
Single-Kernel Ionomic Profiles Are Highly Heritable
Indicators of Genetic and Environmental Influences on
Elemental Accumulation in Maize Grain (Zea mays)
Ivan R. Baxter1*, Gregory Ziegler1, Brett Lahner2, Michael V. Mickelbart2, Rachel Foley2, John Danku3,

Paul Armstrong4, David E. Salt3, Owen A. Hoekenga5*

1 United States Department of Agriculture, Agricultural Research Service, Plant Genetics Research Unit, Donald Danforth Plant Science Center, St. Louis, Missouri, United

States of America, 2 Purdue University, Department of Horticulture and Landscape Architecture, West Lafayette, Indiana, United States of America, 3 University of

Aberdeen, Institute of Biological and Environmental Science, Aberdeen, United Kingdom, 4 United States Department of Agriculture, Agricultural Research Service,

Engineering and Wind Erosion Research Unit, Manhattan, Kansas, United States of America, 5 United States Department of Agriculture, Agricultural Research Service, RW

Holley Center for Agriculture and Health, Ithaca, New York, United States of America

Abstract

The ionome, or elemental profile, of a maize kernel can be viewed in at least two distinct ways. First, the collection of
elements within the kernel are food and feed for people and animals. Second, the ionome of the kernel represents a
developmental end point that can summarize the life history of a plant, combining genetic programs and environmental
interactions. We assert that single-kernel-based phenotyping of the ionome is an effective method of analysis, as it
represents a reasonable compromise between precision, efficiency, and power. Here, we evaluate potential pitfalls of this
sampling strategy using several field-grown maize sample sets. We demonstrate that there is enough genetically
determined diversity in accumulation of many of the elements assayed to overcome potential artifacts. Further, we
demonstrate that environmental signals are detectable through their influence on the kernel ionome. We conclude that
using single kernels as the sampling unit is a valid approach for understanding genetic and environmental effects on the
maize kernel ionome.
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Introduction

Increasing agricultural sustainability requires improvements in

nutrient use efficiency while decreasing fertilizer inputs. These

requirements exist as the majority of arable soils have limitations

associated with them [1]. Only 16% of crop lands are ‘‘without

constraint,’’ and most of these constraints are related to elements

found in inadequate or excessive amounts [1]. The range of soil

elemental concentrations optimal for productive growth of crops is

much smaller than that of the wild plants they may have displaced.

This is likely due to human selection of crop plants for yield under

optimal agricultural conditions and not for adaptive mineral

nutrient efficiency on poor soil. Non-optimal concentrations of

many elements limit the productivity of crops or necessitate

significant inputs to maintain productivity. Major elemental

limitations include excessive Na [2]; insufficient N [3], P [4],

and K [5]; acid soil syndrome, which causes Al, Mn, and Fe

toxicity and Mo, Ca, and P deficiency [6]; and Fe deficiency in

alkaline soils [7]. Due to low soil fertility and the effects of poverty

(e.g., inability to buy fertilizer), crop yields in most of Africa are

less than one-fifth of U.S. yields [8]. In order to meet future food

needs, we will need to increase yields while increasing the

sustainability of agricultural systems in both developed and

developing countries. In order to develop crops that can grow in

diverse soils with less fertilizer, we require a deeper understanding

of the genes that allow plants to adapt to different soil

environments [9].

The elemental composition of a cell, tissue, or organism is

referred to as the ionome [10]. The ionome can be profiled using

high-throughput, high-accuracy analytical chemistry such as

inductively coupled plasma-mass spectrometry (ICP-MS), which

can measure the concentrations of 20 elements over 5 logs in ,2

minutes per sample. To apply this systems biology phenotyping

platform most efficiently, the best tissue for estimating the ionome

of a crop plant must be used [9,11,12]. We assert that mature

seeds are the ideal tissue when resources are limited, as mature

seeds represent a well-defined developmental end point that

summarizes the life history and genetic composition of a particular

individual. Seeds are also highly stable and are easy to store,

transport, and handle. Furthermore, seeds are feedstocks for

people, animals, and industrial processes such that the seed

ionome alone is of high value and represents an excellent proxy for

a whole plant.
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In an ideal world, a survey of tissues could be used to track the

ionome through developmental time. However, genetic and

environmental determinants make this approach difficult to

implement on large populations of field-grown plants, as diverse

varieties may progress through development at different rates that

may be more or less influenced by daily weather or other

environmental factors. Compromises are required to ensure the

success of a particular research program, especially one that aims

to identify genes that are effective over a range of environments

rather than emphasizing a single one. We propose that the analysis

of single seeds is the most efficient use of resources to characterize

a highly relevant ionome for field-grown crops. Intact seeds are at

reduced risk for contamination or preparative artifacts due to

sample grinding and are an easily automated sample unit, and the

overall reduced cost of preparation and analysis make this the best

compromise of efficiency, relevance, and precision. This scheme is

not without obvious potential problems, however, not the least of

which is heterogeneity between seeds produced by the same plant

or related plants within an experimental plot that may shape the

estimation of the ionome through single-seed-based observation.

In the present study, we test the premise of confounding

heterogeneity to better understand the sources of variance that

contribute to the seed ionome using maize kernels. We assert that

single-seed-based analysis is a reasonable strategy for phenotypic

analysis, especially when resources are limited and considerations

of the number of test environments are balanced against accuracy

within any single environment. The ionomic profiling workflow

described in this study for maize kernels takes advantage of

automation for sample handling, weighing, and liquid dispensing

to reduce operator time, effort, and overall cost. This optimization

allows 576 kernels to be analyzed from start to finish in 3 days. We

demonstrate the utility of our workflow as an effective means of

collecting ionomic data relevant to increasing agricultural sustain-

ability.

Results

Experimental Design and Analysis
The ionomics pipeline starts with arraying the single kernels in

48 well plates that are then loaded onto the custom-built weighing

robot. Each kernel is weighed and deposited into a glass digestion

tube. The samples are digested down to the elemental components

using heat and acid. The digested material is analyzed by ICP-MS

to quantitatively measure the concentrations of 20 elements with

high precision. Both internal and external standards are used to

correct for instrument drift during and between experiments.

The 26 parents of the maize nested association mapping (NAM)

panel (hereafter, the NAM Founders) [13] were grown in a

randomized complete block design, in 2010 (six blocks) and 2011

(five blocks), at the Purdue Agronomy Center for Research

Education. Kernels from the middle of 1–2 cobs per plot were

removed from the cob by hand and analyzed using the ionomics

pipeline. For each plot (i.e., each genotype within a block), four to

six seeds were analyzed. Outliers within each plot were removed

using a conservative cutoff of 15 median absolute deviations from

the plot median (derived from [14]) on an element by element

basis. To be even more conservative, we used the mean of all the

samples in each plot and omitted the one popcorn and two sweet

corn entries in the NAM Founders in order to prevent artifacts

from low seed weights from biasing the analysis. To analyze the

sources of variance, a simple linear model with line and year

effects was used to demonstrate that all 20 elements had a

significant effect of genotype (p,0.01 with a Bonferroni correc-

tion; Table 1). Most elements also had significant effects of year as

well as line x year interactions. There were four potentially

problematic elements characterized by low heritability and or low

correlation between seasons: B, Na, Al, and Se. This result was not

unexpected, as all are in low abundance in the kernel and have

several analytical interferences (see discussion). Narrow sense

heritability estimates within a single season were quite high, with

17 and 19 elements having heritabilities .0.5 in each year

respectively. Heritability estimates decreased when both years

were considered in a single model, likely due to the significant line

x year interactions. Twelve elements had a two-year heritability

estimate above 0.5. For 16 elements there was a statistically

significant (p,0.01) correlation between the two years (see

examples in Figure 1).

In these ionomic studies, we wished to emphasize the potential

to detect QTLs in plants grown across a larger number of different

environments. This requires a compromise between population

size, number of field locations, and sampling depth for any one

accession. To estimate if a single kernel per cob would be a feasible

approach to analyzing large populations across multiple environ-

ments, we created 100 datasets by randomly sampling one of the

four to six analyzed samples from each plot, a process known as

jackknifing. Since the outlier removal that we performed before

the first analysis was based on the distribution of samples in a given

plot, we used the original (without correction for outliers) dataset

for this simulation. The distribution of jackknifed heritabilities at

the 5% value over all data (i.e., 95% of the single-seed dataset

heritabilities were greater than these values) was lower than those

calculated for means, but 7 elements had heritability .0.45 and 11

were .0.35 (Table 1). We found this a reasonable compromise, in

order to detect potential QTLs from a larger number of

environments at different locations rather than focusing all of

our attention on a single location.

Potential Confounding effects
To evaluate potential confounding effects that would limit our

ability to detect genetic, environment, or gene by environment

effects, we examined several potential sources of variance.

Outcrossing. Open pollinated ears are likely to have some

kernels fertilized by pollen from nearby rows. If the paternal

genotype has a significant effect on the kernel ionome, this genetic

contamination may confound the genetic signal from the maternal

plant. While we did not specifically test for this effect in these

experiments, the random block design of the NAM parent

experiment should have randomized the genotypes of the

contaminating pollen and therefore contributed to the unex-

plained variance detected in that experiment. The heritabilities

observed in that experiment (Table 1) suggest that this potential

contamination will not prevent the detection of genetic effects, at

least at the plot spacing used in these experiments (76 cm).

Cob location. Given the differences in seed filling along the

ear, elemental accumulation gradients could exist from the base to

the tip of the ear. To determine the prevalence and magnitude of

these gradients, we analyzed eight kernels from the base, middle,

and tip of three independent ears from plants grown at four

different agricultural research stations in Missouri, Texas, and

Iowa. ANOVA indicated a significant effect (p,0.01 with

Bonferroni correction) of position within the cob for seven

elements (Table 2 and Figure 2). However, the location of the

experimental fields accounted for much more of the variance in all

elements except Na, S, Ca, and Zn. Additionally, the dynamic

range of elemental accumulation (defined by the ratio of

maximum accumulation for a cob location to minimum accumu-

lation for a cob location) was well below the dynamic range of the

observations from the two years of NAM Founders in Indiana. For

Single Maize Kernel Ionomic Profiles Are Effective
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Figure 1. Correlation between 23 NAM parents across two years. The plot means of all 5 or 6 replicate plots for each NAM parent line
(excluding Il14H, HP301 and P39) were averaged for each year.
doi:10.1371/journal.pone.0087628.g001

Table 1. Analysis of the NAM founders ionomic profiles from 2010 and 2011.

Geno Year GxY h2 2010 h2 2011 h2 both Corr JK 5% p val JK 5% h2

Weight 1.3E-31 2.6E-04 1.2E-05 0.64 0.67 0.53 0.65 9.9E-19 0.50

B 3.3E-23 6.6E-17 2.5E-09 0.63 0.56 0.37 NS 6.1E-06 0.30

Na 1.5E-14 9.4E-75 NS 0.28 0.52 0.12 0.76 3.3E-03 0.11

Mg 1.2E-62 NS 5.3E-11 0.81 0.84 0.73 0.80 1.6E-33 0.61

Al 4.2E-09 2.2E-57 4.2E-04 0.3 0.43 0.12 NS 1.5E-02 0.10

P 2.0E-49 6.7E-69 2.7E-07 0.81 0.71 0.38 0.77 1.5E-25 0.39

S 3.7E-40 1.3E-07 8.1E-13 0.81 0.61 0.55 0.55 2.2E-25 0.52

K 4.4E-27 NS 3.8E-11 0.65 0.65 0.46 NS 3.9E-14 0.44

Ca 2.6E-30 7.2E-06 8.5E-08 0.6 0.69 0.5 0.59 9.3E-15 0.34

Mn 2.0E-44 1.8E-22 8.7E-11 0.78 0.71 0.54 0.64 5.6E-33 0.60

Fe 4.0E-51 NS NS 0.74 0.8 0.7 0.85 1.3E-31 0.21

Co 3.6E-22 NS NS 0.5 0.54 0.5 0.95 4.1E-17 0.36

Ni 1.8E-24 1.2E-21 2.1E-04 0.6 0.58 0.39 0.74 4.1E-22 0.38

Cu 7.6E-71 6.9E-12 2.5E-06 0.84 0.86 0.77 0.88 3.4E-49 0.66

Zn 3.4E-61 5.2E-23 9.8E-08 0.81 0.83 0.67 0.81 1.0E-46 0.63

As 5.3E-30 NS 4.2E-05 0.66 0.62 0.52 0.64 3.4E-16 0.52

Se 2.7E-08 3.6E-04 NS 0.47 0.28 0.25 NS 3.7E-03 0.27

Rb 2.6E-23 1.4E-36 NS 0.54 0.64 0.32 0.77 1.1E-19 0.30

Sr 4.7E-21 1.9E-31 2.1E-04 0.53 0.57 0.31 0.62 1.2E-08 0.23

Mo 2.5E-29 NS NS 0.6 0.63 0.55 0.86 4.6E-25 0.51

Cd 5.0E-63 7.5E-05 NS 0.75 0.9 0.79 0.98 4.1E-37 0.32

Geno: p value for the genotype term in an ANOVA of a linear model with genotype and year and their interaction. Year: p value for the year term. GxY: p value for the
genotype by year interaction. The significance cutoff for the first three columns was set at p,0.0005 to account for the multiple testing correction. NS: not significant.
h2: the narrow sense heritability for each year and combined. Corr: the correlation between the line average from 2010 and 2011. The last two rows are the results from
the jackknife analysis of 100 datasets with a single seed per plot. JK 5% p val: the 5% most significant p value for the genotype term in the two year model (i.e., 95% of
the time the p value was more significant). JK 5% h2: the 5% highest heritability across two years.
doi:10.1371/journal.pone.0087628.t001
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example, while the highest and lowest cob locations differed by an

average of 49% for Cu, the highest Cu accumulating line was over

500% higher than the lowest line in both 2010 and 2011. These

data suggest that the variation due to cob location will not prevent

identification of genetic environmental effects for most elements.

Seed composition. Elements are not distributed uniformly

throughout the seeds of grain crops: some elements are

concentrated in the embryo (e.g., Fe and Zn), while others (Ca

and S) have substantial accumulation in the maternal tissues of the

pericarp and endosperm [15–18]. Large differences in amounts of

these compartments, such as differences in the organic composi-

tion of the seed, could change the total elemental composition of

the kernel. The sugary locus is a key step in starch biosynthesis, with

mutations at sugary creating the sweet corn many people eat as a

fresh vegetable. Furthermore, mutant kernels also have higher

protein levels than wild-type siblings [19]. As sugary kernels mature

and dehydrate, they shrink, losing more stored carbon than Su+
seeds, and can potentially lose water-soluble ions [20]. To

determine the effect of sugary on the elemental composition, we

identified seven RI lines from the dent x sweet, B73 x IL14H

NAM subpopulation where sugary was still segregating. We

separated the seeds from single plots based on the kernel

morphology (collapsed su/su seeds from plump Su/+ seeds) and

analyzed their elemental content (Table 3 and Figure 3). For nine

of the elements, there was a significant effect of the sugary locus,

and for all but Fe and As, a significant effect of line could also be

detected. We also analyzed a single seed per entry from this

population. With this limited sampling, we were able to identify 31

QTLs (Table 4), including 8 strong QTLs with LOD scores .5

(highest 95% permutation threshold for any element was 2.8). We

identified QTLs for P, K, Ni, and Cu that localized with sugary on

Chr 4. The presence of sugary did not, however, prevent us from

identifying an additional 3, 2, and 1 QTLs for Cu, Ni, and P,

respectively, demonstrating that the gross change in kernel

composition did not obscure all other genetic signals.

Discussion

A defined developmental stage that is stable at room temper-

ature, the mature kernel has many inherent advantages as a

sample tissue. Single kernels are discrete, relatively small samples

that can be easily manipulated by technicians or robots. Single-

kernel-based analyses also avoid mechanical disruption (e.g.,

grinding or milling) that are labor intensive and/or introduce

the possibility of contamination from the tools used. With these

experiments, we have demonstrated that single-seed measure-

ments of elemental profiles can be used to study the genetic and

environmental effects on seed elemental accumulation.

Figure 2. Gradients in elemental accumulation along the cob. For each ear, the samples for each section were averaged and then normalized
to the mean of the ear. The values for all ears were then averaged. Only elements with significant effects of cob location were included in the model.
doi:10.1371/journal.pone.0087628.g002
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Developing the ionomics pipeline around single-kernel sampling

has enabled the processing of 1728 samples per week at the

USDA-ARS/Danforth Center profiling facility. Multiple kernels

can be profiled with less cost and effort than would be required to

pool, disrupt and homogenize, subsample, digest, and run as a

single composite sample. This provides several advantages from an

analytical and statistical perspective. With multiple measurements

from a given packet, outliers resulting from the analytical process

or machine error can be discarded, as we did here. The

measurements can be averaged to a single value or included as

nested factors in a statistical model.

We investigated three potential confounding effects: outcrossing,

relative position of the seed within the ear, and the composition of

the organic components of the seeds. While we were able to detect

statistically significant effects for the latter two factors for subsets of

elements, neither one of them was large enough to obscure the

signal from genetic or environmental factors.

Since we did not explicitly test for outcrossing, instead

conducting an experiment, where it could occur, that tested

whether the ionomic traits were still heritable, we cannot estimate

directly the magnitude of the effects in this study. However, the

high heritabilities observed in these experiments suggest that the

effects are small. Of the range of processes that can contribute to

the seed ionome, root uptake, partitioning, shoot leaf transport,

leaf partitioning, leaf remobilization, leaf seed transport, and seed

loading are all exclusively maternal, while embryo uptake has

contributions from both maternal and paternal alleles. When

viewed from this perspective, it seems reasonable that paternal

effects are a minor contribution to the ionome. However, we

cannot exclude the possibility that there are loci that will have a

strong paternal effect.

The high heritability observed in jackknifed datasets of a single

seed per plot from the NAM Founders, without the benefit of

outlier removal, demonstrates that the genetic variation for many

Figure 3. Alphabox plots of the effect of su on Ca and Zn accumulation. Five number summaries (median, 1st and 3rd quartiles, and 1.5
interquartile range) are shown of each seed type. Salmon denotes the values for the su/su (collapsed) seed, while teal denotes the values for Su/+
(plump) alleles. Outliers beyond 1.5 IQR are shown as black dots. Line names are the entry numbers in the Panzea database for the B73 x IL14H (Z011)
population.
doi:10.1371/journal.pone.0087628.g003

Table 3. Analysis of the sugary status on ionomic profiles.

Line Su

weights 2.5E-15 4.02E-09

B 2.2E-05 NS

Na 1.3E-05 NS

Mg NS NS

Al 4.7E-05 NS

P 2.9E-12 3.9E-05

S 6.7E-17 1.3E-10

K 2.6E-13 1.2E-16

Ca 8.7E-14 2.3E-09

Mn 2.1E-27 8.6E-08

Fe NS 1.2E-08

Co NS NS

Ni 1.6E-10 NS

Cu 3.3E-23 NS

Zn 2.9E-23 NS

As NS 4.4E-06

Se 1.9E-06 5.8E-06

Rb 2.7E-32 5.4E-11

Mo 1.9E-27 NS

Cd 1.6E-24 NS

Line: p value for the genotype term in an ANOVA of a linear model with line and
sugary genotype. Su: p value for the sugary term. The significance cutoff was set
at p,0.0005 to account for the multiple testing correction. NS: not significant.
doi:10.1371/journal.pone.0087628.t003
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elemental traits in maize is large enough that most confounding

factors will not interfere with analysis. However, if the labor and

resources are available, controlled pollination experiments and

harvesting only the center of the cob will reduce the variability

from pollination and cob location. Analysis of the organic

composition of the kernels through NIR spectroscopy or other

methods could allow for differences in protein, oil, and starch

content to be included as cofactors in statistical models.

The appropriate number of seeds for analysis will depend on the

experimental design and expected frequencies of functionally

distinct alleles. For quantitative genetic experiments such as

recombinant inbred populations with several hundred lines (or

thousands. in the case of the NAM), where a given allele may

occur over a hundred times, a single seed per line may suffice to

identify significant QTLs. From a technical standpoint, more

observations will decrease the associated error but be biologically

unnecessary to find common alleles, and may reduce the number

of lines examined if you have fixed capacity for analysis. In those

cases where rare alleles have large phenotypic effects, such as in an

association mapping population or when a new mutation is being

tested, more seeds will be required to increase the confidence of

detection [21]. While we were able to identify significant QTLs

with a single seed in the B73 x IL14H population, our standard

practice when analyzing a single RIL population is to profile two

to four seeds per plot. When analyzing extremely large populations

such as the Maize NAM, which has .6000 plots in the standard

experimental design, profiling one or two seeds from most lines

allows for the analysis of the population in more locations [13,22].

This compromise in technical accuracy of the ionomic phenotype

versus increasing the number of environments is a highly

reasonable one to make, given that resources are almost always

limiting.

Table 4. QTLs identified in the B73 x IL14H population.

El Chm Pos (cM) LOD MI Start MI Stop R2 SumR2 Add.Eff PT Co Nearest marker

B 3 123.5 3.3 121.9 129.8 0.08 0.13 258.93 2.5 7 PZB01457.1

B 5 13.3 2.5 13.3 13.3 0.05 0.13 251.74 2.5 7 PHM13122.43

Cd 2 84.2 17.4 63.0 102.8 0.38 0.38 20.02 2.6 1 PZA00495.5

Co 1 193.1 2.9 190.0 193.1 0.06 0.15 0.00 2.4 10 PZA00235.9

Co 5 23.2 3.2 13.3 29.1 0.10 0.15 0.00 2.4 10 PZA01925.1

Cu 2 94.5 4.3 88.6 100.0 0.09 0.24 20.22 2.8 10 PZA01735.1

Cu 4 56.6 3.1 56.0 59.9 0.06 0.24 20.20 2.8 10 PZA00218.1

Cu 8 80.6 4.5 74.1 86.8 0.10 0.24 0.23 2.8 10 PZA03698.1

K 4 54.9 5.0 49.7 59.9 0.15 0.15 2478.96 2.7 7 PZA01751.2

Mn 1 34.3 4.1 33.9 35.7 0.06 0.57 20.91 2.8 10 PZA01030.1

Mn 1 89.1 14.4 73.4 106.0 0.30 0.57 21.45 2.8 10 PZA02135.2

Mn 3 91.8 5.1 83.6 97.9 0.10 0.57 0.91 2.8 10 PZA03735.1

Mn 5 7.2 3.4 7.2 10.3 0.05 0.57 0.61 2.8 10 PZA01438.1

Mn 5 40.8 3.6 34.7 49.2 0.06 0.57 20.66 2.8 10 PZA01284.6

Mo 1 53.9 3.0 50.6 53.9 0.05 0.33 20.01 2.8 10 PZA02686.1

Mo 1 147.4 14.6 129.8 155.8 0.29 0.33 20.03 2.8 10 PZA02269.3.4

Na 5 13.3 3.0 10.3 21.2 0.06 0.14 225.24 2.5 10 PHM13122.43

Na 5 43.7 3.7 36.8 49.2 0.08 0.14 29.13 2.5 10 PZA01327.1

Ni 1 149.9 8.7 136.2 163.7 0.15 0.35 0.06 2.7 10 PZA02269.3.4

Ni 2 91.7 3.4 70.5 100.0 0.06 0.35 20.04 2.7 10 PZA01735.1

Ni 4 56.6 3.3 56.0 59.9 0.06 0.35 0.04 2.7 10 PZA00218.1

Ni 5 71.2 3.6 60.7 84.6 0.08 0.35 0.04 2.7 10 PZA03536.1

P 4 53.9 4.0 52.4 56.6 0.08 0.13 2191.73 2.7 10 PZA01751.2

P 6 33.4 3.0 33.4 35.1 0.05 0.13 2127.55 2.7 10 PZA03461.1

Rb 3 119.9 2.6 118.0 121.9 0.05 0.25 20.23 2.4 10 PZA02516.1

Rb 4 127.1 2.6 127.1 127.1 0.05 0.25 0.24 2.4 10 PZA03322.5.3

Rb 5 101.2 3.0 101.2 104.5 0.05 0.25 20.27 2.4 10 PZA02411.3

Rb 8 29.6 5.4 17.5 41.2 0.10 0.25 0.34 2.4 10 PZA03178.1

S 1 161.7 4.1 151.9 173.5 0.09 0.09 2117.13 2.5 9 PZA02698.3

Zn 5 99.3 5.5 91.7 109.5 0.12 0.21 22.51 2.3 7 PZA02411.3

Zn 7 132.4 3.8 123.1 132.4 0.09 0.21 2.12 2.3 7 PZA01744.1

El: Element. Chm: Chromosome. Pos: Position of QTL in cM. LOD: LOD score. MI Start and Stop: the mapping intervals defining where the LOD trace crossed the 95%
permutation threshold. R2: the fraction of variance accounted for by the QTL, Sum R2: The cumulative fraction of variance accounted for by all of the QTLs for the
element. Add.eff: The additive effect of the QTL in PPM. PT: the 95% permutation threshold from 1000 permutations. CO: number of cofactors used in the model.
Nearest Marker: The nearest marker.
doi:10.1371/journal.pone.0087628.t004
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There are, of course several drawbacks and limitations to the

approach we have taken. By opting for high throughput while

analyzing 20 elements simultaneously, we do lose some sensitivity

compared to lower throughput efforts focused on fewer elements.

Examples of this include using standard glass (sodium borosilicate)

tubes for chemical digestion, which increases the background

levels of Na and B; not using a dynamic reaction cell on the ICP-

MS, which leads to isobaric interferences for Se, As, and Al; and

the use of a single sample dilution factor to measure elements with

concentrations ranging from several hundred parts per million to

low parts per billion.

This speed/number of elements/accuracy trade-off, combined

with the low abundance of some of the elements in maize kernels,

leads to several elements being at or below the level of detection in

many or most of the samples analyzed. We have considered

omitting these samples from the analysis pipeline entirely, but

currently include them for occasions where a given mutant line or

diverse accession accumulates sufficient qualities to exceed the

detection threshold, such as for two of the NAM parents for Cd

(Figure 1).

The single-seed analysis approach has the potential to create

two major artifacts. One is that differences in weights can cause

perceived differences in accumulation in elements at or below

detection limits when the signal from the instrument is

normalized to weight. The second is that some elements may

be restricted to a specific subcompartment of the seed, such as

the embryo, so alterations in the other compartments may not

affect the amount of the element, even though they would affect

the weight. However, single-seed analysis, with the weight

recorded and included in every dataset, allows for the dataset to

be analyzed from an amount per seed perspective, which would

alleviate these issues (although it may create artifacts in itself).

We have opted to present the data as a concentration in the seed

because, for most elements, there appears to be a correlation

with weight and total elemental concentration. But depending on

the particular question, a hybrid approach may be more

appropriate. To ensure that these approaches are possible for

other scientists, our data, including kernel weight, are all

available from www.ionomicshub.org through the data exchange

portal.

Conclusions
Here we have shown that single-seed-based ionomics is a robust

and information-rich approach to identifying genetic and

environmental determinants of the elemental profile of maize

kernels. The limitations and potential artifacts are not large

enough to prevent detection of statistically significant effects and

represent a reasonable compromise to increase the scope and

efficiency of investigation over absolute technical accuracy.

Materials and Methods

Biological Samples
The 25 NAM Founders were received from the U.S.

Department of Agriculture Germplasm Resource Information

Network (GRIN) at Ames, IA and grown at the Purdue

Agronomy Center for Research and Education (West Lafayette,

IN). The Founders of the maize Nested Association Mapping

Panel were grown in a randomized block design, in 2010 (six

blocks) and 2011 (five blocks). The soil type is a Udollic

Ochraqualf silt loam. Plots were irrigated in late July of 2011

because of high temperatures and low rainfall. The fertilizer

regimen consisted of 336 kg ha21 potash (0-0-60) in the fall of

both years and 123 kg ha21 in 2010 and 2011 of anhydrous

ammonia (81-0-0) with N-ServeH (DOW Agrosciences, India-

napolis, IN) prior to planting each year. To suppress weeds, the

plots were treated at planting with 5.9 L ha21 Harness XtraH
(Monsanto Company, St. Louis, MO), 0.84 kg ha21 PrincepH
(Syngenta Crop Protection, Greensboro, NC), 0.57 kg ha21

atrazine (Syngenta Crop Protection, Greensboro, NC), 1.75 L

ha21 RoundupH (Monsanto Company, St. Louis, MO), cultivated

in mid-June, and subsequently hand-weeded through the growing

season. Plots consisted of a single 3-m row with 76 cm between

rows. Average stand density was 11 plants per row in 2010 and

15 plants per row in 2011. Lines were open pollinated and the

seed harvested after maturity. Seed from the middle of the ear of

one or two cobs per plot was removed from the cob by hand and

analyzed using the ionomics pipeline.

For the heterogeneity within/between cobs experiment, the B73

accessions were received as gifts from Dr. Sherry Flint-Garcia

(USDA ARS/Missouri University, Columbia, MO), Dr. Seth

Murray (Texas A&M, College Station, TX), and Dr. Michael

Muszynski (Iowa State, Ames, IA). Intact, hand-pollinated B73

ears were sampled from their 2009 nursery fields. Lines from the

B73 x IL14H population were grown at the Illinois Crop Sciences

Research and Education Center farm in 2007 using standard

agronomic practices, with a single plot per line. Hand-pollinated

ears were used to generate grain samples for this analysis. The soil

properties of each site are listed in Table 5.

Table 5. Soil and Yield properties of growth locations.

Site Name Site Location
Primary
Soil Type Soil Classification

Average Estimated Maize
Yield Mt ha21

ISU Agronomy and Ag Engineering
Research Farm

Boone IA Clarion loam Typic Hapludoll 11.5

OD Butler Jr Animal Science Complex
and University Farm

Burleson TX Boonville fine sandy loam Chromic Vertic Albaqualf 2.9

Bradford Research and Extension Center Columbia MO Mexico silt loam Vertic Epiaqualf 11.0

Purdue Agronomy Center for Research
Education

West Lafayette IN Toronto-Millbrook complex Udollic Epiaqualf 8.6

Musgrave Research Farm Poplar Ridge NY Lima silt loam Oxyaquic Hapludalf 7.5

Crop Sciences Research and Education
Center

Urbana IL Drummer silty loam Typic Endoaquoll 11.0

doi:10.1371/journal.pone.0087628.t005

Single Maize Kernel Ionomic Profiles Are Effective

PLOS ONE | www.plosone.org 8 January 2014 | Volume 9 | Issue 1 | e87628



Determination of Elemental Concentration by ICP-MS
Analysis

The analysis methods used are almost identical to those

described for soybeans in Ziegler et al. [23]. As the precise

methods of the pipeline are essential and integral to this

manuscript, we have included identical or near-identical descrip-

tions in this section. Identical passages are denoted by quotation

marks.

Sample preparation and digestion. The seeds for the B73

x IL14H and B73 cob location experiments were weighed by

hand. For the ‘‘Seeds were sorted into 48-well tissue culture plates,

one seed per well. A weight for each individual seed was

determined using a custom built weighing robot. The weighing

robot holds six 48-well plates and maneuvers each well of the

plates over a hole which opens onto a 3-place balance. After

recording the weight, each seed was deposited using pressurized

air into a 166110 mm borosilicate glass test tube for digestion.

The weighing robot can automatically weigh 288 seeds in

approximately 1.5 hours with little user intervention.’’

‘‘Seeds were digested in 2.5 mL concentrated nitric acid (AR

Select Grade, VWR) with internal standard added (20 ppb In,

BDH Aristar Plus). Seeds were soaked at room temperature

overnight, then heated to 105uC for two hours. After cooling, the

samples were diluted to 10 mL using ultrapure 18.2 MV water

(UPW) from a Milli-Q system (Millipore). Samples were stirred

with a custom-built stirring rod assembly, which uses plastic

stirring rods to stir 60 test tubes at a time. Between uses, the

stirring rod assembly was soaked in a 10% HNO3 solution. A

second dilution of 0.9 mL of the 1st dilution and 4.1 mL UPW

was prepared in a second set of test tubes. After stirring, 1.2 mL of

the second dilution was loaded into 96 well autosampler trays.’’

ICP-MS Analysis. For the NAM parent experiments,

elemental ‘‘concentrations of B, Na, Mg, Al, P, S, K, Ca, Mn,

Fe, Co, Ni, Cu, Zn, As, Se, Rb, Mo, and Cd were measured using

an Elan 6000 DRC-e mass spectrometer (Perkin-Elmer SCIEX)

connected to a PFA microflow nebulizer (Elemental Scientific) and

Apex HF desolvator (Elemental Scientific). Samples were intro-

duced using a SC-FAST sample introduction system and SC4-DX

autosampler (Elemental Scientific) that holds six 96-well trays (576

samples). ‘‘ The other experiments were run without the FAST

sample introduction system and with a standard Apex desolvator

(Elemental Scientific).

‘‘All elements were measured with DRC collision mode off.

Before each run, the lens voltage and nebulizer gas flow rate of the

ICP-MS were optimized for maximum Indium signal intensity

(.25,000 counts per second) while also maintaining low CeO+/

Ce+ (,0.008) and Ba++/Ba+ (,0.1) ratios. This ensures a strong

signal while also reducing the interferences caused by polyatomic

and double-charged species. Before each run a calibration curve

was obtained by analyzing six dilutions of a multi-element stock

solution made from a mixture of single-element stock standards

(Ultra Scientific).’’ In addition for the NAM parent experiment,

‘‘to correct for machine drift both during a single run and between

runs, a control solution was run every tenth sample. The control

solution is a bulk mixture of the remaining sample from the second

dilution. Using bulked samples ensured that our controls were

perfectly matrix matched and contained the same elemental

concentrations as our samples, so that any drift due to the sample

matrix would be reflected in drift in our controls. The same

control mixture was used for every ICP-MS run in the project so

that run-to-run variation could be corrected. A run of 576 samples

took approximately 33 hours with no user intervention. The time

required for cleaning of the instrument and sample tubes as well as

the digestions and transfers necessary to set up the run limit the

throughput to three 576 sample runs per week.’’

Drift Correction and Analytical Outlier

Removal. ‘‘Because our internal standard (IS) is added to our

digesting acid, we are able to correct for losses due to differential

sample evaporation, human error during the dilution process, and

any sample introduction variability. So, if the final observed IS

concentration is lower or higher than the starting IS concentra-

tion, all analyte concentrations are corrected equally for the

percent difference between the observed IS concentration and the

known starting IS concentration. IS correction is handled

automatically by the PerkinElmer Elan 6000 software. Addition-

ally, drift was corrected using the values of the controls run every

tenth sample using a method similar to Haugen [24]. In short, drift

was corrected by calculating the percentage of concentration

change between two controls. This percentage change was

assumed to have occurred linearly during the sequence of ten

samples run between the two controls. So, for instance, the first

sample run after the first control was corrected for 1/10th of the

drift seen between the two controls. Finally, because responses

from the machine may be different between runs, we also

corrected for drift between runs. This was performed by

calculating a correction factor from the control concentrations in

this run and a reference control used for all the runs. After drift

correction, samples were corrected for the dilution factor and

normalized to the seed weights.’’

‘‘While biological outliers are of great interest to our analysis,

analytical outliers (e.g. from contamination, spurious isobaric and

polyatomic interferences, or poor sample uptake) introduce noise

and could lead to a higher rate of incorrectly chosen potential

mutants. Outlier removal was implemented using the algorithm

described in Davies and Gather [14]. To remove outliers while

ensuring that we weren’t removing biologically significant data

points we removed data points on a per element basis from seeds

whose reported elemental concentration was greater than a

conservatively set 15 median absolute deviations from the median

concentration of that element for that line.’’

Computational Analysis. All calculations were performed

using a combination of custom Perl and R scripts. The following R

packages were used in the data analysis: reshape [25], ggplot.

Standard Perl and R functions were used for drift correction,

statistical analysis and creation of the figures. Scripts used in this

analysis are available from http://www.ionomicshub.org, in the

data exchange portal.

QTL analysis. To create the marker map, we pulled from

the core set of 1100 NAM markers all the markers that were

segregating in the B73 x IL14H population and removed highly

correlated (r2.0.91) markers. We then computed a map using the

Emap function in QTL Cartographer and verified co-linearity

with the full map using all 1100 markers. We performed composite

interval mapping (CIM) using QTL Cartographer version 1.17f

[26], with CIM [27,28] model 6, a walk speed of 2 cM, a window

of 5 cM, using the forward and backward regression method. To

determine threshold values, the permutation method was used

[29] with 1000 permutations per element per population.
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