
SAsSy - Making Decisions Transparent with Argumentation
and Natural Language Generation

Nava Tintarev
University of Aberdeen

Aberdeen
n.tintarev@abdn.ac.uk

Roman Kutlak
University of Aberdeen

Aberdeen
r.kutlak@abdn.ac.uk

ABSTRACT
An autonomous system consists of one or more physical or
virtual agents that can perform tasks without continuous hu-
man guidance. In order to realise their promise, techniques
for making such autonomous systems scrutable and transpar-
ent are therefore required. To address this issue the Scrutable
Autonomous Systems (SAsSy) demo shows how argumen-
tation and natural language can be combined to generate a
human understandable dialog explaining the operation of an
autonomous system. On the one hand argumentation theory
is used to simulate human understandable reasoning mech-
anisms. On the other, natural language generation tools are
used to translate logical statements into simple plain English.
The idea is to generate a dialog that enables the user to un-
derstand and question the reasoning present in autonomous
systems.

Author Keywords
Explanations, Argumentation, Natural Language, Agents

ACM Classification Keywords
H.5.2 User Interfaces: Natural Language, Interaction styles,
Graphical user interfaces (GUI)

BACKGROUND AND APPLICATION CONTEXT
An autonomous system consists of physical or virtual enti-
ties, or agents, that can perform tasks without continuous hu-
man guidance. Autonomous systems are becoming increas-
ingly ubiquitous, ranging from unmanned vehicles, to robotic
surgery devices. Such systems can potentially replace hu-
mans in tasks which can be dangerous (such as refuelling a
nuclear reactor), mundane (such as crop picking), or require
superhuman precision (as in robotic surgery). While increas-
ing reasoning capacity can enable an autonomous system to
handle a wider range of situations, modelling and verifying
the operation of such systems becomes increasingly difficult.

The increasing amount of independent reasoning that takes
place within an autonomous systems means that humans
struggle to establish why a system chose to behave as it did,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
IUI 2014 Workshop: Interacting with Smart Objects,
February 24, 2014, Haifa, Israel
Copyright is held by the author/owner(s)

to identify what alternative actions the system considered,
and to determine why these alternatives were not selected for
execution by the system. In other words, such systems are
opaque. Such opacity is exacerbated by the formal models
typically used to drive the reasoning behaviour in such sys-
tems — a human (and particularly a non-expert) often strug-
gles to understand what is going on in the system. This lack
of understanding can lead to unrealistic expectations of an au-
tonomous system, or alternatively to a lack of trust in it, caus-
ing inefficiencies at best, and leading to dangerous outcomes
in the worst cases. When things go smoothly transparency
may not be that important. However, it is equally vital that
a user can identify undesired actions before they are carried
out, and interfere appropriately if need be: even if the user
understands the system they need to be able to cancel actions
or suggest alternatives with relative ease in a timely manner.

The SAsSy project1 has for the last year been investigating
computational mechanisms for providing transparency to hu-
mans regarding the internal workings of an autonomous sys-
tem. We use formal argumentation in combination with nat-
ural language to offer explanations to a human. The system
explains which sequence or actions, or what plan, have been
chosen for execution by the system. More specifically it ex-
plains why a certain plan has been selected. That is, the user
should be able to follow a chain of reasoning with arguments
and counter arguments. The system also allows users to pro-
vide additional information which can be used to modify the
arguments, and subsequently, the plan.

The SAsSy team is working with industrial partners in the
hydrocarbon exploration and unmanned vehicle domains to
identify users’ explanatory needs in these domains. However,
the system architecture is flexible enough to model new do-
mains and in this demo we present a simplified scenario built
around delivery logistics. The components that are domain
specific are: a workflow, domain rules, and a lexicon.

The scenario is based on a delivery driver in Scotland who is
delivering a package from Edinburgh to Inverness and driv-
ing back. In this case, the plan is a choice of route with a
sequence of driving actions to a number of intermediate loca-
tions. Each location serves as a potential choice point from
which several other locations may be possible. Some routes
yield shorter distances between points, but given other factors
such as traffic and road conditions the shortest route is not al-
ways the best option. The driver executes the plan step by

1http://scrutable-systems.org

1

http://scrutable-systems.org


step. At each step they can question the system while execut-
ing the actions in the plan.

SYSTEM DESCRIPTION
Explanations have frequently been a component of intelli-
gent systems (IS) such as expert systems [1, 4, 9] and rec-
ommender systems [6, 8]. The explanation capabilities in ex-
pert systems have often been evaluated with users in terms
of whether they increase acceptance of an intelligent system
or acceptance of decisions. However, there are other reasons
why explanations may be introduced to an IS including trans-
parency and scrutability [8] – helping users understand how
decisions were made (transparency), as well as allowing users
to tell the system that it is wrong (scrutability).

The demo shows the interaction between two core technolo-
gies: human understandable reasoning mechanism (repre-
sented through argumentation theory) and natural language
generation tools to translate logical statements into plain (nat-
ural) English. Our system is developed in Python and is avail-
able under the BSD licence2.

According to the recent classification of explanations in IS
by [4], the explanations in our system can be classified as
justification, and to certain extent, trace-based explanations.
Justification type explanations describe ‘why’ a decision was
taken and supply the descriptive knowledge used to reach that
decision. Trace explanations supply information about ‘how’
the decisions are made, e.g. which rules were applied. In our
system they are exposed to the user thanks to argumentation
[5].

Our system does not present the user with the full reason-
ing trace, but rather allows the user to discuss or argue with
our system about each subsequent fact that is discussed. The
user decides how much information they need, which means
the dialog can be limited in size even for very large knowl-
edge bases. Our system also allows alteration to the rule base.
Since all knowledge in our system is captured through rules,
the information can be updated by the user through adding
rules, removing them, or adding exceptions to existing rules.
This in turn affects subsequent decisions, since the rules in
turn affect the arguments and their outcomes.

Reasoning mechanism. Our system uses two kinds of rules:
defeasible and strict. Strict rules capture traditional implica-
tion – whenever the literal or literals on the left-hand side are
true, so is the literal on the right-hand side. An excerpt of the
knowledge base can be seen in Figure 1. The main difference
between these two kinds of rules are that defeasible rules can
be affected by exceptions, while strict rules cannot.

An example of a strict rule might be: flood road −− >
closed road, which might be read as “if a road is flooded,
it is closed.”

Defeasible rules capture defeasible implication – whenever
the literal(s) on the left-hand side are true the right-hand side
is usually also true. An example of such rule might be:
snow road ==> closed road, which might be read
as “if a road is covered by snow, it is usually closed.”
2https://bitbucket.org/rkutlak/sassy

The previous defeasible rule can be changed to the fol-
lowing rule: snow road = (-plough road) =>
closed road, which might be read as “if a road is covered
by snow, it is usually closed unless it has been ploughed.”

Rules without pre-conditions on the left-hand side are used
to represent asserted or assumed information. For example,
==> accident on bridge means that “there was an
accident on the bridge.” We use the terms rule and infor-
mation interchangeably.

Part of the knowledge base represents legal actions in terms
of locations that can be reached from each point – we illus-
trate this in Figure 2. The reasoning mechanism in SAsSy is
based on argumentation [5], where the arguments are derived
from rules in the knowledge base. Arguments are stored as a
directed graph, in which the nodes constitute arguments and
arcs between nodes symbolise attacks between arguments.
The advantage of using argumentation as opposed to tradi-
tional rule-based reasoning, is that it can reason even in the

Figure 1. Excerpt of the knowledge base used in our system.

Figure 2. This map is included as an illustration of the different geo-
graphic locations used in the example. In our system, routes are rep-
resented in the knowledge base as rules of what kinds of actions are al-
lowed. Locations on the map are slightly shifted to increase legibility.

2

https://bitbucket.org/rkutlak/sassy


face of contradicting statements. The use of argumentation
also enables two important features: non-monotonicity and
alternative options. Non-monotonicity means that (when the
user) adds new information, it may invalidate past conclu-
sions and justify new ones. Alternative conclusions are rep-
resented in the argumentation graph which makes them avail-
able for us to both explain what alternatives were considered
by our system as well as justify why they were not chosen.

The explanations build on the instantiated grounded game
presented in [3]. Our system allows users to step through the
argument graph in a sequences of discussion moves present-
ing arguments and counter arguments. Intuitively, such dis-
cussion can be seen as a debate, or reasoning for and against a
course of action. The psychology of human reasoning as val-
idation for argumentation semantics is a largely unexplored
area [7], but a recent strand of work takes its inspiration from
human dialogue to find intelligible explanations of an argu-
ment’s status (i.e., whether to accept or reject the conclusion
of an argument) [2].

The Natural Language Generation. Natural Language
Generation (NLG) is the study of computer algorithms which
produce understandable and appropriate texts in English or
other human languages, from some underlying non-linguistic
representation of information. In our case, the non-linguistic
information are the rules capturing the “knowledge” in our
system.

As we have already seen, the rules are formed from literals
(e.g., snow road), which can be ambigious or difficult to
understand. We use NLG techniques to convert the literals
to more natural text as well as to improve the presentation
by removing unnecessary information. For example, since
defeasible rules capture implications that are usually true, we
do not present the exceptions to such rules to the user.

Presenting the available information in concise and unam-
biguous language could be crucial in e.g., the unmanned ve-
hicle domain, where an operator has limited time to com-
prehend our system’s reasoning and potentially change the
course of action. We plan to include a summary of the pre-
sented plan as well as to use other NLG techniques such as
aggregation (combining simple sentences together for better
presentation) and referring expression generation (e.g., using
pronouns when referring to past entities) to improve the pre-
sentation of the information. Indeed, in order to effectively
be able to communicate ’why’ certain decisions are prefer-
able, the user needs to be able to understand what the recom-
mended plan is first.

DEMO
Our demonstrator shows how argumentation can be used to
emulated dialog, and how natural language can be used to
present reasoning rules in a way that is familiar to users. The
possible actions are represented as a workflow which is visu-
alized as a graph, which is accompanied by natural language
descriptions. In addition, the user can contribute to the dialog
by asking questions. Figure 3 demonstrates a screenshot of
the SAsSy demo.

The system allows the user to ask three different types of
questions:

1. “What can I do next?”: The left hand pane suggests a next
possible location to drive to, e.g. ‘Next task: Go to In-
verness’. The workflow at the top shows the alternative
options, e.g. Stirling1, Kincardine1 and Perth1.

2. “Why does the system NOT say that I should do Y?”: like-
wise, the user can ask why a certain options is rejected:
“why out Perth1?”. To form a reply the system derives the
relevant rules and translates them into natural language in a
form such as “Going through Stirling is faster because the
traffic is very slow.”.

3. “Why does the system say that a certain thing is
true?”: The user can type a question such as “why traf-
fic very slow” in the dialog field and receive an answer
such as “The traffic is very slow because of an accident
on the bridge.”.

For the time being the user input is limited to controlled
symbolic constants such as ‘Perth1’ or ‘traffic very slow’.
Later versions of the system will make explicit the vocabu-
lary available to a user regardless of whether it is controlled
or processed from natural language.

The user may choose to question the system several times.
For example, when the system tells the user that they cannot
take a certain sub-route the user can query what knowledge
was used to derive this argument, such as the case with traf-
fic very slow in the screenshot and example above.

A user can choose to manually override or alter the knowl-
edge base. A manual override means they simply proceed
as they wish, for example by typing “next Perth1”. Concep-
tually, altering the knowledge base is important if a similar
process is likely to be repeated – so that users do not have to
manually override repeatedly. For example, the situation may
have changed and the user may want to tell the system that
the accident is no longer causing issues:
Driver> why traffic very slow
SYSTEM> The traffic is very slow because an accident on
the bridge.
Driver> retract accident on bridge

The system deletes the information of an accident on a bridge,
which affects the argument against using the bridge. The
system now no longer has a reason to recommend the route
though Stirling, and returns to the default of recommending
going straight to Perth.The system also represents a prefer-
ence ordering among rules in case of conflicts to mitigate
deadlocks, or situations where the system is undecided. So,
if two arguments attack each other, only the attack of the ar-
gument with the more preferred rule holds true.

Apart from out of date information, the user and the system
may have different information. For example, the system may
be telling the user that they cannot go through Kincardine be-
cause of the weight of their van, but has gotten the weight
wrong:
Driver> why out Kincardine1

3



Figure 3. Screenshot of the SAsSy system. Top: Workflow with all the possible options, represented as a graph. The edges are actions such as ‘drive
from a to b’, and the edges represent states equivalent to reaching a certain location. Perth1 is the state reached in the outbound journey leaving from
Aberdeen, whereas Perth2 is that state of the return journey from Inverness. Bottom left: Status of system with current and next steps. Note that some
steps could be triggered by the system, in which case the change of status and action taken are also represented here. Bottom right: Dialog between user
and system. This is where the user asks questions and the system responds. The user asks why they cannot go through Perth, and the user supplies a
justification (traffic is slow). However, the user may not be willing to accept this justification. They query why traffic is slow and receive an answer for
this as well (there was an accident on the bridge).

SYSTEM> you cannot go from Edinburgh to Kincardine be-
cause the maximum allowed weight on the bridge is 10 tons
and the weight of the vehicle is 15 tons.
Driver> retract vehicle weight 15
SYSTEM> deleted

In addition, users can introduce new information to the sys-
tem such as a new weight for the vehicle:
Driver>assert vehicle weight 5

The explanation capability in SAsSy is undergoing continued
development, with another 2 years remaining on the project.
Development is guided by ongoing user-centered experimen-
tation. We are currently planning experiments on presenting
information differently depending on the areas of responsi-
bility of a user. This would allow the system to tailor the
information presentation to, for example, someone who is re-
sponsible for deliveries at an airport versus someone who in
ensuring the delivery of a specific package.

ACKNOWLEDGMENTS
Many thanks to our esteemed colleagues for their valuable
comments. This research has been carried out within the
project “Scrutable Autonomous Systems” (SAsSY), funded
by the Engineering and Physical Sciences Research Council
(EPSRC, UK), grant ref. EP/J012084/1.

REFERENCES
1. Buchanan, B. G., and Shortliffe, E. H., Eds. Rule-Based

Expert Systems: The MYCIN Experiments of the Stanford
Heuristic Programming Project. Addison Wesley, 1984.

2. Caminada, M., and Podlaszewski, M. Grounded
semantics as persuasion dialogue. In COMMA,
B. Verheij, S. Szeider, and S. Woltran, Eds., vol. 245 of
Frontiers in Artificial Intelligence and Applications, IOS
Press (2012), 478–485.

3. Caminada, M., Podlaszewski, M., and Green, M.
Explaining the outcome of knowledge-based systems; a
discussion-based approach. In AISB (2013).

4. Darlington, K. Aspects of intelligent systems explanation.
Universal Journal of Control and Automation 1 (2013),
40–51.

5. Dung, P. M. On the acceptability of arguments and its
fundamental role in nonmonotonic reasoning, logic
programming and n-person games. Artificial Intelligence
77 (1995), 321–257.

6. McSherry, D. Explanation in recommender systems.
Artificial Intelligence Review 24(2) (2005), 179 – 197.

7. Rahwan, I., Madakkatel, M. I., Bonnefon, J.-F., Awan,
R. N., and Abdallah, S. Behavioural experiments for
assessing the abstract argumentation semantics for
reinstatement. In Cognitive Science (2010).

8. Tintarev, N., and Masthoff, J. Evaluating the effectiveness
of explanations for recommender systems:
Methodological issues and empirical studies on the
impact of personalization. User Modeling and
User-Adapted Interaction 22 (2012), 399–439.

9. Ye, L., Johnson, P., Ye, L. R., and Johnson, P. E. The
impact of explanation facilities on user acceptance of
expert systems advice. MIS Quarterly 19, 2 (1995),
157–172.

4


	Background and application context
	System description
	Demo
	Acknowledgments
	REFERENCES 

