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Abstract

We study the effects of the temperature dependence of viscosity and density on the acoustic radiation force and the

boundary-driven acoustic streaming in microchannel acoustofluidics. The acoustic streaming slip velocity for the bulk

flow is calculated numerically taking these thermoviscous effects into account inside the micrometer-thin acoustic

boundary layer and compare the results to recent analytical work in the literature. The acoustic radiation force is

calculated for the case of an ultrasound wave scattering on a compressible, spherical particle suspended in a viscous,

thermal conducting fluid. Using Prandtl–Schlichting boundary-layer theory, we include the viscosity and the volume

thermal expansion coefficient of the fluid and derive an analytical expression for the radiation force. The resulting force

(valid for particle radius and boundary layers much smaller than the acoustic wavelength) is analyzed for microchannel

acoustophoresis.

© 2013 Published by Elsevier Ltd Selection and/or peer-review under responsibility of Matthew Begley and Thomas

Laurell.
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1. Background and governing equations

With recent developments in microfabrication technologies allowing for integration of ultrasound res-

onators in lab-on-a-chip systems, the acoustic radiation force has received renewed attention as a label- and

contact-free way to manipulate particles [1, 2]. Traditionally, acoustic streaming is treated in the isothermal

case, and the acoustic radiation force has been modeled using the inviscid theory of the acoustic radia-

tion force. This approach is approximately correct for liquids having a small volume thermal expansion

coefficient and for particles of radius a much larger than the thicknesses δ and δ
th

of the viscous and ther-

mal boundary layers, in which dissipation plays a dominant role. However, given the recent experimental

advances including improved accuracy [3] and the use of smaller particles [4] as well as recent analyti-

cal results for both streaming [5] and radiation [6], it is relevant to re-visit the theoretical analysis taking

thermoviscous effects into account.
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1.1. First-order equations
Briefly, and to establish our notation [7], the full acoustic problem in a fluid, which before the presence

of any acoustic wave is quiescent with constant temperature T0, density ρ
0
, and pressure p0, is described by

the four scalar fields pressure p, temperature T , density ρ and entropy per mass unit s as well as the velocity

vector field v. The two thermodynamic relations

dρ =
γ

c 2
0

dp − αρ dT, and ds =
Cp

T
dT − α

ρ
dp, with α = − 1

ρ
0

(
∂ρ

∂T

)
p
, (1)

can be used to eliminate ρ and s, so that we only need to deal with the acoustic perturbations in temperature

T , pressure p, and velocity v. Here c0 is the (isentropic) sound speed, Cp the specific heat at constant

pressure, and γ (≈ 1.01 for water at 293 K) is the ratio of specific heats . To first order (subscript “1”) in the

acoustic perturbation, the independent fields are

T = T0 + T1, p = p0 + p1, and v = v1, (2)

while the dependent fields, density ρ and viscosity η, are

ρ = ρ
0
+ ρ

1
= ρ

0
+
γ

c 2
0

p1 − αρ0
T1 and η = η0 + η1 = η0 +

(
∂pη
)
0 p1 +

(
∂Tη
)
0 T1. (3)

The thermodynamic heat transfer equation for T1, the kinematic continuity equation expressed in terms of

p1, and the dynamic Navier–Stokes equation for the velocity field v1, become

∂tT1 =Dth∇2T1 +
αT0

ρ
0
Cp
∂t p1, (4a)

∂t p1 =
ρ

0
c 2

0

γ
,
[
α∂tT1 − ∇·v1

]
, (4b)

ρ
0
∂tv1 = − ∇p1 + η0∇2v1 + βη0 ∇(∇·v1). (4c)

Here (with values for water at room temperature given in parenthesis), D
th

is the thermal diffusivity (1.44 ×
10−7 m2/s), α is the volume thermal expansion coefficient (2.97× 10−4 K−1), Cp is the heat capacity (4.18×
103 J · kg−1 ·K−1), ρ

0
is the density (998 kg/m3), η0 is the dynamic viscosity (0.89×10−3 Pa · s), and β is the

viscosity ratio (≈ 1/3). A further simplification can be obtained when assuming all first-order fields to have

harmonic time dependence e−iωt, because then p1 can be eliminated inserting Eq. (4b) with ∂t p1 = −iωp1

into Eq. (4a) and (4c). After using the thermodynamic identity T0α
2c 2

0
/Cp = γ − 1 and introducing the

kinematic viscosity ν = η0/ρ0
, we arrive at

iωT1 + γDth∇2T1 =
1 − γ
α
∇·v1 and iωv1 + ν∇2v1 + ν

(
β + i

c 2
0

γνω

)
∇(∇·v1) =

c 2
0
α

γ
∇T1. (5)

From Eq. (5) arise the thermal and the viscous penetration depth δ
th

and δ, respectively (values for 2 MHz

in water),

δ
th
=

√
2D

th

ω
≈ 0.15 μm and δ =

√
2ν

ω
≈ 0.38 μm. (6)

1.2. Second-order equations for acoustic streaming
The continuity and Navier–Stokes equations to second-order (subscript “2”) in the acoustic perturbation

become

∂tρ2
= − ρ

0
∇ · v2 − ∇ · (ρ1

v1), (7a)

ρ
0
∂tv2 = − ∇p2 + η0∇2v2 + βη0∇(∇ · v2)

+ ∇·
{
η1

[∇v1 +
(∇v1

)T
+ (β − 1)(∇·v1)I

]} − ρ
1
∂tv1 − ρ0

(v1 · ∇)v1, (7b)
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where I and superscript “T” represents the unit tensor and transposing, respectively. We note that there is

no coupling to the second-order thermal field T
2
, and consequently thermal effects enter only through the

temperature-dependent first-order fields ρ
1
, η1 and v1.

In a typical experiment on microparticle acoustophoresis, the microsecond timescale of the ultrasound

oscillations is not resolved. It therefore suffices to treat only the time-averaged equations over one oscillation

period (angled brackets
〈
. . .
〉

below) [8]. The time average of the second-order continuity equation and

Navier–Stokes equation is

ρ
0
∇ · 〈v2

〉
= − ∇ · 〈ρ

1
v1

〉
, (8a)

−∇〈p2

〉
+ η0∇2〈v2

〉
+ βη0∇

(∇·〈v2

〉)
= − 〈∇η1 ·

[∇v1 +
(∇v1

)T ]〉 − (β − 1)
〈
(∇·v1)∇η1

〉
− 〈η1∇2v1

〉 − β〈η1∇(∇·v1)
〉
+
〈
ρ

1
∂tv1

〉
+ ρ

0

〈
(v1 ·∇)v1

〉
. (8b)

It is seen that products of first-order fields act as source terms (at the right-hand sides) for the second-order

fields (at the left-hand sides). We note that for complex-valued fields A(t) and B(t) with harmonic time-

dependence e−iωt, the time average is given by the real-part rule
〈
A(t)B(t)

〉
=

1

2
Re
[
A(0)∗ B(0)

]
, where the

asterisk represents complex conjugation. We implement and solve these equations numerically using the

software Comsol Multiphysics 4.2a as described in our recently published work [7].

The second-order problem was solved analytically in the isothermal case of the infinite parallel-plate

channel in the yz-plane by Rayleigh [9], Landau and Lifshitz [10]. Assuming a first-order bulk velocity field

with only the horizontal y-component v
1y being non-zero and of the form v1y = U1 cos(2πy/λ) e−iωt, the

resulting y-component
〈
vbnd

2y
〉

of
〈
v

2

〉
just outside the boundary layers becomes

〈
vbnd,0

2y
〉
=

3

8

U2
1

c
0

sin

(
4πy
λ

)
. (9)

Recently, Rednikov and Sadhal [5] extended this analysis by including the oscillating thermal field as well

as temperature dependence of the viscosity. They found that the slip velocity condition changed to

〈
vbnd,T

2y
〉
=

(
1 +

2BT

3

) 〈
vbnd,0

2y
〉
, with BT = (γ − 1)

[
1 − (∂Tη

)
p

1

η
0
α

] √
ν/D

th

1 + ν/D
th

. (10)

Thus the inclusion of the thermoviscous effects leads to a temperature-dependent pre-factor multiplying the

temperature-independent result.

1.3. Second-order equations for the acoustic radiation force

A general mathematical expression for the acoustic radiation force (wavelength λ) with thermoviscous

corrections is given by Doinikov [11]. However, he presented analytical results in closed form only for

particles with a thick boundary layer (a � δ, δ
th
� λ) and with a thin boundary layer (δ, δ

th
� a � λ).

Here, we extend his analysis and present analytical results in closed form for any particle size (a, δ, δ
th
�

λ). The resulting radiation force is analyzed using parameter values typically employed in microparticle

acoustophoresis in microchannels.

The time average of the first-order fields is zero, so the acoustic radiation force Frad is the time average

of the second-order acoustic fields. The general expression for Frad is the following surface integral [11]

Frad =

∮
surf

〈
σ2 − ρ0

v1v1

〉 · n da (integral over the equilibrium surface of the sphere), (11)

where σ2 is the stress tensor of the fluid to second order, and n is the outward surface normal vector.
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Fig. 1. (a) The amplitude of the acoustic streaming slip velocity, at T
0
= 25 ◦C, normalized according to Eq. (12). The analytical

thermoviscous result by Rednikov and Sadhal [5] (blue line) is 26 % larger than the classical isothermal result by Rayleigh [9, 10] (red

line). Our numerical results obtained using Comsol for the thermoviscous and isothermal models are shown with blue and red circles,

respectively; (b) Amplitude of the thermoviscous acoustic streaming slip velocity as function of the equilibrium temperature T
0
.

2. Results

2.1. Thermoviscous acoustic streaming slip velocity

The analytical isothermal results by Rayleigh [9], Landau and Lifshitz [10], and the analytical ther-

moviscous results by Rednikov and Sadhal [5] are compared with our numerics in Fig. 1. The boundary

streaming velocities have been normalized to Rayleigh’s result according to

〈
ṽbnd

2y
〉
=

〈
vbnd

2y
〉

〈
vbnd,0

2y
〉 . (12)

In Fig. 1a is shown the boundary slip velocity
〈
vbnd

2y
〉

along a segment of width W=λ/2 of the infinite parallel

plates channel. The analytical prediction by Rednikov and Sadhal, taking into account temperature-induced

first-order variations η
1 of the viscosity, is 26% larger than the isothermal prediction by Lord Rayleigh. The

thermoviscous numerical results are 23% larger than Rayleigh’s result, while the isothermal numerical re-

sults are 2% smaller. We have ensured that the numerical results have converged. In Fig. 1 b are shown the

results of thermoviscous simulations carried out for different equilibrium temperatures T
0. All equilibrium

values of the material parameters used in the numerical model are changed according to the value of T0, and

in Table 1 they are shown for T0 = 25◦C. For high temperatures there is an almost exact match between the

numerical and analytical results, while an increasing difference is observed when going to lower tempera-

tures. We have no apparent explanation for this discrepancy, however the general trend of the numerical and

analytical results are in good agreement.

2.2. Thermoviscous acoustic radiation force

The first-order scattering problem splits into a monopole term (the vibration of a stationary, compressible

sphere) and a dipole term (the translation of a moving, rigid sphere). With this decomposition, the problem

reduces to find the corresponding scattering coefficients, which then are inserted into expression (11) for

Frad. Some relevant parameters are ρ̃ (particle/fluid density ratio), κ̃ (particle/fluid compressibility ratio),

δ̃ = δ/a, δ̃
th
= δ

th
/a, and ka = 2πa/λ.
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Table 1. Acoustic parameters. Values are taken from Comsol 4.2a material library for water at T
0
= 25 oC

Parameter Symbol Value Unit

Density ρ0 998 kg·m−3

Speed of sound c0 1495 m·s−1

Viscosity η0 0.893 m · Pa·s
Thermal conductivity k

th
0.603 W·m−1·K−1

Specific heat capacity cp 4183 J·kg−1·K−1

Thermal expansion coefficient α 2.97 × 10−4 K−1

Thermal diffusivity D
th

1.44 × 10−7 m2·s−1

Specific heat capacity ratio γ 1.01

2.2.1. Fluids without thermal expansion
For a fluid without thermal expansion (α = 0, γ = 1), the thermal and acoustic fields in Eq. (5) decouple,

and T1 = 0. The term
〈
σ2

〉
in Eq. (11) is written as products of first-order fields, and by matching the

first-order solutions for p
1 and v1 in the inviscid bulk with those inside the boundary layer, we calculate Frad

for arbitrary standing and traveling waves. For the special case of a planar standing wave, p
in
= pa cos(kz),

we find

Frad
1D

(z) = 4π

(
f1
3
+

f r
2

2

)
a3kEac sin(2kz), f1 = 1 − κ̃, f r

2
= Re

[
2
(
1 − Γ)(ρ̃ − 1)

2ρ̃ + 1 − 3Γ

]
,

Γ = −3

2

[
1 + i(1 + δ̃)

]
δ̃,

(13)

where Eac is the acoustic energy density. The monopole scattering coefficient f1 is unaffected by viscosity,

but the dipole coefficient f r
2

depends on viscosity through the variable Γ. As in Doinikov [11], we have

ka � 1 and kaδ̃ � 1 (the wavelength is the largest length scale in the problem), but in contrast to the

previous result, we have no further restriction on δ̃. In the limits δ̃ � 1 and δ̃ � 1, studied by Doinikov,

his results and Eq. (13) agree. For near-neutral-buoyancy particles (ρ̃ ≈ 1), the influence of viscosity on

the radiation force is negligible. For the often used polystyrene microparticles (ρps = 1.05 kg/m3) in pure

water, the relative change in the radiation force is 0.1% for a = 1 μm and 0.2% for a = 0.1 μm. For saltwater

with a salinity (near saturation) of 25% the effect increases due to increasing viscosity, and reaches 3% for

a = 1 μm and 5% for a = 0.1 μm. For denser particles, e.g. pyrex glass with ρpy = 2.23 × 103 kg/m3, the

influence of viscosity on the radiation force becomes important. We now find that in pure water the relative

change in the radiation force is 15% for a = 1 μm and 33% for a = 0.1 μm. For saltwater with a salinity

(near saturation) of 25% the effect slightly decreases due to the lowering of ρ̃, and reaches 11% for a = 1 μm
and 22% for a = 0.1 μm. For more details on this calculation see Ref. [6].

2.2.2. Fluids with thermal expansion
The analysis is more complicated when taking the volume thermal expansion into account (α > 0, γ > 1).

Space limitation prevents the full expressions to be given, so we restrict ourselves to the limit δ
th
, δ � a � λ,

corresponding to the analysis provided by Doinikov. The expression for Frad
1D

in this limit is

Frad
1D,th
= 4π

[
5ρ̃ − 2 − κ̃
3(2ρ̃ + 1)

+
3(ρ̃ − 1)2

(2ρ̃ + 1)2
δ̃ − γ − 1

2(1 + Δ̃)
δ̃th

]
a3kEac sin(2kz), (14)

where Δ̃ = k̃
th
/
√

D̃
th
≈ 1 involves the particle/fluid ratios of the thermal conductivity k̃

th
and diffusivity D̃

th
.

Above, we have seen how minute the changes are in the radiation force when only viscosity is taken into

account. Thus, we measure the influence of the thermal effects by the ratio R of the thermal δ
th

-term and the

viscous δ-term in Eq. (14)

R =
(γ − 1)(2ρ̃ + 1)2

6(1 + Δ̃)(ρ̃ − 1)2

√
D

th

ν
≈ 3.1 × 10−4 (2ρ̃ + 1)2

(ρ̃ − 1)2
, (15)
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where the pre-factor is calculated for water. For neutral buoyancy (ρ̃ = 1) the viscous term is zero and R
is not defined. However, because γ − 1 = 0.01 and δ

th
= 0.4δ, the thermal effect is small (� 1 %). For

the case of polystyrene, ρ̃ = 1.05, we find that R = 1.2, and the viscous and thermal effect are of the same

magnitude. However, as these two terms in Eq. (14) have opposite signs, they actually nearly cancel each

other. For pyrex glass, ρ̃ = 2.23, we obtain R = 0.006, and again the thermal effect is negligible. The same

conclusion can be reached in the limit ρ̃→ ∞, because R→ 1.2 × 10−3.

3. Conclusions

We have analyzed the influence of thermoviscous effects on microchannel acoustofluidics. First, by in-

cluding harmonic temperature-induced variations of the viscosity, we have obtained numerical results for the

acoustic streaming slip velocity, which agree well with recently published analytical results by Rednikov and

Sadhal [5]. The results show that thermoviscous effects increase the strength of the acoustic streaming by up

to 50% for water at 80◦C enclosed between parallel plane and rigid walls. Importantly, our numerical anal-

ysis can easily be extended to geometries more complex than the idealized parallel-plate geometry. Second,

extending previous work by Doinikov [11], we have calculated the acoustic radiation force on a compress-

ible, spherical micro-particle suspended in a viscous, thermal conducting fluid exposed to an ultrasound

field. We have used the resulting expression to quantitatively analyze microchannel acoustophoresis, and

found that for nearly-neutral-buoyancy particles, the effect of the viscosity on the radiation force disappears,

while a small (� 1%) thermal correction remains. For denser particles (ρ̃ > 1.05) the effect of viscosity can

be significant (larger than 30%), but the thermal effect remains a small fraction of this (R < 0.001).

Our results demonstrate that thermoviscous effects must be taken into account in to fully characterize

ultrasound acoustofluidics.
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