

[10] Barbara Plank, Anders Søgaard, Yoav Goldberg. Multilingual Part-of-Speech Tag-
ging with Bidirectional Long Short-Term Memory Models and Auxiliary Loss. Article,
Cornell University Library, 2016.
https://arxiv.org/abs/1604.05529

[11] University College London (UCL) online lectures on Internet grammar.
http://www.ucl.ac.uk/internet-grammar/wordclas/open.htm

[12] Wikipedia article on language families
https://en.wikipedia.org/wiki/List_of_language_families

[13] D. Yarowsky, G. Ngai. Inducing Multilingual POS Taggers and NP Bracketers via
Robust Projection across Aligned Corpora
http://aclweb.org/anthology/N/N01/N01\OT1\textendash1026.pdf

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://arxiv.org/abs/1604.05529
http://www.ucl.ac.uk/internet-grammar/wordclas/open.htm
https://en.wikipedia.org/wiki/List_of_language_families
http://aclweb.org/anthology/N/N01/N01\OT1\textendash 1026.pdf


Sažetak

U radu je iznesena i objašnjena jednostavna metoda za učenje morfološkog označivaća
za nisko resursne jezike oslanjajući se na rječnike tih jezika. Unatoč znatnom broju ne-
davno objavljenih radova koji oslovljavaju ovaj problem, bez nadzorne metode učenja
nisu rezultirale dovoljno velikom točnošću. Jedna od metoda (slabo) nadzirnog učenja
je korištenje paralelnog teksta izmedu jezika s bogatih i siromašnim resursima koji znatno
poboljšava točnost morfološkog označivanja. Medutim, paralelni tekstovi nisu uvijek dos-
tupni, a tehnike za upotrebu istog zahtijevaju mnogo složenih algoritamskih koraka. U radu
smo pokazali kako izgraditi jednostavan morfološki označivać pomoću bi-LSTM neuron-
skih mreža i slobodno dostupnog i prirodno rastućeg resursa, Wiktionary-a Za devet jezika
koje smo označili podatke u svrhu procjene dobivenih rezultata, postižemo točnost koja
u nekim slučajevima prelazi sve metode bez nadzora i metode s nadzorom koje koriste
skrivene markovljeve lance i paralene korpuse.



Summary

We present a simple method for learning part-of-speech taggers for low-resource languages
using dictionaries as are reference method. Despite significant recent work, purely unsu-
pervised techniques for part-of-speech (POS) tagging have not achieved useful accuracies
required by many language processing tasks. Use of parallel text between resource-rich
and resource-poor languages is one source of weak supervision that significantly improves
accuracy. However, parallel text is not always available and techniques for using it require
multiple complex algorithmic steps. We have shown that we can build POS-tagger by using
bi-LSTMs and a freely available and naturally growing resource, the Wiktionary. Across
nine languages for which we have labeled data to evaluate results, we achieve accuracy
that in some cases exceeds all unsupervised methods, supervised method which uses hid-
den Markov chaines and parallel text methods. We achieve highest accuracy reported for
several languages.
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