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A new approach for indexing multigrain diffraction data is presented. It is based

on the use of a monochromatic beam simultaneously illuminating all grains. By

operating in sub-volumes of Rodrigues space, a powerful vertex-finding

algorithm can be applied, with a running time that is compatible with online

analysis. The resulting program, GrainSpotter, is sufficiently fast to enable online

analysis during synchrotron sessions. The program applies outlier rejection

schemes, leading to more robust and accurate data. By simulations it is shown

that several thousand grains can be retrieved. A new method to derive partial

symmetries, called pseudo-twins, is introduced. Uniquely, GrainSpotter includes

an analysis of pseudo-twins, which is shown to be critical to avoid erroneous

grains resulting from the indexing.

1. Introduction
During the past decade, several X-ray-based methods have

materialized for identifying and potentially mapping grains in

three dimensions in polycrystals. We mention the micro-beam

Laue diffraction scanning technique pioneered by Larsson et

al. (2002), and the two monochromatic beam based diffraction

imaging methods known as three-dimensional X-ray diffrac-

tion (3DXRD) microscopy (Poulsen et al., 2001; Juul-Jensen et

al., 2006) and diffraction contrast tomography (Ludwig et al.,

2008, 2009).

In this article we focus on 3DXRD. Within materials

science, this technique has found widespread applications for

three-dimensional studies of dynamic phenomena such as

nucleation (West et al., 2009), recrystallization (Lauridsen et

al., 2000; Schmidt et al., 2004), grain growth (Schmidt et al.,

2008), phase transformations (Offerman et al., 2002), dislo-

cation dynamics (Jakobsen et al., 2006) and plastic deforma-

tion (Margulies et al., 2001; Winther et al., 2004). Within

chemistry, pharmacy and even structural biology, 3DXRD and

its extension TotalCryst (Sørensen, Schmidt et al., 2012) have

provided a way to achieve structural solution and refinement

on polycrystals (Schmidt et al., 2003; Vaughan et al., 2004).

A cornerstone in the analysis of multigrain data is a poly-

crystalline indexing program. In this article we present a new

algorithm for indexing and an associated program, Grain-

Spotter. It is intended for use with a conventional diffraction

setup employing a two-dimensional detector with a pixel size

of the same order as, or larger than, the grain size. In this case,

the diffraction signal comprises distinct diffraction spots

positioned in the vicinity of the Debye–Scherrer rings typical

of powder diffraction.

The program is one of several (Wright, 2006; Moscicki et al.,

2009; Benier et al., 2011; Sharma et al., 2012b) that have been

introduced within the past few years to replace the original

multi-indexing program GRAINDEX (Lauridsen et al., 2001).

The underlying algorithm differs in several aspects, such as the

use of back projection versus forward projection, the use of

Friedel pairs and the reliance on an initial assumption that all

grains are positioned at the origin.

GrainSpotter has been conceived with the aim of being able

to index typical 3DXRD data with �1000 grains sufficiently

quickly that online analysis during synchrotron experiments

becomes possible. Furthermore, the focus is on robustness

with respect to incomplete data, for example, owing to small

grains, grains rotating in and out of the beam etc. The basic

approach of GrainSpotter is to identify grains by finding

vertices in orientation space. As demonstrated below, this can

be done using Boolean algebra and with a running time that

goes as O(N), where N is the number of grains. Once grains

have been identified, in a second step the position and

orientation of each grain is optimized, and at the same time

outliers in the associated set of reflections are removed. Again

a fast algorithm is chosen for the fitting. For ultimate accuracy

in terms of determining the position, orientation and in

addition the strain tensor of each grain, the proposed proce-

dure is to feed the output of GrainSpotter into the (slower)

optimization program FitAllB (Oddershede et al., 2010).

Below we first introduce a new hybrid representation of

orientation space, which is required in order to linearize the

space. Following a detailed description of the algorithm,

simulations are used to verify the program and to test its

limitations, in particular in terms of the number of simulta-

neously illuminated grains. As examples of real experiments

where GrainSpotter has already been used, we mention multi-

grain studies of metals (West et al., 2009; Oddershede et al.,

2010, 2011, 2012; Poulsen et al., 2011; Beaudoin et al., 2012), macro-

molecules (Paithankar et al., 2011), minerals (Sørensen, Hakim

et al., 2012) and high-pressure science (Zhanga et al., 2013).

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5034&bbid=BB39
http://crossmark.crossref.org/dialog/?doi=10.1107/S1600576713030185&domain=pdf&date_stamp=2014-01-18


The article also contains a section on pseudo-twins. Unex-

pectedly, the multigrain work has revealed that diffraction

data are subject to an additional symmetry, which to our

knowledge has not been considered in conventional crystal-

lography. In analysing multigrain diffraction data of high-

symmetry structures, we find it critical to discriminate against

erroneous grains that may emerge because of this symmetry.

GrainSpotter is unique in including such a discrimination.

Below we define the pseudo-twin symmetry, explore its

properties for various group symmetries and describe how the

pseudo-twin analysis is incorporated into GrainSpotter.

The GrainSpotter source code is publicly available at http://

sourceforge.net/apps/trac/fable/browser/GrainSpotter (Schmidt,

2007).

2. Geometry

2.1. Experimental setup

The setup is the conventional setup for single-crystal

diffraction using a monochromatic beam (see Fig. 1). We shall

assume that the beam at all times fully illuminates the (poly-

crystalline) sample and that the diffracted beam is transmitted

through the sample and acquired on a two-dimensional far-

field detector.

During data acquisition a series of diffraction images

covering an ! interval ½!min; !max� in steps of �! are recorded.

2.2. Orientation space

Central to the algorithm presented here is the mathematical

representation of orientation space. Conventionally, the

choice is between Euler angles, Rodrigues vectors or quater-

nions (Kocks et al., 2000). We argue that the superior solution

is a hybrid of the two latter representations.

In Rodrigues space an orientation is represented as a three-

dimensional vector, the Rodrigues vector

r ¼ tan ’=2ð Þn: ð1Þ

n is the rotation axis and ’ is the rotation angle around the

rotation axis. Here orientation means the rotation that allows

the transformation of the orthonormal basis representation

(Cartesian coordinate system) of the unit cell that coincides

with the sample reference system into the orthonormal basis

representation of the unit cell of the grain. Each grain corre-

sponds to a single orientation and therefore a single point in

Rodrigues space. Let u be a vector in the reference reciprocal

lattice and v the corresponding vector in the reciprocal lattice

of the grain. The set of points in the Rodrigues space

(orientations) that rotates u onto v is called the geodesic.

A crucial property of this space is that the geodesics are

straight lines (Moraviec & Field, 1996). This line can be

parameterized by a line (Moraviec & Field, 1996)

rðtÞ ¼ rg
o þ t rg

s ; �1< t<1; ð2Þ

where the origin, rg
o, and the slope, rg

s , are given by

rg
o ¼

u� vð Þ

1þ u � vð Þ
; rg

s ¼
uþ vð Þ

1þ u � vð Þ
: ð3Þ

Neglecting the complication of crystal symmetry for the

moment, it appears that the task of indexing corresponds to

identifying vertices in Rodrigues space. More specifically, for

each grain it is necessary to determine a common intersection

point (orientation) of multiple geodesics.

The invariant volume in the Rodrigues space can be written

as (Moraviec & Field, 1996)

dV ¼ ð1=�Þ cos2
ð’Þ dr1 dr2 dr3; ð4Þ

i.e. being radially symmetric in ’. Hence, for small values of ’,

dV ’ ð1=�Þ dr1 dr2 dr3; ð5Þ

to first order in ’. Consequently, near the origin the Rodrigues

space is approximately Euclidean. It is well known that

powerful algorithms exist for finding vertices in three-dimen-

sional Euclidian space. Unfortunately, the Rodrigues space

rapidly become non-Euclidian with increasing distance to the

origin, and for low-symmetry space groups the space is infinite.

This implies that the Rodrigues formulation is not generally

useful.

The GrainSpotter approach is to use quaternion space

(which is finite) for general sampling in orientation space, but

restrict the key elements in the algorithm to local searches

around a certain fixed-point Rodrigues vector. By a simple

rotation, the fixed point can be moved to the origin and the

local search is then restricted to the Euclidean part of the

orientation space, hereafter named the local Rodrigues space.

This way the global orientation space, i.e. all space groups, can

be accommodated by subdividing the global orientation space

into a series of local Rodrigues spaces. This is the core prin-

ciple of GrainSpotter. The local Rodrigues space may contain
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Figure 1
Experimental setup. The laboratory and sample reference systems are
denoted by ðxl; yl; zlÞ and ðxs; ys; zsÞ, respectively. In the figure, the two
coordinate systems are related through a rotation around the zl axis.
However, the direction of the rotation axis can be chosen arbitrarily (see
details on the � rotation matrix in Appendix A). Furthermore, xs denotes
the position of a grain in the sample, and xl;i and xl;i�

�1
i denote the

position of a recorded diffraction spot in the laboratory reference system
and sample reference system, respectively. Li denotes the direction of the
diffracted ray in the sample reference system (see details in Appendix A).
In addition, L0;i denotes the direction of the diffracted ray assuming that
the grain is located at the origin of the sample reference system. The
direction of the ray can also be parametrized through the angles (2�i, �i,
!i) (see Appendix A).



orientations of several grains in the sample. The algorithm for

obtaining a fast identification of these vertices is outlined in

the following.

3. Algorithm

GrainSpotter operates on a set of diffraction spots, fxl;i�
�1
i g

(see Fig. 1). Initially, the set of reciprocal G vectors are

calculated, assuming that all grains are located at the origin of

the sample reference system, i.e.

Gr
0;i ¼

1
2 L0;i � ��1

i

� �
j1

� �
ð6Þ

[see equation (32) in Appendix A]. The output is a list of

grains and associated properties: the orientations fUg (see

Appendix A) and (optionally) centre-of-mass positions fxsg.

After refinement of the orientation and the position, L0;i has

propagated into Li (see Fig. 1). Furthermore, for each grain,

descriptors of the quality of indexing are provided, such as the

completeness: the ratio between the observed number of

reciprocal G vectors associated with a grain and the number

expected. In the current version GrainSpotter assumes all

grains to belong to the same phase, and furthermore the space

group must be known a priori.

As stated previously GrainSpotter subdivides the global

orientation space into a series of local Rodrigues spaces.

Within each subdivision vertices are located by using the

initial set of the reciprocal G vectors fGr
0;ig. Only the geodesics

from a small fraction of the reciprocal G vectors pass through

the sub-volume. The subset of G vectors can be identified

prior to the determination of the geodesics: see the description

of fast vertex detection below. Afterwards, one geodesic is

calculated for each of the selected G vectors. The user-speci-

fied size of the local Rodrigues space is given by

�R ¼ tanð�’=2Þ. In order to stay in the Euclidian part of the

Rodrigues space �’ should be less than 15�. Consequently,

when splitting up the local Rodrigues space into voxels, the

density of orientations within each voxel is approximately

constant. This property facilitates robust identification of

vertices as the size of the voxels must be large enough to

capture the deviation from the initial set fGr
0;ig to the real set

of reciprocal G vectors fGr
i g. Outside the Euclidian part of the

sub-volume the density of orientations in the voxels drops off.

Hence, owing to the aforementioned deviation in the reci-

procal G vectors, the geodesics will no longer cross within a

voxel, making identification of vertices less robust. The user-

defined parameters including the size of the voxels are

discussed in x5.

Following the identification of vertices in a local Rodrigues

space the orientations and (optionally) grain centre-of-mass

positions are fitted using the reciprocal G vectors belonging to

each vertex (see details in xx3.3 and 3.4).

A central part of GrainSpotter is fast vertex identification.

For a given local Rodrigues space the following two steps are

carried out:

(1) Identification of the subset of reciprocal G vectors in

fGr
0;ig from which the corresponding geodesics pass through

the local Rodrigues space. This is done without searching

through the full list of reciprocal G vectors. The potential

reciprocal G vectors must be in the neighbourhood of the

predicted directions fGr
centre;kg derived from the centre point in

the local Rodrigues space, Ucentre. During startup of Grain-

Spotter, a look-up table is constructed for fGr
0;ig, ensuring that

for a given predicted direction, Gr
centre;k, all potential reci-

procal G vectors are identified.

(2) Finding the vertices. These are obtained by mapping all

geodesics into the local Rodrigues space, but for each voxel

keeping track of the reciprocal G vectors that have already

passed through this voxel. This way it is possible to group the

reciprocal G vectors that belong to the same vertex without

searching through the local Rodrigues space itself. This is a

two-step selection procedure (see details in xx3.1 and 3.2). In

the first selection step a grouping of reciprocal G vectors

potentially belonging to the same vertex is made. The second

selection step identifies the vertices and verifies the reciprocal

G vectors belonging to different vertices. The complexity of

this method scales with the number of reciprocal G vectors.

3.1. First selection

The reciprocal G vectors with geodesics passing through the

local Rodrigues space are labelled 1 to Ng. Next a four-

dimensional data structure is built, with the first three

dimensions being identical to the voxels in the local Rodrigues

space. The fourth dimension comprises a list of the geodesics

(lines) passing through each voxel. To save memory and

increase speed the list is implemented as an array of unsigned

integers (16 bits), as illustrated in Fig. 2. For each voxel hit by
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Figure 2
Illustration of the first search. The selection is carried out in a four-
dimensional space with the first three dimensions being the local
Rodrigues space (voxelized) and the fourth dimension a mask of the
geodesic labels passing through the voxels. Shown is the Boolean OR
operation between a bit indicating the number of the geodesic (A) and
the fourth dimension for a given voxel (B), leading to an update of this
fourth dimension, representing the geodesics that have been found to
pass the voxel so far (C).



the ith geodesic a logical OR operation with a mask is carried

out. This keeps track of the geodesics visiting this particular

voxel.

In addition, the set of geodesics that the ith geodesic has

crossed are also stored in a separate two-dimensional struc-

ture by making a logical OR operation with all the voxels that

the geodesic passed through. This way, the ith G vector keeps

track of the possible intersections of the ith geodesic with the

previous i� 1 geodesics.

3.2. Second selection

The two-dimensional structure lists the possible intersec-

tions of geodesics. However, not all crossings of geodesics are

bound (see Fig. 3). Consequently, a second selection is done.

For each table entry the geodesics are mapped into the

modified four-dimensional space, keeping track of the voxel

with the maximum hits, giving a candidate orientation for

further investigation. Only the last Ng � Nmin table entries are

processed, where Nmin is a lower limit of measurements for a

grain specified by the user. Note, for both the first and second

selection, the vertices are obtained without searching through

the whole local Rodrigues space, implying that all candidate

grains have been identified with an OðNÞ complexity

(2Ng � Nmin geodesics are mapped in the combined selection).

3.3. Fitting position and orientation

The orientation space (local Rodrigues space) and direct

space basically have the same geometrical properties: The

fitted grain position is by definition the point in the sample

reference system that minimizes the distance to the back-

projected rays from the centre-of-mass diffraction spots

associated with the grain. Equivalently, the fitted orientation is

by definition the point in the local Rodrigues space that

minimizes the distances to the geodesics from the scattering

vectors.1

The position of the grain in the sample reference system is

denoted by xs (see Fig. 1). Each ray is parametrized by the

position of the diffraction spot in the sample reference system,

xl;i�
�1
i , and the direction of the ray in the sample reference

system, Li. More specifically, xs is obtained by minimizing the

following expression:

�2
ðxsÞ ¼

P
i

j�xij
2
� Li ��xið Þ

2
� �

; ð7Þ

where �xi ¼ xl;i�
�1
i � xs. Hence,

xs ¼ S�1b; ð8Þ

where

Spq ¼
P

i

Lp;iLq;i � �pq

� �
; b ¼

P
i

Li Li � xl;i�
�1
i

� �
� xl;i�

�1
i

� �
:

ð9Þ

The case for orientations is completely equivalent. Equation

(7) can be reused by replacing xl;i�
�1
i with the origin of the

geodesics, rg
o, and Li with the direction of the geodesic, rg

s [see

equation (3)].

3.4. Fitting procedure and outlier removal

The set of collected G vectors may contain falsely assigned

vectors, typically originating from other grains or caused by

noisy data. The following outlier rejection procedure aims at

removing these wrongly assigned measurements:

Following the minimization of equation (7), the quality or

the agreement of the individual measurement i with the

overall fit is evaluated by the estimator fi,

fi ¼
�2

i

 2
max

�2
i N

�2
; ð10Þ

where �2
i is the contribution to �2 from the ith measurement,

N is the number of measurements in the fit and  max is a

predefined maximal angle deviation, which is related to the

measurement uncertainty and is specified by the user.

Generally, the lower the value of fi the better the quality or

agreement of the overall fit for the ith measurement. Note that

fi consists of two factors. The �2
i = 

2
max factor punishes

measurements with deviations larger than an absolute value

specified by  max. The second factor, �2
i N=�2, punishes

measurements that are larger than the mean �2 contribution,

i.e. a relative limit. Both factors taken together result in a good

quality for a given measurement if the deviation is smaller

than  max or if the deviation is smaller than the mean devia-

tion (and potentially larger than  max). Consequently, by

keeping measurements with fi 	 1 the outliers with deviations

larger than expected and larger than the mean deviation for

the whole fit are removed.

Removing outliers and fitting the orientation is an iterative

procedure. For a given set of measurements an orientation

estimate is obtained through equations (8) and (9). After-

wards measurements with

fi > 1 ð11Þ

are removed. A new fit with the remaining measurement is

done. The procedure is repeated until a stable solution is

found or the number of remaining measurements goes below a

user-specified minimum.

If the position is estimated as well, the procedure alternates

between the orientation fit and the position fit. Following the

position fit the directions of the G vectors are updated

according to the new origin. No selection is made. Following

the orientation fit the outlier filtering is done according to the

procedure described above.
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Figure 3
Illustration of the second selection.

1 Note that there is only one geodesic per reciprocal scattering vector in the
local Rodrigues space.



3.5. Implementation

The source code is written in C, and apart from standard

libraries the software package SgInfo (Grosse-Kunstleve,

1994) is used to generate equivalent matrices and theoretical

scattering vectors for a given space group.

4. Partial symmetry analysis

It is well known that crystal symmetry implies that orienta-

tions can be equivalent: that is they are associated with exactly

the same G vectors. When analysing multigrain data, partial

symmetries do also occur: in this case the orientations only

share some G vectors [see e.g. work by Grimmer et al. (1974)

on coincidence-site lattices for the cubic system]. As an

example, the partial symmetries appearing for the first five hkl

families for a face-centred cubic material are shown in Fig. 4.

For a given orientation, 274 other orientations exist with a

partial overlap of reflections – all within the fundamental zone

(where there are no symmetry equivalents). We shall call these

pseudo-twins. Out of a total of 112 G vectors, pseudo-twins

with 34, 24, 16, ten, eight, six, four and two reflections occur.

The ones with 34 reflections correspond to regular first-order

twins.

Experience shows that for high-symmetry structures it is

crucial to include an analysis of pseudo-twins in the poly-

crystalline indexing algorithm. For the above example, one

may argue that a completeness threshold of 1/3 or higher

would remove these. However, in real data G vectors may be

wrongly assigned to grains owing to either closely positioned

measurements on the same diffraction rings or closely posi-

tioned diffraction rings. In both cases, the completeness of the

pseudo-twins may end up systematically higher. To overcome

this problem, it is relevant for each orientation found to

investigate the pseudo-twin orientation and see if these are

associated with a higher completeness or better fits. Such an

analysis is also helpful in cases where real twinning occurs and

in general for noisy data. In the following, a method to derive

pseudo-twins for all space groups is presented.

To derive an algorithm for finding the pseudo-twin orien-

tation for a given trial orientation, we start by considering a

pair of theoretical scattering vectors in reciprocal space

mapped into a pair of G vectors, h1 ! g1 and h2 ! g2, i.e.

h1 � h2 ¼ g1 � g2. Following the convention of Busing & Levy

(1967), the crystallographic orientation U, fulfilling g1 ¼ Uh1

and g2 ¼ Uh2, can be expressed as

U ¼ Tðg1; g2ÞTðh1; h2Þ
�1; ð12Þ

given by a product of two orthogonal matrices. The first

column vector in Tðg1; g2Þ is a unit vector along g1. The third

column is a unit vector perpendicular to the plane spanned by

g1 and g2. The second column is a unit vector perpendicular to

the first and third columns, i.e. in the plane spanned by g1 and

g2. Likewise with respect to Tðh1; h2Þ.

Now consider a different pair of theoretical scattering

vectors, ðt1; t2Þ, where jt1j ¼ jh1j, jt2j ¼ jh2j and t1 � t2 ¼

h1 � h2. The orientation matrix that brings t1 ! g1 and t2 ! g2

is then given by

U2 ¼ Tðg1; g2ÞTðt1; t2Þ
�1: ð13Þ

If U and U2 are equivalent orientations, then

U2B ¼ UBEi ð14Þ

for some generator Ei of the space group in question, where B

is the correspondence between the Cartesian hkl lattice and

reciprocal space (see Appendix A). Rearranging equation

(14),

Tðt1; t2ÞTðh1; h2Þ
�1
¼ BEiB

�1; ð15Þ

we find that the measured G vectors, Tðg1; g2Þ, have cancelled

out. Consequently, equation (15) provides a general criterion

for recovering the same orientation when switching pairs of

theoretical reflections. In other words, the orientation that

brings one pair of theoretical reflections onto another pair

(h1 ! t1 and h2 ! t2) must be a symmetry-equivalent

operation. More specifically,

W ¼ Tðt1; t2ÞTðh1; h2Þ
�1

(
¼ BEiB

�1: full symmetry;
6¼ 8BEiB

�1: partial symmetry:

ð16Þ

For a given space group and unit cell the partial symmetries or

pseudo-twins, Wj, can be calculated using equation (16).

Pseudo-twin orientations are characterized by matching only a

fraction of the true measurements. For each candidate orien-

tation, Uc, found in the indexing procedure the true orienta-

tion is given by the orientation in the list

Uc;UcW1; . . . ;UcWn ð17Þ
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Figure 4
Partial symmetries shown in Rodrigues space for space group Fm3m, first
five hkl families (in total 112 theoretical reflections). The true orientation
is located at r ¼ ð0; 0; 0Þ. The remaining spots identify the partial
symmetries, i.e. where only a fraction of the theoretical scattering vectors
are mapped upon themselves. Of the 112 reflections, pseudo-twins with
34, 24, 16, ten, eight, six, four and two reflections occur.



that maximizes the completeness estimator, i.e. the fraction of

measurements found with respect to the number of

measurements expected.

5. Simulations

To verify the indexing procedure, Monte Carlo simulations

were performed. The sample was assumed to be a 500� 500�

500 mm Al polycrystal comprising N grains of random orien-

tation. At 50 keV X-ray energy, exposures were made on a

perfectly aligned distortion-free two-dimensional detector

with 50 mm pixels, placed at a distance of 20 cm from the

sample. The simulated data covered a rotation range of 180� in

steps of 0.25� and included only the five hkl families with the

highest d spacings.

The associated diffraction peaks are assumed to be ideal

intensity spikes in the detector images; in other words the

issue of spot broadening is neglected. On the other hand,

experimental errors in the centre-of-mass (CMS) positions of

the spots were included by adding Gaussian noise to the three

angles defining the G vector: 2�, � and ! (see Fig. 1). The

spreads were �s
2� = 0.025�, �s

� = 0.05� and �s
! = 0.125�. The

resulting distribution of the internal angular deviation

between the G vector and the predicted direction resembles

the observed distribution when indexing real data.2

Simulations with up to 3000 grains were conducted, where

in all cases all grains were retrieved and no erroneous grains

were found. GrainSpotter was run with the following user-

defined parameters: �2� = 0.05�, �� = 0.1�, �! = 0.2� and N� = 3.

These quantities have multiple functionalities. At startup each

G vector will be associated with the set of ðhklÞ families for

which j2�Gr � 2�ðhklÞj 	 N��2�. As stated previously, the

outlier removal procedure is also based on the uncertainties

with  max ¼ N�ð�2� þ �� þ �!Þ in equation (10). The size of

the voxels in the local Rodrigues space is given by a conser-

vative estimate: �R ¼  max=121=2. The user-specified size of

the local Rodrigues space was �R ¼ tanð�’=2Þ, yielding

�R=�R ¼ 10 voxels along each dimension for �’ ¼ 4�.

Equivalently, �’ ¼ 6� corresponds to �R=�R ¼ 15. A total of

100 000 random trials were selected for the search. Shown in

Fig. 5 is the computing time for N ¼ 100; 200; . . . ; 1000 grains

using one thread (i.e. a single core) on a 2.7 GHz Intel i7

processor and the corresponding purity, defined as the grain

average of the ratio between the number of correct reflections

associated by GrainSpotter and the number of simulated spots

for the grain. It is evident that the running time is approxi-

mately linear in the number of grains (�10�4N2 þ 10�1N) for

�’ ¼ 4�, and the result of less than 4 min for extracting 1000

grains complies well with the aspiration to perform indexing

online during synchrotron experiments. The resulting purity of

above 99% even at N ¼ 1000 is also encouraging. When the

size of the local Rodrigues space is enlarged, an enhancement

in performance speed is seen for the case �’ ¼ 6� in Fig. 5.

This is due to the higher rate of grains indexed per trial.

However, in terms of complexity the N2 term has become

more pronounced (�10�4N2 þ 10�2N).

In Fig. 6 the corresponding histograms for the error in CMS

position and orientation components for the case of N ¼ 3000

are shown. The error on the position in x and y is 15 mm and

that for z is 9 mm. Whereas errors on x and y are similar, the

error on z is smaller because the z axis is parallel to the

rotation axis !. To index all grains GrainSpotter was run

several times, saving the unassigned G vectors for the

following indexing step. Starting with �R ¼ tan(2�/2) at each

step, looser cuts were applied compared to the previous step.

The whole process took 50 min on one core. The purity was

97.4%.

6. Discussion

Evidently the simulations represent an idealized situation. In

actual experiments phenomena such as grain mosaicity, stress

and sample texture will affect performance. A particular

concern is the grain size distribution, which in many cases

implies that the number of grains visible decreases strongly
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Figure 5
Performance test. The execution time shown as a function of number of
grains: dotted line with boxes for �R ¼ tan(4�/2), and dotted line with
diamonds for �R ¼ tan(6�/2). The purity, i.e. the fraction of correctly
assigned G vectors (solid line), shows a linear and decreasing dependency
on the number of grains, due to an increasing probability that G vectors
from other grains will appear close to the expected location.

Figure 6
Performance test with 3000 grains. Misorientations (top left) with an
average error of 0.025�. Deviations in position for x (top right), y (bottom
left) and z (bottom right).

2 The distribution itself is approximately a generalized extreme value
probability distribution function of the second type (Coles, 2001).



with decreasing d spacing. Discussions of these effects and

suggestions for how to handle them can be found elsewhere

(e.g. Schmidt et al., 2003; Poulsen, 2004). For a systematic

discussion on error propagation in relation to multigrain

indexing the reader is referred to the work by Benier et al.

(2011) and Sharma et al. (2012b).

Recently several other approaches have been proposed for

polycrystalline indexing. We mention the following:

(1) The ImageD11 indexing algorithm is based on sorting of

reflections in a combinatorial approach (Wright, 2006): All

pairs of G vectors are created and the internal angle is

compared with a set of theoretical angles. If a mutually

consistent subset is found containing a minimum number of

pairs it is stored as a grain. This is a simple and effective

algorithm and is believed to go as OðN2Þ, with N being the

number of reflections.

(2) Ludwig et al. (2009) suggested an approach based on

Friedel pairs, through the use of a near-field detector and

rotation of the sample by 360�. This is an effective solution for

extended specimens and has been used for a number of grain

mapping experiments. As an example, 1008 grains were

indexed simultaneously in an experimental data set on �-Ti. In

terms of speed, the algorithm again is believed to go as OðN2Þ.

(3) Moscicki et al. (2009) developed an algorithm based on

Friedel pairs and far-field data, which was verified on nine

grains.

(4) Benier et al. (2011) operated on far-field data and

proposed a back-projecting algorithm with some similarity to

GrainSpotter. The focus is here in particular on strain analysis.

In short, for selected diffraction spots, a search for candidate

grains is performed along the associated geodesic (also known

as a fibre). The software was successfully demonstrated on an

aggregate of 819 grains.

(5) Sharma et al. (2012b), operating also on far-field data,

put the emphasis on large data sets and introduced an

indexing formalism that simultaneously exploits the

constraints in both direct and orientation space. They

demonstrated the software on a simulated data set with 3000

grains.

Without round-robin tests it is not possible to conclude on

relative performance, but it appears that none of the algo-

rithms can be labelled as universally ideal, and they also tend

to be motivated, at least in part, by different performance

criteria. Nevertheless, GrainSpotter is to my knowledge the

first indexing routine to be used for online data analysis.

The GrainSpotter algorithm can be generalized in several

ways:

(i) Grainspotter works on segmented data, i.e. data where

the diffraction spots have been harvested in the diffraction

images. To ensure that the total throughput is high, the focus

so far has been based on segmentation via thresholding and

the use of connected components (pixel connectivity search,

where detector pixels are grouped into spots) type algorithms.

However, Grainspotter is directly compatible with any

segmentation scheme, such as watersheding, relevant in cases

where spot overlap is a concern (Kenesei, 2010; Sharma et al.,

2012a).

(ii) It is possible to offset the centre of origin in the code. By

repeating Grainspotter with several origins and picking the

best grains from the set of resulting outputs, one can extend

the use of GrainSpotter in the direction of large N and

extended samples.

(iii) GrainSpotter is well adapted to perform indexing also

in cases of unknown space groups, of interest in particular in

geoscience and chemistry. Work on this topic will be reported

elsewhere.

(iv) GrainSpotter is easy to parallelize, as the computation

of candidate grains for local Rodrigues spaces can be

performed independently.

A partial symmetry analysis is also relevant in situations

where only a fraction of the expected reciprocal space is

covered, e.g. when the sample is partly illuminated by the

beam (grains moving in and out of the beam), or if the active

area of the detector is not taken fully into account (partly

illuminated diffraction rings, dead areas etc.). In these cases

the completeness estimator may be lower than expected for

the best partial symmetry. However, by carefully examining

the set of ðhklÞs matched against data one can determine if the

orientation is ambiguous or true, as certain combinations of

ðhklÞs uniquely determine the orientation. For complete data

sets the classical way of requiring a high value of the

completeness estimator, as an alternative to the pseudo-twin

analysis, is also available as a user-defined option in Grain-

Spotter.

APPENDIX A
Forward projection

In the following we derive equations for determining the

directions of the diffraction vector in the sample reference

system given a grain with orientation U and a lattice plane

ðh; k; lÞ. Generally, each G vector gives rise to two directions

in the sample reference system, which will be shown in the

following. The emphasis is on a formulation that leads to

efficient programming. In addition, previous work on estab-

lishing the geometry of the forward projection (Poulsen, 2004)

is generalized.

Poulsen (2004) gives the diffraction equation as

Gi ¼
di

2�
�iUBGhkl;i: ð18Þ

Here Gi is the scattering vector (jGij ¼ 1) in the laboratory

system of reflection i, di is the spacing between the planes in

the atomic lattice for the ith reflection, �i is a right-hand

rotation, !i, round the z axis for the ith reflection,

�i ¼

 
cos!i � sin!i 0

sin!i cos!i 0

0 0 1

!
; ð19Þ

and B is the correspondence between the Cartesian hkl lattice,
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Ghkl ¼

h

k

l

0
@

1
A; ð20Þ

and reciprocal space,

B ¼

 
a
 b
 cos 	
 c
 cos�


0 b
 sin 	
 �c
 sin �
 cos 

0 0 c
 sin �
 sin 


!
; ð21Þ

cos
 ¼
cos�
 cos 	
 � cos 



sin �
 sin 	

; ð22Þ

where ða; b; c; 
; �; 	Þ and ða
; b
; c
; 

; �
; 	
Þ are the lattice

parameters in direct and reciprocal space.

In the following we generalize equation (18) by introducing

the generalized rotation matrix �i,

�i ¼ �x�y�i ¼ R�i; ð23Þ

where �x and �x are known right-handed rotations around

the x and y axis, thus accommodating all possible directions of

the rotation axis. Furthermore, the length of the scattering

vector is changed to jGij ¼ �=ð2diÞ, where � is the wavelength

of the monochromatic beam. The scattering vector in the

sample system, the reciprocal vector Gr
i , is defined by

Gr
i ¼ ��1

i Gi ¼
�

4�
UBGhkl;i: ð24Þ

Expressing Gi as a function of 2� and � we have

Gi ¼
1

2

 
cos 2� � 1

� sin 2� sin �
sin 2� cos �

!
i

: ð25Þ

Since ðGiÞ1 is independent of �i,

Ci ¼ Ai cos!i þ Bi sin!i; ð26Þ

where

Ai ¼ R11 Gr
ið Þ1þR12 Gr

ið Þ2; ð27Þ

Bi ¼ R21 Gr
ið Þ1�R11 Gr

ið Þ2; ð28Þ

Ci ¼ � Gr
i

�� ��2�R13 Gr
ið Þ3: ð29Þ

The solutions are given by

cos!i;j ¼
AiCi � BiD

1=2
i

A2
i þ B2

i

; sin!i;j ¼
BiCi � AiD

1=2
i

A2
i þ B2

i

; ð30Þ

Di ¼ A2
i þ B2

i � C2
i : ð31Þ

The solution can easily be verified by substituting sin! ¼
½expði!Þ � expð�i!Þ�=2i and cos! ¼ ½expði!Þ þ expð�i!Þ�=2

and solving for expði!Þ. Consequently, we can determine the

direction of the diffraction vector in real space, Li;j,

Li;j ¼ ��1
i;j

 
cos 2�

� sin 2� sin �
sin 2� cos �

!
i;j

¼ 2��1
i;j Gi;j þ ��1

i;j

 
1

0

0

!

¼ 2Gr
i þ ��1

i;j

� �
j1;

ð32Þ

where ð��1
i;j Þj1 is the first column vector of ��1

i;j . Note that

jLi;jj ¼ 1. For each reciprocal vector Gr
i there exist (up to) two

direct space vectors, Li;j. Also note that Li;j can be expressed in

terms of the reciprocal vector, Gr, without reference to !, �
and 2�.

Note that the formalism presented here also facilitates an

indexing procedure when recording data using multiple rota-

tion axes.

The author wishes to thank Henning Friis Poulsen for

discussions during the preparation of the manuscript.

References

Beaudoin, A. J., Obstalecki, M., Storer, R., Tayon, W., Mach, J.,
Kenesei, P. & Lienert, U. (2012). Model. Simul. Mater. Sci. Eng. 20,
024006.

Benier, J. V., Barton, N. R., Lienert, U. & Miller, M. P. (2011). J. Strain
Anal. Eng. Des. 46, 527–547.

Busing, W. R. & Levy, H. A. (1967). Acta Cryst. 22, 457–464.
Coles, S. (2001). An Introduction to Statistical Modeling of Extreme

Values. London: Springer-Verlag.
Grimmer, H., Bollmann, W. & Warrington, D. H. (1974). Acta Cryst.

A30, 197–207.
Grosse-Kunstleve, R. W. (1994). SgInfo – Space Group Info, http://

cci.lbl.gov/sginfo/.
Jakobsen, B., Poulsen, H. F., Lienert, U., Almer, J., Shastri, S. D.,

Sorensen, H. O., Gundlach, C. & Pantleon, W. (2006). Science, 312,
889–892.

Juul Jensen, D., Lauridsen, E. M., Margulies, L., Poulsen, H. F.,
Schmidt, S., Sorensen, H. O. & Vaughen, G. B. M. (2006). Mater.
Today, 9, 18–25.

Kenesei, P. (2010). DIGIgrain, http://sourceforge.net/apps/trac/
digigrain/.

Kocks, U. F., Tome, C. N., Wenk, H.-R. & Mecking, H. (2000). Texture
and Anisotropy: Preferred Orientations in Polycrystals and Their
Effect on Materials Properties. Cambridge University Press.

Larson, B. C., Yang, W., Ice, G. E., Budai, J. D. & Tischler, J. Z. (2002).
Nature, 415, 887–890.

Lauridsen, E. M., Jensen, D. J., Poulsen, H. F. & Lienert, U. (2000).
Scr. Mater. 43, 561–566.

Lauridsen, E. M., Schmidt, S., Suter, R. M. & Poulsen, H. F. (2001). J.
Appl. Cryst. 34, 744–750.

Ludwig, W., Herbig, M., Buffire, J. Y., Ludwig, W., Reischig, P., King,
A., Johnson, G., King, A., Johnson, G., Marrow, T. J. & Lauridsen,
E. M. (2009). Rev. Sci. Instrum. 80, 033905.

Ludwig, W., Schmidt, S., Lauridsen, E. M. & Poulsen, H. F. (2008). J.
Appl. Cryst. 41, 302–309.

Margulies, L., Winther, G. & Poulsen, H. F. (2001). Science, 291, 2392–
2394.

Moraviec, A. & Field, D. P. (1996). Philos. Mag. A, 73, 1113–1130.
Moscicki, M., Kenesei, P., Wright, J., Pinto, H., Lippmann, T., Borbely,

A. & Pyzalla, A. R. (2009). Mater. Sci. Eng. A, 524, 64–68.
Oddershede, J., Camin, S., Schmidt, S., Mikkelsen, L. P., Sørensen,

H. O., Lienert, U., Poulsen, H. F. & Reimers, W. (2012). Acta Mater.
60, 3570–3580.

research papers

J. Appl. Cryst. (2014). 47, 276–284 Søren Schmidt � GrainSpotter 283

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5034&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5034&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5034&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5034&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5034&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5034&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5034&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5034&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5034&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5034&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5034&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5034&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5034&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5034&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5034&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5034&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5034&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5034&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5034&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5034&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5034&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5034&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5034&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5034&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5034&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5034&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5034&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5034&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5034&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5034&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5034&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5034&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5034&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5034&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5034&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5034&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5034&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5034&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5034&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5034&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5034&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5034&bbid=BB19


Oddershede, J., Schmidt, S., Poulsen, H. F., Margulies, M., Wight, J.,
Moscickic, M., Reimers, W. & Winther, G. (2011). Mater. Charact.
62, 651–660.

Oddershede, J., Schmidt, S., Poulsen, H. F., Sørensen, H. O., Wright, J.
& Reimers, W. (2010). J. Appl. Cryst. 43, 539–549.

Offerman, S. E., van Dijk, N. H., Sietsma, J., Grigull, S., Lauridsen,
E. M., Margulies, L., Poulsen, H. F., Rekveldt, M. T. & van der
Zwaag, S. (2002). Science, 298, 1003–1005.

Paithankar, K. S., Sørensen, H. O., Wright, J. P., Schmidt, S., Poulsen,
H. F. & Garman, E. F. (2011). Acta Cryst. D67, 608–618.

Poulsen, H. F. (2004). Three-Dimensional X-ray Diffraction Micro-
scopy. Mapping Polycrystals and Their Dynamics, Tracts in Modern
Physics, Vol. 205. Berlin: Springer-Verlag.

Poulsen, H. F., Nielsen, S. F., Lauridsen, E. M., Schmidt, S., Suter,
R. M., Lienert, U., Margulies, L., Lorentzen, T. & Juul Jensen, D.
(2001). J. Appl. Cryst. 34, 751–756.

Poulsen, S. O., Lauridsen, E. M., Lyckegaard, A., Oddershede, J., Gund-
lach, C., Curfs, C. & Juul Jensen, D. (2011). Scr. Mater. 64, 1003–1006.

Schmidt, S. (2007). GrainSpotter, http://sourceforge.net/apps/trac/
fable/browser/GrainSpotter.

Schmidt, S., Nielsen, S. F., Gundlach, C., Margulies, L., Huang, X. &
Jensen, D. J. (2004). Science, 305, 229–232.

Schmidt, S., Olsen, U. L., Poulsen, H. F., Sørensen, H. O., Lauridsen,
E. M., Margulies, L., Maurice, C. & Juul Jensen, D. (2008). Scr.
Mater. 59, 491–494.

Schmidt, S., Poulsen, H. F. & Vaughan, G. B. M. (2003). J. Appl. Cryst.
36, 326–332.

Sharma, H., Huizenga, R. M. & Offerman, S. E. (2012a). J. Appl.
Cryst. 45, 693–704.

Sharma, H., Huizenga, R. M. & Offerman, S. E. (2012b). J. Appl.
Cryst. 45, 705–718.

Sørensen, H. O., Hakim, S. S., Pedersen, S., Christiansen, B. C.,
Balogh, Z., Hem, C. P., Pasarin, S., Schmidt, S., Olsen, U. L.,
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