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Abstract 

Energy, materials, and resource recovery from mixed household waste may contribute 

to reductions in fossil fuel and resource consumption. For this purpose, legislation has 

been enforced to promote energy recovery and recycling. Potential solutions for 

separating biogenic and recyclable materials are offered by waste refineries where a 

bioliquid is produced from enzymatic treatment of mixed waste. In this study, potential 

flows of materials, energy, and substances within a waste refinery were investigated by 

combining sampling, analyses, and modelling. Existing material, substance, and energy 

flow analysis was further advanced by development of a mathematical optimization 

model for determination of the theoretical recovery potential. The results highlighted 

that the waste refinery may recover ca. 56% of the dry matter input as bioliquid, 

yielding 6.2 GJ biogas-energy. The potential for nitrogen, phosphorous, potassium, and 

biogenic carbon recovery was estimated to be between 81% and 89% of the input. 

Biogenic and fossil carbon in the mixed household waste input was determined to 63% 

and 37% of total carbon based on 
14

C analyses. Additional recovery of metals and 

plastic was possible based on further process optimization. A challenge for the process 

may be digestate quality, as digestate may represent an emission pathway when applied 

on land. Considering the potential variability of local revenues for energy outputs, the 

costs for the waste refinery solution appeared comparable with alternatives such as 

direct incineration. 

Keywords: Bioenergy; Waste refinery; Material flow analysis (MFA); Biogenic carbon; 

Chemical composition; Cost analysis. 

 

1. Introduction 
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Within the recent decade, focus on recovery of materials, resources, and energy from 

solid waste has increased significantly in the endeavor of reducing fossil fuel 

consumptions and resources depletion [1,2]. Particularly, separation and recovery of the 

biodegradable fraction of the municipal solid waste (MSW) is encouraged in [1,2] as a 

mean to produce bioenergy and recycle the nutrients (phosphorous, nitrogen, and 

potassium as organic fertilizers) on land. In addition, in the regions where landfilling 

(instead of, for example, incineration) is the most common disposal method, separation 

of the biodegradable organics (e.g. kitchen waste, tissues, etc.) becomes a necessary 

priority in order to minimize landfilling and comply with political targets (e.g. [3]). 

However, although technologies exist for sorting selected waste material fractions, an 

efficient separation of organic materials, for bioenergy and nutrients recovery, and 

recyclables, to reduce resource consumption, is difficult with mixed household waste.  

Organic waste source-segregation at the household may contribute to this goal; 

yet, recent studies have highlighted that such a strategy may end up being inefficient 

(mass- and energy-wise) as a consequence of the losses occurring at the household and 

during the pretreatments [4]. Therefore, the development of technologies for separating 

the biodegradable fraction of the municipal waste and optimizing its energy conversion 

becomes very important. For instance, mechanical-biological treatment (MBT) plants 

typically use a combination of mechanical operations to separate the organic fraction of 

the incoming mixed waste from the remaining materials (e.g. plastic, metals, and paper), 

which are partly recovered (and sent for recycling) and partly mixed to produce refuse-

derived fuel (RDF). The separated organic fraction could be anaerobically digested to 

produce biogas-energy or aerobically stabilized and landfilled [5]. 
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Emerging waste refining technologies provide potential solutions for organic 

separation and promise improved energy and materials recovery [6,7]. For example, the 

waste refinery investigated in [6,7] uses enzymatic treatment to produce two outputs 

from the incoming waste: a bioliquid (liquefied paper, cardboard, and organics) and a 

solid fraction (undegraded materials). Many of these plants are, however, still in the 

pilot testing stage, and obtaining a sufficiently high quality of recovered materials is 

difficult. For instance, in the pilot plant described in [6,7] the post-treatment to separate 

recyclables needs further development. The post-treatment aims at maximizing the 

recovery of bioliquid and at sorting recyclables from the solid fraction ex-enzymatic 

treatment. In the ideal post-treatment all the biomass (and associated biogenic carbon) 

would be diverted to the bioliquid flow; in other words, all the biomass would be 

recovered. A number of unit processes may be useful for this purpose; for example, 

washing, pressing, and sieving with recirculation of the washing liquid into the 

enzymatic vessel. However, 100% efficiency is not realistic and some biomass would 

still be found in the solid fraction as undegraded organics (e.g. shells), paper, and 

textiles.  

With regard to documenting the development potential, simple sampling at such 

preliminary facilities cannot provide data appropriate for full-scale implementation of 

the technologies. From this perspective, material-, substance-, and energy-flow analysis 

(MFA, SFA, and EFA) are useful techniques to assess mass, energy, and substance 

flows in a range of different urban systems (e.g. waste management, bioenergy, urban 

metabolism, etc.), including evaluation of the quality of the recovered resources [8]. In 

the specific context of waste management MFA and SFA are often utilized to highlight 

the fate of valuable materials and substances and to further suggest system 
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improvements on the basis of the results. Further, the results of MFA and SFA are often 

used as a basis for life-cycle assessment (LCA). From this perspective, MFA, SFA, and 

LCA represent complementary tools for environmental management [9]. For instance, 

[10] used MFA to identify the relevant waste flows in a waste-emergency area and to 

suggest management solutions; [11] combined MFA and LCA to assess the 

performance of a garden waste composting plant; [12] and [13] used MFA and SFA to 

estimate flows and recycling efficiencies for electronic waste; [14] modelled the energy 

content of solid recovered fuel (SRF) based on MFA. [15]) combined SFA and LCA to 

assess the performance of bioenergy scenarios. However, in addition to mass and 

substance flow analyses, in order to address the theoretical performance of pilot-scale 

waste refineries, mathematical modelling needs to be applied to determine the potential 

optimum recovery of bioliquid, materials, and nutrients, thereby providing a target for 

further technological development. Mathematical optimization has been extensively 

used in studies about waste, bioenergy, and waste-to-energy in order to evaluate 

potential technology performances, limitations, and associated improvement potentials. 

Among the others, mathematical optimization modeling was applied to evaluate 

potential performances and limitations of waste- and biomass-to-energy systems (both 

thermal and biological) [16-23] and also to evaluate potential optimal solutions for 

maximizing energy and environmental savings in wastewater treatment [24,25], 

industrial production [26-28] and waste management strategies [29-31].  

This study used an advanced MFA, SFA, and EFA approach based on a 

mathematical optimization model to evaluate the potential flows of materials, 

substances (e.g. carbon, nutrients, and selected metals), and energy within a waste 

refinery including downstream energy conversion processes. The objectives of the study 
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were: i) a detailed sampling and characterization of the outputs of a pilot-scale waste 

refinery process (materials flow and chemical composition) with particular focus on the 

bioliquid; ii) the development of a mathematical optimization model to evaluate the 

potential for recovery of bioliquid, materials, and nutrients with a ‘virtual’ post-

treatment phase; iii) the development of MFA, SFA, and EFA models based on the 

mathematical model outputs to illustrate the potential flows of materials, energy, carbon 

(including fossil carbon, i.e. Cfoss), nutrients, and selected metals (Al and Fe); iv) the 

evaluation of the quality of the digestate left after anaerobic digestion of the bioliquid in 

order to assess the load of nutrients and metals in the scenario of application on land; v) 

the estimation of the costs of the waste refinery solution compared with alternative 

waste management systems. 

 

2. Materials and methods 

The study involved five major phases: 1) On-field sampling of the pilot-scale waste 

refinery outputs (bioliquid, fluff, and solid fraction ex-enzymatic treatment); hand-

sorting of the solid fraction was also performed at this point: six individual waste 

material fractions were sorted and separated (see 2.2). Thus, in total, eight waste 

material fractions were collected (six from the solid fraction ex-enzymatic treatment 

plus bioliquid and fluff). 2) Preparation of the eight individual samples for chemical 

analyses (shredding, mixing, splitting, etc.). 3) Chemical composition analyses 

(including calorific value). 4) Elaboration of a mathematical optimization model to 

estimate the potential for bioliquid, materials, and nutrients recovery with a ‘virtual’ 

post-treatment. 5) Elaboration of MFA, SFA, and EFA to illustrate material, substance, 

and energy flows within the waste refinery process including virtual post-treatment and 
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downstream energy and materials recovery processes. These flows were also used as 

basis for the cost analysis. Table 1 summarizes the five phases of the study with the 

associated methods applied. 

 

*Table 1* 

 

2.1 The waste refinery process 

The study was based on the operation of a pilot-scale plant (0.5–1 Mg wet waste (ww) 

h
-1

), where the waste was processed (heating and enzymatic treatment) without further 

post-treatment. The pilot-scale plant treated residual municipal solid waste (rMSW) 

collected from a residential district of Copenhagen (Denmark) where a vacuum-

collection system is established. The waste was sampled and characterized within this 

study (as the output of the waste refining process; see section 3). 

The waste refinery aims at producing two products from the incoming MSW: i) a 

bioliquid (i.e. slurry composed of enzymatically liquefied organics, paper, and 

cardboard) and a solid fraction (i.e. non-degradable waste materials). The refinery 

process consisted of two reactors: in the first reactor the waste was heated to about 75 

°C for approximately 0.5–1 hour and then cooled to about 50–55 °C before entering the 

second reactor. In the second reactor selected enzymes were added (ca. 5 kg enzymes 

Mg
-1

 wet waste corresponding to ca. 7 kg enzymes Mg
-1

 dry waste), resulting in 

hydrolysis and breakdown of bonds in the organic materials, thereby essentially 

suspending organic materials in a liquid phase. The retention time was about 10–16 

hours. A detailed description of the enzymatic processing can be found in [32]. After the 

second reactor, the liquid phase was separated from the remaining solid fraction by a 
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vibrating sieve. Later, another vibrating sieve separated the liquid phase into a bioliquid 

and a solid “fluff” (phase containing materials such as cotton and textiles but also glass 

pieces, plastics, etc.). The bioliquid consisted primarily of suspended organic matter 

(food waste, paper, and cardboard), while the solid fraction mainly consisted of non-

degradable materials such as plastic, metals, textiles, soil, ceramics, and glass pieces 

mixed with unseparated bioliquid. The solid fraction and the fluff require post-treatment 

to recover additional bioliquid (through, for example, washing and pressing). 

The bioliquid can be exploited for biogas production (an option considered in 

this study), co-combusted in a coal-fired power plant, or utilized for producing ethanol 

[6,7]. Biogas production, as compared with direct incineration, provides additional 

flexibility to the energy system as the energy production can be regulated and storage is 

possible. This is crucial from the perspective of energy systems with high penetration of 

wind and other fluctuating renewables as illustrated in previous studies [33,34]. The 

solid fraction can undergo further sorting to recover valuable materials such as metals 

and plastic. The remaining residual solids (mainly non-recyclable plastic, textiles, yard 

waste, other undegraded organics and paper, and glass pieces) can be combusted for 

energy recovery. A modeling-based characterization of the residual solids fraction is 

reported in [7] based on typical Danish waste composition data. The present study also 

reports data on the composition and heating value of the waste materials constituting the 

residual solids (section 3) for the specific case of the MSW treated at the pilot-plant 

under assessment. The electricity and heat consumption for the operations of heating, 

enzymatic treatment, and sieving were about 20 kWh Mg
-1

 ww and 490 MJ Mg
-1

 ww, 

respectively. Additional information about the process and its environmental 

performance can be found in[6,7]. 
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2.2 On-field sampling of the waste refinery outputs (phase 1) 

The three outputs from the pilot-scale waste refinery (Fig. 1), that is, 1) bioliquid 

(named BL*), 2) fluff (named FF*), and 3) solid fraction (named SF*) were sampled 

during four days. Individual samples were collected regularly from each output flow at 

20 minutes intervals for a nine-hour duration on each day of the sampling campaign. All 

individual samples during a single day were combined to one sample representing this 

day. In total, four samples for each output flow were obtained during the sampling 

campaign. 

The following individual waste material fractions were then hand-sorted from 

the daily samples of SF*: i) hard plastic (e.g. HDPE), plastic containers, plastic bottles, 

and so on (named HP*); ii) soft plastic and plastic bags (named SP*); iii) textiles 

(named TXT*); iv) ferrous metals (named FE*); v) non-ferrous metals (named NFE*); 

vi) residue (named RES*) containing other plastic items, glass scraps, partly degraded 

and non-degraded organics (e.g. shells, peels), paper, and cardboard, and other 

unidentifiable material. The individual waste material fraction samples were weighted 

and subsequently combined with corresponding samples from the other days in order to 

represent the entire sampling period of four days. A similar procedure was followed for 

the other two output flows (BL* and FF*). The samples obtained for chemical analysis 

then represented an average over the full sampling campaign.  

It has to be noticed that enzymes were added during the process (ca. 7 kg 

enzymes Mg
-1

 dry waste corresponding to ca. 3.9 kg enzymes dry matter added); 

therefore the sampled and analyzed outputs also included the mass contribution from the 

enzymes added. However, this additional contribution was very small compared with 
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the total mass flow (i.e. 0.4%), and it can therefore be reasonably neglected when 

discussing the overall mass flows and chemical composition.   

*Fig. 1* 

 

2.3 Samples preparation (phase 2) 

The hand-sorted waste material fractions were sub-sampled using the method described 

by [11,35] in order to obtain about 10 kg of representative samples. These were dried at 

105 °C for 24 hours to establish the moisture content. For the bioliquid, drying was 

performed at 70 °C for ca. 72 hours to avoid losses. Comminution of the waste material 

fractions was done with a number of appropriate instruments depending on the specific 

waste material fraction whose particle size was to be reduced: cutter mill (Retsch SM 

2000, Haan, Germany), shredder (ARP CS 2000 shredder), and rotary disc mill 

(Siebtechnik IS100A, Mülheim an der Ruhr, D). The overall procedure was similar to 

the one described by [35,36]). In detail: 

 Dried bioliquid (BL) was shredded with the Retsch SM 2000 cutter mill 

down to a size of 1 × 1 mm. 

 Dried hard and soft plastic and textiles (HP*, SP*, and TXT*) were first 

manually cut into smaller pieces and further treated in the Retch SM 2000 

cutter mill down to a size of less than 1 × 1 mm. 

 Dried ferrous and non-ferrous (FE* and NFE*) materials were first shredded 

with the ARP CS 2000 shredder, pressed into cubes, and mass-reduced by 

titanium drilling and the obtained scraps were further mass-reduced with the 

disc-mill (Siebtechnik IS100A, Mülheim an der Ruhr), down to a size of less 

than 1 × 1 mm. This laborious method was chosen because these fractions 
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could not be directly cut, shredded, or crushed due to their strength. 

 Dried residue (RES*) was shredded with the Retsch SM 2000 cutter mill 

down to a size of less than 1 × 1 mm. 

 Dried fluff (FF*) was shredded with the Retsch SM 2000 cutter mill down to 

a size of less than 1 × 1 mm. 

During all operations, large amounts of pulverized dry ice (CO2,S) were added during 

handling to ensure sufficient cooling capacity and to facilitate the shredding/milling. 

Mixing and fractional mass reduction were done in the same way for all fractions by 

repeated mixing in a mechanical mixer (or by hand) and then mass-reduced with a riffle 

splitter (Rationel Kornservice RK12, Esbjerg, Denmark) until the mass required for 

chemical analysis was obtained. 

 

2.4 Chemical composition analyses (phase 3) 

Volatile solid (VS) content, chemical composition, and calorific value (higher heating 

value, HHV) were determined by standard analyses following the approach described in 

[36] specifically for solid waste material fractions. Volatile solid content was measured 

by incinerating the dried ground samples at 550 ºC in a muffle. The elements C, H, N, 

and S were analysed by elemental analysis (GE-MA M-7-1); Cl and F were analysed in 

conformance with DIN 51727 B; P was analysed by inductively coupled plasma optical 

emission spectrometry (ICP-OES) in conformance with DIN EN ISO 11885 (E22). The 

remaining metals (i.e. Fe, Al, As, Cd, Cr, Cu, Fe, Hg, Mn, Mg, Ni, Pb, Sb, and Sr) were 

analysed by ICP-MS in conformance with DIN EN ISO 17294-2 (E29). The HHVdb 

(dry basis) was determined with a calorimetric bomb in conformance with DIN 51900. 

The content of biogenic carbon (Cbiog, represented by the 
14

C content in 
12

C) was 
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analysed by accelerated mass spectrometry (AMS) in conformance with CEN/TS 

15747:2008. The theoretical methane potential of the bioliquid (Bo,th) was estimated by 

applying Buswell’s formula (Eq. 1), which provided the composition of the bioliquid in 

terms of carbohydrates, proteins, lipids, volatile fatty acids (VFA), and ethanol (EtOH) 

determined with high performance liquid chromatography (HPLC). In addition, batch 

assays were also conducted according to the procedure described in [37]. The batch 

assays were conducted in 500 mL serum bottles inoculated with digested manure from 

thermophilic digestion plants and fresh bioliquid. Tests were run in triplicates for 52 

days at 55 ºC [38]. 

EtOHVFA lipids.proteins+ .tes+carbohydra =B th  73.0373.001414960415.0,0

(1)

 
 

2.4.1 Chemical composition of the digestate 

The composition of the digestate was determined through i) SFA modelling and ii) 

chemical analyses of actual samples from full-scale anaerobic digestion of the bioliquid. 

The first approach was based on the chemical composition of the sampled bioliquid 

(BL*), assuming that heavy metals (as well as phosphorous and potassium) were 

entirely transferred to the digestate, and modelling expected dry matter degradation 

occurring during the digestion (see section 2.6 and Supporting Information, SI); the 

second approach provided instead a ‘snap-shot’ of the chemical composition based on 

actual digestate samples representing a specific point in time. Selected parameters and 

substances (e.g. dry matter (DM), volatile solids (VS), C, H, N, P, K, other metals, etc.) 

were analysed. The substances C, N, and H were analysed by Isotope Ratio Mass 

Spectrometry (ANCA-SL-GSL). The metals (including P and K) were analysed by ICP 

OES in conformance with EN 13346:2000. The measured VS, C, and N contents were 

http://www.youtube.com/watch?v=kz_egMtdnL4
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used to calculate the expected DM, C, and N degradation occurring during the anaerobic 

digestion process (see section 2.6 and SI). In addition, the analyses of the metals 

provided a set of concentration values that were compared with the SFA modelling 

results and further used as a basis for evaluating the quality of the digestate in the 

scenario of application on land (see section 3.4).  

 

2.5 Mathematical optimization model (phase 4) 

2.5.1 Application of the mathematical model 

The results of the chemical analyses provided the composition of the waste material 

fractions (BL*, HP*, SP*, TXT*, FE*, NFE*, RES*, and FF*) ex-enzymatic treatment. 

This did not include post-treatment of the solid fraction (which includes HP*, SP*, 

TXT*, FE*, NFE*, and RES*) and the fluff (FF*) to maximize bioliquid recovery. An 

optimization model has been elaborated to model the post-treatment phase; the ‘Post-

treatment’ box in Fig. 1 is thus a virtual process representing the optimum recovery 

rates (in other words, the theoretically obtainable separation between bioliquid and solid 

materials). The mathematical modelling was facilitated by the software MATLAB. The 

results of the chemical analyses (phase 3 of Table 1), along with the measured (dry) 

mass flows of BL* and SF*, were used as input to the optimization model. For the 

modelling, it was assumed that all the bioliquid (BL) mixed with the solid fraction 

(which includes HP*, SP*, TXT*, FE*, NFE*, and RES*) and with the fluff (FF*) 

should in principle end up in the dedicated bioliquid flow (BL) after post-treatment. The 

model assumed that the bioliquid composition did not change with the post-treatment (it 

is envisaged that cold water will be used and no chemicals will be added). As mentioned 

above, ideally the biomass (indicated by the biogenic carbon) should only be found in 
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the bioliquid flow. However, 100% efficiency is unrealistic as part of the biomass does 

not degrade. This translates into imposing that the concentration of Cbiog ‘tends’ towards 

zero in materials other than bioliquid (see 2.5.1 and SI); this provided a realistic 

estimate of the potential for bioliquid recovery (i.e. overall amount recoverable) along 

with mass flows and chemical composition data for the waste material fractions which 

are undergoing ‘post-treatment’ (i.e. HP, SP, TXT, FE, NFE, RES, and FF) and have 

thus been ‘cleaned’ from the bioliquid. Fig. 2 illustrates the principles of the 

optimization model. 

*Figure 2* 

 

2.5.2 Formulation of the mathematical model 

The mathematical formulation consisted of two parts: i) mass balance and ii) uncertainty 

handling. In the second part (ii) the uncertainty in the model input variables is first 

characterized by means of Probability Distribution Functions, and then it is propagated 

onto the results. A detailed description of the approach used to elaborate the 

uncertainties is reported in the Supporting Information (SI). The mass balance (i) 

consists in breaking down the total dry mass flow into bioliquid and material flow and 

determining the concentration of chemicals in the material flow. Input data are: i) the 

total (dry) waste materials flow, ii) the total chemicals flow, and iii) the bioliquid 

chemicals flow. All flows are known from sampling and analyses (Table 1). First, the 

chemical concentrations in the material flow are determined by solving, for each flow, a 

simple optimization problem. Then, the bioliquid and material component of the flow is 

calculated immediately from the chemicals (an overview of the mathematical model is 

presented in Fig. S1 of the SI). 
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The model considered N=8 waste material fractions (BL*, HP*, SP*, TXT*, FE*, 

NFE*, RES*, FF*) and K=13 major chemical elements. The major chemicals 

considered were Cfoss, Cbiog, H, S, N, F, P, Cl, K, Fe, Al, Mg and O&. The parameter O& 

aggregated oxygen and the remaining minor elements (e.g. heavy metals in traces) so 

that the sum of the twelve major chemicals (just listed) and O& added up to 100%. The 

minor elements (e.g. heavy metals in traces) were aggregated with oxygen in one 

parameter as their overall contribution to the total mass was very small (about 1%). The 

dry mass flows (named Pi) of the i=1,..,N waste material fractions were the sum of two 

components: the bioliquid component BLi and the ‘cleaned’ waste material fraction Mi 

(i.e. cleaned from bioliquid, under some constraints, which are: HP, SP, TXT, FE, NFE, 

RES, and FF as shown in Fig. 2):  

 1, ,i i iP BL M i N    (2) 

The flows Pi represented fractions of the total dry mass. Hence they are positive, with 

unitary sum: 

 1
1

0, 0 1, ,

N

ii

i i

P

BL M i N




  


 (3) 

The variables , ,ji j jiCP CBL CM  represented the concentration of the chemical j=1,..K, 

respectively within: 1) total (dry) mass flow Pi (i.e. bioliquid plus material, ex-

enzymatic treatment), 2) (dry) bioliquid flow BL, 3) and (dry) material flow Mi (cleaned 

from bioliquid). The mass balance of the j-th element in the i-th waste material was 

described as follows: 

 
ji i j i ji iCP P CBL BL CM M   (4) 

As concentrations (or ‘fractions’), they fulfilled the conditions similar to Eq. (3), i.e.: 
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'' 1

'' 1

'' 1

1 0 ,

1 0 ,

1 0 ,

K

j i jij

K

j jj

K

j i jij

CP CP i j

CBL CBL i j

CM CM i j







  

  

  







 

(5) 

Notice that 
jCBL  was denoted without i-index, as it was assumed that the chemical 

composition of the bioliquid was the same in all waste materials N=1,…,8. 

In what follows, it is presented a methodology to determine , ,i i jiBL M CM , 

given , ,i ji jP CP CBL , for all i, j. The total number of unknowns was N(K+2), whereas the 

conditions were N linear of the type of Eq. (2), and NK non-linear of the type of Eq. (4), 

for a total of N(K+1) conditions. The problem was lacking N equations, therefore it was 

underdetermined. The missing conditions were formulated based on a priori knowledge 

of the distribution of specific chemicals within the materials. In order to apply the 

earlier described methodology to the mathematical problem, selected chemicals j must 

be in common to all waste material flows. One of these chemicals was the biogenic 

carbon (Cbiog). The biogenic carbon was always among the K considered elements, and 

in theory it was expected to be found only within the bioliquid component (BLi) of the 

flows. This, in theory, should provide the N missing conditions: let 
,biog iCM  be the share 

of the biogenic carbon within the i-th waste material flow, then i.e. 
, 0biog iCM   for all 

materials i. In reality, however, small concentrations of biogenic carbon in the material 

flows are possible, as afore mentioned. Imposing strict equality conditions may not 

reflect the reality, and therefore it is likely to result in an unfeasible system of equations 

(e.g. substance balances not respected). A more robust approach would be to let 

,biog iCM  be positive, but small, namely to solve the optimization problem: 
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,

, ,
min

i ji j
biog i

P CP CBL
CM   (6) 

Subject to the constraints of Eqs. (2-5).  

Such problem is of simple solution, as it can be broken down into  independent sub-

problems, by introducing a term 0 1i   such that: 

 (1 )i i i i i iBL P M P     (7) 

And by combining Eq. (2), Eq. (4), and Eq. (7), to obtain: 

 (1 )i ji i j jiCM CBL CP     (8) 

For each material i, the i  term and the share of the chemicals 
jiCM  for all 1, ,j K , 

were obtained by solving the problem: 

 

,
0 1
min

subject to:

( 1)

1, ,

0

i
biog i

ji i j

ji

i

ji

CM

CP CBL
CM

j K

CM







 


 






 (9) 

which was a single-variable optimization framework, and it could be efficiently 

computed numerically, e.g. using  golden section search and parabolic interpolation 

[39]. The terms ,i iBL M  were then immediately derived using Eq. (7). The entire 

analysis was performed by solving Eq. (9) for every material 1, ,i N . 

The determination of the material fraction flows Mi allows calculating the higher 

heating value, dry basis, (HHVdb) of the waste material fractions Mi as of post-treatment 

(i.e. ‘cleaned’ from bioliquid) according to Eq. (10). 

 

                                                                    

(10) 

N

BLdbiMdbiPdbi HHVBLHHVMHHVP
ii ,,, 
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Where the only unknown is HHVdb,Mi (MJ kg DM
-1

). Both HHVdb,Pi  and HHVdb,BL are 

known from analyses (Table 2). 

 

2.6 Material, substance, and energy flow analysis (phase 5) 

The results of the mathematical optimization model (BLi, Mi, and CMji) were used as 

inventory for the MFA, SFA, and EFA of the waste refinery process. This was 

facilitated by the software STAN [40]. The MFA encompasses the waste refinery 

process itself (including the modelled post-treatment) and downstream material 

separation and energy conversion (i.e. anaerobic digestion of the bioliquid and 

incineration of the residual solids). A thorough description of the assumptions and input 

data used in the MFA, SFA, and EFA (in addition to the results of the mathematical 

model) can be found in the SI (i.e. transfer coefficients of DM and chemicals to flue gas 

and biogas, methane yield and energy conversion efficiencies for biogas conversion and 

incineration).  

 

2.7 Cost analysis 

A cost analysis was performed to compare the waste refinery-based system with direct 

incineration. The geographical and temporal scope of the analysis was Denmark, year 

2013. The analysis included costs for collection, treatment, and disposal of residues, 

including eventual revenues associated with sales of electricity, heat, and recyclables as 

well as national taxes and subsidies. Externalities were not included.  

The following two scenarios were assessed: A) collection of all municipal 

household waste without source segregation and waste refinery treatment (CHP 

production from the bioliquid-biogas and incineration of the residual solids fraction for 
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CHP production; separation and recycling of hard plastic and metals). B) Collection of 

all municipal household waste without source segregation and direct incineration for 

CHP production.  

The price for electricity and heat was based on current Danish sale market prices 

(0.035 and 0.042 € kWh
-1

, respectively). For recyclables and enzymes, they were based 

on recent World market trends (see SI). Notice that the Danish national CO2 tax on 

incineration (ca. 22.3 € Mg
-1 

CO2 emitted), on heat produced from incineration (ca. 8 € 

GJ
-1 

heat sold), and the national subsidy for biogas-electricity (ca. 0.047 € kWh
-1

) were 

included in the analysis.  

Three sensitivity analyses were performed to test: S1) the influence of heat and 

electricity prices (and related revenues) on the total cost; S2) the influence of hard 

plastic management on the total cost; S3) the influence of the electricity recovery 

efficiency at the incinerator. A detailed description of the background data used for the 

analysis, of the calculation of treatment and collection costs, and of the sensitivity 

analyses is reported in the SI. Results are discussed in section 3.6.  

 

3. Results and discussion 

3.1 Chemical composition 

The chemical composition of the input waste to the facility was determined based on 

substance balance calculation from the chemical composition of the individual waste 

material fractions sampled (Table 2). For the purpose of comparison, the chemical 

composition of the rMSW as determined by [35] for Danish households is also reported. 

The concentration of organic substances such as carbon, hydrogen, nitrogen, 

phosphorous, potassium, fluoride, chloride, iron, aluminium, and magnesium was very 



 

20 
 

close to the values reported in the literature. This was also true for the higher and lower 

heating values on a dry basis (HHVdb and LHVdb). The content of fossil carbon (37% of 

the total C, i.e. 63% of the total C was of biogenic origin) was in accordance with the 

measurements carried out at a range of Danish full-scale waste incinerators treating 

similar waste [41]. However, except for nickel, the concentration of the other heavy 

metals in the input waste was found to be significantly lower than in [42] and in similar 

studies on MSW [43]. The most likely reasons for these differences are: i) differences in 

waste composition (the analysed waste is only representative of a specific residential 

area with a specific collection system) and ii) the intrinsic difficulties in representative 

sampling of heavy metals. In this respect, findings from [44] suggest that analyses of 

heavy metal contents in waste can be more accurate if the grain size of the samples is 

reduced to below 0.5 mm. It is likely that the concentrations of these metals were 

therefore underestimated. However, this did not affect the modelling results as, overall, 

these chemicals contribute only a small quantity (about 1–2%) to the total mass. The 

composition of the waste material fractions as calculated by the mathematical model 

(i.e. after ‘virtual’ post-treatment) is reported in Table 2. This clearly differed from the 

chemical composition of the waste materials as sampled since it was calculated 

assuming a ‘virtual cleaning’ of the bioliquid fraction (Fig. 2). The major differences lie 

in the content of organic substances (C, H, N, P, K, Cl, F, Al, Fe, Mg) as their presence 

in the sampled waste materials was due to the contamination with unseparated bioliquid. 

The results of the batch assays indicated an average methane potential of the 

bioliquid of 443 NL CH4 kg
-1

 VS (±21 NL CH4 kg
-1

 VS) [38]. This is in accordance 

with the theoretical value (445 NL CH4 kg
-1

 VS) calculated with Buswell’s formula (Eq. 

1) based on the measured content of carbohydrates, proteins, lipids, VFA, and ethanol in 
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the bioliquid (see values in the footnote of Table 2). Notice that the CH4 production 

measured in full-scale tests (365 NL kg
-1

 VS, as mentioned earlier) corresponded to a 

yield of about 82%. Yet, based on Buswell’s formula, the stoichiometric ratio of CH4 to 

CO2 in the biogas can be quantified (0.52, volume basis). 

*Table 2* 

 

3.2 Material and energy flows 

The material and energy flows are reported in Fig. 3. Uncertainties related to relevant 

flows are mentioned in brackets (e.g. ± ‘value’) as standard deviations of the mean 

values. Notice that the values reported in the text are expressed per 1 Mg dw (dry 

weight), unless otherwise specified.  

All in all, more than half of the dry matter (56%) can potentially be recovered 

into the bioliquid (BL) flow as liquefied organic and paper material (see Fig. 3). This 

embedded 8.9 GJ of primary energy (based on LHVdb), of which about 70% could be 

transferred to methane (6.2 GJ) based on a yield of 82% relative to the measured 

methane potential. This resulted in an ultimate recovery of 690 kWh (±120) of 

electricity and 3,100 (±540) MJ of heat (Fig. 3). If the focus is on optimizing biogas 

production from a unit-input of mixed MSW, then the overall potential is significantly 

increased compared with other pre-treatment technologies that only separate the organic 

fraction such as MBT. The reasons for this are: 1) not only organic waste, but also paper 

and cardboard are used (in the form of bioliquid) for biogas production, thus increasing 

the total production per unit of waste input; 2) the higher methane potential and 

associated yield of the liquefied paper and cardboard in the bioliquid (ca. 365 NL CH4 
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kg
-1

 VS corresponding to 310 NL CH4 kg
-1

 DM) compared with typical yields (ca. 150 

NL CH4 kg
-1

 VS) for non pre-treated paper and cardboard [45]; 3) The biogas-energy 

production in MBT may be limited by low quality of the organic substrate separated as 

illustrated in [46,47]. Notice that our results concerning dry matter recovery into the 

bioliquid are largely in agreement with the findings of [32].  

The hard plastic and soft plastic items (HP and SP) constituted about 8% and 

9%, respectively, of the total dry weight. The energy content equalled 2.8 and 2.6 GJ, 

respectively. Textiles (TXT) represented 7.6% of the dry weight, carrying 1.3 GJ of 

primary energy. Ferrous (FE) and non-ferrous (NFE) materials made up 4.1% and 2.4% 

of the total dry weight, respectively, adding up to ca. 0.95 GJ of primary energy. The 

residue represented about 12% of the overall dry matter, embedding about 2 GJ. Lastly, 

the amount of fluff (FF) screened prior to digestion of the bioliquid was ca. 0.4% of the 

total dry weight, containing about 0.0042 GJ. Based on the results, the total amount of 

primary energy contained in the residual solids (consisting of SP, TXT, and RES) and 

potentially available for combustion was 5.9 GJ, corresponding to a LHVdb of about 21 

GJ Mg
-1

 DM. This resulted in a gross recovery of 410 (±88) kWh Mg
-1

 DM of 

electricity and 4,400 (±950) MJ Mg
-1

 DM of heat. If HP was incinerated (instead of 

separated and recovered), the primary energy available for combustion would be raised 

to ca. 8.7 GJ, corresponding to a LHVdb of about 24 GJ Mg
-1

 DM. This would equal a 

production of ca. 600 (±100) kWh Mg
-1

 DM of electricity and 6,500 (±1,100) MJ Mg
-1

 

DM of heat, and these values are 46% higher compared with the scenario involving HP 

separation. However, incineration of this fraction would also induce additional direct 

CO2 emissions at the stack (see section 3.3). 

As previously discussed (section 2.2), the contribution of the enzymes to the 
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total mass flow was ca. 0.4% (i.e. negligible compared with the total waste flow). 

*Fig. 3* 

3.3 Substance flows 

The substance flows for C, Cfoss, N, P, K, Fe, and Al are illustrated in Figs. 4–6. These 

are the most important substances with respect to biogas (C), nutrients (N, P, and K), 

and materials recovery (Fe, Al, and Cfoss for plastic). Heavy metals flows (e.g. Cd, Ni, 

Pb, Cu, etc.) are also important for the use on land of the digestate left from anaerobic 

digestion. In this respect, ad hoc characterization of the digestate was performed (see 

section 3.4). Notice that the values reported in the text are expressed per 1 Mg dw, 

unless otherwise specified.  

Most of the carbon (Fig. 4) was found in the bioliquid flow (240 kg), of which 

almost 100% was biogenic carbon (Fig. 4). Based on the mass balances detailed in the 

SI (Eqs. S2–S5), about 75% of this carbon was biogasified during anaerobic digestion, 

which reduced the carbon left in the digestate to about 60 kg. As discussed earlier, 

ideally, all the biogenic carbon should be found in the bioliquid flow. However, this is 

unrealistic as part of the biomass does not liquefy. Based on the results (Fig. 4), it can 

be estimated that the technical potential recovery (i.e. biogenic carbon in the bioliquid 

flow over the total biogenic carbon in the waste input) may be as high as ca. 81% 

(±11%) of the theoretical maximum (i.e. the total biogenic carbon found in the input 

waste), and that the remaining biomass can mainly be found in the flows of textiles, 

residue, soft plastic, and fluff. The contamination of these materials from the biomass 

can be seen from Table 2 based on the presence of biogenic carbon. In fact, it is largely 

expectable that part of the textiles, even if of biogenic origin, is not entirely liquefied. 

The residue flow, as defined in section 2.2, contains partially- and non-degraded organic 
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materials (e.g. shells, peels). Further, part of the biomass may still be stuck to plastic 

bags or found into unopened bags (there was no shredding in the process). Finally, fluff 

contains, among the others, cotton and textiles (thus partly composed of undegraded 

biomass). 

Significant fossil carbon flows (Fig. 4) were embedded into HP (65 kg), SP (49 

kg), and residue (40 kg). Overall, under the assumption that hard plastic was separated 

and recovered, 95 kg of ‘residual’ fossil carbon were incinerated, corresponding to a 

direct emission of ca. 350 kg CO2. In other words, sorting and recovery of HP avoided 

ca. 240 kg of direct CO2 emission. Additional direct CO2 emission savings may be 

achieved by separating and recovering SP (potential: 180 kg CO2) and eventually other 

plastic items found in the residue.  

As mentioned in section 2.2, enzymes were added in the process and therefore 

the analyzed carbon flows also included the contribution from the enzymes added. 

However, as reported in section 2.2, this contribution can be reasonably neglected as it 

is very small compared with the total waste flow. In terms of carbon, the contribution 

from the added enzymes corresponded to ca. 0.5% of the total carbon and to ca. 0.83% 

of the total biogenic carbon (based on a carbon content of the enzymes equal to 62%, 

dry basis). 

About 85% of the nitrogen (i.e. 11 kg) was found in the bioliquid flow (Fig. 5), 

of which 87% (i.e. 9.7 kg) ended up in the digestate. A minor amount of nitrogen was 

also found in the residue, textiles, and soft plastic sent for incineration (overall ca. 0.8 

kg) and in the biogas (1.4 kg). The phosphorous (Fig. 5) was primarily collected in the 

bioliquid flow (about 1.4 kg, that is, 83% of the total), although a share was incinerated 

through textiles, residue, and SP (overall 0.33 kg). As for N and P, the K (Fig. 5) was 
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also recovered mainly in the bioliquid flow (about 3.9 kg, i.e. 89% of the total). 

As expected, almost all of the iron (Fe) and aluminium (Al) were found, 

respectively, in the ferrous (about 33 kg, i.e. 85% of the total) and non-ferrous (about 17 

kg, i.e. 77% of the total) material flows (Fig. 6). Both ferrous and non-ferrous materials 

contained Fe and Al. Iron and aluminium were also found to a minor extent in residue 

and bioliquid flows. 

*Fig. 4* 

*Fig. 5* 

*Fig. 6* 

3.4 Characterization of the digestate 

The quality of the digestate left after anaerobic digestion is of particular concern 

because of the opportunity to apply this product on agricultural land, thereby recycling 

the nutrients (N, P, and K). This management strategy, however, is strongly dependent 

on the content of heavy metals and other hazardous chemicals (e.g. PAH, phthalates, 

etc.), which might constitute an impediment to use on land. Table 3 illustrates the 

results of the two approaches used to characterize the digestate (section 2.4.1). In 

addition, the Danish limit values for application of digestate on land [48] and selected 

literature values illustrating the typical composition of digestate obtained from 

processing source-segregated organic waste [49,50] are reported for the purpose of 

comparison.  

The analytical concentrations of most of the assessed chemicals (C, N, P, K, Fe, 

Al, Sr, Mn, Mg, Cr, Ni, Hg, Pb) were similar to the corresponding modelled SFA 

results. Some differences were found for Fe, Cu, and Cd, whose modelled 
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concentrations were slightly lower than the analysed values. For heavy metals, the 

results of the analyses showed that the concentrations of Cd and Ni exceeded the 

selected limit values (mg per kg of total P). For Ni, this was also confirmed by the SFA 

results. The concentration of the other heavy metals (e.g. Cr, Cu, Pb, etc.) was within 

the limits. However, as highlighted in Table 3, these were generally in the upper end of 

the range of literature values for source-segregated household waste. This was an 

expected result as the assessed digestate originated from treatment of household rMSW 

where the biogenic fractions (e.g. organics, paper, and cardboard) were enzymatically 

and mechanically separated from the non-degradable solids; this process may intuitively 

lead to a higher metal contamination of the bioliquid substrate compared with 

processing source-segregated organic and paper. In addition, the concentration of DEHP 

(diethylhexyl phthalate) exceeded the corresponding limit and the sum of nonylphenols 

was close to the relative limit value. These results suggest that the quality of the 

digestate may not comply with selected criteria for application on land. This, however, 

depends on the specific legislation and on the type of waste treated. Notice that these 

results find a large correspondence in the environmental impacts associated with 

digestate on land application evaluated by parallel life-cycle assessment studies 

performed on the same waste refinery process [6]. Alternative solutions to direct on land  

application may be: i) co-digestion of the bioliquid with raw manure with further 

application of the digestate on land, ii) incineration of the digestate, and iii) post-

composting of the digestate and disposal in landfill. The first allows for recycling of the 

nutrients, although the decreased concentration of metals and DEHP would only be an 

effect of dilution and the overall load would remain unchanged. The second and third 

prevent loading of the agricultural soil with metals and DEHP; however, this would 
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induce losses of nutrients (even though it is envisioned that P will potentially be 

recovered from bottom ash) and additional energy consumption (for dewatering and 

drying). 

*Table 3*  

3.5 Uncertainties 

As thoroughly detailed in the SI, the estimation of the uncertainties focused on the 

observed daily variation of the waste material fraction flows and on the uncertainty 

associated with the chemical analyses. Generally, the first was significantly higher than 

the second, thus determining the overall uncertainty of most of the assessed flows. The 

observed variations associated with the waste material fractions ranged from ±38% (of 

the mean value) for textile to ±56% for ferrous materials. These daily variations most 

likely were a consequence of variations in operational conditions of plant and thereby 

represent a "natural" variability in the output flows. The variations were included in the 

material, substance, and energy flow modelling as uncertainties related to the flows and 

thereby also applied to the energy layer (as no uncertainty was considered for the 

heating value). At the substance level, most uncertainties were affected by the variation 

in the waste material fraction flows, as mentioned above. As shown in Figs. 3–6, the 

largest uncertainties were generally associated with the minor flows (e.g. P non-ferrous 

materials and soft plastic, K in residue, N in textiles, carbon in air pollution control 

residue, i.e. APC). S Significant uncertainties were found in the liquid fraction 

recirculation flow of fossil C (Fig. 4), Fe and Al (Fig. 6). The remaining uncertainties 

were of the order of ±6 to ±69% of the mean value. The uncertainty associated with the 

energy flows of biogas and flue gas was close to ±20%. For carbon flows, the 
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uncertainties ranged from about ±16% (C in the biogas flow) to ±68% (C in the ferrous 

materials). For phosphorous the uncertainty ranged between ±13% (P in the digestate) 

and ±58% (P in ferrous materials and hard plastic). The slightly lower flow of P in the 

digestate compared with the other nutrients (N and K) may be the result of sampling and 

modelling uncertainties.  

While the uncertainties associated with the analytical procedures were generally 

very low compared with the observed variations in material flows, the sampling 

procedure was designed to minimize the uncertainties associated with the material 

composition by involving a large number of small sub-samples which were then 

combined before analysis. This procedure follows standard practices within sampling of 

solid materials such as ash waste (e.g.[51]). Further reduction of uncertainties associated 

with the output flows could be reached by extending the sampling period, i.e. involving 

more than the four days included in this study. While this would have been preferable, 

extending the sampling period should however be balanced by the need for a period of 

"stable" operation and comparable conditions. In this case, the four days were selected 

as a reasonable compromise between these two aspects. It should be noted that the 

recirculation flow (and associated chemical concentrations) was calculated by the 

STAN software based on the mass balance of the output flows. The uncertainties related 

to this flow could potentially be reduced by direct chemical analysis of the flow. 

However, as the recirculation flow represented a further optimization of the process, 

including additional washing and post-treatment, this flow could only be modelled and 

not analysed. 
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3.6 Cost analysis results 

The results of the cost analysis for the Danish case study (Table 4) highlighted that the 

cost of the waste refinery solution (ca. 51 € Mg
-1

 ww) appeared slightly higher but, 

overall, comparable with the (direct) incineration alternative (ca. 48 € Mg
-1

 ww). The 

collection cost (ca. 36 € t
-1

 ww) would be exactly the same as for incineration if no 

source segregation was implemented in the system (which is the case for scenarios A 

and B). The total cost of the waste management systems was estimated to ca. 84 (waste 

refinery scenario) - 87 (incineration scenario) € Mg
-1

 ww. 

As documented in the SI, the costs are only slightly affected by heat and 

electricity price (sensitivity S1): lower heat revenues (e.g. 10-20 € MWh
-1

) would 

increase the cost of incineration (and thus of scenario B) making the total cost of the 

waste refinery solution (scenario A) equal to that of the alternative (see Table 4 and 

Table S9). In other words, the total costs for the waste refinery would be decreased in a 

context where the revenues for the electricity sold are higher than those for the heat sold 

(as the total electricity recovered is higher than that of direct incineration, but the heat 

recovered slightly lower). With this respect, the Danish market represents a particular 

case as heat revenues for incineration are significantly high compared with other 

European Countries.  

Lower electricity recovery efficiency at the incinerator may also change the final 

cost making the waste refinery scenario overall preferable to the alternative (Table 4, 

sensitivity S3). In addition, hard plastic incineration (instead of recycling) also brought 

slightly higher revenues for the waste refinery solution (Table 4, sensitivity S2) 

indicating that, economically, incineration appeared preferable to recycling. 

It has to be noted that when including the national subsidy for biogas-electricity, 
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the net cost for organic waste digestion was negative (i.e. net gaining) under the 

assumptions taken for electricity and heat recovery (see SI). This does not mean the 

plant actually gains money: en fact, these plants typically co-digest organic waste with 

manure which represents the bigger portion (ca. 80-90% of the total input, mass basis) 

and which dramatically decreases the overall energy production (thus raising costs) due 

to its extremely low dry matter content. 

  

3.7 Perspectives on technology optimization potentials 

Overall, the modelling results showed that about 81-89% of the nutrients could 

potentially be recovered in the bioliquid flow with the current technology set-up. 

However, still 11-19% of the total biomass input (i.e. organic waste, paper, cardboard, 

biogenic textiles, etc.) was found in the solids flow (mainly in the residue namely 

“RES”). This lost portion of biomass, although partly not liquefiable (e.g. fruit shells) 

and thus not recoverable as bioliquid, could be further decreased by improved 

enzymatic treatment (longer retention time, or optimized enzymes mix) in order to 

optimize the overall degradation of the biomass and to facilitate its further separation 

from the remaining solids. To this respect, the role of the post-treatment (here only 

modelled) will also be fundamental in order to maximize the separation bioliquid-solids 

and thus the total recovery of bioenergy. Further, in the broader perspective of 

maximizing the overall environmental performance of the technology, separation and 

recovery of ferrous, non ferrous, and eventually plastic materials for recycling and 

substitution of virgin products will also be important as documented in other studies 

[6,7]. Additional energy recovery through combustion of the non-recyclable materials 

such as residue, textile, fluff, and (eventually) soft plastic may also contribute to further 
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increase the overall environmental and energy savings by avoiding energy production 

from more polluting fossil sources (e.g. coal or oil), especially with respect to the GHG 

and SOx emissions.  

All in all, the integration of materials, bioenergy (from bioliquid), and energy 

(from residual solids) recovery could make the performance of this technology 

comparable (or better) to the best available state-of-the-art waste technologies [6,7]. 

 

4. Conclusion 

A waste refinery may recover ca. 56% of the initial DM as bioliquid, yielding 6.2 GJ of 

biogas-energy from 1 Mg MSW dw, corresponding to 690 kWh electricity and 3,100 

MJ heat. The residual solids contained about 5.9 GJ to be incinerated for additional 

energy recovery. Metals and plastic recovery may provide additional environmental 

benefits. The potential for recovery of nutrients and carbon in the digestate was 

estimated to be between 81% and 89% of the input. However, the quality of the 

digestate may be critical for use on land. Alternatives such as incineration, landfilling, 

or co-digestion may be possible solutions. Considering the potential variability of local 

revenues for energy outputs, the costs for the waste refinery solution appeared 

comparable with alternatives such as direct incineration. 

 

Supporting Information (SI) 

Additional information on mathematical elaboration of the uncertainties, MFA, SFA, 

EFA modelling, and cost analysis is available free of charge via the Internet at 

http://www.sciencedirect.com. 
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Table 1. Overview of the methods (with associated inputs and outputs) used in the 5 phases that constitute the basis of this study. BL: bioliquid; EFA: energy flow analysis; 

FE: ferrous material; FF: fluff; HP: hard plastic; MFA: material flow analysis; MSW: municipal solid waste; NFE: non-ferrous material; RES: solid residue; SFA: substance 

flow analysis; SP: soft plastic; TXT: textiles; *sampled waste material fractions. 

Phase Input Method Output 

1 
MSW undergoing heating, enzymatic treatment and 

seaving at the waste refinery pilot-scale plant. 

On-field sampling (BL*, FF*, SF*) and hand-

sorting of 6 selected material fractions from the 

sampled SF*: HP*, SP*, TXT*, FE*, NFE*, RES*. 

Representative samples of 8 waste material 

fractions: BL*, HP*, SP*, TXT*, FE*, NFE*, FF*, 

RES*. Related mass flows were also quantified. 

2 
Representative samples of 8 waste material fractions: 

BL*, HP*, SP*, TXT*, FE*, NFE*, FF*, RES*. 

Samples preparation: drying, shredding, mixing, 

splitting, etc. 

Dried powdered samples prepared for chemical 

analyses. 

3 
Dried powdered samples prepared for chemical 

analyses. 
Chemical analyses. 

Results of chemical analyses for BL*, HP*, SP*, 

TXT*, FE*, NFE*, FF*, RES*. 

4 
Mass flows and results of chemical analyses for BL*, 

HP*, SP*, TXT*, FE*, NFE*, FF*, RES*.  

Mathematical optimization to model ‘virtual’ post-

treatment. 

Re-calculated mass flows and chemical composition 

of HP, SP, TXT, FE, NFE, FF and RES. Estimation 

of potential for BL recovery. 

5 

Results of the mathematical optimization model and 

of laboratory analyses (e.g. methane potential, 

digestate composition
α
, etc.). 

MFA, SFA, and EFA. 

Mass, substance, and energy flows within the waste 

refinery process including post-treatment and 

downstream energy and materials recovery 

processes. Cost analysis based on MFA/EFA flows. 
α Digestate samples representing a specific point in time were collected from a full-scale digester to evaluate the quality of the digestate obtained from bioliquid digestion.



Table 2. Chemical composition of the sampled (*) and modeled waste material fractions (kg kg
-1

 DM except for HHVdb and LHVdb that are expressed as MJ kg
-1

 DM). BL: 

bioliquid; FE: ferrous material; FF: fluff; HP: hard plastic; NFE: non-ferrous material; RES: solid residue; SP: soft plastic; TXT: textiles; T/R: ratio between the total amount 

of the selected chemical in this study and in [18]; μ: share of the total DM. σ: standard deviation of μ (e.g. the share of HP* on the total DM is 10% ±2.8%). O&: sum of 

oxygen and (aggregated) heavy metals in traces (see SI); agg.: aggregated in O&; n.r.: not reported. Eventual inconsistencies are due to rounding (values rounded to 2 

significant digits). 

 

BL* (BL) HP* HP SP* SP TXT* TXT FE* FE NFE* NFE RES* RES FF* FF TOTAL T/R 

μ 9.0E-02α 1.0E-01 8.2E-02 2.1E-01 9.0E-02 1.7E-01 7.6E-02 5.0E-02 4.1E-02 2.8E-02 2.4E-02 3.5E-01 1.2E-01 9.1E-03 4.0E-03 1.0E+00 1.0 

σ 4.1E-02 2.8E-02 2.3E-02 7.6E-02 3.4E-02 4.4E-02 2.1E-02 2.8E-02 2.3E-02 1.4E-02 1.2E-02 1.3E-01 4.7E-02 4.1E-04 2.2E-04 - n.r. 

Cbiog 4.2E-01 9.4E-02 2.0E-02 3.0E-01 1.4E-01 4.0E-01 3.7E-01 8.7E-02 1.7E-02 1.2E-01 2.0E-05 3.1E-01 1.1E-01 3.7E-01 3.0E-01 2.9E-01 1.0 

Cfoss 8.3E-03 6.4E-01 7.8E-01 2.4E-01 5.4E-01 3.9E-02 7.6E-02 5.3E-02 6.2E-02 2.9E-02 1.8E-02 1.2E-01 3.2E-01 7.0E-02 1.5E-01 1.7E-01 1.3 

H 5.1E-02 1.1E-01 1.2E-01 8.1E-02 1.2E-01 6.2E-02 7.5E-02 4.5E-02 4.4E-02 3.2E-02 2.8E-02 6.0E-02 7.6E-02 6.7E-02 8.7E-02 6.7E-02 1.1 

S 1.0E-03 1.0E-03 1.0E-03 1.0E-03 1.0E-03 1.0E-03 1.0E-03 1.0E-03 1.0E-03 1.0E-03 1.0E-03 1.0E-03 1.0E-03 1.0E-03 1.0E-03 1.0E-03 0.72 

N 2.0E-02 3.7E-03 2.3E-06 1.2E-02 1.9E-03 1.1E-02 3.9E-04 5.0E-03 1.9E-03 2.3E-02 2.4E-02 1.4E-02 3.1E-03 3.6E-02 5.6E-02 1.3E-02 1.0 

F 1.8E-04 7.0E-05 4.5E-05 1.2E-04 4.4E-05 1.1E-04 2.8E-05 9.0E-05 7.1E-05 1.2E-04 1.1E-04 1.2E-04 1.1E-05 1.5E-04 1.1E-04 1.2E-04 0.9 

P 2.5E-03 4.8E-04 2.2E-05 1.4E-03 1.1E-05 1.7E-03 7.6E-04 5.1E-04 9.4E-05 6.9E-04 3.5E-04 2.4E-03 2.2E-03 1.9E-03 1.2E-03 1.7E-03 0.84 

Cl 1.1E-02 2.2E-03 2.1E-04 1.6E-02 2.2E-02 6.0E-03 1.4E-04 1.9E-03 8.9E-07 2.2E-03 5.3E-04 8.5E-03 4.0E-03 6.1E-03 1.5E-06 8.7E-03 1.0 

K 7.0E-03 1.5E-03 2.5E-04 5.0E-03 2.5E-03 5.1E-03 2.9E-03 1.3E-03 1.3E-04 1.7E-03 7.0E-04 4.5E-03 4.7E-05 6.0E-03 4.7E-03 4.4E-03 1.0 

Fe 1.7E-03 1.7E-03 1.7E-03 2.1E-03 2.5E-03 1.9E-03 2.2E-03 6.7E-01 8.1E-01 1.1E-01 1.3E-01 3.4E-03 6.5E-03 3.8E-03 6.4E-03 3.9E-02 1.4 

Al 3.0E-03 1.2E-03 8.1E-04 2.1E-03 8.8E-04 2.4E-03 1.7E-03 2.3E-02 2.8E-02 6.0E-01 7.1E-01 7.0E-03 1.4E-02 3.7E-03 4.6E-03 2.2E-02 0.94 

Cd 1.8E-07 1.0E-07 agg. 1.1E-07 agg. 1.7E-07 agg. 1.0E-07 agg. 1.1E-07 agg. 1.1E-07 agg. 1.3E-07 agg. 1.2E-07 0.02 

Cr 1.9E-05 1.3E-05  agg. 1.3E-05  agg. 8.3E-06  agg. 2.3E-04  agg. 1.7E-04  agg. 1.7E-05  agg. 1.2E-05  agg. 2.9E-05 0.3 

Cu 3.5E-05 1.2E-05  agg. 7.5E-05  agg. 3.6E-05  agg. 1.3E-04  agg. 6.7E-04  agg. 4.8E-05  agg. 2.7E-05  agg. 6.8E-05 0.1 

Ni 1.2E-05 5.7E-06  agg. 4.7E-06  agg. 4.2E-06  agg. 3.3E-04  agg. 2.2E-04  agg. 2.4E-05  agg. 5.3E-06  agg. 3.4E-05 0.71 

Sr 1.0E-04 2.0E-05  agg. 6.0E-05  agg. 6.2E-05  agg. 1.2E-04  agg. 2.1E-05  agg. 6.7E-05  agg. 1.0E-04  agg. 6.5E-05 n.r. 

Mn 8.0E-05 3.4E-05 agg. 4.6E-05 agg. 6.4E-05 agg. 1.9E-03 agg. 5.4E-03 agg. 5.6E-03 agg. 7.3E-05 agg. 2.3E-03 6.9 

Mg 2.2E-03 7.1E-04 3.6E-04 1.3E-03 5.7E-05 1.3E-03 1.6E-04 1.3E-03 1.1E-03 9.6E-03 1.1E-02 1.8E-03 1.0E-03 2.5E-03 2.8E-03 1.7E-03 1.1 

As 1.4E-06 1.0E-06  agg. 1.0E-06  agg. 1.0E-06  agg. 1.1E-05  agg. 2.5E-06  agg. 1.0E-06  agg. 1.4E-06  agg. 1.6E-06 0.2 

Hg 1.0E-07 1.0E-07  agg. 1.0E-07  agg. 1.0E-07  agg. 1.0E-07  agg. 1.0E-07  agg. 1.0E-07  agg. 5.0E-07  agg. 1.0E-07 0.04 

Pb 1.2E-05 2.2E-05  agg. 7.6E-06  agg. 8.0E-06  agg. 4.7E-06  agg. 1.3E-05  agg. 1.2E-05  agg. 2.3E-04  agg. 1.3E-05 0.06 

Sb 1.4E-06 3.5E-05  agg. 1.0E-06  agg. 6.7E-06  agg. 3.8E-06  agg. 1.0E-06  agg. 1.5E-06  agg. 1.0E-06  agg. 5.7E-06 n.r. 

O& 4.7E-01 1.4E-01 6.9E-02 3.4E-01 1.7E-01 4.7E-01 4.7E-01 1.1E-01 3.8E-02 6.8E-02 7.0E-02 4.6E-01 4.6E-01 4.3E-01 3.8E-01 3.8E-01 n.r. 

HHVdb 17 33 37 23 31 18 19 11 9.3 25 26 17 18 15 13 20 1.1 

LHVdb 16 31 34 21 28 17 18 9.6 8.3 24 26 16 16 14 11 19 1.0 

For the sampled bioliquid (BL*), the DM content was 20%. The VS was 85% (of DM). Carbohydrates, lipids, proteins, VFA and ethanol were (% VS): 85, 2.8, 1.9 and 2.2. 

α The share of BL on the total dry mass flow equaled 5.6E-01 after summing the individual contributions from the remaining waste material fractions undergoing post-treatment (Figs. 2-3).



Table 3. Modeled and analysed concentrations of selected chemicals in the digestate from bioliquid digestion 

and in selected digests from source-separated organic waste processing. The values are expressed as mg kg
-1

 

DM (except for DM, VS, C and N which are expressed as % DM). * Dewatered sample. DG: digestate; n.d.: not 

detected; n.m.: not modelled; n.a.: not analysed; n.r.: not reported. PAH: sum of polyaromatic hydrocarbons; 

DEHP: diethylhexyl phthalate; LAS:  linear alkylbenzene sulfonate; NPs: sum of nonylphenols. Eventual 

inconsistencies are due to rounding (values rounded to 2 significant digits). 

Chemical DG (model) DG (analysis) DG (analysis)* [29] [29] [30] [28] η [28] θ 

DM n.m. 4.2 ±0.1 16 44 2.7 1-2 n.r. n.r. 

VS n.m. 59 59 n.r. n.r. 65 n.r. n.r. 

C 28 ±8 28 29 n.r. n.r. 39  n.r. n.r. 

H n.m. n.a. n.a. n.r. n.r. n.r. n.r. n.r. 

S 2,600 ±700  5,600 6,000 n.r. n.r. 5,000  n.r. n.r. 

N 4.6 ±1.2 4.6 ±0.14 n.a. n.r. n.r. 3.5  n.r. n.r. 

F 470 ±130 n.a. n.a. n.r. n.r. n.r. n.r. n.r. 

P  6,600 ±1,700 6,400 ±900 6,000 n.r. 7,963 9,000 n.r. n.r. 

Cl 29,000 ±7,600 n.a. n.a. n.r. n.r. n.r. n.r. n.r. 

K  18,000 ±5,000 21,000 7,800 n.r. n.r. n.r.  n.r. n.r. 

Fe  5,000 ±150 17,000 20,000 n.r. n.r. n.r.  n.r. n.r. 

Al 8,000 ±2,200 8,100 11,000 n.r. n.r. n.r.  n.r. n.r. 

Cd 0.47 ±0.12ε 0.75 ±0.029α 0.70β 0.76 0.95 0.3-0.7 0.8 100 

Cr 50 ±13 53  ±2.5 57  n.r. 9.9 n.r.  100  n.r. 

Cu 92 ±24 120 ±5.9 130  n.r. 76 45-125 1,000 n.r. 

Ni  32 ±8.3ζ 30 ±2.7γ 30δ 16 10.7 8-28 30 2,500 

Sr 260 ±70 270 270 n.r. n.r. n.r. n.r. n.r. 

Mn 210 ±55 370 400  n.r. n.r. n.r.  n.r.  n.r. 

Mg  5,800 ±1,500 6,300 4,000 n.r. n.r. 8,000-11,000  n.r. n.r. 

As 3.7 ±1.0 9.3 10 n.r. n.r. n.r.  n.r. n.r. 

Hg 0.26 ±0.069 0.3 n.a. 0.42 0.24 n.r.  0.8 200 

Pb 32 ±8.3 27 ±3.3 18 54 17 10-60 120 10,000 

Sb n.d. n.d. n.d. n.r. n.r. n.r. n.r. n.r. 

Zn n.m. 880 ±110 850 205 339 150-300 4,000 n.r. 

Co n.m. 3.9 4.6 n.r. n.r. n.r.  n.r. n.r. 

PAH n.m. 1.5 n.a. n.r. 0.47 n.r.  3 n.r. 

DEHP n.m. 75 ±1 n.a. n.r. 61 n.r.  50 n.r. 

LAS n.m. 130 n.a. n.r. 100 n.r.  1,300 n.r. 

NPs n.m. 9.6 ±0.35 n.a. n.r. 5.3 n.r.  10 n.r. 

α Corresponding to 120 mg kg-1 P (limit 100, see [28]θ). β Corresponding to 110 mg kg-1 P (limit 100, see [28]θ). γ 

Corresponding to 4,700 mg kg-1 P (limit 2,500, see [28]θ). δ Corresponding to 5,000 mg kg-1 P (limit 2,500, see [28]θ). ε 

Corresponding to 78 ±53 mg kg-1 P (limit 100, see [28]θ). ζ Corresponding to 5,300 ±2,700 mg kg-1 P (limit 2,500, see [28]θ). 

η Limit from [28] expressed as mg kg-1 DM. θ Limit from [28] expressed as mg kg-1 P. 

  



Table 4. Total cost (€ Mg
-1

 ww) of the waste management system for scenarios A and B. AD: anaerobic 

digestion; INC: incineration; S1: sensitivity 1 (heat price set to 10 € GJ
-1

 heat, as an example); S2: sensitivity 2 

(hard plastic HP incinerated instead of recycled); S3: sensitivity 3 (incineration electricity recovery efficiency 

set to 20%, instead of 25%, for both scenario B and A). Values rounded to 2 significant digits. 

Scenario Collection 

Treatment 

Total 

WR AD INC 

A 36 55 -11 7 87 

B 36   48 84 

A (S1) 36 50 4 13 103 

B (S1) 36   67 103 

A (S2) 36 58 -11 2 85 

B (S2) 36   48 84 

A (S3) 36 54 -11 9 88 

B (S3) 36   53 89 
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Fig. 1. Illustration of the pilot-plant process (within the boundary) and associated 

outputs. Boxes and flows indicated by grey dashed lines were modelled using the 

optimization model. Flows in grey lines were modelled using MFA based on the results 

of the optimization model. Flows in black dashed lines were modelled using MFA 

based on the results from the optimization model and analyses of the digestate. APC: air 

pollution control residue; BA: bottom ash; BG: biogas; BL: bioliquid; DG: digestate; 

FE: ferrous material; FF: fluff; HP: hard plastic; LF: liquid fraction; MSW: municipal 

solid waste input; MSW’: MSW after heating and enzymatic treatment; NFE: non-

ferrous material; RES: residue; SP: soft plastic; TXT: textiles; *sampled waste material 

fractions. 

Fig. 2. Illustration of the principles of the mathematical optimization model. 

Nomenclature as in Fig. 1. 

Fig. 3. Mass and energy flows within the waste refinery and downstream energy 

conversion processes (kg DM and GJ). APC: air pollution control residue; BA: bottom 

ash; BG: biogas; BL: bioliquid; DG: digestate; FE: ferrous material; FF: fluff; FG: flue 

gas; HP: hard plastic; LF: liquid fraction; MSW: municipal solid waste input; MSW’: 

MSW after heating and enzymatic treatment; NFE: non-ferrous material; RES: residue; 

SP: soft plastic; TXT: textiles; *sampled waste material fractions.  

Fig. 4. Total and fossil carbon flows within the waste refinery and downstream energy 

conversion processes (kg). Nomenclature as in Fig. 3. 

Fig. 5. N, P, and K flows within the waste refinery and downstream energy conversion 

processes (kg, g, and kg). Nomenclature as in Fig. 3. 

Fig. 6. Fe and Al flows within the waste refinery and downstream energy conversion 

processes (kg). Nomenclature as in Fig. 3. 
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1. Formulation of the mathematical optimization model 

1.2 Elaboration of the uncertainties 

Two sources of uncertainties were considered in the study: i) uncertainty associated with the 

sampled waste material fraction flows and ii) uncertainty associated with the analytical 

concentration of the chemicals. The first refers to the observed daily variation of the waste 

material fraction flows (see Table 2 of the manuscript, parameter σ). The second is the 

uncertainty of the chemical analyses. These were: 10% for C, H, N, S, 7.5% for Cl and F, 

2.5% for P, and 6.2% for the metals (including K). The uncertainties are here intended as 

those values corresponding to 68% of the confidence interval around the mean (this also 

applies to Figs. 3-6 and Tables 2-3 of the manuscript).  

 Suppose that for all ,i j , the total (dry) flows iP , the chemicals concentration jiCP , 

and the concentration of the chemicals jCBL in the bioliquid are observed for K  times, each 

time being an independent measurement. Let , ,k k k
i ji jiP CB CBL  be the k -th observation. Due to 

several sources of uncertainty affecting the measurements, such as errors, simplifications, 

inherent limited representativeness of the samples, etc., the K  observations are expected to 

differ from each others. More specifically, they are expected to be similar but not identical. It 

is said that, the more is the diversity, the more is the level of uncertainty. Clearly, even the 

material flow chemicals k
ijCM  and the coefficient k

iλ , obtained by solving problem of Eq. (9) 

(see manuscript), depends on the observation k . Same concept applies to k
iλ when it is 

combined with k
iP in Eq. (7), to obtain the bioliquid flow k

iBL , and the material flow k
iM . In 

general, it is said that the uncertainty in , ,i ji jiP CB CBL is propagated onto , ,ji i iCM BL M , 

through Eqs. (7-9) of the main manuscript. In order to handle the uncertainty within the 

MFA, the uncertainty in the input data of the presented methodology must be quantified, all 

along with the propagated mass balance uncertainty. This study proposes a classical statistical 
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approach, where the measurement errors are characterized by means of Probability 

Distribution Function (PDF), and the uncertainty propagation is performed using Monte 

Carlo simulation (Fig. S1). 

The uncertainty of the flows 1, , NP P
, was characterized as the conjugate prior of the 

parameters of the multinomial distribution, also known as the Dirichlet distribution, see e.g. 

[1]. The Dirichlet is a multivariate distribution generating random discrete PDFs, which are 

nothing but vectors of positive elements whose sum equals to one, hence the same properties 

as for the flows 1, , NP P  (Eq. (3)). Formally the vector 1( , , )NP P=P   is said to have a 

Dirichlet PDF: 

 10

1
1

( )( )
( )

i

N

iN
iii

f Pαα
α

−

=
=

Γ
=

Γ
∏

∏
Pα  (S1) 

And denoted with 0 1Dir( , , , )Nα α αP  
, with a set of parameters 0 1, , , Nα α α  such that 

0iα >  and 0 1

N
ii

α α
=

=∑ , where ( )Γ ⋅ is the Gamma function. The parameters are estimated 

from K  observations using a maximum likelihood procedure, described in [2]. 

The uncertainty of the concentrations ,ji jiCB CBL  was characterized and quantified 

directly within the laboratory analysis, as a Gaussian noise having means E[ ],E[ ]ji jiCB CBL  

and variances Var[ ],Var[ ]ji jiCB CBL  for all ,i j . Note that in this case a dataset of K  

observations was not available, therefore statistical independence was assumed. This means 

that, for example, the probability for the carbon concentration to have a certain value in one 

flow is influenced neither by the carbon concentration in another flow, nor by the 

concentration of any other element in all flows. Such assumption may be seen not entirely 

realistic, as considering correlations between chemicals in different flows may reduce the 

level of uncertainty in the MFA. However, even if the uncertainty may be reduced, it is also 

true that it cannot be increased. Therefore, in a situation such as in the current study, where 
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no information about correlations was available, assuming independence could be considered 

as a worst case scenario approach, hence it is safe.  

The uncertainty is propagated using MonteCarlo Sampling. This consists in using 

Random Number Generators to produce K  samples , ,k k k
i ji jiP CB CBL  for all ,i j , distributed 

according to the PDFs discussed above. Then the corresponding , ,k k k
ji i iCM BL M  are 

determined using Eqs. (7-9) as already discussed. With K  Monte Carlo simulation iterations, 

the modelling results were estimated by means of expected values 

[ ] [ ] [ ], ,i i i jiP BL M CM Ε Ε Ε Ε   , where [ ] 1
1/ n

kk
x n x

=
Ε = ∑ . Similarily, the level of 

uncertainty was estimated by means of standard deviation from the expected value, i.e. 

[ ] [ ] [ ] [ ]i i i i
1/2 1/2 1/2 1/2

j(Var P ) ,(Var BL ) ,(Var M ) ,(Var CM ) , where [ ] [ ]2 2Var E[ ] Ex x x= − . The 

larger the standard deviation, the larger the level of uncertainty.  
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Fig. S1. Illustration of the methodology used in the mathematical optimization model. 
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2. Material, substance, and energy flow analysis: input data and modelling 

The results of the mathematical optimization model (BLi, Mi and CMji) were used as 

inventory for the MFA, SFA and EFA of the waste refinery process. This was facilitated by 

the software STAN [3]. The MFA encompasses the waste refinery process itself (including 

the modelled post-treatment) and downstream material separation and energy conversion (i.e. 

anaerobic digestion of the bioliquid and incineration of the residual solids).  

The transfer coefficients (to bottom ash, air pollution control residue, i.e. APC, and to 

flue gas) of the waste material fractions incinerated were based on a literature review of a 

number of five Danish incinerators (namely Amaforbrænding, Vesterforbrænding, Taastrup 

incinerator, Aahrus incinerator, and Herning incinerator). Based on this, the transfer 

coefficients for DM to bottom ash and APC were, respectively, 23% (±0.6%) and 4.3% 

(±0.57%). The remaining was thus transferred to flue gas (intended as after flue gas 

cleaning). The transfer coefficients of C, N, P, K, Fe and Al to flue gas, bottom ash and APC 

were based on the findings of [4] for household waste. For example, the transfer coefficient 

for Fe was assumed 99% (± 0.2%) to bottom ash and 0.8% to APC (± 0.1%); the transfer 

coefficient for Al was 88% (± 2%) to bottom ash and 12% (± 2%) to APC. 

The actual methane production from the bioliquid undergoing anaerobic digestion was 

set to 365 NL kg-1 VS based on preliminary results from tests operated at a full-scale 

anaerobic digestion plant [5]. The share of DM, C, and N transferred to the digestate and to 

the biogas (i.e. transfer coefficients) were calculated based on mass balances (Eq. (S2-S5)) 

using the experimental data available about digestate composition (Table 3) and assuming ash 

conservation. It was assumed that P, K, Fe, and Al found in the bioliquid were not transferred 

to the biogas.  

The lower heating value, on dry basis (LHVdb), of the waste material fractions was 

recalculated from the HHVdb (see section 2.5.2 of the manuscript) using Eq. (S6). With 
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respect to later combined heat and power (CHP) efficiency for gas engine (biogas 

combustion) and incineration (combustion of the residual solids that includes soft plastic, 

textiles and residue), electricity and heat efficiencies of 40% and 50% (relative to the energy 

content of the biogas) were assumed for the gas engine based on [6] and of 25% and 75% for 

the incinerator [7]. The latter are gross efficiencies relative to the LHVdb for state of the art 

incinerators combusting high-energy content materials and provided with flue-gas 

condensation (based on [7]). 

 

BGDGBL ΔVSDGVSBLVS +⋅=⋅
  

(S2) 

DGBLΔDMΔVS BGBG −==
  

(S3) 

Where: 

VSBL: volatile solids content of the bioliquid     (kg VS kg-1 DM) 

VSDG: volatile solids content of the digestate      (kg VS kg-1 DM) 

∆VSBG: amount of VS converted into biogas (BG)    (kg VS kg-1 ww) 

∆DMBG: amount of DM converted into biogas (BG)    (kg DM kg-1 ww) 

BL: dry matter content of the bioliquid      (kg DM kg-1 ww) 

DG: dry matter content of the digestate     (kg DM kg-1 ww) 

 

BL DG BGC BL C DG C⋅ = ⋅ + ∆
  

(S4) 

BL DG BGN BL N DG N⋅ = ⋅ + ∆
  

(S5) 

 

CBL: carbon content of the bioliquid       (kg C kg-1 DM) 

CDG: carbon content of the digestate       (kg C kg-1 DM) 

NBL: nitrogen content of the bioliquid      (kg N kg-1 DM) 

NDG: nitrogen content of the digestate      (kg N kg-1 DM) 
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∆CBG: amount of C converted into biogas (BG)    (kg C kg-1 ww) 

∆NBG: amount of N converted into biogas (BG)    (kg N kg-1 ww) 

 

10093684422 H/.·. -  = HHVLHV dbdb ⋅
  

(S6) 

LHVdb: higher heating value, dry basis     (MJ kg-1 DM) 

HHVdb: higher heating value, dry basis     (MJ kg-1 DM) 

H: hydrogen content, dry basis      (kg H kg-1 DM) 

8.936 is the conversion factor of H to H2O (kg of H2O formed by combustion of 1 kg H). 

2.442 is the latent heat of vaporization of H2O at 25 ºC (MJ kg-1). 
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3. Cost analysis 

3.1 Waste management scenarios and prices: assumptions 

An economic cost analysis including costs for collection, treatment (including revenues from 

energy and materials sold), and disposal of residues was performed on the following 

scenarios: 

A. Collection of all municipal household waste without source segregation and waste 

refinery treatment (CHP production from the bioliquid-biogas and incineration of the 

solid fraction for CHP production; separation and recycling of hard plastic and 

metals).  

B. Collection of all municipal household waste without source segregation and direct 

incineration for CHP production.  

The geographical scope of the analysis was Denmark. The temporal scope was 2013. The 

assumption was that the waste management system served a population of 100,000 

inhabitants. The waste produced per capita equalled 512 kg person-1 y-1 based on average 

EU27 values for 2009 [8]. The collection scheme was based on a recent assessment (2013) 

for a Danish region of 100,000 household [9]. This represented a realistic multifamily (i.e. 

more households share a waste-container) collection scheme based on an existing household 

waste management system established in a region of Denmark. The frequency of collection 

for residual waste was one “emptying” per week. Prices for electricity, heat, recyclables, 

enzymes and man-work are listed in Table S1. The price for electricity was based on the 

Danish market (0.035 € kWh-1). The price for heat (assumed as district heating) was based on 

the Danish heat market (0.042 € kWh-1). For recyclables, they were based on 2013 market 

prices for these materials: however, the prices on the market refer to virgin materials. 

Therefore, the revenues for selling recycled waste materials were approximated as half of the 

corresponding market prices for virgin material in order to take into account the loss of 

quality and value (see Table S1). The collection cost of emptying one container (with volume 
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assumed equal to 660 L) was assumed to be 3 € emptying-1 (this includes transportation costs 

to the point of unload, i.e. to the treatment plant) based on Danish conditions [9]. In addition, 

the Danish national tax on CO2 (ca. 22.3 € Mg-1 CO2 emitted), the national tax on heat from 

incineration (ca. 8 € GJ-1), and the national subsidy for biogas-electricity (ca. 0.047 € kWh-1) 

were considered in the analysis. The final results are presented with and without tax/subsidy. 
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Table S1. Prices used in the cost analysis (E: estimated based on unpublished data, e.g. bills from treatment 
plants, payslip, etc.). BA: bottom ash; APC: air pollution control residues. 
Parameter Price Unit Source Note 

Electricity 0.035 € kWh-1 E Danish market price (http://www.nordpoolspot.com/) 

Heat 0.042 € kWh-1 E Average Danish market price 

Enzymes 2 € kg-1 E Specific for the enzymes used in the waste refinery 

Water 0.67 € Mg-1  E Danish price for water 

Paper 52.5 € Mg-1 [10] Average (Dec 2013 paper waste price) 

Hard plastic 85/2 € Mg-1 [10] Low quality (Dec 2013 plastic film price) 

Ferrous metal 175/2 € Mg-1 [10] Average of 170-180 (Dec 2013 steel price) 

Non ferrous metal 800/2 € Mg-1 [10] Dec 2013 aluminium price 

Wage 33 € h-1 E Average Danish wage for a plant with 30 employees 

Emptying one container 3 € emptying-1 [9] Average estimated Danish price 

Capital cost incinerator 75.6 € Mg ww-1 [9] € per Mg of household wet waste treated 

Capital cost waste ref. 42.9 € Mg ww-1 E € per Mg of household wet waste treated 

Capital cost digester 25.7 € Mg ww-1 [9] € per Mg of household wet waste treated 

Maintenance incinerator 7.3 € Mg ww-1 [9], [11] € per Mg of household wet waste treated 

Maintenance waste ref. 7.3 € Mg ww-1 E € per Mg of household wet waste treated 

Maintenance digester 7.3 € Mg ww-1 E € per Mg of household wet waste treated 

Disposal BA 3.7 € Mg BA-1 [11] € per Mg of BA 

Disposal APC 73 € Mg APC-1 [11] € per Mg of APC 

 

3.2 Waste composition (household waste generated): assumptions 

In order to calculate the cost for the collection and treatment of the waste material fractions, 

the waste composition presented in Table 2 in the manuscript was recalculated on a wet 

matter basis. In order to do so, the dry matter content of the material fractions (as generated at 

the household) was needed. This was taken from [12] where the composition of an average 

mixed household waste is detailed (see column DM in Table S2). Furthermore, the material 

fraction bioliquid (BL) was split into organic waste and paper, according to their estimated 

share in the bioliquid (ca. 50% each, based on [13]). The recalculated household waste 

composition (on a wet basis) is presented in Table S2. This (column 5 of Table S2) represents 

the composition of the household waste generated by the hypothetical region under 

assessment, and it was used for the calculation of the cost associated with collection and 

treatment. Notice that the dry matter content of the mixed household waste was equal to 52% 

(i.e. DM = 1000 kg DM/1928 kg ww = 52%).  
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Table S2. Estimation of the waste composition, wet matter basis (last column to the right). BL: bioliquid; DM: 
dry matter; HP: hard plastic; FE: ferrous metal; NFE: non ferrous metal; ww: wet waste. Residual solids are the 
sum of soft plastic, textiles, and residue (RES). 
Waste material fraction Content (% DM) DM (% ww) Total amount (kg ww) Content (% ww) 
Organic (from BL) 28% 0.42 672 35% 
Paper (from BL) 28% 0.44 630 32.7% 
Hard plastic (HP) 8.2% 0.83 99 5.1% 
Soft plastic (HP) 9% 0.65 138 7.1% 
Ferrous (FE) 4.1% 0.97 42 2.2% 
Non ferrous (NFE) 2.4% 0.97 25 1.3% 
Residual solids 20.3% 0.63 322 16.7% 
 Total 100%   1928 100% 
 

Based on the LHVdb calculated for the household waste sampled in this study (ca. 19 MJ kg-1 

ww, see Table 2 of the main manuscript), the LHVwb (wet basis) would be then equal 

(assuming DM=52%) to 8.7 MJ kg-1 ww (i.e. 19 x 0.52 – (1-0.52) x 2.442).  

Further, the amount of residual solids fraction produced by the waste refinery from 1 

Mg ww would equal: 

1
1

1

290( ) 0.52
0.7

0.215

kg DM residual solidsresidual solids wet kg DM kg ww
kg DM kg residual solids

Mg wet residual solids Mg ww

−
−

−

= ⋅

=

  (S7) 

The DM content of the residual solids was assumed equal to 70% (generally between 65% 

and 75% according to [13]. Based on the energy flows reported in Fig. 3 of the manuscript, 

the LHV of the residual solids can be recalculated (assuming DM 70%) conformingly with 

Eq. (S6): 

HHV = 5942 MJ / 290 kg = 20.5 MJ kg-1 DM 

LHV = HHV x DM% - (100%-DM%) x 2.442 = 13.6 MJ kg-1 ww  
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3.3 Collection cost 

3.3.1 Calculation method 

Collection costs were calculated according to Eqs. (S8-S9).  

 

cos     Collection t emptying price N containers= ×        (S8) 

w   % 1  
`waste material container

aste capita pop waste material segregation effN containers
V fillingρ

× × ×
= ×

×
  (S9) 

 

Where: 

emptying price = 3 € emptying-1 

waste capita = 0. 512 Mg ww person-1 y-1 

Vcontainer = 660 L 

filling = 80% (degree of filling of the container) 

pop = 100,000 inhabitants 

% waste material: share (wet basis) of the waste material in the mixed waste (Table S2) 

ρwaste material = density of the waste material fraction (see below)  

segregation eff. = source segregation efficiency for the individual waste material (see below) 

 

The density of the waste in the container (Mg m-3) was [14]:  

• mixed household waste and residual waste: 0.16 

• paper: 0.11 

• plastic: 0.05 

• organic: 0.3 

• metals (ferrous, non ferrous): 0.1 
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3.3.2 Results 
 
Results for the collection costs are reported in Table S3. 
 
Table S3. Collection cost (€ Mg-1 ww) for the hypothetical region under assessment (100,000 inhabitants, 
multifamily houses, Denmark, 2013). The cost refers to one metric tonne of mixed household waste produced by 
the population.  

Scenario 
Collection (€ t-1 ww) 

Organic Paper Plastic Ferrous Aluminium Residual 

A - - - - - 36 

B - - - - - 36 

 

3.4 Treatment cost 

3.4.1 Calculation method 

The treatment costs were calculated according to Eqs. (S10-S12). These represent a sort of 

future estimated gate-fee calculated with December 2013 prices. 

For each parameter (e.g.: electricity, heat, materials, revenues, etc.) the total cost is 

obtained by multiplying the price (per unit) by the total amount consumed/produced. Table 

S4 details the main assumptions used for incineration, anaerobic digestion, and waste refinery 

(e.g. amount of electricity and heat produced/consumed, recovery efficiency for recyclable 

materials, etc.). The calculated amounts consumed/produced for the parameters involved in 

the economic analysis are listed in Table S5-S7. 

 

cos   cos ( )  int   cosTreatment t capital t amortisation ma enance operation t= + +     (S10) 

cos - -Operation t manwork chemicals heat consumed electricity consumed heat prod electricity prod= + + +

(S11) 

Man work wage workhours working days− = × ×         (S12)  

Where: 

capital cost = see Table S1 

maintenance = see Table S1 

workhours = 8 hours d-1 

working days = 330 days y1 

wage = see Table S1 
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Table S4. Parameters used for the calculation of the treatment cost (gate fee): amount consumed/produced and corresponding source in this paper or in the literature. APC: air 
pollution control residues; BA: bottom ash; LHV: lower heating value of the mixed household waste (8.7 MJ kg-1 ww, see section 3.2 of this document). 
Parameter Unit Incineration Anaerobic digester Waste refinery (Heat, enzymatic, seaving) 

    Water kg Mg-1 ww 200 (wet flue gas cleaning) - 400 (section 2.1 manuscript) 

Electricity consumed kWh Mg-1 ww 86 [13] α 40 [13] β 33 (section 2.1 manuscript) 

Electricity produced kWh Mg-1 ww = LHV/3.6 x 25% = 2,416 x 25%α  = 4,486/3.6 x 40%β = 690 x 0.52 (Fig. 3 and Table S3) 

Electricity subsidy kWh Mg-1 ww - - - 

Heat consumed kWh Mg-1 ww 0 0 136 (section 2.1 manuscript) 

Heat produced kWh Mg-1 ww = LHV/3.6 x 75% = 2,416 x 75%α = 4,486/3.6 x 50%β = 3,100 x 0.52 (Fig. 3 and Table S3) 

Enzymes kg Mg-1 ww  0 0 5 (section 2.1 manuscript) 

Plastic recovered kg Mg-1 ww  0 0 = Hard plastic input x 90% σ 

Ferrous recovered kg Mg-1 ww = Ferrous input x 85%γ 0 = Ferrous input x 85%σ 

Non ferrous recovered kg Mg-1 ww = Non ferrous input x 70%γ 0 = Non ferrous input x 90% σ 

APC produced kg APC Mg-1 ww = 4.3% x DMwaste = 4.3% 0.52 x 1000ε 0 0 

BA produced kg BA Mg-1 ww = 23% x DMwaste = 4.3% 0.52 x 1000ε 0 0 

Maintenance - 1 1 1 

Man-work man Mg-1 ww 30 (assumption) 8 (assumption) 8 (assumption) 

National tax CO2 Mg CO2 Mg-1 ww 0.3 (based on Cfoss content, Fig. 4) 0 0.18 (based on Cfoss content, Fig. 4) 

National tax heat GJ heat = Heat sold x 3.6/1000 = Heat sold x 3.6/1000 = Heat sold x 3.6/1000 
α Gross electricity and heat efficiency at the incinerator was assumed 25% and 75% (see section 2.1 of this document) relative to the LHVwb of the waste. The electricity consumption was 
assumed 86 kWh Mg-1 ww conformingly with [13] (see SI of [13]). 
β Gross electricity and heat efficiency at the engine was assumed 40% and 50% (see section 2.1 of this document) relative to the biogas-energy. The biogas-energy produced by a typical metric 
tonne of wet organic waste was assumed equal to 4,486 MJ Mg-1 ww corresponding to a practical methane production of 126 Nm3 CH4 Mg-1 ww conformingly with [13]. The electricity 
consumption for the digestion process was assumed 40 kWh Mg-1 ww conformingly with [13] (see SI of [13]). 
γ Conformingly with the recovery efficiencies assumed in [13] (see SI of [13]). 
σ Conformingly with the recovery efficiencies assumed in [13] (see SI of [13]). 
ε The transfer coefficients of the dry matter to APC and BA were assumed 4.3% and 23%, respectively, as documented in section 2.1 of this document.
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3.4.2 Results 

Results for the treatment cost (i.e. estimated gate fee) are reported in Table S5-S7. Table S8 

summarizes the total final cost of the waste management systems A and B. 
 
Table S5. Calculation of the treatment cost for incineration of 1 Mg of wet household waste. BA: bottom ash; 
APC: air pollution control residues; ww: wet waste. Negative values indicate savings. 
 Parameter Price Unit amount Unit Cost (€ t-1 ww) 
Capital cost 75.6 € Mg-1 ww 1 - 75.6 
Water 0.0007 € kg-1 200 kg Mg-1 ww 0.1 
Electricity consumed* 0.035 € kWh-1 86 kWh Mg-1 ww 3 
Electricity produced 0.035 € kWh-1 -604 kWh Mg-1 ww -21 
Electricity subsidy - € kWh-1 - kWh Mg-1 ww 0 
Heat consumed* 0.042 € kWh-1 0 kWh Mg-1 ww 0 
Heat produced 0.042 € kWh-1 -1812 kWh Mg-1 ww -77 
Enzymes 2 € kg-1 0 kg Mg-1 ww  0 
Sales of plastic 0.043 € kg-1 0 kg Mg-1 ww  0 
Sales of ferrous 0.088 € kg-1 -36 kg Mg-1 ww -3.1 
Sales of non ferrous 0.4 € kg-1 -17 kg Mg-1 ww -6.9 
Disposal APC 73 € Mg-1 APC 0.02 kg APC Mg-1 ww 1.6 
Disposal BA 3.7 € Mg-1 BA 0.12 kg BA Mg-1 ww 0.4 
Maintenance 7.3 € Mg-1 ww 1 - 7.3 
Man-work 33 € man-1 h-1 0.3 man h Mg-1 ww 8.7 
National tax CO2 22.3 € Mg-1 CO2 0.3 Mg CO2 Mg-1 ww 7.2 
National tax heat 8 € GJ-1 6.5 GJ Mg-1 ww 52.2 
Total cost (without subsidy/tax)         -11 
Total cost (with subsidy/tax)         48 
*Assumed as own consumption (i.e. same price for produced/sold and consumed/bought). 
 
Table S6. Calculation of the treatment cost for anaerobic digestion of 1 Mg wet organic waste. BA: bottom ash; 
APC: air pollution control residues; ww: wet waste. Negative values indicate savings. 
 Parameter Price Unit amount Unit Cost (€ t-1 ww) 
Capital cost 25.7 € Mg-1 ww 1 - 25.7 
Water 0.0007 € kg-1 - kg Mg-1 ww 0 
Electricity consumed* 0.035 € kWh-1 40 kWh Mg-1 ww 1.4 
Electricity produced 0.035 € kWh-1 -498.4 kWh Mg-1 ww -17 
Electricity subsidy 0.047 € kWh-1 -498.4 kWh Mg-1 ww -23.4 
Heat consumed* 0.042 € kWh-1 0 kWh Mg-1 ww 0 
Heat produced 0.042 € kWh-1 -623 kWh Mg-1 ww -26 
Enzymes 2 € kg-1 0 kg Mg-1 ww  0 
Sales of plastic 0.043 € kg-1 0 kg Mg-1 ww  0 
Sales of ferrous 0.088 € kg-1 0 kg Mg-1 ww 0 
Sales of non ferrous 0.4 € kg-1 0 kg Mg-1 ww 0 
Disposal APC 73 € Mg-1 APC 0 kg APC Mg-1 ww 0 
Disposal BA 3.7 € Mg-1 BA 0 kg BA Mg-1 ww 0 
Maintenance 7.3 € Mg-1 ww 1 - 7.3 
Man-work* 33 € man-1 h-1 0.1 man h Mg-1 ww 2.9 
National tax CO2 22.3 € Mg-1 CO2 - Mg CO2 Mg-1 ww - 
National tax heat 8 € GJ-1 - GJ Mg-1 ww - 
Total cost (without subsidy/tax)         -6 
Total cost (with subsidy/tax)         -30 
*Assumed as own consumption (i.e. same price for produced/sold and consumed/bought). 
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Table S7. Calculation of the treatment cost for the waste refinery including downstream energy recovery processes. BA: bottom ash; APC: air pollution control residues; ww: 
wet waste. Negative values indicate savings. The capital and maintenance costs for incineration were calculated from Table S5 knowing that 1 Mg ww treated in waste refinery 
produces 0.215 Mg wet residual solids (see section 3.2 of this document). The electricity and heat revenues were based on the amount incinerated and related LHV (13.6 MJ kg-1 
ww). For anaerobic digestion of the bioliquid, it was assumed that 1 Mg bioliquid is equivalent to treating 1 Mg organic waste from a capital and maintenance cost perspective 
(the substrates are similar for properties and water content). It was also assumed that 1 Mg ww household waste would generate approximately 1 Mg wet bioliquid. 

 Waste refinery (heat, enzymatic, seaving) Anaerobic digestion (bioliquid) Incineration (residual solids) 

Parameter Price Unit amount Unit Cost  
(€ t-1 ww) Price Unit amount Unit Cost  

(€ t-1 ww) Price Unit amount Unit Cost 
 (€ t-1 ww) 

Capital cost & royalty 42.9 € Mg-1 ww 1 - 42.9 25.7 € Mg-1 ww 1.0 - 25.7 75.6 € Mg-1 ww 0.215 - 16.2 

Water 0.7 € Mg-1 400 kg Mg-1 ww 0.3 0.7 € Mg-1 - kg Mg-1 ww 0.1 0.7 € Mg-1 43 kg Mg-1 ww 0.1 

Electricity consumed* 0.035 € kWh-1 33 kWh Mg-1 ww 1.2 0.04 € kWh-1 40 kWh Mg-1 ww 1.4 0.035 € kWh-1 18.5 kWh Mg-1 ww 0.6 

Electricity produced 0.035 € kWh-1 0 kWh Mg-1 ww 0 0.04 € kWh-1 -358 kWh Mg-1 ww -12.5 0.035 € kWh-1 -203 kWh Mg-1 ww -7.1 

Electricity subsidy 0.047 € kWh-1 0 kWh Mg-1 ww 0 0.05 € kWh-1 -358 kWh Mg-1 ww -16.8 0 € kWh-1 0 kWh Mg-1 ww 0 

Heat consumed* 0.042 € kWh-1 136 kWh Mg-1 ww 5.7 0.042 € kWh-1 0 kWh Mg-1 ww 0 0.042 € kWh-1 0 kWh Mg-1 ww 0 

Heat produced 0.042 € kWh-1 0 kWh Mg-1 ww 0 0.042 € kWh-1 -447 kWh Mg-1 ww -19 0.042 € kWh-1 -609 kWh Mg-1 ww -26 

Enzymes 2 € kg-1 5 kg Mg-1 ww  10 2 € kg-1 0 kg Mg-1 ww  0 2 € kg-1 0 kg Mg-1 ww  0 

Sales of plastic 0.043 € kg-1 -89.0 kg Mg-1 ww  -3.8 0.04 € kg-1 0 kg Mg-1 ww  0 0.043 € kg-1 0 kg Mg-1 ww  0 

Sales of ferrous 0.088 € kg-1 -35.8 kg Mg-1 ww -3.1 0.09 € kg-1 0 kg Mg-1 ww 0 0.088 € kg-1 -7.7 kg Mg-1 ww -0.7 

Sales of non ferrous 0.4 € kg-1 -22.2 kg Mg-1 ww -8.9 0.4 € kg-1 0 kg Mg-1 ww 0 0.4 € kg-1 -3.7 kg Mg-1 ww -1.5 

Disposal APC 73 € Mg-1 APC 0.0 kg APC Mg-1 ww 0 73 € Mg-1 APC 0 kg APC Mg-1 ww 0 73 € Mg-1 APC 0.005 kg APC Mg-1 ww 0.3 

Disposal BA 3.7 € Mg-1 BA 0.0 kg BA Mg-1 ww 0 3.7 € Mg-1 BA 0 kg BA Mg-1 ww 0 3.7 € Mg-1 BA 0.0026 kg BA Mg-1 ww 0.1 

Maintenance  7.3 € Mg-1 ww 1.0 - 7.3 7.3 € Mg-1 ww 1 - 7.3 7.3 € Mg-1 ww 0.215 - 1.6 

Man-work 33 € man-1 h-1 0.088 man h Mg-1 ww 2.9 33 € man-1 h-1 0.1 man h Mg-1 ww 2.9 33 € man-1 h-1 0.057 man h Mg-1 ww 1.9 

National tax CO2 22.3 € Mg-1 CO2 - Mg CO2 Mg-1 ww - 22.3 € Mg-1 CO2 -  Mg CO2 Mg-1 ww -  22.3 € Mg-1 CO2 0.18**  Mg CO2 Mg-1 ww 4  

National tax heat 8 € GJ-1 -  GJ Mg-1 ww -  8 € GJ-1 -  GJ Mg-1 ww -  8 € GJ-1 1.4  GJ Mg-1 ww 11.2  

Total cost (without subsidy/tax)   

 

    55         6         -14 

Total cost (with subsidy/tax)     55     -11     7 

*Assumed as own consumption (i.e. same price for produced/sold and consumed/bought). **Based on the Cfoss content of the residual solids incinerated (Fig. 4: 94 kg C x 0.52 x 44/12 = 179 kg 
CO2) where 0.52 is the dry matter content and 44/12 is the molar ratio CO2 to C (Table S2 of this document). 
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3.5 Total cost of the waste management scenarios 

Table S8. Total cost (€ Mg-1 ww) of the whole waste management system for the scenarios A and B. AD: 
anaerobic digestion; INC: incineration; WR: waste refinery. In brackets are the costs when tax/subsidy is not 
included in the analysis. 

Scenario 
Collection Treatment 

Total 
Residual WR AD INC Recycling 

A 36 55 -11 (6) 7 (-14) Included in WR 87 (83) 

B 36   48 (-11) Included in INC 84 (25) 

 

 

3.6 Sensitivity analysis: the influence of heat and electricity price, and energy recovery 

A sensitivity analysis (S1) was performed to illustrate the importance of heat, electricity 

price, and energy recovery on the results. Table S9 shows the cost of the waste management 

system for different heat and electricity prices. These were compared with the baseline 

scenario used in the analysis. The Danish heat tax was maintained proportional to the total 

heat revenue quantified for the baseline (i.e. tax = 68% of heat revenue, rough assumption). 

Another sensitivity analysis was performed to assess the influence of the energy 

recovery at the waste refinery (S2) and at the incineration (S3), as this affects the revenues 

from heat and electricity. For the waste refinery (S2) it was assumed that also hard plastic 

(i.e. HP, LHV=2800 MJ / 89 kg = 31.5 MJ kg-1 DM hard plastic, based on the flows reported 

in Fig. 3 of the manuscript) was incinerated for energy recovery instead of being recycled. 

This changed the amount of residual solids incinerated to 380 kg DM (i.e. 282 kg ww, 

recalculated per wet matter) and the LHV of the residual solids to 14.3 MJ kg-1 ww 

(HHV=21.5 MJ kg-1 DM residual solids with hard plastic, calculated based on flows reported 

in Fig.3 of the manuscript; water content assumed 70%). For incineration (S3), it was 

assumed a lower electricity recovery (20% of the LHV of the waste, instead of 25%). The 

results are reported in Table S10-S11. 

The results highlight that the assumption regarding the revenues for heat and, also, 

electricity as well as the assumptions regarding the performance of incineration (i.e. 

electricity recovery) and the management of hard plastic (recycled or incinerated) may only 

slightly change the ranking of the scenarios. Overall, considered the uncertainties related to 

these parameters, the two alternatives appeared comparable from a cost perspective. 
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Table S9. Total cost (€ Mg-1 ww) of the whole waste management system under different heat and electricity prices (S1). Costs include taxes and subsidies. El: 
electricity. 
Scenario  

(El. price 35 € MWh-1) 

Heat price: 0 € MWh-1 

(No heat recovery) 
Heat price: 10 € MWh-1 Heat price: 20 € MWh-1 Heat price: 30 € MWh-1 

Baseline results 

(Heat price: 42 € MWh-1) 

A 108 103 98 93 87 

B 108 103 97 91 84 

Scenario 

(El.  price 50 € MWh-1) 

Heat price: 0 € MWh-1 

(No heat recovery) 
Heat price: 10 € MWh-1 Heat price: 20 € MWh-1 Heat price: 30 € MWh-1 Heat price: 42 € MWh-1 

A 101 96 91 86 80 

B 101 95 89 83 76 

 

Table S10. Total cost (€ Mg-1 ww) of the whole waste management system under different hard plastic management (S2). Costs include taxes and subsidies. El: 
electricity. INC: incineration. WR: waste refinery. 

Scenario  
S2 

(Hard plastic to incineration) 

Baseline results  

(Hard plastic to recycling) 

A 85 87 

B 84 84 

 

Table S11. Total cost (€ Mg-1 ww) of the whole waste management system under different electricity recovery (S3). Costs include taxes and subsidies. El: 
electricity. INC: incineration. WR: waste refinery. 

Scenario  
S3 

(El. recovery INC=20%) 

Baseline results  

(El. recovery INC=25%) 

A 88 87 

B 89 84 
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