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ABSTRACT

This paper introduces a method for identifying icing events using a physical icing model, driven by atmo-

spheric data from the Weather Research and Forecasting (WRF) model, and applies it to a wind park in

Sweden. Observed wind park icing events were identified by deviation from an idealized power curve and

observed temperature. The events were modeled using a physical icing model with equations for both ac-

cretion and ablation mechanisms (iceBlade). The accretion model is based on the Makkonen model but was

modified to make it applicable to the blades of a wind turbine rather than a static structure, and the ablation

model is newly developed. The results from iceBlade are shown to outperform a 1-day persistence model and

standard cylinder model in determining the times when any turbine in the wind park is being impacted by

icing. The icing model was evaluated using inputs from simulations using nine different WRF physics pa-

rameterization combinations. The combination of the Thompson microphysics parameterization and version

2 of the Mellor–Yamada–Nakanishi–Niino PBL scheme was shown to perform best at this location. The

distribution of cloud mass into the appropriate hydrometeor classes was found to be very important for

forecasting the correct icing period. One concern with the iceBlade approach was the relatively high false

alarm rates at the end of icing events due to the ice not being removed rapidly enough.

1. Introduction

Onshore wind farms are one of the most cost-effective

ways to generate electricity (Hau 2013), leading to their

large role in the development of plentiful clean energy

for the future. In many parts of the world, the most lu-

crative available sites for wind energy extraction have

already been placed into production. This is forcing wind

farm developers to look to sites that are more complex

and carry additional risks or uncertainties, such as off-

shore, forested, and cold climate locations. As of 2012,

wind parks in cold climates account for approximately

4.1% of the 240GW of global wind energy capacity

(Ronsten et al. 2012). Forwind parks in cold climates, one

of the largest sources of risk comes from atmospheric

icing on the turbine blades.

Atmospheric icing occurs on all structures that are

exposed to moisture at temperatures below 08C. There

have been extensive studies of atmospheric icing both

on cylinders, largely related to overhead power lines

summarized in Farzaneh (2008), and on airfoils, mostly

in the aviation community (e.g., Gent et al. 2000; Bragg

et al. 2005). The challenge of atmospheric icing has also

been studied for wind energy, with several international

collaborations on the topic (e.g., Fikke et al. 2006;

Ronsten et al. 2012), as well as a dedicated conference

on wind energy in cold climates (Winterwind Inter-

national Wind Energy Conference). The use of meso-

scale models to estimate icing has been applied for

studies in aviation (e.g., Thompson et al. 1997; Wolff

et al. 2009), for both power-line icing and turbine icing in

the power industry (e.g., Fikke et al. 2008; Dierer et al.

2011), and for comparisons with icing on standard cyl-

inders (Bernstein et al. 2012; Byrkjedal 2012a,b; Soderberg

and Baltscheffsky 2012; Yang 2012).

There are three main types of atmospheric icing: 1) in-

cloud icing is generated by supercooledwater droplets in

clouds or fog that contact a surface and freeze upon

impact, often leading to rime ice that has a rough ap-

pearance and milky look due to trapped air that de-

creases its density; 2) freezing rain occurs when rain falls
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onto structures with temperatures below 08C, commonly

forming glaze ice that has a high density and clear ap-

pearance; 3) wet snow icing occurs under special mete-

orological conditions that allow snow with a liquid surface

to accumulate on structures when the ambient temper-

ature is close to freezing. The focus of this study is on in-

cloud icing only.

In-cloud icing on turbine blades increases the safety,

financial, and maintenance risks when developing and

operating a wind farm in cold climates. Accumulated ice

on the blades can fall or be thrown from the turbine,

requiring careful planning tominimize the risk to people

and property near the wind farm (Seifert et al. 2003).

The added mass, caused by the ice, places additional

loads on the turbine that can lead to increased mainte-

nance and shorten turbine lifetimes. Finally, ice accu-

mulation changes the aerodynamic properties of the

blades themselves and can lead to reduced energy pro-

duction during the icing season. Homola et al. (2012)

showed that the power curve (i.e., the relationship be-

tween wind speed and power) for a simulated wind

turbine is reduced by around 28% between the cut-in

wind speed, where the turbine is able to produce elec-

tricity, and the rated wind speed, where the turbine is

producing its rated power output, for a turbine blade

with moderate ice growth. Barber et al. (2011) in-

vestigated two wind farms in Switzerland and found that

icing leads to a 2% loss of annual energy production

(AEP) at a farm with moderate icing where the ice ac-

cumulation is not severe enough to lead to flow separa-

tion on the airfoil, and a 17% loss in AEP at a farm that

experiences extreme icing leading to flow separation.

Thus far, most research into icing on wind turbines has

related to observations (e.g., Fikke et al. 2006; Ronsten

et al. 2012), ice throw (e.g., Seifert et al. 2003; Cattin

et al. 2007), and computational fluid dynamics (CFD)

modeling focused on the type and amount of icing

formed on the blades and the impact of that icing on

airfoil performance under different fixed meteorologi-

cal conditions (e.g., Makkonen et al. 2001; Homola et al.

2010a; Virk et al. 2010; Homola et al. 2012; Virk et al.

2012). There have been a few conference presentations

on forecasting icing at Winterwind, but these have

mostly focused on forecasting ice on a standard cylinder

using the Makkonen (2000) model and then relating

the standard icing results to the turbine using statistical

algorithms (e.g., Dierer et al. 2011; Byrkjedal 2012a;

Soderberg andBaltscheffsky 2012; Yang 2012). Bernstein

et al. (2012) reported that the correlation between mea-

sured icing load on a cylinder and actual power loss is

weak because significant ice loads may persist on cylin-

ders while power recovers at the turbines. They also

found that active icing is better correlated with power

loss. The standard cylinder approach has been shown to

reasonably capture the ice loading of a standard cylinder

mounted near the turbine, but only limited agreement

with the power output was found (Byrkjedal 2012a).

This study introduces the iceBlade model that was

developed with the goal of providing a better relation-

ship between the forecast periods of icing and reduced

power output. This was accomplished by modifying the

inputs to the Makkonen ice accretion model to better

represent the conditions on the wind turbine blade, as

well as including algorithms for ice sublimation, and a

method for modeling total ice shedding. It will be shown

that the results from the iceBlade model, driven by me-

soscale model outputs, can successfully reproduce the

periods of icing observed at a wind park in Sweden.

The rest of the paper is organized as follows. In sec-

tion 2, the data from the wind park are described, and

the method of determining icing from the observa-

tions values is presented. Section 3 describes the models

used in this study, first presenting the iceBlademodel, then

the mesoscale model that provides the inputs to iceBlade,

and finally the coupling of the twomodels. In section 4, the

observations and model results are presented and dis-

cussed. In section 5, the main conclusions are presented.

2. Wind farm data

This study focuses on power production and meteo-

rological data from a wind farm in central Sweden. The

site is fairly noncomplex, with land use dominated by

forest and small lakes. The farm consists of 48 Vestas

Wind Systems A/S V90 turbines, and the dataset con-

tains 10-min-average data for the month of January

2011. Data were missing for most turbines for the period

between 16 and 19 January. In addition to the pro-

duction and meteorological data, all turbines provided

status counters. Two of these counters were used for

quality assurance (QA) of the dataset. The first counter

provided the number of seconds, out of the optimal

600 s, that the wind was within the required range for

producing power. This means that the wind speed was

between the cut-in wind speed of 4m s21 and the cutoff

wind speed of 25m s21, above which the turbine stops

producing for safety reasons. The second counter pro-

vided the number of seconds the turbine was in normal

operation. All time steps where either of these values

deviated from the optimal value by more than 10 s were

flagged as QA time steps and dropped from the analysis.

To form a more homogeneous dataset, five turbines

were removed from the analysis. This left 43 turbines to

represent the wind farm in the study.

Each turbine reported instantaneous meteorological

measurements from its nacelle for wind direction, wind
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speed, wind speed standard deviation, and temperature.

Only temperature and wind speed were used in this

study. The temperaturemeasurements had a rather coarse

precision of 18C created by rounding the decimal obser-

vations. The measured wind speed data were already ad-

justed to account for the speedup experienced due to the

placement of the anemometer on the nacelle. Also, as

the wind speed was taken at the turbine, any wake loss is

already accounted for in the wind speed so no additional

modification is required.

An idealized power curve for the V90 turbine was

calculated using data provided by the Wind Atlas

Analysis and Application Program, version 10 (WAsP;

Troen and Petersen 1989), to evaluate the turbine per-

formance. Figure 1 compares the observed power curve

for all 43 turbines with two idealized curves for three

different temperature bins (above 08C, from 08 to2108C,
and below2108C). The idealized curves represent 1) the

unadjusted idealized power curve calculated using the

raw nacelle wind speed and 2) a fitted curve for the ice

threshold defined below. The observed power curve

shows good agreement with the idealized power curves

when the temperature was above 08C, with similar spread

on each side of the power curve. However, for tempera-

tures less than or equal to 08C the observed yield was

consistently lower than the estimated value from the

idealized power curve. Very few points fell above the

idealized curves; for the coldest temperature bin, this

suggests that the turbines were iced during the entire

period when the temperature was below 2108C. It is

expected that this feature would not be seen with a

larger dataset that contained more points with temper-

atures lower than 2108C.
As there were no direct icing observations for any of

the turbines, a proxy dataset was created. This was done

by fitting a curve to the bottom of the observed power

curve for temperatures above 08C (blue curve in Fig. 1).

This curve is calculated as

FIG. 1. Idealized (red or orange) and observed (blue) power curves for each turbine in the

wind park: red curves show the idealized power curve as provided byWAsP data tables for the

unadjusted nacelle wind speeds, and orange curves show the threshold used for observed icing

events defined in (1). The panels represent various temperature bins: (top) T . 08C, (bottom
right) 2108 , T # 08C, and (bottom left) T # 108C.

264 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 53



f (p)5p3 0:81 [y3/max(y3)] , (1)

where p is the idealized power at a given wind speed and

y is the wind speed. The threshold power f(p) was lim-

ited to a maximum value of 0.98. The curve allowed for

a transition between a high deviation value of 20% at

wind speeds below the rated wind speed (12m s21) when

the power curve has a steep slope, and therefore a larger

deviation, and the flat portion of the curve above the

rated wind speed, where there is less variation in the

power output. Using the icing threshold curve calculated

in Eq. (1), an icing observation was defined as a data

point that fell below that curve when the temperature

was less than 08C. This assumes that all of the power loss

observed at cold temperatures was the result of icing.

This is a reasonable assumption, as at colder tempera-

tures an increase in yield is typically expected due to the

increased air density. Vertical wind shear is also expected

to increase at cold temperatures; however, Antoniou

et al. (2009) found that wind shear causes less than the

20% impact that we are using as our icing cutoff.

Because of the large variability in icing from each of

the 43 turbines, three different wind park icing occur-

rence time series, representing different numbers of af-

fected turbines, were created: 1) ANYwas considered to

have occurred when any of the 43 turbines in the park

experienced icing, 2) MOST wind park icing was con-

sidered to have occurred when the majority (.50%) of

active turbines had icing events, and 3) ALL wind park

icing was considered to have occurred when all active

turbines had icing events.

The temperature and wind speed values from the

turbines were also examined. The temperature data

showed an average spread of 2.68C across the 43 tur-

bines. There was also one turbine that was a clear outlier

at the beginning of the period; excluding that turbine

reduces the spread to 2.58C. The wind speed also had

a very large mean spread of 5.14m s21. This spread was

likely due to the micro-siting of the turbines, where

several turbines were placed in areas where the windwas

increased due to local effects. Given the large spread of

the data and the existence of outliers in the dataset, the

median temperature and wind speed were chosen to

compare with the model data.

The National Centers for Environmental Prediction

Automated Data Processing Global Upper Air and

Surface Weather Observations dataset (documented

and available online at http://rda.ucar.edu/datasets/

ds337.0/) was used as an independent meteorological

dataset for additional mesoscale model verification.

From this dataset, three surface stations located within

100 km of the wind farm were chosen (Fig. 2, inset). The

surface stations recorded station pressure, specific humidity,

temperature, and wind speed, and provided a more de-

tailed model evaluation than was possible using only the

wind park data. The surface stations have been renamed

from south to north as stations A, B, and C. Station A is

located on a small island in a large lake, stationB is located

in a fieldwith forest nearby, and stationC is located next to

a river surrounded by grasslands and forest.

From the ANY icing observation dataset, a baseline

persistence model was created for comparison with

the iceBlade model. This model used a 1-day forecast,

where missing data were treated as an unavailable

forecast. Given the relatively long time periods of the

icing and nonicing events in this dataset (Fig. 3), it is

presumed that the persistence model would be difficult

to beat. However, it should be noted that for other lo-

cations and periods the persistence model may not

perform as well.

3. Models

a. The iceBlade icing model

The iceBlade model is a new model developed to

approximate the mass of ice that accumulates on a wind

turbine blade during in-cloud icing conditions. The

model is presently designed to only estimate the effects

of liquid-phase cloud particles accreting on a simplified

blade represented by a cylinder, with an incoming ve-

locity based on the rotational speed of a wind turbine

under similar conditions. The model presently neglects

wet snow icing, which may be significant at certain lo-

cations, but did not appear to be important for this par-

ticular wind farm. IceBlade consists of the Makkonen

(2000) accretion model, with inputs suitable for wind

turbines, and ablation models for sublimation and shed-

ding. The accretion and the ablationmodels are described

in the next two sections. The representation of the turbine

in the model is described in section 3a(3).

1) ICE ACCRETION MODEL

Makkonen (2000) presented a model to calculate the

rate of ice mass growth based on the mass flux of cloud

particles (a product of the mass concentration of parti-

cles v, the velocity, and the cross-sectional area of the

object A) and three correction factors a1, a2, and a3:

dM

dt
5a1a2a3vyA . (2)

The correction factors, which can range in value from

0 to 1, represent processes that reduce the amount of ice

accretion from its maximum value, the incoming mass

flux. These factors are defined as efficiencies of collision

(a1), sticking (a2), and accretion (a3). The usage of
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efficiency factors allows for different models to be con-

structed quickly by replacing the factors with updated

methods, allowing for the easy extension of the model to

new areas of research. IceBlade uses the unmodified

factors at present; therefore, only a simple description of

each is provided below.

The collision efficiency term a1 represents the total

collision efficiency E. This value can be calculated using

an empirical formula [Eq. (1) in Finstad et al. (1988)]

derived using regression analysis based on data from an

investigation of water droplets in flows around cylinders

by Langmuir and Blodgett (1961). In addition to E,

Finstad et al. (1988) derived relationships for calculating

the maximum impingement angle amax, stagnation line

velocity y0, and stagnation line collision efficiency b0.

The integration of all collision efficiencies between

6amax is represented by E.

The sticking efficiency term a2 approximates the loss

of incoming cloud particles that either bounce off the

structure (frozen) or generate splash, which reduces the

FIG. 2. Terrain contours from 0 to 1600m with 200-m intervals for the outer WRF domain. The inner WRF domain is marked by the

rectangle, and the wind park location is identified by a black circle. The inset map shows a zoomed-in region of the domain around the

three meteorological stations, showing the WRF land use from the inner nest, and contours from 100 to 900 with 100-m intervals.
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mass available for accretion. From Makkonen (2000),

the loss from supercooled water droplets is almost zero,

corresponding to an a2 of 1. As iceBlade is designed for

modeling work with liquid droplets only at present, a2 is

always set to 1.

The final efficiency term a3 estimates the ratio of in-

coming mass that freezes upon impact with the struc-

ture. During rime icing conditions all impacting particles

freeze, leading to an a3 value of 1. Under glaze icing

conditions only a portion of the incomingmass freezes. The

amount of mass that is frozen is controlled by the heat

balance at the interface between the incoming droplets and

the surface. In Makkonen (2000), this is represented by

Qf 1Qy 5Qc1Qe 1Ql 1Qs , (3)

where Qf is the latent heat released during freezing, Qy

is the frictional heating of air, Qc is the loss of sensible

FIG. 3. (top to bottom) Time series of observed icing for ANY,MOST, and ALL turbines and for each (T43–T01) turbine. White space

denotes a period for which turbine data were not available, light gray indicates data obtained when the turbine was not in optimal

operation for the full 10-min period, dark gray denotes periods during which there was no icing, and black shows icing periods.
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heat to the air, Qe is the heat lost to evaporation, Ql is

the heat loss in warming the impinging water to the

freezing temperature, and Qs is the heat loss due to ra-

diation. The terms in Eq. (3) have been parameterized in

Makkonen (2000) and will not be replicated here. In our

experience, the efficiency term a3 defined using the pa-

rameterizations of Eq. (3), can be applied to both rime

and glaze icing situations, provided the result is limited

to a range of 0 to 1.

Based on the assumptions presented above, there are

two inherent limitations of the Makkonen model as

applied in iceBlade:

(i) the model is applicable only to cylindrical objects—

this also implies that the ice shape itself retains a

cylindrical shape as it grows, and

(ii) the model is applicable only to supercooled water

droplets.

2) ICE ABLATION MODELS

Ice ablation refers to all processes that remove ice

from a structure. There are three main ablation pro-

cesses: 1) melting, 2) sublimation, and 3) shedding.

Melting and sublimation are physical processes that are

based on the heat and moisture balance between the ice

and the ambient air when the temperature is above and

below the freezing point. Ice shedding occurs when ice

falls from the structure due to a loss of adhesion. For

a section of the structure, ice shedding can be described

as either total shedding, where the entire mass of accu-

mulated ice is removed from the structure, or partial

shedding, where the ice loses cohesion with another part

of the ice, rather than losing adhesion to the structure.

IceBlade includes algorithms for sublimation and total

shedding described in detail below.

Total ice shedding is based on microscopic inter-

actions between ice and the blade surface, and its

modeling requires detailed information about the blade

surface and the way the ice accumulated on that surface.

Since one of the design parameters of iceBlade is the

application to different turbines under various condi-

tions, it was decided that the implementation of a phys-

ical shedding algorithm was too turbine specific and

currently outside of the model’s scope. Therefore, a

simplifiedmethod was developed based on the following

assumptions: 1) when a turbine is in operation, even

a slight loss in adhesion would cause the ice to be thrown

from the turbine due to the forces present on the ro-

tating blade; 2) the only loss of adhesion is due to

melting at the blade surface; and 3) the turbine is always

operating according to the idealized power curve. These

assumptions greatly underestimate the shedding that

occurs since it can often happen at temperatures below

08C, due to turbulence, or blade flexing. Given those

assumptions, total shedding is implemented by removing

all ice from the blade when the ambient temperature is

above 0.58C for 1h. This threshold was tested at this lo-

cation and found to be reasonable; however, it may need

to be modified for other sites. Because of the relatively

low temperature threshold for total shedding, ice melt is

not included in the iceBlade model at this time.

Ice sublimation is modeled using the explicit solution

[Eq. (16) from Srivastava and Coen (1992)]. To account

for the change in shape, from spherical to cylindrical, the

following modifications were made to Eq. (6) in

Srivastava and Coen (1992):

�
dm

dt

�
1

5
4prDfyrs(T‘)

11
LsDfy
kfh

r0s
, (4)

where D is the diffusivity of water vapor in air, fy is the

ventilation coefficient for water vapor, rs(T‘) is the

saturation vapor density at ambient air temperature

(T‘),Ls is the latent heat of sublimation, k is the thermal

conductivity of air, fh is the ventilation coefficient for

heat, and r0s is the differentiation of rs(T‘). From

Pruppacher and Klett (2004) it can be found that 2fy 5
Sh and 2fh 5 Nu, where Sh is the Sherwood number and

Nu is the Nusselt number. The Sherwood and Nusselt

numbers are dimensionless numbers that provide the ratio

between convective and conductive transfers of mass

and heat, respectively. The Sherwood number is de-

fined as

Sh5KL/D , (5)

where K is the mass transfer coefficient and L is a char-

acteristic length. For a sphere, L is typically the di-

ameter. By using Eq. (5) and substituting for fy and fh,

Eq. (4) can be rewritten as

�
dm

dt

�
1

5
AShDrs(T‘)

L 11
LsDSh

kNu
r0s

�� , (6)

where A is the surface area as in Eq. (2). Sherif et al.

(1997) presented a formula for the Nusselt number of an

airfoil as a function of its chord length and leading-edge

diameter, using the Reynolds and Prandtl numbers.

Using this same formula, it is possible to calculate the

Sherwood number by substituting the Schmidt number

with the Prandtl number. The iceBlade sublimation equa-

tion is found by combining these calculations of the Sher-

wood and Nusselt numbers with Eq. (6), while using the

chord length as the characteristic length L. The chord
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length term cancels out between the two equations al-

lowing a constant value of 1.0 to be used in iceBlade.

3) TURBINE REPRESENTATION

To reduce the complexity of the model, several sim-

plifications have been made to the representation of a

fully rotating turbine blade. IceBlade models a 1-m-long

segment of the turbine blade as a cylinder, located ap-

proximately 85% down the length of the 41-m-long

blade. Since specific information about the airfoil used

on the turbines in this study was unavailable, a cylinder

diameter of 0.144m was taken from the National Re-

newable Energy Laboratory’s 5-MW reference turbine

(Jonkman et al. 2009). The cylinder diameter is based on

the leading-edge radius for the airfoil being 2.4% of the

chord length, with a chord length of 3.0m.

Rather than represent the blade as rotating through

space, the iceBlademodel was designed so that the blade

is always located in the same meteorological conditions.

This eliminates the calculation of how much time the

blade segment spends at various points in the rotor

plane. How this relates to the mesoscale modeling, and

its impact on this study, are discussed in more detail in

section 3c.

The largest difference between the rotating turbine

blade and a standard cylinder is the incoming velocity

term. Since the blade is rotating at tip speeds approaching

90ms21, the ambient wind speed has to be converted to

a blade-relative velocity. Again, the data required to

calculate an appropriate revolutions-per-minute (rpm)

curve were unavailable for the turbines at the studied

site, so a generic curve based solely on the ambient wind

speed was used in its place. The rpm value was then

converted into a linear speed at a distance of 34.85m

from the center of rotation. In initial tests (not shown), it

was found that this change reduced the number of icing

events but increased the amount of ice accumulated

during events when icing did occur. This is likely due to

an increase in mass flux resulting from the increased

velocity. The increasedfluxdecreases thea3 term inEq. (2),

reducing or preventing ice growth at temperatures near

or above 08C. However, when the ambient temperature

is cold enough to freeze the increased mass flux, ice will

accumulate more rapidly.

The final change between iceBlade and theMakkonen

model for a standard cylinder is that the iceBlade model

does not update the size of the cylinder between time

steps. When the Makkonen model is run on a standard

cylinder, it is assumed that the cylinder will retain its

shape and therefore the change in diameter can be

reasonably calculated from the icemass and density. For

the turbine blade, which is always orientated in one di-

rection, most of the ice grows out of the leading edge, as

seen in the CFD study by Homola et al. (2010b). This

suggests that the ice growth simply extends the chord

length rather than making the leading edge thicker and

therefore would not have a significant impact on either

the collision efficiency or the surface area facing the flow.

b. Meteorological modeling

Meteorological modeling for this study was under-

taken using the Weather Research and Forecasting

(WRF) mesoscale model, version 3.3 (Skamarock et al.

2008). This model has been shown to accurately repre-

sent the liquid water content of low-level clouds at high

resolutions; however, questions remain about its ability

to represent the size of the cloud particles via their me-

dian volumetric diameter (MVD) (Nygaard et al. 2011).

The WRF model was driven with initial and boundary

conditions from the Global Forecast System’s Final

Analysis Product (FNL), with sea surface temperatures

from the National Oceanic and Atmospheric Adminis-

tration’s Optimum Interpolation Sea Surface Tempera-

ture dataset (OISST), version 2 (Reynolds et al. 2007). The

FNL data were also used as input to grid four-dimensional

data assimilation nudging on the outer nest. The nudg-

ing was applied on all levels above level 15, approxi-

mately 500m, with all nudging coefficients set to 7.5 3
1025. The nudging was not included below level 15 be-

cause of the increased influence of mesoscale features

near the surface. The simulation was run for 30 days, in

three 10-day periods, with 24 h of spinup per period.

Twomodeling domains were run, with the outer domain

having a grid spacing of 30 km and the inner domainwith

grid spacing of 10 km. Thewind farmwas located near the

center of both domains (Fig. 2). Sixty-three vertical levels

were used, 26 of which were within the lowest 1000m.

The physics options of the model were the defaults of

the Rapid Radiative TransferModel longwave radiation

scheme (Mlawer et al. 1997), the Dudhia shortwave ra-

diation scheme (Dudhia 1989), the Noah land surface

model (Chen and Dudhia 2001), and the Kain–Fritsch

cumulus parameterization scheme (Kain 2004), with

three microphysics and three PBL schemes tested in

a sensitivity matrix leading to a total of nine sensitivity

simulations. For microphysical schemes, the Stony

Brook University–Y. Lin (SBU-YLin; Lin and Colle

2011), Thompson (Thompson et al. 2008), and WRF

single-moment five-class cloud microphysics (WSM5;

Hong et al. 2004) schemes were selected. These schemes

provided a good range of complexity, with the Thompson

scheme having the most predictive variables, while

WSM5 and SBU-YLin offer fewer predicted variables

and have shorter run times. The three PBL schemes

were the Mellor–Yamada–Janji�c (MYJ; Janji�c 1994),

version 2 of the Mellor–Yamada–Nakanishi–Niino
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(MYNN2; Nakanishi and Niino 2006), and the Yonsei

University (YSU; Hong et al. 2006) schemes. Both the

MYJ and the MYNN2 schemes are 1.5-order turbulent

kinetic energy local closure schemes, while the YSU

scheme is a nonlocal k-mixing scheme. Another differ-

ence is in the mixing of hydrometeors for the different

schemes; in the MYNN2 scheme only the cloud water

mixing ratioQc is mixed, while in the YSU and theMYJ

schemes both Qc and the cloud ice mixing ratio Qi are

mixed. The YSU scheme was modified to correct an

error found in WRF 3.4.1. This error led to higher tur-

bulence values in stable conditions and unrealistically

high wind speeds at lower levels. The YSU andMYNN2

schemes used the Monin–Obukhov scheme from the

fifth-generation Pennsylvania State University–National

Center for Atmospheric Research Mesoscale Model for

the surface layer, while the MYJ option used its own

surface layer scheme.

The MVD of a cloud has been shown to be an im-

portant parameter in ice accretion modeling due to the

dependence of the collision efficiency, a1, on this term.

The relationship between MVD, wind speed, and a1 is

shown in Fig. 4. MVD is shown to have a larger effect on

a1 at higher wind speeds. For a wind speed of 60m s21,

similar to what is expected in the iceBlade model, a1

almost triples from 0.15 to 0.4 for MVD values between

15 and 30mm. As MVD is not a prognostic variable for

any of the microphysical schemes being used, several

sensitivity tests were carried out to estimate its impact

on the icing forecast. Both the SBU-YLin and Thompson

schemes use a gamma distribution for cloud water par-

ticles. Nygaard et al. (2011) presented an equation to

calculate the MVD from the gamma distribution based

on the droplet concentration Nc and cloud liquid

water content (LWCc). The WSM5 scheme uses a

monodisperse cloud water distribution. Both of these

distributions were tested for all three schemes to eval-

uate the differences. Since there were no estimates ofNc

at the evaluation site, three prescribed values were

chosen as sensitivity tests: 100, 250, and 350 cm23. The

first two prescribed Nc values are those suggested by

Thompson et al. (2008) for oceanic (clean) and onshore

(polluted) air, while Nygaard et al. (2011) presented

several measurements of Nc larger than 500 cm23, sug-

gesting a value greater than 250 cm23 might be appro-

priate. The SBU-YLin and Thompson schemes were

only run once with their default values for Nc of 10 and

100 cm23, respectively. For the monodisperse tests, fixed

MVD values of 10, 15, 20, and 25mm were chosen, based

on the calculatedMVDdistributions. These distributions

generally had a peak around 15mm and extended over

the entire prescribed range (10–25mm).

c. Coupling of iceBlade with WRF

All of the inputs to iceBlade are from the outputs of

the nine WRF sensitivity runs. The wind park covers

four 10 km3 10 kmWRFgrid cells, but in our tests there

was little variation in the iceBlade results across the grid

cells, so all presented results are from the northwest grid

cell. Because of the high vertical resolution of the WRF

model, five model levels crossed the turbines rotor

plane, but as discussed in section 3a(3), iceBlade was

designed to only use one height for input. To account for

this, initial tests were conducted comparing the results

from different model levels, as well as averaged values

across the five levels. These results show only a minimal

impact on the icing estimates, so it was decided that the

WRF output would only be extracted from the model

level that was approximately 80m above the model

terrain. The height of 80m was chosen since this is the

most common hub height for wind turbines and is used

in current wind farm assessment studies.

FIG. 4. Collision efficiency a1 vs MVD (mm) for various wind speeds (m s21) for a cylinder with

diameter of 0.144 cm.
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The v term of the Makkonen model required addi-

tional processing of theWRF outputs as a result of there

being two liquid hydrometeor species, determined by

size, in each of the microphysical schemes used. The

cloud water mixing ratio Qc and rainwater mixing ratio

Qr variables were used to calculate cloud LWC (vc) and

rain LWC (vr). The cloud MVD and vc were then used

to calculate the cloud collision efficiency a1c. The total

LWC (vt) was then calculated as

vt 5vca1c1vr . (7)

The collision efficiency for rain was assumed to always

be 1, as rainwater was assumed to be collected in its

entirety due to the large drop size. In Eq. (2),vtwas then

used to represent both the v and a1 terms. The ambient

wind speed was calculated from the u and y wind com-

ponents that were rotated to Earth relative, and un-

staggered in the horizontal.

After running iceBlade, a binary icing time series was

created using a threshold of 0.001 kg of ice to signify ice

accumulation on the blade. This threshold related well

to the ANY observed icing dataset. These two datasets

were used for most of the evaluation in this study.

4. Results and discussion

a. Observed icing

As described in section 2, an observational icing da-

taset was created using the turbine temperature, power

production, and idealized icing threshold curve. Thus,

power loss is not a term that can be examined separately

under the different icing conditions since it was part of

the criteria for observed icing. However, it is possible to

examine the amount of time each of the turbines was

iced to gain a better understanding of how the icing

impacts each turbine. Table 1 shows the percentage of

available times when the turbine was under icing con-

ditions for different time intervals. The 10-min values

are based on the raw values from the turbines. Hourly

icing was defined by the raw turbine data extracted at

the top of the hour (0min). Daily icing was defined as

days where eight or more hours had ice. The 10-min and

hourly data have very similar percentages across all

categories. This suggests that the hourly data do a rea-

sonable job of capturing the underlying signal in the

10-min data. Daily icing events show larger percentages

for the ANY and ALL categories, likely related to the

8-h threshold, but a smaller percentage of time for the

MOST category. The decrease in the MOST category

suggests that this group varies more throughout icing

periods than does either the ANY or ALL categories.

Given the large differences among the three cate-

gories of turbine icing, the percentage of icing for each

turbine was examined using the 10-min data. It was

found that the amount of icing time ranged from 17% to

43% for the various turbines with a median value of

32.6%. The lowest values are found in turbines, num-

bered 1–5, that did not experience the same amount of

icing during the early part of the month. There were

between four and five widespread icing events during

the month, with periods of melting between them

(Fig. 3). Given the number of events, this dataset should

provide a good evaluation of the icing model as it will

test both the accumulation and ablation algorithms.

b. Meteorological evaluation

The WRF model outputs were evaluated for the area

surrounding the wind farm using data from three surface

stations located within 100 km of the wind park, as well

as the wind park itself (Fig. 2, inset). At the wind park,

temperature and wind speed were evaluated, while the

surface sites also included variables allowing for the

evaluation of humidity and pressure. The evaluations of

wind speed, humidity, and pressure will be briefly dis-

cussed with an in-depth discussion of the temperature

evaluation, because temperature is a key input to both

the accretion and ablation models.

The results from the WRF model showed a moist

(positive) bias at all three stations for all simulations,

with the exception of those using the MYJ PBL scheme

at station A. Results at station A showed the least bias

across sensitivities while results from station C had the

largest bias. This suggests there may be a temperature

dependence given the orientation of the stations, with

station C being the most northerly. The results from

sensitivities using the MYJ PBL scheme consistently

had the lowest humidity values for each of the micro-

physics schemes. The results from sensitivities using the

Thompson microphysical scheme had the largest moist

bias. The pressure bias was very small at less than 1% for

all stations and did not show much of a signal across the

different model sensitivities.

Modeled wind speeds at 10m were compared at sta-

tions A, B, and C (Fig. 5). At the wind farm the modeled

wind speeds were taken from the layer closest to 80m,

the level used as input to iceBlade. At stations B and C,

TABLE 1. Percentage of time during January 2011 with observed

icing at a wind farm in central Sweden, excluding time when the

turbine data were not available. Number of available time steps

and total number of possible time steps are shown in parentheses,

separated by a slash.

Averaging period ANY MOST ALL

10min (3310/4608) 56.44 29.46 8.67

1 h (552/768) 57.10 29.35 9.60

8 h day21 (26/32) 65.38 26.92 11.54
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the modeled bias was positive across all sensitivities

while at the wind farm the bias was always negative.

At station A, the results from simulations using the

MYNN2 PBL scheme had a negative bias while the

other two PBL schemes had a positive bias. The model

results were most accurate at station A and at the wind

farm, while at stations B and C the bias was over 100%.

This is not an uncommon result for 10-m wind speeds,

because the observational stations are often impacted by

the local characteristics of the station that are not cap-

tured by the model. For station A, which is located on

a lake, these impacts should be smaller, and at the 80-m

height of the turbine there are also fewer impacts of the

local surface conditions. The PBL scheme choice had

the greatest impact on the 10-m wind speed with the

MYNN2 scheme consistently having slower wind speeds

than the other two models. Some of these differences

can be attributed to the PBL scheme’s sensitivity to at-

mospheric stability (Draxl et al. 2014). The results across

the different microphysics schemes had fairly consis-

tent trends with the highest wind speeds occurring in

simulations using the SBU-YLin scheme, while the

slowest wind speeds were consistently found in results

from model simulations using the WSM5 scheme.

However, the differences between the microphysics

schemes with a common PBL scheme were only a few

percent.

Like the wind speeds, the height of the temperature

measurements varied between the three meteorological

stations and the wind farm. At the wind farm, data were

again compared using model data extracted from the

layer closest to 80m while at the meteorological stations

the 2-m temperature was taken from the model results.

Themodeled temperature bias varied the most among the

variables studied across both stations andmodel sensitivities

(Fig. 5). The largest biases are found at station C

followed by those at the wind farm. Both the choice

of PBL scheme and microphysical scheme had a large

impact on the model’s performance. At the surface sta-

tions, the results from simulations using the Thompson

scheme were consistently much warmer than the results

from simulations using the other microphysical schemes.

FIG. 5. Mean temperature and wind speed bias for January 2011 at each of the surface stations (A, B, C) and the wind farm (WF) for

(top) temperature bias (K) and (bottom) wind speed bias (m s21). The two gray shades and black signify the different microphysical

schemes, and the results are grouped by the PBL schemes.
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However, at the wind farm the results from the SBU-YLin

and Thompson simulations were similar while the results

from the simulations using the WSM5 scheme were much

cooler. The temperature time series at the wind farm

showed that themean cold biaswas largely the result of the

WRF model dramatically underestimating the tempera-

ture during the coldest periods of the study. The oppo-

site was found at station C, where themodel was not able

to capture the lowest temperatures. This suggests that the

temperature gradient between 2 and 80m may not be ac-

curately represented in the model. However, there is also

some uncertainty in the accuracy of the observed tem-

perature from the nacelles, with reported errors of up to

28Cwhen comparedwithmastmeasurements. It is believed

this may be in part due to the heating of the local atmo-

sphere around the turbine by the electronics in the nacelle.

The variance of the temperature data was captured

fairly well and the results showed good agreement for

when themodeled temperature was above 0.58C, the key
threshold for triggering shedding events in the iceBlade

model. However, at temperatures just below 08C there

could be a rather large cold bias in the model, which

would encourage more ice growth than actually oc-

curred. This was not a significant issue since the majority

of accretion periods for both the WRF model and the

observed temperature were well below 258C, and there-

fore insensitive to the temperature because all incoming

particles would have frozen.

The large temperature deviations found at the wind

farm are troubling from a forecasting perspective. This

did not likely have a large impact on the icing forecast,

since the largest deviations occurred when the temper-

ature was below 2108C, which is cold enough to freeze

the incoming mass flux for this study. The cold bias may

have been important in the partitioning of hydrometeors

between the liquid and solid phases in the various mi-

crophysics schemes, as well as the creation of clouds due

to the reduced capacity of the atmosphere to hold water

vapor at lower temperatures.

c. Icing model comparison

IceBlade was run using the outputs from all nineWRF

sensitivity studies, using seven different distributions of

MVD. Except where noted, the analysis focused on the

gamma distribution of MVD using an Nc of 250 cm
23.

Throughout this section, when a specific scheme or pair

of schemes is mentioned, it is in reference to the model

results from a simulation using those schemes. The

evaluation was performed against the ANY wind farm

icing time series. The ANY time series was selected as

the key variable for short-term icing forecasts is the total

wind farm production.

The periods of icing from the iceBlade model results

were compared to the ANY observational dataset using

a contingency table method that identified four model

states: 1) correct hit, 2) miss, 3) correct nonevent, and

4) false alarm. Figure 6 shows a time series of the oc-

currence of the contingency table. All sensitivity studies

show a majority of correct forecasts. From the number

of incorrect forecasts it is evident that the SBU-YLin

microphysical scheme and the YSU PBL scheme pro-

duce fewer icing events than the other schemes do. The

YSU results are likely due to the warmer temperatures

produced in that scheme. The most common type of

incorrect forecast (miss or false alarm) varies between

the different WRF sensitivities, suggesting that the

choice of optimal schemewill depend onwhich incorrect

forecast type is more important. For example, the

Thompson–MYNN2 results have few missed cases but a

large number of false alarm cases. Meanwhile, the SBU-

YLin–MYJ results show very few false alarms but many

misses.

Figure 7 shows the hit and false alarm rates for each of

the sensitivity tests using different values of Nc to cal-

culate the MVD based on the function from Nygaard

et al. (2011). Several simulations have hit rates over 0.8

and the Thompson–MYNN2 hit rate is close to 1.0. The

high hit rate values correspond to sensitivity tests that

produce more icing, as these simulations also have false

alarm rates over 0.2. The choice of Nc had little impact

on either the hit rate or the false alarm rate. This sug-

gests that the periods of icing were independent of

this value despite its impact on the MVD distribution.

As MVD was expected to have a large impact on icing

accumulation, this result was surprising but can be

explained by examining the time series of the ice

mass (Fig. 8).

Figure 8 shows the accumulated icemass over time for

all of the monodisperse MVD values and the 250Nc

gamma-distributed MVDs. The ice accumulates at dif-

ferent rates depending on the MVD value, leading to

large differences in ice amounts. However, since the ice

removal was dominated by shedding events, the differ-

ence in ice amount did not translate to the duration of

the events. It should be noted that these results may

change if the assumed distribution in the microphysical

schemes were changed, rather than only imposing the

newMVD in the iceBlademodel, as this could feed back

into the amount of liquid water and types of hydrome-

teors predicted by the model. This may also explain

some of the differences between the Thompson and

SBU-YLin schemes, as there was an order of magnitude

difference in their Nc values.

For simulations using a monodisperseMVDof 10mm,

the ice growth was minimal, causing events that were
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shorter in duration than the other MVD values. How-

ever, when using larger MVD values the duration of

icing is almost identical, despite the large differences in

ice mass. For the largest prescribed MVD (25mm) the

ice mass grows to a value almost 3 times larger than in

the 15-mm test. The gamma distributedMVDoften shows

lower ice mass than any but the smallest of the prescribed

MVD cases. This result was expected, as the distribution

of the gamma-distributed MVD had a peak near 15mm.

The ice-mass analysis also aids in our understanding of

the differences in the icing event time series (Fig. 6). The

increased number of missed events in the SBU-YLin

simulations was caused by reduced accumulation during

active icing periods. The lower ice accumulation led to

the removal of ice earlier via the sublimation process;

unlike in the other schemes where the ice was only re-

moved by the total shedding events. This led to the large

number of misses at the end of the icing events in the

SBU-YLin sensitivity tests.

While the choice of microphysical scheme had a sig-

nificant impact on the model performance, it is partic-

ularly interesting to examine the difference between the

PBL schemes with the samemicrophysical schemes. The

YSU scheme produced many more missed events, re-

gardless of the microphysical scheme being used, while

also generating lower ice masses throughout the period.

This was a result of increased sublimation—approximately

double that of the other two schemes, caused by the higher

temperatures found in the YSU scheme. The temperature

difference between the three PBL schemes also had a large

impact on the ice accumulation, as the coldest scheme,

MYJ, forecastmore ice accumulation over themonth than

either of the other schemes.

To further evaluate the model performance, iceBlade

was compared against three other icing duration fore-

casts. The first was the iceBlade model run on a stan-

dard cylinder, which is similar to the approach taken by

Byrkjedal (2012a); however, as iceBlade does not

FIG. 6. Comparison of modeled and observed icing periods from the ANY dataset as

a function of (top to bottom) microphysics and, within each microphysics scheme, the YSU,

MYNN2, andMYJ PBL schemes. The color codesmatch the entries of a contingency table (not

shown); green denotes good predictions, and pink denotes poor predictions. White space de-

notes either missing or removed data.
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increase the size of the cylinder as the ice grows, it can be

assumed that the cylinder results are overestimated

when compared with the standard Makkonen model,

because the increased cylinder size would reduce the

collision efficiency. The second alternative model was

a threshold-based model that has been used at Vestas to

estimate the periods of icing on turbines for annual en-

ergy estimates. The threshold used here forecast icing

when the temperature was below 08C and the sum of the

mixing ratios of Qc and Qr was above 0.05 g kg21. The

final alternative model was the persistence model de-

scribed in section 2.

To compare the different icing models, several skill

scores commonly used in meteorological forecast eval-

uation (Wilks 2006) were selected: theHeidke skill score

(HSS), Kuiper skill score (KSS), threat score (TS), Pierce

skill score (PSS), and equitable threat score (ETS). The

skill scores present different views of the model’s per-

formance: HSS shows the fractional improvement in the

proportion of correct forecasts over chance, KSS is the

difference between the hit rate and false alarm rate, and

PSS is the difference between the miss rate and the false

alarm rate. TS and ETS relate the number of hits to the

sum of all observations with the exception of correct

nonevents, where ETS offsets the tendency of TS to be

influenced by the climatology of the event by subtracting

the hits expected by chance from both the numerator and

the denominator. For all of these scores, 1 is the best

possible forecast.

In almost all cases, the results from iceBlade are shown

to outperform those from the other models (Fig. 9). The

threshold method is shown to perform very poorly in this

evaluation, because it does not include a persistence term

for leaving ice on the blade after an accretion event. As

expected from the results in Byrkjedal (2012a), the

standard cylinder does not show much skill in estimating

the periods of icing identified by the power production

curve. This is largely due to the small amount of ice ac-

cretion that occurs on the standard cylinder allowing for

rapid ice removal by sublimation. The lower ice accretion

on the standard cylinder is most likely due to the large

difference between the ambient wind speed and the rel-

ative wind speed of the blade. The persistence model

performs almost as well as the iceBlade model, as was

expected due to the relatively long periods of the icing

and no-icing events. During transition seasons or at

FIG. 7. Sensitivity of the hit and false alarm rates as a function of the Nc parameter used to

calculate the MVD for all nine WRF simulations at the grid cell containing the wind farm.
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a location that experiences shorter icing events, the per-

sistencemodel would likely not perform aswell, while the

skill of iceBlade in these conditions is currently unknown.

In comparing the different mesoscale model sensitivities,

the SBU-YLin microphysical scheme and the YSU PBL

scheme both performworse across simulations compared

with the other schemes. The differences between PBL

schemes are smaller than those across the microphysical

schemes and the Thompson–MYNN2 setup slightly out-

performs the other schemes overall; however, either the

MYJ or MYNN2 scheme coupled with the Thompson or

WSM5 scheme seems to be an appropriate choice for this

location.

The precipitation and cloud properties of each model

simulation were compared to better understand the

differences in icing amounts between the WRF sensi-

tivity studies. The precipitation rate, timing (Fig. 10),

and accumulation were similar across all nine simula-

tions. Total monthly precipitation varied by less than

10% of the monthly precipitation total across the nine

simulations, with the lowest precipitation values being

in the WSM5–YSU and Thompson–MYJ cases. The

total precipitation value includes rain, snow, and graupel

from both the microphysical and convective schemes;

however, for this period the convective precipitation

contributed less than 1% of the total precipitation.

FIG. 8. Time series of total accumulated ice mass (kg) from beginning of the modeling period for each of the nine WRF simulations at

the grid cell containing the wind farm. Different colors indicate the various prescribedMVD values. The black line signifies the calculated

MVD with an Nc set to 250 cm23.
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Given the similar monthly precipitation amounts, se-

lecting the correct physics options for icing is not pos-

sible based on precipitation alone. This is due to the

icing model relying on the accurate prediction of all

clouds, not just precipitating clouds.

Figure 11 shows the total hydrometeor mixing ratio

separated into the four relevant hydrometeor types from

each of the nine model simulations. The cloud parame-

ters provide a better match to the iceBlade results than

was found with the precipitation rates, as SBU-YLin

clearly has a smaller total hydrometeor mixing ratio at

80m. This suggests that the SBU-YLin scheme may

precipitate the cloud more rapidly, due to the similar

precipitation (Fig. 10) and reduced cloud. The SBU-YLin

scheme was found to also have the lowest amount

of liquid-phase hydrometeors (Qc 1 Qr). Since the

iceBlade model only includes liquid hydrometeors, this

points directly to the reduction of icing periods in the

SBU-YLin sensitivity tests. It is also interesting that the

WSM5 microphysical scheme is the only microphysical

scheme to produce any significant cloud ice (Qi) at this

height, suggesting either a reduction in Qc or Qs com-

pared with the other two schemes. The increased Qi in

theWSM5 scheme suggests that cloud ice is more readily

formed at warmer temperatures in the WSM5 scheme,

and thatQi is slower to accumulate to the snow phase and

form Qs. The Thompson scheme shows less Qr than do

either of the other two schemes but much larger Qc

amounts. This balance between the Qc and Qr hydro-

meteor classes could explain the similarities between the

FIG. 9. Model skill scores for iceBlade run on a standard cylinder, iceBlade, a 1-day persistence forecast, and a threshold method for the

nineWRF sensitivities at the grid cell containing the wind farm. The skill scores shown are HSS, KSS, TS, PSS, and ETS, calculated using

the verification package of the R software.
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icing forecasts of the WSM5- and Thompson-driven

sensitivities, due to the high collision efficiency ofQr. The

reduced precipitation and Qr in the Thompson scheme

could also be due to the higher Nc parameter relative

to the SBU-YLin scheme, which would lead to smaller

cloud droplets, as the larger cloud water droplets in

the SBU-YLin scheme should more rapidly convert to

precipitation.

This study did not focus on forecasting the atmospheric

conditions, but instead was run using a hindcast approach

to determine if the method of coupling iceBlade to

WRF was feasible at this station. The performance in

a forecasting mode is somewhat uncertain, as the ad-

ditional uncertainties in the meteorological data, due

to uncertainties in the input conditions, would suggest

a decrease in model performance. However, as energy

forecasts are typically produced only for 1–2 days into

the future, the results may also be improved. Addi-

tionally, this station was located in relatively flat terrain,

allowing for a coarser resolution to provide reasonable

cloud parameters. It is expected that in areas with in-

creased topographical complexity, the model resolution

will become more important for determining the correct

timing and magnitude of cloud events.

FIG. 10. Time series of total hourly precipitation rate (mmh21) from each of the nineWRF simulations at the grid cell containing the wind farm.
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5. Conclusions

This study has shown that iceBlade, driven by outputs

from theWRFmodel, can provide improved forecasts of

icing on a wind turbine blade compared to a persistence

model, a threshold-based method, and a standard cyl-

inder model. The observed icing dataset, created using a

relationship between the observed and idealized power

output and the observed nacelle temperature, allowed

for the evaluation to focus on icing that impacted the

turbine performance. The comparison with the cylinder

approach demonstrated that the increased effective wind

speed of a rotating turbine blade contributes greatly to

the icing duration and improves model performance.

The choice of microphysical and PBL schemes in the

WRF model were found to have a large impact on the

estimated ice mass, and a smaller but still significant

impact on icing duration, even when the models largely

agree on the forecast precipitation. Therefore, an eval-

uation of precipitation is unlikely to bemeaningful when

selecting the model schemes for an icing forecast. This

was due to the importance of the accurate forecast of

both the amount and partitioning of hydrometeors in the

microphysical schemes, rather than the precipitation

rate. For the PBL schemes, the temperature difference

was the main cause of variations in icing forecasts. In

addition to the atmospheric model physics themselves,

the ice-mass forecast by iceBlade was shown to be very

sensitive to the MVD distribution used for Qc. It seems

the approach used by Nygaard et al. (2011) performed

well for this study and would continue to be a good

starting point for future studies for all three of the mi-

crophysical schemes presented here.

The results suggest that the iceBlade model is capable

of providing short-term icing forecasts at this location

that could aid in day-to-day decision making, such as

pricing on the energy market or when to enable deicing

or anti-icing systems. Given a long enough meteoro-

logical simulation, the iceBlade model has the potential

to be used for developing icing climatologies, which

FIG. 11. Monthly sum of cloud mixing ratio (kg kg21) by hydrometeor type for each of the

nineWRF simulations at the grid cell containing the wind farm at 80mAGL. The darker colors

identify larger hydrometeors (rain and snow). The hydrometeors fromWRF are cloud droplets

(Qc), rain (Qr), ice (Qi), and snow (Qs).
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would aid the wind energy industry in the key areas of

site selection, maintenance planning, cost–benefit anal-

ysis, and deployment of deicing and anti-icing systems.
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