
Demo: Making Plans Scrutable with
Argumentation and Natural
Language Generation

Nava Tintarev
University of Aberdeen
Aberdeen, UK
n.tintarev@abdn.ac.uk

Roman Kutlak
University of Aberdeen
Aberdeen, UK
r.kutlak@abdn.ac.uk

IUI example - Logistics 2

Kincardine1

Perth1 Inverness1
Aberdeen1

Aberdeen2
Perth2

Stirling2

Kincardine2 Edinburgh2 FinishEdinburgh1 Stirling1Start

why out Perth1!
SYSTEM: Going through Stirling is faster because the traffic is 
very slow.!
!
why traffic_very_slow!
SYSTEM: The traffic is very slow because of an accident on 
the bridge.!
!
why out Kincardine1!
SYSTEM: You cannot go from Edinburgh to Kincardine 
because the maximum allowed weight on Kincardine Bridge is 
10 tons and the weight of the vehicle is 15 tons.

Current task: Go to Edinburgh1!
Next task: Go to Stirling1

Figure 1: Example workflow and a dialogue excerpt.

Permission to make digital or hard copies of part or all of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses,
contact the Owner/Author.
Copyright is held by the owner/author(s).
IUI’14, Feb 24-27 2014, Haifa, Israel
ACM 978-1-4503-2729-9/14/02.
http://dx.doi.org/10.1145/2559184.2559202

Abstract
Autonomous systems perform tasks without human
guidance. Techniques for making autonomous systems
scrutable and, hence, more transparent are required in
order to support humans working with such systems. The
Scrutable Autonomous Systems (SAsSy) demo shows a
novel way of combining formal argumentation and natural
language to generate a human understandable explanation
dialogue. By interacting with SAsSy users are able to ask
why a certain plan was selected for execution, why other
alternatives were not selected, and to modify information
in the system.

Author Keywords
Explanations, Argumentation, Natural Language, Agents

ACM Classification Keywords
H.5.2 [User Interfaces]: Natural Language, Interaction
styles, Graphical user interfaces (GUI)

Background and application context
An autonomous system consists of physical or virtual
entities, or agents, that can perform tasks without
continuous human guidance. While increasing reasoning
capacity can enable an autonomous system to handle a
wider range of situations, modelling and verifying the
operation of such systems becomes increasingly difficult.



This often means that people struggle to establish why a
system chose to behave as it did. Users may have trouble
identifying what alternative actions the system considered,
and to determine why these alternatives were not selected
for execution by the system. In other words, such systems
are opaque. It is equally vital that a user can identify
undesired actions before they are carried out, and interfere
appropriately if need be: even if the user understands the
system they need to be able to cancel actions or suggest
alternatives with relative ease in a timely manner.

Edinburgh

Kincardine

Stirling

Perth

Inverness Aberdeen

50 km
10 km

80 km

70 km

190 km
130 km

160 km

60 km

70 km

Figure 2: This map is included
as an illustration of the different
geographic locations used in the
example. In our system, routes
are represented in the knowledge
base as rules of what kinds of
actions are allowed.

The SAsSy project1 has for the last year been
investigating computational mechanisms for providing
transparency to humans regarding the internal workings of
an autonomous system. To do this, we use formal
argumentation in combination with natural language. The
system explains which sequence of actions, or what plan,
have been chosen for execution by the system and why a
certain plan has been selected. That is, the user should be
able to follow a chain of reasoning with arguments and
counter arguments. The system also allows users to
provide additional information which can be used to
modify the arguments, and subsequently, the plan.

The scenario is based on a delivery driver in Scotland who
is delivering a package between two cities (from Edinburgh
to Inverness) and driving back. In this case, the plan is a
choice of routes with a sequence of driving actions to a
number of intermediate locations. Each location serves as
a potential choice point from which several other locations
may be possible. Some routes yield shorter distances
between points, but given other factors such as traffic and
road conditions the shortest route is not always the best
option. The driver executes the plan step by step, and
questions the system as required during the execution.

1http://scrutable-systems.org

System description
Explanations have frequently been a component of
intelligent systems (IS) such as expert systems [1, 5] and
recommender systems [6, 8]. The explanation capabilities
in expert systems have often been evaluated with users in
terms of whether they increase acceptance of an intelligent
system or acceptance of decisions. However, there are
other reasons why explanations may be introduced to an
IS including transparency and scrutability [8].

The demo shows a novel form of interaction between two
core technologies: a formal reasoning mechanism and
natural language generation tools to translate logical
statements into English. Our system is developed in
Python and is available under the BSD licence2.

Reasoning mechanism. Our knowledge base uses two
kinds of rules: defeasible (==>) and strict (−− >).
While both rules act as an implication defeasible rules can
have exceptions, while strict rules cannot. Intuitively,
defeasible rules capture situations that are usually true.

Rules without pre-conditions on the left-hand side are
used to represent asserted or assumed information. We
use the terms rule and information interchangeably.

The reasoning mechanism in SAsSy is based on
argumentation, where the arguments are derived from
rules in the knowledge base. Arguments are represented
as a directed graph, in which the nodes constitute
arguments and arcs between nodes symbolise attacks
between arguments.

Argumentation, unlike traditional rule-based reasoning,
can reason even in the face of contradicting statements.
This gives the added advantage of being able to provide

2https://bitbucket.org/rkutlak/sassy

http://scrutable-systems.org
https://bitbucket.org/rkutlak/sassy


information about which alternatives were considered.
Furthermore, argumentation lends itself to dialogue-based
explanations where the explanation can be provided in a
piece-meal fashion [3].

Until now, formal argumentation has largely focused on
formal notions such as acceptability of arguments and
characterizing undefeated arguments [4]. While there is a
precedent of research on formal argumentation and
natural language dialog [4], the work in SAsSy is novel in
that it can explain plans (rather than individual steps)
with multiple decision points and help users understand
which alternative options were considered.

The system allows the user to
ask three types of questions:

1. “What can I do next?”:
This is also visible from
the workflow (Figure 1;
e.g. Stirling1,
Kincardine1 and Perth1).

2. “Why does the system
NOT say that I should
do Y?”: The user can
ask why an option is
rejected: “why out
Perth1?”. The system
derives the relevant rules
and translates them into
natural language (e.g.,
“Going through Stirling
is faster because the
traffic is very slow.”).

3. “Why does the system
say that a certain thing
is true?”: The user can
type a question such as
“why traffic very slow”
in the dialogue field and
receive an answer such
as “The traffic is very
slow because of an
accident on the bridge.”.

The development of our system is also driven by
experiments with users. The psychology of human
reasoning as validation for argumentation semantics is a
largely unexplored area [7], but a recent strand of work
takes its inspiration from human dialogue to find
intelligible explanations of an argument’s status (i.e.,
whether to accept or reject the conclusion of an
argument) [2].

The Natural Language Generation.

Natural Language Generation (NLG) is the study of
computer algorithms which produce understandable and
appropriate texts in English or other natural languages,
from some underlying non-linguistic data. In our case, the
non-linguistic data are the rules capturing the knowledge
in our system.

The rules are formed from literals (e.g., snow road),
which can be ambiguous or difficult to understand. We
use NLG techniques to convert the literals to more natural
text as well as to improve the presentation by removing
unnecessary information. For example, since defeasible

rules capture implications that are usually true, we do not
present the exceptions to such rules to the user.

We plan to include a summary of the presented plan as
well as to use other NLG techniques such as aggregation
(combining simple sentences together for better
presentation) and referring expression generation (e.g.,
using pronouns when referring to past entities) to improve
the presentation of the information. Indeed, in order to
effectively be able to communicate ’why’ certain decisions
are preferable, the user needs to be able to understand
what the recommended plan is first.

Demo
Our demonstrator shows how argumentation can be used
to support dialogue structure, and how natural language
can be used to present reasoning rules in a way that is
familiar to users. The possible actions are represented as a
workflow which is visualized as a graph, accompanied by
natural language descriptions. In addition, the user can
contribute to the dialogue by asking questions. Figure 1
demonstrates the main features of the SAsSy demo.

Currently, user input is limited to controlled symbolic
constants such as ‘Perth1’ or ‘traffic very slow’. Later
versions of the system will make explicit the vocabulary
available to a user regardless of whether it is controlled or
processed from natural language.

The user may choose to question the system several
times. For example, when the system tells the user that
they cannot take a certain sub-route the user can query
what knowledge was used to derive this argument, such as
the case with traffic very slow (see point 3 on the left).

A user can choose to manually override or alter the
knowledge base. A manual override means they simply



proceed as they wish, for example by typing “next
Perth1”. Conceptually, altering the knowledge base is
important if a similar process is likely to be repeated – so
that users do not have to manually override repeatedly.
For example, the situation may have changed and the user
may want to tell the system that the accident is no longer
causing issues: Driver> retract accident on bridge

The previous defeasible rule
can be changed to the
following rule:
snow road

= (-plough road) =>
closed road,
which might be read as “if a
road is covered by snow, it is
usually closed unless it has
been ploughed.”

An example of a strict rule:
flood road −− >
closed road,
which might be read as “if a
road is flooded, it is closed.”

An example of a defeasible
rule:
snow road ==>
closed road,
which might be read as “if a
road is covered by snow, it is
usually closed.”

The system deletes the information of an accident on a
bridge, which affects the argument against the default
route to Perth. The system now no longer has a reason to
recommend the route though Stirling, and returns to
suggesting going straight to Perth.

The system also represents a preference ordering among
rules in case of conflicts to mitigate deadlocks, or
situations where the system is undecided. So, if two
arguments attack each other, only the attack of the
argument with the more preferred rule holds true.

Apart from out of date information, the user and the
system may have different information. For example, the
system may be telling the user that they cannot go
through Kincardine because of the weight of their van,
but has gotten the weight wrong. In such cases users can
introduce new information to the system such as a new
weight for the van.

The explanation capability in SAsSy is under development
and guided by ongoing user experiments. Currently we are
planning experiments on the best way to tailor information
content to the areas of responsibility of a user.

Acknowledgments
We would like to thank our colleagues from the SAsSy
team for their comments and suggestions. This research
has been carried out within the project “Scrutable

Autonomous Systems”, funded by the Engineering and
Physical Sciences Research Council, grant ref.
EP/J012084/1.

References
[1] Buchanan, B. G., and Shortliffe, E. H., Eds.

Rule-Based Expert Systems: The MYCIN Experiments
of the Stanford Heuristic Programming Project.
Addison Wesley, 1984.

[2] Caminada, M., and Podlaszewski, M. Grounded
semantics as persuasion dialogue. In COMMA,
B. Verheij, S. Szeider, and S. Woltran, Eds., vol. 245
of Frontiers in Artificial Intelligence and Applications,
IOS Press (2012), 478–485.

[3] Caminada, M., Podlaszewski, M., and Green, M.
Explaining the outcome of knowledge-based systems;
a discussion-based approach. In AISB (2013).

[4] Chesñevar, C. I., Maguitman, A. G., and Loui, R. P.
Logical models of argument. ACM Computing Surveys
32 (2000), 337–383.

[5] Darlington, K. Aspects of intelligent systems
explanation. Universal Journal of Control and
Automation 1 (2013), 40–51.

[6] McSherry, D. Explanation in recommender systems.
Artificial Intelligence Review 24(2) (2005), 179 – 197.

[7] Rahwan, I., Madakkatel, M. I., Bonnefon, J.-F., Awan,
R. N., and Abdallah, S. Behavioural experiments for
assessing the abstract argumentation semantics for
reinstatement. In Cognitive Science (2010).

[8] Tintarev, N., and Masthoff, J. Evaluating the
effectiveness of explanations for recommender
systems: Methodological issues and empirical studies
on the impact of personalization. User Modeling and
User-Adapted Interaction 22 (2012), 399–439.


	Background and application context
	System description
	Demo
	Acknowledgments
	References

